50125
U2FsdGVkX1+Uq+reMjlAnQFcCujaTaAiBCVDp4h1Hxi3KX+mFzfZ/w7RpKWcrQJQOTJYvzsQKr+LbnAaIWDWo67dzNERy11fbLzTiFZKuIr2olhc9/6vb/s0TfgmDt0jod9Mtx/VXW9B5uNjnuIc6bObvElFO4sgzvbsJyXLK8YtWXmaDp+SV6VjGXOzov9Ksa2dgooTYkXEwse6RyAgoAj44Egzc6KR1YOaQFaQ9DDVS63lOFIT46q3o+EHYY5ZzhqNng9gaaKoDAt4CRSWFXnwmDsWIt+S7eyQFT/DFg1vcDPyPaSWPe94CgGIQJJQ5/gjgVOhd5qhrnR9FCgNZUKbAxmRtXvr7PqY0A6I/NaZ6F4SYAJ0pM/v8dWQtDcaB5sHoQCjsr8eBwGzy+btIAjneKD5/r9hV0NvAHd5eYN7n4/ZW7u9XBXekiK4nvNF2XQbFsLThKeDsKMTK4n8E21PPmlqVHDfA8k5coGjNGgQElwUfdBccLnNag21JiEdkHEILvnnWEZYFzl6o1rW68uxR/YyyfMAt7VfbNfdzqRT/wvTcDsqcB0NDREB6R3O6U7m64zSSXMUqiNRmJuyrUH+xKY+YzbilZPGPFtd4yZhJ2lsJZaCcTy8/T6kc8whgkUEYCVyHZd5eunAxvhxnU5mEnjmtTopLNjxeCYWabJSnqTGvSEgLE6W4TFRWSocNsAPWbVRFEg+Ps/MeyVwX1yFVFoV0ucM0aEyERBPIGV0T0RIxyGiGsJMEiDwNoAcCQdIk/Z8bl6539rebp4OO+IdAHdOdlmNiLEtdVji1VKR3hd5Bd4JkiwrWg9LLc1yMJorZ0yfSmEmofNxf7dLInr0nQHznLNFJUCKjw3fNYjkWWpqvrsDAoS3XkTlxvxBATdO/kYU0vA7OAokeEgrHDHY03MuWHOTJ/h/HdMeD+MvMDVS+5C0R0z7alO90MfE7dgq67INglcBshJxYvNDy3Zfb0YmlvsFAw9NVZphQ0G/bHOpp8eqxdf6l+Flr6DH1MBKI8lZA/po88vdZk2JHhXY4jJh5XjFbm1iK8jCXRs3/80HKC+9pFCnnq1n71HAPvSLGfv6L9j1z0D3es+UFbJdEy6Frujage/0RBepZYQf6l+Wyq/JvVOiLc6Fde4wmZe8by5w40TaHYjQQeI0XUzBLqyv4JgQaLWjm8EyNKYcJcjL6UIPvGh36novni79CMUFLSmvGV1V2y2dHG0jrVmZPclOTfTnq/c8EoJabCPJqGO4v5BFfx9vaPQ9DlPNgi0MHREctlwJJdCx8yH79ygHfuXmOTXfPKYce8kaG8mKb6jDnthVf494SPMT7fgwb+Ven3T8REsgNPm0J25KPImUo1OQHA41Yxw6WV5NIhgm2+lVAgwXaevqHO4f7iYuZyqmIbWVYhfy9peolO2DTQOFC0Qlkax/QtHvFAmKZtLPOLWCRwYgV0wPXCeyHY+uxdw2h0+CX+DfhcAoKrxwDeKdKBXZ7tPccHrctww5Lr715BrHUdjk4nz3dSJfq/Ugl0WMKiQVqZbz64NekSr7CXKQIBY7MWlHakYbghsboZv1Qr7axUC2K1UlQaEOP+Vlz/Kuup+JDU77QPVzCDUgYxjUgmEGdkmF4XvDG7SeEJQAQITE0g8WY41izfGMMzlXXQzqjxS1r+CM756aPFeDcywNcv2qhlitby95GjkTAm9p13WRhGnxGqQDqCDV5Ik/jvG0RG34SsycF2Y7HicuuCjdBqo4xec08UciktqN6jvKzB//ZaUfwFQNSwrYmh/uX2hsy64M8OKU28SJaD/LShAendVXf6CsQsOMlilKVKGaSNXLHEFZHnpYzQ0hX7uyimnugZjmgL3A76aq1kGNfzxse4mBN3YbLPN4nuHrfZaMSjdk3UGfFsOiuHFMvLyj6F6UJDwtC7PPce7pYxuaVEO6TJmPHmGbxeVks/0R2y57nxQYRnCi0ZyLEgOxR/6yGjfUhkriXy04Tgin4GTQWDFWmjLpJbt5SbnT4qURTw+5NoEH1zWzIxIVrj/oae8kwi6lj1d+kDIbIQhSz7b+YV1QU4gAMUu0AyK0sx/82GQX/PwXze2+XxWUlBNYeemiJV+qc+leOW2T8MpWGvZq3YpeRcVDwBCnEeuS/ufV5teN+BtLQCfhJYpc5k9tppQGn6m+WjclLdnnJhKkX6R2BGniFT0w9jBryOSqHMltFIrVI2KaOC2sQt4gq85T5Y1sPChXD5ZHFLvMAPzxII1gL8EU5AZX38WdCTs88EUqGKg1rFnc2NxvM1l7EGkhMc5aC8XwxbM4hsbvIEJOgO/y+zlN5XtzqU8uhlv8vJutsLV6KkMwIkaCS9pvRtqOpBZdwu1zB3Hin7k0U82t1wWJAaO6bFbyZZAftm7XUkjjuQv4GRPLjWN1kDJjvK4JrPaVCvBXTveBEBajsImLEtDjk5fiWAPBbNvwVgXFMhzGUm7B4oYcGU2sXb09Pkk1rz32qajP2dWJeKitl4MikkEVmv42WTNbblHns/c9iUoFqtwaJr5+i/9dDXidJsMlP+W2S44/cqUcGJcVgQk/Yy3J1/kcnu1pm3o75sPZvmIbBEipIDLKHBnWjhJGXkcoge6b+ix2cXyyqo4yNSIDTFjZxDj3ekCd769r/sssY+SdyX1JHfzT06FwGGjh2LWQWVZPshAEIQ/sgFaM7AK5hPPnoqeb3m1c9kFZ/uXVxTAcRLcU4LlqwF+Bg8lCB1ki9Nm2fR1LY06Q03W444DnDuN2oZCObH9VzINHFpwWsQlL3Xx8fjAZU9MHO3Wkrcn0IP0XS4/H5hOzgWrDFlXVVjNJWK77xrD9di7O/fiV0dYX6AZNojcto2ccgTp5u+wfXo9aP9sKy4O7RQIAACYWw7xxTX71KJDxBSXqwArcC1H4Ndr3WBHJQwsVF9S4GaRtw026XdlUhaQc+PgUUsVysPFo3lNuquzJuv3sMhTbUYEPMHdt2qqPxyMyoaypIId30xcUHER+/4Rb24QTB+2KS/PJySTnsegrrH9COJeHijctbBpNVbG/5qKJ0A4/AB2vVnYO3hHn5FGBNpaxamNcIO5+XfH9rZzkVzS575lNIld/kV/imQA+Wp/KiSIo7FaqMxQV0cTI8L9XsrBswltV5rX01GqqFUypZjV/vN2d+UVnH2n+XUfbfKmYrRjmN11IZuKRfoHcEVMcuZeE4HUs/4nS+gDL82yiG6s8LuhLCAqybztR7mLkDTfSKy//7jl/WVu99gbSC1WYpUGaj5EofIk/bNrA4+monUJ784KO7yFSsvbdhgzNPOhxe4LDWupHEioM5+miG8HyWbRFwi3s47RE+gfrmAvLaeMgDxeV22V4Pyv3Ab4ZeOvqve2qxQrBpCqbDJNL7+JdhtvttEf4cocIAozXJJUblP5WDN/Xp2T262bdUvb4kCXhudXNuH0zfV4Y/39VFViD363ijMDkNRIsbkn+aVtyhSwUG9ypfBLWJNadcP6uzypKY2jpSemZ9sw4FuH/X1AjX24J5YzHGYuYRKi+NG1SMI46635a9zy0Zz3H0OCx6aOhux67UqvlP+koPCv+yfhYiGxiJneZXyLkAmOK2mGaODvyp6L0nlZatScpQ8B5qm9u8v+GSfZlOAbxXdkQcMmbjbs5JlPlvfXwO5g1ZcNqQNNBCatf3+KdfX8hx/VkpLQT5TOHxHrd1Tz+oD5luz9p+tv943ctTYzuDzafBEff5tg2B6jWcACJrgJ92yRUb1vCBgC76ZZcxXBqKIEQgkuNPpxq6Jm5qlUQ5KmOiVg2gc5L7Wiyk1p259lQiI18u/+BN0zb19AKyNzLS+J5qH8sEWirndjuhG/sSF9M2jpZv05AnTSgFOjmEMXm5NxvIIK4JR4prdRF5bNXImEtIhiFxe/CP++t3UNz/nrIrqMdhAYdsDn9GKuLRrAtAnTzGVSxn2wFfnrkkDT8MiByU4NavpOLfQQKbEKxV58Oofg3Yh5/rHVag9XtE89yIptMh69VH6S9jSJE66J2aoWc4BLq76iVIP8NSCX1Sd5j+++/zWlSgJu+KyaqDwHDFDZb+JXHDc1AsuY78elruXG5mD/z2Pvuu1fkaaMfdUjrXcHjoM8Djti60kFLQeEETrQeq+tO6Z+Bwgl+Jy/RUqIBYMeDpHKTNAJMCHBOTN9moIq/8g5Ybjql0jUygWi9jHB4trULFtJeUy0YZ97aeAhZs76U3wa+66QHzM83OrDF/QqNV9H5PWRtEzPMtuCtqT9ofopDt38g5KELXdvjpMUO4cw0CKQj1vL4VEaLrpCQQh5OkeINSh1RqsTeRL1IYpdO18xJN3V/McFfCMIBHY90RPIRBdQpO3y7klcWsvM021tnjm+YPyJqLrj1d85KzQ6FmgUf6Gdjwo6htkJclJEqJWgWNO59zMQdsJstLeEi/nOPK8hSDCE6ZXZ2v2Zk2moWoCyelQmbV0BseQeaLt8h55bX3A+zBuXpQBlBjhEGByyvhgvMWlbCMg0UDWRxstR8fbCqIA0GQCETda/PJyvPWXaOnEx/9VfxpTSmcrOhAEwVjRSHa+Er8/cXM94i8+wSw1VtxptgJOIug3GGjV1cBHWqKY0U3puQiCAlbDq7LMZVqNFTawJQuR74HLtrQYZNgypIVPQhYQFToo/McHILRBqJ7EtACONlBJd1uM+YbrYShurOaaI8NBKpJUwCNajw5NR0B/tSFskw4mZdNuQuGDibqaWzs5e8iM7CfWEJWykLVtNiHznnyRgGUHrBTji+LHGXa3mBXY+rAhxOT2Ya4ysktTILDxZSvwTU0hbNpeGVv5xDPv5oH3QYHR0=
Variant 0
DifficultyLevel
453
Question
10 of the tallest mountains in the United States are listed in the table below:
Name of Mountain |
Height (m) |
Location |
Denali |
6190 |
Alaska |
Mount Bona |
5044 |
Alaska |
Mount Massive |
4398 |
Colorado |
Castle Peak |
4352 |
Colorado |
Mount Evans |
4350 |
Colorado |
Mount Gabb |
4190 |
California |
Mount Loa |
4169 |
Hawaii |
Kings Peak |
4125 |
Utah |
Wheeler Peak |
4013 |
New Mexico |
Mount Bear |
3540 |
Alaska |
How much taller than Colorado's tallest mountain is Alaska's tallest mountain?
Worked Solution
|
|
Extra Height |
= 6190 − 4398 |
|
= 1792 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | 10 of the tallest mountains in the United States are listed in the table below:
>>| Name of Mountain | Height (m) | Location |
|:-:|:-:|:-:|
| Denali | 6190| Alaska|
| Mount Bona | 5044| Alaska|
| Mount Massive | 4398| Colorado|
| Castle Peak | 4352| Colorado|
| Mount Evans | 4350| Colorado|
| Mount Gabb | 4190| California|
| Mount Loa | 4169| Hawaii|
| Kings Peak| 4125| Utah|
| Wheeler Peak | 4013| New Mexico|
| Mount Bear | 3540| Alaska |
How much taller than Colorado's tallest mountain is Alaska's tallest mountain? |
workedSolution |
| | |
| --------------------- | --------------------- |
| $\text{Extra Height}$ | = 6190 − 4398 |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+tx0OKGSd8U3A0LuM4Rq1ALxC0M5lFDe07n7bjfca5VxwxSa/llrSA9gl+QbiFXTNhLvjVIhB6eKxdxTWp/rIZ6FsaW99MsamaXfMs/GZXCSgYrQf36QGeGWmB4T97fB2/A+hLUstEBB/Kwmyi0V9U8y90RS8BLy85rX04sBtj7G/6E86TiGQ7fPCsg7HdTe6uO8J6FjEAjsBaE6mdXIGIQbOD5VOiyqtWp8XSrmhtFW/znFda1URLjnN3sLw5rka9Hn71IatEfLg8RwJyyH2hekwdEFk6JGuM8MOnF1JJ/Odh+ylrsYk2nFk3qDE8HDzWinnjh47/PoNUZXES8clqG9z7cVkmyWK74Jp6EO+YHfOQoHX5q7H+jmXMXXgEmjfpuE1eSn57+Y+s8iXELseWgjjDXe2R6grZF30IvUpmmG6I3g2HZZ6MY5u6AIv4wyoZ2gU2lEp8agIXET2VMsPgT2RXQczNvwDX4T8QY9u3lUjqPnLsAi9ltPRg+tsR+7h9rmBeAh8wXrVELoB4jspBQiAT9tphrNRXLxULUnueaKyOODU9JH4+BzvdyDn5PAauhs4RxYwCHWweNcX1NMmzWQbRDScNEgQl7DcACLuhfpd9qd+vct5NQEkCgLALr8RoXX6Vqs4Y6VNSXCQLgO27QEXuNEjGSevifVZJuu7m5yEOYDSxt6eWONnUADwJJWeP3Z9dMKARCSU0w2IWt7xgNDVGO3/jfs1QS6bHdTUmX0KMzs3SJub4lFpvFdNC3EeaqQincp5kL2WAhrCQWTkYbiymS8bMw9VSpp8wnNuizLg3Bc0/I9+mxA/oWIQqWJnmVr8Feq1ua+kRMQdLAmiMDGrkliym/kjhgvn4EZ3/LDnnUnhNaZ+G9b+eJRCyMfoUgEAs8mqqGJYrpsPy/yzubDYXHxHbgBCvwPWmmkcYfVb5TtPlhTM0UOmX8dA3bCcy5SEB43KdDs31x46UyKO7RDA3N1+UWCvYUSSjnXJ7qx9gsLZ7cMp+GeAcT6rOEnZouKvGSEFTNTOd001slZPemqYeFaKk2N7n3OgwIRLWWXCAMQjU/m0oLGfi9rZhbr6RtNlIVSG6HbZ07sqYrWdAqBaWir5AbTJC57F3/Sa/SYXGM+b2NbhiMmyGpTdzk2RkZdwtc2zdBdCiRs8mz86vmjGHx/w/ISlvACsaArkiljaTnU1Q+hyGZ4+zaatKyrspDPGQ9cHJ2J/PxlpbnTH7cQ0QQFhukBav52/zBQe8q/95G616AgOinpo21rvIsBG30mw9Cpsbikhe37z0+qXzw1YghTdCJBdIqfFiPwUgtlwLhvn1yCzpBfCvV7MdhY5aOLbU3fFMFBJe0v5C7eO9wvxaOvgMGtEC8BgpBgP5O8Wb4F/9i8qKqSuxbbbvnyNdbsLMgDeB9SZOh81UC69AsvTrh9jOoA5GGniQiM2ugzztBbnX6Ou2kXaXGi25h0rom+/J75zfXM95pwKze1njYB811129dHHX0wpp+/y2fsGJ736rv0b063qoMIHuXTA/Z8Chblv3fzYmM+/zsBqC0RspOV0JhNSUValournYiK25q5/RMpyXEuou3Vn9JoWG1yF9tVfJaPvO5WOYp5eAcA5IR1rVlIZESbj7xxCcNcz0ntbNwfrKLx4VH5wXuZh33bL202A3FedSjAIOQFsUY5gIjzvaRryFRtuUeOssEolc5Sno9N2GFWCH+qnUMjyBaNAX3u3bc9c3PyWqkpojf+TQ6Vjd/mJxVr8DhkgWTvKWJt3dso95R1X1uFh6n3wB7bJjhuMAwmF9Ks4hI2r+GHZll+/hEsKgC9D4Tc/Rp3EbBQkOt4yaW15WziMxy54c7lwflSQtZV7S3jDVl+r2xN6013E2fp+ifYRvSxaTgrmOjY4Qi+Uwxfcd2tYrpBWpF3d8osvRAUQav4uxuUNcbvW9q38w/K6N3YUZz9Hli+9Ts20UI1Xaqo3BAmcXnwEN+CBWKLzasptLMqPTXQ+NJIV6sv/+4r3KET26Y1Uz31DPaCcvZ98vYZpVlyxCFOQk5ZaLSiSh3FFufxr+ZNetNA43SMzYlJRkqm4lIPeao4paXcmmyrgObRhkl4IXX6YKi+khLZlSYmvnVsv1Bk8k4WztW4830oLZoimOWu3SGRLSRCQqb/3OttnFlIuUprFQOPvTZR4E4IgapLlqCgpBsWrnBAx4kwLLaiaSuskYL/TF7K0Mbs4qDEFc02e7gTiafpSzPLBt5UbFDxvgKzeSvVXSQRbxUud83VRtXHGLmHgtMeSsjsIit2a0Qq1Mb7AF0qj7mEtZAtqrhUlpFJIwv/OkVho8Y7BI/2pIufRyvtolUarQy1fKWKUJoKaURIkWIRuWID74etqub9VlYEqvndBHlCwgueQb96C9krMJ+tU7Vk+cSe8KEE2po5s4yFbhVB2Tzk0ihawf4cL4IBMyv6evBNc9zbB3Bueb3h0q5LE+rPW6ko9EBT0nwgA8LGFtFChvujMm9vSah3Lz3ZHYiTh0/Yez3uPFPG/6W2ERHMv/Z9ZXu30KJmbzhrBGgpjFc+8mRwdxT4Ch904rkL7DtAz0fwR8Mgb8dkYI0qIfoXWCef7kFHsMWQTXomkEtQ+D6Mhna+LSE0sjtY0kyZ22/EhPpXNw7624u7MzE0wEKiL7ATwFcA38b0dKA7yL9Pc/tqXSDMEWtiNL9buD+FDs1cjrkTXFxejtAOk7CPhEZ5DdxC+7aKaUYQLXXRk6b9zaiE/q0QSAcdIYyyp2VaDQqvKZv17VSdQiogn60lawsbkuPQYzdI/HWSDvZxvv+fzpVJf8GG6eP61mcVQi3PgFYvOYO0kcgKrWYPP+MIhBGEZDBCL6wSvpxtUBL9eHyBi8oIthu5/lR4uIVLbQj+fJ8TakGaJ57vM7lDKxMG4T/HvbX/w2I0fxYtULz5PW9KFeUjwJOiCc7giCLKH/FBdZFfvB/UuWPqnKCUc1vT7+cCyhlVOeARf2wVxtBVZeq3vybkCaxxZYNh+RCDI8VLfqFnRYZ7razc2EoWNkrUwYwRtGsGh1qRzhzSNK2VSmY742DjAM1MP83GGbPRam0Eksjeyfr3BVMCh5lep18k3c6k3q0/uvjN4MtIuO3ZHnJT7T7s5VhzKPwTbHCuHWYMrUal20mpHajCSpeLO2eaZeOrLHanGq2cWbezVyDCr1wVwo4UG4QJ76TtjrTPdWNkrImzagqSvbju1SRXsFdN3e17EU7t5J9FsV/unq0jNydb4V4Y2WLoIcXIoVD3FIUvQLdYVfcai/AB2eeG5q/uYRMWJSzDy+BR/iXbmTyIzen9tWfoyPZSEcteyQAUhPUedE3RptXZgueGXR9n35/UIO0c73g6agdkgQMVZnugADPyY8QhhZ+mtv2QPHAlHZD12K9UxLfoDcW9d9LPCt87zRUWZKI0Zgp5ccvcqySxdqR4CWq/Tvb9/6K/ivca7BDpmQBdSP61aTrB3V0IrZOMXkReAME3Rs4df03bIP+Mq7ECOnZItg9I27Ii5h9kC7Z0gqEJ8ATSRkk8QC+m/AmOZXk9Thz8t2Gu3xemcobJXc6Z0uOTMLWHCSaMDJc2/tABV9ks1eWgR9b5t9Ri9zBNSTgvR6ILFSn2+71Tri2EslXmaOW2PdsXP7Y8DnTjdlVH53qFnz+cIsylmSOIL/hC4jkj/BfsmJzcSLcgIYTAwpkxrUi2UC9zXwDaDYQeMtnXRP/lMceKal95x1S1y/EkZaUZeIRa3BoNFntYfxo2BaU6X+LoiYK7nvlAdqoI/wsM9nkc2/zY4ucmEALBbrAJ45Bj1+SP4e6I+wFMg7Gap/j+SBXvM9zE+B7V8b1WAlScKCxXevrDsWq6SP94CXUtS+y+yka1fI4iI2841k3f6SS7gf5URKjanm1yCDGJkzNioxn33o6cUkUGnqq4mIMLHFi9fsnwB8QojV2Sl9X8VvMnwq09o5QgMbDnBXnfnB/hinJe8cUc7wOly/hVQNgPQHYUP8MfvGHrB0O0DI2QorBMMthYVQCrdadh0n9gODsJsQyRErNFQDL60+ESHcxNdl0bvLw/mZI/NgxDA3n3Kt3SAy0MjpOWWGGwYAPaoDeQwIB+PlZF9ky3LrQL1saTWzjfz6tGmQmVisw3x3Yxt/btidhtBigv63ApLkH9Cj5NNqGzlyM7Npk90ToAaVF/av48QvOvBI7cvlnpoUBBTZGwzyDeg26Q1dEWTJl94wZH0+PkexaGGlzPIf8n1v20eXR3e2MKVjV8gbMY6sumErXq+Lpf1/fyiD0eLExK/a5kgqcsMvS44p/xrZk7hGKwZFvz9ArGwuTrCfwE6vv9DCpgF0FJEYE85+LUvvVR++VODVlh/1rard8pfEqewXT68wYkOTb+lAadcT2pOM43cUpnJZtxPbCgRnh1YFNC//92XN2qR0yKPXnnd0+izG7dLSz2r3jMtTYJJ9EvRajg01RUwAj1yAzGjP2roheZAzc8yCSt5Rxy88ggZ7gmPXamMyBgIOGDgiqgCQ8fKp7fhGRuXDmvGGoJQeFqDhomA4u8+uYVgjYufURyJjcyS4bu9SG53/VWRbAk+dRQyR01QfqlsvAXBNrGFrx8r1HU2rK+iXG7Q7WDRDJ1zvwhql1vZDDTfzi5cvFIxqDTR8EnAY4YBx8LYGvefu/A==
Variant 1
DifficultyLevel
457
Question
7 of the world's longest rivers are listed in the table below.
Name of River |
Length (km) |
Location |
Yangtze River |
6300 |
China |
Yellow River |
5464 |
China |
Mekong River |
4350 |
China |
Hazma River |
5920 |
Brazil |
Amazon |
6760 |
Brazil |
Lena River |
4294 |
Russia |
Irtysh River |
4248 |
Russia |
How much shorter is China's longest river compared to Brazil's longest river?
Worked Solution
|
= 6760 − 6300 |
= 460 km |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | 7 of the world's longest rivers are listed in the table below.
>>| Name of River | Length (km) | Location |
|:-:|:-:|:-:|
| Yangtze River | 6300| China|
| Yellow River| 5464| China|
| Mekong River| 4350| China|
| Hazma River| 5920| Brazil|
| Amazon | 6760| Brazil|
| Lena River| 4294| Russia|
| Irtysh River| 4248| Russia|
How much shorter is China's longest river compared to Brazil's longest river? |
workedSolution | sm_nogap Amazon River – Yangtze
>>| |
| ---------- |
| \= $6760\ − \ 6300$ |
| \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/6x5gB6n3L48AgSK4AfvNXi8Q7qhfIriiMg8kfYezwa/onX+IUZAglE8afQ9BwOvem1uT8EFasze6szJE2U1Rmf1EHp91cZD9Kyy6GgDdxZRb9BDwSBLgGg6Fc5JUpEnNXfQOWpWrDKiY4HDdzXM+z0Ud05bAI1bUh1aFSnaitjXyMKI8j7UkbFVVVbeYcd6qFqZYRpFb5IaHoPm2CCOQA+htqjccB5V8N6/4ksuJT8k6OBPVycORKVcSuN7rsojLMq7I+nw4SPNwm6UN9gGJ6B7YUMgUyYYJSvgIeV/ehiMt76bj6JNxwwLcBk2cq734JYoVSTvz19iUV7CP+h/ObWAukQaDEpUQ9l7I3NytG/s5G3dbOVHIuHpCCpCy89kWuFHLMkDegKg6ZaRsuFoHceBNSaHLo8hQP6N5xMVsX4OU9B48/0VhYeKgPZVHIhEPWht2vGtsV0Shn9KaWRsnuqOx+8VGHpj8YuDZTqfZLh+mcYVXvfKt9NbMHhHCZxlD6+n+82NryGawkQgsZFpeGGHY24ywzSyGtUlP06J1fV66CyUxq06jyiB4D/l/2K9l4a2YTO++o0QLCTQ9bLnt4DbvfUHmTYeH0qI81qSSWRBjSP5Ox6AMW6YfosDC0EdrBoVIKl1HjPgJ3bTO/YSH61A4EfJBY7d2MLHVW/iWa9Q4fD9bD6B9P4+hTrax8Xz+5ytvbPjPmT7hWfgtEYc94lM92M3Of8knBTe1AT8iOJKxIyxT84caUUaJxg2UbyY/hb5+Ozgn+4H8dfxfGP6e90wrej3YeZt5QrBZsoi+WfUKRySyp6QeHknarUMUxXcYDMjKyviBaMuoavnIztfLXHRglKUK5ANojSsnD0et6QHtb62UNB23nI6VQ20H2tgfiaeDWAyNwimYJVIrDBFfA0V4JeQu5txuaeVAV1XCw/ppp3+fvIGgie88ETaNBcSzZ/QcNBY1pLNx4l6dpEbMljy01S+LBtu0qWk8U/QaAy3jmPNfhm9Z1Puo4DkHXhmG4H6kzE3nGuK8gGxZvInx+6VGlrc50wqf6tiu5wYL14rbWTxSlQZqzPWD6AcTBVglcHiJ7JVwNJMK5ms6sS9xjUw09dPyfiRAGhIEA7P6IgHzhA/0/ndMoH5ww9xbtYYJbI8GnM63SVuKRpTwJF0TMBIpodYFOp3qiN4OSFg5kBr//f10mJQmr9ESCINT0sXopo1uklbMSexHfdibXnmdiQ2yxRY34nuyykxVJ3/Ntclw3/lQNbhAjrFrY56BoLpb1YXGzNIHD+DxS8rPr1pkiZFyR4s4Q5rdMLWzx3gnaDcF/8x2AdIw4zz0vzUsHSH/kNSHP5QPmXWrgFa7eA6N9kzJO2cGcBBpKE7P7j98SRtzl8qkumSK2cNkhZLAWDIYK6bOd7OdFTh/fjQKLcZQtviZLRPA6SRBH8KGB2n/yKEpH0ANGn0m5YOBnoJTvDRYJ6wQ3/uTPBJRa+0FSOGdxR9MpJHWk3ZX/G0B7ibB9mIhrYUfPNfUx9E6LSFDpky9nl3+6kk07mDPBeLd4VEsTaoeAR7fF3rshvWdjwEM+c6yQbLQzfq2D6iV+ziE+aS6+3aQjCm+PCTCzDoGqslOdG3K8hE4OaA2an3P1e9fXi+nJub/lUcyu9Y8JiTbajxB3H2qIt1BzBNLULAjlBuAi1fAECyGw2DTRhot+j4P+2to83vD1R1BiXWztNUAlw0tqrqXg+Sylwlh4oCWobTQ/x+r4e2ihE5kDRZ7nswLiqQd92VoVQ9FRVxq4cN9hq4yXt2jKPWp7gqOQsHTE67tLKFjVjp+jbJvVvv54hEd0/eUqS3GQ7jBMba73YSk9oENkExRIEEs5gi7E8ZGS44MZQKJaFffJv+ZnPcMfxNSW2BQeHs4EhhlQEbf6bBxENt8TC1ZYgZW7ZGTKecqz1rCFmZzaFIM1wwTX50UMFuNT+cZJ3nS7wjdimJFY4oLmEPJhqZI+YVAFqRtZ3v4Yqn4gNgr6Pz+ih5jfc+adumrkBidKw8MW3hU/wjuihSrvXpXiC8y3dweZOHcfqtW1KlhnHXFYXA88d3TzRXK2PSjmu2EvWrjwBXGuy/MhSJs32EUSgPHkOg6CQkeMq3kjyadgsQToAefMMbUyrZeaavXbFgsBw1IXZt2g0zAPI2FDbwJzd16KYLpv08n2SyqHZd2fEAeAz7XOyhVkcpUnTY2XbeipNHCdgW28kN7nRmaXQP6Kr9kj+9deRqgS/kHdfg8iq7/okSjJ0foZYDmH23NCdP296nwpTc3+mlt7OuTneE2kyJEsD50g+nHoUGhwkoJ5b6jCa5i9J/o9NNBDCrOoXd/JpukphI7WZTvwubW03qkgK4zDKCuklODRDmp+ATMWxtwk/RtOF9MfspgVCpMpLKE8lh1zfxjEpm8axZZTK0KgSl2X5DkFypw2wfEXwXqrRs8WgLVVqKjy1kzvNIYjMeBRzfU84zFH+fBFXPNvcvmVGFD+TIb4pWaiaOOxcjSV3CufspjjWfPrgsrtSTxSvXtxoJUbo6sRroU7naI0/mu+wF15065C+toNB/rqBC9DEzLXRwlDnxuCibHKepVhEGfHcrM70DGDaPc3xPEWOWekqEG8jF/xyq/NpiEfcH6Ya8DmZEPnZRcptPgKiAOniCjYxDS1Qpscnw7ovIqmhHXrtawZ58SkDQwFuZwXkS3Jvic/w4BUnVym8p9S9Z6UY4oK8IONJ/ObTi9vBPFS2ed3iC1mtRfBzFAkvaLBB3dX0WePvPu1RvXVU1P7leTWRbmsuUKpe6Wf9QzZQf5DkUZhjrObrUygkqILqy77KPvzQpMqnm6ij/SbjQ7YVtIIKyTYvGDS+FVnF1zSkpmfcSqXCCGMuqVZi7AjvUtc65kEP9gEaIUO95+m55wN/GPPrW0rpoUsykHDFokTfkt/u3AcWZFuq2K54tAV2xh9eM/2vCcuz/M0QaC/1McIWFErDFvU30s1fM4aK+rhFybXMAIK6hYHvhWS/tW0qVHwcVwG7Hzp2lGY9NZCmTcWE3lCnS7F4hw+NuKU9sfbX1qEIdvPDTluyglN/ZdcYdSS1nu5GSA89YMY/GdkJhZiG0+ZLOtmGs1GxUWmsccZiafxsFLFiRt2t0NZwlfetHSSnSBFeIbWKy5O5CBYk8LTniR9C+xGMnb7RlQxWLViC1tjny6B30+648LXCf0ly0IgJe4es9Ga3Z9RX0jyicvT9ra8HJWeX541/mYEH++x9Mpl9K3zMnJPXpa4qcKUd+Ruglic7A67hQBn4dHvFDneLjeS1yRf2Bf4+D8ppPjnS0c0B0yaVq0kpEtbAUxn7ILtVM+DLQEr6hDulAhbWYawyllf4cDm2uYMAPknT1vt+GeLhT6AYLEzl71ZVPynpAvb32ki8xRglBY+QUbudiWhFGRlu6KAjUZmu0Gm13qQl0Sf2/CCK/Wg0TgwWgo32EWBHjCa09vGMQEIFxibYs6j++6y9Tkl8cywwMPr3BVGbpFLO1tEsSNU6MeAQJ7+2y0ZpjycDrhAhYBk7EibqX+1/cMzCE0STrbYWFeTtG7ng1MBR63OWh695nLvHwFYFjPlkSjAJcG6PGeOJpi9Tl53/A91eHwRmNT3fc8tSymPUldQkkV99cFt20QjEtFIfpukNI6IEXapQkDyYPx3KUhFJmI7tIIL23kYeaYQoJdYAMj2BjFsZ30tNv+VimkD+5Mm6eoo2db0rztz9E1Jxz/2LpyUpbIaXIBGX5IWtBNTn7v9nDILznSPq8RVqi5KoQE86f3yWSpNahSLXHlLtcXGgJjz6NpUWRjF9CsfhaMiSX3vzJQXWMNSYSWPjU46XN82QitudrZP9/h5bgcAHSZgajwTSxcDkZz+NEDpGuvtummBn+zyZkqpqNpMQlIPN7AcxOjr91k5wrKy6ttmt31VrMhVDYpFP3BPnbBfCYmMvuiKI6GBWPnDEizB3TzEhGkZjyNeqNQ+fIogNQwER2gYKQmOn0LsefPlRXrnNvNepBI5AnpH+DkLde7evTxc9tXreqnRg9MnAxCxJSCuHF/usjFUonwR59dQDQFX5grDttV2ZqzL2yHfwLF+vlyef+pKDoyQuFslocJZyLYBkEUwYOKbhc/3xXAFStrtVD8DTlVQJTgTmVXAZ+dc31ifvQt0sCjAhS4pXnM3SMSRCyX8/Qon3l8hCVRXfH1EGrxPKud7ABCX1fpzN90mrr7/viOGTUeHXxXmCqheLNcbBYHtwJvUsS4gBnWF8M+Hubi+Hb0dRxbkYpuabvUr6kI4RdcV7IiDM1QVwoa6ahIsDNSf44lF1oT0jNZsvql7mFUznG34gc+ycKosanoeLR+t7z6pQtl9Dt66BEm5Leqx983bQGxLY9nr1h0C8E1mqB7/8UCUX+wcgRVgPpMp42z2PREM5oRcGOiw4FJUIAcJUnQr5L6h4ekgHeJPWhFVE7bhL3ijzNh9bnQxCKOrlpgxwhXD593B5/cPmhRC0G1Au3WoxhxONt9O6C8qlCyJDHuevDw86VqqmhhNNQXm9xVcbY0l3jTvzexcjLnD6vnFhi0v4EPsX8fbw+iHbrE5O25npAG+4fooDSzOgmcmL0LTLu8Opp4Ib+eKCmXcMzVKveUspwlJqy4GN4mOCJUhgAlj5Uj8M+w4RjkrzLfskc7IaFFKJCv8z5S6lGhyMXRcpSTp4pZBQibr3myVoYVUeUJ7wxgpQZU1fTD+IlVFW/QWSCsrfRIFmbUknua6j5Jdi0fMDaZbJWK6CtSwv4gkkEJrxXmj6Re1Wf+JiVTkNAMdtZukGmVV1qF4NZVRWUf9ISWaHdouvKI4V9JNsLJ7ALRqSX/GBq3q3IFoliCc8zuOADGEv+7jqlWs2tIPcWJ4UBBKrVEhz4yFF5Tqmqbo2euqKdLwfqQlwRb/2124wXiEJkq7Z5Rs1XJvfsg1ytmUyMQ9vKSbgkw7n/TggIbYPApSzeOwbfKEryzngTKULVxFHRuLw0S5WEShH+rINcagI5sxEFJIqzIBALx1mHSzxNZXLqTkd9XSa+baj/PmuDzoR8u1wQutjnU0AN1AzZO2Rtqp9v3vHoecZhzdYvWmQLQs8iLF0A4t8W6hQwyFAfUKLfQyUsq0WMeTOm3xOoisahbJHtL1QCwh4T1RWxRR
Variant 2
DifficultyLevel
451
Question
Eight of the tallest mountains in the United States are listed in the table below:
Name of Mountain |
Height (m) |
Location |
Denali |
6190 |
Alaska |
Mount Bona |
5044 |
Alaska |
Mount Massive |
4398 |
Colorado |
Castle Peak |
4352 |
Colorado |
Mount Evans |
4350 |
Colorado |
Mount Gabb |
4190 |
California |
Kings Peak |
4125 |
Utah |
Wheeler Peak |
4013 |
New Mexico |
How much taller than Utah's tallest mountain is Colorado's tallest mountain?
Worked Solution
Mount Massive – Kings Peak
|
= 4398 − 4125 |
= 273 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Eight of the tallest mountains in the United States are listed in the table below:
>>| Name of Mountain | Height (m) | Location |
|:-:|:-:|:-:|
| Denali | 6190| Alaska|
| Mount Bona | 5044| Alaska|
| Mount Massive | 4398| Colorado|
| Castle Peak | 4352| Colorado|
| Mount Evans | 4350| Colorado|
| Mount Gabb | 4190| California|
| Kings Peak| 4125| Utah|
| Wheeler Peak | 4013| New Mexico|
How much taller than Utah's tallest mountain is Colorado's tallest mountain? |
workedSolution |
sm_nogap Mount Massive $–$ Kings Peak
>>| |
| ----------------------- |
|= 4398 $-$ 4125|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers