20326
Question
Farmer Jim uses 5-strand wire fencing around his paddocks.
His fences have 3 barbed wire strands and 2 plain wire strands, as shown in the diagram below.
Barbed wire costs $b per metre. Plain wire costs $w per metre.
Which of these expressions gives the total cost of the wire needed for a fence of length f metres?
Worked Solution
Cost of 3 metres of barbed wire = 3b
Cost of 2 metres of plain wire = 2w
⇒ Cost of 1 metre of fencing = 3b + 2w
∴ Cost of f metres of fencing
= {{{correctAnswer}}}
U2FsdGVkX18iYdE9Okf7HmR6vlG+v7NGzEFhCyTpE2Ghx/CuXx25YYIi5gdXBe7BKPjRtDW3cn0vQkCDtvBkAM10lSB7ksYqPOAFgDAohGNm7ZdXEvxYt428PJq9kSs4oMLVPIg7eV6fwUR54PkO2QdUI34rqolBU8nKDihdySCbns84VyTXyHHF+w2KybUeE2hYWWCGKff7MP0DfxuI6iNIV6rmjMyqpaMOM/Sln24S2uOvB8Bq12fhQNRyAuFYM1+YnrylgIvEKEX31Zzbl6lmGninNQA+XpQ67NuEIH96wXRAaVJhalBU/vMCQtrrOSRt1qEjyudx6sLLCcEEdMSzV9UhJSGDpn6xgrgD592L7wM/PllhcpHdfMM7vb/uqOLxY4kOP5SA71Hcjvo7OzzAqI6meEnIaHtqmlcIEzkiRPKqDmrVCVORaBotaFV3JdJ50QK28gvgNRA9Olh7v+QVnyXHxJPGkbuzs7sp9q97KBcvlq3bJAeiQXL+TWPs152nvfGHwRn3Pj90h6BFDh4R0S/5p7gfT4bThZv9Uusu7c/QcPfehn87NsbCEk747E8D/rshVZflShlxGf1RoMAkAZEYwu3ci0UzHq9AXw69GSc0yGG7wf2AaYqK3qWSVR4hy718oSt655fOICtpD1kxp3yGekf9An/6O2zUybmmNBNWns9mcvz918E+SsP+Zc2Jkob97paa9Tro8uU0HTbo3f92hk9nW/RJ6VCekwkoQsgvQLFC/8Cf/NBOUOFSCcrXenaWvnpdZEqY/7DbgaxrsZnkXE62MIcf+6Wek0rLAdIL0F14VXP/LqCmjhFn6zyS6F0rWtUnZmnnrOMyGfrq5fftJVVwl4T9cxOpMoWww6q33fvoQ1SawU2OCz0VYFD0bnr4isYHEV1jiDQ764C3utt/WEiIiROThZvmadwN+eQSZ4sJVoKwkYu8QerCwm7T5/LxaCO68yeXmfYW2yA50gxVt4jfScyP53CgIpp3Q1jIGw0PWrm9RGnbHDzcWpziZ91Us6x+9l2MBXXaSBi5Emf3CNOUjWOhilkGb2ZH79zVWLL+yR0P7zPxYGwD656VkTvmg/DA6FVIk6Gm8v6LSaBlNc8fPZxjKa/+5mczIdxzidNPbi1qgBrW0ymGzUYvxCE3F1CCHJC2l88KKwINVIVBlyU00EqpnWTaRICKuoXQ1ySpxKa4V/EmGl9jVCeg5HqW7ln2/ft4JtaCKikGe0Df08n38Vdly6OxBHlGbU3yPmCH8wZYx+Uw9cN9WhfQOTy+TzysoJXwiJlOOHDWKuFFoBXZ010A/F6C+QAa1ERFY/oeU6ZNPI279TKtdx3sIsrdG6MDUG5ymHEgwMm3MndkdVQgguzzNzTYblc/h0pXXy6WnIIgkOjvbC1UYybnr+TplgdRh3EgpCZtxZWHq1TVD3bzBL9uEnhXCHu7axEQgY0P2WD5ky/TNCIRZvkFzOBQpClWyyITC/NdD/t2A+1LSBny+FrjIE+voO/+jQ2dOftyX1nfhMuE+q4A+6aBfDo3rz/CsqYlfGVOBNArwpGGLg8tMh114yvqL9gS+i3fbyc9MSRdzj9qO8s/NM79nwT+qJsxzCbk/R84gpzhz0NBnvht4JYVF9beXKObp0xNH59FEXRF6oAyQPGR6UAHqq8HuyJXs2NIvoOaRikXuyla5oe/vPzgKSVjKhCKNRxaff7EGFAig5imiBY9Vpb6owN4sQntYBzGZsoQ1nxbln0EuK+uFbsQ3c4cFRwlxFJMeIereQ8zZXdI68R5nghrm7VUCnv5AuQQC4ub5/1JA6zQGdz8Nwfk9z+7Sx1/7Mz359/9zIRLXFx2r1Rn4U/KYLIPfMOYwOUX6gdkqWPn9v5+sWbiAmFcz/XXi02rUvycrbcPtTPK6wtIeT3Ha2uQVu7sLLJEzxmkZF462n2ZYfQHkzz+6ZIv6i7x7Y9Y92JEqPFr+KeXcEUEucr65aUfCBQ84JoYSAJQGynAy/jViRC2CFfDPLg2FLruUnEB1mfJB4R9yI1lZI3H/Cl3ggQTMSvPDuSapY++kM4/gT2l55k4ulYsKGgzacD1RBEpUSmsWa4aqnifAmi4hK5lcroCcK6EPJ7LMznjEfnJ34g6fReWX5MiQX7RUzYdV+RH79DYxpB0xxU9f/RuJxYjaxFnQuQusimm/pLalcDRf/GXsss1o/bMRca7xBzG9ZhLhMhQri317y2QKO6S+c6wnWLIhq+/wY+iJ4Z1TSWh7DmK6MOYfO2sU/XZ5ULuR5T+I4LP0mWy0hlvM0uG+DDtsRtgwt5dRJP1SJWaDExOw1+C4/IeNHUIKw+Xh2uH/pjDGDjKqTJRg+/T/cz7/bA4HpabV4SHOVtVx6xCYqCeQznwIOWGfN36zkcqXBQ7gUTmGbw2J0kQUBJM+PAmrkFI7pCnDiTM4W/9IU2txwFOaU0vzp4Mt+gj+OD6g57xXmQUDRnhm2+xfYYbYrliKCOqZSrAhefort3XrSWnfAKC745r9SSN5ZiJCnkvCAjz9+JHj6B/TtZPnCeWpYoA5S7V/BfQx5KSWz4bUbBZK6MOtPmMzvcBuMbxyMCc5HYECVdgASdZsVm80f2ELU4foNJeVVQU4yFmpDGMdJZSq15/O7pBS9KgKdM+Ilf+ystf199H4qXkvN2j2JSc7gufv6jW/a5KeqB6aTbf4skXctSqQCaP2b7bpitK6UXv2JiZlR5WD1PD8FyAZs4arXeNMvwpf3OPOF4Rw6s+VnRpmgTQRbMp459WnYIzbIoZetI7GRybYNByTHDHA5GrcXthbJiOBOZdIGcKJsSCvIv4o0FPEgHjYdE1XcgoMisgKmVcFpVNQtyQ/OChQm/TTyzIvPRVH3w0o+LJ0pgdP82I+Q6iimErFNB0qWCveNgZyicDrFwhpR2OUPxhOFxk9AXCm93xGzL0uWp2asMxKA5byj2ZWjD3BDuUq3nz85CVhyxhewHWz0ATuV94bMAMozKKNwLuxsiR+q4TkQJIpdvAm7QlrqDzpKr41JbOBVLcAah5QnFWxqxPB533vcfg6Kqif5Wyss3qyAMebXdR3a8HiEkt4q7HNZbRnXMga0XMr3qyjo28CXJugT/iwUzZ6NsHiju05iY4N0QxSIleABNS4jbDX6guUsoDv+MQRVidjy36/xXfX2b40ccCWDfHlxON8jj5TxRzJ9OTED4bwfoAWIH+aoPi9DPrGejAfXYQbrIZ6URvlfmFoRahVjrgvvbtI8R5I1yLSelBy5kTg5fGCUv29g9pt8v4hFCTCpxryoHjzYbrfzDO9UQ0TvxIx5XJxPqR3nPvhqT5avzvbct30Ol17ukn4IBeHlXOzzELSB76yPfVWzYiqVJst1YgCdQpjST+8rLE0QkP2fsS9meYney4Diux/YEd5H0N3qUCOxQy7QsAw0UBC8vBo7v440+qnBCFiVbE0rzkvX9zV6AtQ5xvJ6/8aM8HDhtr89O6E34hWGASTiYpnAhJGt/Yo7iQDqvCgEyfK3UJjQaj/tapdqJ/WEtq2Ah8gnc9muGM+3hV9u3MSY59WWNz7Mdfiutox/GzGyuvlvA42EDYJByjV+TxugCOxfI1jSfF/a++sq2s/6CB99H6UVjNwZWG5skcWSPq0Gs3u7XhPRq0WYVvaRt3Sf4TDOrbUkrA/Knxv9cC/uIU3Xv9en0DmqlgxcG0Y4KGDVbI8+L/iGGtBnahrFoczmkZUvg2KGXKd6F8kt3jH/P5Tj3UMzI1anXt4URy8JiPTzIPGSKgOJL/5Ul/Dp5D+97T85PTKLQmqlK+8BjEiWKmHiOoYfuLykmMWedQTQsBTWBQbST7lPc4na8xaRw4VhJtwvjaSQf5zGfV3Bua0/HGZRm0XgPbMxAVlyE4J1wV83PJzzV4ZPIV3L00tSwwxxU1A7KB0ID7Dl6fHohND5Mz274pHieZzOY7/jrDNrC6S1vkQgx0h456TlNYCQeJfXNGIhmwszTBNJeEpAgaqMsfTme4y0hCacNdODPmPQrNhlrKx1DthYZSOSV0x6CasuamD4wrnmmidqosenfTFudUYziDhEM9WtBXAymlrrtR0k7V0GzfBtZ+BX9zys/i03ubMN47Oc73WedIoZeDI98FoEr9cEFLj4KHd9MQA8fTYsMgyr7Vf5fHWydLcwOl7NkjwG3Pj8n6Y/wsmoUYEwd6g0R+x24gBVTTyHrK54ZI4fIdBlFlsAcqE2SvWQiP+f8O8xGnbWyyXSajY1SacAZqkm/3JI/i7Ovuyw3Umv0sNnizL49eI/0XJ3HjrHU9migQQnL8Dc/WX+iKIcaDTJE3Xb//o9u0BjdyBEW/h0eiw8cNze/d6y6wjXIVL7G4rAW3ez9giQySRqWeH9IgGV1r1g5AKD016c3LtHCldPbPMTn3bLCv3DLym2AIlFOlt0ouixRvyRG1MYpiz2WDx0n3WAVBwj4VqhadoxS52RWXTA9QVlGaoib8TqVbUuSTACVIp1fI03z3CoVnYNvXhVmnbEwHbqmkFbbENtfGz/zzZH5Yi4OcOOpPNXO47xqZ+DEagXH1o3HAC+gNoth6Qn43A58Lj0RNuJt4cGEj2Ov/LSWolOZZ9CRCMv5FeG2gab8Ij/v7tFk3FD3l7FWGurMe+wFPvjViCsVnQ6z5O6QB+64ska4/MOu2v+FSaD0iGzhhnNcxGxb6RNW+s6t8nUeMbOnoGmLjvJPGcPkXa0lc61QPG6QNszH0FniTJMTWBLU/AWp59L5F4nWNrpdGpruJ+dpSa2e+fns1wseg1ZOlOd7XymKjk/dXpEAvU4qvzi4Yp5QfDAI6tUDtHkBH83gmr9MAB+bs5ANbQK+xSAxkBVTH7rC4gADoA9FsjAfcE4DDy//51X7xD7EUbr63B9Nsmws/kOn0rR2N8ausy/E75ixWa3vLh1xikP0TMOd0ToDkX5jS9L2iThiS29NxevSjfEf1OpDrdO2zEwM2omhfItR4GeuQQ/5/rBC2HyD5sFfw3U2kOsIqoVthJy2LdAwn3/iwNKSczqdDpYQW5H6FpD/bP+a6x9/zMsjZrlyWSeuTFeLuaeATuwP9VUyOwE2vTVjh5I8F13f+7eGm0vXq+V2zqFDfeAbpjgr4rmlRRvcAJrmtIFWaSmKSVEUMoB1bsyWA9H8GbkG1S1PYW/5oPAZQRZW/A1+eh+oyIKNOHum3Cn10CxcxEU3CLhizw4W98tK518sz5Bu7O1IMaxOb4Kx1zU9LAMtOWA+CUh0/HA6nJVXXUfthwT6+Mq0PZMGQTLKnTzwvInZ3p+CCM8RYjEr385K0a9gV/J4UCQdAim1qLZ7yySAMLhqNH7qsPXx+HtzEVyvosT63NW76kmpJ0fBYMFfwGUJEGYRR/2TQJ6vedczJeNECnVz7qu5ZjpWlqUg2XaYjtKQn/5UFYk5g7e5yJ7cLJpm+ACjUydMwK9lQaZxP05v7hM9mTb0orvJJ7nlV9UoEOKNADk0Tpzagi55dBXoe0tk9GQKwKboDEONd9AOVo24XG3Yq7rBsSWSv7M0qKCMV9fGo4uv0f+SN5fTSU+pjDCkjIhPkwpzqam8813kx9IE6shVcytJn6ZxCFRohOnHIEBEmzSKQQzXSSvYCIwMkhMHiWdOnY4Glvgo8Oymk9xmGTLuDQhy9cnaoc6j2gtD+CD4cF/aCzlww6gXPce4e5Ac3IKD40FIA1T8m+BprE9R+hQUXcz+OS6Pu3gjBfS3w3fPW2dNO1sn/j28LrR4uW5KyBC/uKxXTooyjF1A1VOF+Vpn+BIlMJmHTvA9hQ8ZNMz0QxwJ0gqHOYVQMKTWygqbeaKXU0nWe52voLKzTXMGpVjSIgKLH2jWDj+K4FH0Ey5Wi6C1gCVPEZoE4pH2V8MY/noxtLRbvtF4OuNbpgMhv7wCv8GpW5VhvmGD3a808TLo1wB5QrFB4dX8zYcV5XdZjfp8iSIUPP/QyeMeKEy/3+1J71dgxSSpA2OpPF7YvFLoCF+oEmr2MVKA/4nzUPz58islYk+EwMhCVnf7LFVmikWAEf1YFMYPyURH0qBxRpllcw8OXRwCaGvkbBIL8OXMgnOgdi+b6s41I1fQDMcoSsYzU79uBtVtQZBeJYPw8oPMMyPyuyTxSrY6anweUIBFtN68++OqDgKN0OMyBP2Sv2LvrStBJ2KCCerJznRw2uB5oDCghwwYZ9bUJf6LI632dwWebctaF246k23fdIGFd/4G/oi6j1vyDlB+S4SEYqmMmOPmcAlmoCW3/djxviGZ3Mdb8bjRtF35gdL8C/qmZXNpyBBpqPeWaS4QdWo4qJ2rw76CsBp7ZSeloP6+iErbbBBDYrRswRwBovO5W47hVkpdyVr8o7wio6YRin3R1JGERC9cmS5nKDdGYuHiA1mxKUx27L8XWr7PeHH4UR++clhuJwuUcD68wb7rfFy52v78owkmC57pA/7hQ9zUc/pIv8N32AawzJVfEjJXP3k4aTlXMsLHasBye3E6eqMKRQ7665DazicXsiKOpFTAk04qn7caio75di4vG9b0EuU+8F0JSksNxlYjeQ3bsFevgxpUR/DIUDnNgafsJDHFk8NhCTsJkZbnfQyNqSs1gkc7sPDja3XplJxatjrFEMTQr4EjAhchqXbGpxOjXJVyYONvBYlyIG4jpL8v0j0vAPzVc+k4SguBUp0VcruiXIBEGzLa3wzSFVBlG674Rb5Hg4ZUs3tcW0/suJcz819SBVkJXRDcI7WJAJfFRKD1n15hArhAzl5sJPDYduna4kRVdUQtkcVftHAkc2lxnP7QSJs/3vbATS/he+YZ2o+yC2IsVHPdSDzd+h0pXs80wwPMOsbFRZbRpkEfeGVz/6fKLhlm4a1TZOO03M770GXCdq1RV0evRWHr0c+cQmFqQ1Sr73oHE0o6d1cYVb2EfsyPAPryPzPzrISh5DB0sPtDF1L1hqZq457gaxIvmbrdday62REv//DPDsPDWcAnE5YRggfGxG0c6VQZHQjKptfb5RoHSu3DAC/4Fb0/bkPG1Tqz3BOrSKu7YP3ilnxBD7keSypVjNBDNcnXa3QegmceMu73iH1dMkkpKZN3gFiOvOrOLREoGx/e9SmoPHY6R72hMKIVrjf976HongprbF68VbTcUpXRxHjfTAC0B8Bt1srS9YDT6GeCOi6ufErReHuQ3t2q+NXyp1cwXBt1n6c5Z29bGd5YTz8XaPsurATT6G6Yugnqr6ZpDSdrOMEvOT08bMi7ShHFJLJ1XcR6lTXvwgKS9NmI9WMLubGFQCp9jsQr3G547YVYuetbltmcwMRp/5I3qW9vTQtgc0B1juxddGa7akwStfb9/5BZ36+maSdgFp7wIHRKiyDAyJMOldSiAey1WO8APMCRQL+9C89hWfr+c0tB1E1M/ikxwoKNDH6AddRsad6iJVWAWd6ejulfKTtrHtlxZbB/JpkRSqFVaCfxUZeKyzmKrlJra1q2zXgTm+BG5GrOBPzh9WUASXiluNHveb0izw95pv7rEivAxs3lBftfyA3yyRf3l8xp3bycfFnOc7pJnzLMayXQTHFhu0nUqkw+7iUMtDbaxYYZLACVqPD8706zFrYP6LL03HxlBYPNtXcjbtkdYYdWSU5URlPff4tci80oEig4AVB8tdy7PA+C3kTXgHXgCSlfPYwW7ejyF39i8wnXaj/Tf3O3LWZIgwfWWBOJP//2Nwu/R1hTNzv48VZIfGCkjPIeWdK493vXCKSpPZunet7UriXGcubfP+JjT86rZqfPJSOGMYhrgW+4dC1NNNEiHeEIYTzJihiUvmfwsTnVSqSfAXbLJ+6GlRNXLmJkWuMf24/p2EKa3+2fYmzk5B2fgcjSmKJ4112Q3rubDdtx6IXQiSC4kOanUWlE2ST4HZLgY0hiEylGUOCsRLwTP7/P6z98MomC1y52vh8ihldb+ICk0Fu7Jr2zCtZKnwKVSm/DKTiH8sceMhor6HnrPg9xBbOCr0+nN6WjTMYnTUc8P57NyAy510Q74mCnzmXbWuIAObe5Rw/ehIAAbe2D1OGZjIc6Xr+qnVelumQMGRb5630Zk6iRvsNV25H1libvsZF6vKtso4sXB0mYN7lZpLU8crgQ8+uMJ9TRKmTx0uQnJ9VluP20/zFEzOdIwxbb1XGO+KCDzeEYEPKsctxQuU131iPOQ4uMVDKNcX5ZvXt0ygrt2surq5PV/FimNlaJFbdZqaoxqKILvhmUbmi9LbNQ4cbPEcuZX+dBGrdBZZWsW9BkT0U4lqxqT2Bwrert8lkGO4cd5iQ5Upa5i15sH5UaVeXbwig/RVDWSbqEY+rLSy30IVBwYHf7u2byyJN70/utPjNP3suTFuX3/LKf+bvn5upfRvavTAxhTmswxor+XS9A2e5TMFj47rpjYBE7eQmL7pCZLvsHqiC9NjllES18isKTeMyyJqB1DfhwbGqppK4boBTkJotYAB7J/0fTs4Wn2zj/SmmDf2qnqUCi5wtn7Awpnc0Iw4vgnMbSRN7wRSlYizmBrPhpl9323sNEqZOdeM6mEXFV64/in+UXFwf80+Zh8LnuTKy296vnWLm9KbhKRLBOCY/PZyH/D9pZUHyU/5TQKVwA4dRnUO7vZnj4NIALl3xld1UF611pHR137jLcFXj///ZaV0DvzvBGtdm/fnW3Vey24n6Bkl5wWq+NyjiIZa0CoJ2At+MftqP4ApxmK6yZXU0JfEQ3/f4/LhG3rgcJQQ2pTgGoXuvPwa+zUC2XeXvii0w1hdh62J24X+IYdFmLqmcTLfGilHJZroCFn5UVTdBy30VKZHg8fTjeOYEhN9WpydDpyaT/ZQ0gr88Wyx9xr5qWvX+T/59YYwcjfoaMRV9AQ0ANtt3PTyKalLHSGPP9j9CRYjaYlBgZO78sZzBtYwwFc5yuOwlPiamRkaZLarFmc/Zfuj3ydnX9RX84zyeYF315orySaGDRVmB/JmpdPOFCTnio8yhTRvWcIVJdU+90Q5xuZ68i6yLoDijWyY48hW+L8oK2ZNY75c6bbI3uDKXA6p2YBfyVKl+vOL9w1Pp6K+4O+jlIaiw0U9GANXcOOnhUBqyQiBZyM+p/s9L51NuAhoQ9p6p/BFTDATxu5+IQYt47Rppv4+joPVoJK1VxwvRzi06NAgCP3ofwguQDfZ2OAr8WzVZXvxRLicRJeLIgZ0vIK2LsgvvJNEAU5pX9Yl9hUrNYcpXA3NLOQ1hNsz83lxmqi+kznPah5GWh/dwzrQzFqSuJ18mv1Sg3jA9/J19DSHtoOsEaZDTNdhM7zYOK+/xuVyYPh2rfnVKZf2HvfIFnRPlLi0MPAj7BuTWTF5fzlEpIuLuIxVEs+6c8joYF+4PWQWCNzaRMiqyBITYwAX5fSnqrTQTOX1HoYbsmJQrL4lV3UM+4Wft3On6r7gHuxiMdFR2SUssriRlVJgK7GicWcfxepjS/3XraFpyH7h7MBcuQ423fCw4w4sbTSMH2ljTjrJaUu2deqHbdvZiTbHmLGm+ZRZn6W2gX2dWPrlio+8xDsrj6fp+xrfSlVrWGRiZz7KlPhfeD8FVFL4QGQdpx+j63F4Maq3wb92h7o+Dk4hfQh/XTB1CxWkNZHNf+OFrsmdMOEaKIiCNitVAyI9deGOqIOc9hmyXLQEE/akTsTR9UBBuXq8k58mRkIsSFo6anRvHhT65OoMiFo0VZ38qwGVCStEEFzCjOn7tdlfBsIJIFGE3jpS/jlnc3o0T3hO31261JkDBWoFgo/GykTfgG8nUAsITUEqoge5ROwUDhNKblztMB+xIBx3S7lcsdCUhJu9UggHNEYrMoEofpxjq+2C9SCYIGgYIJYPCYpE0QHD2sStp0R5wg2Asx8avEbE0Gp7xmMcdCDrzoMCPeL6VJSKGvBsLAVhvHKnADFk8mCqlIkQJelf81ZBzjrg49QsNfdPFChspO8rXw5O6ix2p4RPN2dqq3QwuwIIwOFwDkM58d3cXe0ndWGbWNBwjPEUzq6eDHT+WzPSJdwam+L/rW7OQXEJehSg+dD/IwMjHRgLgDBxaT1SlwYiQgiVJZ3sa2Bva6dsi2r1FF5jdvw8VAvVhF5SzcszVAs3k2wYJIJ/set4/iAAel0/9cb2UxbxBneXQNQ3jbWR1FVK0sIJOBMzzcgY5y+rkl4efj1ibGJCQHoM6LgTwDlVymfDbjT2n7Bc4RRNcq7n+XI6gdo0yISyhnPCovus/yyCh1LhuZOwCGUpykw9NB+bPWiAWR0k+PEZ4uTsx/pn8gcusCxmQoqnG2xIH8Bcf+/AwbID8hodsXs9lIregneiKcvDHYgIjdLc8qZanGxP3qRtVe4DtM+Nn739lC8MFoajSknKhvesqNw+lckieKaamBj31L+awPV2LNL2OgzSBmb1iOZkLQ8akCXGI8lgfSpa52M/GDR6WrCeSxO0rAGaW6Ku+iFYrfmhxgIHL8hqR0k14aKOwIhBqrtLe9oRsvP4jKthlslhgfHl7eEh1mSM06qMLWvCqeGX7YDsdMOzIKVl4muK6iQ8njC1BtXtDELrflgjPtRG3aOX4mG1XmWFruoUkxQvh/qZ2bLYzDrLb7LTMISSnH2IgXxdp8FKCtYZ9LTx5bi0BYvOJFeBA5JMeHo7IhHQqFMTgf+hLnz9ajTid8PCxitaFUhuZj6Cc+VXvUCgK3YJeN9bNWw1F+/OFmHE8bIu/4U8PYMe0KiUoNvTz1Z1PnSC88E814xw4GReBAkyO1VUhpRTiHji3Yu3lZIHXfnIqcaFLOPAlh2gWVBNHf1DGpwUjkWRd4MI6gSdgV1H9NdUUzqirlpZF9m6TRxRvYjULk98cBJcWW++AVglhG/3/ajUKVv4i3Ep832tNrbL+XZN+rpaTBrGQNTfPjq3HFPHw0euAo6dv4JZEkv7YKQTixMtrolB3pQy9QjjbN3Ela2vcNgArCLGwLfXHlRBJ0JoaXAkfVbUSwFYEz5aBRn+gYQywdbLKGCquHF9RXeieC/53k7q4H42IsS8uF3Z0NaLHvNJ/f/P8qsYj96nV6oflBAg1DKIfDbH3+RtuoHXNEYB/t7PBvrDKVrizUC2UN2ZZ2DHNkHfyCDZ4hcslsDX9W2nrakU8DxEtX81TzrGQTbH1TYY61OBZMdwJPMQgcjDnnxBgLPNmfB024QMjW8nTSDXoqeHXmdhbKNL/QPnsUbOMTjWGBWPtGWdhQDCq+waXpSCKjbrZsO1HgG0U3ivq47zfhJUwasxI/SYLieigKwf+Xgd43CPiTzOHdYrrm2MgFxknRMxrWSaE5yDCE8XSUgWkPhgabYD2BOtIpVpYkVykPr72AcIul6QbXAgsp2hDAIFmPJ8GoOBW2Q+nd0Es1+fJU9k/za5RbKASqGZvfcaC+WEhZ0MKh4v64ka+4580HAA8TXGjZ2OUzwyAFMUYK1Xa9astCCBxEErBiZp1z+/tNNZHAbSQcFxmqy6udSJxl+kBTmEDzaRTpjdEIlUJKf51U+JxDigvGITl2R1umRbIE/eRgmFaR2QqieaqRqgh24a5UsOf4SMaERqZ2iqHL02j91bfYi8ua46weKA99tqq3byLe6HwDhA0t1IU59iq7uriOXMonDInB5a8xxlYjN+3s1+f0tTpveuCgLUKInCIXbh78sRZZAxhscYRUojF67SeWbW1lwG97AzpmsJZ89bloBJIGZHcmGF9/cRIvVSWEjk3PYOOqqA2VKx1KiCUxGjJ31fPDxVb5vdZUS44HikdVjDYGe8A5c0BKD+uVbgF9XZMVKae5t5rw1BCl7en6rVWMYrYesCkkcw8JTbuJLdwLBjyv7MsgJALUDYIXhE8d1GjgB8o1juThq50w9UDnJtoArMNPHZ8CUzMNgwcd52Y343mh058P1EIo4pegKQnLdoJbETmmje4Bq9WOj7S8jcHuKueFqHJS04roKDGiGpIRmhwu83bCgiCtkjZGhw6mclbtf0z5omXPwAsAHvgGnA+wWUp/FK1RI2xc0AbxK9tY6TSHb9N0Fy/ZsLcMU7lw6gsErmthzPddBe0JUl56JgNP42JDhvt1GBm4T7KN0OKB/bx6uHu0pOHPBcoMx7anhuTiZ0ck43ofhH8I61KIgwm1rGigkhuQUshE63bSzbacDHCw1O9PgHZlseBflZoZ8Qt0io750Zhbt4gZaWu2fXspUF6rFu0+KR9iZFNsiTT6zxKWBx2AFSwEu6pSA6lh9COEjAmpzYqjkH5IO2IdPZFjre5fj2TreIlruqLBag766gJKhkBkNMwacnYFi1ZNYDnSFZ37jZ8ITH0GWBfkDmszbumwilUPEwwANCrJ+KGkrBrlnH5xPg5NYFV+IkNdJ8M4CW+NYTXIUI3t3wvmbCrbO3FqdqFPpI56FLzNoOlPgkxGq34to4WoNoFNGgtUnZ92iAIj0CGaR4y72+Goqb0e0gV8HSzQ6gHR//E6TgTR247M+WRPe0JKylgmvWFWmWAzVmhn1a01YpG8WhTHiV7YmkiyWlhvlB9qX+kAcr/2NqPLB2ayy2eyDIWcTnC+o7B8GcK/Bzeo68DWjTLx4uPV576OiBA08bsVjeRbKcUUztQjKG5AiIKk8lxAAFBxXe5ISZHTpaH5uTFgjg+NP9HDxgUyb2jpffdZWhHCG7FNtInXX00IKIrGIVktkrH8ufK9IuwDkYVh8F46rwX+bNQkRT273itTzNJSA/u2nZQXye92oF0YFbteTHSQNqInYCfDrOVMCxanuei5zfVtWcueqU2ULQcWE89pNp7qVPVNtOmLf/KzzFW0WSSnY0Oxkgxa3L0VoqiT0v/NVtF+jX4J/y1ZaTyRe864rMy5JvL7/resPTAWXt1zUDeuNb7EHmxmPT0cMPZF2lyqBrGJiocy6KYtwlJJR1l+Mul2pr+0mUknR8PeYgNW+K91kDfDiDsYe2SCrqI/hg1aGeL4qC/sA9xyx8vgx0lZWwJHkFhSYf2J04n7cCZxFCD7y5xbzgYkltwnqZw/GAsei5bGn2eR5ZQRcdH5AXF811nUUwGzIQOjhlfz5CymUfFvBdS9QeteoOOQFKaHKH01jpQZXqJF0F/qtatjulWtl3mkFMTgQbGf1pCj1ImAOB2Uvzz3X5j2q/iVDLAqeASWf80epG6b315ys8QrsGGYs0I+ZZmq7B92jSAfnM/gTZrNDC/KfI9wY6uhRGrzGnNhmZfv6I0UfzOiODAXhI/ZD9IZkRIvwV5bGGLulwXZ/Er/IyemTwJugOL5d5+lB3s/U9Yr4wcI1S+iSEHIDayvnfLcrTBLGHJpzziL61moqwr+JkHXPL975h1u2uRFRVPLZY/ixey3zJot0K5na7E++E2QDsv7RnsfepMNTfYxfDyKCG/t+T4GAbTnhvLShsEx08UqMjExBiIKhrEoB8UpVho2zEUj42f8W97q2qztBZPY86gFkgRci2GJNmL81j1p8Bb8qiMT7oxAtFa1ZWMBEC+mZ17M4LrjxrgR2IpkZPGAHYqx1jZQqy3yH/trPzWkmXkt/U8b8OLJxwTaQJeyHZni1KHG8zmDcWQySo2zAwpJXhGGAGTGgOZ2k58I15nP7yr9wbH+PFNc/XbWaCBKh8AlifNqItRd/LUVDQV1VMCe52HC/TnjVn35qKqv3yRbxRYoy6foiLYQbfM2s3S6afgVtxkbHP3uVLTj+JNpPbydUNiy1xqEFIuv0x4APmD/ub4vWDyz+7/jPs2x2aopxA/wL0Zp24UJzpIxz/f+iZgR2rs6vYYcR7fVOdy+6QN+4D6e3CpqjYbxBYwFe7WtCFEMSBnvNSoKDgUy2SjCrxGdFMAgWWhjY0f4PrlCzCB2nODn2qAgsfItHHd5e/UO/hIKRjUS9uJE+gkVUgPkRoj5rSxEAL0dqNGgl3VN1XqOx/OnQa+XFqcT8dmGLgRstEH5fyB0ytxp4VCNGgeU9CWyH3ugpMYih9L6GR7a774B8Y0Y8khqgilsn9jYJ71iF+/nA/azVlmTHLCKbHntjwAWh5/U5YgQmwW7+QkwBBi8cqae7+oYjAxfR4SvHAB2Ls3MWaJ57b7ItXSH6cqjKBpiQQCN2tchrJDB2vg3XG+hrfYoo2pzBIcFOKdHUsbqIu6kbISa38bIj0kTlpUcOdIJePDZHHGr6TsH86+GNLMeoWN6JZwrGazveX9/HzbyIxHfDPMyW6c0m7EAXePup6EGonHDlr1rNQSP6yLgAOlT2Sb/F6D/MYVtO+O+K7PFVLzmPxA6o0OqR8gpOPbE/0e3BMYy5ufN84eT4/E9urF3nMvDo0BU9Q+O2JVd9sPRJVbxuwi2dJNKJBJZOEOVznQiWc7SSvsDTN+T0EDwfvUkbOmx4okILb0clJ/IeZdzOFVY42JckpgRhj+se7PE2RUix+zrtGABhiqQLDeAZSU3ILQ4VuqdJ6uh7gpIYJtqNUUPW77LsaFkn5VcTGjrKHZ/WbOvlC7UYMySldDKYSXFLIAR+mojAAkQFTp6ORmUCqOInzOcAdz36HE7qwZjgrI3BuYXxAE+VXriC3DJuJsqC1R+xpClSn3w9/SNOJPFRZ0lutFrgLePm36E2AdMEvQyjwTrjNtiMjAOyw1+utXFr3oVrIwgJZSckW8tHO+umvhic/i56uy/WNvp9l5oaXM4630w1wM5JRquiFu29vvSXJgf0YBKmia6dEWUNxeFOyknpjnXY2cvUyPO6Ub2JzYHaUMa437cuCwxGcm/4J82m0bGKHmAY73mKdvO5x2IzRwu/axhjG6KB3g7nnKuodjvSkIyhwU4qAiM2ZLgR/YYcF+nECRq5+7ZT5q4MhfGe5VT7l/R49TAVnY8oGOBwHkIHRbmtbeO2sM7DRkLLvzaQhf2v5MT96EiswpV93h8wpeKxG5TBtncZeG05oaT25BO58XO4eqnDhg3CvqZeZaRijVvZju7eH/BAsLmS5ur8SGAtjQEYwFMeN4fWwdpCWV/ZYJ7i+Vupg7bGQ8Vl96ofMBDviPmsuzM9r1hAW7nbJ2y62iA77xMvrCrnZ86GrDHLoQB/eFk54XXB3dk5WNaMcS2ALo952D7+AepffXJDMiL/MYSmiNWtjvEnOpsWc15PXW5wbP0Wq4jdCuEmZ8nYCVxvpW3o4hlC7+qUpyoH4ZfSKXrQiJE8RefFIXF7+HT0GGDLuvpWto4aONRWWsGIP28hLSUZTbXmNC+4Mj7G8A5fKeYFO531g68XS+dc+vetjL7qOcqf+5a06Kd0zTSXhXZILdSHLk7a67s+uY/jnMecJWEL7XQ+/aGnLw8Phpv/qKyR9SF/QBhx+XpqLXqADfgGbf2WKvt8SGbR5aYnsHM0jlCWfrgxa8RDODHoHZBIcOJNCrW20b+qATjV3apbSDuZE9NAIjCe8k278SjtIecGnJpMvj9IK9K31RjtnC01vgjcX36xpVtig4s8ENKGThMII5kdZnN4urdiBPcWHBIBOQ9iMgItkhdS75pbcvXxeQd4eGpiMhe01DwPmKNo+l/26pquIYd2dpR5NJM+RBnWPKZunwUVXfU+SvR2aVA6/XFoI+d0BC0jXBtaOQjoeAWTmwFavrPFghGH+QHbJzdfq2Kzq+wZMhWn5B1BuB7iu4ckJNUiGVvnVj1Fyg2yJrJvzYFQ6UT+ONsuAdrbj7E16AvOagg2V791BrVlLZzJZpkydyylvilUUrz8vBUOL5D5W7hOCbL9mTzxN4GejILgWu+ZZ28cWyAOKBMnFOxFP8JasUXrvJJxfroZaI8pIX/xHu2Nr6x+vcvlhg7vr4107qjDaZXPbeDOHt9/U+5ITpaa+kHJkLgIu2lsovr0Qgt8iMcGxY7YGf1D9D/R4fDa1u8Ipd1zfOsStNV8hY8gkF5jUQ0sui1UEOKvIovgGf53RRbDlgBRvW0xO7fGv20PGzGlOvksWXOCiIDfx9ooS9NH/+aXvq+YsklH0IIyMtEDRKP/SNG7tRhhlpYq2WDBiy8lW5oMmIYaODW8MQ4rjMtS7+QHk9s+U0z+KBVKcNYhyDWI8RdIMI26ds7j1xknSOuWdiEH51rBbfPmsoBMce3vHznca39wZfnyHeK3rLyaanFuRjKTlEF55LUq7WwdSGpjWxT8Ea2UrLlOsVFzrccpVPGgHzhDnidrcQ9V4/Tr3m+lC0zM+BGd7iDvuD/VvrHUzjMaiCDqENAQXWXcRu4GXEvZ3XuNA256LNui/24URBcDpR90GTtrOc6Z52/CYjix7zljIaXi20p9DuYSFHq4cdyIqlJ8Al/LUtzh4/xi3BfnDIYDTau6IrnIJ2XrmKxwsZ/I8naeQy6R+jTJAb3LrXtGjnCKtsOmn89JGCYMDAJFTP0drzFcrJqwayv1+ufkQ21kKE2jYP56V8JdRAmon90TYLGkcIJFm0Pgc1CHA2NZvpNAw/PDHUOTF5CAP/K+PjmwaReFYyvoU0CkW4LeEaD8vg6wCQ1s7zavUM/7GfyQO8ikcvn6WXiV/o4XIAxOdy+oS67nOlrVmMI4RudHZa+y0ddYPQEiwDphGIFrLXYYF0S3bjmLt1g5D44+CyOHCTywk30x0yoQkWnZoJ73memuNlrjBr4fpZIwMarLHARJcKUN6Au6jg5IExuSeLP2dG0Dq0LnQYpizUfdaT+Wm1bzDr3GSKzyBof3DSEBivPIFYw1Ps/Ryu4bO/W0NsAGxsKn3SzDmeTUM+OpvsHuBai52xizaUI6CkPHLoZmtMPWOAR2sVxMwyfQDNrRo+gIkKgwuE6oAXUKt8jl226H6qJRH1CKhe3/j07q4NtWxFHyMxVTb8bdaDYTPAExc5RMgixxyrnmv/E2hPL0V5G6WsJhnbD91phoFSxbpoh8yB7uPOAAfUAKdvzcJC0FR9A5CfLVkVoMqBf68OQ156cqJWGwEi5r1BTbVJKjubprs0f9g1mr8mNnWHSoRxhaD3+K8nNCvk2td5fDlM4yzfufbl/aS2iA4mmkHq+HHM0AK7gidrscf56OotrC+DeGRNd9iS482dvAJ0KrqUohhkrX26zq4TyFKe0RiYSpbngF3BCWaVxRPvRny88uVIxBv5ep4xOd9TVkFbHoCeXKN7S2Uq9HQycTy5M+mNSl0Qqaux33y/WAURNCqpYaZstvrJE1CJWIVGH5GH5/L9cpxwZ2pCfym8FgXJGp5mmrsj3r+TaJOU3wOEXxEthM/sbVi3qXT0MnwDt/CqoNNBWz9JPwb6V89H5AQ/Xt+VqbLJhOnPYUhdtHsmZ+NZ84oz6jHfWIVL9uq9FIqlL8rv3BAtJqQsDX9w8+YmLsgDhB9pAR7uWx6JPNoIn96KsM42a/JnGo2hFf3yVIauuRRglNtIi2pJJeIBxtuJiqigR/py4SVdAO2qf499jtTO6QagpqoMYENNAX6SdTWbfFDIwrS6Xi3AqVUpltU58RUVzDJWmdeUQFd8SkrJAGD9zA1oR2YJxdHjw1pN7e0AYNGdZ2mmnpkfHSz14fi6ryo7A1X7l5DF0830/Jq6mRyhzdsfRNmS4BCvhuq3KWAFrcOTEUZV4NWvKhSpKd6eBwQHJIjxMHDaQmfhA4RkF4+jhbZTLBU4vWcPyWvgqnMekAgSrv21sSKAQ+nuyOHG3NPp7s2C/1yFvm0s103OJVKR9L90VoWpF+Z1LjGi/gQ1cCGbYs1PaqXyHh3epwR5GnfP8vMn2K1CyyFMpBAR/e51/r1hvtIk/A41kwCUhZ1eIZf9ezIHhwnBZpp4HuppMTsff1YT8CJjmqLS93ou4dp7EXbi69Nl8YsFr4x7XzQqhrcWKMXj5DMRocynPdUdKSYqUK5lfoLFG5DjBO4dvwCS665Gd0qEHaCacHaAkwb0cMY+N2Yi1X7lluJQ1lJyltwnnb9xdys3MAFbjrPWMQIqGLYwkMlFLTtoovWSMn2n5z9Jlc88C6oLMQzdXtrDcad3pnXf+Z0Iywsy29cxHYAQ7+xGaT6Fa6th0wJWhnLZthYjf3zCKL4VmQQWId23ZK5CATXLcHJ1a6YGr2hLCycXNPGDbcr0bvBNXO6kEFhUlJrRtNIa6F2hcTVxnfE1ARQu0vcvDx1ijxj1kR4wy4FkP3CBRS0Rnz0wCjQBmIM7W691clSVjyZNLJayrKd9EtIndurJSdkrkNP6hQLiy/5SZ8KlFRw2yTP37lR/eCf4smlcP7t0qPZB91t3Bfhn6sYHVc21OI7fFQQ2AzGWgeu5veIqOryYKYpxJM
Variant 0
DifficultyLevel
574
Question
Farmer Jim uses 5-strand wire fencing around his paddocks.
His fences have 3 barbed wire strands and 2 plain wire strands, as shown in the diagram below.
Barbed wire costs $b per metre. Plain wire costs $w per metre.
Which of these expressions gives the total cost of the wire needed for a fence of length f metres?
Worked Solution
Cost of 3 metres of barbed wire = 3b
Cost of 2 metres of plain wire = 2w
⇒ Cost of 1 metre of fencing = 3b + 2w
∴ Cost of f metres of fencing
= (3b + 2w)f
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $(3\large b$ + 2$\large w$)$f$ |
Answers
Is Correct? | Answer |
x | 5bwf |
x | 6bwf |
x | 6(b+w)f |
✓ | (3b + 2w)f |