Question
Tony is making a fruit cake.
The recipe says he needs 3 cups of sultanas for every 5 cups of flour.
If 2.5 cups of flour are used, how many cups of sultanas are needed?
Worked Solution
Strategy 1:
2.5 cups = half of 5 cups of flour.
⇒ Half of
3 cups of sultanas is required.
∴ 1.5 cups of sultanas needed.
Strategy 2:
Let n = cups of sultanas needed
|
|
2.5n |
= 53 |
∴n |
= 53×2.5 |
|
= 1.5 cups |
U2FsdGVkX18oE0R9CkSvJnwKee8WcBs8oUFm/kb6k0/20F10DMpnfJdiYGcGbo/hdDEEHDN0ComjNA9ElZEiXQhGZUcgYF+NNAo3D63xgKPkfEl3MxpOfXv+eZSO43ZLGdzq74/oTvD3vH9BRHW7VRFkPB3vRQVluHvDNW98U7Y0nmREbYI5le753g4QwF8RRgSjmHwKcSYexwvVriXt7k54mYA7exwN8Uz5356ytUWsHyz8TeeuBQydnh3PBijHw+smbOa0BRarwVQBVt79bzbxJi7bC2hhARJlHTHX8KbzPOw6L4IUuXzRjtHAcotMne+iuJhoJEd6ma/GKdjJqdWyw4Fd32Gi6Bj6A19/FKUyXIF5Coq8OoOUl/54PuSc45Usz0pqOLq0KQaUqcdpPXozO48y4rsh+yY66aNUhxbUe79R/SgPAO2RdBRHFBb/bjNBZKtWUKRQDJtjesK8UXgE7oTdkzIvs57Yy7CyvkaGNe0dWvhs5D143D0Ap87HtSV5FimdEnuWN2gDObZ/QG6ly4DAel4V4CXNtIQ1NPC/YSt3L+zYhywzAnwN4jhyic6pJulfKP6BEKPHgrPBpr+/vVmR/hFJqBdg+QUC99wEOSKzPNUVMH714Y/sU37ubSsl0aevY7cv7Rohht3BnFJ1N84RJTNmyWLjUNbwFgKAiXLKOpOJn1HforNh1IZg6pmocis/SaW7aOjdP50YuWbD8lg19vffpAMPnMTQeehkXhjwJa97AWrLGqK61DQvGzPfIl/s9Pfj9H6xn4ShAbu6PvygIa0mwzhrA5c+cN4ziVPNNEYLxMcRDR4WI/c70gnUJ0k/J7cRvo0gNKplC0MnjGYCBdgxJh55Oc2/QETWUejG5V7Qu9Sky8cwRgEgKyz5Uo+VKkzUJbd3GZL+RAnCYju4Sv8tO9SUL0sOwMygN30XW1s9pslE5OCo0WBC7NE9Np9EMeK8mwncq79RIFkTUu/+VdMsI9fB7OBhE5WwVP5O0uZnye92l52GHlJyKKd2Yq5nIf3JPeq0b0K0dVm0ubVTbtzKkWEYoy0lrhX/Qc6SbRcnELQazr8PP4w7IujicaNZ5PkB0FeuaR33cKIvynrMxjYvQxBzQypoUOybHA+c9kmjL6/GYqqU/Nxue1dkhQMHsYZRFC4R8NGXpoAOXmEANy7QbnCDX68p3ieYhPCOPsTR+8hITwsnME3UVJcg+2je56pPa1vuJlspspRdEzg0SKN3QDtHb1ylMbm5/+SedV0zQKyq8X2+swHemkXNTaPb4ZYwgbgQFe6cwXmjtqr/xwpGuibYk7MCnyh62FY1zBYhosCVE1Kz/s/k/WEPx+4+IHfnEbfmKZG9MAocJYzVfJi1R/bKDCKKlxk/dijQx/oRlYhIp7f/jVIr6ss24Xyol7BW+qHiH+R9msJv3ohmrvS6RKs6u5s1oTvFN+3YbaLNwW1cW2c3Kxa87YJ/K/YVWwufInMzj0FAJGg5TyoVSmbLbc8ZKlwi19iUvDwLcATfiukofAnCiz2hvoURs3dr9h7exWsSn5qQUq328rckx5Q07DaGlzNpgWjEEyqcfqgVK0vHueb59K1YwRfuR6PfaS3TZwM9+00y/02HnWvV7TIodyxMKmKACnXfWZ0Kb0kgb834p0Ic5xoSq6w7J28rB02glNjbWtXFScbaiuq0zL4MtTTSH0x5AhpZnbaQjkjxNxxidWDGUuUoGS1H9bchPi/soEYrTuI3hr+z3Q5880xkLgWoHKIMWndFWGC0W4xWKe9gt9P2/bXUjFfrAxevKRfHWEQ1ZfNsKgAnOyRmTER05KKvbhfZwzjepCEa5xP0q5GLsWKVyAV5xCPyea9sdLeKj93hhCySzkmQMjjsQ0PhpT31I9tNvWiKJ+wvEVhIIvv+Rcb+m/seodWBEgNVHjUffgO4XkNPtNXbQNdfNzg2IHvT0OG22ecTXXo3VHa3cS6ftTtY5Y6jAyTgPka7Mkrw9ka/RZR9NflguuT2LpxZ513qN8A3GPU93xnBurYqf/nG0N9UN/oApsufcMCODtvHuaF/mcydwDZTw3+erGs4EmVKSUozxYflAGLGiBeTGBLPud8ta4gd/O8rJap1tmkGlvdCa+0eAQm2kn3Vq1yFBlMobUSJPkTA8Vuilfyv0dhrWlrHY427ZoR//H5QQlNnlSBsB/b1RkaRQ6RFgB7ojlbsK2qrKq9TgqMp9LGn6yyslfKJARtgIKLoCLhe7JxK0zDiksXlgKSyvVtaGiSQXBrQS3cbaiSLvOIqwLzqiD+NCNC39UJtJy2YC55S1+ekIa9wYi/FkV0WFWwdL4hEbQ+HWzobvpF3o6FhB8kuJ2wGpwHpYs5cw8T73Hn1Z2CmVD50iM2C5/133yZRHfn/6KTAq/B3mlE1yOpNRdgNlvFMgFIsEcHyIkNSRl+ZwZ+sPkkjFBCOqmHr+V2esBBThl2ourSQmOvkbiM4JWkZweDocte0GRiNo9a1CW8Xi93LnHfP5Er03eA+3xR7DWzJUZew08FWDKuhqrdF9shRUp3+zzx6mG+/fs4SCZH3jfm9RlT5Et2c/15rgyHDkAcwxtOe79VKHv9yUOKkGXNhz/6f8ES4KS2VOURLeaElOWJka0zo+MnEbpYtWImyszUiH+tmqdA+75hLpzqEzlSpnJb9kjvB55hEyAW16qXG293DDXCQIctKHDLaoVK4EIQyQ7+0MhvB1dTkZ9L6iNvzX2EhGCZGISkmtsZqVqJlSlmvVHVYSeZlAZt9NzakvCmjhhZwmjUxBj1RcxVVMCyVInd+dm6128SsNnKbn55sZQKdKN5Nw+NxfPCH0EWnHATH7RhLwS47gfk/ddSOWVJ3gpPJPXYVIyqACbRHwo6AKBJJyIl5AyXNg/yqJ1EpNhPUSQ9UOGvcWtguIizRCyuUSKK7KxJdmmgiosq1/ztTXI0WGrzxSjwTJwShRmTcBaI/QChLrfCTN/w+++EfzEEyowvsIOeWsPh++5xSWzkOVKpOKSV4FUZeJRPU6h+EUMoznklaJe7g32JfzthyoF2NeVFq6KJGaYIftEPbNyySmwwfdSTkgVd9E8yQUm4Mdl5UJCy13EEf+OdQ1eaDZUho8nFGEGhpJwtLvHoQy1mpgsksICv9PDF48meDybte2LyPlLccUiQMVU0SkyPkRSZdB5W3+muE7qgS7ETKHqqPVs9KiYaeFQFIcjvlLIjJ72EpOWnSZhe2noWG0QIS6sAJjb0kJK/PPAWPY37TrgaJf7JJJLN0GrZK0pGExwbJRwXr/idfd4T42U5uIfX2Un6PrYBlTQQkk86cnPaPaoiLd9xcRYpV1GbJgeQ/oYWZjp2etX8DZ8vsnoVbgb1worY4z+N6c4qB7sPX/2Jlthoq7ZOqSALd7af1ZehqjAXwJT+iTfIbMdB/gMSZzms3j2eAMCXiNDBsaORzf/ljRc+fVyN+ATNFZ/lvIE/fbTT9qcVMRXsw/G1CJm2jfNkMvS8Z/F751p8VwbZuo63fYzfN8GxZkt7jhQX5joMzQtVpS4IAAO1MMKbjuI4tRfEdfbhF45QQ6lm6627SQaHcZj7i3V8tPcx32ad15UQMBgbQsM0AUPXK+ZdQ3xVXu5/OWetkrj65NSBvDHCUdYGCWAA/eR165p7sGWWxarcuLfNHGAd0Rxd8PQIaDkmdN3iAWVI7EFiz9tdgGq2OatXCZwiJ8U6HQJBTqQVzmDChe6vW3jb1zJ+YYK+ATQJxqUXZEdlj6dgjWTFkIIas3/suZrv/qQOBln7xsxwvZVIrc7fSsjK79d+m2RryFneDV9plbeRkyW4/Q85ytq+X6optdPedhj7nxYpUZ/8zE/dOzapupUCEITPHzeG6ae36UpzqJxZhFrySSVE4OYcvGxk9R64dxOZt8cae3tQCMKe+xGdOau5FunNNcDHjaXW7JuVIy6nM4SjXGa0WBnGlWyjoi8DuEN3yhP37+LSPPrBV4Ts3XQnpP5j8/nYiTVqbziEo+rV2s/XW1O2sgsPH9r6DgvJ9BmPN9lSaRAm9E8H+HYRdFDloPgCROM91sV8vMI4cLFlM8fOpMDVYnp0HjBYvm3JznOWvtmI1GWD8XJCAXi0AV5GVGD7r0NNZ+hEjSPA0BDaQyK6ow9B6bTqDcAbq/giDg/XSVYQLMdmkX/wmLIp8/RaeLQphYKFvS2uUkPKgqmyhba8WQNetuwsNytVy2MOpSiJuvHFnN2l7NX+OKL5D1t2sYQNonUmXPWh8efCRFGnJDoMy7/zNp308t+UatkAIcMWIS3wMBMLguSrOl/+PC9tipke3PywHAN3687X0n7VvMat2mVZ7U76Xt9sRHQSSi2KnLE9DSHvZSp0XDj0x0Xtp9E89vlBxZ3+g3FNK5HEzFM1d9lSdLGr5DpBxZwixB/btjW25iLXKB0n7tpRcifznYsr4JPgvK2QzOp82PjQevcP2+p0pFj9PuaIEnpA23Jq7EQNAfngUUZwuofGbumrV9b33FHAwD0/LbBC+quIx+8u36jlGGqYZAlLaa1YWeZFm7OhkvQ56cRJPsgp+jNt84y4cyAMhdp9XfeWM17kFKtaGnfFD+fPEPUcBHl7n+ymow85u2MurDi0MoLgn7BlGpqnh9AGoDfn2QgF1ntgYkCU3DEXrsjlVlo2+ZoMJeMlS66ApNm9oMxei1w8dBlcqmx2mvo3NOT0lSUd8OkXKw1noKRtXAn9qX1UZmdAIyMzQbdFDziaNXicnp0yU7MvA1/KfGx8nrV0OX18xjzsXuQdGq05BF5TQvRexQy8P3uFRSzhCWCDz0naCnkbILLlOP6HV8/u1EgjDt5eW3qlFN/VGgNd8c+DOQOLrgb0b9ayAeob7ECCJajzp0CAk0gXDfEjXkBAKCmZifn1+waJiD4Ai3hA0UwRmKRlF7RvUWS1NsQr7mseoiN1ydhoQbl3R14g4yJMi6y+cI6EQDKwUOVwaQPNKcxo2wqkIc1BRUKWNCwlX54UlHpq0uH4GJOxjKefishY2MkKoHPMn1VBW+OzFqR5ZZe/brylx7DV0nDbuA5ZtMdOWHgXkO+LmmbJ1bgEk6PRwlq4CyXJh7gAhm51ol6DbGbmgPDbUYWLtJKrHglZvOHREYRhnTBq6tnq1PFCZk0kG1RHV3R1oZ21BsfaQs3rvztbkpCcdOrDTCas9r+SbMTSP2d4pUolMdio4vvq0m6FXv3UBKWKipRJhL/mO90rzlggnqYfMPhr+wm7h/BMGt3QmKDW46f6JRczewKcLJ7dhs6vc973E56B30UIsqTP7wRQJUKVdlGLjFzGaBvwTeqKYA0pWl+JbfBD99zMu7q/RFhbuJ0T++zbpcC4RgZajF7BzADA+lh5J/OSc0lw3KE9zUWJQZcw8ZAieNstf+6yN2Qpd38AOc8E4ZZq2W0SpTC8iM39g3i7VSp78WgSn4cNhkGYG3AnpXGkhY3YII2r6Tjx4VJd8hFD8ppPCqmhaOrkSquFe8Kwf1ye+dWNjRguqHBbq+4T0MS/mtEWktrPtN4g/50/fURqT9HtUjZeZpK8kytV5avY87e0bYMJV/owpKHJ83gFhB/UUMzf8JjPYWmV3Vb7aVF7xJn26LE+7149mvNB1X1RsfKWL2ue2ApD1ghrXyKQ7zOANyR0oYLYZJor8Tn4x+La1NE7oNiKYO5YNytozpQWM7qrdACgKNrr/5vmbnipKgaPBqkT8b8xH2zRcQyBJJbrAtPCnttRvk9I28UVQfbuQj0RD4wvflc57AgP5Zw918j+7qwCdMUjvUn6kEqgIFIyncRCLntsj06rmV1oBRCUqQFNdYTDtrMLGhg9Sp3DWSYh6U41TbAGy0M/cdh6b5H+PJ/OYFoH8y4ec0bplM7XS91nG8MN4Phy1ahl6ZrpqP1DELUldXUc6KjEcm6s5w46azHBRGO7TjqMp+P7KCytjAeZj0UvzLXKIek5uBPSkCGlR0IpgDZFoMJzJ0fPl6H/UxDKGWJ5Kc9396O8bBkDx8YfmhvtnfenzL9PguiQvOMEl0lu410WR2RH/ibO36co5ZB/3Y2MoNHjIUR3lej1mFC9z2+JekJNw+Ah02CLijW85R6sugZs9WnN9CJ5hP24whbwmpXdmUM6D/Y6D6u2VICe2pdnYReYlscUC+gKiGY5mkWBR7NH9nbLYgzx0jt27YX+VqOItbGQCvhCPs4idIcL8hzxOJgy0h/Pvv/J0SIEbbDIzvQtSrmumnxOyk3+htMjf3u9mhzCMWb7lId2qNmzlR7J7/FQel97fxtEe0tWE9crqXf/kCF51353a4gjML5HnSAENxcYHSvm+qUtWpZcvYeCiluFD1EXXtBTGQpCz49nj1mSBhI3KQTl551knTb49Jxh0eaUG6HUaKr0qG1Zg+2h9xt37rSttxSPL/WYB2BhAt8jLXV2Ty/dA77Iq7kIOCE/ZVdHND/gzuHeuwvOIvKhFlHdi012p+vdJf4gPDidXrmrP3XdXK/lOr/TTLxh17SsZOwUM/IseKqy8BhBzoO/zpde4Lzw/lJTi9myVEmM/ivm0Kb0rTtV3aoxBcrEuhxhodW7jQ1hfhKSSwxRZSNh3mRIi+LRwtVTEQUU73lqibwXDr30nVGcdXb47f3CzwtVkqD5I0aF9zAaesWnFOOLNzLh5xD6/fUvtOGgDqjFMlGCU5FerAzsqQPlILVRsz1IaecCGSF/WoOsXJrhpkd9zwNtiLloI0R3kXqQQtpQB8s6GkrQrc2aAs1hDir9aCa+w4KOfw38JiSHHdmHouWYeBI6kX/2nA1imusCcTAFoPM0qZ3giwYEs0iyijvFZYxveXh1Th6LOZfd44rmayvUkIDS6O9YNpdRKpV/atOmL5fxslfn+bPWZWgkHSe1nIoCbM6qoF+eMkCge3nfZ7o15ZkS2rCVk0h/jECdf9+DaurToGd/LeHhegcoMXAHI9wShabCBmvYPNh4a7dvWrhH84Q4Ca36+2ZcZlt/glVwPDS/kdY7thQUZctVehzGpXxK5TSto0PDhxorVV77GrpvBdNVRw6c+l8UKPWfUy7F7h/jNfFOxQ6wV2qQ7hEPx7Qhpq9g2mtoOBlwH6SEMzw6xsynA9zW+lsn5b/RXiKAYucy+ShB4fD1WD2Vttz5H4PY3mAjP7sVV4Ff07Cis9WgskGUr1OJO4QUh/R0oMcLTaBYqsl1bX/CCB+VpetjA6lk/Lf+Qrk6ruVGxtQ9wt2FG//sXhdl0K3ixSCxni2hWDioahrCXEmzbT4g90/VhnhfcrbPnji3wu2d/ZGtBHpORPfazEr4z3BItAfCgi2xbKK7VoKja8R4QNBxXftnXNSW0BzuqLr/ifhblE4eFKbnnBWC4Qfybu/UP1px4AvPHoFJ4ewV3TzwUDba7xxYdYJprN6f8oHf20+/pmgNhZ0kB3OsWGtJ1Cm2rVV/v39BcLkyCfz/5kFRl1WniIcH6/DIRN36Hw+eUH3mFtR8deDeGzKpGj6Vh6xMU+gj8EEwcj7aVWQBL9ZKNnoic6OY/ARia4PikyXEUN8Q5qJww3Rhb56z9NF7lxTXxPMT4ntPt9dnsz3y3YFdnNtPaBy0O90vdvsbhxkdzsKsBuBTziBMRU+hXC8wyp3NeOeGgmjVZ0pjZbC/nqH731rjdTgIv1nCoPP7PrzxkStzheDY24Ag3ie6pJVBukMevdHxQqYZXUgnC8nq2rgSCd0NrMNqSioXRwL6C4A6r7SuCQYWZVtVXES0U1l5+FpTHsLidVqte8rZlIP5axm9wvS2Fyy5aF9BAuUVvEkAl50pKZcO3ZCdFJLGLsDmglIV0gkgvOCfpHu0Kzl5ky2u28NnnKnL0K5hwFEiUUSWr+alemBkhYFUs1Uc2KubGJgewwc0wZX4B0H/zDjT2uuUAn5mEcTi6ge1P2hTNHEI/S/GQr2rlb//7G1gsGYNW/2C+4TJyy8fIkeht4OHMOuMQ4TBUtYBmEZmBPQkah+pUJCqx0q9A0r8hrVZDNJv3mLAEHeCbmovJJ6hsOvCy8qh2F8yHUUh9FeP8xlevrwXoZx3ZdaBEiUogQ+JryedADZRu12wzgn2zxhkhn+G6oEwmJVfGfELM2LdF4feghgajqzuekce/O+O1TMgKrvLZ3mQG12iTlwN15CDFqd5qYc+yiKqRwXq/HJkA0Ehnq5Pp72ORb/yelah1lD4plrjlkuvsmWj/Uy5M5ULqV6eUFCks4MN4GwjsC/hDEHgHEHWarmukwnQU3Pt+1sr009cAJ7u/GkmJ5M0Mmuy+XShSs9rCFJOxHqdS3efDBKwjYOMs7Qg5DnWR/aT6POSd20kT90kJGQBVEeGyQYFqihPDJ571mgeoWE1iUtu9CbkhDdYgbqY66kZMERGiov8I8NJ02652HigHL2k7z5es03mYW0o5GjCNm+WN5Y61JFG4XCtgOWz7aHaZ3mjF8ruLcdyqaVhtXhkbgpNMprHSM2/KhV6/JeByetSx3gLC9E78dHiaZj3sSWnxIXYB1XtCaxzy5zs9DOUNZ6DuAUZ1zUu451no5P5VedSChKuCzoTWsnpetuYhBkaooQZg3aSxCUrdMTGkUxi1dy4Nboj/IPmWiSGHCcelGwjeYd5nX9aJ0PWGXcEKs8/6BSQHqSesfrypH2j5IngoURoj4EjNcIwpLNOQZ+fvhh2VrWFsqoxOwepRbmu+cJFFAD+vxCIoerOvQSJzBuXiOhYPQf6JmWQB4fwam3frZ2IxqQeJxt7tK1Izn+s4MVPQIiI6Yc/apQu0YRHT8DtogNWhXy8u2Y/f5u9g+nxfaGT6CnqN/KeBbCn1h7iQllrBt4o24bh4KmZ7WeJ9cOCzmC+X5xVXysOO5Td7l5Rir49sUuz3TyLm7CY9qp+pyMhsI4hq9+/pUspYzXGRyeWpLBKyXV7X1RHb/dmVWmtvGujVxX8XdeLfouA/yl15xvNlQk09bXG0Z322g1ReoH9kEZ/+vLvy/kX3H3CMhwFt+CELDEvNQXz1M/IS6wCDGAjnZ2IRGQXxx8sV+ADdQJLs9xvXfHsv6UUmv9TpcljV64nJZd6AUCp6aymfZBzNUoMbaV+NHtf7gcNzPOUimm5zKKanJDHFT2meZ8d5RCF7JWrB5uZXo+CGdmyuyFgAQsDAt5CALMB1/ISvnYbdF3F6WEs90UXXZ6Sga17LaYf9Eqq2Igan/iJXYbmWD+3UjRubigDt2X/JxP2ym9j37sxD4U/4fabMr5VDHbD2zY8aux2WHTcNbQsx3I7QxGcj6yTy6olZNvkQvuKFyDdnpYQgpyGQLDiqQYwLoaSSMy+8RaRC/3ZN7yS70JPTKbSKETWfjk2aqwf//ZLCBmltQvr6kT5GXaURl9vwJb6O3KWNd+kN339vBY+Q0oVvFtn+L/llSq1kBEN3bofZKobc8uTRW2JP0DZ1CvoL/E9CEO6Az5SITU3pn7F2bnMZfkyvSk5hkiTZ5YkPYNFBvt/NZWZTdXjWWLJrQXbZOCzy+VOiVZiUsgQgo1QqiJlEYNYvZFMHEvuKk41hoJourlVGfOmpbXFSrWoF6+ch0gwz/22aQFKq6aOELd6YSrVWbYYzWZODPvuwxjbJrKlJepJkNMyCEf9ckuhgjURWPYV0ctqGa+3G0XKAm297PoI3EJappEB3VhJQHqJgsb5gJ1hTLJv++w5XNKsAAIXiCaWl3HoMteSEfvR0Srf1WeCgAZfW6VBg3T/JxBqshhNt0/WgfUfa8E3LKGnr9h+mg2cOImuON6Hz3JKvhktx0aikzheTv982kie+aui2GyjWmxcCzTU4KkzrUjQd+ZWWME/hjfeKN9UMqr3HpoCr/fz56HYEkKBjy9coz65IoloIUUmgc2GdZCIvgz7LzVAxu8WlrcXHO0o/niSECni9uI2d1+59LFx01vfs9P36U56ENx2C/bnSi4sZ2NkTtogZ0MK2KFa5iOaCEDYL+JO0CvXWqqbYa8uRIm0NWrfGuK/S+rYbspbvrVgi27Iyp9dKrzK0jgXRtsLoV9xHpwPdc9zKfHChxMj4/O/dl5M2rIhuD1cSN5WbrdzNw0ed05zwFmomlRWA/8X+ONUQD5fEWm8xIZOWu5WB9NkD4cn80fK45wryGiz7Y+dDSLS1QmEuyFtF6L1YlkM6N5dTMVlVtvsvX12l4bT22UJIkHhxikitLHIPUh6Z3n7QEk4cEau1g8RSPZNjnt1KLjtSC7djfJbARPQaV+BaeqmV6QFXVEcU8oubAHP+Q0FD9lmIFZsAslH2DWbptL2Q0vMP54HPA6qERfFODxhaFbxMv8d/rAPcAT0Ift9qYLdl/G0KhoZySv3rMIR8QDQs60QOBHI56xKnLnAX9TOJoYHu6vjEyMl2IR38AWzaXy4oQFphsNcgqVc/OXj/9zJLPmCUhxwUOkdeBALBnzF5ozpxA8ggPeIadSUKTT9CS8xt4b2ul9ZndKAPrGg6kpeJRaEkan6vxbOzf7cWInX7T2MR+xNR0gUwK5tnc9kiqfPFPsPzk+bR1IEHpmmn9TLqM1UTu/vm62Ct1FOr6UwqEfgRgYySrulDLivjjgNgCvPESeGO2XjU83MMP3qzOnuNZw43nQ2Ua44nNz4inYuSCW7mqENYZ7kfO3GumZF4pXd0TQE+Uu3rJmVYfWQdZ9RzJRUsZdiqsrHvFzBRVKFcxv6Q25B4IeYClXq5AYp/PJoKfNLKL8JSMMtTVAg9D/LqvxEFZViCR4/zkJdHEUeLZC6c9mTIimGd2DWXlSJf7oKBj5Dy67GcYcJpU9KwJjwfSiTt7Ba6XaPRwSgG7hMYX4l+RJ7uQxyZkrtwKE5vjLWeqHN/bgutzjCuAATLngFai8gp6ZKzo7B0eV0MGTJsqLvMTuzAQeREebFHd2PA1sqWAQcRJIVVqL7qWtfylM8BJ/ncKCMEr1BmokoQMeZxunSUmCSc3giPjBxmXStMLSE2ND5AB9TQvKgWNqDVEQV4SVSxTSjm
Variant 0
DifficultyLevel
583
Question
Tony is making a fruit cake.
The recipe says he needs 3 cups of sultanas for every 5 cups of flour.
If 2.5 cups of flour are used, how many cups of sultanas are needed?
Worked Solution
Strategy 1:
2.5 cups = half of 5 cups of flour.
⇒ Half of
3 cups of sultanas is required.
∴ 1.5 cups of sultanas needed.
Strategy 2:
Let n = cups of sultanas needed
|
|
2.5n |
= 53 |
∴n |
= 53×2.5 |
|
= 1.5 cups |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers