NET MIG stacking NAPX7 3
U2FsdGVkX1+DswBPhYs+vZutgM+HDshQ+3TH+tSBcMGuzok6rkJt0RUa4drcaLxB/1FKBjxCbfqxiQWKQNMYTnOjMn03L8MoFPX7vuTf/tnka9aEao438T2imKzu4gOu/7mhw+AvnTfsijEvDZNHVwj7NFxY6mYiVDDODG/zCUjudL90pQusBpokxGcPYFijX4HEom8uzge186FbHgZlYBIAcbGm4wouB5vA+d0YoAyfEgBADC1uXPubX7Wu/h7/X21sdpfHs1zQzSQZwiA5RXq2e3HnavKfsqLo7TdLiP2qo/FCteTDAyhUIGtJzg1o1Qg5RGxEzOs2Hmz/chXeZ0wvxkIik+1X0W+HfOOefarW+PFBND0nq3YpP+/GAW05pHVjX+wU5p3oYHKTlmeny4dDFLxAbOGLQIzGazkKNKw+z3DFJc87Dv4YgjCSv9OCJQeVRVHiUyXNwU8DzxzA3DA3GxBTWhe8+oX0sQMC7qbKr1QOL29k42CVpKOoR03QQ/YmEBSEUxdm1Jhj1OaiYD824QtjAeW1UXmSnlnD+hTuKiH6JUQgh1SXSRud6VfQnid+P31JDlrS8x5sGo0lgwCoU68VqodXkzfyjk/SNIg4E974O2QbdkUoGDO3XFT4j4TLvxLpWEYDVLzDyM8Ssf4W3O5daz9RmYzpFjjtJ3cX2rhG3FMKwhnadHDjh4Q4KKyDAD8TsWHtQWW5kNHMPcY1fCrHu+Vy6d/ZLCPLDkPM3jUgJiAyuP7+vhejNLtdVAuKFv7ARn6gKBRh5DxnpB4tv0s0utRDvbkno1zw+EbfV+roljjdaSH2YKqFfMovgmOj8T42esSMpbgxuzZEXnMT5bJJC3QBwWFRLWYMRrdVOumV6WhXBqTHAalBiG8XBVj/pYG+kx2wn/n0AWQYqe4LF+nKcxHukAqfwTaauEeN4n+c6f2IdHyO35QQ64w3rNi3jltf4S/rGeq+bkRqwPUioGS09xXjd5rfffiTTJAaN4zCLLT0HoT3mtUcpdEmrQgmCQA9X4o7qwhT4kpPa+54PJXG9m8PUkTUVEx7mnMZV4J+FeqLrPMvLtHWFU6cAbiKtoNa/yLp/vHCYgnvz7ZMxpvsL0haqREZ/IhTjSvCMMz6H95Slq9ZG/fkcnRdWETdzGI7au04bBsRmZ0KdPGmkaGF858DtSAaHG++23wJRh1WUOCJOnDacddmAzT2gj6IpYgqAhOh0xVKAWJgQcRxOVTR3R2kHudrBKIQu4XeUR83gHqCh37z0gktD+YX2MLNggxrgafLnwPbIoVIM+T1WXolHtVNn2m7Cq+n79X0LR0HgMssZnZCgw7sI2xmo81gOjGm57Vywc6WZSiaGbbbU1OjEl/enkbvFx3CQXbZDHKvxDx7A474BO73Oq8J2N4HNy8VglypDZXfUOA4D9xCeY0Ls71iFf/TKatrXdShDM8NsPaZu6YGjQZzVsVsfLZq/F5wBB+rMPTniP1WtlRXiXdqPJJ5ybD1EYOdD8XiwwdDzwEkRxID9X3CU09CPVKXAGoNhzYtCKWZNVG0ZOM8TPGIUZxjm/4CqUAxO0MOZKNyCr9YkoFK393OwihsW/SNHPOvOsDYHZis+USiInNWOJRZ2aMkiImlHOv4vqnXbnb8L0BB/o+q9IFuqzpkJ1IHgPg6dfO9jJ+rjzXYtyoBDTu5Yd2auEJ3+rLSCjtGwmxZBrtEIEKy8YLRPmK2p1Tth+zjvh5Qb/rTF85H/MzewcTytx88E8pzu0HZSk9xIE1gGfzhl1r7kqkyGqJH3cTaIeTklxPbt1l1uCDjNe9TsJYhOuui8eluyFdp69nwgF0zBGIR8Ba+iWJ3ZFvfuspBcnINnEUBSUdnVnwypqqBiP9mmm+CplL6epGRaeCBwwegys5eFp7fIyO5Nl0kJheRKfNtQ5DUP4FDcF12+JcJGgjMv7RENmEk5qBV5F8cNbAsn7Kmp3UL/p4Itswk44z623bdyatGnUKoup4N6Is4Ibmb8odSyMgRYyWNl4w28D8NBToV4Wrg5o8d2HOhHrnoHS/6QwiqP9yh6yNAh9H+UWxnPxBSSAhZUaR98QqXzt9JqN+il3FSRNsYS+8yTP8jPx4qG590jUHL/wwzHk0OIcsiqKbySdmqxcN7yRhNuUXK/iBgiNOiVsF5BFSSTpjYmpfaf5GfPSKw2ScfX3ZI2K/3yCFcqyAoyPmEBXXq62eIjG2BmWKp95a+6yPyNQCaDKPeaOWRNP2pgjzb8DCb5iSiax1HCgKfTa260MM/xri12aCjGl1I484qRTwoFakDGndoO3W1xsi5eqkOsk9drdjRoBXOBXH/IlHGXXvuUffCk7Yizft6zm9ECd5zvYgR0832deshqcFJlg2ezwp1/zIAIDnig1mMtuM09bhb2yRVfWB0h9QysLbtymiTiasNIy6Ijj61yXrEI9xnxvLv7xdwT18+rOAIKfIRIwe00PxW+cyL9byVgCcT9SgGwkVkNzitmYx2mVcDeOV8Jrba1z/Fi0YYJ/0OfKIeH1jahEBMOP/a2xJ3l1ri32HGtPfiFsP1ynsJh5oPYmwur4T9fcHvgqBxlQPlPBqZtsp4W764eEyAKNeeFDimYi2xdpYldx12K0emblki2HE/HPFzDWaX+rLGZP5EbZHvKi5modQkwYq/ANOxwp4BDN+2ie+gWDPvew2cIFgH93+SxLbzFt8xEQja+CQkp+voUrpLzTINkbWi6l2hVCrVjLEmQVZHOsZgfT+vxXJlNt1zH0f+X3k7qtvqhDjsnaYf903ThszXJREl9BA1VDyY9FJWQG0nfWYhF5CB3ygseYPLgn6op1foXwKqSn9adeMXLCPbg1rJUrkTO2YT6b88WyffvGxSX5aVzvPOegkjy0iDwAO/ThHEAzzH+AUJitZ0wG2ob4LjmtMR7dU0WCA7eFQnZrx8m94fYs+IoetE3fgj7RbbK4UGMbE3EHpdJLo0RiuZKC1EsYAf0Sy5O41rXjwtY9st9Y/tJw6mbWTUREL34b+AzaFHF1VlHFQE7CkZ7u2hfC9bF3ZI0DKhwkZq9gJAGq48xfBlTS0FXRabVEtBA2567qErs8kObT2gjMEAcRz4ndValtB4YfI6xH9VcHIA3LYJCExfB6qSxYVSy8tFD8KiQ5h3slYMcN1y6GXCQ6DNxmtNN85jUW5jzSN68emuiPOqeGuZyzwl77wGFSde4MgK7dgJzHXfnPfyvjhEKZjowS8C3KsEbbIMs27rw05u5YRyBOW6uWCT8xeQWRx9T/zXnhfjLqUKQ5iTD/Elg5yxi4/9XUu1T9anVQpKFTMm2jdpkZlntAMMqaZwebw95rBIpQSvbOTDjnKA2i1PYZiUQwaCe2OrYKZGcC+DkUDJaDGb7qWIeVTzKCW9C47Gx7AUBSMt6hPj0503Ru588oYc7jwE20HvbQqMrcHmvz8CGw0Cm7J9zxWsu/7gnIPJVhgDgiz2Yl5aR2G8Pi7kOPsZ+EEvtEilvPpADZkYkCk3+cNIY3MQWDhX4KClindMjVuCXjfVf5e1R+JKy+sfpnT1y2pmohfdE0XgUHA1GCUv2udiF8EcTQeUIe+upUusJTS+dipwsdAk6CvtTB+WmIBlZyDcE9IWvT8TchLKjqekxaA/WXKnh6JHRtST98ZK+UcPycSII/bEN8ijMzBpJZdpYZMTahcrsGiAW3PVJD6p4mmQPMJMpdpgaCOuSWyQAzPj49AgWZGuEAQzA8VB4AT5Gf84nOhk1qyxPkQJfDokAYdSiVho0YIp3tZqPFgi46bIHFwoa35A1K+y2FwsoYf4kRABlNE6i/uOCw77t9wYEwf0k4yWoGJC/IoPTxG9MTJQfpGU0EuzPI97nRH+AB1UCY4Bq18pZRKm0fB7Khr+PYA8tShL0dfQg2+k6oN490RFidRO3cY8Xed5nzEfaqMmlv7fAcuA47LycHI18ekM4Ib64AMfxFkB8Cef8IfRykqtHxEh9nl7GZdZ1Qf51nlioKgqPGRuuQrVanQ0K+RYfofSekoZhWO5QXRNZ4V+WwI/0cTclgEslc4s+LBPxPO06bFgE8PZVA5RoAz5RD8XoC2cOG+HB6x961e+UvBBA5BEfUNZ6vkovidcR2KY6emkW7MdjjV2SZydMLG3RQwgWZrNmErUzEVLkfmjL5SMDByhmvXh7jztdZVZ9/2ECnc8NFj+NvxEQLU2WlNL3AMAdfNuEdT894EBdoAtE9eCEvOhXdagRphbXXTa8VGPpqJnBL0tXf0EbFVUemzHODvYqsOngzPLDJZU3iJ8LyYtYIBvX7oI5ItGmy3t6gr7YJHXNJ1l+BzWz8TqTwYkTcQ9416xueNuwcobziENLb6cgY2KhD04fXUuE+TmQ0aLqA59DgOa8gIQzLcJqYTDbZ4Qiha5XUnU64ETLi8lW0aEYE0gZSTHkpIKy4iIbPu5BNpqd7Pfe1kwj2fIm6t+YOMak++eg0IiNGWSH/67G91ZwqnZnfTZT3b6/pQ7o9/ercMm28Ykvjlmk6qTe0g0f9MZn06XDjPiV3Sg9o7jXR8HJ7uFSgRb1mxld4hQ+Siv2JcfMW+MMy757we0jiXH+GBRZCHHVRuNgjOrgK5Q8J/9NsZeRYDqbhuYTp9nrMwJe1rk0zT3SeuGVWolyJDtzrL7M2YZbOn3i5n7Zufzw0Z585oaSphgSLL4PtQSLlJxXxLCHOVc6RoodB3Tt68SngXgROkRnrACJZH1DYqDvxnw18o2qG6DyzkdoiY+lskhXB4RDtkSXH+KV89WTk49Adk461gm7OtADR0HrbhQO5tl9r9iDPWD3TrM1u9nIaky3mR4Ie0scvluUxvUsMoJWfpPubv8MMsmfZwpHK6WiwrIv6K1KQxvkdApl+G1BG+Hh9AsRtJjesRZavGmB5Q06CzvfF/cq8KYY3L+O8tl2Dt7gfEmFxfp0b2eveGZbB81404f5WkILHS71Do5gISRLYTevfIRg8vBD4fV6lHMkcYMcy2G0VoQNXWMwwaCdvaijpcw17Y36qHwK3bEUlckpdlzTp6N1zgS9qAHFAg0Z7dtkQT0eoH59xrZi+4+gV1MiwD8yCYZtIofiE8bFaswPIQQI4cwVaJmaH/7SoFlg3Qeicjiwh72T5+7E+BLY7w95N+rxW8rqS2m3Ja9R/T0FSkJsdYpyH4RpyrUAD7B3VXjttsrAXsIEOJoQErXieEHQ2HSCzu0IixotpSmB3JwGgK4/pC6umj8rxOh3p2gK8R09RzFw4QdKXvGiQjCrijMKW9maNMdvkafOF8CW7WCC6ek82X7epiUivX3x1ggiUw+1/49QE4rODBo0TDpK8T33CQ0QlS7kq9x5j/1prKBqkZCVUH6Zhz/0g8r5OK5LYyYHunS0/Vx5QNK5UsINqt+Ltbo9lJvfw6HYHfzUB9j7uv13O4iswXYWLq8IEKxwoRRETFJXUeSbHTp5ngvFGHhM52Lge35+JIvEAjIzLroRZrL3p3U/N0mJGCOKLiC9mAWkThJYk4QVyfw/SwhGQmXRRwoCjYF6MNJ5mwHJ0TKH8OXhqnmBlg3RtUFiUKbVNQaoHLuVDkLMd897Vi5Xa2vWnpZ0F9eQ9CIYd8IOvypHCZ21rENYPyMCUriKyydFXFaz9r/b3kqJF9Bqn9AyxUFUjoC5yIdFLgN1SUxxvqnyAB0PIAtL9/YzQEbKBvuTKwxf07FDwyOkoRatVz9zIfXRPKyuZywo14v7AsgI7hsskTbGajk85ffli9PWVntiNcUhBJxNRYNJ7qTS1YnNIvHNMjfcHX7kAuE/EzyV2hlOgbi/0VVBtygruRg7m5lJoZXLi7CScJRj+gpJn8O3glqizIko20bTC06W4nqTBp1azM6qTNgJNR3UDMmiyy3ZX21oJcJ1j5QGl8/dPLGK3xkqBNniKCLBRgJW7vwhgK9OyaWmGeb7Ic2wo0l5EQA9w4HR0RAmPkIxZHVSaSOlbaNzvjqKSPY5x/NX2i/XEz91bZXcL+1dhnUVLmpQy6x/r/BVyGk4T9Bxpw4/1i+0dZ+ZYNuMzZjlv8qovraY8AwY13GxtQRKOYeDTWQJ2zC/mCa951adYeoRmBcQ2DvCcosHjFs7KHEk+KqXTdD1epaxmA3TspzUSMGQIE7+9gblRnbnzm5UDz68DlsMmyqE5FBzm/Jcj/ohpmvWiD/tXrWbI+7rihh+oxkD1DoyOtlglIDAKgBKODh4qYYeDR95R+6mwkg2y4kCcshoiJ5c7fI4Th6PezjK5rosXfv6SZafupJIWi0VdC+aKTTFnv9s4/3nunqECUmLyVNmwYItabxlX8zcUmUb+QFEs0onSNcMd3qU1IHzinPj5RvC51eNPo1r3tlbSKBuyS9aun5xRdx3+SVEZ0rpu2dem0BbyM1kHFUa3tkczSumLfHkebn9mjOUyPhtPclttNMO1B/gSTz4gHfYT+TDH7CKZ2YJ7oNZEMwW1s+DqiH+03fzE1upLlojA2lRfedOolRVWozEnhy+Xkx
Variant 0
DifficultyLevel
447
Question
This graph shows the number of cockatoos in a gum tree at 15 minute intervals over 4 hours.
At which time were the highest number of cockatoos in the gum tree?
Worked Solution
The highest data point is two intervals past 6:00 pm.
∴ The highest number were in the tree at 6:30 pm.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of cockatoos in a gum tree at 15 minute intervals over 4 hours.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-NC02.svg 546 indent vpad
At which time were the highest number of cockatoos in the gum tree?
|
workedSolution | The highest data point is two intervals past 6:00 pm.
$\therefore$ The highest number were in the tree at 6:30 pm. |
correctAnswer | |
Answers
U2FsdGVkX1+2V66TJOEynaOYK+10ixdAjK57/p686n8PU1yC74Cstc0bh5M4dCUZMiHz//MygGHl2/TI+X0UDAat0lwqoi5FQo/sx+2EfAbOJPMIiVut9rCVI2EZMYzCljCpvyWQGdNa9SkzGpiT/ij5YnZmsjL2E9AIOFldf3CYwmJCs3HK6QyMkJVHxdJL0ZOLg5wpqaikUOL2ZbAS6c0iksGudc4YxXifd5XVjG4cQQa8kjwuohghYdo7t4oIDDsSU1qnDmI3PU5T1CiNwulLmocmnkfExm+p3mdHOJph0m10GZpUIr6WqDpl/EdIDMBviRHBID0RNWfVleDx7TIst33f6wo/urMM+rhpiRW9HSIVNtjWcUSfuhyGufgfAZ2wcqJzwAaWT2mkagB1Tk9ndDqA+C0sutWeg5gAJER3p2JBHGO4u75tgdjyNp3YOhOnLehJUcZW5GlIjcO/MkHGOV9xlsiUmTDb4V1u8rvSqIUZCs+FQvi0qIAYzpwqToukSgc997zPicETU/FAs7/gMqzWNWmS5oA/12LeQ9Ru19lb+q9Xnd8IwfI2MrnntkYLkngMa7x4biKJpPXNm/gZs6VxLTAKiFTctvZCnlGU1dBsERcPCCzca71NP848r4L34gyYMxdVVIbeZSmwPxEgrX4uNIwu6CIIPLrE83G5T5bLpPOUG2N0bJTqqe9Zv1dTmCiYsxBtIdsU22AfOLrnI7gus06Cr1ZtwxlwVBCymtSEd9ULcDMnHHpuXYUwN8wvgGiw2WDwCZESJm5yGZTEBY4rWOsvqhcep7PSGzz7i2c+9chK8hzunI+2Vphi7LRGpDFSvV3Q7mcfJxdpw7qZVoFRipJV6vJSaIbVnvf4b2PcvOQR9MUvK9hZynHWczkEk7R8yEaVH18nhLSexz/VLpE+FT464Pen2svOQC+V4ZYwUe1jekUFpx2x8gVXu+cb1DFvsr19IRQSRfnLA+6xKuPksl9+LxGLp+kgVki64m3/o57QBwrOAYA4eoODPIrwyZqu2tD6n9eXd6sVN+yVMXTfnemj6Uk1mcKCJyyyAdnkt4S8DSIW+g0eM5U4+YWfcMLzIgUTGYif61K6YWfYaNBsBROWC7iJFrpT6J3jsZpoMEzxYgG9MtHoB4GYpdtFzSAt1XYOJoDB4HgfzlYURSDS5ooLxGhns2JbEx8X6bBCuwcBxb/jM2c5B8972TGRfn8hZo0A8JbKos8/m+q/NkHEOI0HCwoWtOlUPohjV4hycZUS04LNw+KDwksOSCsKneWRc+ZeV/1KuOZk4pxxas0SfpG/VBvBq+OG8EeeP0hq1lzHejhEYHILH7Vbi/GqpjreGU5GK+KhFz6EwitULUnoZ1q8E4iIOMFR0MHFUlihZa1Y6sVTtIpppHbrytnfZBruJrhWGTiuYiodNRfWrjumB9XUMbXKTt1Vup7zdsf30fPNm/7T8N0oEjHKocRqAAZeBxvbfkPWr9efMujez29T/WzoRhPZTbD0MLs14EoznXspWkCd8vWBIPP6jhfmsdkymB2fsG9xbutHNT5visS7CaFVc1703fNVHjcjZWmwxrc1nULD09Uk+e03wdWtYCjmRPDNSNZI16sPlXR2lft7mawYLjtEO0T1zHPWRGYF5cZ6kZymqBq2uNQRObUBFHO3JFDv2wOBrG7tRb2tsKvM4TkTx4LP7mJx49faWhjoTdE880Y796UUdcepaDEYl7j5fw7ATOaw19uk6Bwn7C+ClNmwOb3Oaj5AmxqxERxYvVm+EY9Td6s04dei+M9Ku3zIjlkTkAYw/758/Dg6DALqUhV2sQt4M0zrJHnq6LwDXag9uu1PUoT55cah9e87Vu6h9Pyg0H1hTTDPnXjluM5wMc4FGLKfDenL01gh2tcpOLrBvwCFfk/iyq/IOZJvfp0hiyHlJ0THfTm+vixm0RhBqX8Wj8wQsjhc/VeEKlAM3uP+7io6bKPu9D3csgSrWeYNCXbnwJsYNSABLxep0MHrwHtsZcHex3JE5KZHojRfHyhLzSvPq3T1lKPg2V1/eYdcmlAFG7Bkl+q6SfSDDPf6M7WBSu0WEu0SnXTWl9PAHBBQ9eEkpSk3eDZJIGu0fX9r5hixxwZMix26aPtG+LxK6EoWblO0HZPCD2X6OeCb8qaf4UK5r6qWzfVedIcHhEqVNFWijXk1owUhUi0fmAY7K2J08qpJWlzr9+F+FcW9dzSb/p6Lz6V0DFTVRjcTq8gkC5H4EUx0KScOcV7GhZ+B6UVCqiTSz4LfYinz1V7WCU26DgeTwHEkbjhrWkJ3eQgMXmRU9RnxdbCK82sykz6NDw1MiYaiZv9tDkEAlMMl8tAGPn154dTaixaJokz10kF1kbTM8tOLarozx7X8WG6SvqCmFXj+g2/sRlbcejM9P8CWaG86mKfdoo3ZZH1bUdG+3erjg1wS2wZZ1Cgr0S6EDruX5mnOYIVkuLCfbz3UvMJua80EneKTaK4+4dot7v1DdJdxsxk0bpVbK6AXSmOPDPUNwq6tzzd6CjGy/Uo8Zz4yHkRZvuRJORzuw1YQLxbYVsBRJBgoO3j0N6rNQID6JL8IkNgv7N45U4iag+EE67Hxap0LhkF/nMx1KCEohoF/9WJFFCzLK5rncm7u58r5EB2qEjtAypnFuG8GzWxAD8UNLS3Hbtf4yEh684ELeKtKIdqvEEqtWe2WybRJ8o9d8U1BtCcRq5GnF3pz2k79k6MSWJTcLQJIFPnBVHNe84oA93taIiyBFL1Mi5F0CbbXkI/EUUHzxcyx+UgtGAgjttZD7Sv8hdWv5NJJpme0usDBIeyMtVJi9o3SI1p2QBlRe9Vo36Or7O0VY0mtXDmUClP+HNxoIby2cAaP7VBDaliM43TMjjC67jye5SvioXyKDJM4ZnpHY0m9rnxDPwWWaeKH/nZxMKK8NNIlH+Qtk3zsC6LQ5aQDttIbKKlsg/DIYoIKF3f4aji5ujYfMnFrXgiKFRt6YZUBOy1y/hyPAJslIaIe1KY55MrUmqsUm0paXT/GDWhfHd6vLUoFbLQtpKBJGlSUAzJDezjwHesd3uWGruF2WXjHWpc6OKULCg1ODy4SMWnIWTIf9cO6eqFldNcXZoKzhO4/ctM9p+B9XG0Rxe7b23TLIYTuAVKOpJH9n63Oe6glZCz0uLsvR9w+JhnjpVSQjXCrrEYULuZ9volwneFLl2oxIvn1nQml3gpRY69V4YRsoUsIPzWNXMWBLuwPHueThpf9lU1y3imYwv/Au+fgscZOKAVFJHJAtOB6zmCdp8+wmKbUbZIxw8DK637f70mRMbXGB6VjhiBqc/3a7U0/h2Ut+Fq9cBQPhziq+DogtX8QnfMpkAatE6HvwJyzrNj+11bynLmWutrZ8vh+SOkpR0TvWOizJy0KXb5wlerXPNCmDpZA22oQnGv7sxI75Han2midN4/JzEpLTQN+b/kLLIBWPbrwZVIEw32uI3ZwJJeg+9ejZsYyMGTswmPt/vJRZHzB8m9CmZdq+yi92COWV1Xp6rzUoSgWgo+SRp/z+4tgJgvr2QRBPdbF9JIOrcot5oXZwntdJMJ7O9sO1KRPDziU8XkXU9eDsNxGR+BCqb9++6Vdo3TF5dfrC3e2zMAB2ibrWI/lcbJ0Q/b010NWKJYCAvYucWueBBQH2pA3M8pCSmkTrUCmczvVZHaU+XQZ13Nb/HyLygqU2NOGDiMPL1KlyidZHfaYxCmzjFU5xpTsq1lmp3QMqt0bdN4h22wZ2HDC+L1wTbTAAnUn00yF66Fp88J8saCbvpJHF3vKdWL4px9JVs7BfDFAw5sK9pKFUbrG9rqw0FzzKEAwLcNDZrzo+d9Prdz9Fht2fldBlNAgQKBeCe6i1WbEM02EUUatWK/jxuWvDEQdsug7JmvDBwo0lUVxFw02YGOvJJrafTws1NpysMubCDLiHs+EmRj6t6dnASO6pc12Zjp1LHCnpPhg9rRnJFTxazEktzbT5lkKkpCPiqgNFIlv1FIgHEevnLQ/1iSc6WFnzn+3Aj4jum7dlfPQr8ZPRZFmSrzmzvpFqDKe12hPmAD9UQ/qDc6nwQTYhzNt4hrfJpCj2K1OrJyzpbFpN97padQKip8/Q3RpVW/inBqfYFgPQlbqhEIaCI+eZFzAsdWxPfERKYASp2a7Rr+lq5I29PqYhW6Oa+X6Sa9KW7Lot4Sw2bGCmcZr/Td+WgrDIpRtXMhWTm82SHJuC85EHjgJG5kuoITX650SSJmKxkW5JdACp76gCAmZKWoHtHdyaMl8VmPvkfxbHk8GJL2yGBKAcU75HF/3d2KXuS/PlXKdbvthtK0V4+8laDExiJU+fBli+VIg3vOvU+qr0+HYzrkH/9tUclNtXSgAIHunG0SVEqutAlDz2nAXpTANNvrdCrgSM60EL2G7W+ADTOV0P6oxaAybGX+IjOdlP50vSxunf1KBqDiJCwXlTVttZTzkPn1tcbNVmu56PPdl+Xtr1owkkisE2FncaKchw2usoOzHU9VCxByqoaIdGQx9OcWU4FW+NQwdZf5SbvOVZyMeg07S2NPPaz5Y+YIlGHd5AN6b/OM4Nab7b91IfT8W4VPYnRWe9ZDu5e6/CSKmZsEhgf5/UwvEMV8Yck8qxRft6L/gjkuXZIhevstMpyCamp5T5Ub0SkGi1GEDS+yGBtcCRcc4fPI3m8qYe3IqFYJTRj/3bTYZgbtFixsAL2UCIKfkMzIeGzQOzwQfdj60dcJCNU5Xsw/AA491O0o+MZI+0RMyshHHReBVHJVgfltiI9psGbdOYA3jJm+yg0+juVxe6W+i4jrW/5yWfjrMW0DQ374BaH7sZdCQirRPQyiaeqGqzWMHLXFbSyjSFXYCikeOIMfP04G7Yj+K9JMl7n3LDner0GQ+uOOVzQAMjBFckR+UoHBM+jLS9BnwRX1LrQhPwGbyCtDzj+hnhvy3UhPXWqXPC2kxyWIFhmv5lFADgklylj3jLZqJgQDcdt3x+JW5sda7VMGF1bDBriurz43uKRfqYSosKt64X1dYKy0Xv7yt2F2RIVVZZAQeDOHrUgPnueIEmwQMlg1C+wZBdHvuV7rkaFUSNfq1jAVU2zOA+mrOnkKVIr0oqSiQyvOegzYag69kPSmdfLV9oKk5mJS0LI9ODgpAMnZf2vEI0k5TZD5HvT2JjSQlJMsnTcz8otPDUXRZymxpF278AhLlA5e6GxHHgZ1vEE6stXDwx+ikmQeODqN9wfTax556KvrZ9yKvJn561JVI881efXbo5ITHa99svSomKbGUMILvaueJorRdIpxJFsufwPdAV5gZ3Kp2Dcn9T8jdP70VvCnVg1H1zxGYlhyU27oTkhovhKdhxxd8kToh3ru5HZorvsFJCpw8gw+I2eeWVYg16JsYwOTz0CaEg1NXUnzC9V9ugvGeibZPlO771wS6l+81j8+g6+52qCUgx3b6EEWdRvjw6DN852Byc1wr5GmIfcrHedDJRI7+MUMcpqb61qGZEAwOxbUEZo5BM6PvrDfQXBJfCbg4SnwMjXLnNSkfPtTeepzVCnmMmBC1P3+SNVA9YqLK/sVypZ1At6UP29+wlpv+OIhw6LiQ5tzS1v4BfYbz/XtbhuRgQlj7lpuFLo6jD18zSRYZDnSLOHc/1SNLOv4kd2qGcl2cmhlZOHXeaWuUC1aVdoSV6cTT3jBFW0y+GvAO3itWLjzpMycMroD5xZD02I52pvaly5zhutqlMzgda/16BN0xS71ffGbh+5auwGGk/wfLyXkHgMZob2MPEG6dOjSnxxdSyvsSr5V2dC8jXkWLKCAqLBLCmCC7Tf6hZ/5eAwa+23DXh32X4/sh6Onmn7X7Oov9JV3XK26WS9ouAzWtrCBxs+Az4wq0xwRecWGl2J9KzqOBrvQ14oICIzdwU+Lh/hXl45p1h7jZO0Od9pruQFImdMhOByGPtz8p083s4H/NyDW7NWzVaG9B13MuB2J1MHNEi+LJC1IflYUPHUnJ5QwMQdAOSdBzcYBwovbXbKvUIZJUTcwBB1NvSIMulzEhce+KdCoYa9k/ecSrMsys64FUcwE8cAxE21BpZpCcJ+0BUhdGh88YeOBsEXHjVgG7Cfb1TRVJgJbm3FhhRmGM2ExCh5Fzdu+m3BGgm+XpaFjZ6KFDb0gtCG65Q84w15hzh7o8iZhzU6u/hHCJkPntBf73c8/baT7ie09C3NiPb0G7OK1deRf2qHh3VFMVD5VRbD8qu17muBB+CvvO+ayvFxGMWttjauV98rGsGh92k7M1W00q2jSQlZrYdyDWTFl5XE2Gz4r+Ikp9O/gzVXEJ6n7LJYJ/w0gIV7AGFNoJ2QteCpIu6IETbeLZYFBvDsaHJIDmLj3FjpjPugGOrBxBclO/tBUKtXVGhO74qyoyR/ikkbTnW11s5B+qFBqXwk2ytrceqpuUSzq0dF4SSr6KPvqoohj7SBENSLOD6PImz3zTejgtlQWIjrYUBV4bw0RaGyJHaJmNlcessXZL/IgwgckMb5BM8F+F6/2ZukDyUZamYevUclr07wkoWh7qX2Qg+7/jDulJxNJtAIl7J1Rre4T7nywAGaC/gMCL6JmOfFgeh8xQ2a6jaX6xM88au163NC/Z/vQZK7Us1+VS34GIBTkHgdjHY1rVRRzUzS+dvodgSor5ERt/ejmv6y954e9o/mRoPIww3BkFBoivAGB9Ge+2vLaUfNCbfLSSvRXB3XmNTEZsu/6KlUGJ/AQAZvCg9TELfyMXDHOTxmgl0lJa5tOWgnmIBEPsHXTRI8VFTtFf2/ug/1kMLRNXv+tmDg3jFeJ+Stu8WymbwB6DBPhjTWOK6me8Fc4v2zfmGs6z69gfI96ei+p53EqQwNjVfs8r9THJFUgp/3gzFVsbN67y/b9ayhhKacsGoAVWXmzYgTx/mHTQ0D0b1KCP/rN54R6LBvu+cWe8BLjW6gxdUzXGiJe50tOF49imSbQ9yOAA8czbl45SM92EM2teHh3VHlmknVvSYMjo7aA3IIv0vDzRZfR2
Variant 1
DifficultyLevel
447
Question
This graph shows the number of customers in a supermarket at 10-minute intervals over 3 hours.
At which of these times was the greatest number of customers in the store?
Worked Solution
11:50 (by inspection)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of customers in a supermarket at 10-minute intervals over 3 hours.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-F3-NC03.svg 515 indent vpad
At which of these times was the greatest number of customers in the store? |
workedSolution | |
correctAnswer | |
Answers
U2FsdGVkX1/keMVbOEEFZvdUTGlxnthYe8awRNDGYtus02yCNxNx1eLFOTknpvFNVN/LM9I4EQrGZ0D7cfC28fa/iHFXw6cA7cOL5WDRNTO16QJ/n5oVFeg+/caIJeGS+rDaFBt1mNN7gAwFl5BRNBDA4SBMnrF4FzIFGmxQYXQaf3aArdelTryWsHNAlShnaKidv7Iytb+F9CQapaqgmSARqAh5cx7lUC1GeXngXjKcqefdxQyhLH6Ux4s2srhAvY/PcsJ+JZtiAL/QExO9UiW2TYDQLG502wmV3aQFgsAq9tUTqt/gchE+Rv+of37xFQ+P5VIcYqBNGPxUC3CEMdBVfhvgs7IqebvLM0vvqGoOptQlDd3Zje+fDDG4P0B/XAyeKuGYD9cWxejZD68YZK1EQgNmKTbOgWqxGXuvm5pkhdP2vsqW2M2XLD16hPWE3KSvKtPD+6xe8wkWIwS3MlVfgAAYMki8El+We3xCPOCWFTsfLAatAXMCCVLIzShA4JFeU8F8yalufOypSY/7hTnYwGa6HYnldSvDw8DfWdnfpeqtDyhP4sqkIfCXM7Mvd0KZ5K6b5l6aA+sdFtd4tVcmKuAluvab8NoxW2C73LuNPM+Nuz9v1AwRqDt2eBFOK3LSaMiABDy1ZRQiNwshwHwRXYO9RdjAWDrIpaZIUg2bzNyFciF5JSAo/fTtcpP8mcn0tZs4FYuijDqSnXFE9EewCBIK9Unaw2s/a/PjDLdyczKQa9mm9dWQJ7I9RHfUgIdROsOO5KBJuVVrsJ5aPReQcWsgyvWM++1jKOn6ZXZINfBzRYV22G0MpooMvN2zbkiHGAo20Kj4Py7olhCbUsc8lTTwfo+6v9U92R1045E0aNjwMUCFNDug7zj+mJyogIyMLz/sv1XzG+6vFeafTGnWyKfuQQa2bZVMNxFQhZ1WkbP2GjrvOoo1phg6b1w0So6sx8IAIahqloMTlcc8/k0FuT01RabLvHiDTLmLbPna0K5KkjBM32ZD0t0z/W3HOtWUnd5hxEk/p52vYjTJ9eccupRnFoidCVs4xGA/3MTw1b03rU5puDFsJiT+wZAHqggGFI4nUBNGcvxDrhwEFuARyxxVZPNEKNZ3XLZUt62/5OotkNMF4B3NGWHNzSpyUW6pB48P7/SWWwiI/a6prkD2xCUJqsBZgYAeKhUWLQcxcLRJaZWwQL6bIeAnhFU7IpirQeah2onfjJ1U7Se1c+KHLGigK1/A6u7kE81J60lLXqbWq1buVf/6hQmhNAGvj+K6oA8gPoJ4iLtt0MDnfnUgbvouoRITJ+vtXfQ+LTBJePe/GzI7fAo1zpsx0uyTVai3sqPY1ezeRLjh7agaRlog+DvoxQrIvT9z5yUmZQMWvM/wVkESIVR2wo6eiyPEF6osbuE5KzAvFU3/bbSJVIqOUPrxiP4/1yF+/Vre4D1y7SFxw2qBj5GtJGUEQ0VuAeyayCxtnk78Nch2gTrDFuc72mADbcnpVDmSRleurY/8jT42su6t57dFzAfJ24tLun8e3NG4ToPOsRVzhaqSGMDPNWntykakz/5L3edMVjCVNuDWknWZrvaPqDi8K78qouarCkcmiyK9x24YMNerNPMXM1Xf6WWvcx5e+Yyi1NvDJHJZAfrO+W4+vK3nl58gqUPqI5/ohZP3kK4/Mr4ClFQwaa0oOSqR3884LueofIFZRCwfyLjAt1RqO31c3XGddsyI7Fnu4zWv2TM1y0Lq+o0Le5+j9y5r5RY4kO/bwVO/uIqqdc2XtMM1gSnd+h6d9Or5cF8UhKRVyMe/d/KtgjBr8An2JHuhn6tnMItqEft94I/OO5BxUZz3okSsGxqglh3ZWTocFAdPjiQU3yRmUWNAXL29eNbpA2JNDkaJ+Nxl0hGbRGL/blcTzxDLzHYAPOZ6hErYvGdLEeqq1z9qY69yq6Jcu8xfugdAocMStOt4mV5wnBhyFi6DPZc91s98yKtDmxisC5ss/KxLYppaK4weXPQIXCOGpUxGCFyVXmLKJk1m+saHVbp2+Q9MT9DJ8f8cIvSSVW7cbN29qVSP5YxKyYvbEGrEkB+p/kA4oOQopGFw09gUYq4C5jrYSD7yaDM04YceB48BY3bHPSrRcKQ9oiiJeQvjh/PH5sf0mmhb88bSGiu0DuJTrZF27nXJ+Ro4blRF7OwY/LI0tvfFPA==
Variant 2
DifficultyLevel
447
Question
The graph below shows the number of people in a supermarket at 15-minute intervals during a 4 hour period.
What time were the least amount of people in the supermarket?
Worked Solution
Each data point represents 15 minutes.
∴ The lowest data point in the graph is at 11:15 AM
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The graph below shows the number of people in a supermarket at 15-minute intervals during a 4 hour period.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/RAPH9-8.svg 500 indent vpad
What time were the least amount of people in the supermarket? |
workedSolution | Each data point represents 15 minutes.
$\therefore$ The lowest data point in the graph is at {{{correctAnswer}}} |
correctAnswer | |
Answers