Number, NAPX-p120695v01
Question
Which decimal is equivalent to 53?
Worked Solution
Express as a fraction where denominator = 100:
|
|
53 |
= 5×203×20 |
|
= 10060 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/BNnBywbTfBKrJayNNKva57sMPAl7Ky4IrwWL8P0hAdMNY5WNUoTtLASGr7xGRwrn+01z4sQMyAMmMRW+CikUX81TC23evPbIcI/N/xty/kcMrQvXuSwq7vU6EEsIYpbBySsDjNjLLPXpGJ2UvbIxjCW/8+BMLPVuyHxGdvhp3b8HBZdKjYFvpn/EAsW+rScCMOEX4AI1WWwDcRAoFjPTMgx0OdrdZtTdacq1LKJwQz5UxtXc5b31y54ZI9MAPFDZd+8hO6J9gwwWzKnVROpgxoxu1IsHy8jzpYZXg7CyfJwfUIVgNbWihAsDLcjRYb8tfsxxEkZJhStBPzfBFD+JyRn0WPtfwiKkdFVdfH9T5KRN3laDL7UiIAHB9xIiwS34YWi9PX9hY/uQ87CKA3HEEkxRk1qpMB5WB8QEGE2TvJQD0tACM+jwOEl96BDrzplcC4S5oq1SHzF765bTwbrLmSWERtxX01aNQI1A6YVBFXAc5O47/QXAsfIhmE6JK5Qt04Zid3CAz07UBlcigbyUa0ZOtWeSDX5/0cxAEsoE76nfqAhi9BRcPHvzE0c7jPRAJocOe6bDo6i0Fz5LeOdZv/Q8oudMJ5Mq/cSz16Vml4+w3nODJ2/oSq9l0Zge2Bn1fAFX/+qt7tfJ16519i2n+ZtKOTOyJjhyRjnqMQ1ZwfWHzBA+dhzprQlvtMpKaJcTXl2dl9JfBKs55MYVak10gslHhQdDwL/Ctx2dgYsH7lMDyhxkA1yo/wQV1ZWJpDgsSeDfjZYGsFsWLcf7UysuZrsdrdAtZSVFZ3OApapvQWSLu+E9Vb9b5e4Cyg0s8dNJ1m6WBleem1IfwCXiFgtdPW4FWeCu2wgBC5AS+nR2ZWLoCFRdo8XXiz13HEV4ohEWqcpsGR8xp8BJWknM0TjsQiG7U06OeAvUoWMxre7rsi0bqRM7jvv2IA39SnrUkd5EsVJrLyvzhc0E61yWpJ4LsmwZoAGO8eBPc4/GTv4t9+xdWgtmuG8+eoHT63nEB+hP2RBUYbFOUHjBgo+7xSvzaiFwVy7YKHEyClq9Kh2aBzPyQu0WqPgdOLpJxjxyuUKLWQU9hLfvs54CWcSQdKNxotNZ/f1X3vYlQQvcsFKcftAaR/jFfa4uYXOc/t/sgCUh2f5Z2ywDnMxSG9gQrTPQ6GX+/55CkWLbJ2TMe5Pk5barPBfKrlmzXM1ZQC7Qfj9nrbT+cosHArssHf0k9EbqT/h/HA9ygq7tN5N1wvVg+IWvk38HYSwFpHN8f+yfLuj9BEcl0iy4iH1xncXORIQlwgYrV1TnyXOIVSJ5OjmO7j64PMCpAT75U+C1Dc6gpfhyaY7GfYDGY37K+uzD8UAiva8IJhIl20GpagWWdTF+F/5x44Dzn57UIceiVkFplp7mA2nQqwXUFgwDRWDK12Vaqy+EjCYlcAPGUEbHvj5CUWbsH5bAWG50M6IMjSrPAq8xT61i3iirOTntcJhIIK9DZPagaE9PKgP8o3zhyxYupUSlIgLVOjn7Kc/Tap2HhQO0Rb0lb4lYTobVOEK8kC4ZrVcXnCm9yvRjSycVPFJzCIGRNBaJ7fPOIvoOoB/tfC4jMs63HDV2K0Yrg5epDlvFP6VNdBrBv7W2eaderJks9OdwNzWpJLpu7dYoG4WE0CjnFKyfZYH6SRCMiB8Gc3OFoHaGBH0XnOzREA/TVG31vdh9q75p5RJiLepS4GyD2RpAOhHcbgOp3jj/6UjfrV+uoD28ohlf1n+HuPh7eiuQ6j48V0+4kO6wT2WCBZgLzUvmpKUx55wpD7pfq3dUHaKT2o1tbWaaEMO3CEnQrNneWI8ujYjQ6Bjgu6QFKwgfJCVe21cRuUjbemqFDGslD7NNz4iUJImsWycew18dy29wTnNG11uqZfMSZdHotkaCUHgwddDqvEDhEYw+lwUHXnoOBdah9yNG8REPat5EFgU39jkUkbj8ECOdbqQXwJUPa18RW/PpZSblQDM7sn98mdFFfQrEUw4VDM07e3lGMhGFmXAWCeycMoMtYAEtujMpeIZr90e2IPYKHl+G+yPgCIRIcYvJvlap50WHM7Wfc+mjFa3DhdeZ0D07YFDbig09w8pV38hZ+QmyatYYQkTGSShEdX3xSZ/CCX0vfk6Bcj8erPIlU9w6QswfM3ofygELhXQz36rGLzzjJTBSpcT+Z0lGgxeRhqXWlKNPfZGeRtUf75QVpMx4cWhhxo50ZU/3wLThKyEX1gIwO4hKv5YdxTmLJbyNmhq6JgYStE7hbxAsd9YmrHAtPjoI/LTZlOBaSeg0BOkCKESFfcQJdO2jT+GHz+iioZJqsCujyhGzmmgbThnOf4FWIQ365+mOtfIh2niVxoi9ZWA7cv4HgWlIN/YtUtH0YzPuEmVs3aARiypfETl2b+geUUcC90jZ0Yg6J6nxN4npaFGW6EJ2U/ug8XSZqGh9BLi9yPgIMZ5YvFyyy6g935WIHSr+9wZHXgzGNUJq7/zxnnNMQhQQKWwubjtb2/jHJfkmswYoG5RDvvmmwEybUxWi1SeCCuwN1SZMK0zpBnBkGveX4qfaPRnxsso513C1DYm3YL7AzS+jqJCUs5P0dC7aHQiqAwI33/TgoCmCmtj4xNRnlA/Q2OpSZKfd4BRF/94+sRlypG2WN5wFNZFjFKXuawywhrEI/BREDwgo0TIrlWEXLvi2mrTAjVkruzD8niou4hXyA7NV7hEoLKuQt1vgPIlTdZb3MvLFdABwWDQBy3bnRnNyMPSMrMQxTyOYUS3Ecmu3hrky/zdAMlL2/LfxB3FMITJH34tFwLVlNSva5hqpjPFE9sNwLcfL/DJKmpr1oAzah5lxs3hPZslZKlUhD04UTR+v8JgK3HOesP1QATc0PtJJUABSKY09kebBGp2cBr8HsS9nAAbFnthwK7k7V+r0l2febZke9LrnqOmWM2iQF3eWuG2+b/7uOWpyXC1W6eLsIUw+1phIMJs6IUd2aPCAn15TUxGBT3bE8/urkq+58CLvwMOQe9QvtdNLQORA3MPkYi11Fh/YUK7OFd0EZczqEjgXEYLmkQcmdSXHvAwYN+ZR6TmoyYxNRpwuSs3PU2qqoWCdKYLaZIO2mdMrWBzJdqm7b8KsQxuMPb48QZR8Qq344xLkExAY6jy7/bGaMmkvDezw72DVHl8X53Xo/1OB/klcvI9CfOdj0wL0ez9EyeMlBkN2jRutKEbUkih5gz/zw1L0GvSQ83q8sb2JhOd68juL96ghDUkEqp0370rOIKZjhRX6PG56WWWDArkyQg7SeDFYFJzG9UIaRs3lggW69R//4SS0cqW6gJPj+E6QTvQfcXoShTE+TWMMJwYMLLhxcxn+13Cuue774mqmJA2NPX8wF7rItrwo454FaBvSxUZHFeYKlzz4MHGlYSvWWt6lI7GBm33rzDCGcJfoCVQUAqqAzVOsrhmDaTsounL+2xIgk95AFzT4uMC9Kr/WDSOoCGZeKrtRAPUb4HhF1F6EZDByr6K7iwk3aluUpBpT1YBm62w30HGEUd1NNvbfmlDjpTWJDSZ2xDpCLQNSPTjoE53IrS+6Sj/l9N2SCvrjp7RlYTcqn8tQIOixIjD/JFPk3unf+NvsOQq0gFVZ435uZY0CXBv8ViQOn4d+ig/BpCxbiSGuFRk+O20xOUdE9ZW+b8baTBmqWCoguv6p8+BTRpyWGjAZ10hF82GXlq8U6jbalHJaoizk8jCWGx6mg6llU6wlggDyf19R5/0aGNJ1ExGMOU++jGcxnDLcHHKTMY4wBWMSfS93+vYLBKDfAUDzZeK98btBkkgPlmocP8dS0MFHuIbY0mH3tCS2eDrTmyqygqpZo3aPgeU/zqtOnUMjxIOXaDH9MvGjvLI19eTOFk+h1LLf9q1t1gNC27FQSp5N8czqD5cHf2ubckYVvkN1TLPdG0+xlKnxhppTsdESfRlvFJjFEOpp8Ang0KsSDRcMj09oz7yJqX3rqX7uVvA726DxbP4bEngQT0kw+HRAqGYPKC/jf5wG/s+IIKDXditIijzoaBnOtOEr3qY+BxplS3h4vNd+8M+GmHFdljeCbT7kr6/q41HIgR38/3cJNxhcRqYpuIaq2F5CI4/2eUKDvS3tHzwMWu4InEvbRMacZMxaewUTIIngWTtuv8O9XefOqRxiib/xkbol/vtnWLCuVy2tEG4VGYMFa37w6TGe7ExaLKaAoX0axXgckhRMFFHTugadclbD1a65xqy0BWPOS8gV1CJs6e8BHYkJj5Q0xf4N6p1WZj8HzxDKZqQ3NmvutBRky7dZaITnGk1qNGdkXAGs3Eoo3UyS6oayoC7MvPZckEF0+Hxwxt5XwEqPhaW5qe8NW5t/8vgGU2mEe//uo6LL/K9YMXbBubl9xuimJo+3Zwdm/lgOhPwwgjWrdWKyy3X6I7Uh3k9Iwhgl49+Dld/1ThYE9AmB3ROs/5AlnkrxeYPVYF+q7qWHdp7bUnRWrXdAABFQEoj4nLpN/pBwLrG4q+sZ/tgsjlQbJMlNGX5POjExYY4QEEn3lBL3vvFXvUoRBW0zgAe1JHE55Hq93+/rGAgm0WDqBIXwrWfI2KWCer5e2TiecyHSCzwNbjbBldEw/1bcWy4oU1C9VJS/D2yz/J8qDBjbrlQ19GSgabM9jy1uPPMmtfnSnd2D6atpeMvKdydJM1O+r/0os+o9UJbAKTurmqhMUhcp2Jx1U0VMkfjY7tPGtaVlmoNToVE924ZEaD0H9iiMASvUWWUQVI+kbOW7+CmPmBGPobvMcAl7H2Yitc+Gc2OYBKj6rccqDKTxtMiF9XtzfHWZCS+wKiipcYwhE96/x2XOVePgDvHlMjpN2b4zoGV+L88FKPXLBmJCT/ttG4DRKrAg/sdJIzoX+TPsnBk0K2f0Eqi5rO1R7NkvLSNWnSrq8bCWqjIAJ9ws19KqnIeQKPFWbYbgNXM47KLIDux0hbT9s8fut6UsWoAc8355RYBKH6pqnmJBJIOvShaIhSZGtlL79hB56vnPYX/uY99i5JZnszQxDPDrlMwODrWBl4jHoSn2O3XFUBmRgtUPTl9u9mOkUOVnzOI2Zg0UtF0m6DJ5Hl2sxAI1rJIOTU/YmqrLgqKCBwDSy0aGDjV/AZcKzJdwrDQt2U5mblcreoOyHYuIOujXvGyPDoFi0f15RAkmMPHvvIonrVKtRfhCFE/cXNhynEp2QSX0POvHAWKPIgOpHJxZdRM6Sdv4s3TZcbNcStcaTe3xUGHtbW2DBn7zovU49L/yVPjePZwHmXnte8Kqe5dtG+J3HAnuUeu9b4QT+ulZ5K6bPYRx/5iuyqxD6nhg6Tyzy4yc2guARB+58gfufFbkhjCBa5LgLGcrCrR3TFatxbGvKJnHxNKz3NKez50OYiFIgAixlOty8S4a4RMwW2zmiHg1CzibWLCPn3w5G381EJlaf0csI72p10y3V8loocyurII+gRgXJjjrGbS1Nbes9v1gDO2Z6GXJriO9bVY97N70oWqytgNveIwJhFBNQOY0NOYEcRLbosrp6daA2pPMqMtmcSoTm5FSc2DpK/tzDOv2eJFqpLqO+sL5fxmTlFcEYG+6FYLogrTLgIyKxLVrm62RXe9Fq6q4l1VkaWL9FqqneigaaxLxe4wBFTeD9HYRlP2+A26AB1T2ZwBVf5jgd9OUcChImKkoCo9QVQ0gRDiWXBC/VNb4dmZMDKw+ppHDFH/rihYzvyG3VOVBQ9VKo19uKNahE0qq/ji7lWF9WTdkeEUBGAcBAz8qMn2Bd5JYTgnW6bKns1A34UU7BX1x2Tn+DRuKXLSaOzzE0vA3fL+KXirFYY1L/TqjzFZw6r+hBVbbd9tistzTzzOwDPs3c66kZ+qMwAL8I2izsqj829dOYGojl3XOBvAWXwAjC9c0PuRGCpZGOLo21Xx9UGe2sfo5RxupACLGlkBUXE5zBEO+mgOLY8fAzBfIagB1t40vw2+rXoGoznZZjEjvoM3qivkltCNmvwUvQYrIVzJRvmsw+SBzuwEblTMGnwhsEQwk9EdiO26OiapdmEJLHqVCdmqI9x77b/cDfUOyw+uvZYps4ddmdA8/0kYrEZjQSOEhGO/CpBhe33PaKzyO/0LszfBDXs85YubnRD2e7G/PB8kz/3eEHkFpIWLX0DLGkdTOVquSR8fm//t7WcZliSjTD7cs03vINeDHq02zYQ8zDQN0wgPYOAirNPj1NVoitzq/DtGNW17p1tHFywDL9emMNEgdvEtPqDCgu7E5dkunp0nBfOuKJ7vd4V+edbgVGKJwMcUumaGGR5CFozB/Gl77BeC2sfOCyd1GAK92ZG4Ic2LkwymBM6rJ0kXC1fk/hn7h9RIwv2WQkm/VwmZ4UzdPRUFoS/I4NUtDttUIjRHL2aSVn4NrOBV3ZE1FYcguxAX2ERxEdXVAo95V2Gm0jZprQzHg1J1ZnSKNK3lf45eLHYwTptM3ay6UoxdG5L7wKdPghhSu6FMHwjm43FHOt4+RZdOQXcG3otRXMjtPy7VWpVpXkEiHISiKepEt1dVszXgEesvYU6XS3LGWIWhgogQsOO4ElglgjB3cVztNIKxs2EL6PTR/RM0hLYuviPUbAD9Ug5lIBK7ReLA66h3VoW4IcwMxlysL/tiMOnA3T3tfOHhoe/VzCGCOzUzJFucQYOJLNVmpzvD0kdEkUBsdZr1twX0ZtevgfgxGbAuMEWNrDh02OfL7Sfo7CQVLhShjh8eO9XKhDWns7nEHLSdNc0z7aPzbVWKXWl4+r5wVzfmmOcDiOvM9SpfunFfVWERagPc7rtxO9vA2ulhtOPqxspBL/2AYB9vapS9NuDdbjaR3yftwjzrCyecHArLkqd2Af68UILxyv+1Z5yVCKJhKDQw+9q7T7oIwoS6aNP3BJsr8sThrMtEueoWb9seMcVHu8fB+RNiQPOMQqYVRhUeB2nQ9/Fh7yswbAuZU1LlD4vH3CmcQx4SwIHGMBytFQ3jQsZy3viwXLRQqu3qPmIZhwVogB+iaU1gFW9b16yvn1lmYumS4fHQsaF5wI2eRV/heiAISZ1nLHj1nm158sX5BaayHX1o8cgfH2UAAZ/Bj8wbrFMBz+gVSSycpzzuvGfUsCUyQdQoSlOYGC41uNVRwPK35aPUGiDucFR5bBJvsk0WZaLu4etgwJV1aYZFMzfnK7YMbJXnUbSUyuscmLxN9VJToKCil87AGUsW+m64SLqfIxkjUU1xcvfw4CpGzgPym1q7er7dLIwfuHdApx83ER2nvNLxdxxc4PRYEPhjm857gw/2c+vANuKXnJbWqdwWbW11AFoCJ3yqT1Nyihnu1Sif0qi2hoWWEVe3CvMrxqEkRrx2ilccDcmA5+nqhphq8osQaZUvPvpQRzvUQsVznoKPoWGh524nVVzgv8+LffqupIizk5OR/QocYcUHYVpvAjXnp/h67KQye1R6UPIcHbNXVVH1lRo6gqcf5/ou9Dzt4I5mXslZzu9a8vPQ4siJi23Pimo3P+r59zG9G2kR+aN7QUSF4qZ3oEgRUB5bQSCwCHRaDmlrfjkqlv8XWGPARfaxeDNLTbGZCxs8s2CCLdWThVDcBSMMkM5HSeQzcfn0R1lDQPYpf1sFTVVB+0BIcPf9sCSpl0dhCcRBHBzEZhAgF8AQ8JvkVazGFC8MymO28cV1SAKXm+qxQd1JL7KFXYQ6+BHY9NqCOgPwhSZQHM39vV7ebGFSQXWztdoJ6cc8krCIO6yCz2xLowtJ7At+S+JZV16VF4OQFR49JAnkWwNRhuj4bRO0esRoQYs0Pl+O5JgVptcugZFRFArHKemK7TPqybWsBd00G6m82Bu7MZtADyY4bxQYVjvFrNTYpPotKkG8KlUkaCjY+RTpxb7dM8MTfELnnhMk9PKkcsrJFznd7ospOMuFyJRWAgHbv+uURsvV1a6b1r3CtrnuLtB9AZ247aVlVnSVMyp8UKYP5JrssSeK8jZX1UKnAquZ7YYvK1vyPBi6OiV9Fwro/qKnZTe/eJjKmbX4vbULlnLoF35r3BSRewPi1p0yy07Em9AWDLdBpB7L51/er7iipNb1b3k0t3k2VdCAPnYOMSAHzatzYnCDAJWMMChS/jmavLB4VCxDZVd1tHcWQHqOmEgk1CFBrES67KMRayWKEGhKzAtJAjTBStLuDogVbdsdaJ9o501wqOcR9BA+neRO4twEQtc1fgvz2SC0jKbi/K7EIjoEF18JW93Z34lTHHMlQs9qV90paAF70QO5H0FO8eI9HHjXlSHsaxCDwELnhzaATZzsYK7N/EWd5I697/m1WWd7LCf2HKTPSJHbQnfCZr4IhidQoJRV3WqE6FejeRGxVBdwthKP1q/9fdaQgvHnm/LLxfCTgMup2afaHT19ZnCtmKtqWaOp7qZKrePXqEVwD7w7mdadS63NLtnJT+KZDF6TLCdTsMIzi3RdnumDngN1/2Q9RgormItqpKK0GvvQ4a9m2pFRknf5/YUfUJm+fY7K3qCjkQXWCmKR8g+9ieipdB1QWGf+o4noap4JVPhveIUmDCqiDtIso0cKNrHODl+0guPtep7wgs6UmyRwzzDti3b1BjSaQaQKkATT6z60lCXFdMV8x2Pl+aknSS8x/6YqvJRoJdCVucoFo2udidvF4c0k9yYRdu8bK+WJeFBJ8/NjIHw94r6VTa8MHSwMc1LiMMw1l73Y0NEORcmsiSetbppFjrLp3D+WlLCiFwcbKJQexxYbtfFlbgwdP4XVSp19etRw0iP5Y5K0xTEerDm7LfbSTPRzlTnFuuaP3HuE1vGhPvYBvsxbTEtFfUtjoo0clxZ0Eu9H7VieF5LSx4WPSUpsXGdWZHtZ61wSM96XDsu3YjrzoNvZJRDafrllrXS5DCIj8EIAHm4vVmpCwI7zAwz9Kvq1cysRnMq9rsaLIGLLcGOqOc1llw5NpPmfEChtxUl5mgz6sNt7z6WatESRHP48bBPmyAJouLKysifFEzuDh4VolbGNNFp71K717qbeG6FvZBU1DHtDzyVCY3O+EfNZZyzb3eiXG8R3U8Wahf+AASwjTMYo/MpncqYO2DkrNbTDawFpDfSj1T3WBUMg/oAi+ORPcG+UdTX278Bgec7mtJGpIDPWEFeRleZhe69+B+RoOMa+SdFbTcC3ugw23DmAyGZZTCxDzg/DGJWXvBUyzVui9WhVV8KIO/dXTiiLRyzIml/XPyvHu4XVE19KZKqQ+I87l/7Kt/PUqdUQNNwvndBPjL023A5FluIZyPbEBmknx8ZTM3kpBZ+wv1qcnBdstSNlvKl/zHPhcUl5dif5Q/BUMg55UttXJbLAJ1e+q0OonLsaeQE/xjf09ZUc3DvHMOzThN5RB+KJyrRlcyNEufGdcUgFKYXz9zIjQdiPP5yL4mKgNFiXqEuz1k9FbEPTKPFfz1BemGAGbH5ubRFo4ZUZUu1u59E/zWTL91veXih9wCjbldaRDuqnsMYz5ohGTVm9ocHwUfY0oJg+bgKAJPF+RzSiw58Zd14n6MHxAzBNBM+GwmfqsPzLshLVdpSfimhBQXepv6yGXZ+vFk4JJm8VFtqgm3/uGaU6Dy2+ufnQ==
Variant 0
DifficultyLevel
584
Question
Which decimal is equivalent to 53?
Worked Solution
Express as a fraction where denominator = 100:
|
|
53 |
= 5×203×20 |
|
= 10060 |
|
= 0.60 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers