30065
Question
What is the area of the shape pictured below?
{{image1}}
Worked Solution
{{image2}}
|
|
Area |
= ({{times1}}) + ({{times2}}) |
|
= {{total1}} + {{total2}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX19dxBv5mVQQaDjXH3MgmWKV2hD1gLPWZcsvbsJUSfcnd2SD8dY3+ew4z0hPXmXLCDXU8RFu1kBUVScwCGrP3dq5MYJt8m2H7zg2v+syj3hA3zBB1zP0rPiVojrW9IXAf5E2fHsVJ65Kx1EaAVBpzTVnzMMX1msWWhLHThVshFVGftTxPNjDAECAUZBo2jxyGkbqYrMeAucrbCJ6PGddsFIWPXvZQXju7A4n9M/HCNjQHuC8Lkcx7CZSoplyhrlUe94ISajRLZljFCQFs+9vABjP0SPcoA8TKBqPzrrE/oyhfY6oGiteo9lzdJPhJnMA37FX1yh3tvSP3A6xEznY2DBTCCJfhlZ43ernY5bKLQQGJndXiKol9ztv+VBrh5iuvDhYdxUcGpKkc+BxGoU4IS9IJP4IzZGvX74vfKDWZzypMY0tOzhqYoB8l9PGF3kzejmaXcGtQJObarR0tMlNl/pBnAURb2/TPHzdU6CTix0U5Rajuye7r8LfBDNNXuRRvRUdhxThCg8qHepRlHuwFRMZeabUZOOUQZdjuojtThCzxUlL+o7GEZHqEgAIzr9BkQU6onRzYlQkKF0HzgkDSCtJMLPxupLBtsNH+2whwbCsThvIPqdcZcr/b57+Q5aSwaXqxvcphjjCr1hS/9feiQV59Xz8UYo3puWNKx7AS4NuvN2Tp1Y2vbAmBrg+Rlz86VmILzdkiAEG7fVyFOnkLnC+cRL5Mxwf58vxHJCwL/NAj5JWXOnRT0EI4RdBhDTsFFwLBaFSOAVUcyG5zV71pnM171nf/qwdkOgYIkNk01VwH9GpOwjFo06eC/+HmuTNzme/yfeC4OUvXtaoEqnyqhA6a/k+QhX8/pJyLQdINRqKZX3TEztHi/L7dz/bAAMDkl9mZzOOyLSkTZrMQ9rRh18obkZDww+SCaPPcpAxfbOJEiiuGG0tQqGXuYW3kFQGJtB8O9T6xe3r3U1V9l2fmTFVgBRWVXHr9QCYUyzi7llsXeU/cQGIZovtNmr2WN0bTqoabxnRAB9voJrfCBjVEv3nNv2+qHRXNHKnuLS63rnyEBInc47yB0MuVreHQNeRGgFlzhmmNJn4ValwqPUq31Bqg8tXm+MfZ+jczJHdWWaDCMjTHFgDprAQ29wrRFsAljNb+cwuGWWpzSJRRU1dltvX4T3+8CbvGBMo6HhCBlxLwHPHNiVxxenasKrL9Jf3W/tmCtYgGGeljeoNO8OSDqZ2yxnGxb5aDLHsJ7geIMYnieLZvtVmD4dvceBpify45QN4qQZJuAx1Ti5CwNPFhxq8RTllQ1Ni1lzN/rfKPXAyanOwAGTai7u9DthBq1ftV5wxD4MPvoutMrzzSjp+no3zp61/n1QYs9YlCsp2w54mXtD/8c5HyO9Rx1WFexHE7G4rEkLAfDO6fKMq6LTekj0Zryom++iLHFieDCdOdR7yRKyBwNREj75sR1bkB0xAAn/yd5npPeqqeBOKLZKjm9ylVtYWlLYwDDUeF/NSRRMIsBlCXJzzYAOqE0HbXALC4jtIaC2zefiWc0VQK+4JcaMF8vPkh8hefaq4DhXcs2NQ8dJ1mgC1yIbhpm5Nv5F9kT+Alrb331hYMOCbNLEazShGzG/2FDaEgXJUaYeHvBVBUc2Y4b94+45moWI51q0Hp+ZaGa+f9l5DT6MRdH6i9wzSzhOjZ+roqU0OL+I0rPrLckui8IaI6q2Dm8psWIx8MftQpUisivb18DoPE1X2gd7BkLSRCUWVCaKYvKosKLDU/cmYhDHpzyb9kJvA5OQ+6v/gzm4Dy5F1hJfcm2UAvKAN0xXfjwOEuWDgKVTzibsmY+GyVSsMjp1a1FLTsseIwAy55kGGcf0e1R2tuDQjXWQ6tS7lvN4loTpi3mf+CRCliP5V38T5mqGK0tpGn9AlaFb1EdpdMfc75dBaKIwKshfzNQ6r1WdzxyEN2/+MDT1sEiAWCwWssW9diFHE/neQmfiUv6n2b4SwKH1vdCEimPrmEIE8IJBwDK9xU8KOTqMoKaKHWq1/vZG/LEWvNebx9BVcWKTO2+BskZ7H4x7N3q/V+ul26ahbam602t+34/X1X1qI0jhbE8cpJq6q7qMEewVqu+kV+Qxl2V35Yuq1jieFID+cju9wL7/+gXu9Oe6irTRFnZL/PkX61oLst08vBI5qiseTgct0veFofAuRcLmkcO1hUcqePMjQ7z+D5a2qfzNaOWquqwQQV85otjJjG9tO2Oo4rMkfDjMFmULTbRYYqRmGCMkoQpIKi2pBITHHwkKzoJImc4wmfauyH36ImoV6oOyFJGNXzUlLWqduYqwwOJsMecWvgrVyuo3KHlu9ga9UXJjX6HEfpE/H0p+g4Bmel/uuJnH+LoI0kVYpOFe4bUcRRbMmZn8m1AyWsmMFlhoMVknvjnPD/ZxlPP09QhfbczUP4Kf4H5ixQ9m1whhOeZXN8+gip/FWFPonhBjfNECMJpt6wOoI++/RAFuCI22PdxUDf1JcD0Vq84zcytZSmoiIs9vsL75pnS5klVRrnzxs3zrrV585yeVbwxpJi1YYB54GQBG74EHxCz9c53PoqQpXidi7thAjUQm6lf3zxunn9thtJwmwEiFwRstB8poYuCSmeqbFkd9HiORuEmekkurwZ2sSyFhYPr68YrfnGBvh6k5eL5OEbMqjzzS1VujX5YuWp8sKnDqMnvjsO3emy1Ev0YMmby2dOlAYucmFd261GQevG/MXz5WauiY/wQao/KTVj6QUqQffBM21pju5XPvsghkAJrSygv1OSi0Grjies8EjtCQ2z0lfmco5QaMfC1sQxhag6X2X2vJJ4dnXeXVd3xlTN5pntZIlf9cmloQUVRrFrXeeOn+1Tq2IKh4Ll9J9DvmtnsfrZYDPaCsjREKQY3ma0MMCYJAuR6vTs2U8dd1Ksv9Yovp0vl7HFJHIqY1mvtvctMaf19iiMxPfSz+3qbRla/DfOP0J1G82BWrYMkg8AWN+jMYIPLIAiFbaz252UP7FHekpQ2bMmrWgsv0Ce9ZZm/WZ7qmfe14aZIQR5D0NB5RaqH5ByGpJL4YFt/JzF+Vb0Wf7kccwrRtBj66lOMuaVXGL0nD+kT0xu9OHQV0GZmdLsAYTl841icyFmWVfoxTcxtDO66vLFVdoB/bAmGwQTmGgEsGi3Ca9t//2wfDm6IX6Hjm1E5d1qqDGpwc5/zh7cmrWL7enlfOlVhoJl2UknvTMzeRTf0rCFZdFQUvtRYwbv7uPMPlqmizZ6mMJ8IgxrwTjwyFBoJF+IHMh7wnNKNlkNcB0ilL0bDbg7TnY5znlGuiZRyiTKj49Bc8ypf+0Yn7Joh/yfCxLYZoH9lPJtyYkzqbpNLqTI7I5ic96uvFJnw9sCpoKJHeDlhx4bu+cTxmpSf4IwXE5PLB8gcE2SkNF0lEP+K/ckMs3sNqhUweRfaNZDrNx9eap2yAk++o38JtxgbbAs0sb0/X3RqImMSkVx/RzmR0hAGiCX7HSef1F8aYyr4c01D8lV7gkUZ2fO+VGkARe0m1xln+CLwcO3jSK5qf6+lpOmnHgmJ2AwalgvmG27Q9fggNrgqit2s/MSJr8Zvw5HiWoxphPTsnJbJc+YHQNErRd7yuCGijHPPJUAdkDuOWJ6Gs4bNtI9CeQiGFnrFx9yvpVhAFFraDKNRuCXiiisaSEf1CzLqyDbUrEfKcfOtx1CCT1TGL2ogQSnxGV6NLOvxs5x+BIoGraQQmWYFGANudP/UF16sRF09tsfAgT2tsg+lxBLDd/n7ZUXnrsGOFH/K7Ywliok1jkWRUVLrTKG0TvHUKpheeD2Gifrj8QtdY3btnUq1FDZLA4c/oohvR+vDTOcsS54BTe+B+5gyDmEXYcgjW3dMtavyB2LufRCmmaOPay1u+RDfN+/j9vaD2znS1VfoanxYHN/CvYPx68aWFZbHU1JDiAdpWWn3eP1JtQUtaEFUBX2atgGlJJ2qTxEBBbnY1e1fxSOq8Dgza20cGLOpM3a2RYre2d2WxIc1SZYnhUFb3Dexsp94HcRXpbofKjRHezidYzDLVudkaZQn/m2i8uGmkU/KamwY4t843oZ5HW3mtGM8tQUvh/0BunTg1O3JIXJC6nhCi7fsy/5bmg7Qf05878ZJgr1TsER5fEIxnIqr4xSJx8d/bOmWRLd5k0i8DZ4Z+USZnLEsf1wUGlEGRXfnnKjLmpHzjZwKFfoi1uGguSnFNBkJk/wh5SAYNnwRGv8EVkrEJTrGA6oPVcyibIYlxOAjfPfwfI2DF9SxrxbBvFMazrFkcs3TIlj7nNm6Z7CzmwWL8idvpjHFG4SyVH4FJg8dRsSPjM+Ez/CMB7leY+zxXVo1h8Rv22co4A+g5t8gwj6FUnRk06WWTuK3ZzfRQmqCGVyq/PanNWxm7UkBCedGv0H/WFaJ/7D1hAsUqaRODm824dxbZZotpwMgIsbE0vh+lXW+f3WZEorv2a4lzPzhqmUA5g/bzPCclzLXAyWD7WPhXPU0pKr36/45Ka/hgt7vJOZw0ru+R+K72QOOHfCwz6lKBzoT3QASvfM9Ue7mF56OMsQTkLaSVWeZiRQ35OZTuf8deGfLEdJ03nDsFk0xoFXjqeY9Gl2Hfs5tXKC7SaXdMRccF315p+AAdNUZr+2NzWmB4KvlzV9y1F8LlYLS1iNpT+lfKSwVTm/yI7Y31Pv+QHacepwtvQMGKAu/cyBWTCXn4hjrASH/71Ig9p2L46LTVxIj/OMdyYtuvNtnx0bJUExI8H1Lc+fggZjdYlNjzCJ4ljLz/1WYVTuK+5FMXsSQs+qRa2cYhTsGQ5HfscByMhk/3/9GjtXJty/B9j5MS7zjy7MWxxrKfv21z0Xut1VqtULH5GyOiCkGf49JzKAkU/WV9GBrX0RVoONVT0K3sK6EZ3o3jaAOYC4hhqCk5RW6tAQCx4qg7l8r/kkzWA50nD4C5Dlpym8bizZmBmWhgVPRasNSOL9zwoaXvdsQkF2ASmc4RpqmtrinSx01CuSFL4/KatCza0faVydjo2dSa6lIZAWOZoe2RkEH1YEEMyQS8hsLC748KxXSzux2ASJgBr7lATaGdpefquLFlNqdnz2smxnuD9OrIeH8iK4fXOM+hdDvxEOplgv2I3Q8qVO84FemhsQrzB+JdN/WibZU2OkYPIYOAvkARUz9mhxvASyXEf2otO3aqBZmEqL/8BQo9F5r6HLiLx2iM3x89rY2Qd0t2uEDnyXG5WVOfn944IkTiCB3jRsVFw8cGSIo1WHTtHtQRKSTtuYadygthnkMkshUOnKp00b5KozCvhiZIq/eMo6tSimULUlJolwy0qBO/s9d/XEDXi8Yezd71kg5JNKxK7K/UvrjJTCBP+MhYiRovjL2/FBxjV1n+T6MfTPPgJXrodjgvYlFo+1Rfd2S11Pe5nVRiS2mKLHLpIwYFou36oyr1LFMRqmzHauucTGqYShI1RtUdAjVd5vegJMgGIoGXrfBa6CoeGl6dp40ES0f/bR/qPhXsAYFygsN5/9aAp4LIKrmjyvShOmF7/boLP5ov91M7WjXI3TQDEFxyBtkFtb5y8t1QZS+AHEuOkILnvhGumvd2iyxTXB20D6mkgRe3o1k+tpy34UpGMW1wJmqa60FmI1YEkYKAeFwy4lK246SP30+XKeeGRODx19PfykYtiRPJk9RzTz6ACHQVbX9/E/o9YpmaVyIqdd3Kia0EFOWxPMUi4fh1ue7b3oBvRIBmGzWG+gKH8er8uvS8x5ZWrPZN1I+MykDKSBsumTdbSYhZtuWj6bMqsrecJoe261v6JF/G7hahAZ3TVzf8zZlcB4XAD2elKXeYmCKED3S/FnIOGG+SmgjC0w9AbIt0tN4CBYV9AWVCtDkCpNZsBXaVDcSbZjH5e8zehqt6DHsca12EBPmvCBjxZup2WvzQpe4ILTudqPN6an15G3BuRXtAEQSMhvpVSPwwW1E4Bmxr2tMt/SJm4h8gsA3n4VhdIl/a4Sym2SzIdFqiG8jmVYBWR2RVvyjwahAJq4bjsPWEXwQd0Y7QQzB7PFhxRgVqR+Gd82hh8MgAA+vneUtr1IsZa5rHFJsDxuoCnrwA9JHnmPyEHNcQzzVgaP7C9jIl+qqYbMkcvC5dRPaifJejKGfhUyM4rfYnc7VJbpD8wiUSbPBJcemVnT1CcftCK+kKoJO+kavR9WYR2pCQuVxGPEC7TN4of/d5JzbaA4L3VLBSVDMvMivdI+IUwCB0WYodTwnrktV3n2JkayxH/bc8Zkd44alhYw3Yjmsb+z0IkMWlhtSNkrsB6hfAIZSJrXZeXbA2LLEjVt4e+KYAmRK1JX2EIOs5O5JwTRBkTSBHR5gjUyJcYSGygWak7yFU03kA4ErvouxQdOo3q94iwKEBHHZ1cA+rfuv6VxGcoVV0kyLxYOY+ghTSPcJTRPoFW1ZGch4hkqD2GEyG+IQv+PxLUhdb5UnXyCosbpovOFfIPdFceVmxcOl6VzwB/6fTPRa2x0uxbqABhmxsbnSzuSOvzGy7L2vDhTc7Qdw6iX4GPqlD72lbM7Htuf/uSWBV/t4Dps4hU8jDAs+UneuNsQczJZ37PAaZXMv1IT3fDx2PL9VaKlygCAKplOdQZOi2XwCe2eG6qB8LYjkGWSweWQSS+vguXsmVggkk8vb9JtcuiPtIandqZnVSLVmJExw6zhStSngWr3CYiUbNmlZKnLungNRkZzlsePrQyAZLh6ZYNnerImUaT6T6f20QM4LZfka6z3iNnUN/i7WjwGDSfXsX2TqfEH0iZzs4pb9S+wd5tpM2mUEtGyDYY9QA9CSxUHUVlPQlgon9o+ou7djS+kJ/U5C/G2i4X9gnCk0H+t4zXi9NAOU3kSMd/iT+4aQH17A1pIWCgN9C2DP9G2RLaeMhPomtMge97CPNBBGekENGrGBG5irQgnCuM7Odcvj+rmeEfyX4bnebrwkg+zGTmIckjulvT8QULI/GEyQ2J7lxob+WJgEccuGf+pI1GKv4a/Adx/URhhA6t5HUN9XsBMdPWo9UtQQdTTa5ReQpJPvXsjdfEfk3bCXFFUiPxQVluBvOsUQRZw3jKzDpSt7XVUevdaxLOQeo7jyjskRmhKo5U0QkLYWli0gklgIX2VZ2aeYm7D1JTT77i7FjzGfuBA8vA7hwrfAR2i7uuTJvVu8XX40uN0NtiO3Ufpg3eseZ9/tYQRrkj4cs78FImlYWit5fzv0jg/5Od49VlobXJhIP9XJ8L9AT3TebKQ/v0d11D7moDtpfHKClq/i/+31N+hKpKbt5bgraQsPnpHHN5C4Vt/JuiFiGFGDZkITy1cKz8cRltLxXcQuPZQVITWwmMC7MJcfpqRSxJmx4nyXDOv5GQcclbdWbMlj8FN5J67mEqp38TVMhkLEjYaT8honFfIgalKT6K8APJ5d7y4qwQOU7HFMjPtzvhVeiiqC6d7I5v00ZCga/lnSVkr9SR1v9lt3rQ+EbCyD/965Ahaiwqeq36M/OIFL/zWKf3bbHSEzsaGiZCZ4loyBrVleHb3vTx7bk0DKXcZKzaFCrGuvmU86DFPeJomL66teav/w7ql0B+80AsmJEUx/mfiIzSfNLSdTWsT/Qi2/eWTerY9qI+oikDoBCuTenVANUKxcedBPyR0h5usyjEL/MLGvkMB+HOsAxu8FiVFyo//AamJfGPclaKFufhv4eSAD8LGsOlSLeE+UaMvsXck4x6S5huMEHltRO1vH8WtoJO2y9PQUPhL/5TkT9+wMb+WvyxdQRwH2xAY9ZK0MGUYUxcQPmU+Juk/gMaHi6ORhnt4AT/cQIyZhJYZOGIlF1obDOQaxLEZxfFWp69aj1Vgf9SggYfHq1Z7IJYF0AoxiJeSXC72WPimmI0L0fN9t8DigvlitPZV/pOECrBBN7nhxsf3De6blrj3xTs92gURbOfzKGg9dTgc0e14Y7D9+XkFmG+BJYVbjy9XETAmI423iKvadmDpY0X5pLqT+fp/uBb3dkHcM+xaq1KZbwks3v4H0tjM0iiMJrWOOuzgQKO1PTwFu+5Yz3rySprOSLZ3cKEqhGdNE5nKN1rl+fnyJHQxbxwUSqi4H71GAKkwK4QNwjeZqOo+1/xqfLZlVSYzI+pBarYfAkwhsEA2vl2hh8d3ivqxsrml02du+V98dSkusYdywV7KafnFJ/A2fqE96uEf8PTs4t7Ltb9FwIyNGqmDnkY1YS/PhaL9+4+/0lT47XBZqom+vn1xBo5Vh11GeSQHl6VED6Skvzqt/ggX6ZuTWVmrHXIUFcbFXnUG3CfQkUzgiwQYuG66U8DSIL2RILH0C5TaaZ9C+1GTgBactAPpzznAV84jgCA+tjCpWarIKIu6y6X6OF8wfpMmUPZKG+YfW1P4cSwLDeMJsptX793EBcYSiZcsPzz/BKHnOouv9iF/PSLDK4HnKjnGRngbsiASKe4OGb12w2hhE6DFqyf5QpVHgT5yXoAB+/RDd318BfwlQWZtOfbUXwzPQfJBP2MRr3j0b7kHF/pC08BhWZRQsjT/0XXBA+AdeTnrvyTyuTAOGBOSLXuQ3OXSp61L5lpGnMxObqu//7hpwyvIzPdhtgOdUiEd0wbyu9KujQ9W0ZZKi45Kb5jDet/jKYLoToISlhReA4pqECPjsjI+t/iIaqeqyrnVfBOrb7+qaAQY2tY/USniBi07jRpnpJfO1nzKKx7ry9zUMKZgJ3EI/Zc0eFT3IQdDB4EjU0MMQQqSNhs4B5bugdOOwdEPT0D+JtvSp2iVIERkUoZMpHjJ987pLUPK7IdB263alXLmmntT5VMULFCWtcok3pxAmNT0OpTJsIvUQogpMLe6zd+8C/IWvLw/YJ2zvhrTEGq
Variant 0
DifficultyLevel
514
Question
What is the area of the shape pictured below?
Worked Solution
|
|
Area |
= (4 × 5) + (6 × 20) |
|
= 20 + 120 |
|
= 140 units2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
times1 | |
times2 | |
total1 | |
total2 | |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rQ1.svg 360 indent3 vpad |
image2 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rA1.svg 380 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1/IM4w5nFFNNx9V8+fMI0TeJ0KeX0C5XxWs8iwsTxBcykdO8rB79q2Xi+SUYf4JEPLHjD5FRSJOR13F10RyhlNc+a0waBt/DioJmCTaW3NdX4Tcs61jhqRbgH1Qs5N8MiKhAJDSe5ptORc35Gramf8uZJU6QLJAz8OSCMlNptOCkz7on8MI6omUCgFiL+2VW9f8NzCm4HO1/pMJjU7ZQgrZbEeQT04werYtCOboYjZ7nF1uFh56DeH3MHCUKc+BjLk/FO/xlWHQk0BRBBKHnlS019yzaZkwXaZlmhBk2x1veGpI+Kjbp5NI3uPM4QaJtKQZPNsW4m8EbDZ6pDJMeSt3Um1LTqlMCGwoX1YPezsTfwvCAE/A6zkkePQWPsPDG3a0LW1AIGMP1BM8DMO6SDFSqOfBXungvRXyWWBK0T+mVITOdRU0061EW5nxAx/p+0mm979Xxdd+QRJj5L9BF5vQaAjqOojl8jMDX8gYFZMtCUioRvVAEIS6kn1L6aOjYlUcfAkGfYrNDAAhigiubCNBaBJsr2l22puy/nCWKA68DuSwufNzE8S3pt4MSuEkCRZByS8MhJSRwO8/JbItjUMo6M9Z8PzqZvl2YBrv6olE6kkV63VkI9ClhgjIxkovIuZHi+VYZiTJvuyrvc7b+/mZAaNkDvwEzjwM8OuKhORRTHPbjRhR5nICJgWavoAZUSkzSghsfW7kdZsWhcAqcJissLGIPyV7nLrNgwCbyDe2Db52PswbuVY1zSYVzLeIx4AsA+hvzF4taJbRj5CwS0Ung6Cjey+997S2DQSLiiknLG9yRe/rnIVtm7zEhwZKQQ8Biw5q3E0JYXXNlzO+w3qcn9Tbed62w4PGx6Vp3RYjl8Keh43oBjdGMsBzifXnh9wM1sdTUawIswzulMW0+gpiItE8GoJJbpOaeu+FexWsw5Nmy+qLp04RbBWBr/T+J0dIG9HXSp54PVleNMbSCwUykixl9zU5KqOWB1sntmQkiE5PKgMpcwDcRPh4sC0a2nbyRUIrvXabBkd573T84rcoitimvDl4YqO1kqo2KUIqs2xTB6Gm3UmwdOkuPPWdv/dqfkQ4r1sGezB+qlu/aMvJutKFrwx5w/yvq/68Vs/nEXPWVgiOERxrfZFTxf1+209pk+IxxtcTruTs96Miofr867CmV2Gff2WlcQtuS6fV8piSEv3Oez05RZrS8iWN1knfGMJWyaF63s3p+vVDu2eXTO3Qn/l6Rpn8/Lq/98o034NH1dtDe6DngA69VqUxSPak47RMHd3BUm2QV5Sv1WNkwCZ4xI48KuCpic0cvEaoY0zoPJ0XnfKZaooxbJFQgw84KWNTWI6Ck78en24G7CA3JZ+3vi/CMmXaHdDXsLQpqtc8wlZ1W6PXheiwDJa8Amy1E4VJ6aC9rjoANwi1lX4lU9vBv+bUnbjDCBLGfRVZ+BP7N1Z1F86NXzzl5/vcqiemorv3R/W6Rl80pBgx8/GMtTWKeHEVqLPsn8kGRkjTcSXa7anEsTbVPCS/t+hYHnI6xdlD2IWjQp90JQOPhWum8B1+YlMpSevkOfv41C/Qp+tZ3kq54EwQjSh9ExPBKHaUOLZTZRfD3hgz84SgGDIlyPNYSw6Zzdq1w0M/4LhtTw76yZcHtWTw+yQPmypGgJ6aC32d/VFxpqK2soWl5A/TdnmIstEvTIvq+G5UYK73r833mGS0JBd0PN0F3sqCsjHEshWrwhUjsq+WBaIbtFGeef9hAsD56FcdFdA1DB1oSFXMMZdlPP0ogGJYydtHuvd5PqukgvOL1guT1a0Pv7nIuIq8aj1k6/auCz9Q0L/DOTNt9+Iff9VrHsaAEzLtFOvftwKmCt/fODL81zz0WwL5kk8mZqfl4HOSUbUzwN58Bj3uhuBqMGRt0+KmneiiAKbRRJRXN7XRp1uUnVzBMQNvnXpRtndw7WEpB03ampPUcvkUqlIOeDo2dYzhbLpAY4zhX6VVvHadSodU6WzMzLURpzVfR7Fr2Nea3g9FFm7jDbcfGBodccgtbjNY4audoReibmGC0HyRae1sJvnZpoCPremN9q4PEmvIXF95Tinol+9QA2dOpZR60eqOhxXSLYOOJ+W5lds85TSOmj4bvVLWIROMndJPPyZ4s6//zg6ZLNpD8ifgKEMXeaOnOXvVz8iwGiyPsV8ABu4FIu35+s/HbI1nr4bZHBOKy2GD4HRsKnZ2YgKHDHZ4+cMowq1SsAtijxc4HeN5bMyemjkEFn+LaB/b8Mi4kCaRz5rmC8DbdP9ruXR+TFFbyv4z97FwezFb+aWGZUJDWv458Yf0/HRhK4A7D3NEy5xMWqwbDg/PPSvX/Nar1+3uAVxcmKwi7WP3UM94iM1RwN3nRpXdX1k4ON3COQi9+vmPEtMI8f+07KexOtEvTwaaVhn6Aqq09JCaQxG1hDUT0IOnZm9VNltWYNq1AuWsRFv3LoPXO23ozBAmm8uaYGFsud41Djq9CUOLV2LI6Jlm1G3gHVZTBxWB48rL5ZLJhsuFjOmTavdP8jCObE9fS9Tu56lvJIDzCbKAwwZZeBQ5XXlCG0wxSmqKVV0Z+3bQwWSFVnx/o2j8Zxhm6DUA+lm98mG1WEXYZp6blPZotiRlEB40RXqpEu8d4x4Y9Oy2nmvso0AcIwTKZJ5BMlZpK8H8hLRl097QQxilNVuCoTpdChH1YLNk8Ebp6V+YqKfvJnREiXwQ1d75Cj2U2kemDDMLPh7RgGXqtTUp7PfjJWbSCyHlWGB6vWtvK/q0EWHe0yW9OxGnbcDsDTa7EJt9Y3fZpl7NYhMjE+U7GOaxTUaiuQehctaHPT+I7yDSgMoZremcA9kNckryNrsegSGHxdsVtGJTTRTWfUi1iN3l5LnsEZO/ICWdsYzLIxuMcO3NPJv7v8tSf33XuBwOusAQVIi+FbYMsB6z4ZgnGXXdohlkCnpGNoNMjtF44PCCtiyg6iO4WomF3Nhu6XfTPH/7GVS5mb8YNpyhRqgTO1bHdkVSWElbmMqn50xNDj9gIm/Y0shuvAqrFIkzU0U5XtsalLLgnyox4y+5VnfFLcg3+qrbAEfNuAyzDKP7cS8/ltNJeEc6h9P+u926dx+Kh5niurfk3JEKuxIUkhzr/vXh5a5ZUboGovLOV0kD79Sjrk3u2NWfgHTnitzXxtxxYX34TZwxS7m0QjbWVZUl4t5laWFgUpWidFR+AVef95RmlLMF0w8YstiXBNPK9T9/SHZ+LL418rUms2TRZbZKbOc629gotVzCTnQAhM5wGam4WRzyYJ0ueGgjdwDmDmZqxMP+zoiCU3mlVQFLrYyjItzWZgTx4XNVN0RiuCcyQ4bbzbg01/hcSKC2o441utFxWJiK7xHqPKbWTtiBF15xEngL6aDFPVHAbA+Io4rQX7KdwuT7mGObp8uLzTa9ob5lItSWXiS7wkHCJta4bEAdnMALt6Zkeffms+Wcm3NqdqWGz/oZLo8tnLnZF72/GcKOEExO8cBFxiZBHHu70uyKQ3Gh5cZQX+ovd2KSUO+ARhXKgUsMcDEfJWiq74IF8CAZ/Hwaw1NGqwhfchwcL1KZOwvNjRB6k/dnADq7XsXiSRFjGnLImZ7xyY6Np+EElERh3Pjye0kGOX8s1pIVuf83t4iXZpVp6puuJLZ89UTVCXwQssJxrZlMQQ2JFqp6dhavrhf7csOqR0s+DX/CnRPkKVTQTdvIBdqyljRCOLVlclqphJoG6Q2iNZl1nRHSYBb9cKz76RDnVJrQD8GlfNj8NCyioJVK/7PtSEfDbtJdJqBLcw12syWthPMmDv+xXPoJDaKprfr5xRX6m/D5kQXzGVLSoL1dvUUxIGgWy6xGbUWUFxbUgvzvpfcBe9J377QHa5vSWLZzeJzGNv/yQTAQVnDou5bmOlwnGXrSPsmUHEPOKlaLEOOiB+iEDS284oIcTryvOiCCikrPApD5FwF4AYCF9F+G4xuHDe65xNy/DWsJHZIAW9NNzCSiC1CJkyC2EOfszEXmCrDxdx45844nJ+KGe4Be6sJSJPUJZKp4JoayRliigbwMcM3nsUw54FnlmUDwGrloTkR5ebu7VZgrDVmp8UQHUdHA3TcqVHS9oTXqRqjfO5wXIbC6o4KZ7mCas1Q0Gkw9W71s1D714rmmIE4hN99bQ68wsJztjw9C5PMS0LiLIiot4qRulG8pQm+GEmVcL7rV0/6SMDl5b68P9i6gtODu7PhBsU+dJqJFqfa+mzpLstg5qeq/FAxC9ClMEg2Cz38Fd+2+ffCFlNimCaYViQADjVG7VXYJZBI4+6VZkqSJBsu3dcFyXntsWfktf6orAxjlqr4eAShBhe+0cKgHj0AoXZNXVBoaR3RN2G9zNJ8+ysWnspHMAVD3bTQY7RoVQLsF22m3Ec/zdPP6+OJlq0aeRmHKL6QV1180uTMwnQasO4cvzn00JLaBdAfWj/mKjbd47eNhKD2LDcLCNdqEtVlhWe62EXTgr08+1X1KLSNu1KbkaXMiwnspHBcfdZqtj47XMjX+FPuMfYZzxyTwTE4ORG6zDnz2sIVBkVdS6+1ujzts0LtLGAtKiOSo06M6fDLik765JXLMGpOUltf9rp7vCHGlxjHLlnGi6QTjFfRhwqdYR4+pXkVXEaOatvfludbyfkFtNupMRdNHIpvm951x/lCjLBtdzuSe1ogR1JPZKF9cJVtZH3Y/ppawwzRV/Z3R9qAG6ThdbKuqUhoQazxiE84Cn+dcQQA7v8nkDvvFw1jSnsAsf7Il8VEP42TQj5CSrz71avxvWbD0qYt4Tk+qeUgDs/Mrq1P2jDlJoWMJBHrkzc+UAuud3ry9TqxeaOSbUtWA7vX0CaexBpaGYzKg5iFJkbB1Txpf/r3OJuKLWms9dQmVwPYih5QOp0uH1vTulUpToEPOGY6qeavWgTvja+KYAuLGP0q3OyLWqfe1wcYp+PoZ/nkokf5jQHdoDkKB778OPkn2PetDra3ganJr45QPRYk96vVeLFHZiZnTnYnVrai0bs3YpfpF/HCOCn134/qbNbj1IDidOY2XCxKvz9d1D2W+AK9XKA23ptN/7JEDkKUvyDNOrklhoqZwyOgChWqJFbgYbCN+OFL0DLo66YG6hStcEo1V9MqxvYPhh1A4WFvqNcrmThj6K1xaVSpOtOsDR+CWyEGSRBmvAhwr0EELrbWLtk9L+2q/RxCBw9jtDgXMLoWqdbngimpImOXe+szxBXZYsd+8/rxrCBrY+gNTQ7ehyg3ifGpr5xeL3onw8mQ6/MxMeMoo/SeO4zVSXH5YIkB/ZWobIDLpc4e3BZRHJcFyAJTicVIzyFEC4sFPClBDc/QGr1YKmLJxt0WJiiT0yKnZzz4ETTrj7rFI9HbV9tqtmOavFreuOxDVb9kCVMEbK5tDXSW30KsfYyeKNxl+y8P82OqmgDcnutL74M4gjE1M7rV2E2fDRcK++ecKBSifNFkwPSAL/WIeS+A7CHbwwRpNZKU4UKLO5Gn6XLQsDfkqWLWP6mBF33Yz7dH+GlgpxyRaPGuvhiKQ/DVYT/g67DdhIGuJEvf38vtjxOn7h7Oq1BYpzhS/OIvlyb+jhbkqtQowcW7urIVmf082A7mQrkGZACw5XmwzhjVg4Bsi5xgw6rG9evvWEKAEIdI7CWYIh4rqnmHcCXoUwQm7joUVK+O2J+Y6ejxixvv00Qjv3hUsgvQ20/o1kcE6LlBHsmXuEyJ3tOcEePZiF119GDdv6xEiWWKbachY0DitFknPCCZdsSTXQCp7b5NQDcYM91Z3cN73A/c0w3dOgKOI/XTGyFhQWbCTetSoJBgmwrenllH/+1l9L0nWJHnKI6pk/Eufevv7x4gtLUksQ+vutS94tHwKkHn6TRLAOUxLrnmtO7QN6DGkT+tivoyjp1/X/6XTflEBHw9HxVQthOslb+qC6d+Ys9d3HCtCysDZPKugyx7sqRL/x1zC11AMx1i17EGfEefs2bu0IbJv2oC+VkH5SNAqrjF0/CqOwQvVvzsqvUvTctlb7rGF11Bmt/cZm985g9ueWdYR2UR4VsBATo3omhqkl5Emj2YcWS5KBgkD3o5aYOSb5ukHixPE4aBPXpJSHg48y5Q3fTUpdCqidsKHqwDvJ7JjLJleWfQ1zXsNEBg31IjQLmFkm4Eqb5aDKr1cwLaG2hFKASmM9Ht+0NaJzcAW+BbWh/e7q+eCn/Pd7KTvgYWRfNBxbhDDnzB/cbvnMcSgtQ/2+bZdtvdkrY/Jkk8lsQp8mjS1A7R+LHu6RGJNzd2zzDRXpFkqDVwkR9XKSndSGprLz+NJpsscXZeCWV+pQV2zC61kScLAWaNb3LIcXm44ByAjfA6SbdoaDATcwn6dvEgdyOQK67zjl+m9UgcQ7QRjgtIM4lZ5gRfwCWUYlb6SPklaOQmSkbOP+VosT+snZQ8f5IdvWj2Xbtg52zVoUoGB7ejV10jJUnpi9y+mFfIZViYMEWIa/NHgV9Icbch7AZUBWRz0wyoPYyZymFM22cud7qRs/xZ5AAjnwWOzTj4hFoN6L+qJzlWGuhjMfwitwtJhqWnRY8Hckwu8VYBi3f68Gq+utexz8cYrC6dSt2KIH9Jrfvya54rQs56TjMHijhBU72qGzJh0HjSH2gGZuq7AG05EOMKvlPXurcB062Ja51fJ+5dm1RkTSNdj7/wJgfJNVMehhnkTCN6+cL9KDRp4QrK5dlEZKnCEXmfMpz4jf5R+sKL4/RiQZ4u7Iv63FUtfmRhYrnEspmbsxKdHGqk4X1nsJS0GMS9Q+6Evo3Bmel69GLsF3/NgcgmqueE0iv/ZRtMVOMR4iaIgo1DeV4afX5Dwom5uxrcTt+wn23/AoB6vp6DNZi4lcP+rHQ5992cUckDOBmoKC/3ySdv3HpGdFopxC7Kqmsq8qS0x3gwZPT7KYS4nGl6BM11HFcH3dBvA6nMw4euj4gWjmvHa3Gk5pgTgt02CiZGIHg7YSnhSdZVXoX2wTqjaR9LpMH2fcCv3dNKcI6esAnGULK/qUD8Ix1UXX4mKZ4EFEc64z3uDMtMc1co2zRRwbzbOHlzBIPQ7kdDp41ApChnTsMUJQcEHjm2Y/uOTURdJJQrP85NhUAqTXk2Yzgkl0Qb1KPnWQvnH+u2+2Ma9JWLI0i7hJPAir1HbN0dlGI5yj6wWOjVjtRye7TzEuas/3DAQwPZXzMI2MpwnIb8RDRXng3I/CaScLWoGgWqaU7/Ed6R/I4JZS8Ue3zxRJkHsHV21xRZnD6GFGbbZFKeEfK9r3LhTFioLWdl6/gpGzjIT6tg8qoKdR7X31ebIZ8iKpaW5LSkNICmiyA2vMcHTZxa3FR7e8l3pS5jldJPYOHfO6k0YaBDJ1/fX+VcRrGsEdjsQ9e0gcQ5pRKl8iiGhuAezM+pxc9dPdL2DVO4Jw1b7AAj/3zbfwNdvzg/dBSySl+vl0T5/fV4sC5lALcFFWhS7QX/h7tQ60p8y9RMmPpwMxcrsTAejwSOxSYUfr1mPlIuq8K6eZNtlLPsi6v2zDMeh6/6czo8Y5pMg7/K+1GqfUdsqfGnxEvsPJvt6heitYk9GtvmfEC0Cye/onIsFozzllwoVYDjvQP8sRe3k/8JuQ/BySoqymbcXOzsLsHvldbp8MzZZ4Haaa1pEV6xpg0A5o3xj8P1+BI632DS05UwfVCf3VjlPyGQDliVT3n99MRMaY3x2eFRqzAkqk8AouA/inwRF9RR5FocYcnXUUipMIV1eCtptKJJM47Q3FX2odp7itxboPPOd4YK1YZGkWzxhchBr6jNUvwljOfT0hs++I0Hv/n03c1JlbXOpjCbvgelYrZVPI2fcYvZNdmwUMTfUsA8MFYTpqv0/KHXUGM/xILCxQBMc7VFyainHUREom+uiEf7Xq34SxjDpbVBB6MxAVSEObIJvYaSfps6JTkXkZeRD8qanrKpzOKj7xBuXp09KcMMPS3GBoAr7O9JL5gS0X9UT5jLlO9j7F7N9ADc2YIKSSHG/NVvhAvgyL0R6kjF4sD9+CMPGeHVmp4zVqG+n1UAAeJDgOU1PZpG/zDMN0XCpnfsLn72AB5J8O+KRhKfnwVIXUIBSwOkSd88LWxyoSSmZ6D9qLNwJpt2Vd5mftIweqVdYLTvLmbBxS70daya4Sfnhj5i+PpoLpwAclTNf/pOF+ue+sRQkRXCbVg8jOlyIcdiT1njEXtkSKqMrGyq69/idp9CwvnQ4ThBLIqxHImAJG6TDYtfX9y8sBHivI6ssQFH/e+LuEmpNv2O0ZFemeH/VdMFAFP7PlDb2ib298Mmrz3YmL1LdUAgq2V19qGjMD0Uy+J6KIB+EBY9bo+OMtOIJDA5uUu4EKmhkK2swGVwbW7yWf7aEhnCm0buNVI0uAJap5xJL1yHVotZBuPEvgzyRtd3ywGtctZAy60zweGN1kGnMC0dnT4L7ieUQFc9B3PCS3Heoka9vIbnah1+Cy37fLwQGFzpbMZ83yDuZ+/XvOAe/z9kKtD0RpAl70x2VlyKIXfi9qvvoEDMrCJNZ0qv6WHQ0pj2nAUUrHEaVt81rp0ztGrCwGyKQXYaCTGtd2hSGxtX7ELJ7YivVyYaVTHYSPoSr0bKgqZo5IbCvJpxhcvMU1z4f4fKqf2QrUR8tuUGdbOZC6bBe1vlBLC7OdBwU7QJZmWDTBxNokltOI6f7vL+eFnQRXQX7zcs4z8rJDLRsSip08wuvBWA6wacTc1x/we+yQzOCZh3x4un5PxzEs//AwKp2CuEedy6ohiWXtDnfeb6HRIdjzYUuUyMTwTmJQHoefj6Kh6SBb99nDBrLiE2/VyNRjqFMFGSVgc9hrdW5RCPJ7/Tp5K0=
Variant 1
DifficultyLevel
514
Question
What is the area of the shape pictured below?
Worked Solution
|
|
Area |
= (5 × 5) + (4 × 14) |
|
= 25 + 56 |
|
= 81 units2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
times1 | |
times2 | |
total1 | |
total2 | |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rQ2.svg 300 indent3 vpad |
image2 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rA2.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX18t6Az8Yow1G1dJrYYPiEePHca0oB2ppTp/LRxvJicxHzfVCvoWK7+rnckTSYnHXB/RH2aBoqcW1HsahZLIu0G/eeS+K4hV+nlbGABxrF77LDc01UErdYHHMPu/Qd+4kQsLtlVzXPXbkNOEipZcwnP60+UNpN8amPopTnUXm205J3/oMrOSS5D8oFqz1V9F6nsP3rydjJEqigLgqDoSqHqVZMuyvIOvY3OAyeO0YlKXqONusZrFTxR6/LSAHRB1SqJ/k/cBdJMOJkZmvLwTQNQEFXsuzoKQeCtL9OS+qMVyDWxeT1LbqC5JCkU2C4UtfJIvYIXvZUtOxDeRo+ds1g0ZevPnLKnDI1auHjfBujcOKseKC+PqN24n0DJdV/2SDVF34f2m5IWGWfJK21f0ovr1B5xjDpX5jLNxipzzZCWrWm7uRVmaIXRCpqUOQSFmQfwQTEdyDo84KFYS+LWeVTcRzFvyAYWDZCOWI3C70du9w39vhM4xN6HfDBCJieBoO71cEk5SLXA+oPUth4MGwrx6kpOHSj2k8/Vx+BHkfEDkDCsZtbXHFbRLVswF+IyXejQ8h2v7E+FWzFvrlF1dOoBzvsXSBLau+XfyTJNdw+FhqG8xdeb4QAPL3Yvvp5Y7r3ASMaKkreP8WECx1dCZ9jmU2yCUaA2YYikJL/JIYZhr2JFEHuIbmAmBV19d/LOkO9zMH1zVUOdi6lsclc59cHlPtLMXpcxDtewkHjc26/xdXJX7GHvyR3W5IEjjrJNqYLNIjXMI0tbW+jh1TyoD0iWFJkSaLOzADX1DTcnvfpP6ErNNK0Ff3WbLxJ8sVTz+ITPrVVsb5jQsc2a5Vmx12SGGvDNtkexvxxPcNn2RakR7M5i3qho7feWSutMNglacIr156yR8I5NJpJCUlMwvYhWURQHAgTo3/FdWFWidVYE5YlI5W+nZwyAlKN6FAtTXLYgNm7Op/AQRBbvpoI5uzw1FWGoPJJKLO7bLzphmlC4iQ+gxbQOKgYvhB3LGyM7LXjZ9uhTVXTTjjoKTRCbEnbWBK/VdXbAtxiPIuP3N4CMoB8ABU52/eJAJFmDNr6XT01W35xLYlH0+O7EWj7mftxJBz4wL24p+6J0Jk699soES1nT54bKOoK9hc2Etp3ay8lAua5Ja3GVioFhsHmant7vFtK6J/T8yrQtvH0YY7uMv5Cs0EkByraTqt9VgjJzL3rYzuNhSOwE7M2dQFmb4Qz6Dx8Des9J5fy+a+yYOJNb5ZYzeqPiJ/gTEv1yZcf9E8SdCOwvixPG8F2CvkxZ8aSGD4KpWMlwIekGOnJWoa160BEHxSzwLOM566RnJv81upUOwpQGSVFZmLQKB+WNQtlnoJ8DoImkfFKYiWHIoMS18sj2MgSTCVAp4b5jumJ+xuwmJeStW8aLEWzgKQU7q6cvmXu/KDllqTjpG1E4rTe/OXS342kk0bJyzTWyrR2ChFK73feyHRTbAQRBvB2NlhDmBJHKLTxJCjbBaHAGST9LDS88Y3QIZFoIBoq4oJQWVTJP1gsbr8/zsAhQVuwspfwlXkmEbkMQprqG6GKwpNFxfrqbkMp+xGrVpfIwoXZBCsyrr7mRog5f7Yr3ASRN9Okr4m+itT4o47j7vNjvXhIETpwjY6Y7t7maS9hTwyuVZLupl/Pw7+K7XACgcOQPr66OErqhuo6l/1Gvv2Ps89zfXNO6Fbjlh2oLN5iM+jeChMpMgdII2mMw4FQhAAmOuIuhfcOgbuwzdvZs3/5jxNqNktyNuZnPIGqY5gVZ6laXEYKnqhvWJhEZX27LTZf9xjdk7qMTpbeFi2LsghbclSy/Vhunn/flhyahNrmkrEQ/FAmniw3tW/zh3DwaBePr0RPJgAD0vaBZ7Vdm86k/XHNd7Cb+0Bo9Hbh/xasrKyweAQcvR1PPxt09YBXQ39padHaptI6B0UKQZFbsrXmRk3V3h4w6A/U/JAGGFfpIUqbgtkO9HHyhAsyKx4K56s9FwUAKkq/nNeDqJNhii6CWKYcaA0pf7umOFWn4VXIG96opkQe3m8NE+QH1iIaHa+VMGwYvIJMO9BMOA9hIFf+wtpCu60kFDUoVrKw8CzEn33EshNM0qOGRZTiXQU1OA3G0ykXV6VelqHxK7o8ZAap8cfC0+9NZ2ledIr29R5OtkaVli8dHU3DuEcCzT3Yh4e9NB6DbHepQUQazAwt631KlsciWJbogANv1/c4ufzNzp6PXZIbYo0+Z4lgdh7yhvAvNn8MC9KImz809WUgayLBnVQMkt6gMhuk1ZkjUyHnC1KI2gTGc0/K+QBTpg0dP3iCdLorLr6NkfDRInqT1Nw96s7+b7CHA5qLaodW+zwIVxnVcsBbFUTXy5QSDCe22Wn/6tUTM+TmIzDMbkmR1IOzJ8MB7dm2INArFQIoqRLerExDLzmyOs9xOLr9wPlyNVWb7d5hXI0h79/gdWPWdNcv7iq+LuJcmkMfq5XmUBW68t1ruGZnGEpdmfz4fahyXR/sHn+lSeebQN2qQG5Q+4bv7nxTSH2L/2d8JBuu/BVDi5AzAWdUN7s9nY6GZqWDWj1ESBbsvNrHoGxgItSQNpsyd2fvC/oN2QKrfyq76GG8d26K/kP7n6O0VgNzWMu1R2W4FOpTuCtJm4ZWYWXG7di1c6h01vGhY9B5jNWMn3JHUKFrFTkuItti91vsNQYf1KQGCXu0h8mk6VM4tuBAyTDuQCzHWLyfuedolrbvaD+YWVHABnnXUgXd0cRXzswmUIYFqdxPb5qEpQ6Pm1BFQhvMmHLzJNbU7wjjsZobLFa9VvJASkwnJUydCCY21sfZ+pnMcG3vQVyP/Lr+Hj10nElV5VA1Hg1uTo9Ieu5h2QzfBRpt9tqtdEmyjDGVz5Gk9G6j3YIN4RovkBX4LqKGOOxg30Su91p+klIPo36HWJknxDVkrJkQOpXoOmltAlBPtkH2dYqnaP1+UNygetP+uE3EH7kEu7mgKqekUVRfwdQ6fQtzas+rLz3jIL7NjRoo2NCjB/UzenikPJyLdU4OtJsGxr+WS6jFS5Hj/BHQKhjPac/2bbQPEF+Nf24+FO92u/ERO1lXl34mEfUIrFvJdTOuOnn96qC8dMbNbFWcDiC+OvDlzQposSZYCCvBdfSNKKXXlna9fTLXcOWOYD11ervcaNGyO+M3JkFSNcaCO4/gVT5LzFSe13fZ6GI1lLHE8DAyYcVpmfHDtPis3BzAIj0vcGJtOVv/pPpeedd1LdiM2sAJaKkhmRqN/meAHDypxWno26UIAuZRb0e7BItyH02fzHh4puoHrApjOj/HihNx8aXeWeFKm1B33f0CBEwubuTtQlwlcl88Xk60Xe5I814kc0MWCl+nEdxMYcSN6QCjGTootPjrDxGXAimGpiUOMb7ItyL80NydRHH827+ZfC4k3Fq8E6RNd8Nb0x63qalvtJ3VqfZixnrb2FOLmxLzq0eAnPGMwNlkFtMfOmhYSNzQwFbZBYIljvRxdtCI3i8Qv9s0TDdVO3C1FewUsWChRR9P371lvR3UxxAhHmup7+aNfLFMjNvkwpRLROUXcfwFZKwx9lXIfwYDvMulhA9u9eJfm5STi5cxtZcI1XaMs1b4/eEf8esOxOuJlJMMxfcukp40zBcrbtqcyLC0V1L9qruDIMmBMgpm4OZulJcQUztYdjXxyf4pKpRbpTa2SgClsn0AqdWA+tHkJ6WNGk88SFYJ7l3O6kFE5/SD9P8sSGaot2Ez2oNGa3bFktKW8syfBndPch2AZtAvhueuVPHJFq9oBkUV7Smh8sR9v4t6p2xml8V7OeM5C2skIy6ZBw1d5j8KxSuEfvGHNUZZS97XMA4Dmr2s5Y9yQI9rF+cH8n13apUUYkFpH0bVIbeNCb/87+MEsOVQTx+pW+G6G9MmgmLaoiRAVqVwXWNcQ1bYqp87oUvzI/mTqJgj7I0PUR7e7tmXj2izNs6LSSJxyVJP0B3BAbAuh16ZQVOH+AfPEYOeVkIuw1v/cHhDiR6pitnhPZc0RkBKqfJ8RqkBzPj6KhqiJT8UW1uGnjHn30yTZch0j6Ld4Xqy/mlVo/O+jhJGkDTQbbA5Ng9SyTixbLW2++cbpkQ+KgvrfbOPlWszL5DnI9BpgHT3m2hB8e1CW0gEntLSn94NIsttGKWW1oksWk41I66kdjApgifpj5oFjKt+S0GSJo6RcaXib7vWgLh3AttCsF/anD/PGtDqqgfm9lXHUYligJ+5Px/VMcDJGx5R8EOC73ybYrhdPwHA8mdJ3J66RRO/AtKcYNBcLLldb+WHt+5jRjXl0rS7cM295LUtzjmOtJvS6ijJ+HumsZfx5Grv+IrhlxXbHT5OOO2FJcFnsujuK2AwCz/HP+m+NOYJw/6Ajo4zsw22D9zF49uPhJjShpL+uqxC0GH1uhGY5XCt2letmwoyqqUsYuSAq4c1PYZ2+ac0sCFDnqHedLLy6HkiJokKuRi0CmmvHmQUwygcbXofQuFRiBKoNbariRbm0tqfD2uxdXMQhnzSBM0bG/T/NxF8y4qIOFbVsu0xWxoUQ6WzcHDergBxv0cLYlM5Pub7uO9TIYhb7C+B7VeRjYywQ9AisPg6UpU1CePGLUeyXI1rQpmNCWxKBGysnQrXKLcqCh4TW7DD/LMyJ7wtfXQhb8kHAmvkp+7V/KHo4fZyTPevjqXQwItlbL48IdpDtoQIXbsuyyEoHEnwYXhmsHSPGvmWoTO1Qv3/pPjPp75q5tysOhTVIW5rTtYIpwftxCluw5+ZUEkzElPAlSMZ4ThfpLZ5i7IrZJcVKMIgDXor5NmH+6uXtPt407vh7wbG44xwYB5qTKwcLtgV7XTSRVwZVdKFdi7Y7OBZGTBsbqA4j2ItCzDERYTlAa3QK1BfWI2LSQzbJWfhBVQlkMDW+jZNoFQR/x7roYp1uYyGQosKLejTlgkwQKL+1OwO/bHeE3pYDgKQUjjD2O+f1jwyD+N+j2iTFGZQXlfPDg+Xz5aktey8iPpCThmaVpJOeFA/2hrSNGbr2UKlneTtL/siDzlDv1CVfWqCmJXA8LYMpp4XUkgDPSRsyM+vr7p3smu5sRdK5CHEFcZhzo5TWCMT8i3KBS1jYyOUARsbvZ2h7QkEmPUTsSYQdHT1+kGFEoLx6RCVoZFHVBNkthKx8ZE6e1LTn3k7ZDIweCROCvv1McKHflIkKniH9ElTxUhDAwrEA43jCVQ8KaRzg5plUonEm1cE6+6OuD8TDcj0yWOAwUrvgGTmK5JRUCNhYEnR+Qe+ZTobm1F+a3qQGgyNOZ3+J4tDYjOHugYHSroRBZTxz8nmP35YDdC81w6oO1uSq7j7i9HBX5ifQejptEmE7vgn3IQ0sam7ZCjID898bageYM9ed0cV7hFSHotgX5f889uiO5vb0e/MalgOzzakt39l99nZ47d9hadvohG+Dre3yC2xmohxkNvwId4m12pp4w+46vL9bpm0/73vv8M/76kJo0t5r6RY4uZ5tYYa84rLsEVAL+SFnmddEUliLU2Necugdeprp3IRfQiJrMqq0ofdUJfIGIlx1lCvrdMiAby2iIRkuGDZsWX6E0HUYEQqFK0yS1f3SgLP6INLfLkxIuRsXMcVc3JfVCxl8UzTE/b/D2jCFbLgOSPDNrPRT+h5LyJW18vKEZ9Msd4Mt4PH9RG1urAwGPY6x5x7g4sQvNwGcqr2YRbqZVxoDpxdhgDQPSTuC0VujNizcK+HlKp9W4Hx9mceFObrSw1FjDlTsSa8VJKRtP+/bFExSCYmFEPZjkNljinnzk8yieK18ylrv5jbMAI5NLWzQ9zeT3RxQ6O2M35PHJRVtAwEctuEbzwp/uLqFGUEDoQOdEYHk3yhh7gFabPHsHfivOn5Kx+sXdscGojXCq6XxttASKqs4FfENxUR1BouOQdoZ+xZAW9bs5X1kIHdxkqYAwranjCWOrxqDsoweaw1IBmbFcV4594GtUiAO3/ipxNZzas1J0oDG6EMvvdzl0kEppc/2fbUfr6miDfNGXL1pEv2aPiNb+VJR4EbHHLgsO9ckBkjYSOQM2o+YEhZ6Ha29qw/yB4/5F0yxLFfNNUUwLr7kJ+CeM/ZueEXIYcH3MpNecqjX0lIaLkA9lyF/bWudmFrWu2t5rOr8QA4WVpwucrZ6a/PF3+vuo0cMVulxPAwD7/sE8stY53CSA2dclzVA8vs8Zc+RT2sSy8tHoIgjP1NLo63M3K9b+Gu+BibqWDTGhduJSQzRfAYqwjJRwK8AHeQB3J9ZTXlw6ClXDBWgmZArElFNN5K29IIm7JvwDzdpRGZV7r59ynkgcyJULSuKHZ+vjGn+cXSA7RW6bCRtoOdx5f3PplswqMBM24aYSn2XkclnGSj1MHasuf08C/1YJgWh/KaJgHkdvE95iW4Pa257JkPP3RgUrWOvvvmx8W68GeEaf0nDEDhvOwh6UzV1fwiYdj1JrYHzPSIYMY20rF9LFuE0Pm3iriYSlZ7xHsf4aAErL1LU07xip4awowkABQ9mFefzXrMIzGuMDv1+dAskHVCbGRuVfM/EyP0eMiK2BIJjPFPydT0PnOTIqZq58WChbnkRvoAat9YklqYl8vjWLSJh/TrEHsWjWyU6HRK5PYxZLVIBvlAkIaoD5MmZgprNyVPzmcybf0/Se7o7h78OkgWIVoOxW9qi0R1O8VvM0uRQRiB9NCukQQgR8Z0bGJenlnkxImAsPed9tRo4+ARrgiP6r0BA87w/ragJbGmOdvsbrSM/AEytjrzV2d9R6L2iNGIU1am/KL6VXij4Gw/aTTZpbB4Eh1Ap42L7zH3Zt32ne+T43HoPWubE9tjJFvRJdzkiBnF6+GoMaQPjkvHiPyqd3MOkTTPNtuhszbsyZkuMfMSPrsXGuMDeAJJgkkuwnT+B+TMqYHQPn5/RUdp/sN29f9ms/kxgJmjEu4XBx+u8Tys6fb7yPYL58FLZtO3AQLszltpzHc5+Hh+VID5Rlt3Dvq/7PPXbkUPJwTAZTcktSnoUEYa1OxaF9H+iRUCnXGBYgjIcgREo5RgL+x40PB8T2FINiifKg1yjTdZ0MdBWOtyA5sELmTWYwgjFyEbIf/y2aBsY35VWRqx1lz/WMot1fc7PEvXQFO1V94mI74J62udwd9MaT5K5+1as/uV6l57MapCfmXlvqK5lJdAE6BcNWaYYRvAbDTEDX4Dqa0mmgVENZWM9kku/SJlQzoYJTl2wuAlXlaW9rpXTBt0ZyNcQYTKVyPTGMXLymolZRioeVG/llOHLQQg/gSk4cT1p39GCyKS8e9K1RlbOcH3Z2TR43aGwjKRU0oYIlUIgMkKtf4DR1HK2/3hOpw5EQkp3RYsRLibJIV9a5S8GaIvXFBt6fEolnnksUXZe21eIkEO0anVIgp+JQKAYnWL+XGdmVUK5RB+0H8tbpDnWdQ9ceIMSDd9haXI1HRX3R8cOBYLYJ2QbBwSr31dU8gQ6KCU0ziFmxhO4QePeBx3TF40cAIHG/xVJPKFJ9oFB3dPKpahDRifscqe7gqsS74twmWScAHFAvoH+QGFQmA6+iATgTv61zbRW2pkkE7PALE8hjO1aa9r68LPprTsZ6WcRnyWxNCJzOa8wDCZKUfUDvhMhS5nTwSKbdVPMBUH3BVIsNc+Nu+NmzDPaQu3thiAZycLjcwqrWDnO/Y0RLb9xDZ13JIBIYHoTl3mbM0cLFGLWN4GB65uTzXSWNULHgXyPzGAbMfX5P9h0MWBWQBAB2sll6cSvEq0ZAy6GujASb3sdNY88M6cwEmihFebHSCNmZ9QFjtwmqc/W/uB+4wvWv3tJY6gGVyH7YcN589jQLXh2e5d7NoAgavRZBNe29OJnZWP9GCQDDYkPeSpxqRL+2vLEbIK26JLmwtwbXad4u3+XIdcf/U/YbvFR0uPpaVaUOwaPdl7N5RW5VZm5KuTH5llImBRmaDScfVX2kISolBBd/lEOLlqqG0WksKe3R1SoM7UevKcp5FJCbdT1Nw+YOo2KtJ1s474fhgDY3iwbZlNoC2G415kSbwu9m3UxQcUIejEyy/5AUia/72jfzSteypdtYpzDtNnccCIxQ0AcR9cPWi/lb6qUDTiUxjuEML5zWVu7mOc0DfBrwuvZaHemPX1txB8pnf4B4/XfMzjvsmoKnYPKOOaB6/lLBOcZuRIyyQtNi2WUb+V6rNq5wego1kXU2fugXq6rFUmCcdGKS48Bxl242ZDPSVp1rWBBY1RS19r/7ZsiU6ffG3JoMbyNAE82O1dS+6tKIMwf8xHeYK2p1kmIZIFhsrNTQk60pjqw4guU+1RfD81bvjFVtrPNp+GF5UFm4Hn5/TpBt4t2aFfIsh3DSjUzG43hhIA5wGpmu40VWkzuFxodg5sMM7nZ6VRb/Nnf278NcQRqcA7jwKmVubfgF2XbOa8PvwI/sqHf0FCUHrrP7S0L6e2sBbZdQkTCEvBxdALP5S8ypbewlrByZK4h19MKluYkDx4rZUWay+tukcVztH840ouFX0n7/RZ5lEMWT0jdZPmWZKmYFXD4aMwdRlukiapwqrpPftWlskljpc9Bu1w3tOh0cbm91E9g/p3EEDezMAQ5/EWlE7ck2cN6ps9Mf0wQP0Sk2+8pvCGj+K/BefMY6tXLPBCjHr/yl8OKubBvq+tBjkPXn8I0WQweqwiqA/nDvt7mKDBd5uDkJ4Uwy4GzaHxqwgTa4mti3v78p8t0keXgqqTgMC9Yt9h+cfHabvdQeQGABDfJZHArBR4e4B4shfWPoQwoYstDHDUogWLDQXJ0ibzAnTB3XLB07sq0PC3rliRWjboz1d54N3KAgmzHE7Ki7hmo0kBxSB50THFnHVPa1VkF4TPukbDl8/TSq
Variant 2
DifficultyLevel
514
Question
What is the area of the shape pictured below?
Worked Solution
|
|
Area |
= (3 × 6) + (6 × 20) |
|
= 18 + 120 |
|
= 138 units2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
times1 | |
times2 | |
total1 | |
total2 | |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rQ3.svg 420 indent3 vpad |
image2 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rA3.svg 420 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX19RkyUq9sBnMcTCJg6lvVJLbGY65XzsuFHY4nC4WFssqciXynvOBnTKkARj9qji8gZySCCtTYzoxO4RfOD7zwxsbVpt0T4lo9TcJah10OibcIOb53rbvh1GsdWG+j8vcWY+OFGCMi3eyeEguyALmjVnFzGMLWdnT6Ev9TulIenfhx/kW8hWWKgDo6Q8eQKLX31rCw3bEVfzpcgf/VuiCkuadv2AbnMIUqaI6vGbfpbV1irdhA841kOQ6v/iK4wsT2YC5i0IsEGSD8U273+cIvTZ8NYfgjhnYhU8bdfgAcgnK4Xnx9yQZhOZAXyKQMmcU+wdD7NLBDJLjV2ieAoyuztu/l+Y4dZZLyOvycxp3KJXx38SC4zrwm0yuT4unUo+f26P2z5SDbCs70ZYlciMyUYDpiF/bv38hCY8pmvWbKae/vLeIwG8UoiFJcH6x1sw4Xe3QQdC3tBXBQWEwAUWKwTkl0Nslc+6ZlLWr2vnJwxTJxphIx6y3nVS/0vCMW0ZcwvnowT7FcccDYXQRYMZIOLLGN1wDo0etR/j6QhT40dChfdfBwQMAci8XBXLYFW4iTlbOOp4AoRa9RwQcpJL7d84hFgrfbRIgfndX7Ori3aWn4xJqtnxLB1rYyBBkzY6ijbe4+tJLvmD46JQYpsIiSSxoQaDXrGNsf3tgH+ku+CNHNcWUzbhvHYwmANbiN3wC8+EX0+yuX11qnd4gOle1BnPWbQaUQS+y5xcHhde77CKa613dG0lAu9aeI85yHdbm2jlOOoxYRZ2UTedXdm0jyqBxjy+fnlxBzv4dK22fMba49Snhb9hFjFkVvLOBmTwuauoAQwdpn1+O7ZfmAfW2gVh1vOkBwP/02+hi6OquzOiDXc1DQEIspJkOY4FTArMzTHJuZOmCHfKVw5xj57YtbK1/jy2n0HYQ4VabF02p6YdgUt6pPLP1BQa4hCOlpk26532QK2Mdr0hDAJkO4qt4yujJUK+w57xTWZpNvlbKAjmh1B4MBx8FlVym5AApDsHo8T5TgEU3h3RQ56LVZ8NbT2eh4nW5d8Xj9qLNbNCb7rl0IOfuIZU28SS6NetJtOX8JZ4ytGepNRrwiKMPYsMWX4ECgRREXuPT0D6/W/ZwfXhbeFEIRiAl0mRodEm4xBNnNmcVcghUFVyYu37Pz89YSWQFUkprYhVCZc5XQ5yLDvY1eea299TQUP0hC/6OGlC0faCdg/75sovFmaTeX0SV0m/GwnDZKTOrhU4IlbbPOSLh+2IlKokgbDizR2ExE5H62l1H9PqUd8jpmGaofnB4Ha5w0lSkprpCwORndbRnnI0/LIWqEuBQgVt971tY+s+WWKFU+oH6qp67lYGfEa3HvggPztwl1NhZxdT6cAbQqU7hZ/p8pp6gtss1Z/2a1tKQHjW9wobovziRfbLW8Qcl0+icTBvXo2827aKM8sI/I58MXMhGvkp+u0PtNQ0yqvBbaPxOqFZ4ow7QBj7xmEFrPQhG4s4JwmZZRCpoqgqwuB1kU+8nCP/T2XjuGiQcr1cWk1QTWRFFyPhb+YhNb22MBQnNtcsLhv14cMCFOi9st7GzQhhXw/VjajSgZFMOyQRlo6aBlQGidzcd3gum6dxx40q+mKURJ+rr6a/P020vzXHUPYCC/I3MyP57u8oDVuejWEWqdyNnVxoOOzFRLOy8JGYb3LkgfW5Hn2KzZ3ySgXfxAoC2lXd6ZCXRQjFoheUQYDN8AvuVCeLkZgkrO9qOJjv8RVAZjr5tmiBDa7Mdqbmm42Ks/+2APNQsZOz3AtL8tuVUQsB9LCpG2zbfkbfIk/xdEnUPJgWcIwbKYF5CtUZmxMrTviLazNY6YKpFKn9w2J0mDPVSFC3uTmYVzBQv6doOLkfpNtwXB4RnXf7d1FeNpiSUoNEewn81T/UYa3JVAW/4ewcRK1VmNhaEp7coomseBfR2e7rTtKtzF+W4D31pqqKcqwDQKXBzgu89MaytfoStbzjlykid2EN3fRTga3dd6+xdifkK+wWl+chC+t5pS6nFK/f1ODhs1Wa68PAdzAqknzsCxwDtnr8qsn0maO0n0p7ifOa94UKlUUpeDiL2FeGYfvwyicRndpzs9Y6f+zF3n11ZGc4vvlFaBmY+FBjx2OM+rkgxm79WFJT1gWriccIHga1Frxi8BeoXcl78rjmyqXJhbN8bbDykhkQSuou3+2OmRvHxncc/zVqrli6sJW8701Pc+cMq9Ux1NRXtjNtEbnjKBaPbFnSY5CpWzuoHaBr3oHzxa5xYR/H74t+Jt18WAIEKJ1efwua7lFXLd36eAGyP8p53w9WJ9aTKARD4R0uczJIzuxJmrbXeLf3bKpLjQHn0NhrqYgqNYXouApJJZ6Cd+R814LblKKRtMGqUHTtOyhNrkgj5YAJanB4S30XM7+4Og6xLVinsggKRn25zVJAHUUQXjk+w1ADeU8RAV/SpZ7eJUinrAla0+FIFJQHFrme1DFA6Wmz6PRnVb5VHG2Hl+FKF5aTjs+dPdWKXCdutrD6NbuYIlfHa2eVOhqf4iuVqG39umrnkWMxbeWBJjh/+f4LWmV8ctVEs/mM+vtnZq5ventViayCnzWSWJwoD/8DgOZvQsF0EhK/A/Zx7SbsHPGmfipOuGHKBvxiGxys87RpllDrvMm0LrtqMit5eEKsrW6IXoAKs0MZr8h1EoLoZCdp4G6dRhVevuAfddT9UjyS9fgGtfQLZz9ZyLnER5SS4MrcoziVv/NDZEiTgvrgcvwifEi4uTf7OwophgsbhDMKyrKhHTKcquQN96P62QQHmYBigAoiOIil7SuehTebRi02zq1QJV0+mnx5mqJi4Wm9dzODJ9IUFICmH+TqwuOHglyJPsZQPxQmnjWCIf/PZwx1XdBkXrfLTzTDCoeLhalWAy2ytwpmWGAQQHpTcTnP2Hr3eXy0FR9KiA3LQ9siBxVVBDsmsP8RzYel3TLFiZ7cnHOhOqZ11jlU4zXF9JotwV7c+hDd+bqBQ6+beBsOfvpEfUEQ3+va7HF1aP2+CrLWJQG5kdqe5kXZFFW7khsw+LgWW/k5YknLy4DTOcl5yQFM19TnmveWp+zoVpOz/KfftrYw9wprV24cDqWeQZsI4/qwsLX3vkeRGWECwPhFyZ5jfUsKDwa/9rIJLem9nfIkeiAmY+rh61DoMgq6gGKWGhqMXN4+1eLwYf9/MCnVTKlemIC4MieCRS8Up5KbiSgnqGsmi+yWVBTRS1QAPS6r20V1DlsO4xKxyhGZDGogoIf7XU1YjoBnd7Lwqm4outZM73aipk4qhSeGaI7ktqOYEr0d7jUoHxuGfhPMeimEBe3zhvIL9u+U0PBfpiU56rd0U1joQu9m2BP6/Jts8ZFleFHRJpDUKnCwFpZkYdKxZJqtfi44+PrnnyxGTZM/GT3nMMsIAIre4DSWM3d7MZ1OpPFtsfKnOGD+BLaQl3N7ElGUdj2SSuIvYrvV3GHsCKYdDE4+rKPxs5zcmYuzkZhPhXRZCau2HYG5X314xNCbwHbSoTIuOS6eUm9ZHLa4GI3Fn2ffzMXQ/+RQmhR5arEbRgmTI/EK9kyCMui0TUJ7F0ijnn+UbbkA/wi1lDMYjPyR3DaG84tupNz+R85i2Kv4xT4HrrA0o+oPIfjEepnqyaC0qH9HKwt9NP4TOeOAJfZ2gdHf/TOMbSbPgHb+99lrK92R6S2K48fCPHsmg9LAhk3h3W3FF+J8X4m6iDW69jbz9bPNP0J9DF1tRGL/UNHKnIFoR+xGtuTy81Wf+MaSrx5hf8dlH3PeJ6twm99pMuCqLdU27DBME3iLOm6kPnkjVYhS4gcbhOwiOHkS6k5eYfj259HOUZwdWphTJaz3wjyHorFcygR9W7pbmyYy6a/Bxjt5aziuDADUO2j3gbXi4Z6DmZ90N+J1ygdoqCyjcA/ZW1yHk2Rwa0OqWyROiiNyCeohLpDTW+TxUpKp16TGkZU/VE1QWZbgiBbKrTJKWTh/SE3Qc3uFnUpN7s94M0vHWUf6YOxST3MX4otOXSOezuWZhGywz0AsgAcjv81OFf+oOaJSz8knlW6PCYi8Jxvam92d6en+raR8gXR8uwofNRHtAlRt48+504QsZ5mrJKrIPZZsD2urDOeb1HU7vTmP9nA5DCKW0jSeXtZ3itUU5pN7AJQ77DbVLvT0G+b+W9ARKhsoMy8ei4mTOuj8vWIkcpui9SpHN+rhieGvKAWHefYgqKqn6qcUuTS1tK3ibhvmuhIWXX+3+RzoQceXnqBtSDWA/0fAIqXEDdJ8LuXCTkFNUZx7HgN1lvl0gtFmpfW2hvemdOkeDrFEQ+F4GR8gV+zkQ32ABNUGKEFnZxfoC9fpGmMEliWYMlkZHJPlu1AfhNjmj0crduS3OHwOzpnMLLUhi+kpViOg05Qg8c5Hvn1iptP5K6EukbjUP66XgqUrO1v2dcIuCI3MUQVsBeP/LzHaRSJ37jjTavR12jYSQ1dwfRTOp1ksbCoSGYf3lPJEm7BKOcELupr0n3QJx3/8Hp4A57/Fc448PGzYFfm/mvDqCxJpRegpSpKb5SshfTCp1elxDZjVF3wInjIbXX/SDGeDCNxoBX2FkAIUTB3ojrTjL4BTO+ZildxZjFyU4tLnXQMmkVUdmIPmcTQn4r4Ak+ZDWwsC12kgtN2AmkRcZeLzfA99zhoSD99h3mN3PzxpfQR6NwasR5dnRSu4lWtkVXdYlyTQZPGGtn/dYP7vu2WTJ3JsIGMC3rhEHUuRQwkFIuCwZ3nblNG4KVTRgaOZNQUjmTzdS+k4IgjuY20ITNP1a0bqeX2RydPoqwzq60mxQYCZkfEQa92HgOmjJrAdkjMYeocBcU6Zjd1NlQCEWVHr7sIBQodxtT69rfseWIBTOzvlGXqDa7f5gcpDGYNOMrCIf1Zhja2jqlqCIxMTSSOggPw6nVvHDBgauR6bH7oibHHzCjIEBp6A3X/JayqTy2ZfJOMmbgdmJHyaKa+HAxJ3g2MgJjM/b7CaCE/BTO4s5vVxggrO2W71wLNv4xNCR2US1vHBmXat3CEBmwM5LDscm+IXj1uWfQf8sKv4oVltqWTZtjss7Q9W6rMyr9Zg7mQMuoQxmcEvGuTLs8jkp4PWCJEjiI0JVFfKbeOYaqzEXDlU42iZY+DGJMjDKBObVX6QqAyqzniioWrEyNXIcdU+nv6zIrU7CvXSZRvIMsqUdvGdK349L5kXeWrt+ooRbBRTEJdZgx+9IBdkfAPkBOynJ8SG0lC8qVmwk8EbOpW0QUNtQ/gFAVwMI0bhdU4Xy/H+ptPWb+6xOLHtp2tWYtBd6N8IsjzWC84VMrnYd2JOrUalVdM/JkooTWSZuFPKiweYs9hC2D0LBI0inFSUML6Px91AwOMF1KSFkOWgIYYkNjWX05ltM1+BP9YG7yrPJDx0HUQnK4go7j+7F/HNuYKHgNkX1SdKnL2ZNb3EJwQ5SDrNODoGT2Fh3oIACleZwZ+8o6AfRyUzHxJlDRtT40tVK20cIvGK1I8SyWHHmDCbSg+EGLQS+X9i2DmTqGCW5o4XjSRanZ3ot/RqO95UWSQ6FzZ9+d62EWML9ACWOo2hYBE9hEFPiY60vqPAR4NX0pbVWFwSlkol5iTd6MuUzctzCgVhhzVM3asNQZam5pYNzffd2ojPyWz9huHz/p6hyzZrTl8W/12xf+eUX3CdLU80i67nv+wj3qCWPqomN+kO1UEOkWdgr7cJ4V05FdlC9cAYJsRgL98c6suseAOPiuB0Ha3eZFkn3VnqBv9SomnWPW9lvUZuDDVIGY5/ojXjmbidwRpL9IInXyOfTwcxqx9FN+91cBMOdzYfTsjVoAbC8k/IcRyO85Q0zKI0A1cJFplMwX4/V9/QGb/VJYdIbqjMrx43U9CaLRZb9lld0MJxRt/oeHpER/KMhWvnmDDxcMzvheaOs3GqFDLDiHCDAKTjqdxHf/TcUnT0xP1OdlP8vYtB3KSQDBIHtSUCVbviOgvLfHQ7x3K4yYFXkLkyltMPJQbgN/RuR67QgoLd97pWxPc3bhmZKnVQO6yjSeyzEqmE7yZdmlqL5atASZV4s6F9EoGUoL3+x7CX4wmrd2CQKDFqoZ06h7+uWVwmLhUiM0Pd0ykVWVAILCWvEY6a1TxU568eeWXee9NS781XwjB3S5l1WSuNKBOFTF2XfPbFXftXZh/IwLeB0r7RqBrrBs5Ctuaoj7badzjvZzDvTV7aWciSEfXeEQMw3ad+Ka2kAh/jHzbIaM8lrjUrStqsut5LGzWT0f/NwR6WblTZQm/0eSj3Y+1/g71kru/iO1V9N52F3oz44vfv2yOZmOZp1/1tDt40mbQvK944BYaDaw0w/zQFgkdz2cGvSx9ShOr1bJKhuNOczt2D/2cMIfG9zbvCTZjaXU881AEjcdgt478V3efIUYF8cjoo/nuP+jkYzQ8Q27306/GG3OM6B5KmyUc99hTXEzNRrPRw/RmluJS95GA6grIf0sykEycsKiknOMvOC8LberP/lTzhcqUuC+1ROP4CtyGXQSSsDNxDInqi8zflAMaPkTnSp9Lkh2FEg7Tb/NMele9FmTU9e0z4YqxE7pVavDiyfLerG+SpO1eItTkEk25nRY6+2Hdh/MEtsp7Sxjs5DAoRk9wshLbMCAOINbKL3xV216PtuqnTwSjQbym6TpUKVmCiR2dCRU/uY5a6ut2ycv1YBS5Q7UncHVBLjlMUKlF6YGiDEf99ks4lbNgKVXa9Ubye0ZxSrf2hlQSjPlgo8puDa3njZ3T33/Wmc2F+aIsk7mwmqn+ZNc4Aq8inIqDzTJZnMTSJN6BIWNEu8fVO5pB4Vzei7hU138iKJv882eaa4UmB8i6E20X95lYZikNfSQdTka7apNTa+WvHZX4xlswfah6Fbcd6kfD3rJ5sZy3lVfSXGhK1bD2A8ijUFHtEntvuJHPmDpb6t6YxIbmF9L1olzNUr9Z3w/8ZhFSDFmldKsnDfT3DrufXx4yWydhZ3Ph/BhrpYRF16s/taLcJsVlyWRMrJ7IttnFe8FkZgXKJr03QGftUP+KOJl8RVS4QNNt8Zw3qK0PDS1G1IlE1J38WF8UQXz1BJ9AiNvqk5+Ve6JASN8RqGhClrGDq8YNOZIAo3Ibza8Qz9D56aUaM/zHrue9pPLc07luMLbgVz1X8m4sQFloHBzhZzVJXe3JMw2uhDcGxvOeopGa+f0PNAPxnitx4IYRWG4/3Ld9XRF8uJskcypF5+f2k/7vxdDf5qsKwChbFPFXOIGLqFNS4fAz6muCz9FYbbKIdLnxkK8OkCftrG6vRpBYMU3hXocMPB4jxOdTeXqonFGRWLDQ4IITYxukgJ7oi9xCZnQR9tPbibI9WKsxkbXYzLD+tFmpRdP4VrFJGo2jg7xkk/SWJgr7GedJQ3ZQN3M+lHjRfUgv64re12ALusLWpwl9w9yEgCzKGCFOOx/uC3WylpBMShWvK7yWOkExACfcE5lfQuWiPTPaikp7gdMVxNt1pkOGessMqwzYQ/3N8PbbrM7n7+Nh/Y40Iz/yh/9/hWuJSHKOTRMKNoUBCKxT4fDPVF1nEmK85fLC6CDr5FdqtZmLwLGif8+F7KPil6Rk3meV4FcbnDayAELEWWJXrpCLesOLejB2eqOWoR/AIr3p1b35nlOfoawbbT1aLrQkuk5HeEELEdnoEnaAbmCuELXpNMWYmigyJsvIn7SaFpahVggjhMbMgc25V3lti578PF2Fi/A70h58jokeHZTsRwfLcRfREpvB9CXWgu8QyEGj7zKha6mWIgweWMZaCu1JZy3ev0k3RIpZ7YYx8y8eVCPS8GEsZF05KlJgg4vBlCusodMcOpquJPv7SkwZqEvcr2N3LmBBI5BLc8wF6+Lwu3rpHeFi9QVnBdsXpGBYR3n2KvHPnzMZHKZXK9qUDG/6JnMylkyEdWrhoa4qqVMdU3YbW4RNpFTUNZ6QbHC/EQIkFxxfRxKzC0BlIlIGPsSat6MAjl9EDdmcBzXDFm788fLwFslJGgWOuswB0izen1dd9ylk2LjS5f2ayieJNLYQTNHx3tGjh9zdOjQi7Y1ixT7isWBVrYtP/I65THC8N6EiQo9MyMMKQkwSL/AhIkp2mukzuWjhmut+wKlZnoUFMzsYeAP1yaf7xwlyPF3x6qRwzNBrI1aKpb2SHmXeZEXHuwwGMFfkLQjmRFPUH4TrMIFr5pqGvU2uIYYzN3Q1V19LDQWiMTfXErMaJR3io6XVG+2urgD3y6Xyo9knaVO/dszvO0xWgpt5NaU+aWtDFbP3sf68SrRD8LdyOfC8UIp0bjerSEiHW4rE+6+vVv9/FJbep3fEkZ0Uupca5aeB8Lf38McVQslUWTHzx3EXy1NMfQo3BQWzJoxRUNBXQcr3XhNlju12GjJ9+qQWF66IO3tRc3FxoM2Df2Nr7iWcnbKJoiN63u+Ay6/fAakdT6Q/r0p0r2nx7tj/JWXCn68vCPnhREAhnY5IOE3DDpAPSbAGOjyJ5CGmNZkZkMYjEGQIRIhI07dmMXz6vmbebLNZvJDs0FHaYX1YQTJBQNhAR9gBo+bsRSdK1IHVQC+6Lpu2NkuJ3YR0t+lOYgDBEHHFXzXGSno8v5nMGWHcsAlNbSBQtgkN+Ddj6W2QauYizaRQt6jI676Sj7xTXWpPUPHVrqHovJhdhK1UCvb3Bqpd9JECu/eN6byzvHJP6ccRPSpwa/WnyNaC3MlYwGmew6ltc3ofYDhwbs4OE1COhhBhul6V1UODuBIaBufce2eXIivIyq2neNaYzyy4XZHLPrufUusHtDSM0G8mjIrcDEPcsLWvd1ax5ULFlVO8NxF78h9At6v468U57nA2ezWlXvfEU2OO0
Variant 3
DifficultyLevel
514
Question
What is the area of the shape pictured below?
Worked Solution
|
|
Area |
= (10 × 14) + (6 × 30) |
|
= 140 + 180 |
|
= 320 units2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
times1 | |
times2 | |
total1 | |
total2 | |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rQ4.svg 440 indent3 vpad |
image2 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rA4.svg 440 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX18zZBkcqQYHcFXfHCtBpRdNlMDhNVlDGp/J00QH02LM3ttmn+RBAepBIFoX08l3YqbJaKt6as+Em7qI6G/KkyaeDZd5YvVCR0mjoD+Dzf82bUYvvFQW84FyP9vjOtPJ3cv7i6diATYcJzX2of0DYMiIu5phPRY8fcmFZY6jO87CK6DR5Jtpd9J0Sn0AG9UKXwyZK1ESaUfHwwyUJdeR7PBDt6130RkI4HCALutlG/X3aU6WziZTVum8UnMDFG2ThTdi1I45p25xIxnUFXFJqgMQ852j1hSQzN/rspAAsoPyOBVsIuBGuuLcGLSVA60qiaWfIpC+gYsVOSU4PyaAnPoxo6rLNLg2K69BfSyyWIlzoN2OoCkT/BMctnnC3jp+m37ZiBRPtWlCTk5uLMrqOHZfjg7bDkvnrRHAFfVaK758dPK1Z+dsH/ATb1g0MHHGhqdl/++SVqeckgkLo1zthvTTQ5Z+xj8B3zTInR8wHflNtICzF/1nA+ylM3sZ/p+ZWFQliaqR/eGCC3dHMC0swSRZD6/ff3JjfnJ7D6YxKSCWcvPgSw1Wk+hexqNZ5NijXGrJFVsKbgLYVzHTn0nkFVfARi/1l8t3PpdX6393EZVAIUKF816RvDfCiu6rVJQ+bQict700kvM2L5ScurV9TlPtsmU9fBpE3LJxehUAe0m8XoVtTSHWuBRkaVyNlYz8tdnAYOA6Ha6VvSA4JHcOhxtfgxgTYdv0WP0ZtUKC8ajlyj5S4eTlz6ULczxUpdmFU4wLKBvxdhcNHc9X0/gfIrE5Ox4Bfp+hcruBqzO6NW87B7wTilhpmGKDt7j6EGPgNLGj2zlsiXDgyZzEEfmH63Q8Ivt1oNAJeFnUOGisOIFTrWtaNZSNaun7LOZkzlC9Si8R7TCbsnvOFSh5zNE/OMrca7BHnia0+krWOqKb0NG6Fmu7j13p6RdLSuhA3wnWHBkCkf0IgMvoDd187Ot6ckRYhZecEyysoYsaZVsjjVSlVNVQOHXyLt6ezUlw9Ti4omavO+bJLeWw5qX5/ar4YzbOlxxShIAYwjEb/N+fdBi9+Lp+jBRIj6qt4kFY8lkSg0MdafXSG3rwkKYoOXhQpKjKDv1QGVsTSN1V9UsNvH+ZUNq841N2ZyH/dmSjBGAclSL6AsXqWLiKfjsF40ciEDKpmIVe1VqqkxpBMCOjmsXXKcsE0M8Z92fz1Y+40Z8PBe07JrVthOjKSQkNYo/Q1PBHrinc3qrtU6lWu0alQ/0sfppoOq3oWUYScV7RtApooeuzaL4YyhvxpJ9IIqfJlN41GqXALa5qchlDAcsCHwWVzLK/0XSvCDL1Yzc3wXr6lVOnVaN/AG7idY/xaZaKy2gH+69yQ8R+BiChIa1lmtHT2U1kUd4KqQ7uSWkTOwbLklifyssfsLHD2FG+wqzdyjtz0h7W7Fp5WJrxAGcNR2aLYRFJNnGgmAPP3hJSxDU8TU/vgsuBVVCKYlYwJuA+UU3fLXvWc20nfYwQtjxrZqQUrr2dkZ3wMeuuTuYo6oCrJZB30Ngj/rCJrYHLn+8TVNUUn5dcc78kSeuRW93UfyVNduYH4yAS5tPnxC2UMwgC4Z3xWwnkbnI+RWohs8zAKolvpga7t0P3hL6H8DoejBwxsQQAGVj+/kicJB21eLy8g36KNGB1RhDGz86yIc3LEtmQzXHm2zWMiaG0ZUzVgNPd75vaZbb3VtUsvji7RQx5TcIQdGIi7sY5LrSUCQBMDtDB0GwCdEhvkeSDtdQVIaVMeQvZRlg9+4gDCQYSHqQ9a4lp2c3vcE5hud0sQeI3lh5JlFMOl0sSGV2/k0Io3o07wRBRA22YydHPe4mwPlwuLDJlu3sxicyTCmDn5JLac83+TMOOHa67EWdgIMnEo+5mBB+uvQRepaBmpg8DwlOn6qpS2PBcp2ucdzaHJrkquLwvK4+/zUOUwtAJ897szoIbP8ISvESI5zCR9lxdHWyr7J+BHujF7+E6iD9ijZzjNYf2BSB4ATKbmGmBI+xElQkYDFOyLKv2Bm1bgpyVtfpnsu0DutLyFF5XF7WVONEXyonl8HHPVRUNvYBttknorEWpbIuUAUYRzFAjmMu3CHpRIxW9kUShftCEkN14cPHAoAS5iTrWQ7wd4JK61fTfN319WaTUJPCc3AORhvC5eIFcsAVOTns9imgwI86t/sElRG9NOO6ldfRHhrvTdck9Mm1g2eOwVILdZkLy1DX5rSG7OR1gUCgCtBrOA8tSNX8PRZ0O6TYMRlUsyKhzz6xC1/RhovxhoAYU62nPrGaHiAVQ1n/3KGXAZmy8Cl0Ql3qUHKFlp/qYjSoxwGVW8wJlJaYFrYYn4czq3en0m2JUJgYrUHuoA5RS1qjTJ21dOL95GRk4mj+XPx410KLZKBvkmlEbgLQwEQSFuKXRDJwV5lUYSDMXlnkJNtFf3YPC4CB5+7fKBZkvZ22DHeKygc2E0zdw2zOQowUGH4e9jhXMUff+eG+FZpP2PFYSizH5C9BYPsjIyzLLNvgcrHXN/p7lMWXnVjYNJZxey48V5qLt+skhY1KrVN9yE/pv4RbLczz/T1sZWz/p8fHbM9ey1BFXK4ya/0Nv1x5TuLQNNOS9OWzXazfol/wauys5AHfTZpFxNpDuvCkspY+8k69+Wky1k9ilrXhbvvTGNDdG3ZByJZvxKwfFfu0ccSpdSVoR15RqYVd093sQYZAv+rul8iZXS1lsckUPzXwgnlOOync22LCEaatQwVJHqu8I1jIxY4sc8fP9ibKx09viR+358lmeccbYvlBP8QjOpRWvkjMCDjgeWyeXoezN+Lx3WEri4JCua/SlrMNzstM3eahCgcH8VhLgxy+e2N3CnayxyUBluy0yNPKcnT0ZBEJifjud8dkob/kPzb4kIjMNjLiGMJZVe7xbpeOEd2sdS0cIATNwWhMmDQH3ZpWyV3Rdh8p+EopFhlLAk+1B7lWuzb3Q7aV6Fs1oiunwEOe97aHOVKIcPTewcoPJA7bCtPO2MDcqyL3C/ULAuAShXg/ImyW0bofCJlZZg87ciRTbS2CbWKYjWkFl3Y+cEFEOse3naL7WgSKM16Tnbr1vTU62t8aEtF+K6sBkZ4lrXHMhVUlG+6jepQkGljW/9DVzxiRSK8KJD2Y++NAGai24WG7Yj02TXeb0O5E/Qj0pRcwSb8VJNm9RZnrAR2rHE+Or9WXxUp6nW4AnkxzB4pwjz1oXP3eaYd1VuC5NzkUTqOcJzcyb2K8ZlUx8DIYQUxN9TBZ7noRoZGioWv0YUAFdpa8VTXejbBUbd4+S8tGJKAQyEOK5+IVq2cVJtxNXpCexCtkH7w1m6Ed7vr+IrZ4Bt6a6zHzas/fE6JGbxj/qO14honIXxE3BdzcUBh6n8N9nYC0o8vuqF7A7zYfBkZXBcHE2VpN/nzsTw53LGPanPuUVpSrUFmWXyZeMkNg4Xia+6u6X4U3k9gUBwenG3WVvpzR2VLzx+MVjbzlhMJ8c8iluXatLxnXN6pabmwdp3T7sBQXed0F2TKEnIZwVpOgRHw7SOS4k2E0GppouOxnTSUaAWsZN3ZXwoavStXcRFUjcajadfThfBZmIHbwT/ib9DPFFB6rUA5bSxBAINGrUdZ53qfOP5tiGHAqCZS9Hb6it8qw6hf5RiV8eUdZrMAZ9xkpIoZMvRtvBmpqoAp0uer4VYs0kAHfdf37XnSLXYDIAyXvP+ZtwzR1JLp9mQZCupfhN825/mgwNbaf5Io+Smgbaf4NT2Y2JDT/T2v+3PBrbJYF1eNAQG/z6uB1TU/5io/NhwwP1fUVoj3yiN/KdgpbWRiqriKjGkwyFBFmsHUkkp45aDuVw6otwd5YcfsioRaiMXg7gyBLwmaxSW2Ca7TxrlvNl4tpoVcXZweNDDkk9/wBMF404qQkejRXCar4+Ol+26CSgN99Rz3nojJysO5ficM1HsBNVzBFLLGnSZqxANqpkVTOfMwElZUfd5Qo4MaYqak8WUNgOtV84tjO1LlGa//LHm2X+n8iJJhGT2OquB5qssjafKS+KEnNipF+sMqRrDaJMPCZ8oU+Q43lm9C1NYMJCfQ1h8Mge6kXc3xo7AtLE/+3D91nFpDNACLyYNwLQMk799HFvQMx/sETGO73x1PrT+zxLYIK96EP3Iw8rdTHckE7bC+u5WQYVocUhACHiiopqfwR0u+h98K47h8ngAQapr/aTwaF9Jn353TNsY3nyerMlQg94XiecWOO9XvmxuYv2Y/bVYnPhvYB2UlAODtYDCD0uCAMPyXDdfVvMGtlTkW6NjEKQ3Qf1EKJGM0+0AI39HKeuLEKGsqDGlj7DGq3WOI2JzQfOFo/K6rTJ9RxyoxjilP2yGlZryLX5SlB1UP+8Lgi1YDPdOvCOfGqYPh6eaq3WamDVQ1q3Bf1Zs2eHgIXq25PzXtAgbniNaG9OvivJURMGUkM3RpYb89sxb6fXXCcBe6ZCXeIKgtPpmZcfAxji99GmDQ95KLZ157J4eNyd3745yn9BwT7kLTgtuIxRfoJk0mPRgQZT3pDO2o5uITEOMHlc44lMe4sciKxhEKhhijBBCVuJ5w6nV7RVVcFQwa1RpQqM37SJetpkpMez3z5GQq6fogPVXN6Bzm6wWLg/ntPHMWAsy+o+kPvtbM851oMbw5OefZ+lTShyGyvG+jJIA6aCIQcMbT/sakGnZsiQ9h7I4CfSVjuKdOe6qYGzb3L/ycZ/2TlN+Zl65eZSvsXaqTyQtBE1naVPSQdpyFy37IJlwyUxPrk/DAiZaJqcvQNt0pxFvP/jTmcKxvKI9mqD+xS34Ax9ZbOO3pYHqKlYiDvijngPixEzPXnJ30OXIjw8EtvXYyDetduNTv19q8jZ/6sd03n2auepl5v3KpS/7YmZfU6oRU8iasfFmyqdYMnJMRwHuzOvkTZTygLwTCf28m5JFCamKorp8CRgVTiyWwMAwkYAWJdhoJo4FidgJFzZxdxvXEw5fpCmCb8jx92WzWLPcSVBsV4V2FtWKoOmKD4lgbsOLmOfhaydMzxTqEs2kW+wIN84enNhVjySQ4SQFxrhwaCUHhAApEzYZR1YYe2fpr3BJPFM+y0bntgH1Gx4LpDKUiUgOT6XHXo9bNrI4RsAzJsdUN2e4BQD5fbOa8/GB1xIZqLFCjRaqXdsOhApcLwLsN5gq8Fm6J34O34tIkIvMleUBmmqDgCIzUl08+4GyOJfCVPQHxQ6btG+vUuZR6HyOIk5LJZCEaocTKgJHwu8SUXBGyg74c/lJaFY/5DnSv4+6tIe2l32zGU+L4EG4F4sfKBtIGUHlQhGicdNyBpACEx/ut+O8/6xAJQqlCwboggr4QHvV8POSw6znk6ssbTiIsEAuEm9EKwqw8hVTRkqbdP9uji/41rNxjbOyRdqaPYHY26kVbNt0tGbMQp1Q2tMns+oqkwOgEtstelwO9KMXi+/vLQ+bnKjpYI6xEb3655hT5WzDDpJmJNSq/ZktUjgXmI49uxxqTp1mmWh9xo9YTacD33vmWqn3XMgQ9InirDHLS23/ZKt/rTYURTCuUFXWMWvtaGhmrBrqX80SK4gMpxDAc1sOTgQxgUl44VlHC+qNWNPUvSCYQbVxGNBWWDYtn1OZV5HsImJz6KuqM2P9/GfBdmX2klewT/ma5HyYjB6Xm/vU0lWNaW6b2r5GW7s1gT+HvcFHc8AEOBU17FOLI29jMYjKBb4zvEpljvQltQ7N2XJnuF9FbaHgneWRx0uMNWVovBrnLc3Kb8vXBow1aeKLWsk/kgM817yCq1UIP79dSb8BQsv6WSmtDiLn1JcJqlnavFOvnvDSZSJFb57w18On86BDWzSDLrBKFi7kG769pvVs//xtEoqijIDAdh7QODwEvpKbmm5FDuLUOcSxFZSegCaYK4kHe3p8EZV3cTBryXA6/8EfxGOa6OzI3yAgBYjNMDROQJcgxNYPuThY9OLafwiZr0LZQ8EFAbSx35DBtp4ajLCk1SwjyCvbYyVt50HM9PQRlrTjJSQ1jCSjlAu/zGo1bR30mKTcOp4BLI/u38qVHhM88GDJHmV7mBRSeqCrHMbZTumCHurqz98ZOUYsGWt+DDTptjJ4rw0og+eNMExSEYbl5LN17GGxAAWyeXUZppFiH7O8hRZqOwOAOd/26WPntWTPmEoQ/0/+W5rUC6W8mTDwgMDn+Dq4RHHSpe3xYltS9otBsfNvcpmiZlzbIec0Zf1avYJpUEKoEq7B2HOc6TO2amIlHLydia00TkR/AalqAUK/KW0xEL98dVC+lMOdmzYgxFpvwa4jBMpPSn7ASO5W5pFICufE//eKutcX89xwSrrnQpRY5lta/wP2MaWJckvMHlleqJ6dKg1feP9SAFtdc1KUVxO9miXv/uSHIEzE/1InkGY+2lBhMX87XlHVgQf5fngJjz/WxEocPtJ4rko0iw3cU+RXVOS+aaEDg6ZX4sf8/GrZakcBqRv9OPoe5HkxqzzGOXdI2Ehg0pZahjKu3iGpIUGAcikPCTvnGthO+049Zreyo7an2z57w2WMbGvIQdl/u4oTcyqGde6tnSbWc+4sGRvz6PXREQBFNt4HUmfFn18q0VuKdbPZIgeMtVnlZyrm2yZm2S+wu/toLq/3R6M+PPfv0/s7Z4NH8OHYV4JCwyi4HwoEN8kA320xSMuaoMV02MQgTP+xkzfKX8kof4BFS3Mq7gxg96WkP9WjXsMddKWZkK+amby3LGPHQOtUiAuxYjSFDmVAweHDnsQIWDLmhFGszIYUDrnN1npPKqL79Jq/vyfKBmSsV3GulY3g8wJp8DNbr7TlnPWn7YaT16blBA4MyQLTd05HpCf9NHmecTHTNGoygJ7tLZ4clVW2YIMDUvtnIbSwHSSm0C9brZhc4HT7uVGGe4yEqq3YDWaPy7Ukx/KhMc33LmXgR4ZmPi7uIk585BU/gHUTfrTxuoei12SaimlTGPpLnCP88xgboTKRSUzDR28OQg59973ry+bJyb2mthD1rCQMCbYXK9ksT4/vGZ/KzDO+Wqj9qIWqeuOq2vYJEhVYp3IG9x9QbZ5vNKoN3pRfkkEnjpnUnUfCiofB66j1/2mzCFIc6Hig87B2z76RisoYcGX8p8dfDBzdezbwnWkpU1/PI4R5bY4Wpyjv9Iwtr6pJMY0rQeEsA80h1ARbOYujD/JXpdo6OJ4268DxXPD/MEsZQJP5WxfZwDg5c7ivqUtPO8nd9cH8cn2XR+UHVGoLc8rEokLmoVFEny8cAXIeDGXr/vhN1jiObkETScebDAbWR9nZ8PKDOfnZsDWBDXJmKn60BS1o3/oOUhs/wzkfe+sFpa5AtTNZik1F7KWbIE9njPCRdE6ZeOCCc/AOaCujtuHyUqFsqS2B5pVqHNZeT3k8Ni6FRT3CPST1QaJeMnOuX1oCcjPPdaJ78Ml2edoZVLDoyn84TFE04v4pCXYkctO5meUpbIxFG7LI0SVeziCZ4MnfD24zuqQlox3yuhhfQnKEZA0HrweRb+7Bk8ZnZaHNVnjMPfd0jkbyTmzMYuaGG9x29umesKFooLFIVQr6RR9nfgEddK2ZX2HEaPa0YR2pK3AbBvgF20a/7kom1l/rPgGXGdIRGfUtSuos4R7imQ98hKXV1MUcl8r4hOsOJGuvHjybgC6wgZ8S2DpyGbSGg/iuM1QirZbq87zT4cNJTdXRddBKG/G5B1T1IQ3pQ8yNCaFvB50JcLcxZR7hAavd9qebk+LVyjhoGZRio3SDphu2bD+9HdXGGGqis8wrH/+nw5so2aoGkbrHoBPdYN2X7Su4qFFq5mq/ayHmKVgxKWIQ28pbwAzNGhHxTMRfYvUP8o4UYSq+WBdW7g+FRBlO4CXhmrjNzPFv0/qCC6dzHQ9VxPkqny9IDAHjeGww+ON4bIxczJjvhrmOj2qjDN8+GLstlEba1xj7O/4LYWjqPxKSS/kB1VuxVyUoKUrT4v1fUF2WfYqwUn5Rj1YXJeFFtwVfHxJDq11kfQX1MrGXOkWmOX4AIVGJ5yiMYm20MCPWw+u+RYXvgFUeP7xU2Kb7V5xJJWfzLJtYpPAMGrB1It1dcSuRcocLNiQrVy4iLAt7MM9honQjas/IBEGM8WwFkyXRF5faPsZjJHsq5IPOSAOOV1IUoIB7+7LL4chTFSxsnOTSbHysTDYFtf8zlMjW5PGIrEOSc9S0SWrxkYe7/r6MvGoB/383GxbAl+hqCo0ou8z6+Dav6HTQi440/rK1qH2cvo7zuUTdT4+UGjk3vUIj8JHqpG67izNFU1J15NMVfOWk8YS7tUXLUs5GYxREkYkCZQrAuq91Lo7VJg/guBbfyJ9ZT+2uj9UVvrPc++ue0I/KXlxrpwEhjZs1e+YXMJhPMBFN7hSd74llGUH0cfoHJdz9T4t/1c5L5MaY9KBNTHUXIWQHdP6XwNwnvZdJ2cpfbohug9xnRmQQQfE2xNG+URHYAhpHTQxxfR4MR4RpkY7y7d/JlhYYEfX6DO2vUUSDEpZ+voElVtgXjbQAJdW8j+nvK+Jn34v62HKD+V2gakBd5uwSwadOQX163p2BN+bMe3fZdNseEkay1IErm6e8F0kNr06bYra4pwDO/N0KWKDTfRzx56edlxcYNEToy5bbuqEK75X+J6gO+BxFuZ4BVrufUGJQ+A08Y6/krllQr2ywb1El2VzDMeBfel8IYXjTv9cC4YORqFXMvT3lvcFLtFiygR8EpcWJnZ1l2RcVI3TxkyxZmo3b9KTZErib+oIOOrZX12NktLkMkTsWzXG+mdx868WnA6yguTEhkektG9zq/oijYQMj9V1k5R/94QnXSmIskDxEU/qIedjpoWIeZTaeIiVG02vhFbbvieg3gh53kUs
Variant 4
DifficultyLevel
514
Question
What is the area of the shape pictured below?
Worked Solution
|
|
Area |
= (5 × 6) + (8 × 20) |
|
= 30 + 160 |
|
= 190 units2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
times1 | |
times2 | |
total1 | |
total2 | |
image1 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/rQ5.svg 300 indent3 vpad |
image2 | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/06/r_A5.svg 270 indent3 vpad |
correctAnswer | |
Answers