20301
U2FsdGVkX1/pKMHLUKvgXRL9WMkFlMg97dooo97m57ctzuwPnWyTeFmnMliAohAR7cIOeXMnI9gUPY0Wyj6gwfFTYXvEbs4BTAUjn8Ms+XgY5QsC1X16duNItCKHDeFVyBA6NenCLQPK0VpfSMCr8hHZFBfWvGeZJ4fTPTaROf6PXCgd926IfuWjtROq/UslN8V5iUbkWPFBEYUbJUv7lvF0cTAmMbUDHYHLxYZje+2hrsdEidKaophSt+l5w1PeqwNsXjwN4mbTg8tbGcT+b8UURecMaG8gTthGL/iGSaC15XrzthTKRHp2Dnb6ZiDjHqX79kf/WM9YqJDKtT14kRLEyPUVRnMQ4r3EKPFCCY0e2224zd+CUMRMczkPq0xjrg84apluT1piIXBagBVYCNYeQgeXRh3bif28vURiVtWy/IAyKzKZ2pdJzxZ0yWdQoatodefe6NlIH+nF/gFCGfwgRq7SMXuA7xHG+vi7ANdsRxFjuy3fX9eGg+4qteGiGYW0S5PWhedbODIkewLqdDqcl3v+9mxxMwEKwKg15pLDdF7l5jaIFQpfurgTG38CB0eTMtxNPn2xgfXzftJiqcDCTiRzG5UM0GRzm5cObBg8oY3Ycr2su+cPJTtJ8p5OTlJrMN90X8Wsr0h45gFZU945gcrnhG0ogZr4xNRwDgLJY3YyC69DS5KbBAub6pEgCl/l9T8oJE1U1vonla+GgdG1DvvHFyocBjYXJqFqkcSDODuGOebbJr+fa2C3KhB1F5xNMYdhpgV1nBYAvpXLcc1M+Y0rnZ/zSTiVKAMZt1XkD0AVg2kLdi2urZ9JUjyfalYle84q8wu/gQcUQX9MVMW3Nk3CmUmFt1tpHd9VGAruGz3YdMB9cW4d7FNt+d3t20bI7tMCZ6pNVpK3KMOJxeJXIAsui+a+g3kOycnqvyswa1jbM+3QJpRATcMaPw58pGP6xKGNM7ipL0ekTHwf/JotnsKhPJ2wT+soIgJj4UlRsya4wfXP64Z6L0pBxiUZWHp0AJeEXIho/f2rSCk9fgQKNlgAPGoITotKpYB2mpVuk1sjEUv8SsD8/Nd96/QH0jCtkgLGhkCexjl+T19hoJnN8cJrzCFJWlPBNI6Ntj4qnfHOOqwOr447tezhqe8+9C4AMdkPFU5xAe7n9VGcPRYjfEIdz/SdSMcnQBlYCclQCsJpN5XH918UcHFij7ZZjQRtBuOGwD5uO9p6A7wu3ep3ZGPs44aH4DYnbNmT+jrwapprWGJIbJrpFnbwDnE9ytbGw/QxFUF2l3TzZNzgJp0/6sqo2iXQJmSSxnqJ7aGKZINm5VANgrUzank41w1R05XeNOQWqvu+iNx4O8TxSD9Q4M1cGFX/xB8lrAknVM0WxkDmmqRHWAYeSZzUs7tqQvC8XQFHbPxf8ITdJawG5duA4np63AxhZntQfhSVUfn3OcoVEHEgOBdkLn+C49AKL9BRCiyGNe45/V7qgi3nxB790fKdMy/pawLZXiRvK5ONzHw3jQlrrr17W2b3ScgbgrmiYqDm/fyJ4zJJ+tml4NrorpfKB417kmnpXzPb6UQR/c5w6mr4QSzGziIC+VVcB6ncuNbNbMZMl42+OoUV8qWbNb3YMyaoSGtsnkgxxgn8S5h6jNcUbHab9hfj9NijyhBoqw9hvv98MSC7BPELLCOKf/OVEm3R1LxVB3eBuLfnZGmuuiDh+7MESp8jtVpsnTzImFOD++Kf2G4QqtH4C1CeINdTZBSSPVsNNWB9AH031Kdrv1JFwnAWUG51L3ysw9zrVXckjzRQGZIR8dnQ5pKJA8tHXRuy/M8NxqR4ex56W6CyjJWH5Aiep5pi/v6zym9Fzve/+xhzDGyhZFUX/rzmNdVJdVZRebhgq92SA9+jf2X+pclPzKekDlGJ3vt5byYFoETn7fHaBWsgS3q2hrU8KdfzGh7DVsOaUkqHS0SFnRHfhtE6gwEvkbaNgM9zIhK3d33wp7RkogZ4xp+M4AFLGj+mbKX6px76FyGG8MWR88iEaKA+hOd1luV55jRbtw2XBhjOYMTgqXzHXBRM8J2IQuVpCaYMCpML+PQ5+Q42i+UtT3Apkh5b10j74SDTEL7WZYJLqVUAZfNoCsHCP5m9RgOHnxRNr5j5F0316pTRbC+z9Herw9IQA8PY91UD/7g1IAJa9kO40xqGE8eshjYCyDxfDI8Sp8hDA3DSZ67GuY5DKxJMGQQIUzJnC7DLK+40Q2bpA4tMQEb9JtZyx4jQXWYDOqCh8tfaXdOEuJODAEMNSh+UXjXYgaQQwc5JLz/s7YwhBJKa3b8du5BvvgstWql1xZ0R2xEEPmjaYi7LwM021LxFj5qjmEQ4jJ99vIoHIzi+P6ypzfSs1DG51HDdo7sPzzSTGf9IQMtCMztyd4TbruW6n9KOzpSbfgdAV7lsjGdSOP1WDkKtCm3mCs7gyWfy3Yg37wVmQOhKrA2njHXQL1PzTjVZkk/UOrKVXdVfrn0YvbtxJseeI2zYRDyQChYZRz6u3OagXth++rbA+KvtNZ3WuFnS+Vkg1O7kbaWmgwpdId20CNgELROxLJfZ++kZlxVrjD18hTXIVsQw1VM5lIN9p3eyrHzCReWlFNx070hCzlbIgXQ5o4jGDEGcedJJq0dz018L6204yul6BFhAhQM0XGLd/Qab2mX7imyd36a+EXrqaAkRnnzDk/tN0suxM6UhJyLjvSxcFyPfRE3ajB7n5Oh93B8/BSg/ZAcv3LXJesFaPTQDmcX4yIV1usrQ9i3HAPU4uFszUhqUoNcfvCj5Q+oiEHtbW5kOFpChi2c4lkLZjZsm21BlphoOwgiz8MofyyStOwNZMSaaPxwhd5Fa0+/sLwhB2z4mkbK8lvBh/mp6lXsxOSuxIrSRze1czcftvdSVIp04g4179tsHwybgaBXC4Vr9l7lbFPVJKhhAICFQI/ixPjk3r2DZhmUniCGZVrxuwRhxdpujePohK5AWoRiUkvE08uhMUa/1oSfuE5Xi1UmAmFWx2TYTvd7+dUfoE9xggQsOmx3Xg8uyEDDi1TIZet2o+7oG5YdhUgdtUSDzEww75DNOghSk04ZbD2MD0RqVoQwD7eT5P5DKeYVgjxlxX1REZhvlDRIw/pR3b4etYyOWvOaD52Xtp13ONgAO8DtYLrobj2b4USyhpOGxlNO/qsD6pAjmyT21A/tUOfoFkmUSvsmLysOyMBQ9NeEoHdg4g+w/m3LopGQVlYKedNuTjcKZrMXYbAsY1aP3PkSg2ohdUvaV09L28rgFwAHbZWGIR7Yw4k/EF9IH0IJ0b3wCid9OFVSm2uqVzHqF1s6v5/2t0/LE1Tl8qZZmK0ATphYAddUHVs9rh+4urUguuqIvShZJQtR9IvYcaX5IP7GpQyUBMz4sFG4WKwjINoYI5P6eiysnwGbz77OZ2O7CrmY5f5bLmv1F8zeixpZa0+6Rgn/qrXvaLmCMM1nZtLT2oxpWhvnw3J7QtxdLBWZazGMOq2NMV6uXpJBY23UyjsNONV9adrJl2GejQVTsHwF3RulFXUhWdPN3E9X4b/AJr/sfjDClFP8OXXvnTrDwM33KmwBoi79U1lGzrVqdDYgE8arf8E/N4cY/AaCSf0tjouq/WOnrckPnhkk2Lfuo0RMv4tSOOcNz01jfW3Vn6b0w6j/m/QnV3SLGNyQrb05KA6RwXe2uJPwDn9G4k+uUUQK/N5ONkYJ2N/++mpcQC/vGMwqzwqXQUZp95p5L8757xCtNvgjNUFNpJm4kDcpRHJ+RiCRs1Safab/1VCya/rp3a+HrmXYxMbKyd2VkTRNkEyD91HnXzA2J/R/PqMnLfbi3EKWJgIOntcNOja8+qj7m/GkEQ1YZdzIFtPncMnexhGkEmMdDUxu1C01IflXz/4QPi6pou0rIu8s5EwVftewFFcrVfbIai+GAcfbz90k5zanuCmA0ZPFvGIDz/daEsAU6FTkByYDe0tZ7G5vT/YYMtCBxjjW0/t2PhTfEXPtb9UihaZU3ZCGMkgdEzZrlNCwvlet0Wu7T/rrLyGR0KTVU01MkYxoZV1oGUXAdpa6n4Wm8Wc0l9NyHW9Tw3ly22VzYYrW6AbhzSQq9d5h1l+lJWNmP+HOSmcS3/WjMp3v+UyFSr1hmjJMKmOHvT8cIvvYq/dvYh/10YPzkNTnlhvutC0z+hGQcXn0bCoEqkELgpDEOTVRzvSKbI5+r2tC6BeAakTdO8uFmq0YsOPy6+lmA3lBVZKkFSzl8hwEtLtIvpFLJB9HDQGRiDD2bhtOp50VG0H3fIDfPsSi1HW5iLJoBTOrivdonX7lsy2s/JQ5SSMpturfm/fdXcXwEP8MuOCy6kyHZ+p5qvHu0S1/wBfFBo4KiNgJ4PDMJ6KCMS6cx8LEX3dpoQV4zx3EsqfD2iNixMEIIcPxoxw8rpt65Hj+55vO9mGE5oYsxF3nFmNK7eCUdSzXvkSysdwRfXtWLBY0Ji3vvgO3Lkw62b7NeBuvrO8botmnD7iMwoVhXXSRGqKYs0nG+G2kVNfiKlYKkooXkhX82tRqk2eaZcuBTzAp+Llz2cc1xwTgss9PrjVap0iJODbqDlrMTOWpFnfgKYNybo992qjpz/KjtumX4Y54Txtas76Wdvdip+jff6Nz9s0V+8VfFfTxanP/o8HWuXLLa2uYJHG9oDygaa0szzzM5h6s2M7fIRMvaO55ASryaKGr9CZXl/6pyEhYbYcG9kNqAWWvRl10GDhRPBwXUfgpR6xlmwpreU/Za94BMDbaZ3y0lHsF2BjAVS26B3kFp9zAlwKyoN+DHzbqnMIojPMPO7kcpYN/ghJRsqkATNCQlD0SAoD5/r6N05mQD59JD2q82AQnmsSrYA+K+g8fZzzVmz67HwqkOlwBc3LFPaosBrbga/6ormvxMtHoYzkJYwW3v5hvIKp/2x9ngDdgN2pZ/RWwhGml13UYSoWK/J/NVqKDXFja24nSNTU3wV5+OaiD093gV63+WEj7qzyudHl3ySQEoHcNZ6VYiRi5eMbWv6aeNgzDKiBg8kjhpJUDKJHSrwyDr/umBUCy8P2isZbACQPSAE7UI/Z18GAQHP1N5Zgfn6cqBcl8vgNLKxgsf1IBJELnPIfiaiZUZ9B4ZYy9qSsQXfbu8qEd53ywbchvJx30NdoStkYnh06xSbt66LrEycrKEo/RAq2t6xBkME9dJjxqr1JZdcMxpOolyWPvTgE26LwdD8XN9aILNmk2gtCgW0AJ9oASazRd06YEsUsNRSd0mW5Jcdk+RMQIKYcDYm7zMw8Yr8jv7tYyygENS3AOVVo2wVzxjzPQhpA5Zs18fE/DQt8V7MWEDqfrQdHOZf6GwUHAxzT69Llh5lGCj1At7SO80qKTErTjmUYZbgwpcS5uyyN2moCSU//jI8nhVc8mt0FPrF64k2Zajx7P+m/acnaWR8dLUZjO9ft5G64qqxT55XfaR523gBYYvoYn36yd4b3ztCvbtny/5aEBV2JIOhoq16OxUwrhlgMkV6VE3Mq2QRLzT8dnB/lgvANvmF7hvvphfd9qYqqVt9PQoyP+er0PStAH44gGN6QN+nme88TG3U/SqtYA8OtmNybbYkeW+Zehm+ZYtejRk7Cl/vSbHxffR4LfkF0qzK1BH708ApYR7agmz3NMsfmJYLNuO8wxeSOGRuTH02090jW7CGTyILvp7+eeyNM/YiDU1uhd12ha5P6WQDNoUn6eWtUpKmaW8PBS+EUHc51bCD1gtlHFnnKGDpxNuBlbsRmAhOmfHQ+270/hBe60BHZp1lLl/JFgHhG5qHI7SPRXpL0YBhmQA8gvKYjEo/XDVoHoadz5K8TwXRNe34Wwlj+AjELitqHWTn/xtYGxQV0GuNS89ERdoyinECullEULUoM0zKGKRrEZ3WK7gI10ehTJT6lXavum1XfeqWL312+gN1qWB2pxYUssYsHlVNjLsAYkg9vfnd+Ell6D01sXiOhwrcId8KDU9/VFkFIXLEGC+FMyehETOSWngOSqIMBhPcJ8KXbytGjjHS3XgazPNiQ3l3BhDcwxUYj9Dle0C7sMPF2CHsSNh+M+JgrEmRTmggxa7pg+tJXYA1yMq4vU/u3SE9XWD2JLXuu8kuWVH6Dnuj3RlguEmcn1+9mdCj3nnYgfHeY/EmAGX6SkUPkVmvZQD/iT5oslaIO4RjD1cJe0UUMjiFyCOQw2TSnIzOGfo0RJA/v6aMM2fLl87T+7DBOw6zbQ3o3Ae2CMiMjnrB0HNtJKPFOWyvL2KBXQ5Zuqn0d1UqcOQm9jr+hnhlNPOtUA2QCr+7cBBCBZ4Vt4NQqC5X9sC7xjNjCO8/R6FbOfmEGCsuipjJtEtUJoNgeHOrb8XGwpkZ5Vq3cfEZM9LNjFhKVQyaTXIyvqqhVTmkpN/FplKSsdR6THQ0izLAt7IUB4lW1U0HdQ8bJH+8NIpOvUJ5/0RbH75SpVLuJf1zmTtSDVpXzwba0unaFkRtevUyrXJdlP7iTV+n1/ydQb3F/R4B1NJ6Xxxa1exOQ2s296iDN6+dGpERTI1dqRHIE6mBj21sqeYRuWN4FKv8UFTxq+vqQrlFFXWZUK+v9Cx1LTtVLmNFU+CAJ1wht5GEi86kyCfi3TSrrNZDCEcVqDvH48vyvGfiOGTYdp57wHz5GfpqnxFHq8jVjicHAHcgYVv1aKLagM00p1sm12KWjTYc4ZxFA5t+Y1mHlsH/Jrp9mRvlAJuwwrIqBb0noKmuhFTpZv9tupBdFWBTRt+QEhyvEClDM8nXou8UG+g2i2OxrBw79o8WUfzKb7wBBHKx9UlK6pueQazwqybZXHKy/j/+n6KCkHFjLssxE1KHHyuJiaHLY7D+ooZFWZUOgse55dNl1p0SR9M7r307mQzaS8wdlgmDAOwtI4pCdT/mcafDBWKBbRknGLrwyWN86G9BNy02XmsaWOY1neq7L+N4quxiqxGPJWH+GtfTpswf2W+6oUf2vexWzn4Ab3VmVJgl1zRncCZEDCuXmVUvIHQLyecNCc0oe7YP8bsFWh9I9RHCrHXXLVJONLfDGiy+zP2eSJ/XnhV3guBb8h+EE7wS+FZ0E6gmrCjQ4pgB7ktRBbiQPzoegJ5b8Yf5aa7MtGJL/55lwH0xumEf+TW6LVoJfKFdrmn/qvwbjXAc8wTAffO//yefomNbALto3LNsIyKCD3oney+xln7U/HQd6HdcY2VU2T/G+7Ag1Dx9bn6VE0upuwW2UaPn+Y+2zayLSbMpWBmVedVncOJ8Wt/BzeHjUzXl00tVPMduDU1rvVHo/4g0DiSYF4nz524bja9Ez9GIyZPP+qGMCb3Uw+QNWh8HTM4ATQj6V75XI14oy5jBNkSxZNrqxLfxEjYZpuHXiRdEFGtsvTo51dYd3fSMoOIcwJGxdLdGp7dPk0pVbBi6KdVN7NrOI5i1ADHik6UpQ6luooCDAHsj1KRAqDNMobSbnjRI0lpgjUQgl8tFUJZGu5fA62G407Hg0ZIfRYg4LfIDiu25M9G1dYA1qy1NKwI5Ssl25nc9bPHOjSYDvp4J7SzLVTxv8jv6HBExFMWn5kErF1n0Xs3kcvCIGC376lgh53XKVEPGd0hzRWZOgjdsySOIK4DembFLmOtkL89coZV9rzI0hRaa8rqxLOMYbp9+X5DrcKoPJoL8KfVZyIlHPgCCsVQiJvesniDfQMEyrN7QwIezxte55t7yCFLt5jdFytJ/qX54AQ/kUHv+31U7DLjoLcTVq7OxljKqyV9yo7yuw0s7N/79ZvCASyppw6zeYXZnCDR4Jd76IOMC0qaSrJHyAkVTG6n2jz1SDUpzTfeALW75dAWIRF+otYM/X+Vi/FBjdfkAVxwVjPgzmlDwBqi/YZdcZtJydao245fBkVOqFoQvzeThCg7tzKkRA8d5d2Va7gbri1GPsXufcdKOJqWyC3pI8p884glTrC5PggzV2WZFkBkBGiIyHzLm/hKvZ4iUQbjeDsb6Gt0pr1bjE2Fi/tHcjTpkqeXZ0FiTPmzIJUzuj/82Bt0g418t+Vb5k1xoT+srUxPiVIKzTwGjbboImlns/zWh1zEyVed+r08uQKs+0JQFF+EpC/QGXsayqPwK8VeBCfWefz/Or344SmHXtZEXU9g84iPAqcb6+B9S7NcGDZyjp7/Nfxv4Tt/QVmqjolBGLHg6ceahilRAkmne76tqqYrl5bAazcH0htVLRlB5FSplPPZCYo9PQUxaba28Vp/K6bwe0nvtNYQOVdErCQiBHB7NkSS6dKjMNTvkQNXVBNxbepe7ftQWxXBgbdPpxeDH5Jd/AbGu8qSoW2r3jSKxyOQt8wzykMN+0FDxSAg1JA+ADf+VCEeQin+RaZa6wJDMEdqR8C7O+2pubcQxUlmGEuj69exdUYw8pF1lLKyAUZ/HwYMMoOSBz+5J9kgtkGOoTgc6o8jPZfcZu7ZMTyX2R7qJaWoeGG/0uekB01qEVU+nVcML2aS8TRaEmGB815XMFUVZP2Ix8Okg2gTx/F112qqlalhvB7fXDjS5CIDL9rhlU76LkwU78VNLfRDBhmjSUCLtpbcEHELRVHEc2BUqUicw0u1T5FbJJEBe3wsjeGUbY/9ytP2vYDMzOyGlQZWjfoC10aUednW2KE2oaAzrJWMWeMegjEN+8yAfFDfkf1UFREcFkNDrHs6jPgl
Variant 0
DifficultyLevel
564
Question
Pablo cuts a square out of a rectangular piece of paper, as shown below.
The square Pablo cut out has a side length of 6 cm.
Which of these expressions gives the area of Pablo's piece of paper after cutting out the square?
Worked Solution
|
|
Area |
= Area of larger rectangle − Area of square |
|
= (28 × 20) − (6 × 6) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Pablo cuts a square out of a rectangular piece of paper, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAP-D4-NC13_v0.svg 330 indent3 vpad
The square Pablo cut out has a side length of 6 cm.
Which of these expressions gives the area of Pablo's piece of paper after cutting out the square?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of larger rectangle $-$ Area of square |
| | = {{{correctAnswer}}} |
|
correctAnswer | (28 $\times$ 20) $-$ (6 $\times$ 6) |
Answers
Is Correct? | Answer |
✓ | (28 × 20) − (6 × 6) |
x | (22 × 14) + (6 × 6) |
x | |
x | (28 + 20) + (6 × 6) |
U2FsdGVkX1++1J2su1qDrm86oj9m7VTVYX+nbLTnt7QNa6mZ3uXaX4Kz3S2Uhh7CKGey4GBJf/H9Ct4toThOOuXUnaSd3gg5pNkOEYDBipaPm3GftLOg9BPHmQI73JCbxrY36JUZoG2UYyZsHFR8/UYJuKNj0NWo6VM8pmbr5Jd1iHPNdtPilnVdVBS9jPr2m5kyH7ENKrfkYydSPqkc4tqa5W5bybcIylDuXfk/uXzCywsoZuAliIF2cTgsI7fIvKxpDyQo22RO9MC4nuSSA9ML+f5Fh0LV81WrCwZGTOwFzJCfsKxWvafZJvhgJbj0olOclDygaJno63Pyz0460Lth6c2kmN1oAisbhPfqvQqN5EYQoUiRh5byg+AiT2+Spqt8sj5AaukvqV0UfDT6/g0UbZJ5Raw7I9tI/nPt34w0N/LR4Ok9y0Erva2m/Io2mevo3PN/kV0FT/axvS69PGd+84Fklyx7DLr2hWdCKofJjBrxCI9Ce8ffLY1SxQpSlfEO0BHJrQzYY8KeofXw2r//dZdCbfTckleXqIBrwzZyAXpLm6cyJ+iAx/lnWa6rBE4EpEn4iXaVxmxg9r6n3nqTRuT3+GxtzxMp5EE1P1558frZjG/0KsTZVuSRswRRg+XIbZ4tDW6F4BvI2k2UCun+CvwYTniILHbHH0yKyFzDwhh/spA9VRER8wLvPTdRy/Q6IRsaiXZgCm5ZHimjUOXAfVP7eRjaZ52/khly/wKpuSzKIlIq7wKaHwJZw70N0TkctbkW4P4//U8ec69AJYliphfXwObWrFqMWKcGQKFlTTQzy2XyOACODsN8HM7fjFjqgyM67qDP2vHNu80EL1Jom6mODZxUb7Q1sC/4iQq9Xh1+KyUI3UHzRKVy29twRToXmFK6Jmhubf+S4DT+UYrWpyBtZnZn2lpp1AQEqcUlihaanWcxJOlpKqY3a4A0VUem5WiSw+Sn9Nu4eljX/lOo3EoIVtIgcanWAX1OEV82+4Yz3QDzqztCaMtuqdjOtp/EuUQpY3pmuWi7wmEqiB/LDkdojLyiSeaEj5Y45VNypE52eAI/ocZEvX7dT98LHixugUYaRxFfN1r7CpeDKAEK6voQDO0s2MvtEYvqIvpkPrAtd1Gy7vE19tfXMMf5c2ri91MGfHKk8pBQ5FpZlwDmXxF2jFWdxVfIQTAr/6zBzGrHVeyGArw/qxCv0XI9htqPB22i/H1cUyZy4dg0Nmbpq26X6sP4wdxVoOnwOCD7yakpK5DDfhNsCXJ+6gnLrCBL1MJqSveEFzRaEqz73cjz19bYdvjJPMXgLPuplXruTHUWwzGkU2wn4jfdI4ZMTSod7HpbXAsHzhQfR12nSeGteTh7UcUWM1M25fTPiqnvXTMjbt73mccFDTNZGFQ9pfLeMPKDDqxzrBqrZvE9vHaFJ+VdGLBwT5KeORapNJVXGCaYF31Ue0424gIr6fcTvXFcL3KMZczbs4sCMaZBGBlV4GmiU4o9tI2TXSnj0SRk1LQ3nbbbJ9WG+U52bORnHg6AOAFtIKKv6HO9PWDHg0rHdo6YZadcaa84PMOBN/1vcQGL9GGXtp4DZ3nu5GAEqsGPmbZwH6Zhrt2uUX923QT+roZRTJ1vjH2KXfLTPTH0ACPdsZqI8U2BR0uh+ZTx6WHvXMDDQVRA4+YZoL21v2W8YiPB8aJ2ri1mocu3UmK/lp509lV4iQgnCKHejdL3zGsGImg/osztMK0a9TdM5AQ3MLEenxqsMxkCkp+/dpJFKXTMc2IqrE9/P/Tm9+RMIAicdMT1tayKE790NVVCXuub5fpThPH2CJBmfYx+oZPlP1HmkQcT8S0tmx/9rd/p36eCG5oV/huIf7Jw22aVEtnmnoZxPF/vaEJafqFlnCZik/+Q+ZAMXgs0SMJuEWEb+E9JBhl4ydUCTeKJInRai0nNK+6Y4cwgvnV1QjUUDXWsM5TXBaAw3FlD3XizgOKYAwAP7Ah2c1MK6aD2ouO0F9ipT4AaBBO5Wbnwb0HclBWMxq7/J+Nh1b5k3UqEA1eoAjE6reso/xg9W64v0N52ga/P2+yCDCyhpayNmPjUEYuM8PhGnERoFVAsgT4pBo8WNSUf+OECspW53LYWSlijaa/abm8n8wy5MtB2ZGWLbcFDvEsf3l7sw/YLyp19ScELRbCKJZigsbWOukwfgRt8iR7VvIauFaJWWpeh8wl1+tIj7Rs/Qx8TU8GXlNjlYKTgFNjCWloT/iAfkDUkcUV7UJi8xFfLe/2ppulwfIYXBDgifHsumK9KIq8cOSr7VpSNqxrEDVo0PS3okh53duyrR6j3sOb0foFDB+rnFrDhWdixt+h5IJUJF9Dm5ZEDLWA1zSUwCnkwnPqohHq/0h/ZgfSPCgenft3nXgF5ZX5tOTE2DE/um8/zAFmtkpuAGRpE9hkwv05zeNRqlpB8AwMEVrJoi1iKkqkLcYfGwQ5BbhczNHYrUrdaqM8dZuMpfIFU6d4mSPXHLNxUTutZtkdZG+cAJvikoy99OeS9/HXtShf4i2AGwTbdWsiIjS5+F0pIxUSDqtndfYG8JHc7oyQd+JOQrOzOeZ4enGclfpSXpmeR90DvFzIERNWxXs5z+JpXwumPXctELf6LuV+mNRMZ4JkTItIx5JEs1j8qMy88ePBuTxjsM2POc8696y5aI4SG6S8yOgxBrJvugNAVR7g39lOqPStSHE2jhJXT4LMa1S/L5h8crrVZC7vjKvMwlOxpKLpXaafxwCwbgl60wQjLOchP1qzU/Gp8o2CbHUhWuyzjaZHcmiryJ/wRKQ6M0YhTViEHV1RFPpHX5Rkg1gdS12lfphGgFQ5Yk0Uh2Qg+xDd7SKHJJ7nsVnQAG4GSJ/ExMqe0ZBQTLD5xJgdnCbyF9iKuDH5gtihQkda9R20tIH8WzMONCtI0rSudxdU5+ExQsjizQT/8epdMezWgnF711Y+ZCoy05X8lvjcStro+loDBtBzM6B8T1Plpv+sOEwlmqpmcMYzFsPqSicnOky0dkCyx4yp9CadWT3z/wqzSgi0NF1MXi7tUw1xi4ewS06Fxo+YHlDVqAnjbncXmUAQq1Cpvk4iCDuV4PB9EBO47wKl+1kvWp3CO9g4S6xikv6JzJ0TfIoIW/uPHGCFZyuNfBYNez5VctJ7M/m0yuMxZV3fXzhfYaE+CbxyM38IQBZpRKgJefeAJ9FTsCqCR8/sjr+idFZMgYXh/h/QrYFnbK3rBcYQuAVCy39MCDXurCjkQvWFwXNjj/8TZbt+Fbpo7OvE8Pxh478SaePMoiiY8jCMwc0LKk/D0MStuctRmekCG01G8DWJRpt1fX+uIHU02THpNzqWtKrMS8p7B8nTufuzdMfaeHqjGvcAI1eT5ml+rwj42SKz2Jw8A9bBqZfWBfpkBPJ0vfE4UtEVi7dAn5IgKLZBkS1TsNsX8pbUq1ks7ilP/wYr458BP64RMwo7rFn1/R+m8ttBpFfPvR7elZtf5gqQ9yeORn2CJO0/TRG7rtfIN8ZkOzG1f0kMXLgoyBru2dXpV95HTA/Ri6jYWqlptWVjtVFGazHUDxc5Sx8VHCLnT9HL8iJu9o7eFelu1NBms8NWlultaAOMvHVsLZou/31C4Uf+iaZys2hD/vnOLLur6A8IXLttFxssIKdOwxsFgxNR8PwVSivme2OTiY+LnAypop1cjwvy30SLPp7qdRXn/HEHCIZ5bJISL+GUFhqzibhMaKYzrVrCEWSAM5a2fLwmu4kPEmjWfKmFqPIcLTg3M0KANoUGooF00hiGmXmAFejygXj3Bcx8y7ICsqgCQWSKtSf7N/WJN706YkkrLujPfR4GKEJ9ekBPtQRCU+FHeUwlyYTm48TNisU6J/19hQJ3yqLr3/Px3atMVAmTA9o0ddLUCHcDUF9DiwyAx3UjFvrUPrzHCf5SH9/pa8AUli1xM74QxP1OMg7nqSy1maK8MevU3dbgQRV6vH1tsUiEHId4UN3ob5h1HEWr24z+8foc5Bg5NZCp6tVUFAq+wyLNqLPNKDjhUxZwTtswlYt3o+ePetRqu3dz0QvudIw/IvbLXvsN+cqVcATe/nCX6HCJw/k3S1vZX3OkI3G2sT65FKJB0n1XyvBJ/DPI9Qo7lMXOWB93xRDYv3LyhYAliNU1mMMEdRRzz5Iy35IU8gMJUFWOIaAsy/ZWSBTYBBiV27sZDpSkubaJWAV1Q+SyoRiRUUyhy5CaKojk3FDZ8K9vhF5d0SdSUBTsPtHwfDPLPCNVsXMD8qD8r2LX/SkGSond0pZ81x7wUUlsbjVqKxGXjvjMVIYZJLRyx9une3RCND5QiYxkXRpFgkOV0L8oGD9x066dcUtZd8NTeKf6QFRdHsniq8/iMln0BMau84MJJ8lbS3F3p86SxHWd2yuzs4yJjZC+IrD26gI+q0bSEtXaB4zwxEfyCJHYh+Ym0aiOG8WtAOYJuiKQO4gThar2WfxTsRwfp5hazz4IaAMwbHs1P+VHcoWDb/hunenjZlA4XhKc/19XYDlfuGWW5fnhyrH8hzU76BpnygAr8UjbDGCfTolWLNHHowr82TjCwnfOn1gnAG0KgUwGvCuEK56TtC1Czuw9cPaJ2wedtrMQryTfLECK1HLSfQg2MCYhIjut6ifL+yxDq3JC2VX5G9qZbjyG6pDfpEfcrW6kFnULiq02oFWPd7ELsVH2L1A7JMbslteXuZjDOqliDOuVNb3zm9ghL6Uqf7PVjwE+Z1Nw9Xb8bvAhlVjprjN1Lg9uUQS8tVBIgBs6bxUpWIyaCP58C9LyBWZQhENAC/R325ArB0iKJGWtofmk8KDc5uOgrqZPRzzCZEKsEfxsntG5YjKOf8wGyhasFDramtBGq0lnPtC+bLgGwhIDA6CS/UGde+wHN4x+d8/auWvHwAw4jGOZZgfsTtLa1UgUzO2q645oIBsHsQ0ODuySYJnDNmZ+ifTfsjXFw8i2F/HwokeQN8Bo7TeKUI/HuC6xRx7VGTemTJ61n4x4+FeKycyv1fkeqgmrxQUsaMhO3ace4+rDVA1CsIfOOgB/I9lUmSvNVefbwILxGI47KwOwZHj4vyp90/pkqItACXkwnWfM0GdlqPib5kn5R33q/DcutX8aeZN1ai38tZOwbSbbVyuaL5C6C/VeFYQXDeBCcxLPjTgkh/nYncswrcpKYQhJibEPzRRGQuJZ0s31MY4qvWpB04DstaIrs5yUFQz81IFIc0H2ehvz+YhvwZi0vAbYZ5FaOYP+7zPnUGC9MAhxivxQRolzAX+iFAvkuSfSdaCyJasI0POXTHloXo0MlksVZx8TiKJVak33ei2gBfh5FJDFmqgQ2PzYtvyu7xxyeSV0bZYnMqC1AOBauUEWlSj6SLB43Yc0ZudfSXqbEZZalgOdLLAjVtCB1b2k/fjniaor4gUyigjlSA5NOwyulLlakEMPiCau1fqB4cU6teRVTkIkQmkOg2/wKXYkBauHdyPmYD0iOpcExc4Q1VERapPXwVE7+0jzMwQUmJZgG0E5vXd/88h1Jqissvi3eXfT46q5kg73gpx0fnWKxbp+kDjPFSLy9lUwt2A9kyt9jDR10K87SWVUsoGfcBML5NoqaOmwfcsiTZZpTQXTSZu9c3GQ25hoZinqjebDcuEikKYZ5tEBWMTUdNiZseKtwQGmKuH9Jg8WNBEyOX0Zb7NIzGQuyJucyYvQDHYr1Uxx3NVeg35lUrYCSkTe/4I8w58CWaf+j2t8za1k8oSaK9EQo+yTNTPvIYBQDT7tF3rfQ3arqWjfh9c28Z43/jJeKRiFAXhPiM/AhWEMi4WoB0OrWZIZIkti3vLwkDXmAHlEmhQShpLf9V86XOcoc6IYnAw8kKvaZXK10KlJE69UHaOpzQKXdF8fbfo6dCjVufK07LhtG9VIDIgx9GTPh3t+NieVAE1Y9qEsI+ls1IX+P6lXEdkixxfhtM5eUewX6U4bSHw87h9CJWV3Q1Omzk/b5AhVP9mYJbnLod8D1DEfOy9YSUFyZVpF2xglsaLGX477+jxr9pKJsnUNvhPUa2TiAkMHt1GGr9RrWWH+vaD4Eey4AhnuterNsAv6lyLh/QvvtrYPQMujB6UWHIhC6XwXIk+qBI9wm1JIzzG/3q5oe1+BsSSAQgKSBrqggOhm3pr9GuHlo+YznMqnklrcy6G0KWzfARdn4znFuuzbeganqhtQf/o47ha638NQciww7WeTXNSBejtXY2efHwn3ZjvmKNQ+Pa2sGyvCppCdhEgegWwkyvmpD4Vw7NpgQdYaCoPTdoXXgyewXDQ1pQaVILvEdlpgzcXZZV/Yjkx6qBwfhV8YAt+yitR5eU+YEQ9+ae+4yl4YytNIm0Rw8oy8FlyoyX1EAVc0iHflpG0gY5wqiiu5zFSoJ7DyXxGwBSzGueRd4d9r2xEWD39p3a67vzCm27rHBOerdEclz6gKJ7JiJjS7M3Bq41G9WX78m/J2OQWAOiJ9Och7FB9Yren/WI8CxlxG6vnQfkMNTMHWm00pPQ1WCDtKb70eIzh7B3Jshl/7lthWsjTLi6ahf3g2C6/R1SVcvLlgS4DhnG+EIaTzahNLZx8uPX5rLIYK7Wq4UUG90u56CnF3/Nl4WpIcgPxJCgUofhHpWlnT/lyrTGi1ZBAY49bOJW325fiNtQS5D85tRjfjy9LIGxU+oJ0ajhWhh6m3+LeW8CIyPHKJPI6wlwqZbsEJvSuytb9vZNvIPgJ9BgWNNTYKzVfUCDlOJ2FaVLn4jQoJecPYuy+M3odJFo+dA+DdqwFYJ3FCCpFNWJ5m91dkNNjEWfnAx5AGQuzyxrUpiaVb1xvvg06puxe44NgtRGmU/dIrnZuG5/tN1iglAKTUBuRwrmrJxpsT2sfmpGJvjWZTtGovetog+Pebk5Ls6RGKmO+s5enQnoDgjkYR8e0mAMR+E2R/BCJMtTqc3ZG6CSwisFfYk9ztNvREU5EEiYijRacOACAMlgxX7xM/4sos5qbOrUDfzFjjWsDXTS3TC86MsjGS950qdk+USYU1T62Ft6lvHEtVA5CyY5KZyDhF3Yzx1nT+2ncZlJtFLTQalVJUSZ9XeylLsZmsssjcvTOPQYSqvgeAO4T9+lbA6p3yrX2IHKahOPh77s88jLYxl+qA58ByB+9vwsYFXVgcvlztBRXzm2Sk6RmlpVg7P229imoNzNOvJQPno7dECtEyO0eRsYGPab6FBEQri+vwhHCdXsKYoAVqQjWaFTwxoxrsC1apO6VMV3tT0NkfG/fQpMg0Saj1kSk1cZMgupI74f1sP6IMpi2e2pqZAIrYsS4zUJCsCnk1kCIPD3GryYSl6cGeRiaEhP/rBCfNHaL9/iWiRsK2p8I5djLSzn3PMcbZflXwKbinUi0kp7IA35p+/wMmg3dTzolkiNQJBY1ESlZUsbGB6VyQ3etq+t1pyJ5gLEQmDVwrIMT/t/z7RdkVxaJmAHhVCPSYtVQieh1NgwHmfibDl0D4Vu4ooBjleBRjxKab2KE2vjVc+BSXt/wiy3eQpLQvLHY0rwGprnwCGxGDUcMJJ9ay5dCR80CWtEqSgwmoM+dRYjRUSeIoeLjC+1OCRhbmYHGbBNuzBUL7rRaqPb57yyR5XICCclvKB/qMwSrWiZ3IbPwKbCEBNINxh1n3aOhmahM55y/WLBo8eFSYe5M3r7omSk3X1r1070TVl4m/nb19q/cIuTV8SmTC+0Q4KzeT80VbsgbFcJxYRVXlZmY2UaxFxlekDgN9JCF9uMWCr2EKfVIV+UssOneo/3HdraF5prjgxXJD8U9VAVk5m5DbYefAu634BxEVvyjIjXIvl/RfmpjHa8ETeeVzoITbfJ2uV/b2I9lOrc8i7IALySJHOyc+HhS7Ynm4wJWzcJ+k6qs8jKCHpL8YQc7qkKJS4oTktmttDzLkdX4mSRZU+CUAcy8RZbHy//cNPFWjX5/j5PxayFwDk3+/hZNIhVTi0qb2xsDm5pC1w9VMeXjhCB+kNbcQSdyTDNpSJZqi+FTcAgwIWtoomO+/c8ACoxkmtowviChUB++ZEUx0i1p36m7e4hSdNgM/ZU+UUG2EK+xfV+3lpdemRGCBnFT3767XGALpKWf2ZzXVEAW02GyJknhinad7y6PUKnC7cHjZpkfOSLyMxvFTkpsqEHNqJgjg6wPRRiD+knff1/RGVS9ieddhi4cm+wXaG2TuiYqelA4U1yOLZCSogTAunvw3jqSxhkTUoBJZwFeU9ip8nsV1qejrCrAWL/QYfkJ+N9c56sQONOKne0cGGcH9oqTBkVjtSrOGLM6qBL8p1O2oneDwIre38NFrQV9oHpy5UDINjRxfTem1Ap9R+i4S+MuRtoVAhA97EAvuaaC37R9409uhWYslQi3AFEX23L39522HkB+qSaNAc+JukKKnBymNP/Gvozl53SiB7R+FvAd1I9advbRiuVO/IsYjPBfb1g4MuTTgJVRA9sduYdF6CL3wSSxQDLZtBrupluYgJRFebgaWUcmg9YDIlAzvuLR2YgmSsppxl6peqtEPjcw8mNKKICztWUlCIaqCT+mwb1EdK9P7M+xrDgkIfFTG4Rut+Pbh6BCHjQv5QrdTXfYQZaA5yhBSNy99mrVa1I6PT0DagdOZ+MjLe5Dxnnv9uEr+YGbT+WD/BqLiW/yHvh6K+4EPIu1/4RUrdq35J/NifZGrmCA/N+VCUwjnsBGng1fx0XDTxuENcVxH+X7TP0d3/ftGvpf3vi7pt6x6NOiBKqF02f4q9uDB74ROqAq87dmZfXQpiNNnJXyDg67Dj0pkSsOzwJmz7UVdvEvnV8ZqWp6eDkKeU9pxNi3eYvSuzhNBAPCIk/tKWpjOfHpCrVLoYPKbCrsDVFPiI+rNABUzDV7wFrDr2eeooMuowsvzgkkiUyBvqXoaW6xWXH3hEO07zXw7ER3yBXJhISVxksuCB4AiJfVBFr4VrPLxQQwK4lm7qVnzDWc/FIUEGOjP+FLfGrrM6QoLYwyJw5HvGqdG7whNGTowLvpXGFkYEnxnr+mAk7lxtAuH6jdm/cyPK9n1tOJuKFtGg7uuZdw7WLjSp5m4MafjkhgKF5Cvj6VENQzgcNDOtVi9c9uqvzvBJqp9GP3ekJgPItfARND/R7CGU71hEARWbSjiMDvvYGPi6sOI07w3qXME0DybRdaukXjYvVHFyv9Q4cwN7f6RzaGY7IxqyUSBP+Fu5ZoDvJ6nVGrJNbjFgZcAcp9a/an3v6TvtHpJcy5gh6yqvXTZDRxgUMvJSl7YjmytdbFxNbAzc6jjKTs+6kS40ZrfRwbk=
Variant 1
DifficultyLevel
563
Question
Jacko cuts a square out of a rectangular piece of paper, as shown below.
The square Jacko cut out has a side length of 5 cm.
Which of these expressions gives the area of Jacko's piece of paper after cutting out the square?
Worked Solution
|
|
Area |
= Area of larger rectangle − Area of square |
|
= (24 × 15) − (5 × 5) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jacko cuts a square out of a rectangular piece of paper, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAP-D4-NC13_v1.svg 310 indent3 vpad
The square Jacko cut out has a side length of 5 cm.
Which of these expressions gives the area of Jacko's piece of paper after cutting out the square?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of larger rectangle $-$ Area of square |
| |= {{{correctAnswer}}}|
|
correctAnswer | (24 $\times$ 15) $-$ (5 $\times$ 5) |
Answers
Is Correct? | Answer |
x | (10 × 19) + (5 × 5) |
x | (24 + 15) − (5 × 5) |
x | (24 + 15) + (5 × 5) |
✓ | (24 × 15) − (5 × 5) |
U2FsdGVkX1963u5BDVebKNwgGA1GG5f7U4cRJdBkFzuLrEZYWGDZfnfGPbbxUlIJiJLd/8Jn5eTMNWHpnR1ItPj9hVGRYkrL7zK/rd9DEg6yMOKYX2/bnMIEIkXirKdHB0KjGilEmmtqpifvNN51tiq60ncBhvqvh6gT/zuGtZRyHZqLW9WVOGKE8ouZ1TOOrcWFum5Zdgoqu6KGLk4QIGIkY5Bp9vaF03EEQyv18wdTwTLFKkoRa78pgYvm0jrltA/kRA/kRTvamkHZbgNuCtOSHnFhanjdaRLbMa95x4E8tbaV6vZNGsBYiDEwt8odIugaC6ymRCwcjDZN5AjQPhiXf8DycKATQaxSB0C9TKEeG7Dz1NlJyv7Iqagfbq6iiPP1myDNd7Jc/f/wGjAgwFYA1HyIgmfihJh6OQpuwPwSR1lprwkKuI4NLTbjO6Zikklzgzz0RWxiz2lIUZibIngcXVAgdEJk1bBG8gsS4WYbsfM6ryDLNRVnJ9rMUrj2qX7qw0tu/dWBD3gJQRm19tXOIwwtA+bdT4IIZrW+oy2DbNNyB3/rIL9EoHsz78cFrcCK39irORpvpKc/ZSLWELv4mKQA4Iz5uufrh5Aual4Igz6ufDKnndAC3EMYC9deF+FNwovhB5EQNyb2oIJvJmHXUBlHy5LlcBU6XKuM3byYQ7apAh60OVckBgcUxGorIy7LYcFQCEPPpntf/n/LWaxa5P7NFj2ifxrrVip/ZwjDncSlOwbStXfRNe/8fW/f+6TTJ8CUKn8stP6Xr0Fb4XlxYHxARfPz6mJ7J377/KTPvTj2CtVt12zxIqXRm+qhEsmL0TXn5egJDk6FDXUc7f3JkLAOlPApZuW7zXErb44olWzdt2Peda3S2oTpfRXGwtRSPl+XhzZn0erOyjTRwUleDP2PRejeCyFSXJ+7a3jcBRg+a5crYebPtHoZRsWKZ118Y+S/PQoMXTF+Qiq1zsX4YiTIAagjHSYtNUIu0dMIBRs4XWCpray63wkdVwJiZPhkhXUuEs59aIiMSvCBXe54zLmTwjR+rrAA9ykc+3qyG16c3/t0Ld9ZrDVHEEcFENd08myVrt8ZljVwhM78ihVEe87UVk/vgaLVywVtKIAXtaZlHHenNFc3rf2F7NgUcLDEZVZSGM7zx06pHs4IOuvPDpJ9jlH12iZaJtPzzfrMJTmlvdqHY6N6Ff+LQYj7xC9IObA91oR0jA+00M0PdcdOvoE1rK3XlfVkuO/r9Mlq/2xqxMDCK3k7BQjCbIE+qKTF35gZASsJ41Kzme5gIPcDuYZoHoDYH1uzL9Vpuy9kCU8mm6WxsWxzmoGnOE80KUymGcC5KRnwhzvKdGm4J5QBKRwP/Pk5i0WRuxriGCFRz+2G+nDIy4HOiaarWUmIFaEEz/pCnWk3DqOOyrFfHHaTIpDwRt6GrjNF3lnqOdszBsbwq7ZLy7S1vQoXxGSPuD+cWvIuJFHydNwdJpBAeBevq6hC9+RL591+BatJr3vw8UVaYXjxKcohPiseRWsnpaP8NX/GpkfvRShK2Wr2SrxdB9wPmRuncCbMhOEgODMC8vK3m2AUfZKp1grBd+kOXmCJxeSWpdn0LJzroczZRZUG/MTDZEPjvhKpuYyZyterYbZ34l62tzAaiZkVELJjqLHtm+Cc2lyLP2DgR2aRcEnl5VCGdRiYj2p06odpkqt68vWhTqMm4QuScLmoGYyo6WK2XFEEanoMLdp1VyHBsZpN48XGcVYN0Zw9PUHjnG8womfgm1sn7d+g+0zhaL79WTRzu8QS2t2kO2W5QHCd8SzEGDqxawKJyzQAnPmZoif83mH1r3h8iWwvNhD1h/KXH6M0opgUOLYQDWHB5gTNXXgyvW6U6xn7NZsooSpuhfcpr5zz6FdFp2zWiZZu0qNJtmwgX75xQnZdjn8AUvj8FgBFe250YBGG1jgRKcJejqXBHhSxNwdAsJbdcKJu4wk5siRL10JpIjKds5tYBnC3ccyBmK1BQvbIZZx0p7s8a12RhIYRDo6q3rTo/sKNr1jsuRFWRt8tyIp5PedNcg/4ls0Ep2EgHb3QqQ545bksbFviLGEI0+DiDYQecqxq2hzijavs1K7JO41XEwRnH91wDkWeXa4grEsfVhqM3ExC+pjBvBWtl6Vi7RH6ZGfwEDCf/y5CVYPqmxGgNBDvN07jjo7q0Kk7myRmBDTX9lKE4WgY0Uqis7HvQs6W+mPnFbRMhnfc8lhc09bGPAahI6+MdQDtuzLifT1up1oAV9Yk6HkJpNVjWknKyqGVOcchdtJUUC0eRADZhBFuLETgU1VLGCu3pI9iSpa5UBxjG/a0n7fpO5K/+BTeOLAHrgGZ7vgnWuHo1EgtXjRujzD3BPp2HiygSI5tk9LOEHHTSQ+RKsMu4D0a+lVmgCqQ2KuarpswqYcvSGZ67mmqF6s8i4ekuDUscU1a2KqMpAMAaFMPcP6QVNkWpYEsmsc6MUWK6TGh1KjSXztovFML4p/OJk71uWbfPIDMN+NiL2TE4BUxVCcDamoYuqB+w+qSoJ6oXUUwA7qD0v5Ysn5L4x+ziPMJa5CHzc7EmSQgb5lamM+2Q/LabRhQLyThnrAS+mjiMIr6E5cCI/9cQV9cVWMCOPx/NPmyaP5qp/EkmqZe4FsLySNET3TLr8PTEwZk2kZcqig29Gvnr42M+rSfZYIQAllETsCcV7X9KS0YmDY13M9wVEVHkA498xzh9Fn8Y5IuMPutS28qltzax/f2cm3fHb65gxDy4jRib04xCm3az+fKSq5ia4X0Ha4uo4J9qQijrWSYaQqOhq/6JuZu+0GnvLXGYpnEAqR+tmgo2YyqvmsNDpv6ggOuKA5/hR0c2OLAxXXGkkBnguJ2gDTfPuBr21bh9owVtOKMm+ybuy2b9LtWXwhKobdZbKS3VowWG/65LhsL7aRmPilkbI3ETJojf2F9cPHPDayH1EpiGknVJ147J5eqouJ4CR40ffWFaOG9dyUjpQI/OBjmweYlmmQYy005nLSAqGHavuXnPABrUR6DQV9d/2N/1b1MonhVM+br7DeHg2VtXikRWoib7+kkkvZYWfHHxfzsgieCXJ6J6RU/cKRNxeF9WhjwIHhfWkRJOtovJjiBYsAwmgeHY4b3ZNRA0deDhnQ3aW1NInYeVG4sVY1/ejERoQjcyfBg3FeOnFp9ejAUXW/ZDTPxkGSgcfJ9bdMdifAqLMxGtUn7JTy1wq5vnOUBONfsg3diP7cs1MUigOa6peud/5MdpsIoSVqhe30uylkxk88uww2/lE6DaXmtwJYiAcu+RQfpYNU2j41CHh4R8uG9ilSshBm27p1/OLhPpgeBIt+ptC1ZZgeqdDMpjXSA/4B1CBWAJRV0tNhU4pbdS34QxHGs7FiU3ZJwOD2MDVGBpVj2J5LesuK85pljHVmfD6V2B+L/iAGeyJt7nGwv+VM+Zj4RRzl2nhzHWxqW5tlQJm0ZivVR/YUtsoMTBqYI5/5oK30RhkUAwDmHyxj56j/ajbcRg6BKr5HpXVED9zx4TS4oQ2kXSmQL9uHy9sI8+kze1vUN2K9kvGfaHu50A/RmG+PWOJGV63yxZl9682ejpnw83o9GvirsAPZK0IRB/7qM+QGvXuJHzSISqGVO1PeFo4NAfLvq65YYmVIENZcui3VFCg1Vo8dTyEOB6krn67G5lyQQqPO9uQcDor29iESZ3BSvNjf+4BoR4ENCwgfT7RpUXErVx/xi7LHNNoWwoEfLXPd0k7wggGsBja3RZ7tTqj+dYIR+Dx7opx+q8qwKtrSHUuGqmBnydRYeoqUA9gHLr92orso2OrHXrQQSvX/feKYk7P5IBtGG6ouNVIL0OmS7KZs0DqulXk3pw21Z9fg9UDIlI4tj6agCqrsb1NYJ/LjJSMOK2SO3ErRvOpnSRoAlHj88imUxABC4Jfvib3Zh0ocVTfv8r05jFJ0VYVsVaG9gjOuvRQDTfvA/R3QcHzEp6Joh2j2pq8TMmdA4qCpmM4xkerlqlhYl/ovF81oJI51ioYa4KbTL4RnBNBYsQwT0CR6VNDXdnsCfCB215+bZDiIOJgefujrdxBekpJ5fajAWI8sr55nwXDAd/0paMzozofiNOzU3yZje0Uv3GSCQrKNkCpcv6dkQTbKw5efAoBIFndyGvK3vEdlODswcgBWZQntKjh2vFp4ckzH1BoGxKeB4zLgU1jNTKcHREyntQuH78VAFvvgiTks6H6wBTDHq6axwM97zvDa1/BQ9G6eER1374rJoJi6OWRUcUdFmt/Q2ZpST69ixu+66YTpHhq70VBOXYZmWgEgzJ03e+ar/2lV2RuamxggZZaWvGOYb/aBzfJTZdMTseC0j+KraF4gBgRJgSNboojbbvWqKwJgh1ZcJHHt9DsyJdPkCeSUD+2wkXb5tRcm9qA9E6woUySKoJYo1UDFpaMpIxjwgiSug3bXthavqJdd3phnTXRo6ehJyqqZ/wuwypQENrA1Qi4itcNWHsBWdXVxL7iiOrk8LWSB3oKK7AP514MFSMkx1ivdSJgz4ZVEwsmB/HNZNEjWkpjP8PBUCB0KKVHvC9pOxrqriX99hds1c1R/Fu9UKuHIu/58e0Zvi1uTVa8zZcw1hiZrDj5+15gmzXsH7wUENnamwas1U79QSjQf4Sle52mC1qctsWsIt/A0wif98nijxtC/fOWvxBnCFkzyzsulCQlu0JD01e7oJjY0+qlJEfjhQSaENaKkiXhueKBqqgX7jV8c6tm8jXMsTKj9LcTmsYmYQzn98YD2iHM9FAfQls1yqh8fjTglKyINhJK6jrCrJeWuo+Na8Vkt2GLVnYyLaELzb8eyozd7RszWAu/K3XcMeO089pxtkUyftZ6YSdKpakZ9y68xJ+3BT7hpJUGrNbU/yS9kUHqQGzj2jJioGZNXkDLnMWdeTf5Pj3YUEq0VHUjKZWCUf+uc0UaujqN6iHnk7/Ixvj7RoZ2DdOyco/EQ+8kRCpgwyRcnprYK4qit5uTwd6vrAI1fmusFjLAwzmC78Ydx0mWDRhS9V1+kA1hcm5T/4I+SSKg8Ira39M2vMRbGrmGQgx6FjqCa64HHyQ2kC4eTYMRpbej3PVm+dye4BUSYhCJirCMJwsEzyb6JftkDwOkU6tJ/oMQROWzAX0SpqlT4buYW6wTSwPBDohjLoysnHYcM+Ymq8MB56xi9KAC3JyvbLus0Vvsfh0/+9UKK4KLnMWLXqQ+vf2y5feA3MZi4Nps4ykDZ686sOXf7bOZzeJYmsStS3EfrYBBiEqIZrfoq3z+yzKQCK4SUt5qEvQ7Pw/bfflj0SXJVCFBBsgWpHDCtnGBtVZvK+AIyewxWRQHThkMPmzVWSZK97FwhL/GRIcv2hmxy9ALCew7bTKeZ6k3GG/AEq/QsylOPoj7NioFGbYwLC4lTXSc/8+7CsvGnaIb36OaWX6mYX+LzSfboizSJXejd25UFqnfarHDZVKb9i2oVhs+h3IBfRPgsVKHXyki1j/6SYSdajUYKk39dTTMjVcDl66k1yJWkM12SlrHlvhaQnjdSqjCPPcPDUpCeiZy3J1wnpF/rrPu60axGbPmx1faQemrGzbcB6Nb1Od5Nns51zVfTjC0Wldt9zrcNhcYZPCEtxl4516DfJUoqK6iNHvTBL3FxO7CRjQDv+TQZyWez3SS6e5Mny8Gx0ALjNKmFN+jtjgNa+D0AZSsDlGQl6/j/W8k8bKsw7TuGUztoUzA1Pbn0csUygtlDxjXAzB5LaQB5RcKjHEuVsMaqOhNuod0rU1bQwAcGQbtnl6vdfbGDj2DJ2/6CrjWBN7hZslwMPX+e89/m0YEWpjBGVkt2sEdrHpjZpjpk84CbnqPpP43GaCvdHmLmyqInlXej69p2MKbyeWU0SuM5NMHl8hk9rM5nuF6WQLXRg24EjJbQv+VfmI6z4+TPFoAsSck+YYyXt6ib94QsISuWK539JA0LTMLeTiLJPhHJLUoBks2I7awwcbM1+EhjP/zAqyMZZ6AJJEGPZzLG3AM6p0LLLZ7OJB9U7zCws36+xA8jfyz10C91apb+NPKG75rl+hbwAKO6zK2FKTNrghoTrLNdGyLZWql3hFw9T0z2NGYnDgQMgQHK6VbX3faRlGlGz1xwKY8YhOvVaJRHS7LB+JUx3GqClB9Yyfb+icFFE7a8G7q3vrv0fDWUcM9FZb0/b0EJslLQ49JOU5ILTCyyFlEjrO66HR3uhr7HgCoHFxvkXG5QUOA360M7X7AvikbszwchoQX4RZ2JkJQuSK6kXuVdVLOMZ56F5avus8kSf8MI3TN8ETdIcmVtToNCjf1qi+tkvWzMVZcvazpZ2VkTfeKB6JwsjNTrm78Lx6EtQ85mqynHVIleDPf0X5wbh9A6cmQvI7H0eFxDQV4ZhuI/RmEL4rLwLSCE3Km87/TWDjWmMsXXfq8llnvMEkmoe/Bszve+yJZYHH1UmTdlCtEVcX017soxq9xc9ipSN7+QFHu/C4cjxAUjR4sdcbQhhR7EtAAJNHEx+6aGpNRUUrg2C6Zl658APqlUV7JVIIip4dYemgz+2f7GnemgnYPwpcf+jSLdJp7RAzrRdCg7ZSJqm/vZFvbxFBv5RoZv6mFAqDVD81hTrHKc5ApHqcqQj6fXrxdZ0eaKXAQlJuSvzVMzyE/t61lD0HzMwd2wCrU2utrL53rSbPNTFGUuLyD61+wG9ll049rJ8G6oSw8knE8ckFXDOC8KNc89STrWD2gMjkdo1GjyH5Ojf2chP4Bv30dwQbkHL4ofd13QF9hdQnqg8N6dibOIalHpRVJpsccG7nkck8ZAuDOqUQZYS6TuztcRrsAYTOVbTsVerac94vTaEmwwp33wkvMSaKoVF8APgAqaX4r4rQDkSFn/Wbuqnvk/dRSM9b817EI+UOPCoO41PKr7CLjQxJHf8MIdKCW7lj3zZAbFJdEE7x2I0kupsnxd2XmxHDdMQXtNonIcRXXvQNf1vY255mJ7aOWQojGtlRb/nbwjHZeN+bT4Oda2mkf2II/MGhMPQLoCkcanGVwmnbuHhhdO72xA+VjtEZuNziC2GhwOaojX6V68lmSrbmgHBv2TNLM0/sJ/T5bf6qrELZIqeTl0GuJiV9nhfSjU2i6jufP6F7e2M/1HNR42avSZVZJJN+npbx0xYA1492KBLNXPkPVb3VOmAxyoWT3vyctwJEQwOuIauQ+zXjVE3cWmp5SpI7VlN/rW92xKA5Gc3doOsmV7AsNLSPbZZBMHEe+EP2foXNyXO5iDhIgsgWEPqWKzF65S2v2n/bzRj7FU/n8Ve+pYhAxsUxV+LtVCiPUKRL1V60yMzNchCahwwjxZ4yf6adCNb7vzpr/K0SYy2VoDDd/Nga4t2YJXxf1cFKO99KOYYarqhE8vePEBqQWTxyoJxwmzQR/F67Ih/Golr974+m9Wb9CgKtkdF9ub4VDtCkhY+sGIPkH0jnvy0pRTMdJpDV50x8K8y0kI1PV3xiU5Me0Oly4aUe/pWODu+K7EmaUvuMzp8FPDMNETYHBBvjXDJGk0kM91Go3hD/DoMs+WuXkgQ4sFgBHstqdP2Vsa7zgvT+2ZzJtCuUeWb7W+DylV56tLtbsfjkuyaBNtvQI5lw29GI3XGkaq5E0JDzjLGYCMWZoeNT3W0Ssa2MEB5selwPBaD0Au+EIyJQlHWtO0yMt031S1OZdJAAPiILqBWXkkUGOuT5pTJLA5IXX20f3asVl02pRiTpOjDb8xC3w609HHd3qAy7gVcORq0OL5RtCDN5V6W7roXBRwQgEtfJ7TAQTRfkZEvo2H6Frs4TBbGuWlbk4U6mQkyo5ExCnRixyQ5fd9TTgQYSc7yGe7JNzu7Qe1DKOWuqxuN8XD90fKf9es6GBrrNXW874v0gxRu6Qluafeq4Ch89q7shwa2d7PbqYyP2hF4M0ygPJysAQ1tPN5sgCpKlC+wzAItqmxnNOpPT26oNtzGi1rXOOSgD6WRntelQ1LEb3OlpSOPnGCMveiH8BwSGU9Of4LLknUOTJI5GytSW0DwgIWhNOPgdna9noLG0KUQrU9M1/uwEKY1UFMQ6MtYMFux9zTlU1ZJNWQrnyCkjF272mOROOBpDFHsltjW/weW0auMkl11lJj+oVxjazy8GC8Uh68gN0hP6Jbf364iXsEBl2AC+BsG9x97gU2jtpBexGqaoEwwXm08ry3f3gmdKZDtLObSIQbr3FdeRL2Kw/NLSV1K3dLnvf8ytPzduhCQVLX/MqDIyklnG+UoBDEkEfajKgK0rqIYpwtN/x5hxDzbhCI8v9KcwoL6lBeLTwah7Gl0NjhfOTOP4yEPVr2mqDAVRPmcqU76tmyI7hAqNaCrBGfB2ESS4C8FXozIvejuxz9w9nFEkEgs1ZnBSi9fcUqOxbjwYevRRC6706lj03OFbO3eiPAQOCI2Xc6ugh1A6bY09VsLIVMVJl4Yb3/On1KVkk6Nv6o87WLKLZrHLQ9A6zzzNjmQLiHL9CwU7zWR9M5WfC/ZhzBGyPX750xVJ1IxR8SAGWIwXlijMx+lXYLxGb0EZ9KQEfaUDmyMWziYVirV/zmMWiFiRAVBz6aV7awpN6c4Jj0lBI3ysoBGkbWFPrhV9dbl1ztDcOVB1Kmdu1rGdkyz6NSFoLs0IMF+rZpXFGBaFpyZFoWS6vEA4KYjgJnXOyIIFBiR5RWRcdfB/yp3fohYSFMQqlHR85IG83YcTv+Z09KtYwRusjBDj8aEcYFIT7KVheKzRG/2Xjix0vXihUMwrY9QOoxz8esFP8WdMtq5Zj25GFacBR9wEtd8o9NGGM28gdoN5A/nW4cqGQq77ETRWKkjfLfiF4sjvGae1VdLLuPJeyXDoHF/D568/krYmilvgpSVJyn3ts9v7KMvOAoq9mhWg1GtorOc+fNQBRavGwxfmLOfetkHtw4nKh73AQuOVIXCRGBzsoUpP8aFQBDnlB1jWC9ZpyX5CZ2WhH74mXIAAD8HhwUklturgibndUmOWc0fQKT2O6Hh802XUbAKS+NJvv+0w9hGVpKldW6CwEBSOT7DXJB7bqOnp4nb9lQN9WkUI/mvtnfAZ4acsbkz3TDCIKQtXcrshPhRHgvGO1VFxaofwJa40613+kXa4u8AZVBGTjuZ8IH8vjkrTHrsJfX5y3RkOrj9ne9ZTHr+n8GWmveY/FzVIi09T+kb59D3i1HPCtDWomr1WFKbnB7Tnu0Lpjdoo7fCJvecnMuQuV+Z5S4CyKoEJZfUZDe9SMNYUBsyO+YrPxqljAaEG+EXQozRD+5AMKLRzOS6M54A6lTpvaFyYt+v
Variant 2
DifficultyLevel
562
Question
Clint cuts a square out of a rectangular piece of paper, as shown below.
The square Clint cut out has a side length of 12 cm.
Which of these expressions gives the area of Clint's piece of paper after cutting out the square?
Worked Solution
|
|
Area |
= Area of larger rectangle − Area of square |
|
= (45 × 30) − (12 × 12) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clint cuts a square out of a rectangular piece of paper, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAP-D4-NC13_v2.svg 330 indent3 vpad
The square Clint cut out has a side length of 12 cm.
Which of these expressions gives the area of Clint's piece of paper after cutting out the square?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of larger rectangle $-$ Area of square |
| | = {{{correctAnswer}}} |
|
correctAnswer | (45 $\times$ 30) $-$ (12 $\times$ 12) |
Answers
Is Correct? | Answer |
x | (33 × 18) + (12 × 12) |
✓ | (45 × 30) − (12 × 12) |
x | (45 + 30) − (12 × 12) |
x | (45 + 30) + (12 × 12) |
U2FsdGVkX1/OC0xfTHxPFUsekGNWwzYyuIZzjS5kmhg58zyiZmQVe7APQwMxxbB0gAavRa+ONHiyhfU7UPZV1QLRQVp2VDwWpz6tQbaZtm6dfxWhWtCcA5GBtXw/YTlHLgcysls8eBfEpQAxmV8FDCSzW9uWrnOSbvKdwNSf4+i2SDkG+lgGgfqMKiWvG0+eM/7dmgeOxzSQtm2fIDDAYgN/x39ov8M+tC8HcO6LaanOEukzWL8J382lMUVgn3hjOP3XCn/D4jt8PnCrcdhr1Y8iwp37YqBDow01vZtN3+zFD+ma0LQH+2jsnTrPer2Fm87yTU2eQXovezoyAUZ4Ix5djeps+/6B2L8MmF4atO6eevQeUXMbv4RS5JgS1uxPnK6/t4JqnTHCzfQIaUgNar0wmP8BUSonPodkmSUyRKQQG6lEY2/ZvcwxOzBD7xSg/sLuYLkHzkjC3QvgWNTxS1T2MSW8H8VuMBeRzvFE4WuomxlKLahhWMAJZDZwce7ydtwky04wc5SeY/qAtUogy1xdctioMlv2ciVim1kgn+dlFYioHBOa1+jRPKp8g61ylL1p36OMnjshOga8zDz+RVEtvt5hpccdB414ILEBcbtjp60pPPdd/UWCJjYUd1flUAgISvhvDikH72q2tbqMT/d07a44Ds8BdYA0kMrezX3J7G3B/PCumTjxQPPsucY6DJyA2A5dVLmQeHWwaTYpCFhHb3rp9VdhoWIglbhwDussvbGJSeV8gmlatX+f9aCcO1axOABUJ9CRp+r0rAFIVMuZnUFLAruNPnUKwAPLNhoRH48wdfi+QwJdAuOLWSQu91bEw3HC2dQp+9M/bWvPuadB8hXZDh+GgESmMll/EFdvAQUIAB19dBe4L/qwDiL/MSKfrGL/g/NfG3sF0FABUJvt6Zm1zIIXZEVw7HVNO/xdKvwHrWSof1alJcqoLlyNimCTse9/B30348sThXpbSX3ZUve3Zz5gqqHAtxthfbiEprJ7J3QNs75+5T14XOPI7vSIpPk8+sV3LBE7n6Bs8bwbyw3A6vB51vbCeWSrcbvMtB2G8sQYlfLUeQaufMvLox7KFhLXhqz3ySdQ7y1JwLEHe9TAyr6hrQ7Hqnn7UKLmn9aVhJP0mM6/0Dold3HmKjgQo0uR00d8LlBkB5Uw8rayObtEneix6UFe/2fHEpZUm9stIiiFz1bcaazUgrybHHil6nH+4p0bQ02OONjVSb6qD1lgFPxSf9wsnT+ChJ3InFEtV4BHf3pDNgm4ek7ajn2nQnIMlseLYAd2A9b4aEWG9DHEGVCEESLW+b1RPeqKvR0ujEkvsDYnpVmf6Skh4M2gkcLPctEIhL3EXBq+APuGhfWyYNYK4oBrRHW/7AdDkCzkxvV9sFieIkJBTU10i8iXll5LiDO5vs1M9k1qfhETtbGOa4kLGdPXdv6L7mwv+dZ7KWWpAzHa+awRCCQ/MXLXRET2z0zLMXtO3VnGHWnni7Yi/B7uWWJxD6Bpe52Z9sFQdyXiCE5B8oP8FLOPvpdCWkegNZIwOrLj1FeDiOslCmZwVNMeMT3dOk2MGexzE4aCgxSwGn+6yE9NM82dtlkKAnGtUXY5BfHOoXstsV6/Jle05LSEzpdjJVF3PkWdFvziy2N73SkXMPsoUmqc8bcWi/L/yThgGLqkGNX6iYT6NgvE73hxBnX/4hMQmzfOnLuuqdTOnTf2t6DvwMZbNB9AIQd8DSpe5gwHB5KKLQoJuyR9b0o0Ams0qTn3dUvVI8PgNGvOlj4Vp4MDbOIqUz2EvEKlQTa7qXMga1i0+TfRFrbUSnQRg34r0oL6y0jC1C+sOfg+helQh1n5THycH3fKWMvHjEztmEgqnB53Xk3Jm5uEJ+CMKwWs1yfcwV9y19DRzLcWIJd+KMdlLPznAdO5i0JBx+TFlOrh/dlgT1zd4repm3wZoK6h3oQhKfXvEL9pbGqdyPokk7sy7m37EDsQ3aoZHB0ulcXjEGQdyg/oM4OUV9gDIASMj7ZZZ+yGpy1SFH0ADmkE0obiuoQlf+VEeCRbxcjeEB664xxpd8qobodbWmu/DHa7FQA/ltC75F9G0e3VOuSKRKdJa8OUIDiQ0DIAt/zbIKC9U4CtbHzFRwmjqRWwH5IlbSTQNgyve9tJwS9TAxDhfXuw8aVufTvrvkJBnrvr/pfaDw1HVm9nYZLMecCpY7+1Bo0zDf+tGMIGjOiUGY5QXZt2fQPRSjATFNl6Q6Y1nvuGoajpAh/xTredaPpSV+49SeSapK8hFoZxkKnSnsV9EayPFEWqGyTxrc3EyIO+NTGSZriy6maHwDWzrAMpReJaUQ0iaT+y4fNicW9V/49m5T9OkQM4ZyhLaJziJ0686hbGiAA74XZ/jHeVvT6YODz8fe9qs5PVPCWf7s/9ZuyHwIO8igVpOvbX7bUKc2eaoW28j888TNP1oCztPLVefMoJhV/PiLCIJHrWNHLl3HGbKeFfOcNtrDl2neN+3Mchyk+BMl0HfzoSpvYadh3FK3wlbxLsbKEmIRcgBwZGTqBbW7vh3yioOHMv7CtsrWEHIpVTrX+gWafc0a1zqUktAWT9JqVnM58C1E9DTX8SyAieqtggJ62jtMt7K1EukoDS1prlmIHZhAmVyBUfnTyNh+6W5/FmVCuSn9ybE6uQA9dh6b02yc5xd0Y9vk3rIWZN++fHVDcx4kvfpIvcweto/ISqDD7PIfA/TXArS8iMX02CFaTzTnuC7gaqgtBl/eR7ZUbwmsMZPhtgCqd7T9Yx/2r8lysZhT5q67SiO1WqiiwHowcSdBDQSsEzdr339AaVBMc6AuOFTlHF198s/V39hoG5EVOGf6dvRgcNJuMwRsAO4QaQzmSL4O/jb6t+LBShSqfmdc+NmnNVyTcW4OXa/6u+YHhhBLQTg58/KlwBrSDFOwOVvnsrcaGN9YzWZ/XWxv6Wqr9xFRbnFQb3csoUYfGDs+8DehVi89sLxTvqVoWjompuQFS/v4r9Ov5X6U/jlhoMygsqo5UsW3xIwH97Iudz/QSpSxLbX3Xgos5syFq5Z+9pxBXPX52e9JIQcIGFHEKcR7kCZPwN+Z2RDzZdpLje4IYujUk87NV3Ti7ml/4FpAeL5mFs+fkChbG3UPT9IpQeHefHASmFCQ0frMmOvnRbxCw7hzESaizPn1WnvNi4Oc9+EfRy/kDFOmAr4+7V3VFCS+BfrxvaGoEWURZW5JzBP30aqVztwMFAvMa5/7/VJDFlw7LHun/cBPLPC0D4KNj9ywXORGKH6toxumXy2jH3T/Tm1+olLyiyiaEjV8M0jZH3JbrlyNXb58w5qj+230fNMXgdeShmLjqmphTuLT5zWnU4Ip0pnGgWZfI2kaBGlWlPO9W1EFP7qmoIdVNW0s4Y4DzF12Q9mSNYpNFpbXqoe47RCpG4V9IJVInjLKva4CUr08HNyg+TmA4ZLOlwsG0Yz6a5971SI56nhNCduzJ/NXDxf3QxiaFO7SmpPzGohWfz2AAZXIgCghaN1A0V0fvW8qPFB2WduOVjK4rn3ENJ0x5ttxrHYB55xLfFuysk+UW62cpz+CBVYM7korpCNLtmwfkL3iJjyLgVMcdu8MM+msZ4XATPiHARo4aEddpPx1BDfpNT1XSbmPoGec7rdeL3aXbdrNb06jlkzN41GN8LA2FFUf+uh8yxqgIK4EXX5yjem6+DR5S4eEDfSvavcvEvzCm7JutrC/tn2S67RUadShHWCy5wUOTlQiTlmNRFZK6LB1I7snVWQXiui5Yknwa6udfQSM58f8fu/AtfLM35BNhQlVR3O7suJt6yXcZCe8yp4FpdgJ3vKQWhhBom6jL8HZc0CCK4SKN8EPpunvCdzch93Zb3ups66A23TcaVbUQRjzQ5hV9canJj46bVqBc9GhZrKyotszfhftKcHo+BEnaF+z4bGKv0EtntLRGvUETg8oJXhl3PEq9Wr/EDGgBJIHHIKeUKUaDGj+aKVdmkF+aG1qqMFZsIR7wXLTMFggNOuzr3p12Bq0YM3VMOP4seZNEkQZK92iwRU5VKLyjPI/66YnLn+TD1lDL7K25RjSCnOtR3dbwV8MzQ5mrBGE3aFF9WumAc6TAdWlidOGwmi4zJDFg0WxW91suhFe5yb66r47ozm+3lx1p7sW3uiK/TujIRne6AAocS5kSmAqAQidv5MMCE1yJry1iQo+4/YbaRE+tjs9fH6S5xIms6jhG9SEMhvuinUDlAbW5QMAgWF3cBMSPsTy4ebeF1R2gQwtcVqCODaJh8yXif2D1FNPogw1nAG/m8nUUBIruHFGfk2v/ReaQ/05chjtWhJuNwVQdYw7eJDkvKXrVynd/PQet5RbLCZT9I21EwPdcIyxfiTf72qOyROkmW3dhwxshH66MehRTV1vFkfMcbSZepPtEidJCtAC4RpkF/BZzFnRfroyL5Us380gCNPPKIqTT3lu2XgkvvDQt9tcWTpQpH3qXug2Z83hOTvSmQRPqxneiCBvlwiUBAjy566esRTnzLUgph+QM4Z/MjHJZQrDsN1IQndBNz5odhhY/PLIhfQrpIV6LJjZXR33jNarnd0LVSmpe+/g4HnyNSUCsi+7dUJAxo7HY90CQdU9KYZ4QKh01zib2X8gxcIATQzbvud8bysP45KZLLI3FrMPV1sY6VysmrG7RcDmXI8Oing5ZM10kpZ/MZOzPPc5UJJcjvFFMCc9MZabGBjb94jVeU0RsfCrzmealnBTSvYk/aJZBEoPOCIlrH9zLN+bYjWnGFboz8MNrkSL2N+JSnDm08xR4GX+N5p2xS4urPuID2EzV8GtUtwpmnHxorVhIyXCggR+fjgT/YEqtncUCdk7C6+CVcD10x3IVWmVYK8N6/0/jRVCzTV6WEkgmK5ml4+c8dmBMSOFe/FoprUXAO6zc2sRlZJuK7LgCchOL845kFvLAkEKItUY+Nxam/zO13J+RtKJXiPZHsQ5zdruh3spFKNZzksB8J2PmVBQsg1CoNjePX5Gqlebp6lZZ2SqKCyR7Y67opEVNF0DAwdSQZ+5CWh6JJKCsS00C+Eq2uy9dOw+S+fsa4ZRC2Iiym/39PsNd1Jf/Tl0CY9qJI+3rzGVkJ6McBjgcUYjwQ6StuTdlTuglySYh/LhsLXa2lQMnSPCyD3POzOR8KA/ovAbf34nbBcnRwB9FlTo/8Ym9EUOHuAUBH+eNyudtXN4ADVAcAvPasFcI4YouT0eZDfRFKiiqdCCyECITWOYtQuMLURk33JPU02aFJPQdXcCxvKQw9DCGhK6KCwkdQziPVaYYctBs9kr9llAlDzTIlcpnDXl2iQhLoFM9lhJz2ZyRY85figzUAK6J1BlAYrSn0A+Zg5kDOqZyt4KYIzJ2wVdXWq1I0OdGFZgAn2GCp7be4ESynjPoK9SEJ0mnvOEMHjfFUjMHIWLphMD1jh5lTP1nYOjozLrXqcp7hGATyWXy/HRNHcPo7Ph1HuxdmakZlxZf4g2RvxQxaoZ+Sgac6gcE7lIA13j4mN/jwG3eFfvW2H90W+gB07XKtgL0SgJ+KCYQ6Dln0RDpYY4zxnUPKo6ZJA34CQAFq8WaEPcWX7Pc2zTZttslZG8rxx+4wRXVe1yZL7B+bzxQ5OE5Ac3bhG4fx3q/r+dizJsYm5P+6lL71U+zAQK675GJYpV/w4P0vNL6z2Nx23I4pRzkib4tu83/19WsegoUmcGkaBEYxsSpImPU7PqQt+R3VKLYsjcRcKor1iOhJkTd27Uwh2+p6X63xRrYjyRtYQDK9XQaSHUcr94WlC8SmvpGMqfO2/KCirZxnoHlPq2RlgAIxkttNw5TzJXRhkZnrGN1TYS6GKoeRkNF9B2N/gUR7FSCVrlerzbZnWSPpNMHz8/aPMdIBClZ4eXsrp1C2oQp7Y73ZG5ZxBISvuCNsCpUCpohIxeCfpdhCVZwhGMa2+lCJvcVJFyA5I3QFLt9uJtpn4bHBPspBVi+wcywZOyL5zD8LbwTqTftb7dhESZEr3KB5G4wxIawc7jYyw1GVJ7l875VbibRPdW0YVGvJhpNVKCwQr2qdsaYMdIziw7bMx+VYKphR94TezP3OX1Sr6uO/i9GadfFIJepL6wLnTCZE5FYJTpx4USI3ohYvE87OstPVt94ZhTZQqOWHhFF2sCqKLGzure42zDLzwiOZ2wIyer4hbzTGvi+VYAACt7ACfllt51Wq/WaY/U99AYX8f0SKG7uviopRnwB1j2RJN21UPvGegHTTlSD0g0EGR+UjwvPe26USL7CJeoB4s+FKJDVxpb0sDRXO1TWWGd07o9uTUu77yGATo2J/dMgjS7+lSNCvKIgJNbnwcm3cWZJc530QGanKjtn92vhNFCzM67Nokr1q9vCoEt7/XWOrYOeLfDw/TyfmU5336TpetgnHCsGEVDGX26x2kHIvrD5nYowptJIwmhkosCc0t4oeIOUdO3t4nzZzTHPKR3OvTXvoSIGYNqBYlLt+HN0bW6LbeXOPFO+XhbfBt9D9zi3OxAa725YI5/rskb6dON0fviccWl6SgVKmw1PWROC84SCdV2m49Mx14oureoQx//+WCaOJ7Fw0bGJ+lLXhgY+2X5A02nhl3vgwllhkmREA380nOstF3YP3+Ec8zBYWewj3E6UD3YvsJpR5TLrHxMTdHAd2h9B3GHtslsiIYPoI740mtsKnIWVx3ByBZmdK9r8mFuQgFSRjPQX8uj84z3rC0FxgcGoxIGV9Yi7K2pzAFgvvDBA7QmwTrFwcUz08NHzCnar23T/0p6TuSCAEP7NmZMBYlm4tVs3dZPT5Tg44nKJtsU+uXt5U8gWNoD62o5P/t3lm38lQfBT9lsMfh5tEvR4GeJmtm6KFDB3KdZCXXtdl8h1cnagH70IBxCHefPIadTOE9J7UK2MIt4zjg1nlI3zQH5g8c26wudLwy4V6eTPxzp3QxhkK82bt9WP15ytjUgWSL3P/dgNOyl7nFHsiCe9AJ0XhjONOPBe2ePK8vrWIbA8a7z2+XFtX95yvSWyAm+mxEWhJmxATtAMJLr/l9VfiZoU/lb5InroroX+rVCd5vN4vFAPvL7Z9GPhAfbMrTu276chzo5r5KObwKQrU26Wc9uRiLUh4lquhG3uowcZH8didAXoV74lWnTfUPypr79X1qJ90pB2NmvVcp5AY1VxJ9zbFU/bO3oSHp2Sus1skMefdChcAM3HRrUfRvOjeniPCkU7oD79KyvWrPT1pDfguthD9FgWf1irT+XYyU4qP2v799w51EMYuNp2xlTrEMuLxQHpxNglnFnIw7PCHhnYPDmTMJ00lK4lZWIIKwqI+IXf3PK5QHmtWk0JfKXtAzzWuWJaKS/cnbATsdmwKaOWM2Rn26V2LvHRyLO4BmK9a2SflJley988h/1yBHXMGNjyMg9ZVcunSjruZCefbV2/jCqLS/YIvxs3TZ3xRKGUeIowi/sYJvfXcIp5PiuEaeqYtXPWKDCq7YilsAtqdzlDYvlnPlwIo6BfaZYNtrwVHDaFkJtDskVlY5WX8E4aMbNttIVLTxA+lLTmo4p3tijw+99rZRbNkvyoTmL8NC+HpX9shHxU8HCGu52pwwuJv0Gk+GqE5onPE94ikjMakABQFmKAd1hhcEqPusGLrCjOoUBfuPV4JT0mhnIH2+rWCi6zeM/y7QQZ7ocy+PPz6cy+2IfbjnHBNNZfjeszkXmxu6RywV2IbCbKw0MSapcmIGI1CbbocVJYKZLtC72/k7AgAzEvY3Lhf5HifEObYqvSesK/jUBSd5jKy9UsfI3C8vWpHE3gUR45MZoV/uT3EWB10faQrLMBxQkAAzMZ7eC5Sn+pUn0LowzkeZQW4YR/Iub7uufVapqW4DsH2KKDz3WqRvDKzMAWP/hNJSoHTl9/InOuq8VvlALHIDz51Tx2gTOqGAVmVns1SKwY5bjnikDyfVwAtH4UEdwEiyRv7rpxVKQtlLoeBLCz+sfZq6qA3rDEu9aUBWBgKv+vGx+P+/U/nuLLsYHftO5Q3OaJpWInxJhDmUunKxza5KswASqzC3eJfjYSFGv7ZHbtCz/ztvdIjOkAqMiHKcsU8suYHNlWmJYbPHSk4mBgqPzJunuiTXa2lp/wUje09Qx+t4J4hyFuREHRMv89ilyCLqG6xiZgFlrx/XPNGiVM8dqE76EiitCQAr6CbLws5RGcDcNMbk0Wm1Pt+ARL49Xy7IAsQR2aRq1VuzrvpuXXRkKzrcapEKHRJll8IsrteS1jwmDFcw+vj5xCniqbG+nJ36OvOCYfm4Ss74dIuoOEHug3veMdZ4TXC8+acxmEx3legbZONC2EXwIcOjsyP+JLCaK+AQRaV6l7JwvQutLeZswFwR1hr81G9puDorviCpw1fbIYScm/xC4REiyuJvrbvdy8t8IRpV79CgQCtOOa44ra2wgerUSO4J7MD6J+feZxDD5DGVFkQaJqqLLQNVHmcGLLCDK8ofrJ9Z7ZRTaffsq2N1IV6ABgTB3TNZGwHhdot6i7WT1CZwvB2e1+xwwKguYGfJvIpe3sjFGi5hBVLFZ6KLFa9fJWYr5/9b7sfn/dS855iwkrHmL0IsTCrBfuTGYakdpikBjRBHUrHK5FyEybxbpgqne3E82gP0EKkAlLP38YbUQL9NaqXwtCxbwGP8roPUm0qPWEeLqv3Tkk90D0Pm4LmPyyR/iMdbFyh+U6ZYwO6EkZhL2LhPLpY7Dt3pEfkuoYh1iLQzj+Ke5Uf8PJo0GNMK7ZAnA94H8WilmC6AZZMRhlCDtQ3l3F5gFlSBWpvru9x0WEkHyVfZYSBPiXuvjkvVnEcfyngrlCMVWQ/VkRcBleg8/AiWzedC8VAXvllPfAtI/jXx4gUyPrt2DwEQwkpn/DWek9mZmt9LTrI1qpS9C5Z00ysxObSw84HN8w62r1cc6RA5OUTruMN5Vt7W0D2+ebgtk/M7SZTDy1YSAPiOE3+hWQnfbWcawWDp/2YNQINSbDLxI67c+Mb1n46t7TccK2FautB+9aX1Gm3MSVEWfNESKlzWnd0GRFvmXN2j+mlWi5vLCKwJOf3g5Q7UtsRRJI+UqZsfNX8vY6MVmEjut7S2L3P72vqiXQ7ZQw7tHB6AML12njJnz2xbjChKQzN8nebLGyWq32IfCGHMWwfXdJKZjishK9O30zGH9mudTF3H/VWyP2tOL4LGasBbcIwPpJwC+LVyTTw3ydEDrk8EamZHYs8HPOUU+6Ar6TDm5I87UVgHOtaEzm8m8Eha3tV1zd3/99C0L7/CGJhoGvvzorZFoX1cskCtKRll7WeLpSPAAXJpv8IE3j9
Variant 3
DifficultyLevel
561
Question
Mateo cuts a square out of a rectangular piece of paper, as shown below.
The square Mateo cut out has a side length of 20 cm.
Which of these expressions gives the area of Mateo's piece of paper after cutting out the square?
Worked Solution
|
|
Area |
= Area of larger rectangle − Area of square |
|
= (90 × 60) − (20 × 20) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mateo cuts a square out of a rectangular piece of paper, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAP-D4-NC13_v3.svg 330 indent3 vpad
The square Mateo cut out has a side length of 20 cm.
Which of these expressions gives the area of Mateo's piece of paper after cutting out the square?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of larger rectangle $-$ Area of square |
| | = {{{correctAnswer}}} |
|
correctAnswer | (90 $\times$ 60) $-$ (20 $\times$ 20) |
Answers
Is Correct? | Answer |
x | (90 + 60) + (20 × 20) |
x | (90 + 60) − (20 × 20) |
✓ | (90 × 60) − (20 × 20) |
x | (70 × 40) + (20 × 20) |
U2FsdGVkX18THpnq9qcXr+jX366YS8F3d2L/CMIKAQomlk6pH1U6Y884kWyFU/AMQzd6w5Fri3x3TkbUC0KOfU+4BdLAvkhoHG5mVNr3jCQATEcWBWtAl/0DMndcPXoQiDvKvNd327ap0nePgP9BbcY2+Nqcadu9+rSioLmgoaYHThsJ/DWwLybbF/d/9YEbydpsIobRcTbE4PVpcIdiKHTp2b9nmB3XTD6ONcqqAZhX9AEx5qqU8jm73THkN5DfXUjuMbe3w8fYfwPC72p/Sp9N4gTfm0vuguQ/qH19izGJYqOFn29Qt8jyIFCdHBKiZwbdh3BNg80lQyVZ2EgEe4pHS/730jOXZr/D2GEi2QmluHyOvbm2CkWlLP13dclAEqqnw5qW7geUEakjAspZoIYc957+I03rPfayWNhfdXbUW7Hm4BrBFwyYzWzrMCxi7t8EiPW2XVJZJONy90iDKA58ObUIsOed/veL4ZZ30qbvYDUHXbsY5csLwMkQSuC9W6DUw48OkOuN7kp397zhka+iP00ywxVnoCIw0JlnICyYXReb37xtTEs1d8w5za5IM5ky7MfU625hTpQXltytoA6nftF1zqgnM1dKtf4EcWZLXYN9xTNgLyhBY5SvjDdikaRYHbaaRhQIB27ry2bPc858U+8k7oxjrNX0ACGOOElNWtJkcRmKcbBVWzAkoX/m1mpGzdZEDl1b36JYuylh0n59D87+ZF5JNSfM8kGen+umUKvlfJI3pFM7Yq6jzD/1r5E7NJTjNVK+bvVDSUN5CE91BeRaWiZLU54WL4IJlLZkSZ/Q4phbm9WjXRBIut0OD+wf0GT1IpF41VnAqREolGV14bVjA1IGzO8va3WK8N8Tetks1tozm9IcvDElTn0zbsg1oL+aLWlXS2Pmi6VTtijtOtifXzxDO4/5IKqbFq5m2O+3ODLEATr1mjfLIAwprO+yowV6WL1zqj3rtR15Nxj0g30Gr9xbTbaXJsfJYS9bmqIH/oHCYopeS81Gj3qWOLhQwaQDJiHEawbgSTUzrYRtCbdYVZ08P0Wa+zAj5LiQUHsbBxDj+SgmChjLjogy8Irb+60sFXH5y4n8NSQVok6gJ6uyju8Se7fL3Jk6az8dmbNqL9wuQ0eTxMtyem99CwyPbI16u6auW0IukcIXfB2y683h3O88HIrvGqoIY2bjT6QFuSCrS1tDMfgjmnno4QbTrCcntGLOUtICWmQd7Nb4yp2UDbWYgiyO/egu2rDj0nVDeVvOP3kfH8PlR+aESt1n59/C+3Ry7L56+woInJ5vJHEX1RhPXJIb4ey/RXRfmDMm8kbTZCHyygYn+Zh9J+zZAYbGuKNT5O0gxuydXwuLku0vZUsfuMiN5hpeTs3sXQg35ZMR0kYKGEa6xesbYXboYZe+FC3mTZYzxwK/qvHtXkUDnCKvc5VLOWybG0BnmWoyIAoFlBb+mQagYhQXNspP2+59Ee7sAX/tCSWcbqH0uVULA7Ba4jz8MO+ru1p7AVw6tgUr33hZrKDCUh0GX2sXGrpz2E2IbpwUuDt5m0q5S5CPfvZSzt90yuOxd5fO8XSigR13PewGZSHjhHsYnZTajjGZ7YJtSh98lpBGEjDg2q7VG09GzyrL+ORcOkQmbXL+P+kRm1E5C1ovevsalVMOoRjawD03cJYiMQ1ZyD5Pz4F+KD42wJCI9ACdOzn2WPLR0Jb1yxkTiYYVvbT23xSOttLnBgPGqPZEZdtWlF6KpZ8/l0iHTxcOjyy6JfLzyoTGi2rcNl0wRy9fM9oI3Kgjft55gUsGRjaojgpeg0E8yFNJnxub2hbBOhRLAuc++UB+dPLfAvxxdyfK0jxh0+yf+f0uAhVBEteXFxgEJ4nrKFLTF5bKdQTb0G1o3HXMI+gooYCntAT0Uj52NUOYVlN/2mjnK+IfsHFBUZhBSgJgNSg8fTPvS0w1MpCcG3tyvblZV6LV/Wyy3izycphwW5pYosAyE2ZX7l4C3doumFB1t36gCFSq7dZk7f+VRvetlE7S1AmDcuUT1EfiXNDt7NQ7u8DkcLvSdRmyTPTU73f9kq7jzoX9vxLpI6uIHPXCgCWLYFjaPqx009ce2pXK6aH/KMeKebDAUIn10Ym+PqEPwrzwWMt0pfv73ycCXHQ3NyV6v6vL3gVnYr0Psx88eTCc+AH35uTescMka5UT2oMM3CY79nn304/k/0MMpKyxe+gnYCG2DKHUqmWTwUxt8UN7wfJBd1CGO1Fx1u1gCRWcD6Bcem0Y10fkhmlfFPtA0oVwYAkbdgyT5jbrwR5yU70Zr6De1Qe0sDA9iN/864RB2QjdoBqIKLbjg6eIioi/L9uP0dUGXMnoR9eeCR/4Jg54Wk1KwA4XNWvtdjDQooqSe7ownC19rSrFzkbU7wHw6vPqh6F76d6diTXpRBtZNyOXUZQ2BIpzX9SFmT14b+eMpWDFs8xpYO9wCMWhmJ9A/ic/Q5y0oxeLHt/ihAFEMf+4bLYApvbwk5FSte2QeJ8tsbbbojd6s9yfJaxZ/7kMTmxuXYE5LLPyIH+QmLhv1JCfJ7Gm7yW/vZ2QPl9gMZ9pHIZPHFRf81XsxnB8rFAe+QM9C4Q3zXPqIWJaF9v+IYCkDn/xfY6qmurrwRUlDRUzqzjmsIjKKN25CixDWC/z6QhrFUOV9gVOIzGa8QW3/LJvMHzDIo/y8OsW3wlUZKbUIhhCkefi19F38M7owOtNs5ktW+TcOA/ceKzv9OHjKm10BJ4/2HL9MEmOBgRsNhVXGQjnz/QdwHkxV7I7BOsxdl7OgBT/3/dHYMavPuUZOkzTC2TnYMVdDzw05O3+Ft7ii6tVqT9SL0HR8q7UONLzfjmuDg2JebfJP1J2gUMnald6X6FtpkurfqPMbGbRiFhN3H1QIcsTHGmO1EgFO/jJ3noTKqMJ2KqXCeJaij7qivdXvoHECLjzgUAEH3Do0nIycLZwDtMVpdt6pLgifMqqT1T7oGxABJXMXQo2S0xYUu1QSqcz80IXcV+q9Laia1/nk2Dk3DHhUGctQSiFlSQh0oLy/szXBofqvABs1w5Fr0fGOyTUNbm4vb/kO6r0xBF2LOVryVrgN31bEpZwPzMBoH6ZyQdzJBLfSJUfM3veROAC6g2PxIQKYo5uhZ2Z/KCHx+ICxhZkxfotxHDso92Dfj6RJ97pbjoZ+u/DorbfH0cVtxz7YoO2n4nMKPB9WAayaCulltTxX53V+a5tI2XzmCelXlN2ZYFqohySJBIU6EHAoLhftSVB8SbmiKg4cKWVw7xYEDOoVriwAODpD3sI3K+hrx4VnVN4GqWnsCxshdhIftdFdpIttgWMEoK3h9DHqi6qwL4fCPXXnaKRo7oT80dPFylrkZwBkOGJbcbB7m6X0RsL4gEvlKTjU9ftoV3qqpAkFcJHpeUUCU1EelXwz+rrQEp28nj5zElUV3e55JgrCO4JKgVDdRaqtlwK8S8+/O6Zkfef9s15svhlGaShC6dy50bjRhY2oiZp4j/aTvFVnSx8RSYNzZPafxN6bH5GkaxB2ygVuqU6U9ldXo7aShEaSDvnogPCkIxfGc4Vdwy/khEIgrQ2sNe1dpes/sSadEzru2NC1fRoDNjlYG5LvrlxBTEN7p9H7FUEq2DiO/eZyP8xhOGmmiGcXxRBFMLOs4t9Z8PRvh9QX+X7jxINkd1nLPtNIWDsC5izrEV2lA+ahyyVMZH66WBquu7UQ50Qhe1CXNqbyZB/sg2j42zH9iN2BQyW3zBgnZ7olUMxnSqaFt5OOpVXKcgTlDTPaP1+3OrkWrCbNJqLERrc45fymFyaaXGQn3/Ty/+OTjspWSq0YYuvXFOBnLH6UafnijAmGqAYa8/ivj7AdkxIiv3PH2TDCf9gzwFN82N3Opz9FPRTxBUADzj5lk19DdwwCH00TQb5BtSwSAr+f2VSK6lHW6uYQW7Dcm8e6G/yKbL7Uj7ae3pD/LS/WL+AjB9xkjDTMhzTl+surNSoBjG4PGEWgl8+6n5uPOkp75VBa1qwDU2s9gOVLAC22x0lmtxjiS7DuOrsxUlBFjnFaDM73dNYEZlLE9pCUkPFK0PzvzX5I8KZ9ZWAo4ZPW70Vva6ZV3nDXFrZNhvQXuRzGL8x5NdnbH4pTBHwhRB44y2CbyVYu7JHTGuklbYWA21zSqPswtETp40ki4hOL3YhgTrBFwMHvxFvPkSi2zTCpzvgTAwIMsg1kyKWJ8m1UUhmGdhjdhuwDxwtPGZpteawF6UUgxDo6JU0bdsbHItBdseMj0L893OCxXqjHewJBv66B0XJryw94LsoU4AVHG0HEZaOz7fgn0g7OQxp7TkLXUu3Vn4wDmRrMY2fW17B88kCSD/w1C34ta10dgUFka0dkvHlQdbuCLPZz3qqc0QlqSTCUpCmuI157yvKJ7x7B4bSjXxnPRvQjzwR/kqvXa+/3mm74TkgQIZY9/0RCt7YSX/tX7PtQuPqsfaiIk72kz3o9Z2jGwa404Dq4A3Of2wNRhy9DQ0ar0qFEMqjo1770qFl2AVe/na8WBrfRhYihy6LHl4JcaFx0GrUrvj97twCNwpgi9zjIamQESisZ8rwYbZtNC9VbkY9uz8I1MpzorFQrT6tRGCzks5OFtyrbdVmLSt6LfEouzz3kLILqh/dD7XoGNnothpvSy83eREt9cm8zSviDb0fWGUu/seYukLJBPXX49ONVwcS7Il+XJqnrgU8tgjyNzZY8oAC/WNEXPlW9dp8iW9IdSJaNzdobtkozOyXBMz20XfX9tIycKSgscr/AR5lrMzWOC7kTEpVBIIKp9UNs/BrGpuULYpr4j8w1GJANU954F62oBzRniPSsB2YsVz17xvwfvZZ2jxNZ/yJzv14N+gBnoMuR23eOjUWkDbXuPjEL8QqEPL/cUDTDM5CLQjr6hRNPP6V+Q/H9u6Mr99imqXD8UM5u3sJTa1xv812NVhb1bm9/oWTRQow2GAUCtsSK235Ra9PmkjAyNw4HdV+3+hQY1gYvUBa8NWD700+wf8OXWX63JVrl4MASB4Lc3U+fa+cc/pEBuqcHE/T/6yuYCy7k6Hvn2jSZ02OcrINDZwY0H/KPvEuWTosMqGIMmaDksVNEFbNaORSgo/0cnwD7UuhyGEYxs2yWF9o5WLELb1kE/r83TLhHuTirjUjhXX44GGJc5kZQvM9LufE5PmjfrymCxObOLKMYhjBNr47G/QwELrr+D+k74C/hwFHNm5U7dcxl+dd0aoVSYyx84lS9d3gxktYjJYXbGrlaTXZsUTL3QVDvLihy04LUj1wUopA4lJngImlfPLrY5GgASaT9/yKm6vSbK03Lx/7AS8K2Sm7xuTkC0O3OB7c2u5rQcLAh6L3uy+/ByV9sx6NQAKO+Lm3W0RCaQTM/GMM9KwzGarP1YB0l0uVmW2ciQ6nqihn1kuynQmsV2AkAWuWe8hpeMJPg9nJgM4z150RIib6O84YwMghqfUAh7GJbC0yCB8CHcXyk37St23wJW0nZdNudNE283XwKLrmL85KHC//F6FQRRSl4HbcJSRRDouEAAavAp0C0/gjql+ElYTx33CozrPowNq6f0qr2oCFZRKyG2EJTdoWIS8fDbn4BgrUJbFYq7C/1ex7u1yZAdhRKJ7SpJZI93imdC7ngwRMd4QFpACLPYQCsF3R/cHnFsGshelvo4auhBPCKuR9bY6RmwAGwhjfkupc1eNqBQK1uOtouw6SdoeKSTj6UdBq2KAVC6/OAImqd4uHqYMLR2YppByAUoBlqQ9pX/M0cUSc9quuKA4op4YrFzanIw6wF6UDEX+CbmHujXfwieGc6VTc3NSCX9N5Rdjwo8UGpff4qVB9+jXu8QaJY3bBZ+/OnEr6nYRp6FsV5izDOZgA0hs9w3jxrEK6aMBhV1svvFgZMRiSnsCXtnUFYE+EwpTFXbTFsPPAK300KCH+emAgvdouBFoQX/jPawuDqVvZIKKtOfEcWfwfNIt2IxHvWaycc4+gQ68keY5ZQJy32XVeK8H0T1n1z+LXgydPpOCJ+NrXF+Cnk1/a7b1EjN/+TGSLSd/+eiJG8bZjsWlE7Klj8PAofZvxzq/8ZjmxdAq3C9mYDU0Hle99DMdDMwuadD095mkKRXw484FJP2RxA3DCkFYNK2eoeg4pbCuVkyCJiIoR3ruxRD0F/WVGsujauWEMpY7NPTBiO5wZJsk2arWmj+IYhPf13KyeK1AcOYmiiOgITIT5gcamDaSYX70G+VgPRXfN2D+vvekjt5sZh1vuGbL5vlRlwIeBXYdMtD9Pk9POxmyrW7bMXWjjso8lKUCTsL/uYrwWu68mMaRBGsEod30emdzDFmYFL1oTzU21h+B9YV42ZTsJd4GUzKPxj7TGFICD7vx+4sI+niBxq/pGpO/LRcEWbvpBY9pjIYYJ3YuX0f4dITgPeZxK+3WksZ2uUYxUTCbKciMooxzu4MHeYwh1NY4J1qn33tV/45hMloNmvvdgEOQ/hCnMtCy6RjfffpT1CMgoktzhMuFTvGSmVX09KkwE+kThXa1Jft8b/B+C1MOu0SlPfawGIJYx9pdG/I1TVgjYjcH5LPMgAvLWYqnBZDnDJNL+l+UlO5iml5mtAnqMb8EH5fTnEdvjn/F+c1a+ivI0be6xV0TyCmGObUPYXNU7Dz6R+Qd/N6nM211D7N/dRIYPaMdBw4SS5xUsusGtBtW9MhN0Q3jTOcFyrAGsdd9365xC+E0SeScv1ELEpUcFPDES6TuDge+bDL8Tfr1SDHyWhgd99AFZs/GF6UGo3s12OTxTFM/DQjGvc49cP7bugjOYpfUG5H45WvDCyEhdrOIMSpgIN+47gJOeNlNa0pEi9f3XqvEHpesWHsb+E9/iRVdwfEt0VoVvtaAlZWHb6OY3WmCdhsQmalhMwqseQWypSI56n2O+Rx/N9FBnpmrGLGwnqk2WZF+ZO8n8JCyuXMU0aYS0NFHG5i5gypwPhpaTwvOHlkl0ErFzjF1J8sCQiyELXFg+TJxPUdbq3p0TkESUouNT2pIydeYKZy0LuKzdS7BQf0YI/wK/i1QLbM+QCyd9PuJSt5sII6X4o/+SCwuC78d4SsW4P8tcr2Dmty/QgUgLyXb0Cu0SfqTK4uKcZAvQCLdrDCVBL+qglZ+VsLe4yDPNdbD5kaVraweXT5iIV0V1DRAyes8/URZhNhr+T2UbAnfRDEd6qVrzJQxDYa2B/jvRCi/Rj+YJyeseECYyIJ8Rx2Fjor6qPB2BUPKwFZw5qgAZnv9dChW6FcXuFRAEERhd7j0fM6HxLheuDxnDKbu+vFYP+GzUqlRJuORGgtvYRSMs2qYRaSBLzgjHmVb7mfkinCONRut9ad2Oy6+VoAOimHBsK8bmos8pwB+VU8W4F9k2lTFeAg2WDRxoSCBbGBdNwrQkWp+XceUFUNRsdS5tIAwbS4DV813ar6CmU5WGIbv+laTfHHHnR+DhTuL1d8no5YYlqWhJfW01kV6bIXJuauzEYpV0C2m0rylaGBHmgTB9n3Szb2Y1uonbEeXB0lKU2kQi3AHEMddje2c4PtKBPHyX1i9dEn/6Hr94lvKzWYKNsJsNO6B1aretWoVS1JAl615Sd+dnBvuBHwIlkqLSPzP7CPKU62rNseD3l1cWQcgmb0BSEf55DC8Aw3hC7GwyXolcWYC7tJMurj7mVqUUQqCFp18CTs+WksA6yU7ounr7t02v3N408LoGFT4GXyE/83g+tISGObdaMeRRCw5Tc3m+0Fs3psX2CnrwUy6oT15l19a8+heoaR3fv0j4EL8eAZtitgnX4PiXfI/hCUGWCggQRiSBZALvMq2j9AnC0NbzM6UjjdH00pJ0niWQFmNmsGbh6wxEIuK9HqTeRdHXwYuyTumcEfm6hGpipZ0JT5a1Daux7Ahwp3xyqlclpqkgwzEMTUXqcJyXqVGnrGF7qIezg8FkLbY1xqmURrLBzDHBnpZwRocTXLTJ6t3gehd957NpXei+NpHiH1/21c6whC2TpF9D2++06W79fw3/f5QxnnfhY/Tlduvfh7MToyfxzqQEVC59tcAEzAZEhbUPZtNpaBKohjKINP7fHjf52ANeJafC97NSYkg0ZNGlNL+q4O2i0xx4uY5/DdsT8zTfcuxMwuuIPTK17yMH2IIYLONFE7sxPRmRjOxy0MuFa1G/hrqEX9IiIWOP73V6iIevazXT2gNAGs23/jhqrYAZiESf80IO1ySP6fwc3X3oRn3bJfVl5ry+h7nP31cT7V5k0li4n6Ayb7DjQGX6vfaVq9bO/J1HbR4arzPZF7wwFtPtcEJNfxqBV2DL59NfGaw6ETL74CvrF1KZGgtCOeJebv8xDr1X0bZxLZmJWDr1bKL3Q06NPyArZH/evQJGJMxspc0OgWYJmiPTTZ7Yo3UuTp9XQb/FKYcFpq3Z0tI+nBLLcHAWJE2nb6Jcm9OmD10F92znZltGkV1TtAZ2S8OxE30JlvT2AqUVSfYlzaVCUOjW1nENR/MfT81MpMyRn6Sz2y3mE0Oqqhac49raNy3JPtodXEn/MgXfUyXE6I8vj61zbEkvKpwZzjPF+Rbpy5VWR0Vw+f9PTN6ykIHDoJpDLFfRw6aEo6yQNxec59PVEMCPM6u+Xt9qq+Rni/U6Iz5StygmYQBEvL8X1oLIbjTu6wK7ySrrJfOSU69CRaDye1sKL70ECfy3viYPE3CSuTdmqktXo1yh1J/eymF7tSkHG1xwYjqcebJFIH+wk4lWLrzmhEcGqK2Y+qf277LsEuOmhojmsrRazXZGxLiCRn67zRc0jPHLsbtmGz0+AeeA/UqceXKVogeWJnQOWdCKlCp5dYn5Wilxu8H4FuEvqsG/2FZYaGWsKKayCQBVkJqZecUW2JjCe5GKhfPI8FmakhQrOnhde0M10Am5oh9Ic8rW5qvvalgm7fhDyYSSAIsRusJ+bhNb27l3kicEirG3c8XMjAR1rR9O8up3rPwZ0d2wNHFVX/5F4e2VZLNzk90O2eLD4ic+LqDEhjcywu1hTUnzDiH6OZMyqt2S3Q/Xh3ZQaSJtQSZ1AxdWikDvu9sgEg47ud29JEO7dv2XVjr9J627MuYEPz2jpL6u4rK0wqOh82dxEEYRkH69x/o8VXemHVvAZaoRRExtNtBDkdDLfaAP2plasH0jX8wuovTXettoVJFQRyuUFkYR0kL6dNvp9JmFgiMM6cml061Es1YErwmbhiXEtv9d2u48VneD/dPx8WeZXXeLmUtgMvKn0NlpJaxmb51KjFeZ2IcdsOvBbIhCA9guR7jWwUQo9o757WIXcLSVKR+NSZ4TAP4mnahg0BTz1Har4ZgzmB1oi2zfVH1A8fGpk6jWJlP6v+twHcFD5ZUO/IaJNfyN+rHcII/f1zDdZlA30NvD7giuF9uE9iYu2D8pM0gp/O/H8zcgvXK0IhbrH0C8C7hdssqhJ7TLpaliKVHMeQ8zuL9ekPdZ/1KcXFFY9putVwZNnDPdwZwhAS/iO6yKZpALwfDTwQTnvEGuAq3oDTVdDd2BvyFfOPzup/KMJVxqD3pT2+oo4A01s2TTxVAkMUdmi3kCaOoHAhbxNBo3UayYb9v5tnAVD4cmtQLK6jo0mWT3t3rL5Ka02y7SyhI24x/++r2PH2mNVUr4E1VJwpDKaA2NJNGXpelc++bjRp+qLw/xoX28uKoByArKaSmiT61rSAkwclJ6cgPQqPweCq84Kh5G95UgQGuocFCHDeuvqAbgLR19lqtgbL6KkUuz6lj32TbAk66aNsoLNPvCcx2OOMS5o1AczxfcEZ1vYbfTjUnk9pQ46LkUcH927NVkvxXc5dlsUbnYCx2SZcdLi9/iLa9Mgz9hiHWLqpFtMkZjwFkGDa62+KHvozaR/cUde6/lDq9CZaOSGA65OJV1Xtn50tqhCRjt3TlrZSCmpqypLxdTlHo4TIxDErSl1MtVgdYfRoVrssDKRcnvCSl0SXHgrL5o3hl5c9EaHrC67nB7HkNheY6HN2vXpp8PqsnOLgUnC3fdMy6LCHfYuInqHabRJBModZGb4T8ZncQTwwWTrQ1R7xBwPcEZ7xGOTCinExDpTtRUziDzufs5We8zihQkW/hefANZs9JxRHRhSfxs8s1b985WKbIc34QPOVQLT86ygFSrdQ9E7quoF6HbChv6EaFQaxDsvwIDXCeUC4C3ueger8pLLQr+jiusybGvpz0LfCuhJM5vXFj4b9aAXl0CvlXB+RGAGJIXa8539sV8pttOP6UNYafAzME7wLAAKCatNfKcTDRzi7c0j3MEo6f8CvOJ1gxZvINyqbqc9wa/Fb8aZYg0TPQIHnkalbe4XForTh3mrL1f4HypggKe20JjS22vqUJyVe9ZBEtD9d/ZWxZVFff3SYYsB4oktO28LJCWoXtEM2EJefv+qtGudSj5r5DeF3BavHDgk5dg5wmlM5uPYkCGjujDlNtFRS6kwlVM+NdH+70IuhiZPBAAacxP/HVl2xydNjo0NBeWUVVphwEM4ELULzj/mcAhXmQhJmimqkUEEeb4xXradOcHrkLZYNY/tqPAuA==
Variant 4
DifficultyLevel
560
Question
Lola cuts a square out of a rectangular piece of paper, as shown below.
The square Lola cut out has a side length of 25 cm.
Which of these expressions gives the area of Lola's piece of paper after cutting out the square?
Worked Solution
|
|
Area |
= Area of larger rectangle − Area of square |
|
= (65 × 49) − (25 × 25) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lola cuts a square out of a rectangular piece of paper, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAP-D4-NC13_v4.svg 370 indent3 vpad
The square Lola cut out has a side length of 25 cm.
Which of these expressions gives the area of Lola's piece of paper after cutting out the square?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of larger rectangle $-$ Area of square |
| | = {{{correctAnswer}}} |
|
correctAnswer | (65 $\times$ 49) $-$ (25 $\times$ 25) |
Answers
Is Correct? | Answer |
x | (40 × 24) + (25 × 25) |
x | (65 − 49) − (25 × 25) |
x | (65 + 49) − (25 × 25) |
✓ | (65 × 49) − (25 × 25) |
U2FsdGVkX18vEWn3RGyCYUkuo+UkzXONVU/fhK2F7q9cnyV5qj0d/bdhWoKJv+bGQJc/by9aYVdg8P0gbXsMvGw6y9NG3ftHWU9gVkq1+oue0AxOLklw6xBLeu9vTS1Q5zWUrpmpO37aFUI5wJQI1ecu4acCiC/7OwqrzM43IBPXwd5dd3xYmO24XKE5XoV/C51Kxbf2C6e35/lY/JL4ucol/poNHkBbJpadsJfB9T9+IksW1ILgmuphZmMN9r5VJDTEzvVzxpSMhOpLniAhl56IVXbXxKBX8/tJeNfVc+8TrD9FPXw9XAwrtg3dMqRn9a4kooz3L5OwkmndY3vwSz41UjS3nvkDqrPP7DGDwrOr2eKGLfDfhxi7/P6HT1IYWncf9UOLIpxrSPllQCUHNQWmauKzQxIA3CPiOTdsy1Gq/CzXVvP8YU1nHFQYCxO3pvqvilm2P+iOXHYm1uF+zmbUBi30cXnZUQQfjsa/e1hpM7JHa++Qr/iS7VT9hZl5qZ7WC6Qc2EV3dCBWpN4CYIMstcTqCZ4QzCadGXopwJVFbcx5a7Xg8ZXqMNDOn1nOcu12ryqNaJZ2n3uvwr76VRNZPLiU8l6gdYF2thoQP/j9Cq0vMcDacj/JMhFJYOQL2jySz0QQ0MODWtzauXtmBpjrM6CmjOkwksbatfFPFnKrsS2C4KMGfi06UqLQORzcG3qDd3/0i91SV8XWGD56dXCUtodFR52T3u3bg89lRJCP0aR8UjQUZqIdLBgXnkhyVC31u2XMedODUV+GSD7I60CC6kpTM/nobLgMD6w9dVVxAXIbU4uTfQUPCv+hRm3DbVholui/pmayi/f6x3KvUui84rhp4gmggCpISKfDWumtRlpe5bUaaP1slftRTxz1P6KX9nWl3b28B/3jlN8oYpEkzeIvHBwtiGl4//1/k5cOQyefZgCy+z3o0z+PKg0gaATg57DHbJ6bCLh86C4LukCpo8YXJrtV6vqx6nCJTasV4hxKUNdSH5aoytsjRlpHJ3XF7cuVZhbUvswbW+FmRbw0NGjB4pPtdMCZ4uYxKHG9BIOyyYHglx+ecAnQETFNGx5z04qmWOMWGbb8USkG6e8MEogdWSMPo1julgxxfEh47k249/2K6onPwt4ADwiCABivXbzI0Gcwuxe4cAI/E3Ab7sHNAN40GysEchVEiTH2481BZMrEuXIBJJ9s0a7fgQHsf/Vcsy+goJ6+rKoLPi2rqAUURDOgaie/tHzZMVsVj2GW8wMk0Djp33zt5uQFTFvR3Q2fz/ddieWoRUHPcBqXS0PqdjcJpwirzpl3Aekv9Uju2jKLZ+RB1lKoFxQvNuxgReXXarvCx5bpT7jkmSQqS3dBkpd+t8aA2Q3hDZ5K3sHtcNYwZm063KnUIbq6Dc+k/zzdhHea6Rj0ZuwaeWdGBcGZeQHmF467cBWV/Fek8EILRj7OBHkOADGYH3fyloyCZ+dG6pvY+W4XDue6AZkvDSzwP/U78QDr16r7AhBMdcjKtRkVLrKW7Ja2tzF1p+IGCyyfIA916afEGq5zGb1j1ZrYjAOK9M05GOfZZACaDT43l0MKhEWS6OpC5iHb9n0Jfcx9f0V2bodNhw77wr+M8Oz4sWNofz+6ZiNWAF+b3sDcC8qU3OjjmTovW2B/YwdoZgHsHwf0hHoe8zt7AKUTXHeQQFTV4s55On9bxV4/cY0rwsZC+sHO/KxDmKahx59TsR6DZk5A+5KIGK1xfWSt80l8Sy7p0bs9LZytIW5PFryGcDvg+W3rD5EGVOBYISND2b/bQvtu+k7kJJVGO6vC5BcvykFKFnoMz+fSe0o7yEdhnpKc5ZD0xDWT6YQ5R8hMc221f5WjgDAGjpEfNn1umyxoxRUdOzSia9OiwtVxUtp/R6Hd6xpELPJsQQfRpcPz7mUXCt21Ao+7lNPt5WLjm5d4bSLr2fKv7vzcWAyNkRwNYu0Hz86fbBun0D4fIjLtvwx00VdhqZ0Zy4gybzOfMtrfrwsDPiXhxPOUJ4yMKp7MMYge2+WCVRqnEjRrlotWZdvrJhjEy5m9yppBLSXd7qWx16W/dTVEozqzQGKGqAvPXEu6CpuQoqoV6K/tq/kJUjXWky8FaZ/BKDMSouagOTCX6yVj7kvVRtH4NeIbzYYRGv5reSR11WeNZ6ukluulgg9vc8EtyQGc+tL89XeQDOKKWrMiNS8HBP2PWKBZD6NiJVea/kj6dDQBDgLox/ENxAqGNS2D1UQ3zWGgXvnHIKwkB+Vwu/zHoWo0KR9BIkSWxaLHMuoDOjLC7+25nP7Nu7AosGyPPQNUEgWx4wPCEuEyK5zyM/QcAO49BM7bTBaqEIk9InotgLdIP1YmKcEtZn5Dph5D1wfiMLyhqcrCOr+/ntJQN5AYcJJOwNCUma557e61eJP1LdhjESWd+pKepyda05whhMzquMoYdNUpIj3U0Kp3NyMR9hd/QzYHhBVm9CMMu7xAbOD3l+fy2gBVZHu5WStAQeySVzluB7Olm01SinPgaP26w0QCo6H4r5jGLKki2+cCTFWpPI/cQxi6nL/ZlmsZAB8evjMgjZnsqEAj32hrfw5BETae1u68zycz3ccLVrJF42K6JJ0J1Y0XdaVCv5yMMP8TBONxmTjTWXNMc85w4Jn+WpudzWyyCOxkva5OOfwkgU7Dnt3bwfHgHSIzTSPynqgh605ZMKCf+zMbr0PAPX1LNZv6gxiDUBIhtn2q/DAiWgXEZf2U/WYReVEI+P/utehoffkvjYLpTr2TFRcCiP6c9clKHH7JaH3GXfh2gSulVowdfEEHR/O86bvTz5E+8ABjmh7aHtGJTGK4fmfebdWOjszxeFFzj1tw+vcFtm3o+mhl0BQsf9o2yH4HvKu0IqBiyY30Ii6PFkfITAYOfa9nQ0Lru+P6t10225m3mC70kHhWybM30ZwptUbXoOPmQPZ+blVLYcjtVAoD4h1s1rRa0YH+gi2z9Neb+dcHgSUWAIU9nJlb0lbSi5YO2ve1GtTPJOztL6tccZE3+asT03P4m3J4oBVJ6/tVLeQAQ12k9ynPVqEH/aBm/tA3DGeoORsmRZ7ikqy95OGYQofXgl/2lDoMHT74SRuI/aP6w4zTNr4zzXSuIb8wJTk/1vOuluz4UJtIqB/58nktJYAgofbS387CtAVdRSIL28lnujHkQ19T8KrGm2vji2NIJ1UY/TB89rOrqi0GAGLXEEJQN3adT9d2X4Kd5/dCDl3Jrf+mR/KpXUJfIkB1CVbNpp30IYhADMIAQlrX9eyq+6mf9EuCQ6/OWR9DSPFM29ksi90MhsiLIKlnSXcCa9YEkg3G0noWnH4AgP2EsNB3sTN5GnIW1cZMgu864AXfUZoP6ciU4sbydirGCnVJcyQaZ9rM+bnSbcTD2u5VyrluGQstTNwnzMN6vzadsD6freQwPYS4/1oXZTBxg7mYnn03lvpuk1xW+gbAhahdSpd129UAA6DpS4WbCzxK/xhO5H0099kcwbmuEt19AId4JE3GYNT5702UMe5CFwt30Gfr2UCd5rwVmjT9P3/aMWxUqgzgVpotWKpjA/hj3Vk9/IGYNfvlxBRpdDybr7UFfCckRUgRDb7xkp8W8EDbmxYZE+JAuAXujzt+61w9kJ1gTnWxO8o9hAUoa+uF8BtlvNrV3N6JKECoX+7RKfdOFP2lwIuWsrbXNLBM7YvDP9Idr0baWtvWS46W1oLA21FmJoqAMow+h+dp6B0ylcFXAsWyT2WjfclRRp1SxJKq15dVTktBrQ6rlE2i7DymcQOj0qowqUcwzbwuBxi7l7FNjgq8UiTOYzHGlFaRgvbP8Aj6/eTsZ+w95E12yBsuV2g5PWWVno6mDO8hHeaw2Z7PLzGv/zMyXFn2jjPg4dTTtW0psabBl2wbEKmunSlDJXtv8WaUuOxGn10s5uDiPjfXpm7L+rU7/wLhpjHZb3r0EIOGduB+TVu5kO07THkG1dQTACQGfGpXJLmqGyBIA0YaPTpnfzvV9ZJXAFQ1VxdbHq/HPl5vXlD6/BCrCm/CsP1NH06CY2UD4BSStUkqxgzpmfX4HcVC2RR8c9BDyFg/3TBcGAOoDh7AIvvoeBOnqBRGGYc+rXoDk7dlRXnFUYo0s4ySv2z2dnSQNdLmwqN9lz4RXjJRC+WuNkdrf6srwrHaf9fb/ldAvX9jIorVXIyvI7PacHmmygmcS2vI8xqQIJ6iwU5NGWOxxgR0vxwO+s0OgXV+46z480pKKrFVf0TYAztoxJo3JpvLUmNkLb8VUbY6ByeGHPrHQ6XgpbAcZ/kMfzOY6trVbsmHoNWlZ8+e/Uo0JDWdiPYeZF+A3jE7HgnFoPriAlamOkew6K3bgoKvZe4Bi/EysNzyJC6ji8LxmSjUTNjunqzsOAT/kfYpH2fDPRe3uYtj0FrfpxNsnkuhdtCCqBXUIcLtaCaV9zrHK86MJLHWIqAE3Tj4QUfVzyJ0cs6BP9VT3JrprVRZb033oEMixhcYODIsF/QaMzCWXsDYYsvDzyDd6LXk5+0dRh8Ry4j0I/xPKCMznCLPnY2v/nhkm1SrCwPQ45lgveke8m9meRyB3ONiPYaFshiy/gt2oHeyqbEnHedKpx1No1a0OHN9ZvUXVBDjv3E5KOHBxz+IDzJBVmttoDClWHbHW058qlHdvEWWdGaD5342nsTf5M/1ez0NUZD6bSBrCuMTE6+MhqJHUfmALq54Tx9HD5CnOrwTT12C0gGMXsvSCoevfltHsMb35Zu8SOF6zm0b8VgN97yjGsW0BoTS73bmrYuiQWOCmyaR9aEiU0FMBY7lp/DbbQFS+CbUQOjCVhvqc6WndPbKnZQgoaoXIjDmZbHKMGCI5B+5EOKmcoBSU/7A2NbZzdF6UD7DwkE0GOpLiDSXsZMQBy5C+j86lkVTstMM1p6jVgT2OKxZW0QGZk/auky87tsPUClQrhlcxjKG740JXtOFoULvDDdgZNA1WG+8MMWeZ+h1t/FJ96e5HCagNMeh2qeJ/5N9a4ZDyJFexW/DpUAaK/+OSOw7xGMlq0AxVDq/FpEpr8ULCiMPpl0qK8VOlXaH5RtRrioLCqujHIQMoW4pNjX448BUfO7rDxcH64LxRsbjrk6gqnIeEOeOif9JQ9P5VgSa+hX5HAmqzYN8xGeyqahGMPbjfip4AJTVRxulc1kw/lRiErZI325Ot463+hG33ePw2K/MC8Hjbl5vPx7bxJnv/Z65d0pJqzD3yM1vo75ZZ/1dNUvbFB9/5iax7x1RFbI5Pp8eNqWFBZmn5MR95aVVkmxPk5IhDqddNoi4kSfnX6oCZfmOJ4p47/M0P92BjxX6axFB5MOhAbW6Hka3A5RlO/XwrHOquSj3Ts2x2h09izDKvjNxbilICE65AwLJgMijI295EtBra2JLYvQT0rpnPgjJPZEyLaDeglGBtkdq5oeaBF+nLixQfRBj8VOZT/Vb26ciaUN4axwNi1CNfkjfiGtHaBq6pbY6xBaGd+BzFou647En++g8I+WbBfVvQA1NsShfPX09wAp9lHnBt7OCRRxKLdRMR2PKQvRt85IjE73cSS6aK0lE0KKGGMLZ1pxvFv1mhSX2VTWi3BVQCdK7Hr6jQ/8GyUgimGB4zhQPlEg1u1P0FPDmV2d6JgPmp0h9Xy1Nlp7GD5FkqZU9j+2qfzur89YYDUZfXX9DR6pZR7LTNufjMCZm8G4UuoxPf8+UpVoO8uxuFJ8uOfKsQirlNf/tHDmW8IWcWGDWs1YKgjRvcimdjLfWYlV54jX7NEFZjo0SYHq6cmSVmQG8j6hvxqVbb2/+WoPNxiXlBc+NPkKmni4IayTPI+rUrTS65yZZpAn9BKchNETl9WxQKOdpGjeVZZh5+YEMQowd/GCGUpBhHFA7Qo0ueZiLY1B2iGjjT1TpbcN3OzmYfCNly3GliCwNb01hbyqcmJtlP7zwJUcFdZrzn3sfd5rVjGgWwWgpp2wGoai7Kic8i5zvqFdGI0eVCUfasgJnpjVGTEcRuDohQCtzUwXKK3vXgWEBkrQBOJZgo5thokFYYsRBEZ/6YXyd8YXYzrCvgx+zVVApcYq1UFhYILx5/YLozpkfyF0ZmFfGJBVBS3ZpFBS4UwNqokd9XkesChU7aHTb6r+rM/aAdycSiAZ/Rh/noYGI5flmyANvjlZ40+6UR8FOWRVvWZ+K1kcVzAU11uMpEknIXlfw465prl4ZrG+uDsoYoJhENleTAH+llSJ3IHRw4TjQ/eTK22yeu7JxaXSxL5wrxTzyAC833/DNIg8QA8mGH84c11tUMOJZzh0hEBlVBz0jeVyXlPxcTxXk4ZLINohboOhIDtOtM4Tsz/9Mjf9mOLMYYhhM1dEQD9WxzvR3OGne1DQvIjij3AP3Oh2isInITdr6LwRqCOKbGQLf51jgg/BDu1XI3wOL/BVINbiUnT5dXdJ9qZ/r5scRrwYujmqzdqEV3VWJZPmgT+gDBpWrm+b4/8SZt2mTGJBwiOC1fAfoksHGiUj6mT3AfqVYM85sNenvjH0i2Jrk5BZ3vsBcvpklTSKvga14A62fGheakFvPxOeS5kHDOnv6JY1AA0v192yweTvN6CG0cwqZ8XYBjxVvXDAZKRXQ4aFOcD8a4v5wzQrizh/cNC4sz7rgYtfn6ZnjQc8GoBSGREuZD8YkTf7GqgO5LBgAAB6SkEUa48QHkuuUNKQLwX6rZ+hjpkK5MrMTuvLXUwk4mgKT2ldeJbjRVe2REy2vNsHaQgkAwxeLNXA5UNFBrmqk9AjMdp870qqw6QBUT0yf5ZwWKBvlKSJzMCThRnVCBkqrv5k1oVu4evAhD3HZyY/KsJ3S3M6mxHkgGAyuUtsUQvt+Y7/hVVDIV4M3uCie2vuADQzZfPLFA/niItk9ykEgbIBvrSwZgeWCimZC/EdJhovqCn3mQijgF75hjWW+av+knO/JbobLbtXs08mD+JJ79ZwLNdKyUnPInp189u9zygWUhf/o7r6p9LVOxC4GZdUmp7JoMFq9hv43kAKUb7FVXjrBtAEnTtkaWcwBwgISLt3ENhSXC0f3zHoJYidoLZIitwzXdDQX9CFDSJS5kTwoMF0F5JMQ1GWcZwzJ8rE8Dvk9QathWLfls4X7LbkGwN2RUbTtYhY/xB5JAwLgo4Eiw/l9VSLPTqijISuqKPupaBF+03erEZ1oxbl+y5W9Jhj0bBSxKwKZ/hq9eDv8JlJHwSewyOT76G8LGjeFZ7n14RD1vIv2wGK57WA0N4hdejIh3U4GTjebk870xEtOl1EN7/Z2MCZROeAxG/QX4l2b7fwt0AEa4GZHFvo6FbwVSvgv9WNeo+QauqXYpZZ7hy9CuolZ2mDyl+pEwyGAE/C2T5mMM0/HY8sE/BKzBkWYHU281mt7fPsAuz7zO17L7igN/8Eh9Ul2e6+8RIR32IHI8rqAyHvM0PI7PW/eMd1F9O+OV4rs3z+Uq9mA7UkRUyz0YP3CIi24hj1N4XdmO6NkkyjCc6lzd8A7y5WuhKEG5NSm6SSoPbNcZhhz/5zLkwu7ZYzvH1Fhw4ItXxzJTuHJCQ+XT3FNBg4/uZGrD9BNwNPztqFMCZieUL14PfP9CPmTobKCSNjpGDIj5d3o0YSG5lD3eITKwVGI+NpO2ESSk9C6dMD6bZxrFj73KPwKjC5th4N1/fjCZvkirdgzNxE1zDpP8adGBIIU2dfPXCS4Yv85BIeXC/wBweBEyMnHZb0zbj1sLmxoVAwkXyA1yp0b/ZtGxIblLI6b61uzadWCePLGtKckT5KJWmMuZkcaLYTfCDw1fbiZityoESauiWEZoHdQckRgpdAV/5HnnBxf1rhxRTXJOW3g8aOEbv9SW7g+sGfBZpPd2+hWgIUCn2aPe+A0+lvGLz/c6FQm3mXKbGvh2F4V3DzJDhU6p2AtlBB+AupGqwe0R1ErqzJa+I0Awq5pnJdW29XYlkhs7lNpjm/BrDnLdsB3o68mvKZRoS/8GgLgtgI1CuAWB8sSiJEhdiG4w9u4KZmCPXnmqOL8Vfk0siHv4oKPPf87IHqoQAiOvhfx395hn2c/STcs7++wR3ps9t5+e6EPf/mCHOcYsIWZiC5zlQWBiC6ck0YRDVB/D6sBtsFzEC0XYrWBzymvZCdcoMkJef4zYikkNsWB/3MWVPWbnF7fTtK/fbC50C78oUQmdtmCKljJTmkzuiToTfF0kl8u5VfpNu7QxTYwSSmV/Q0r6+Q+8HHztlsD7JlM1W2tllFy5dEFQmyRHIFzZQudAyaWcDxxHYhF5VbtmATo4W0BWXmnGSHirfwYa9G7AqRRNx2HQUlfH4rzyLYb39Gz6haS61rk5LJhTXnME07+Mjdov0AMjNzcSkjl0a26EMDm5GWALLgYA7Sw4MvyGsUJr4is0cMgCTZQKkBiywj/XwW6sxoLKy5+u4CJ/6tNEYiZ6xp6SjIAGbMwTq54oM9FJOTDQJe+aKYzCb3cyacuyRvVKavqGsVdQnKsDjWL3LDxGKSYh/io3tmcYLCZzSP42RwZmQrxul1PohCY4aNpHDPWKKWj9/w0357PwGaQZj3GI2Y48OtupRhSUFDJmXC4drS48WNs9H8PBeLCtW0RbBHMQlEXbQjP/+Th1/g5+Bg9DxtGwcKXicMQcDa3DZOqemN8meX65AIXP2HwBtMo5tGn6OUnhlDJgCop3qmxkfL3S4DN9dvleIIFnHArkiXyLXkYlapehVuAt06y1+/mLwKkD/gE0RB5YpFK3S+TVMkifGTKdvgh1itPhBbeQQ6uRnuHSepjM+/2AjzpvW5HhDCG+0Ae49EQZWt38MX4JkAx9dywbQP3D1Cw4N8/ZzxbIUvmOUYfuMO6sF5ykW1T67Wc5SRb8Rb18+HGQIVld5VBEyO2NymbxrUYDOaiWB7maoJgDUlWfSEXoeKVRDtublU9T50a8FdUYlk0+oTOJICtOlN4pi9usX+rMkVNGvpXBvIPTHAvhP2+fJz7rvqf+D9Yu27ozRkQEAGFQyVTFR3m24fyI+5m3sGQV/SzvlZlpvTr96E/f5ULLwkvG1/pWKQFIMR4mSUDiyd+MxT0guPqu0aX+411onPRhtmbsnNuml0nqhYHqsXixlJbEsanQsRFELVNjFATI3/ZNmhKPu/dMCsdesOghD09EmG5/ue9OGe1FLWdXxGXS+NSp4bojBew/rx7q5X4jssY+P/b71v1Ci7oA7QF2B/T4oLDXBlRMEzXvz7BSDuUk0o9kOb7uJXYHFPEebSbJgzW0kFZ2S2jWoarKU6CcjfY6dbN1Cn/6S4Z7hg42okJKDP8vS+2PSrLUkSKpCkT2b48T7Caa7cpk7n1ywXZA6N0dH6jBRysJWATcQ2Unax/Ezj+Wro+u8yEClB6hha1dgPcozuY/aFEyKyzULoO9epyf90TjSeZPfS+OOFSOF4gQ9vY+Kzkk3SDIp21lPrEuB6XnIteULoNJwoU4KutzDxgXzF845COPdSUI1uUslNslHjlyxgLQP0zOmX5IlU0op5UhB/3DWgWS621q1nNV8mGPFEfm6CS/iMaeY2f/JjMJNWlc6JYBj14y6yeFyOAdVlaV1U2FO5DLQt3oe1Au0f3bLZGbvfkWOS++ujPojWspCeBlYvjmdwLN/mcuBXZ53qyCHscq8zl6FAgcFFR/U45RX0FAR1o/BfOOFoAYCMjeRDjP4B/QAgNYOleywP1qGCpSf+FpppT3ZkHYkCTk4+l18s2s8rC8tBgEoqGjm7/KpuqkN/6+2dJVvOnfq8Twue2cfFUU0KWO812s3dDnW2vjVF7itl8fxeXGOgSWrj0GLOOP1/x8dKpYdkmZ2FtIulRN+gmmffJX1NHfgOYBs9WfyPi8J5DgbkC/EVzKdB2eKimYgyDix/sxPhmqa8ZSr3xvzT40fRbk6J+CeV+jcFoBMeajJK9g7KSMtNIQp/DGUU=
Variant 5
DifficultyLevel
559
Question
Leticia cuts a square out of a rectangular piece of paper, as shown below.
The square Leticia cut out has a side length of 4 cm.
Which of these expressions gives the area of Leticia's piece of paper after cutting out the square?
Worked Solution
|
|
Area |
= Area of larger rectangle − Area of square |
|
= (34 × 14) − (4 × 4) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Leticia cuts a square out of a rectangular piece of paper, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAP-D4-NC13_v5.svg 400 indent3 vpad
The square Leticia cut out has a side length of 4 cm.
Which of these expressions gives the area of Leticia's piece of paper after cutting out the square?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Area | = Area of larger rectangle $-$ Area of square |
| | = {{{correctAnswer}}} |
|
correctAnswer | (34 $\times$ 14) $-$ (4 $\times$ 4) |
Answers
Is Correct? | Answer |
✓ | (34 × 14) − (4 × 4) |
x | (34 + 14) − (4 × 4) |
x | (34 − 14) + (4 × 4) |
x | (30 × 10) + (4 × 4) |