Algebra, NAPX9-TLE-26 v3
U2FsdGVkX1/FVG0Fijf/AIl4q1+BZLhRYsUEoVCDWMtrFNS/13kGzqbf57Dcmv1tM8LfcX3mmglr3S/LWqnXaivG0eiVoP953XWF99mWRa0OCIlPMQ7HUMXyBkN6UkTod+CJ3EvaShmkwfgH7PQJ9qpIkhyDgEYSjbJRK5dkkxqRbJ325uaDf0ROzy1beRce8jh5zVP9bOLrtb26MZQonMEQuljZNDh72N1jjsmrQNEwrroGuug4ke2YFc53U6TYZ7SH54PRAs0rXgrV9/JnYM5TGtUQR6A3d0tBZ/ozHWPQZMGY2YjWUZbTT1cqEm071n93UWHUOTNsqAFtc5/t0pMcZFJpijHrqcZIulq4w1wFcjA/wVfuQqi4r7Uhrcmgr5INpuSip9HyOH2kg9zpXeKGwCqacQv3T7mGxzdvZrlrFhG/KWH0KbJFgUtJF499jvnICpo/Xe44GBtQ0hfciWlGljg3ESAdAn5cd7zJI0E/WwQ5Uc8kenmZFVXyo5vgXfFKnOMKCQBKsaGGCADMsq0T695f+YZu37ftVPsVs+O8cELkXX/ji8gjI06Xlp2Z9dg040lWR2/z2K3z9yfSNdOBKtwyopUpcEGzivwHH9cUhzf1ilAkTFa2hMl8SlcoYbqipGSSlk5Lry9INJV1Z6c0HzdrGvp+fDISD4EIKXOxlPN/a+8CxEJyoFSEcOSrNO7b4Mw4fjBY4TYNgPY0Sni0FUTmfoDaAxIgrU5wuE/zYTbIm+XbsP7WpfWlkhFt170F78PxuoRiA99cOeyF0szb0cjyIcKxIYHSh2GLhYA9KjZnIpCeS/BYOMHDxw+74T4SxLeszifH9L97StcwXeRJFBm2erbq0AUF2cKP/LvPAR6sX09iOkmP7db6sc+Ylmhi7mZWqd2kqBc4dzQFLzB1YAfRmKT5IZDErpM0EXScx5dmfDb+kY2bRHL6PPRHSWLwenS0bK+J3LVlwSODxOJTErlnc8owMWXwmhSy64MbNw+3GA0HejKXIkSI1beO4FAy74lu7bXer5h4kAlMEv1SFog0bu/rq3HwXKm+kQmyq4Rp/flUPnKko7O9KuAIjXO+rLGq2P4g3XHRJM5rIu1a+gt15Tz06dHTUNbyOzSQvYOOyUuRXhWpOQ00LrRR0Vpo5Bd+80zbcU9lEL2hMeR/6pvR/soAXfF0301RBbehIlOxlFDFPzdxJaUaI9aDfM/zZwSi/AEVUQcUDYYLQVgmKWhMX5dlg37N+fa3XN8aRo+BLaxXPjlIs4OKIhC6+B0onLAKO7Auw0CYPVPDpObryQIBun5Rs30gCC+A5qQLIo6k/qIvDf7EX54sxD+p3HiTwUjQCfk43TiYN3+iJuwNhyoQnLIH0eLwuQKyzFHNQ5HzA9KfOntfpl5mTaxSkfR5s+PjKMkz5VYRuNPKRWbAHz9ySPXUP0yN4+NJ6njO/VVB8ji45AhKNdV1BVqJBFJZRAsykD0Tus1iqnaXOpq5JLF8meHmvQKVR8zeHKAVvfF37VSQI376r0+gQOx7YgKSqDqO4drEDrpHAMkviOrP2Yvyl9EgZxd4nYS0YjZ0RUfZqCUk08wCrNp97Ch6pq77emLatKtpMAJjJ4mcwssix2SrLs5oAzDCGntXq2mI8Ki8+gwuHsJfFgG77FLCDXolZBILCzNGVqpBYJb8hbG2fgvT0S2ni8D3Qmc/tI6O8pHFnQG9Gjc7qZ6JzmqN/FFiaAF+DyxwRNmViwWoI75oS1ntPbyevwxd4KB5cCthqykquV1b+C6D6HBcCqG5HTHNKLb2Iy+su/zvI4KVRgNCqDudQdAfqceYNaXxGxO8Ryq3SlFBldOlc6oWz0qM0NzmvtpbM0LJ+nSMkAvmkzmhK0riL2CGUEJykrOGSsmni/LrKsrAw84dFNoUGyTsp2j0rBBuH5SESmMP/UTwDqHUCEmdhnRCHteHvm/lhd0bJgxpqAebgZ3b7BsbX4+e1cNLPjP2Cxwsdo63zUadTDIY947+u422r1NfPTGYAuXP1bkM84urbnIOPBbRyEehZ8S0e6K1OSmp2DAziXy/TpMrPfNGK367YRXQp0kCCrllRj+5xj5kCSZKU+sSQorFiFcIlUse7d0Kk7PwymGDmhC1BgI7wJfxAFApCQ4I3fQWJSMelVlpCXLw0jh4nfSaQhdnqWWgonQF68rgmo1+W8eUl0CrZdh8eQuWPzjNXWpExuVamPwuoWirYJwp6wAERxn2gH0Q3tHq3V219odnojqv7w0meYcL+vi85WGaA+xLmEKlfkHuBMDnh1MyatB2R0m83qv41wTaHI4pNB4tRNCJp0WyMNyWXPsMRXTLdeHoGJC7qxdy//8LFnr6fTxjPXoynMFGfZjzlshsjFeswYWmLHKU8AQpTs2qd02clK/OsXKxxcAx3YcIM1BS2XPo/9HULziJArJZeJ+IE+i8HSHHnc0oGeC2GmruLefanuLsURentVdVB1zBkW/LOOtihS3Lwf8ToX6z+2KH/RnldNy2deV6NFhvG+BXpq8OSBMo8Qx+I0L7CcwCX2j5Ym4VXG0prIic12G4+H3PnjxQUXQcjOe0F+QQCy1NUAXSaaVTax8YvE1dhda4V8cE+MUwkGUwD4VKBadSTCkM1CKAYOAppZ8KKAgH5MYBSUunxyI7Fq7WHDAW+jKijoA9Ojg0Z8C1GjwcUNgRkMG7+a4NVGI9/bMQpIy/lN9wYnvS5uoAapbasy0lIpH3xzQ3EOQx7h8aU76sZobjlcJ4C8UAjSOSNE3TIuHWc0WqtA11qSleEjF+cFgdVN7fuyY4s8n93GbxIugzsyW5KOQcmrskLcdagDc6CpL92xjHpr/ODUImEGTGs+o51FViSaOANiq0QKOM1zrf10qCVJWyPmpsTyU2MPsnVXqObuOfsifc1R8an06RiLcL/BI9ZkVH5N86U/QeoMeUlz3OrRtw3ifdhaqXGCJaORbRkcbYApOHOmTDrQCc4fqIMCYn/9MyvVTTLGh3JzREQS/mZYMD1LUcYAjXFVHMxLP/FV7Cm5oHYQXHx9zJvi5aCzIlpiA9S6vZzZv+khNlB6fdkdVGl0OI1SStNsd14Sw8okF/x3d72UBBi7yYQI31aKwM9GRQyNtI/sk0mMTw4BXiFD4foZoJqMN31z+2mzf9c+kddvBX3KmlqXytrgcXjXedK+h8DHG0WJuc31C0dk9HGdrCAmXxhMm6tffUbFGvgBa8dG/AzSnMdrQc1mNYtQo6iFU/0ekaqxgq0NAO2Xji+wIIO0QeL6xMFb2K/68RbD25Gtyw4BZPaW86qH4W3TIawB0Mtl54TC5Zx8pGlqI3/YVlAkR1DCe9t6lOZ6mKKLDjD7cGffbPI7+RP/XAvR/FgY56en/XSSNAjp/KnSSoPjmpzdb+uhDSXH/9X3MobKcpTYCQT1nnmpcUgIi8fIXy50MFi+jTmHBjBgBrO0U9nMsTy+cSdqmfU6QeVuYMiIv0CQLLCO14Ayc2dAG7zWDcqrABt6BpqBO3M+P4vN4ETtZXQfSDz82m3QM4LgCj4TCFC3pv429raCKPDFGCJgZMVLJQ+ukeop0sLlQrPEXIDdRIngEN49auxBjyITMC7k+6jzlVPNdsZwfmLKUjL7HaitOr21btbLA/mBGtI9iCeKjUXZiqPD8H9AucVDBIx99iUiKvNPRHCMD9c0W1QyLBHnEtQt+cDvzRFTwzQ5Gu9G2y95lmgeF5IKyjAFDitLyw8V5Ba1Q0/VOZ+Ke+261Jk8j83SfUv366VHKVboXLc2xu6eQM1C4VPdlVUlh8gc1ZLYI7VhI13NHlusHPII0UWPewX2ikJjKfn6ocnNoFtnpIPd2yc+IVw/lSaOJDVNnNh8lCZxj2G4Al4bqJZK+XDWqb1/PJdMd7KbV6l8oOXu4AQ3y639T9esZVYJpaR4pBm3/vLQwbBINHAbsuT55ask47X3zXegvNBcnx/P7IJhHqQYcYRv+GnwphLZntTntxpYxJMU0=
Variant 0
DifficultyLevel
552
Question
A restaurant sells pizza for $5 each and bottles of iced tea for $2 each.
Paula wrote an equation 5p + 2t = 38 to calculate the number of pizzas and bottles of iced tea she could buy.
How many pizzas and bottles of iced tea could Paula buy for $38?
Worked Solution
By trial and error:
Cost of 6 pizzas and 4 bottles of iced tea
= (6 × $5) + (4 × $2)
= $38
∴ 6 pizzas and 4 bottles of iced tea.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A restaurant sells pizza for $5 each and bottles of iced tea for $2 each.
Paula wrote an equation $\ 5\large p$ + 2$\large t$ = 38 to calculate the number of pizzas and bottles of iced tea she could buy.
How many pizzas and bottles of iced tea could Paula buy for $38? |
workedSolution | By trial and error:
sm_nogap Cost of 6 pizzas and 4 bottles of iced tea
>>= (6 × $5) + (4 × $2)
>>= $38
$\therefore$ 6 pizzas and 4 bottles of iced tea. |
correctAnswer | 6 pizzas and 4 bottles of iced tea |
Answers
Is Correct? | Answer |
✓ | 6 pizzas and 4 bottles of iced tea |
x | 9 pizzas and 4 bottles of iced tea |
x | 7 pizzas and 3 bottles of iced tea |
x | 4 pizzas and 6 bottles of iced tea |
U2FsdGVkX19iAzHXppoihiULutvZK0W5+PIqvTel0xtNVLO8lBvi19NG2h//WMGhyM3H+WsViOpxsejupQFuO0pI9DCD47I2MYtC9AKxGHLhKl4z9vjUweZu7pJ51E9CSNO0WZxgu/gvFMy7Er6e4jwfcyohzY2IbgCNqkxKoPs18I5x/TXA0VfIXOfjQSvLvUlVKvPVYBlhYvNcf2f9ktsA7bcm93FEvj1HWcodRr9YBN6YC361axUPrkDzk2UON3aJDWKUMpzNO10pb6BgDCXv3dt5SmyoVTJG1Kr+uuT6F6cVbm5jhQYqdxz0rWLYc6ClWJs1ZTG94ly2Ymd2QueRcgCWIKbjkxUYNuzSfhwUJfqHMsxhkUACYt7LYvkuEq5d3WzucBFOTWMV7+Nw0PDuqp+z/iaL+9/s4MlmIhySSUp1ZMLQ/etTCar7uapx8e1CFBu/j4v7fEeUyaB3yh0W/wT10ijUFn5DiWwqwJ4HeTFRsiya43dFbnFlLuGpV8W6EJQwMTkXVrxZQFG8NNOaHP34bbwLB/bAcpkDXue+DK6oV4vIHZULv9yfKTdyxE1q0JgV4SXlZUWJmJ0w5cHV+BKR9cq37PB+5xCLkIwDvN7HBARA/f62+LtcWBPWLu5f/esIGnPauo8RKJsRQAmXccouY2wANX3P3zBaG29/YDvDYjloPvojXovY/R61M288L6HlzRmIPcHn+6fgrDfWUntSpq0nStEP6CjAl9ZoRFaydFTMVc2hCEf09WqQrM5WfxBmE7HDKnbLxXWzZeeHzDdfU5TMhK7CKmxLrry9lzpuVgR8TnX3/f2KSCMWX7+Pa1JTsDwsLro9YCATW1L8BsfLRm37IUQjHVSTd6INCNPr23vnckpHQBxFVVApHS0r+SOBQgHlcSC/u9Qkc9Ey9EATMrg2HvvwxQGpUfJSdrN8wtyff7ewEg0NvsMV0EcLIRl2SFy8HUHvPH8XCYGJQlqOlKyLc/xpTKsMye2qwo6/xg5siuryP0+Uc724NCI1xnuD/kOAaGUK/vXXShn85wZOJXVZaQyS+2YKeqz63cNJHfAA1iDnIeRNez6+DH5HznUy7AgyZ0uUdJ1RbrpmXiJDF4x3zvNJOab+Aeeiie/5VP5NUPNjpXdiCI19ha0GGb6oVfyLbt/mrBjezJrUEOEgKQ4lP8A3aRpdVVMc08mYjZiOCB3SfI7SBjIMGnuwuSKXg/yE5M0JWQs7Qyv3M0PNEE+X/hv/dTsUe5wAL+JiIei3zOtAAFbdbAAhqJMvrCO5WJHGN940KG7sju+oDFiN833/FlyXX7GSSQNrgocPab9Zg1ZeL92Ns03AM4FeA688KltniIZl2fgp40cv9ybUtnHEbet2O90e9YMeaW+AIUCjyC9CHaAkct1bQynhL0MxqFOm7CtlQZmFj3uxZeiZsaWzdiGg/YEthSB6qqWQC6Y/CqMwt+UnAG1efkCBjq1pEs7/pq4c9ddCE7CUCJH9mYS2fvux+ST2OHMManHr/N7NGmFqJWuMVxEucwWTJyBuVycHXwzuGLKWl27DLg+JoK/WvBGgLasqMAFgq0yM9ectEWAGJxqcIloR6pcinj/+E7YjcREnGe3UaQJvYVTX1qURAZ+Lnuwu/R4TkCJqUzMxit3Ss8jYyPWsBKvd00/Ae1t6Uj7QGmDDqjEGhKfSSTbTAheJ00KrjXyqpcQHVmnsDHVSBUgXMMNAIDH4PWTW4OddSaVaZoFoADB2r5MgINQr1Ca1ojOC6XAkvLkHmVhTcj1Xzb2oJA1Yyy7OpIP959nfYGKv4rju6eTPxydVo6Ds3gslXbHfLacNAf2P8HrvYXl2ifxNkUg3kzavTpj6OjdckqQ8czpfHAAScyqTkEkxQWzRi6LDN/g1bgx9vOADn7bbzo/QpdCbOkggK3JwACR4xayRJG0TZD877z8smHer60RnNoUoNW8R3pDuJTX5A1s3S3nCOhMV/CZ+FrhQdasPNR/Zi/r4/rRWCGRfytLyRPxku+o3Kclurhbdqk+t6QhZKBmYjmzg7jmqhANekFzypZdlWVUAW7YSVl+QzN8NOvAfZG4t8zIqJMILrLvGqZs+VYCKV3/KeoFnLsOKJRDG0VI8w/89jgVzfhRPLCOAhUfJ/NC9P5If9MVrOcFrCBIvsRlAUQt9x4QgaIbA06immZFEMxVIeh8QYAowiJZNCKZGcClWeroMhtRSyy72da301bO03qbSwOmoef8yJTTW2ZxPcJCYzIA4OELFlStLf3l9uUHTh5oMTbQc3c0OjAkadDnrcqzReKyoby/ECRiOlfUud1JRuAOa8ny/tbn/VZkxcwPdLf5sc4uTLBvd5fZZ+K2Pz/VG4ocRHkBDuAQqw9I7Ab2MMRjHOn1AeMZtP2oG5rZeQirEe596EC3z7xxnXwJJPnFRPOU/TATFBRo11KjgJbHXjqnH5rGsHTJe88RXI4FBcPQ6bbQGwQnIXFasQkPqikRBqNEJO1EgNKEQUCJcSr4smt+DGjf4qaQAdoQrosOmf79tlzyCII2apSwFvc7VQSHrmCfeUMNezIJTzTrmPRFR5WuLy4Z96CKK7Zygmuj7yJZl0PqNYJEnjKP/faYKcl673MKUql8+m9SCj7s5TV1BQp8L0C2wTKFSd2DPFaBbwgIjEzuYS1NNfZd7Fla5qDwW1aEkGKOy1K3KksMyFftnwBr8XigRTFag0dpFqXMAJ0Y5+up4+c1d75lzSmkcAWb3qX6GtnPTTxiuAz2hIny595p3DSp3RFOnust9ZSAneg46vxPjOoYZpyM+qymbdGODTYBpg3gh9Qe4LrqoYE6u/7Wzb5eWUkq+D2snkG56G5e83QKVCMxq+u7UYx9TY07WJRkbZKuvXWrzkvIHPVlsh4drAW4WcTMQ43kopxMoC7pS0xtjTMOAV6KHXmizo/gXMECJ5QgCfS88tPIKXQRyow4EfAwY+k+QAgjbuHUOOcfcfP3pWLI0DwzBiAT+prXi/vVTKW0sxjxyYAdPqJvtd+1qrXavAHSzyWWkpi0xUl8sQfeBa7zvB5joGxzgEor5qM5CjBlUcUyEGymhzS/81cKMiRoZODDaBwjAgXvc/g+ifV3z+B0MR2VbcyIRzaGN0CSFO80GKq3tw0bnGEtwpS/eGG99qefW1SSOOgGdPLxgOWUNLbCqaMGyDLowq8EnFVq39VQtQgdGthDLxq9XRys3byy8l4kupg42S50TdEWp4Qz18HO75me6wc/A3EhdeQGO6z4WN5ieNgY6oYut/nXA0gdpSdna6JXsWGc0s0OY/H6EuVzznnhClvr6dPbapxnxSskDeAH+jH6HODYvIqyr+sazqcylhzIpv6eG9IRZW17Qi0FjmhwN8rtL8Bqi0KeYdf2B0ejhUBTR+CMlazek6TY8H4641Tcl/r8tYvKQ72HxigndJMMKb7O/mB8443zzoZL8E7GAAOCLMaem2DrdIBU4/ymjoDxYhQ7wgl4HXJp/P+l0pS19s0tGsXkXjmA1EdlWlqrJqE+OhiVQ2HmFn9O2TYy3HmmmkDKcxHDCErahvElA6GtSFSJC96eVzFrYgUzHZZiADlYQ/itGDuWm+cqpnO8ykaH4DVaVz8BrNkyChI5US2JE+skEbSpJ/LnuAnCFqEAx6499CW2zAvr1zauxJPpkI4nU7WSgfXZbOFGrfyWkznL7+rFxm/nT5EIwetMWgpTDiFrOJ3aQEzka4KxruR1nCOaQT7mg6SqaWCVG7bH/U+AHha9pCr/SUTDhtGpTtlDFuD12/O+dmrat8GAf3k+4iax/d+IVPS2jOrHyFhRvpxMJSIB4Lmy1MQ3c1Zxc8j5y5Ph7KgPbh5dNcqX9o7v6YbnGvcOSoG46LkKsKiY7oHmNVW6+89mEqFIzoSNODVLCJ3F2d9fgEvIPtdUxsGLkTGbl5z9txd0SpnlZ6CwvxVYO83fA++iLellB5y6RJbVHeYgByiKlo6YppuDhZ4/cal6hz6oYDYSn51lw1AKpLY3vFAP9WC5uaTGcCx8CStAcSPMMQ1CSHIFNxYU9aYARorJtySq4HqT/LoMzE+ZBBs2jmJ/+t2Kqm+z6As7pD8Vu3y42JedwBcUv7qKXlgFah1TIeuSlmy6O4EqqKBZst1ij4NGrat2cDb5VErOTB+MqSaDaANsO4LY4r+c0gmLr+SecPtxdkog=
Variant 1
DifficultyLevel
552
Question
A restaurant sells bowls of soup for $8 each and bottles of sparkling water for $3 each.
Paula wrote an equation 8s + 3w = 61 to calculate the number of bowls of soup and bottles of sparkling water she could buy.
How many bowls of soup and bottles of sparkling water could Paula buy for $61?
Worked Solution
By trial and error:
Cost of 5 bowls of soup and 7 bottles of sparkling water
= (5 × $8) + (7 × $3)
= $61
∴ 5 bowls of soup and 7 bottles of sparkling water
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A restaurant sells bowls of soup for $8 each and bottles of sparkling water for $3 each.
Paula wrote an equation $\ 8\large s$ + 3$\large w$ = 61 to calculate the number of bowls of soup and bottles of sparkling water she could buy.
How many bowls of soup and bottles of sparkling water could Paula buy for $61? |
workedSolution | By trial and error:
sm_nogap Cost of 5 bowls of soup and 7 bottles of sparkling water
>>= (5 × $8) + (7 × $3)
>>= $61
$\therefore$ 5 bowls of soup and 7 bottles of sparkling water
|
correctAnswer | 5 bowls of soup and 7 bottles of sparkling water |
Answers
Is Correct? | Answer |
x | 4 bowls of soup and 11 bottles of sparkling water |
✓ | 5 bowls of soup and 7 bottles of sparkling water |
x | 7 bowls of soup and 2 bottles of sparkling water |
x | 8 bowls of soup and 1 bottles of sparkling water |
U2FsdGVkX19FqxXZ+16/ub+BcJoej9fENAsGeX6X4L2PsUK3yC/Uh/Ln0hbc6jgb3USvbh4Hc9psKc66i+NIMnQZtGZR/mdtOYS9DgA9aexhEIJZx/SF+Mc41tL3u8iKpnlT6EKfaH/5OfxyWhXaSVhh9X44wWw6Tw6l8w1WeQofuMsBb5c6zP0+1fRRIdTQ5mndcrJ54A1FVWaVdgANR2nJnLCBs6bme4HNxsRdWbVVMipJxFYRYoQFoYW3ViDgR6mVtxLkHWMcXP/vYCMKtVLf/YKasS2SoBdVKT+9MwPCS5cz6znJlJWA1Wbv06e2NNQ5Vr5im8vkpsPk5coI93Zzm8iZKERQbxq1mIqMDmQRyNCwlwqDg4O6m2pgqy7BzllfQojOUaN4LNO3AKkBm8TBWD5u0BhnNBPlI3YHXPyz25Yz3drUuoF+OaK0DDUBPEXvS/TKBvfw0mAY8GgbxiBXNRh0h7kpdjHEKbrvSd1ZJUP3Jy7ToPcYtmXY2OAaxx4XIcBgTJXnps5ouKVATwA4XSB/kfB7AtY0072iyqv543F4ZmCx+Zxp2xGumJq/LSQqxkfaIka2DrUyWbJ6v/V7s2acwJwObdgcTWzdPVdgHwE4fliATMgede2ZI8QQ5uTl57T15Z6evshDllVKrodyGP3ZYwqdWMM4j9cO9v/BXKLt+F/iJ38pfghTKdgT531gzSjgvYH75tPhfNq7JYwq5/R/rVa+BDmUjvlEueRFUEhzh4VXMcligeQWK2EY4ksY/wtSM46E1p5StTn3ntwSA60SdWbHFGXBc5SdYbNSIUBTaJURDZYH//4UVCeBILTqRge+lYasxvPIbyXFQpYALn9516ouujW9uMXoeO5+kKYjKcDUOh2xVyozRbGXoCAtGYYw8nvCDJxvyMm2BysHKS1I0eaxmvZ+H36AT7Q4WMpfb/H8cCpqTPxmQiUGnspfiB/D7x535+M0qYkVyc3SGcjxHVT+9GaGogOfCZFYaK0nqCea6osLxmIVBj1V9PrZONMDFkrO/mckEqdDTne95K9Xudn8IS9GMdw0aGJxTfj0Ib7Jfl9AeVBkdbOiJW9HKY3ot7tUn2LMKJhifSAT8HtaJbbdrqmqvvFBEVUAn4hiRgQ/s4ckkHuSJF/LXJuzNWzfQbowie/s1OAH0tAdPb/PLDu1FAVYmoqLyPG54gJfIRuvX1Kn/0U4f/vFI4bRkCelHTAGhVooCfOk08yI2WRX1h2hoTXoOM6A5M9iRIFwKB0hBUnFB9cPVj02uI/x8bIqPF0GsRqv0sXExs0q+wwG1UG9lGlRFoYbf76dfPZJp0YTl+xoecB56KSxymXQ2gfg88su/5MiEMN+zkOUMOBVfwyhuU/jibVUJ1H8jw74HPWOlWo9qSahus67YQ4or5PZ8xcYdsjdCAb2/aAiQfn3MuAKbocllX20BpZTfhwUf6tTGCGtkSnqaFcg6JyHsLcBEKyLJnfWsOMaeQt77VPfl2jM0zjEiCUvxe95W5HqjbFRMVRBK49BzBaQWXEY0Sj4Kbmek4li/Icy8l4XfKR4DgQv1PvcGjI/wHGxG5Q6snedxzID6/SUq7HJjDMYKgoq87FXFM86n4FhaeGEYkDc1FY7iYprj2S0qXEO0vh9b7NvUBgXbdqr/DbyNgCgXdI4DjekkedCHSSP2aCqM7KU9WUwUMJlAmWiOQ/h4WMQgaaT5yEMCz8xa4yO/JFhYUfRHevEV2uIwB0r+FFR1vaqujaIuxmuqedZn0pTNR91i6w1XiAnRqDd2jhLvpRv3OkGZFEWPB2vwXjiry7rqHh4mVb/XQ/WwK9vSuhuGr94VeFc28Un/WKkx0nejqcKTeAGddekK4k5JA4LEkYqF3u+m+43pZyOutrnugAplLY0QfKdVkXBdaOIVOpTsiHhUorCR1oeW0qEzb25datRydc6LVAQ/src4Zf2MiMSKVbKJGizHi9EjsCqojBBEuxiE7yxlphQXAlVeeZSyr/onfSv5eqmeukOnob5XyRqGB70obr0Mn4nyVlcDNya1y1+SJhyrtf/jFugb/v07nGju5l11diNjhHdCu8jQS3x+zEl4ncf84D4l4XKcEa0zydbYqgWD8bLr2RtmvJsA5V7mH3MSqI/foU94wAxbPvQVbangfBj8Rw4ktf28whgKF9ngxO5rp2jIxDWqDqj57qpiMMY7mzseU4nQX+X7pwqoiaHYIPSc2Lr6L9Bj/U2UdR1sSpA3e60IvKq4PuWirivMOitvIFiMlGcnXK97BMZB2mw9axbpj8zxLKBFj50Ne4PJCTNvwaEkaRMbqsWQw6/sQ1jyC7uLa6yUT6uwfuggqfqRlhZSW/SX6IdMmQ3cgfuAuc2xVMlkTsytcRtyVzFGwppdWQkuaAFnNpkgdA39yz9gQOmbVKE4QrulUX1FOuO8vYvLmXgxdwxnFAQMfxmK+eVh7302vD6u8EbcFgz67RnYcqIutBAIq/x5Ce90TOV/dRrjbDdm0Ew0lylGyREpp8+yxXbRj0xywJu4pQDtbs1ytiI5b6vnaSzmqVb14NIe+MjOPby7nQuqvMsg7GfSPElK91I4SHEw2DxFDjqEjVRXWrCELB2lvQs9Ik60oZX3SBLm/5LlUsdEVg0W1kIv4uDf6C6M3bMbLdZ3p+SPYZdyAKrSX7h3G4GUmO7V/wUi6I7CtHqjf66M1LCrA4lSld4hq3KnS5IUgpLb5YJk25UkaKZdH3ujWtW/t0KMn/ZrW128e42vC3vXJjmG1xunrf65vjYyaA5MKZ2y25Apye3HIM2yiiXYDxo6wdx3lEciVqHZgd+eVUnpuckApT5TtIOD1mq83+sAs/oyEh1i6ZKunB5DO1KYMpioN1ci2a6eCMrtMf0lUKOOT5WWODz/ENYea+Us8YTt2IFLmaorzVhRiL5lF2GyCn0sBuK7i4Ox/jZPxyxwAN7S2OFsZBCCJ0yHm/5YygpbZG8esR1BY2v3UZWWsDuTH+GjIYmJD0U6Dn3HZ0IUXngPr5A6Ki9mXVphLfq+DJeBKc1nT9/qHS3i+K9bGMHopVob/Uv14zOELa8xLu8+PDLn/mqyiuNmTdop8WGCWdwNv5DJbsCZBhHlkhrT6EA7kCEzloUqs0y5uJOBKSUBmXFGie7AoLtEMw1RDRBqj2UuGIPq7StRPnt8B2Q8u3uAJd7gLCU+ysg3vVFEH0IEiI97tf3IXeTkT/iw5gKFxgXwRdIve20IqEFntG1qgH77sl9edIygA2U0th+1MUEjdADm/1DrsBE93H97ZeHKmz0vLiKJdtNvguDjo0GC6h5tOC+xhK6U2wiJZHMIjLhPWb/vTQ9ZlvMY0WNV1Zpr5C9cEGtRYbhIxySEgQTHL3jJvqCa3K2BVZ1DdztdtTFviiWPOSMigH4w5yPJ2neNGWKNnwjzwy0eEGSlHoKLLnWHkqvzLmVzk4iAtV5Gzr40vxavKfe7VS4bwmlJQN7H9MgRcAbeAGeatfVzHwzWznM/GgUzC2FA0OJpuvk6GvjUKHcTx6ne3zWCeswI8tEQ/A6GAC91cTjBldDBdt/KdChlK/B/iw8BTbi6FKNExyt+bVd+XedqOLzlHwH750PIe+WGYzh9T7oPhtmaqHGzLzlulQPauxoCMMTcj41/eRX+g8tBwmxyM8GLKqM3SNFpyXfSHIuqiO3FK9mQldkyhXU1f046JsHVlnELkq7HZz01+qsQ+43rWJNDKno/+N2XSj4qr09WqTt9y1O4yM0QIyqvm7CbC4QH6Dhu2cphLnFYAvgvboYj/5IDIO4QSgXaDALWxL7W/m8Bmf3XdPEKZFmIG6dlRNOcMfqRK5NhOp8FducXL7pfQ==
Variant 2
DifficultyLevel
552
Question
A cafe sells muffins for $4 each and cookies for $3 each.
Brian wrote an equation 4m + 3c = 64 to calculate the number of muffins and cookies he could buy.
How many muffins and cookies could Brian buy for $64?
Worked Solution
By trial and error:
Cost of 10 muffins and 8 cookies
= (10 × $4) + (8 × $3)
= $64
∴ 10 muffins and 8 cookies.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cafe sells muffins for $4 each and cookies for $3 each.
Brian wrote an equation $\ 4\large m$ + 3$\large c$ = 64 to calculate the number of muffins and cookies he could buy.
How many muffins and cookies could Brian buy for $64? |
workedSolution | By trial and error:
sm_nogap Cost of 10 muffins and 8 cookies
>>= (10 × $4) + (8 × $3)
>>= $64
$\therefore$ 10 muffins and 8 cookies.
|
correctAnswer | |
Answers
U2FsdGVkX1/0VnhA53c5lU+2vOR/e8+tT3ldcgtqZZ3Stb7ZsTOxEP+/rngO9csD0FPxI7WcxGQKvnlmWP6T1caGUNNsPa9ZOIUyYrSoFbLdAiSpqzP3GXABmvgyfPbx/6byY/+1wI6SmqgrpmMTRL1vh+3m5ulqEi3fUBswUw5teUZ6uLzFupzKCjD4bMJy5r9JQ5Z9k1zkBKsNXPERvU+CNCKEWNStx0LAhyoCeCXXnzVVBkEzeMUSktdpTw7aL9zQ4v9TvNJy8Eb4fq2bZ99vrrAGsv3a7kho4hxTFeJBap/7OD4bXp6rYm9n0NSmPGsPqB841GY19KMOss1EOr/QSxXWdkCJFMehmOhfD9ppmsqSSijBASKTkaARDIgpyceND7vF7ymqRNacQ7bMB0my16BdgXpI0153uPXHg/AvV8Z5XwneirsrNGLczlkdz4CTdSoWolze57Fq9IKa5zQzJTVOVZ+Ei7/9WKZ21NhjMeEw+pDDs+ukAx9t4r0mG3p0mDYn9aMh6REJux+Mke6iuMe6RVn+4pvMId6XQcBmGqRQRZWVvCc/jNKcJ38jP0vJTsH9iD/gJleoAPeoJCwAxljwT47n8vm6uLpn0YrBBIFF1Osxg6f8G/YTPz2LiWkeZvmf69v9wYaI2C9yaVwKJIv/qgnZRYkOFEIsyEU6kcbu0U+8aRrmvq06u3+I4868wVhqxMcwExyjYCRgKcWb/ugJ3sGq8IDJpky6CcwNlrQPMBTdPDSWNFfDFk0q0t35HnHPqrvXLJZ/qGDN4nvq/tpZsB9im5O0mGEGC/mT0VRdoyMfSfO9GSBrkBxcUQVE8eijH5yuPU1I0m0Fjb8FDTnrQi3SUtje/Dy+uoJati5FMOGycy6qV3VmwXB8sU0N7B2aL9b6uh48GJC7Tf2BCStV07cnXgIJu2HGT9hUAmuFzqe0eRiVwJG/BafKUUSrNmdpdBK8SLWCx108+Kwv/b6wCjnEy9WOU/uLXwo9GCODvlQvN2XkYyLWdB0f49c62pLGkR1BpIu6HOu1N9o9o085g3lqmPLx/4kq7Ku+WgxG03GsIWp4oKVzIW4EKUXrd28uwva/A4oF6pW8pLr2LO+oRveGFaORbNDXz9sFeOgdP0VIOZdmgVXmz8T9cvsh80fA/nQBUc+jwJD0qmsp8cY+lVDtyuhNZDZXP+Qlu0NY/5HNrlk8Qdc3h/z/HU0eFkDyjW48mp7kQMlbJu8SEzE7uEO8yMp4Bmf6n6b2BC/QrfSgqvJfQjxyhH7KXS/lN00dBhuLbxi+dBivNL0FqFUAQfcC4kxpwJyDv/3+gKuL/THAZ26wE4LqsmEMppDlLORlbQNJZSLXxn8kiTtbOLiOen39aMBz1aco9/3d1RKV3qdQnR7pNUODT+UC5KoKPDQXqkqAXxPiug51jxpwuyg+tI2Y69uV+stbIflAPmREqR7izhtSFYvjOlmlmvKjWMybd01eflMHovVgjb6k+ErVG4ZoJdD/qCGxL2d3Nc5C7in4hFTXfeMD93HJqBhVqKFQAQ5LVPuyrqz7qkB95WRzUnSPt0r5sY/YpoBczw3AOQkhIPN0316EijfOUbPz+C5z3oZt3vVeM59z9x35imKTeKVLKEpAXs50iI/CttVH7+VpPvruvltukf/v0DeRFD96dTPQZnRGqBuL73PwL2iSZOOPuV2kJ8Mw0eAYJkSrGxLVPmYF9hMPxpr8PMMMV4rqXXB2Xey3uzH76QK5PC2qWVN9VXbgIC57mkcpYQxC299NciWEVsLCAT3lFx5k/Rs+YUqhltajwYBmccZwcmK7WnhkwIqkki6vyV0FlJii72hruwY/uDr/KP+r/gdpIUf8cYLktQOtCVYBF9u0pb91XyX4gEbm04lAwFq8Zl2Z0iGz8HCoPA0SFQu4/AZ3sOlmJuHq0jI6tlEbPkjWkNdrDnPOqTBLmMaqNPl3S/j9iEamJ2/OuuogX4RCZB3HfYLegQcCBcsBZqrhyHaXn7hffZGKzhC4Gwh3P/YLO/imUFdc96p7d4cS2wB/4XWlXDp9ZE7iQwL/Vfq6J2Z7nEFTBxH5EsQBIWlpeMeb6Q5sb0iOUmhu+fifcxDYqGY8oOucOYKlzazLk/qSjfRhXOj1bd6ideLo5NC52L3C/DI25AUIlin5d3trXHX2LbaMVqlbP+QZYM/UchQb8ialI5NgEsRwRlbY51E3R009VJSmTv3wqyjucQZ8qknH9zQhF2yIEGyhdMocgQJ+cPBd9h689ha2srigdVwqqeM7KQOcIsx68uOjO0Ej+pMs6fwEV6HSjIN1vvEYNdh0nbpod2BNWvAJCCIsEGXUVZkPLOV3Yfy/dUKomIgG65AQM+NQw24T49tYvDYejb+z26I26bZdK68L7X5HvYNqJhsMVMsJPxSU4Bk8ZJeK63TxeHK4fwz1pDIJb4xIWPFFoGkHO5JtPSaV5MOzzreSkpGyljrUC+WwnZJ5rc2GWzx1cINV1jhBRek5AV90DBYYn8ncsw/Ay2RromOby14KYW0svwp7AZ50JV2Z2wDpCW+BCej+tP5DyJGb3vqcawgysrjqScQ/SAP5c4CPxI4D/BzknhECjfIwaDocvphF1O7VPr3k4nDrTYpVjd4WImLLfJ2ulI41Y1HG7T0kMwBfzDbh4mxqsJ7vs97b2gkIXAtl1fItRCbEsuI0bk8Q6+EbRpZCXAY1Z0FGQFWBXqcJBvsh2gmEy6ysdmFsl2vkbKzQmxHykQCxsYqZrJV3o/Q39mITTyTbYPg3gHLtWj4OlDPr6uF5r5RmQRpp7adpCT8KUJkz3n2yIklWL5O8OPcpdBM4K1bp5k85Iw3WhtNwsO47+RqxdLcGiNosIYARgq5uyDwKFB9LnCX5swEMl5fd/hjrtb2M3K4q3uZEIdRwh9jBlhnNxhcw2QzOzeMVmbtYLC7RYEZjV4R7SPAqhjcNlq6FPhtZQMb/I6HiOfkNhMshPwgeL28VUgVfUGj2vkqxOddw00gCu8p+2wI7Vu80ibB3kI5P29vzG4+kYXl4KiEvhNff7xlwe2jei0bVgT2AvNuj1N6MDlHGYKGiEhgan5hFA+H4daYVdLVoLXPN4MXM5CkFJGd7M+YmhE1bGsgukOcxe0J1syG8TiqQKlyiswpgozAib7BIveuIC2YmgTQeRR+114ov3Tb+vetptBe6HsXL8nHNhgUixotpC88y5eSY6nHebFAlfaMU0fVHXRj8E7+zw1SomOgloB/T/HG2IdXY3H2itVnwQuTCeHVV8wQwWTZM75HG3C7rwN4dujaGCUr9oS07i7zn6d+vi+TI6COrjkQccVcDfgu810qh8rGf08dLVpKJOesExDZ/Jv21+jTa3fAr/RdhJ+a9ZMqBCFOdeIzzx2zSreb2dAzRj614qiUtBEPOJ/KD+Fb+J0yrVtinnykShAcQHV7u7tDEynjR3E1zI/LFLv4uEhEqFSNzjAyckpQ27UekYzllU6R1TZPAR0VRu2q1/DKs8ihgkY7ikyKHzv1hyfNUkKN2Iaf50JFqFctg1ochi+9rNjx8GZuZ/Vlw63dcRRzvHObOMiV+lGJGYYwUhgEnSiZLv6xQZq56tBw+IqOxKNh14vu1TCFq6mSbv5Q1OfNcodMJzktEpJf7oKMuYHipQCq+GDj6aSxjhush2YDFwY66fTyJfLmAcs675K4l9d7nLfH8cHGucXJ8ov84Bj6cLzpWqYl7S60L3Q0oNubxehUJsOL+EeIgTCxkobclNKQ+i1W2jnt5UoqOrqM6TNb+eef0XfVHevNIVmQumw508Kuc88Qgxo7okMziKJ98+LZd4qnGBsbNIEQXayiTBr2kmDe3sHjwn/s/g1En1vhw2ZqPtyLYllFuhglt+vLNFkf6uFFcDASET18TIa1jImT3zbtqem+j6rc17TzcSdeqy6f/n/uskkF2tk4omIfDzpaZLxjc6OV0XWZ/mggMR+pYrC/wzJ6aFHkV1aEhrbW2tERY1D2G3+o7Im4GFuXmdbHjQx0t
Variant 3
DifficultyLevel
552
Question
A cafe sells large coffees for $5 each and small coffees for $4 each.
Jean wrote an equation 5l + 4s = 57 to calculate the number of large coffees and small coffees she could buy.
How many large coffees and small coffees could Jean buy for $57?
Worked Solution
By trial and error:
Cost of 9 large coffees and 3 small coffees
= (9 × $5) + (3 × $4)
= $57
∴ 9 large coffees and 3 small coffees.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cafe sells large coffees for $5 each and small coffees for $4 each.
Jean wrote an equation $\ 5\large l$ + 4$\large s$ = 57 to calculate the number of large coffees and small coffees she could buy.
How many large coffees and small coffees could Jean buy for $57? |
workedSolution | By trial and error:
sm_nogap Cost of 9 large coffees and 3 small coffees
>>= (9 × $5) + (3 × $4)
>>= $57
$\therefore$ 9 large coffees and 3 small coffees. |
correctAnswer | 9 large coffees and 3 small coffees |
Answers
Is Correct? | Answer |
x | 4 large coffees and 9 small coffees |
x | 6 large coffees and 7 small coffees |
x | 8 large coffees and 4 small coffees |
✓ | 9 large coffees and 3 small coffees |
U2FsdGVkX1+4lSepJJKr0brKMxV0Asv0Jgm2ELGVoq4pLGZmkXtOS1HHRHAo3Vnig+B0+uRsNZgBZBiF2uF3DpKR7q65qYZh3mRjaVXc6k7JhE03aJt18W9eOJ2h6m93UROMbvohy6IX3ORQoW8Ma0PMbxBL/DOd6iAVsiC+KpWyh/E10LAh9I5b+6mARqIirmhUwMErN3TA++ik/nNNXeHNrSZZvX8/Uz59PDY8kuXN+lNq3f871El4P/QQmrhgWZaOJzPHUqGvV5m80515udLdkRlPEi/EmTZoYa2BUQ3dKxKfDqbFlRem2P0WgVe+iBdkQMSLZPjI1WzpkHC7aMeSJ8Oo3TDIF35B3nuFLQg51z1a/QlmcP8DzN5vfF9hclhIBJUdLr1bXvWNWev9T+j1df0oxVcNv/mUg+2ix+UdzB1dMO8BYhF7fUy0/g24noToZa1HMAt5cs1TOJxLK6bclW1prWMIJ564Qhv9aZHVAmWq9qBaCpHTAYGD7vVxsnlxb/tEXBQ6tF4T2LoW2RIXK47xHf5pMp5xe8/Nhczu2t67I504r6LB58y0jPvtN9eF0FqykjWkycqO0zYvGG3TYH0qQ7UJAsTFZhs4TCgSzbm5ORhP6AtHGgAGWo8V2H/GiLOsjuLqjJpH8RWVflJkVyiyGFkJukZmZUN6+0fEvlvkKmOwzgiIJPzLTpZgjD8EJZh40Cr+Dz51Mcb7RGxqdErXTgz3yP9DQH6KwzeOCrWqOiHOhuKCr6BR7EiSy68W89uxtxgD8MW0ZfKENwZOtrkbvt4wcdkfHDds15MnNcJkcZ9LOGCrrmmnGelNg8UR5ZSChybiyjq2G4j18Y78y1MVqvjaBJHjH24OTVr/oKVS5GVjyIVdQJxh3WW5t5upyW9U0/pj1pCzmCoxelysx9QQLCmNYnva9GVe4oSq8sSb0pvySt/g4kRxvcaMwmDBqxezjGPHsmTUes73JhM9306ZoKbNosN+HdRQeZeLO0gNafWDcslkr4tmJ4gav0ioXcEiwVmcegacZZPFi5FSY0sLzBFm5B0vdrtyf37t7D2FdSvPQ4FOwbiEKTNMn7omWXVGVj9R02gA9DDlHI0aMAMd6QCURUhooJtZbUhiBQ9GuH2S0F2lTFJqv9FIz+il0KdG+UIt5ryD5tQn/kKpAYM4Jjv30zqdpK0/e74Lw0r80wWt6LoFzUJpS+2r/6lFy3Vl4hDT0vVomxF90bxMa8jpWcuLMh7nd5BpOw0e8+6VEQctmCQtTMS6R076dHhlhUrqLEWxrJ1NUmzfNBOdX8XeP2xY6Q8e6lTnmi4KoI/+xRrpWCk2YtqA40JuB92/cyktAvOXDnlVsvY1BE3Ua+7fCGRzNHPuUNEkuJc2NFH9Ua/rVSR31X6Uyu0njDrfuFfOI91JC7i/lqymo13VhC/hJiNqp7Wr6DdPL2jch57tqz3Lstug3j9ys8dHw15/uv7oJLD7G9SW5HfrlLPL3BnVxs2n1aS7oOm2JRciwx0RDN03lCLZp8fzlrbA2y6YuKhy7QTUoDkVVE6SNVKIZypT5FOaZKjERnv39dgZ8Qvv8D4lRyvBAPZF0N1p5gmoB+KjzjypTISWPrQmLEUuqRZsVix7r++OCvRusaUHzWvm5SgT0x5w7WBTAtriMMnNIkVf5C/W7XQ4Xx1/uoylnraFLD2CwoX+wiB2ObgZb4rPtW1c1DpX6pVnQ5RymNJRJ/cqGUdiXujTuLyVWmkUnDmWGsxwZNJedaZSKCRDJEBRQ25h1qqBUoVrYgohb7XjlmEi3pCda28wnEX4ObET1PZeSzrkdMcd54qHpIizTDlRbt1nhEye4J+Z5f57KuHn/xj2p666SccLmiaLrvjwpJPxSoxMcfLJPua5o+X259f415JJQizvU6ZiyBujziezg3vz2BzvnKQvWBCxxT0j7I61v8BPaQ2J8gbUxyJ35/pJHmYpQg/HDpAkUdVKbwOx+GMaOFJE++8EiOduTvxKJECTkSwOBsPjQWnHR1quCJ3HckZ5yt6ufm3euFV5QoyqiWb10XQ/l7+QLkB72xgdV0No+3XR0q7l9sSLRNj3oO/QNo0ReHA9nC/Z8oghls+jFb0Y402rU9n6Z3erpOrBCZYmy+Tjpjze5OfydKF8LxCnu3G7KKA8Eg3lgt7M0BFdAyJ4OERxnCEk5G1KzDrv+3rv18zaxSd0mrKN5ml/P6pkDYV13fgkZjz9hn454LtIdNB5dhyosq8ltoMUo+Lr4BsXYOgEpKeqn1g3AIRA7ijx6+jv0sUJRKrjC3D+W0D3A9zRaYiG4MMMUzjm0VUbTbyMUWTBCVt0wQGF0ZJqGwLCG3vg0xHQoqvx2pBb2qwUDHC+pWT0JzPGWc1w5C0/lAJwT7A0hho5i3Bj48YZx0V6zOy3PgLn2fbhC3PIAdzsS8bbCLicM9Iht4+TiH9Cz47yeEbwL/j0sQqwmrNpRCzaj8pxYES/SSbJEFoMfPgR2JWcgGyw4DL48NTwwV22H/gsJn+0gwNxuVaFJ0KRwjssQR8Kt7/CV4Jk0qJXHXQvoqKT2nmGEofy29ny4Z0hfWp7p036q0p3Yv/4DWg6XRFJwmoqZ0PQPs+w9GHZbQMNFGnu8o1dxHgoUva32Bn/awLGZb9F8vw7L369IKp9oEEn0osIkkYOh/D/eB1duj8brh51cd1IJ9W1eLBGkDn18xclAvvRXrQ92hois9UuszRGCaScl8oIvv5yUxSSq31sjVAbxDGSZeSYDACt1c79s/5arMPU4hO8JzDuCgZ8KwJAyzx2cay216eCsgRyOu5cr9UwQMJSIc0QrfHzmB8wTquWPEKITKZnyAmxe+sDyY1ofANv9oX/Sb6sgTRVXNwESFfBrsff84Dl8kURfz60Ml/h6STkT4SbUrC35ooE9GnpQdWBUVZ71Ypeq3OIuo2hiE94WLUcQXF0O4RjYVLlFRaqnbLJit/Qro5y4i3IGOW12lT9wQsSQTDnhQM+sK3QlFUJ0WZQOun70BoI1wTG6dvS/8V0I+f7yy1XQRS4mzESbb7iHvEiPSdJpRj58tWC52bkVtZNDGmsmryMb7uURwUX9V2noOruOU0N8BZ/rkmx4JbpTLQLMyFctNwhQdluzQQRW1yZFiM8H/TxNqqFxVM7GHbh3JRATbQD0cQpqUWmDbncDHKsPh0rCwj8hevgDJ+J+QWAn78bq1+w/BBt7t58mUhXz9IYdUi/5OvjJbR5m6Pa9uoEpPi0edlYfTyZAUz+KvJavpiUGrhiZSZjQst7LXZkecaFVurC9EUkq1JW0FMaz+Uxneeovdc1ph2QcRzK1DYE7mdoBNER7mx2XfvMZroEmkuu94r8W9gRLuSaD7pW5allwCiwTZkT+2MU0kiQr+pWJP79YwHmu33pnhtu05bqxR+rOW7iVsozuim0fqr4YnDz0Jq3QwU5Dg39CrahkKrgo4iCqx5HiXIa1/tO/W8mmrBQxUg5OSc3KfdHEqFCmOmaOwylIP/sz/q+nWeVbf5v3MAXaG8AybkDofzZ7qzUZeBHor/+i++7ItJ4IxSJrHRbvF5dGL0NnXg0SabBj4NEG+4WpB03GkzzUhuVPbPuYVJXbvF57+cOExRZcTnHwoclFanotvEHHnie6YHN6UAaJeod99r45VCe85reysfSWZ3/bL0FQZWPminPDslwz6YTZxBDilkBc/SpYNJlJJPlBPx9WzNnQdKIGyGHx3LANRkFveXlfzt4H25S9r2pLUyBBUoAOLvIcNSxArpod9wTk/j1rBbWR0UgU5rpARyBcQMLld6E3WGyqOwucvyLsxEwxzmFvJTbDF4KhG3YLWKWMb4DfRzKbc4s/SlGhlHrpU4nCWaRhGEQTuysZntEm/0vrk+Z5MKS+15UxEjUUq45/s976DHv44Y0+GkLjOrfuEtOrSE263fapoyKvlvO9+BW+wESC00BDonwG7HkOblWaLS/n0oSCVyXqYZhq5nbSuOicpufQqZqJfSJqS3EemJwKeQW9OCSnPtmyUKuY2rctgvVUCdFKX0nPJKQpRWXHWTPr1xmXaUf8BDmVjrDAtGWbbG0O5qQMefxvCAVeZ0JetbcVQ1gDg==
Variant 4
DifficultyLevel
552
Question
A movie theatre sells boxes of popcorn for $6 each and cans of soft drink for $3 each.
Brad wrote an equation 6p + 3d = 45 to calculate the number of boxes of popcorn and cans of soft drink he could buy.
How many boxes of popcorn and cans of soft drink could Brad buy for $45?
Worked Solution
By trial and error:
7 boxes of popcorn and 1 can of soft drink
= (7 × $6) + (1 × $3)
= $45
∴ 7 boxes of popcorn and 1 can of soft drink.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A movie theatre sells boxes of popcorn for $6 each and cans of soft drink for $3 each.
Brad wrote an equation $\ 6\large p$ + 3$\large d$ = 45 to calculate the number of boxes of popcorn and cans of soft drink he could buy.
How many boxes of popcorn and cans of soft drink could Brad buy for $45? |
workedSolution | By trial and error:
sm_nogap 7 boxes of popcorn and 1 can of soft drink
>>= (7 × $6) + (1 × $3)
>>= $45
$\therefore$ 7 boxes of popcorn and 1 can of soft drink. |
correctAnswer | 7 boxes of popcorn and 1 cans of soft drink |
Answers
Is Correct? | Answer |
x | 3 boxes of popcorn and 8 cans of soft drink |
x | 5 boxes of popcorn and 3 cans of soft drink |
x | 6 boxes of popcorn and 4 cans of soft drink |
✓ | 7 boxes of popcorn and 1 cans of soft drink |
U2FsdGVkX1/L2qwshG3DDNhc3MeiwIW9Qd7esdck9cJknqY3h1HIkWShREEyyrAuKjZToT1qXDEbWtExfLvNcqA0jEnYRkTrU7PlbpAuYlB2DVaKn0nKO9GM2rRoUbHdzjOWKzMKKYRo/BbwVZqodubvJpUCmmI0NMdGgnKcrYzz6u0QQfEp41TZGkT6yG+ZIW4qIwIWkGEUDOro7yFq/vJdAUx0pK5c5h2wZcSmaLK+dJLX4wJ5n94FZwidoUXDfxiZJep01sYcqIstl/N3DMmKHqhJ/tOLJGKzgCPu8+Vtj6KlGHji3d8ulLiNElPA7Y70GcLrq9WYUXfwAnzyV5sMJEawkksy3FhjPO1w44gE1+31zchp72XFxjiYGFKASlO4PlFxeX9qWiyNmcbPBnR7xE650WnsjceDXq16SkAh9cCCyS6Jf+LGK9iLhTaCHWeK7NNhLOZK8wUDUWs2EpE33HlQsjxa12pFUO6MjmJ0AvPgZT+x6VEsFmbvay98A9QBE9douM1RdLtDUCiHHE5sFdl6JcM1xhL3iBqZXfyF8yb5Gbc5Csu0Vv4+sMh+AqcEwOGBlVy9ycZB1LLgGY32K47GaJggpfJ4OZ9Bnw2emT8cGRWRHSnkrRfMYstREvE9/XV8i5b4dMvUHR8xNbGHp5qwAofbF13AOOKZWk2yMEw+wrq1VY4T7DMm3APf15vmmYUGX5GoZ5o1KyyXtns9jKbmslG1rfMgSb57MznazwrfGROTiP4R+yTuhZ1n4iKMEsdwAnNbT1vvNwtRSMjFKyGy+eX1/JRHyJ5lUDaTkR5c2jTPwLRWt2LXNSad0jgVx0p2aL/NFiLFXCuVwusQiQj9jm+Fh+cNBX/GtKULOCyJnq3Lv55E3WSctlI3A5uSZnceRbjFQZIKfsI1NF96s1DGahXIkZyZnMPg2EbChs4mOn0C5/qEcymm2j67DyDYtISniP6ARgIQ/sCWiPuO+lprlN/9cVPuaErkLkfURncaVFbtjAnprs1fcGrMfvoVND+JWFhW+xGScJZEb74szwTnpKUzcUXYqqaWY7FBnfgSkqrVj+d+rJnJq88z5eETykW3R89zaCN/6PmhZ4Zak/m2k7LqghMw5NClB9a6SXuPwsP/w6EHiMCxhgRhePkTOyoPYO98iUkTavBa4tmASCaXTDdj4EHFteUcW199sulB3WHjKSRXwjyZOdzlValWmUOMcCLFEVqX1bH8upGf0zjgYz+ov1zL0HdJgunAW24D3jIMAGvwW/9UCugwfM3IMzVwGDZYIHnT8hTecy+wfDBzOvpT12C2kFdCOdWJkvAmlixg9RF1/4Wyl2BGSJXgQoVIL/hyfH8nLlPV5qd5VKAfVMeVFqR5DgfS19XbQJZvqcqAApA8yg2tn6XElwoyAMnMPQnHSdX6yN5Frevignk5Hj05CsG988cBMzeobEQZ0C+8CKX2O5ibQ5PqH7pzHey4/C8JQe0zeiL5Zte9v1ibv69sv7p92Nxk9T8ja6odv+H9YDhbPikpUqhIZ/VPe8LNKSNaLv84HniPxz/CzeT7oCDDr28ytzZVGEEHDnYzz7e5+8dt5qJWIN5YAdO2AEDHH1Olo/PlbagFWjMWmec+UJxiZsHKZun/B8Mv/IpTp7BK4cbkk9JNyWL2pMPOqn5ay6RgcEiAItC0D+XP2DbR9Wq09Pa6FY8rn9BAzXO65U7EmL7KbuT8SwlbM3+gUzED3pSKp2eYj+Vq0zIKpEW2vXER6Ao/V1yo+BDuuOFf/V6HMvKvaM33vGRWclgC3TkRl9sOC2GbBseIih46NXhs07qLduy+Zaio/0wz4zM5o7GxnjT75fB3ovbjx4PMy/0AUBZrFapBZMp7EsqNcQYjk/P7B+J4vMeMPP9n+GsSY4fxXludAH1Lzv2rhaG76TT1LeN2zmFJ3vxF8N3g6veefqdXy3eodkPMW9QLMwHUYN6B1w48oa+XOJd5LKN9Ev4CtSAQP1+CsJUSQwQ6hg2CEFMJC7p8iFVMvs5AlWX7fqCkkAsywbnCfbyjz0Jimg3QFsJdPjVZ0cSggD+QGxAVYjEq+vHIyhs+4qa1VvL+yfakiItxpG3VBK9NYO8oJnB/hafPfuRXameojKBw+rTgCLljRiRLSzkBJBCYA3jnEA/ciDPFMgQCkxmlGOEmEA996MWial0VkTAm5zikL6cZf9vqZGWVbUKLBZiEVUUSHLyRdNx9Gu1boZJp8JaHxA0IrDVJzlQWy4zKVXjxe17XmX8Pqs6MQJGhhod4TDLUktmb3XR3ANdHv1D1qiZ1kYRafkLe3YoHvYdcqx2jzTihApfPxVyZxhmj6/bVdkN+sCHxfXHHA3TL9yozjtfJ0/Ahf0zzUaxCx8jiGTrUNfDD3Y94HNhD88/pmeu+ZmIXZY7Ey2w9BXig3WWjgdOBAPdHBkXYHy4/4V+DaDslbeUZYsx+cEHtlAEhSrgbXlb9tQy07viyjih+0wFicZi3NoHKZG9KPFUs3NmUubNe7xxTyLavkpfEdUgnm6toQHFLGRqxGoPXa7hiTbIeCoGrblEH4Iz+5WJ0szFm8Uo2jfs34CKP2NucalpJB8YrdsfXu6B+mzwgegyqC8BZYf2gAOZ+AistqL1MtbxOsVud+GCSO4lMnSmMZhePnhsOdXk3EPxnXBDWpubIYVTwX4gaz7fgNt+rXwVmT4pQf208OwEjfgQrgg+iLVvVUwSUg0jZF7xZkiaBsS86/zvRdbpeY53JFmIKOkQeWUmmM3rp9gv6WynpqnMxkg8LmI2mgeR7SkBjJ+pzBCBDU3g5m519EYLXAPyEHlPBdpNaEYvV57SvaOgGwNrpd8vU353yY0o+52BwOWkiQWWwZh7ECbQTwnVPmDXL2DPZczOcw82hOPIxSF0fQ9qkV0ZRElyyYD1sB8hfhcvHiloJfUV/8f7rzdhGFGTP40PxaXXqIQ0W1Aai8xO4+3bDWKu2Qs+qbL2fKX9lVdgBPhAgDxVwTzjhHQRiTzQwQkmXj/58gMXcZzm1OMcSvmMH/xfapkw7vzqXoEirwYYBGtx68WGDEO9l/3kN9d1l3k5oFEyqHSGK1GhM73c2yHokoiKgxX8oXLscfdyHYFmNW0Kgo5WxYOvq7ar75RwleYSe8YvfcThLJmrt2Pn5e3Y2v+TJ8Ba/6fC7rj74a/YrLwiL3YbkYC7ktxlL8XQ8NcjcLNLIpgLMOIKT2KZsjkQ5SSDvA+ZINRxW/4zetmu/EX248elmwGoPLVYEHCb7rF7Ztb/23wtn7IijghwQQCGWD7HsAL/EnyOfmr8ktn2Hr4XcNmMULFTn6C/B4g3YWCzY0iCH2fevW4JRisFHlVVukKKdxeLcojhwDGr+nchM7iRI3QvbggmbYKOb6S5xW6PDMpP+exy1IWLDND8NpEYbjs7/npCTiNuOy8OES1qqCW1VBTi9B9jV2BgcivpH6CaqyVFO5mHkhtc0mXmEi3RDYD99AVJnzy0qN6DXbL1aXmOSp0+aoVk3Jkg2Q29NHPhCSn/x7dTVRlzqEsuv/PllR8Ae39RHYfpLT46DM1h44cPv+c2NhEJcYqBHPUaTi29IDVZ+tWQ/hrpd/jG0+73fqcWjSdZi79RombCN8xWz85bnDyX4+JB6C/TnoBtlnQ0CrNxNqFytFOqXHucw1WMLc6lKFEE/rS4idBdGNw+3bzJpBw/Q65smIlfPgmyl3OFlrQ0EgqtgYrEqmPRCrzEkdWqBbbuLHL722iyDaXEqYa37ztcBr+klaEiGjB3zyYyUfZ36HmacOlvFroOdwYhkTuxVy1xUQKbizjm4a0fHnPrj7W5c+S13ISuhybWjA7vOWjRbnBl8ieY83MXfnJC2kjlZ3No29x2Dvkt8dqVkvf6+UYreA+YrMWQ/9EuNVa+MAAzcBdqIEK/yyqmfp0hawIeUY4pDM0r0nlccTG8hjY60+7iKKXPez4JdnUZNKLvLIvNrQg+DhXk9xclklTvNmHO7/wm+4H95D1m0+MWej8/RS0lxdPijZTcSzJKxLy3U/4XaoA==
Variant 5
DifficultyLevel
559
Question
A school canteen sells apples for $1.50 each and sausage rolls for $4 each.
Anna wrote an equation 1.50a + 4s = 25 to calculate the number of apples and sausage rolls she could buy.
How many apples and sausage rolls could Anna buy for $25?
Worked Solution
By trial and error:
Cost of 6 apples and 4 sausage rolls
= (6 × $1.50) + (4 × $4)
= $25
∴ 6 apples and 4 sausage rolls.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A school canteen sells apples for $1.50 each and sausage rolls for $4 each.
Anna wrote an equation $\ 1.50\large a$ + 4$\large s$ = 25 to calculate the number of apples and sausage rolls she could buy.
How many apples and sausage rolls could Anna buy for $25? |
workedSolution | By trial and error:
sm_nogap Cost of 6 apples and 4 sausage rolls
>>= (6 × $1.50) + (4 × $4)
>>= $25
$\therefore$ 6 apples and 4 sausage rolls.
|
correctAnswer | 6 apples and 4 sausage rolls |
Answers
Is Correct? | Answer |
x | 2 apples and 6 sausage rolls |
x | 4 apples and 5 sausage rolls |
✓ | 6 apples and 4 sausage rolls |
x | 8 apples and 3 sausage rolls |