20173
Question
A bowl has 16 pieces of fruit in it.
12 of the pieces of fruit are oranges.
What fraction of the pieces of fruit are oranges?
Worked Solution
|
|
Fraction of oranges |
= total number of fruitnumber of oranges |
|
= 1612 |
|
= {{{correctAnswer}}} |
U2FsdGVkX193hkFeUwtX2DYlwNOMgfmzQjlrgH6Rba4PX5lidC6DffD2B/7a0Am3EyFL7/gNbxwU5iw3BIqea8AU03umpFh7zxJeioAQWPqx4ihQDKLaAPu/McYipsMmCxoiDzksxSc5LJtGM861R/a1I1vsxUra3bl4eMGjnGrn1krLkZza4bSeLJhshXwYbzRvcG5maQR6irRHaD+CUTgvOSP0O45rBFA20P+D/MmFOgwzmxsRXPGh8R8BYQhMFSk7u2z1lVIlC5ohfVrJUyrlF6gShr9o5KeE98KyF7rDL5791HtFHblacyuSjOalV7NOnmuhOCgPrT+ZP8L3IY0ZO2GpEmqPob1ZbK2+O9vobUgwwbRf7owdX9IHzHW10gqzF1QgKjzgAAnAMTB3g+zbY8iDBoJxDY9R1kHXedTlltx4rqbe6Hd0go/7xi5sX5B9KhRsE5nnSboBPjvfbfWzcdt7WO6xlUWFAQ+l/X3VX7+3MqHPoa66arsNVSyPbKcy7uF9OnTt6DYKqywd41MgImWgLDkFoumqUeZEMHeZe/skhMQfNUYV9hxlB4PLOrlvqRtXR4uYUTCAIh1Ff0pGMQdxPp7Y7fIn9pKOLpPxs6dCq6rJnS4pAU+1dE5qpCtcDox/sInFuP6M677lLUnxsyqWtLBcDSTs9xkCtGKoqljmDGGEsubrcwyh5X33QVlIFPsvKdty+VoftaM6lGIvvCE94MNO0Uio1xQhHKnAEAJK7qaYNXQD2t1p+aLYOxCRZatWzwYFPFxNIhNp2ekdf+z1KGYvNFcN+Ej3UtFj0jqQehJ0OzkDs8TYgdS/4YsZI1w1KOUuGAtZ6JgCfBS4ieMji6aRZluom+0+cFZj/3F6qlK/xV3HOKxslp+l/uK8rQdjOKSw9LVxSpdJ+H5RrzZld7Lp3DZRETWIQOTweRNmN3kKTOV84hYvWug8e4gJm0830f8QIffXJlojF29DJya/Qf3P4emcDPLsUffC3RKhQZwixkqIPfJNxNRFmISCJx9Rlq6+0zyadgE0tlZyZTYJD4BmUTQscjAqJXqASRJ69bGoe46o1OwdknCm9FbcYqxudHUrYFc8g9VEe9G8xTMRfolv81dPJG3zG2dX2gcc4qXtOVyVfaGhA9KasK0J/rt1nj9OohAjkczOWzUuxtMxIDWocXfz8wmafawzjMP6hHae4BNp97qHrRxpmwS6VPEVuRbVcWeAgeD67pnfp9of8aEz0+hq4hS0nAkAVCwSoljAGd9AjZenVyIuFpjAESgKe2VFg3wuNJ+cketbX/I4eoZfRv/lUdSEk2t0DgCNr6CDkvE2GqpdLxldq48T/sZls7O7AfenSLZ84a2ETukRk9PfJ3kHAkArKOO69O7cdhGtVSWTrvHNwa9k5eWiiBhtyDsCwRbP05Ye8xg6pCLhkRwM2uA2mKrciuHk66oyi4wMYhZ0qcDjn2OzA6qd1nZLhGj91T0ZjsHtTfnZsJwYt23/nfzMve4vn2gqp6Wr7QtbVjL0kwTfVIckW2hRe6Dt+7A/r4ZU93YKR8lQUAlZ3Oo25S0mBmRYkoyXxsAHZHGsGGaGdoCwj7+S8zVAKe6HybZ8m4ViyHAQDEkR31EAK9eww4k9jlRHoP16zAqcyUOeuyiheIatwegr3B1AHr9rJr5b8elntZsA4Z2BF5ttg3dvSI3/7F7gr8B2EPj3JEP/H3N2hWJ/cRIahCGBTRntMwYrheJNxEDU1B0OX/ARNGS1J+tHfdKSCTs6qDYKs0qtCjpRIzV1MvFvTK3YDNovRrqoPWoL6MV6sjHv86zRcQmWGo0/RUIgO9vkjmoerL/GqnItal30RkyTJJQzEsooCW6ofEFhVcqOJ+GUCPX4F34tyzgYuQ1XWAckagdSeVLX1QB8e8cccKXTqR+wIp17l5tS/sxNYfzWJbg+jvySkb2GgYlSXxIv07i4G4cTS5koOzuKWBhlXlDBIRIINz9p+aQ8OoNyOJ5h6nF0vbngy+6nzpzhOeLHn6WVFU+R0OP3oRqVwIH9WuMZ5NvVMg544DSl0Aso1R8woJSrBtGAnTrvJaSZzD4PAykTRCsJKbAVl3B7y9spcwYvKu+U97tnewd3sYREooGBHb+nNs+emXIM/AQjw0OMQX5UW0AgiMndw5TkNocoWqzVrcE3KD6XzQsjs8d7V2ELqa08YnK023akcgC5iN186RAuQraCfH7NM1VAKbgMQx0eaF4Yt5yOOPbk/8IjMsm9fx4mFlhNmYQscKUicGCNLPEsyMf6rdcLeFzUjEi+4peqpG6gQudm/PsmdQ2XhEnNmJjrZNJOsiQPWccA3i/1epjen3GKKBNVaRAF/5dSXPCDEHwA/Gpt1d1LMSOKTflLUUNZSOH5Ujo+xhcB61t4q9cEOBmYp+Ae6CAv68SAPJN1W8GWxu6zdSHtVX1A9ZIuriQRHK8uyLH+BJt3X/hBL6i1MJXqpg/ZP2x6gF8Tm8SZP+qvOBX+q31s5RKcQVQ5luPxoqy+pMyqkrTCu/AyihmO9Dd1d4siKaXnIQ6fOHhVhKrKJaa92mLBH2Qk+pTH6f6mHyRo9VDSOCstuIacRIJtR3pMGlc0GB3pIg1qpjFHPmVErWJCevzhDaN13cqew/zi8OBYiAHWZjNyJi/FHk8mqs78+a3M8Q1OedgozvTw6oHggLarGT8kWNkuAmal2Pd3Rqnqey0FNUJGH8xu5gvv/Ayl85Smv5c9RfahAMpv8RUvDQ5vwsmBv3PpfmEPE4K4lATLpG7j0yhN9nV15iu8FQbQmIdiRwQvrXjZg7iITZ8loMnUe1hAipTCpsf34XTN1aXUWq8rfjUNMHDJwjZ77Zxr5RtLdQzo+Zb+0wKkN9eT4CnAYe+tnRZWUKhRqCzqXzbYbjRrdff/d+/9hsF6oqF/72K4/4S7XwJNslMAo1n3kb6Uq+w6lKhDYzsJLTtZRruH+/z7BkZMtllFutRJBQiau1DCAE0O2YMiX8dzc05aYIV0gW/mzIHbMgCBCNVB33jN8qiIcoOQ6e5E9G62Yj9822+hja2j73+VkxcJCg5Hln3t7PZpqtBxcPjVS06DrZgjsexKpp8Dw90TufMsrWocUFYy6BBCtE99CyfLDF1yHhx7HhDztklBUEEE6WeKiYHFIQNqXrRsBgnQ05FpHbJXEpUj+P7lhwO4FY4EKY7mg+J8/iksPPcGe80jKkDebIpJ7Q5aLVIsTO8Gd1lF7mtUHYeMRSvbMfjGNXmvY/39PDVfNE8F7MpS74NEtD708lwMMri7UGq1cQtd6gBo0AkTIYaZHdgsjaKPcWMOqLgCSVuqyWbqLQOsu+FYSCW/YrMJgleOscs2RZ+r2pG2TkqbwlS2MnjYbdZzTzsg+eB+2uLYObnxY9a6jjE46wuEjDv5xewortOmHVKtZ+HxSetCZJGwh3+eMMx38wcpow9pLCeuvyZvVRHLou5njv7PJSzoR0ZJouQttL0Tlx+w6TsOdO7FiuYGsBaojWGoZWrMXaiC1WpujmMWRx+aMAvoZr8Fy1+UzMSUcy/U7AEqtioftjL08VLh6sWdiC4gyTzUEiAb8evqVerz7ETS1Vlw634QcQrufvDiQYl9ibJM2CNSXZzdiw6c0JUUxFBQmbFoZtrv7A1FfYjmpPoo8C/IqoEUz/R19uBAQL14Z1CM33F1A3x4AO5ZXU3l7AHv85+kMAC4mFE8YtK6/YmAs7ap8lwT9iKX+FakoV9YwoxfGlzkK0lrrLyv49c1nSW3f3hDw3KKy2jOLDLW0Ccg4wS86ZCCWGZPIKwD8DS4jnaUAuIlw1CR6h6gRGNi+33UCv/MZz/H6ZqHSqEvzNqHHo7k9yeOqkdd+IX8C0p+8dntiUdqeWxnEI1OGD53gLddXIl4QQD1o4fG/a/j7e3VZ3p/nA0TC759qkWF84AhZZkl4Fn3WMYG9b6V0zKdvlhP96r/9/dQcQOplmQqET+dZ4zKztFp0ZRHVRPukf9BTqFvPkcMSkBndVKqALMJdVrSK2HyqK2v1K5EZO68Yh6c8fyeuNrOKS6gldEO52oR0l852FgIKuzTcHDGkuDLRzFln67KqeCrl18gNbVyEgGNSMtxF4/rQeb1fDa2JDTnpCZ6XO3J/8UhIGKm4xK3Y3s5gT9i8NAZHGllMi9rmveoj8CkoZoHTu90qth1duQUJI86FTjQcwxho8k8SwHC6WUtATVudhob3D7y19nEyVuQT58tj30da+eFIDf0vicLp6DSmc1SVvL3taiBPA/q6I036wZa3eKUFVfWvX56MHb7ERuQb6ZvCQGPwEHYJ8L+BN/qfNvSh0jpV8R+P4i63NPP6YZL/x0KAP9/Uu2G4UEBgcxD8e+0FJruLsVtL7oqiYGHjGNCEoX0bHFI0n9uKysUiOaEOACdstUVYcJutGMlvwHnIUpNv/mmBFdinCieVAXXDoAebC1yj2LtDXzL9vD+c6IbNbGORq8215p42W8BriWoQqvh2qd0RgVm1XxdneDDuTdIhwMS5yUyTVrsMsVcaJA7Wgtah9NJXOa6VLNNSd0AnZ+4xANhlbKV0bElnH2Z0Gabjyk76GAilroJmBbuwjsPLtYuiuhVw7nqgbDfqot+Qu4DF6Uvxz8MhEdNYDAkbp56xwWPgNJtquygIUmWYfKM9A4LmSkF2Up3SuTCwLZBUJybW7y1xvMxOQ0Go8SaSuQTwJDOqSa8FAVQi0CQWMBExIXlR5mZiiytpz2RwvmQz/m7cHd+u+NWiL74XfV6ljwLGVnFAD/AZ0o9sH0LQlbfjPxRvKvLWLvoJub3nT+UXmF64we3P29yJhqfJsy3+Z47K5aAgR/cjXf5F0E0MoCzQyO96zPYhRkNSSxg7cDeOBr7k0BUbtvDMdRKN4J21LC/ZhNjFf8ATVYlgw7VdnNUF/d+ZOROeyVYCjEoDJICL4AUxCidDcfJk+YnT0LcmS8M5eIFfh+e4c3WlTiAjIC5sm6Nf7C/VVlZRZLkjptvii0wUfQ9Mx4Mavj6LzcMu+naN3wue8yzO72DChIuHIWNpuXCiTwejzX5MRDi4RsaX6d/z/W4R6OcYxOA13WNprU49jXjEHFkA6HcWQqKHyMhXTdY0EbMRNSDNahfFuAzsi3cjYp6o5PIFp5lr0G8aiWvrt2QAe+y6mMiBD/DOrkO/UXmINNJI3HFnkMw6eaKLKPDPtFMfuoFND57kF8bt95R9e5+SHDDVUuuVX53j1bGEqEWDBPH4l9vdVtxBHAhidY+fOQjhFnKoGSTLMgJHZWMX6EWO7GybD02IVZUZvF6mhGCe+Vwnj/Y6R9WrpiykFovfp9m4mDeduTjBgWIxwA/Thy0O7mxNe7mZmd/1q3ngdplQApephKmOfakaFZW29T/6Ggdnif94hub9T066n86xVuWZPIxjPjJ0XBCz0gJsNjeet8bCTkJ5lqdS06MDXoeVjbG4Lu7jgTIPjsYpwXEF01cBQYzkofLP24AFILtNfc6k6/cJ8oBE/uAYFiG/3shtugZtdScRBDzBwQx2R1XDPC5aDWu7biOTvY3Mh1RW7PPqN9GodTcOcbnEZAprquiN/h3HJjE/oBJn8Mclz8nEjxuFB1e6an3up7AdrcxsCbngInUPr6+HA64sLdyqPIriCJsehCmCzt6Ah/8PTfXCa/PFB0ajpDhV9gaK97aOK/MpyHDOh1/8G0M66oZgvjYEQj7uBE96iOJJwqEaXBCCJ8WlZTDHFK+l74/NUpAWY5jYnzQWw9vBowWzsIYJofmcMtKFufS805A/STxuzEwZQN5odk8eujVVlCaoFQlxyLs1tPRt/Wyd/zgohpFPv5T/ZhO4Ergg+kyPYjvnWd0q/WkJ+7j/pgrfE983Srt16Z5vRzqgV8hvMeqp6uDW3N3YT+xVnL73rWvv+PfZKce0aAJW0kfFozskdxkC0WL6+hI9W7X7NO29EUb760qAm6ERe+YGft/xgxNgixdYiYJq0SwenHh7EtIwnGHKrIcfVWvacB8CwTPDxD6YmvVcEj8+N23cWKM3m++vVwDro+H+cQb5AGFlIroQb34lwHEa9bIz2BHg7eCA1Clu5ecjq5BM/FN6TQ1lJIyENZ8OG/9Q8FTPKmlY1B1+Te6oquIQzLcSxKxduxlPlemtnNH1P+GPlDttEmLLb7M3FAdmQS04+J7xSAEgaEsShhIG48taxNbtLXdGAPzqKZC+kStDejSuFBJFqVSm83Kk1w+xmMsO+J1N603h61OS1q/JvoyNjwso80W35RoqG3Bp5zskPKly9c8hDc1QthivkWEifotIlDqibkQ9H+hN6JKrsYQYo6NaZ5Z6nthu7Y0l/Ij1VC38diKNKIwHtt18H50X96sqI275uf8psUNXULFYmY3hFtncbY1fa6OwAP85QETQIeaOrjnkmmMXu/ovkmtBrTJLOafgwAzr9BJwu5ccBP5KXrTDvx1ge4X3/J12Npk9JjXvB8pHtGsNyb9tggOarxkDffRGSuYzxkBvUvQ9ZOvWHheM9w7t5DLNRrVVqnmcpOZILLTExzxmppumJxBwuz6mJwx31i3ee8uef2d1CzZxqPDa/+Dn+zU+QvaZ5eiLJ3oOS4Abxgv/idF1CDhOD9MvkpcsJQGriW7Y4YsjA48lSUHSOhIos8GpLrpUgIYtitO6eVZQAFH8w+3hbI+kqyhIRHlPxFajhlD6si2haBWOOK9AdcJ6ie9ozO+G4qRg+0ALXDftnuz7k6hY3ltulTrk5h+wwZqXOiWvIKFKK047Sqss8Pz2nhdFCBOKX2o3XvAV9yI1nPdezDXN6BbxesJxx4FaJ15SnvaS8uncYDSms5TaqKxbQ6BLNTbmXjZqZnSokDP1Qe7eDmdaOiuGR1tNI+CKIcM2RSTsIL84uOi2VFW5DwqpinLInn96fyGo14OIcIfFRQRIu11hv5ni1c5g+ljE2JaHG9qoA74HKlfvJYRrW30Fw+4H4USpXqTZYw+rLjAZNgN18+Z8Tgp3DWg3qUnwSFtq/zaTP9tC8E3hFZ8guZgbK4p3MDU7wfRBSPs+G1exnR1xLJZFZ+OQbaQFGG5wEm7potSu5B81HSFG/dWKjpKLq3O9SO80Nru2O25nQ0aVfJ9JwkWwBiXhIdLuFJkbhcPX63rX6oVcMLio/Vy5AyvutWkgNtK78ICU6k5nxt46DJ8DwNCpHBQtDD/sLwwaGH0eLZEuxO7c+ouUCTu2N+POxYc9gMXxHdbT9OFgefalWubfgD5jC7kqNoMlJLgKYTaVafAEJKCXXWET2RPESgK9BBmB/17PE457574XAA1CRsJMxu9E/Csgs5H2ucFWwRL4ZTzJ9hUbL1bMhY3sD65Bea3echx6c8VKbM64FuxRtdc9vsxvZODhEm53agl2VuikPXI45FysyhK4x+0lJBBlsabSiPc1uG0iC7cbhdsxkMB0Ug1CSOQlJlkMEtGME1NAbOoCDoNyWQEAbql3CfjoxcP7Hj5necSkq0xAMyrQ0zHz0Wjrpga5BHWsXiOU+AAZ1cqdLVglnl7Ge1YTFc7LvPCY8P9GeFiCjwTgDmfDqyViolNIMtjMlovpIsmeQ4sNWigxl6zCWTlvVDh8MIYyokAhIiZRgaNee2io47t7zTp0NAYNyUk9Au+wadfWgUBHhDGxk9mZRT2ZMsj5KOOwhpgaNnFh8jBj7nKApuNDR59c36E8U9KigfUDCzDFy9/tr+OTxfhCjD/PxooR0hInaCutA6A9CSAzSMinWhrL3CxjzBI9MEdNoWEeukdfNXalDbgw14FZUHVBrao8liJHlfC9iKmKsaiHqpCpyiD3XMOcWIgOAAGMVbuNmHHe2ESUIFko795NLXJldRNKLqO32LffV9ugcYT7M20Y0chpugPRVBsG3S44RiCiee42hW5wRyyvLIaWZeGCuD5sJxa5mciOUwVflDLO4L0bT554TG3IELZDlWlQP5zQQg3PzvqzttZXMvmOu0SX4TAyNvD6TwYhqg/C329YIkExgdiHHb9eMS5tJ9s0YkYJatzsGUwD7NKEGG6a2DoiwhTTH6s7PXYU44lc6uygXiAuLv3XU1OzfUdUx2F1oiAyhC0vNy7Tsp0r+n6XslIkNu98TpTi4fvh9mNqY73k7vCZBh2dfgz3shXDBgmNXsaeCCS4kkQEwNgKoKXLSkq88Jnbv7vvkcfCrJJNl9bEwRKOcaK1cca3CWEaCi9ERRSEUUpvJoX6AJcRZWZgXzqKppAXvXB5uK/FIPfkl0QcDGokbqKfcoKpXlpB8lfAh2yEVyYeKy/MqvlCT1ZbPK+snqMYF4AFXgGBAmkKyJKn2SYpnXPnmlg47fQrcTPOf+286xR5PhTZWE3SeIsfVFwn7TDBPvA5RjHzw/PeyFdhycpREopgpr3MNmU4IuWomOIP8+Gpwu9HUPnVhoVVPs2XfSk2NuU/2Qbw8rdIhR/FXgagoMgBevKOUdFioUivGKlTVXfGLyliHax5JDycesYw8jq6WdjcQTHOZ8G40sbroeEynaC46/iZoenw8bbty9kaZtzzJ92DYjoCTP3EVK3WXKAToxQYAOPxD2/OvWuy5M5qp/u9q548u6T1jBKZpYnXYGELkIEhd6OfIy5XA31RoeV/JvKBTMM9vdlFfcnkfPaxibvFNKe2YIsupsk1oGFLApl8BohL0pRQk2HaTmOga+RC5gohptZmYXNLVU/9v1A/kMZ+zHnDAbeAFhUDl7JKUkgTfPA8o0TUrkT15HNjOoCIRzWTME83mmjQ7zh0/NvreebtxFceGEJo9O3V216tTpf1wA8o5doTn+QSbgCXU5FTcW7/EXIfNEjJyaYdvLBmgxLfG/ge1zGtmKk/dWpteuZcocrDChYbAmfRu3a/oohBehpb3ZcS9zfr7qH/abp/ITQx8krEZxfM/lLNMLuvfiLFDqxqvirN1sniORb2aU3HtwDBlEp6cgRHg6YPj+FndtgFVLtkWNSivF1D64cl91z3iIOXhPzeSsWic2KUD5VwhuD0OliRH4BjDVl3ACJ4oK77tNbnbD4Ai5sl2kUkIhFmqZNf02juvIuvDouHYgjiIheqTHvT2XeZ6dM8qFrHF72ZgqPq1TnsbyaOKrmopVZ8CQiqhNg0t89qepANSzFTcGU2rDwhF43kGRIn1CrxHbhpKoKnCtkYB73PSYVBiR2yrBMgF+kEYz2+1NkYh0nWvzQRLZzyJOOySOUOBQHqH+ADEZoAf+9fKk/QL75FMq9unS4yap5xdhLC30wTQi2jPkdkGz94MZB+3S+ozfptl8wRaMfWAoRH0v8pvMQfKDd7v542hIjTaCYVsfcfUV1+Xl6ClnfL000WcM83LCsuWriTYCo5XtopSMlxZu+0LzAaszqTU8P/K0QFDnbM5us5VQ4+n3I9jGBsZA3ZiXFsyjQimOyoIr7m2Jfxrsb41B4b4RnlXsuaJg3m7wRB5UaRe2B+V/Jh7kerAMkDMszzoXyDdXxSu2zaGKXdQAX2FEgaWqMeiJTaNDZ3OExUkDAHGHX1XJsKySoPdwdMipqIrVyvfy/+TvmV2SC0s6lNIcJTSTJ6iT7nmaOAR3tPPcntwnej+5TSQBAdfP9Kh6baCZk8MS4E1ZNjxZid41l7IVkrDfuGWeXr0vqWk7rF/D7Xr2bxfKuo5aAuglhacbSu7di9LYQTHXzpvNKTGqC7JXQVApPsyd+KnDHuXSxmgs/nvy+kRWLHarOG7BiQSPRmF1QNjAj1eFcMtwakcSHI+9Lpm7FAXlhSz79ovSgwCbeqtGA9matlWz6GIy1eO9aO+7LZKCuuHIoupT8lpsUWgXNvrXCmB1wEFQfnqhLBsSViOxTIPzGRiL3Whtc+C6RCD2irpTnP/MIcWV7pE5yghdSf9Al2fmI3927jheQ8+V23IJCdwe2JkofHdIdBejnH0zHxc2AP/M28RllnbIuoCL2ZT4VXF3kbhmAq+OTBRCF8c3OJgjskeG4pMkkIFs3lzwyLGsTyr2R1tB+oVvMSTSwWuQcVOxA0BfpIxhMs9qPYSmK2+M9NzDIK2NdmB4C7+pb350Zp4xAzkxxA/5kUUswFTri3FsGJ2Lh2JBtZb5pPK3Llx8hLRxAg27YdcVJJESMpSBY1z4qARtLcIiiCnxCVw/AYaAB26cNjXSgcMLNPtN5c5JU5tlXz4OdCV0pti0jxFfF3J1ziaVZKhxJr9jcNyu5aY9XschUpA9keITH5gaP0rbI3EJwjjL2zE2CA/YgeuBC0r0OtLClSG7fIhG4iR+triJK1zJESb2QS84UT31ueJmMrCPWcifE+FY1EDEe0o3xZUpg4TumzeHPrlr/HBzQHbu7bKuL3cAv5WHAuud/klapJuHmjE5i0knUPVNxACwPxs2GbXOba9TJ10yjlKLwvZlZGDgss24A7DNhA9c9c42AX3KFgORU31DOfSbFr7BuGgngcQwuszp3a6eU3E9/1lMqeM9+m3iixU/kt0D+9f0Gsj9CgqdluoB77NAzABNQNnZaI33jvTZ4GqZistO40ECa61Jd5jACn3xytVqXSvqjfQtuovxU8M0cbwPUnnhDDxUCW4zSE0Ohv9RvF/JGsyWS/NyMTl2v8GmzQWnj5liPrARjJPAK0Nqr9ta/53SwHERMMS9IWo3ASKSNEpPWCVBY+cPtqej+oRS81LGj2TLcGzFG7vDhytaYg0lajHFpoK65Xro3O1mQj/ikYVMeRK/r827+L4lwG78rLDGwtBOpSpvXjHvFDCMIzfGnhSrtT4zVr8LSsY5eL4oi4p86ysWk12t1ZVzWw9pY+mzkY8ch/Au7fiec0C6SL9moV58chy+ha4BkPURBzaqrAKI6qCBfQhi285kqf4UpeLMWcFUS5m1uDfkq1cQC/o4AtO9N7+PKyPJJkJ/95MV6ZOZGXHfpcTMBmYsPIw6z7PkZ3+6FPjId53WM9UsNZHW8qCFIRNqvqLHXUJ90GTT4O0AiEW8AHPynaNxuOPzBWGVN/K8oFJzrRK4joRneadNLydY+ck49MUsHzpFY5wNa0J8smsU1le6I7oysTIjcPEHILiDKHmpqh/pXJWwNOWwEB/0sAOtIpDGR0XlxBiFoAbUEdk8Yz9MbgexKOynqeUM1zbrtjrUzoJ+CZXVV5jLO1igWqSYR4+/bJrFGq8yVFmFRxcecOXVfAud4egQYJvn1ikm2flc2fUUKy6BPaywFoZd9im2bHe0BpG6NDB3Idu3AobeozbZNgBCqEN/NaxErE62MI1nQkUFJDU9m6thWnC5Tip8Esw/4YOXY3tsP4gyKDOQqNTJ/CQ7HAF1jSZ7N65BLc3PJq1aCW0YiX7PEcEGxRmsqoM39pXWSAda9FVLol6XknI7gXWf5frrKUDTXxltZHaeah0UcA4WJrG55cM3Y97aBHS1uFaCnRjJzE10ri+GPKxGFiechHzsVYu3SXyeGG1FB2KOHS1yze6gW2GvQQfIonekAmrX/p8OdC23v7KFX4t/EWeTx+7M5SftEEToAfoa404URITWNHZL6Z1Boi1GPUDPtd2obGGfhWBSwH22d2ZEjzZdDSiL6BhckCq6Jgg8gQjUC2FWrupoJIVH9pHdQJ9XmIJk+yhBVuj2rY+aisP0I+a4GEqZxHvC88Uxts/qlScBx4vrb31Ldn/v5J60fXl3CBhCHtFQRpK8flQdEo2R4Q13UXDFNB9RW5Ev58X+vIFWSIVHfrALsVB8u4IWTDWo82g6OhxeUF6T7hmdV5qyk+C7lev9r4Qo9TpCcLKBsO4uMEDugyG49LqII70i4nBj4Jdk5GLlHsGYeUwo9YZVyisfyrPKr5N8Q5B2by5XRjikPaX/336b+bayPa5b2TGsNtNj6pcfv0k5XdIQ7ecJdttLgZg5+TBSZFOXlnljJeFaNfjgmLRn+JRiaVqxvC7/i7Vt0w3HWOoePo8ovEcocVzI+CaGAUySq5T3Ny94ktpaP2GzEZwWoDUtJCCgkks7ClGVbbr30OpzZkiREzcC4iiVQSC7rXCX97FWGjV6kFv+JRNdeau8jPQNtt12YeYbywBy2zYy4Ahm6Ht3MAMGr/9sd45ZdP/hoInJHuXXUpOMK+wF2PXn4cduNURGlSpK3ZV3CIz0Z/+KxWr6Kk2UlqD3Ap/8Ob80rZ7Egx31meeoS4GgKYHDgfhUOR8U1g83CHIzq1/mvmTmMboTz8eqonP/0k3KjpwGfUue6Ztb6R6wfV8ssL6HJFsD5IR0G5EbHPUhilNaKrY4YlIpHyknIkIUSrQb+NoLHoyq5LP5Z2iv97nizjNr6o+DCHBlrAZvhRNvgZwIurlggsVPCOPiFbHGyzSFQh0Qdc7xsCHQNkGpX99mUmuWYxCQm6lmIvgJC4mycbBLMaLkQC2HNG26TBNxLV9WX8+Xv+p3m+yps8MF+nmNYhjuHU1qUP3fzxko2C6xh1v9rhp82SpzBpvf8gTuapQIgRoAIs7zbm04QR0fa6pcHUL6/BhJRyDXxRkWmp2FQ/59+n4NeezejcJKpckg0cfPeMYUddCwpJ5HY7j71ebvjdhiKA/ZOGrCaE26K2hO1hK9vJxF0fn+CgoSBQbKOnqNJOJp+B6GKpJqo7vIHzCVB+f6FveuEdeqCpouYN5J5pPejn92L8rBBhvlylF91NLvw596AexUgf4KKpxhv1bf7GrbhUv0BVao2BpiMygYcGuYCd5rrhnsXID34PnpdhpFT2Vzb03FKB7HDmLsAOKJz9F3WREytRmPI2LjNyNpQ8My/OoZNrKUCG7jeFFXe9EB425Hlo22aCnNtyXDHe1L4kBLS1B0xZEKEtKysScYYWaRZShNF30tEHS5YU+WnzkfSunTTpYRlGYmzRfCLNNaqwG2ac1Id9giHnXIM73N7lawg/YOCwwEs4w4ATeREsVGXYI+oBTu3vBaTOpb7AQl9eJE0IzpTYwXEFti7J7COpzQOrNQVMEbhvW0t/iisFYOgJRaCxq5sKKdVif9+O7QsFbGRN/K0UPsEoJeRF0OyVUOUnyu2dAiEKVwmXyjWahH21O8Ts+P9djv2xgYx6T98cd1wesHooaHzBWVp6ziMwquuM5qy90MZNyu6fOLJ0WO3Yg2e4MLpsF2yXMpKuvEJtsu6XGmm3EvQD8dQWgOcuQYthWMKtOyxULdpurMntkW7FX+YmIgW13ScyPpetCmBRvA8/4kTXlnv6O61Id6kjObRSbhHIKbMrEkCUdh4qfmbQNXPHxFfKcFeINfi8SI+6OmfJdwZ+1d8Dx5XvbdPkp6KI4PAqV+h/ABbKMPWOdIrPfwfDsIJCSu+0/591Pg1cOMUCfeDyU/yIvbzFkOc4RbBj6sTD7n/urujAIw7RVoKePgnoexpKRRErLcZJYZ1D7ZvVrt51WF9IfKF5TCXVYXQkfTAY5RnZ8iTPPTIpgOStA8p3cO3rWnlrEhcFcHE9vFOzrrqlhK57mnPUnfCS0YpNPJJbDYPsLGiAOJZZ6Q7JCK9HY/qZjFQeHOcyPkwBZ45rhiud8EMHEiYI1eFXFNXmt6dXq/4b1wPa0Z7TYoMIC3jsPhtILKvdfGn7LdOf8DV7jwIvtiYzXyA9c/fszUiIoboAQ8s6izMBXzpS2qA3ObuOcDac3lQ2IWYXJgxr2VMKygeev9E50oQKK4irw/2PTWifeCU+bZ4L2hCfIi8n9jVx+mtw3Gs6/3fCDDVsLvqkgsL1KHNMpurHTpeMkCaowTbRaruybtdTo4xMtC3ZcgVSdAxyLYR8mFWdcUZ99ZPlBBXCoSlAjPSiZcSaarcAyNyPfhPSjmH5DJszFinyB8e6M5/QkemwOV0e3VIeoXxgGaN5rYucTodZZGrqWvMkr4qt7q+rWa6Jeb8WACRf9Rop0qSP9WPXgwSnoDMm8gp/o5k9u+QNXs7x79v79dWHJ31GMgLgTnl+jmuXRErtpU0AezNKYpZhGD/m+qHILHi2gKqb3vvz6t+nPcuT17vFwJYxjMDScebjt3JJVvoCcIAYFHq6zUfO6uQtdXlqHVSO51TKm4oV44pMgKkGNM25OIHssBiiK3CHd9O/FdSya+KYGsGc92+wDxv4RPmdermk5OPrAeqSspIIhnqpaAwWq3PDHNbEMDIqJr9zSnqELiwRRbZsQVIqmK8E0eLnMi17nNSsXX1gwplPhUEycn/7yoezoN1JZDCHr4zPOOL6oebBuiJaYOwBn5cso2i6tJN8elQm9hqVei+Bi8dT8vLu/FlGr5+ofpDAjpaSJGD4xCC//++xiLk+HT5pMU4yEeq2bacCTXSBxooEIPLEtg3KFQP9U/pl79rMJyvKdILpxCDHop/LFZ/yaeaMAiJ7d+Q/k8pubrLcVHlGKskUU/fXNXKPFszJYjCCBNnLHKSwwSlbzLxcW75uRIPV2TGI3Auw1oAx2v83JwPshWX+cVs39x6MMxfWf3pYHpoHS7uPlNpUj+1WkETOOkjSxlRcJtkZQq1SjNLWDSN4wD7UaqP5vOmdigGXtlXGQ2jTiOwgknKiGJCu+bPSGefltEMw4EtbeKPdNVMU/LfElJjsMstnXBSGvOB1bSZ0A1LRqBCDW3wENr3U7GyX7EQrpgduy1pc4umAcPcwxwWElpE3O/VvmV/rP12XFQCYgYSn1UIud5RWCA6TRwljOSubiApOhm0oVD78CPL21p+CBpBxgY9QcLdHPCQ++fwSO6tZgSXxWDUF73o7e0bG7D113PEPXtByFICy9B4GiE=
Variant 0
DifficultyLevel
585
Question
A bowl has 16 pieces of fruit in it.
12 of the pieces of fruit are oranges.
What fraction of the pieces of fruit are oranges?
Worked Solution
|
|
Fraction of oranges |
= total number of fruitnumber of oranges |
|
= 1612 |
|
= 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers