20302
U2FsdGVkX18t3XRernhFQReyAlu1qdwBLlB6jWxcfuPI+O9JDnCqhoW+DO7USft1GMfwUy8mLhvmiWA4xlXlmQFWJTcJ8/wEyWHpzy4+Lc4T7mDABn+cB4NPYH6FD/4VAqV3nKwIdxTSkENIr5C8K6QeglGp2UE+BPbpchTDNMcuMwQdeVD7de0lEOO1lHPtBQ7C5t5AqtKtZlR8a1f3nqU22WlQm83BRLHh1Uv5k3d6pAco15oMteC/nN9Gb9rrjQqDmr9l0nhgKfuqOEXdUsT8aMQ9Zdrdypdfjl07kg+pDsTHSxiPQOEPgfjC37Thgc+2OUSbgkB0U7yFfCAtr6EZrVo3ZU8ssdOK21m4nY5dcsCEzaVFgWpKhfiEjAPJLxkUY6gee1xOr+gWOcm2w+2GUFb0kVi+Ecig3BItCN0fWR7nA6/jSg2DeaxP1weTd3nzXU3HM2pbYSuqaLVkyFQrpB8EjFSq2ODyFzDlKkBhmzXHqqneFm0I4xFrEyhW8AihILM+MnAj8mOgik0uD9wo4Kwp+drLvMFD/cpBbtW7UpYUFexXD24MVWH7HaGYPKMiSuGSYtDdg1QwTu5b+/48YeymFGb/P5cUDMhPKS461E+WNbuZHQ5g2bhcFmRB5LJRDmh4HcnJEtUTEJyTGLd/xWqib8jesmgLDAVruwKsBguj61S5g/2MyZjG7BlvYFUEBJOqOsKmAslrAS0e156BuCSKbYBMAftVIp9VL2Gx5eWl+yxpjhx/4lp0cEUtgeioxdT9gfx/Iyhb/cxQtF0qoO4MaZDo5rFIIS5i5FiYWAIjZYNc8DGp0V6jDE9gjMRUNZr68rU6g1ttLxhNSAW1XICPrT0h5TLQ3WOmK2bBBkSu7ot7aJq6mZMTK9As+2Rw9U792XRWLmbXFLzY6e0ifMdFrz7EvgnL6PdV/P0Fr1n7JCwt7WqJLkHpBzkFfve91P49YTa/of84lTmXxh/2WqEnOsHkvi9s2/lr6o+IPcjOa+0BOnFEMycUHDaC585CG52rIhnhprZOQUukGxmB7wfKXV11BUIeMDunJTQaU6FN5AUsa0cVUxgU0GVq+K/FxU3vBuxs9VKoe/Xx6bMLe/Z7tp7TNeI/P6TYds4a6WdFAEI02jBOhuYIvhqcxn5GFnnVGvAGj4eB2O1Tg9hbco7rNPaPsQ1oulBOyB+Ng258lDPbKQGrR9OhQpDpCoiGez9XOnHzx9778t3EksVG7jsKh/ygAmW5BOfexazcvc8UfYJliaPyxPeYbgT3166PmrWCghWkufp9njGy1sCXI0X68LpAznipmarDZTwXO4XJZL7KNbK/AzjVVdRvCFrDceyl4NueyG3zF8x1tUlVe8maz37oz3Auv8reeL+KSWjuJDqrRaHHideNirPbjAEjQFMS38vadIx7j5g1uHkxYcBg6taQqqWzUf0Ufv3utycIQ0NvUF2Ng2Y9JehEq3qYbCMe7gAEqKEFtIGRbDVRQi67D01GqGVQCsnMayOhGyEuSBZrOzlguUc+dNoaKT4/ZqEOjOEQTl7ePVXYN+JOX9sQgyN263968f8Qkd9O+Qy9chQp8YXo0wmkSlbRXreRRGEDJXHGaPj6SxNClWXcxBUghQAKGTw5nI+YCvzlqzNoXFNaNAVSRh47/VQoMfHd8+dhdQFJ65kyOFJ50H0lP34UhYu2IdOLEOy9q3+Jv7W3sxORsfDa0mkPTJ1gK4MYJJdtNBombySk7vQa+oVG0nPTWW66hssfw/53BWyd4oQ2J9QAwuawY6o/5PBNfEmpLGTA2j/VPRt7ILz3IQYyj7cIkjacNPgPdwN7BUb8VLGPSYAohkCSaJwM2/3whdqJDD3Nt9GJhesg+fs8dhFagU8x0r0ASovOUQQnP6Tlg5L+I8RBKPIKhBRdLyRDa7u2t/jl3kkoXzdaJAzoaWmTnbdB6J8HGOHLLA9n7639xyepjWERepq7Pqx0HRbPhTPwK6Y+HJFdbSu3kO/vyehJqY2WP48daqIp/a6tFnAxGJ/3uYPEDshsCKbRXcjLPSYeSVeQTaU4PriyN9nUOO9lsbC9d2eCfoPp6GLXaDuH249NYvTM+lXbjcec2k4ocuKvrp7+o199bCJ5ErKqiRKnj020va+O8OAaYQlUMPEOeM65jNJ7LZPni7Bs5MH1gpB318X0gyiQ8rU1PpA263+iyJKRkMieBXx/kklQeQEDCQJXxwDmPTKe0pMSvXZxQVKi9SBBYLmucBQqBf/1MvSTfTTCpFC8F1Ue8VEOv5jmIpXZAOziXoHEPnNVC8SEvNE1j9BqHYuAP/AQjPM/hKVsx+pV5v1vD0iUva4b0b8YxR2KXPvzt+auZ/H6d6X6wsMFSMzgCZ4FGvKNpcZrFlkZSxN7VBn1mqryMxmc3K60NC5rS6Tyhgz7IyweZjRpLG20kZNxVbogC6n/QcBHw1LVjy9NkXewTjIwj0+KrJPVglO41fLPVKN3ZlC5ladtKOHBVru1Szs7JpI8hVTum4x8JMTqV5zS2Nuf0QVD3uS7HEyjQmuCRiVUqY4u2TZUMTRfvyUcyagLvgDfh+nCzMyan2e7MsxVkM1rPegDCjZkh4kvuvqkHrIJQ14Eqg9dnCLYiYFr5y1hkdRSpIjKVx2qrivEHGZPeZfhYUFjFg1/vkpXzCohw9WF3EWj6TEZDjtSex/cC0WnwiE10rSDPNMEve2AS/C7m9B3YDZbPHKOcu/xkgo4oIUhJoMv4EJdSqt3iZ5E0PulqjKd7mZPJ/yrd7DGoOQZJJKTD4pgClJHnwqKsKKQhOvhuoxMWUZCXaqSo0fhQc8Ngzyreg0/D+I2Xp2oDty4IKFJv/OUpRqMFMBK/suaJR5S35lPMs3BT7ffxaEXhkbJ6wGoX3pQMT3W20RVT9z4LrcazI81hMvUHlj2bJhP52x37lCK8y///dsDSbq3j30DzYEIn1g1qTlcn2vA+H0U/QWNOyvvv0U+WticOFpvUvV8r4CLVTq/6NFq4p4TWR9xbqWn2ZwLVN8FaVRxmXvSj2uK9invfR8DQpf7ZwjJIU7k2A1XxMV4x2B3ME34pL7s5S5dOjZuaKLqjU4eWY13yGxWsrZqSVErPpJzmEo3ldD1UtF4OcpwDrAkzDSl6CscuD939rLAKOB3GVaAA7ukgmj28LWoW9iHsDA5FW8c+lFlhizivmrg7ulg9hMLF3lkfjRZ4hj3mDMlqbe/hCLleq46UNpb8ojwt+rLsXRHNgTU1rAoojnfRhdqzbW2lj7NKq8nBz5ERzPtb9jnw9TYwESQzpZatl53ZJXIHLNLm0HQdJIW+Vm4vKoKYN+7Yid7UOL5V3f6U1CXZX9zbN9CRbWJJiS96TLt8dg+NILcypP7z4Iya0DNPV3BrsUoy9XEiw2pQJXJGsDXQjOK9Z2mV0wT6s1QIy0sP9VTMQ4520pAByqXiPI5w8t4INSVfp8W6+ReL6SoD7yH9OxfeeXwQmXf9yhH9o+/tQ8JMEeKLwnr5f9prJBksuBeApXO8xwKDiSR91Xkp9xuWMis+2JC2p7nfNEk5ZN03AlskvOmbZbH07YXkwmho3kltzfSjYF59MciHrpHSdOXbcE1rPI9hJR+hvEGNuWd1bMrT962PwpQJRDpPPeJv4iYp/Vq7bKLIB5x3WSawE03jxDvdPPDnCHE2RgEvecvd0yh8/iMC28NcQCfS3Zr0gjvvqCfoc1RxvPSX9tVx04jRWL54UwPY5v/HKNJoByhZvULGsPRxfMFhVO4widNVK93i7leWNJx0xQUnyvFzzg9Iv9iWKXE222wKwq7dNr0QVNTcnTIdTOj4Z0/CYf9/I/jniJReboD1dvTocWK1se/89GKjblx+ZgaTb38BNjiaznhKXaLiipDnUPti/8RW14Xp0iQ0Ux89xXVYNPE8rnxgs8kz7gl5ARgQ05/POiT2vfZOfvlF+7zj+fxpm4L9DwEBIfDlCikVIvf02WciyTUO0WA2p3E1gzoJymRHBkXoigfkzqTxyK0e+9Bn5meuKmJlYwKkvm0XYBveQsg6VO7jih4GUlmkQgqMjqOIupIaOIL+gUgzyeYNrJ7FWcHFc8xOlNspAI1WtB7RmypaGqr5BWfqoIP7L2EPkwXuxSiDz6vlzXIt4AHN2IbG92iSA5sFY63x3Y32XEVaN/HVdKnG3coKVAyBLdNk+URycnKBzSg7gH5dwduZhS7MVuuPSnVlTYLJaVoCc9hYGXfctTzvBu5mes6xivMdDbhFqomhEe6qiCO3wgFRWj0rDo/UrVicEr6AIWhotbiVt1FT7z7irNGM+tXNbrvFThg3ExKcJXPq+2TJu/Fq+CZRBrufGz5hHHJPrRkEbeGXquGkCwWzsFQx3lkREpnG2hGVRfpy2cU8WH7mxPvW4bJje9Sz8cEj99esDDfDbg7lyIATC7vhYA1ikm5mSyK+CqmcpQTAwFHGSroQEA/S1rVZjzjLdl4onU3ij67/t5W+xSpIoDK87OdqmWLlr+Fl3Io6yykNzKqEtlfbslGp1kFCgaexpVvt1YlJBKH3akTXjIBZGJe4g6YB34bdANAHnktAZpCieGK/WXzJiRex41cK5WE59L0V0yy4bzY0BWo/70wmniJu9wPFvpAF968u17QKy7tq60i7CfjnFGK9IpXIljr8/SfhyaDgmvZBSDs/3GALaOJwvG4myYsGL5h8Zm8fmX+R7motyEWocKrKcmiigps6zVjEy+WUstIWlnp4oB4z51IE42S6kfpIsuqP3F+VgaE1HjKBjwhBhcvBWMETKZq9+IA+Kj1iBKv2cTiFIv5Inwq842nUBodqokMoWw0V76guzECHFh0yugZLviY975mQWXSmHu9fekvVddIhLCM651PhodvjobnxnxiQU07xUiHgslWCK0ua1xUhJbCFgxxS9aY7XFaguPTHxSxT/W/rDV/i9gsO9bMOYgCCyP+Yuh9sDvskpUnPs0qiSpzzqmLBoI7aUkiVUy5AbFGk9Dw8zTCUysZj9AYIvReAVsDkQchu3dWGyhDe8khQe9GeKSZOCn+6rHkuZK5E+q6LLJtYQT81oiq3L/bZUC7YQKNThD070lwkMvbO270q0fsJ/EykBq6QmwibnemH3f6Zf/lu/V3IAhUyEezeuJQecT2cA4Fl9ZTwukFN3vXm1gm8O8AmsmehpLULpyOJ81C9bawbTJ0JyV4P6lztqnlQw9+w9r/qWaSM6G81PPIK5fQZC7F8f0h3yIr5pUgUNBTjUvkwrUeozisRyVnFtv1tFdBhPrTRdmu7A/OMu2CMRwCzOm5
Variant 0
DifficultyLevel
579
Question
Pillar draws a circle with a diameter of 3.2 cm.
What is the circumference of the circle to the nearest centimetre?
Worked Solution
|
|
C |
= 2πr |
|
= πd |
|
= 3.142 × 3.2 |
|
≈ 10 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Pillar draws a circle with a diameter of 3.2 cm.
What is the circumference of the circle to the nearest centimetre? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 2$\large \pi r$ |
| | = $\large \pi d$ |
||= $3.142 \ \times$ 3.2|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/byI5Zqjd/PnXsxsvcxiYxVzKEr8VXEzsCnRapq0/pSgpyjDHxeiF3+lk0rurIanqjKGSVIlVZyLJ0sF+SSypZ0vQ0rmyv7sz0Az3GUyHKCoRhWQ3CIzN812WCK0pe7IfrNOerbI4sn/9DPN0wRMBZ2SQqJ0ECSZh6eYiws1xSV2qBXLmaBhX12nzk9bZkHHIscerlNg4QXH2MXWAV2Yfp6WLIbfPuoL0RrNWy3IDb62IzQVBmIQZnWqVdyLEA75swwtmnGdGKHFHMdo5KxwV1GUXV1uus7YRVZv81X65EoRgp47QWOqK0kJIvuYc8CDR1Q2yDJlbvV+lvrB3zMC8b2ynPtV8tYV5geb/zC3xa8bszK3uWEcsV4m8RndmEBJFIFjlDnROw/KeRrrmxHYeQdrrAk0UaxAQ0VhREH6SX3fA3XAkimDduykMXQLNWTsQGOiaII2uNK7VKtUt7L/oH7U7eqzEdS7N6V6SxBBUcBg3rh+lKwoTIqGl3S79Bd9XabBueROn88c9Px/O3ZFEToY3W83iA+3RpyZLskFf1/k1zUuor8rep87HwvqAJIPmYKaLUQGtU50I6m0nCY/9k9vR7hZbJRtYzsvjBPFr6bt9wxviwymz9Ln/fOY0SQTpR3zc/i3vsJVNsIBnKWZeVN12Ozh0KVNCdIrxC2BQtX6Pt6m040LTNmYTen0TXY+2JitZ8EHuPtmnipShGIZ/2dNscNCTJ2XkkX7V3nzKyGG8t3Q6myztx6p5qIx0wyzlh3jTMV4p+ApRo5fYFz/9cQktn/J0fGF95e63xmvXMHjwv0jCMhSHAq2KwD26N73mZSxba7qd5jceZIhJYMflEN+cqb8foVWmfTG63Qpy/PKQtaFDgoXNSfGBdtaA+5P6iGndKJi8vbIH/xmkC97/FVBsdQsfA8rt0xtjpANt2BYzR0vCJBL6SXAxroYWx6EuEPaUbpOLdWqbmaYHWJ9VddnzqUfyvOWebBpF+9/33a4WGr8f3Falk9A5SQXPcFsTBEwKc+4pPBsm0/pFtz2Qg2GeIKcClq+1we86oki+zh9X9JWMBwY2xnQ8A/dWpiRd9J/PuWpG/vfkXytYbIHsX7wNG/Q8QEaCrdEa5KiaiEWd2mPFBUggE5bxJ0O9fS5ntui65V0X8yBR6F4EOXSe6jDnEwlXcdrqBAJzalZFmFmCaHsLDnuVnoczQDg7zXTTwVuzt9QA1/vQ4zgTGNqo3HRil/kWPvkBn4P0R2xY/0jjJiEt8I/oewzSXSe5q50YPRIbFK/NTtHM5Oja5DrzUMnIbkBoSxbp9JEMo9TlVIed/ZLCMarkkVY4M9gmBasEhL3bJAxGjcNU2euY3JEPMaKfNxtOlRcAXLuXBhKnO0UCBbgfKYRmnzP0vyoDwrlBDBVJJVNQn3lVtgBFZDcrk7m87Fg1SNYQIoSoAUo4MknwRkVgW6woCji5t1VOQvHAJ+Kvr3sbwxTOBcrYuGsbmEBMiW58P+JN279M/GbVUwQLE0dVZ4yPOW2VqewgqTz8Vsw6hjwXSi5RxaTK56qQGqCKa720kcm3Ik9FDDcFKP2fa/DzcvDzZcTbMrnAnr3N8K2X78Fro8dSD9mrko4ulms0q50AByT//Pn4hrzwAyP93sqnZgYJZXcesPz44WlQ9ZXe6XjCmXB6s3a8upLG+vVq5U46VMp72g+rUqPrDLpqPiBGFOsNFOvZOzGiM/K/8Ro78WZfXDXJOdstnbheOcymAbahvBOUQCAUQGqWlzqvINZ28SUv85CFWZRPfr4F/h63KHaoZfiYhvrqryAq8K4vFKQItPVtPzS1U2dd9GihzXfORLTKWo1UEu7xBPSIP955IcrBoLQ5P4w2Shw9b0ghb5qzdAayNKf8KGRxle9BHHMiIsUPT04heZSfc2JjlTPWhuFc456fy3BW956hWel7nlIfjFXrtFI/WKhTEExP3YgvquoddKlftcHon2MZUaPadZRpL26VpNuGwrGi+aJtbI5z42O9xud+4UI1wFO3TaUDz88PbMFrD0QStUySwXnNOlcmF04ilbHdiCnvbYJVB4HiywkOWt6R12xbsUuVDyOimK+mTPwTKuYrkokcAoCL8u/s1WY1wwtOyhRRmsWDhirOow0vRgBTZ4yKuAfVnLAwkha8aTQctF2xtpNQoMCaa0Gx6UFSDnGbzNrfRr0B/vweqNskpiwGDkczCvAY+QeMxpluXdvw4/2J9H7Qlb1dXeOoXqQnI9N/eE2HD+Po6CXDNOY0LsrmvPdN61IdACrVaJqcIbCkoTgo72nNc+ud7KSdcCabh313JXcNHPEvfeK7jyyZQ1K5gcldXffrGlciOCyhbrLX2JTPsLVDWobX7dCqjvjg2Tbi080gqOgKE0pnrxzp3TLyvthg8XiDrFKc9rciBhu9h1P6WOD1z0m9N74JQJtJjwQ3nOGcYOhrA0hjUXpnOwuOL/G/kkE29vPFRAn9N33UA401rAV2zv/ReMSvK2FWn3KMAKpKhEXWrZX/QQtsfJDSSPyLrOgEZCFG0bi0DC4z8QE00zmapo4tjiqEeJvnJ5pU7+rJpcoJsnaCBmi7F9hSEUSjuhz0SO/g8h036438iUlZC4dmzhIcvqgcz8zxYaJWZfmIPIPaTgQ0hhcH7N8IJklZdvh/tNoO1sC0ULZerb0nNRuS/kppXiasfI6ykJBSAbgazvmUvVMrkKYylcbndV89oZRvHgFhbuLXwp73H9pQBluwBcax8zZ3+JQc8lsG6PWA4+6K87cC8vivZzVE1os6dydPuMwCpajaiJDDZst+0tzy+RYL/w3DIxfzSFkW0fhzAkNe19Ss6tNFMICdf/Z3l+YGIDplUn9+Bra9BTmUkymMFksCUX1NWkuVJJUCwRVyPman0uIHtrnfOXYK2zbj+nTBRpQCVbT8b9P3baSLgFSmFLfzJ1S4Cf9E4V7nmPOfFO5IF3v5zCRNJKKB0V4SglnQqUIPe2rZyiOA5i0OuPUKCE2L9OY88lkZ64gqGZ6Q7tiyfWl6VwLYlCNZSb/86f7OC32Hjwrf1Ob+xJXZuFrspcL3Qhr0wDF/7I35dmC/bTsbXcLTiuElTxlHznlHCB9U1kF2mJ3Iz1a55doV8daetyQTRKI5sNEkXEj2zeB12aDlfdt08o9vAaXRu78scIQzkuFVQFFlBwv9JZwObhrIMciaoIaPHMbw9r4TaG0eTD8KDgP7C98jENFuqua6LOYI80fI3Y+f/2dWG4A+ZjHJ55mDAopplWuKTbYLYdOSF+pc8TwlQTFxW09tKA1JUu3Dbng0nnCFxX86/5FRmIkhRUo0nUukq+bpaT0YZjsNNODczkiH2Dqz7NlVWHeiKe1kK10RcNLPbQt6E8RvcUxD9fH2eDIh2D+tqsJ7Yh9EYP2rgqB1rkDLSIbJqKkmBOCr2oP8noenMPCWQwdfCyokFoW7qMHzm2+RDCYLjJlmRIUIS24TxL4aAyf+p1mOYZ9T+iHq/jqnLXeEJMW8q2E9lLPR1DO/Qr0rKw/ViACnvXQFjzr1PvM/Ddv/WvqXtQ2fagM2ssTsFYLkTmlu/CJZZK1mUYt5+VhSZZ/zKkKu/ZUdzXJyhjS9AHf0r4v44UVfqwvf2kpcgXEswale6W8kpMON7i1LQdxNV1g/AEiVNljWRgAei/5zGQWJKsXkdR2XKFyuaNQnLmLN1zuz3IHMaEoV45L06qWZm9wuE2d5wWffGaYRJFfm/VI79pjYRoNaQ5KedTVdRHpMWPzKAYs9MlUZ2VoXMxgOOm4AcIS7U0mnOeEClr0aErMFkMJB5Awyy4K/8HmgdnD3d7X13F8mnKSTUIoo6LoPW2tcNucy4jOgz/r6Cd7034k83IZ8lLT3g5WdYTRCIzw66M8VCG0JFfqRlK810J0GIkkIw8FVCcqt85EPdpBrB4pLWWkMCqttrSkxO1/gfwMnjJceyNmwkxJbc2vuazl7I5LZ9iBH0h2LRW5im5nku2WbnC8REnVIfdADrodKdaY2DaiaO6GYEM+jUzTPPtjmwAx0z2bD2WCiWCfrqz8WP/H+3SIjGo6OgMH7PHqNm0FrmCWmK9orCDIFJnUUXkfkjHLUU2Kdn8tH5gDK+botXO2vcjydoSYCojIPhzR3dCPc9inD2hgsbTpW9v6W48Jf/MLKu1UU+sS41KzHNJhrSYLT9PG4RngOWLeJdzo2zGVAhUKvoaLTcoUTju6OI+8iXaQg6+aB1ngP9YMsMAIUHx8i0GfgFW+khJDa+09s3PZuwpfQF2/4K99CnTv9YIgIOY6QUoWvJ+CAIR5Jq3xUAnBiB2bkmuR5OdFkgEMiobHPwCK2bVMjLanXqk5G2HtaakFtBFw1fFMfonjgxR4O0Kcr0/RfYKtUf5yNkBtmh4bRafKkx1FhCrFSCTekXXoDStfw0pE6rBxuprMVWzEsTU/prNLRpdWsrNx9X2mqPubQslE7bcV5EUGxwOIBDFxBIouvvJUAYgw1c8I2urEib53ynt7S/XJtSFxiVDuK70jdCm1z+7bfzF0pPSzC1UoqRse8jrHTZoqnxcuhzlTd8u0/fRgCjciSDOAK7C0sgByqlXEVZ6xP9RlmzIT7nnJASO+G1ovQs/0ggukkDBH9h3XmORwRnJp9aUTNlseoikctC0shCiblqY6qEo9+5HBWbaMaVmAASEXz3MVu9MbPeLKRfiIiN65iX9nUQyqfSoYvqmn2Qyf2uhv4r0AayCG6+IOy0hJHrQ2wz/lNR0OPn756H+6BHPG9QoydgTVkA8WLEJsvTxDYd0i74sz91y/GVr9OHR1jz23gEUn+qMtb0WKzpJle+BnRCvbONzY7i00jkwMKH8r36+JZHM1L9Wis9uoTLrA73jsE+cj0+FfMOEa/p3GeFjGrMM17il3FPZLkQNs6+l0YFV7eyWCt4njJaP5qBRWnaodPuP3vjtUTD7NDpigo7DketbrvHcJL+HccmrPQyazSGqSpsoaGwt5KIym+RdjCxgkCekuiV22C1cEVJ2p+g2QoeTD1PMm4+0jTwKD31S20W/m8a+TctZkw24+FrT+3YsbAf3cGKaxa/znJwseT/90Btxl19ag3QoLvTzrV8yW86VWg77OBOIcdmGxeRu3oiHGstipScmu7mH2YOXwMhvA3DAs0nCCgzc40dt6ogxf99ysu5f53/nQ6DBd0YMaUhkL6/yqGGiGVZayrdPEQnjh2fsWNgyqy/C81Lm271FK2Cq+UT9L2cqN3Xy/7e+sYA/4bMEbZIqoGhlPaztNhT6KA/G81nsiFp
Variant 1
DifficultyLevel
576
Question
Michail draws a circle with a diameter of 4.5 cm.
What is the circumference of the circle to the nearest centimetre?
Worked Solution
|
|
C |
= 2πr |
|
= πd |
|
= 3.142 × 4.5 |
|
≈ 14 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Michail draws a circle with a diameter of 4.5 cm.
What is the circumference of the circle to the nearest centimetre? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 2$\large \pi r$ |
| | = $\large \pi d$ |
||= $3.142 \ \times$ 4.5|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+RVE0RGXEzgES2fYXoM0JnkHI9njoIxLDRT0IV/fpo+ZM2km4In57X/92GL/aoFH29koirofZbQIhll5c44wbd8lm3oRyYh3nEtWxPTLWv/yN/KPKoa+23YROEVXCvTOLZsw1ehgm7a2dVDsy8QWtrlACjbpj2GI0B3RDcR/gAYT9BN1NS0IVzoRfRYJtxLJYBmq6dORxQBOB0Z9Wm4fq21Ryj7nQ2g2JNRUFda+qolYhZ78mGRWFzpjTLbKmFi4Zy3OawloSy7pFR6i8MtwsY8MHurc2SgfQwR5/SNj8rh2J08fSC8b+Sohyo3jKEWoWDTpPT35zS1hhjIxhwCuWtH0FrzkQ4CuAB8IwWxvO0KKebdI0rvhmPLVqJ10PlmSFlPq9nmGC6CN4lvxpBYRo/H1I/s818g3EZ8bptNItqEdw7AYMX+xbTmFRnAwoKpSj4eKpZYrVmquIW/vajRWl7t129/UpYXpBdm5tLjrbmlZpCd4rbkHfpAIUbWjUfeTxCDI3o8nE4v5uymP/eVhPLB7lfichmF1Y/NqpIqdG2hi3QEREfG89t/BGCEdCV+2O1vivMJR16xIbOSqM6JTpUAwnjbQSGDyfXAtjzqeVHyJVDis0AOzfs/LSWEshaSOfChxb8fXgp+Jdb9oxTWCxZAU9H34ADyvN02mzwwcvJEh0rweZh204k9ILfryH8QFOSOGjknpfTOxbD0tD2JRauAsA1EdSvZnwtjjG9bbGuicEAZmdLKMMBzPsOhUFhYYsLNgdAtpSEjcwefB+lNNEslfVLT4GaYdappSjItf8QFZOHXFnuoSOAoSEXBUJbTFgsW6oN/GLuXPMV/Ae3oDIvxMBxrzJN/bS+C0joOBJLYiNtNoTrt1DJYbsT2OpfCaZFGR1QZ1w5QH21NliU0gng4x0dtUdiu4jy0AKAyueiZ1ZysKfTOOVvTW/m4BOlw20wN+Sc4btO+B7Ry01AWf0HsAeuc/5zyquUCv8FAG8+412dE/sfNSCl4mLWxfvqpkvpA/4i/W3GUnhdNB5GyuFHGhj7nMcWVMdB6L9tS9yUdzldxBdL3GaWSq2xjiZCggx3/Q4lR3qttoIzen9dlcASxj9wx22jaSbe/fcO6hEN20djBM3OnUlWiT/Y2ZTRvbxRhKXDAIcUH1h8cBgK5MhchO0vdvJVj+zAS9Z4j8U2ibuGAs94OLZrcJPwfIUd0ZeKUb3v07HnZ53T8gQXI8YnzD6WHX22Z3YB8EYLE8ueRqjAJnhdUGyULxxiYlHJjMn+ML6zEakDKpJpefrI2iUO1nx8A1WEdTpFqyiGBBhV26UPx5PynKP/ntQMKlo4SHkRQoc2e5xr7o3ORcpxDdcqEBfpsP4yg5r7xcM17IGl6VhgSFGsbjVj0WBdqzA8vC/e3f/lhGVJH04SCk8xg6fcav8Xh0Vzh/gdTTeb3FoergzIVl2pxPjl6KParZSKYgtS/SihWfObgg3d0Z5ruJv5RtS63w77MCkImHkdeJH1r2aYPPml0d/r2pzmctNgII+IbvSwx/vZ1e062nd7gyCDHoZHwklgbGtGbs+UKbleXgSZxjKZk3/sti7mC4s7uuHC3Ls55gUqqe4OKeDuTfiqK7V5yCLcilR5YDnyvVhp38vwDMHgSn0nsIiJDPPKG4VNv81AGFv+r1R5IW+hSiH/hlf3akq3oOhu7LDKhvmFkUZuSWl56APiv+lCtc1glF+cCZJypycwDZgrmfeTKDeQvbz5ETx7HIv/okMl3OKLGrQ3lDIZJ6pY0s2kCXTR6KvIZof/MUxCXleWQziCyXXkS6raCHiqOWmZwd7fd/ZRoMH/GFwyZJEbeYUtZlw+DLwY/bxBtjGxYse2/bAvbxOYugs8/21AicVoResRvQU/kyYTp+UBpPQ1yUVIdzoS19vhLMCoMiq6pMu8CD1AbTclqJftmTqnaidPdM46oBIP63FGn5hSO710SEo9u99C7r42hmdSzkt+5fpFSnuQrCY6lCg7WU1abUqOcWMhnewWr5klc0qxqRHgm+rOKsp1yabWswkyO3/OxiiEdBTQK9H/v/LS4B5de82sU+umsh/qpTyzXS9qVit1GcM99Glq9EI8qjOadZwKAotak3SvnKY5O5mmUw2Xt/kvPax/RWQSf1JBlG2tXOPSiwJRrfDa7PRmF7xTl7HrTP/PrTU1ZGKrHCDxdXgKjJqJGX7zimHS9U0fGyBMI5UCDiGaqbojlkktWiNUwA6uTcZXkKH7aeKi5BGXb8ZaBmdLuadfsIrU613aEMd4hQ8RA2Tt6Er3rtuIINQ28Y3LaQsaVR5SAutMIRCVgC5SORbNEot5yWg0mT1owo5s2p8f1bFzEGnWPgWRazuCBG1duU9ZSsMMxyeSX3dCnribcqpkrJN+nqM7GY6qt3qqgtniQY9JdqY3LcTaQQZvZ5teAqnBz9ChcZ05xfwCaov1T1OSMS8p5Su3Lo6tQ7i90FodtznntUDA9Hf+j4ZkUdft4XDn+TM6atO9lw8U016tt7UffDMeH+pZQK5mvG1DPqGeR4WJ6TrIXrJfVLQqHLNYLWHCJxoCN99otlk6kvkk3cilakLzZ1jf3/GxgzXRHQRXTDP/JMiQJDizseI4B6LK9E80HJbUces6ijdeJ7XFkTFWjTno9/4GvB+D3KlVss4nU+ilsq6qk7xC1gJH6NWVnMJvidnSGV+HcG4gU6YAXroTKSz4Ht/dzHAM27RBLKY930uEoeE5atVThc1Og4ZZqWdXRZRqi8O+MmZA54cUgJhTSUbcy7yEUbSSKeHlFBi67qYYqD0p8Yl+2aq5kGDWSILex8xoySAbdPP2nJdAv9GWd2pHGHra15SsITipXE+/VnSAX09oW5vbi+yAfYDFpzBVGlotxG1SYKT47SvIjLgXa812d4sxj8Cn1TFP+tFB7KGf8UvTBklo+JNRImaEWM/4o/i4y2UUTpgPaSnt+bQubLNR/cGrU6utq+l8YmELbW0Co7a67bAreqkn7A/ynbBfB+bWaYQHNQchyayu/T/2Ep7aRP99bCq4b/cAh7PDKmWHazNlTPX88nRoTVXNtaSyiF2phs16z0ehdWnBbupvw/x6NaAIuQqiboN2BWO2pPHcDvD08DhJcGFCwZ0dY3pFgtErPYEVx/vZxfLjsZeA0ac+KjxSCX4iNG3RuAeDnRuV5auQDQ1M8fXbeQY5TxNKMhqs4+JdBsILCif1HDis00sSefmVlJqmmSSNhAo0xXgdYbaeMj0lxfZcnSjbnjD7k5o70kHrgdDsNMBFYtvoJQJwmRlMTc0aGKVjtx1AegxAYVdow7LQpap5m6YXjU4gQsp+VbI8D/so5ok5Qq44o3lPDi5QxYsLkWZHciXAPDz5uxldA354ByBocg7zekHWyC1IGti2YGnUa/gTpJeO4mtLtHvZHUHxYIg9mLn/lTXxtHnk68jRoWUJ16VIvhXKl/vtxi9Z5IHGpJKmjuSloXtTdB2imei2eQQbD3rNtc8KtMs5KKOXqZ7CQYPPYWpPFmKD6kjM9Vfzjia9sa7GHHOHEpzhIPZbYhOAML5OFfALGrIIxVnZfhPIoVKmL04YhcMfG9SLYFZlFermEUtKXAJReJcCPKfnposBBklyeDfwO6OE/RIJpq8Tj+t7USR66uXPYRZ2pt/SjFToG7740l8W4x0+a3/S+89pGPPZ20/JIfVErDjKWoIvv6hcOadAa6miW6jMNoVd0K+AZ5+tZbWsSiKlPC+C6u7at13yIjsV1PO+gwR8aYXtBK2hjRhCqjj9xNZ15rNvmTx0MUAdAsvH75HRZbvDqYHgp4AFUBprKybc8UkxRV/YLsOSreBOP/sMNEZfMYVau5B8vbEUQ3AnfZoVbIT0uc8o1TRmw+yKaTebtwte2JNeBU4kZKmJiePDqHWEplW/T5U8vn251vkCl8+/UCijkeTEWuqKIteTEmxTwshwC9InnOS+GV9omaE+iBh+hmGwUsIoYHt9dRaUXkDLobK08W2wqFvkDzUODbjT5SJ+tM85UaWs9Kft7hryYdZ/gNllA9Q20rGfy2l++tDHS2gSN+WX+iT7whNyT+EtG4Wi7RHUtnpp/SUnJbFRzl8Sb7lwM9uLkbQMXNzgb0z3d0FnHU0to43sshsUeCg3Orh/Gnev7KAWswQ8W4oCaGCJnLQCxp8eddY94boAUXAxXxmjhsdsbedsytkOaP3SzXyiOBqyhodQKH7j4n9TZi2Hf0z0iyJaL+BAlLTh2vWlOa2ZtQZ/cXlkDMmUmCQVwazYReZsmJJO2oO+hZC8wfriyCmSmsmZjRHT9ZAu4YIV7LY5sE01Uc3XgAbuEu9mO61+9fu0YO/xjGFMnyikergdPpF4X7kYCU7LuWVWKPI9OCBo3iZJiym8uOZXxvZZaRFE8/7UUowwPaDCbriEZfwr0ov/El/AqnO10gQ8M9u/va/uJGpdcMzo3pVlbgXJMoRIYH5gbuFn9BwG0zjE8rSu7RgfmOQfuOsx3r1fq14DA+USsJtc4OFJNaRh3TNba1CfhGzDBJz3IqL1VsEJa/ZF2IzIBdB98tdKGzQqHWeExTVjjKqFRM82IyzbDh7EoYaxhYA+PxQUpHoHHnHnUmXPgJfpPINHqEw+KjxGTvcb2WKSHZbL4CKQYcZg4dSB2kpk+rgYNu+SfTeMxukx1Gymjp79/t3Gi+sHe0MPM5rGMDjkdISVtnSu5AEMwqO6y3nTj26qQYywdtEwbmP+44PcpQ48aEy+eafcCArolpKEhOynuKp10wZSTZyyEPD1Do5TGhae71RdzgeCsMF0OS2BJ5008XYkk4l2sqCDulISNlT0oBma8n0S4XXBdOjKjkqyjnu4NK9goxGtf9aVhadgOi8Qhe9mgNqRQi+p9Hd/ACp5ZQ6MjubcVf3Tx7yIpRW9DtENvtz6bbyV2NXsJLMjiI3ikt+eKS6AjG4JE+Lzo8Wa2BnooC9oBRlXfubY+Q223ZT/UFfXDiAtUg4oTTmxeuagrsmDQx591TqTmNI5KwC9h6n1f05GeVrsMV3+q0h/lgZSko6WE9yWFO4+Ws5PPYsa/bRGBV//53RVVlywzF1pBcEAuCaoxpl/9q/DS1I7u9ajzcbKLt78NHqzNPg6+gdDcD+2T2b2/jCNVa4JcJfAXIsMAuSXN6HvDLBSLXGKY7LggzI1sHzDWqN/n+wZKwi/mIP9Tp/02k9fCJIH4V2aFcbJi4fbQpsrAmkdB6NHqI3EvmyEa4lm+JrnT28sL8vx2rSyARgPArbmq0aT3AwYp6w7PoDc
Variant 2
DifficultyLevel
575
Question
Vanessa draws a circle with a diameter of 22.6 cm.
What is the circumference of the circle to the nearest centimetre?
Worked Solution
|
|
C |
= 2πr |
|
= πd |
|
= 3.142 × 22.6 |
|
≈ 71 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Vanessa draws a circle with a diameter of 22.6 cm.
What is the circumference of the circle to the nearest centimetre? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 2$\large \pi r$ |
| | = $\large \pi d$ |
||= $3.142 \ \times$ 22.6|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/HMLES2yZ5A2pqgPh6KOYL07yaX6w6fT1Lk/HvAA0twsof8wAHZSwbBbFNgsKVP47Ld12m+m7gQza09vAl0nyvbOjL7UpG+WyMK7R52ytVQbbbAClyoNSnCcIhFTI3HRYrtp40FT3CT43HXaeDPGnvd7xROepWIahg1+LQZR1NZ/GUpwzIs9g/ndj3kNbc6URBC0L7vN8KPYIav9GMmIauH420hpEeoxkNUe+6xS+oJtf6C8rPp8I1t4cy9rpNlClZXx32CEW8lcUqpwkpJ0O/YeXHSHuQCt45G5z8j1PiCkyFSuc3v2tlOmu4zIW1qFuCt4P64f9t1J30Xz5FSr32vPsjFiRwzDo2DsBrgSenku+d1m4QVXSakZcWjkCK4fkWj0/11K3yFJ2grrgs5Ibub29sJJjfhgPUL9FEEXi1AWuVXOZzE0+WZbOBbBgibtMRjsHTV2SZ3Pv3cNkNoViESluGxxII63AQ2Ua/6WwpQBDVomOK+WD9PYksz1fr1awppFNIrs5J/WBxNE+nufYI3zkdLvcZ1rhQ40k7m5bCZEsKjjj0nYTye7QGVtam5DvVRLSd4DDzdxpRxbd1AyjmsfYgEjvN0To36/SYiV0gmRy3eMnJT8af0DqP4Sg0dIFVj8diBcmm0ZH+yFbHSQUtG2AzN+vvJdXprEiYv+aQKV+0qijzB48fZpVWZ/ju/AU50lKXJJqS3tJEn/uy6+RWFwdb3Vcm/8g+VUlTHUfuQqMmN+Rmbs5C7cqKdy9C6OyqXb+q+kyYNnFCpRN7Ig+ayH7VUoaDe1mjt+sniLN1V1Kf74dTFiwejYETmZ+JgAjvD1GG/gDZDBFzJvTkNnPtMMjBmVq4UDbWoSngPWMp6xEgv2qpbbwlijWLd/0GcpXMSllivnJULBOrAs0Fuu0ZUNeY1mNDxprTZLhBTvzNNrq/gTRhG8ZW89svmQUXyoBw+/jjDSgBB0WVBSd5TDA6oeYr6XRiO9tmlmw9XKbAFUsCZ1ybxAh5e2ntDaStoy7TnS81F9mpdTlGitYuUFpLdVp0JzoZsntlzo2urhiBx+/buFFGEmmk8yA+6tisX5dGyBNKAwCoagQUyuwqUOjIh4i5VEMrp5YgCtO7bX3vu2ojJc7JSv1quE+80V6cBoMwFGzURu/Y4JZXFFt4O25FGke1YNSnXCe10qP8cc8xn4Jgs5p7zM/UTJMRCZOdRmnhc7VjnqOW8KRBxT6q2ckKMFWSPPPEqNMlkUYdkM9krc+gmiVv5Yumnwme1yTAWAtEJ3YFaAV/aYGVD6RyNjysec3srOb19TSJMWozA+kwQKpdlzXbnQNG/zq9pROJEURqrd1jkQ2nw76xuNJQT9UI6I3clH8JiLfwAbiMEY62meVoTtuFBauWGfdIQozXzk22exBEo4Tah2vJoJRxshlU9J+znkOCIU+nMiTr3wNzI4h7GjCZ1foLByj/1OXsTjLEy+1UrkhYuhVojzzJ52TiGmcEhbAqUWnAIcPE7z+vP9m1PScZuiY8wEK38f6TATg1MjAKq8N1gc1xqGFzkjF1Wb1zzfDyoWLzDT4E04cLaGsQm6Va7LgC61Px9NkdVntF0Su+CZla6er+dFNg5Zxkq9ODg/PRQ/5aXDJhpOHKaXLI0g5XCGIK/bK+2J4f9sstrSTj9NcxzXueWnlOpKRbQSfTYlcjKipWnXt6lfR10ji1s404RDSDAZrOl26qTlgz7UP20dzfEO8PMh0G/euRKlDE962MVsTum0Sa3pf83pueo0v5lkVSUg0XhkZmnS8BzSk3It0flP6DEza5gWhPGovZY9BWN+6gW6sYUcrtXRddTJdibJIfMHAUfcaGN4KhRGcCg8CKYj00pxufDx1PwuLyL0EXjeu0zLNvFOc8LFUaEEpv8feZOlFVXx9zIhXZ3vb1mc0sFkVFkytp490naTDoMMoAPtDa+TtTbso7ninBV4UyOmqAcL5aeamLTPOVYWoLP5WqtgFxNguBSGvONXFJSZzRjgX9XWufk2/YB6dIKjT86N3LlKJQIQkEDCjLMzFm3l6HJzV/O3bL2++raF2oMkhaJL3ZeRAjqTVHB8fDq0s7e2hgtXlJPQ0reT5DqeAyuUaBW8MMuxa8rqy/7w4MDkTAZiqbXFHdpBBM+tGJecuaOWI74k7mMxesFco2eQkP/K60qJ7F6drhZMNVyezIvC31mx3gyyBLI7QVspEFYHTqNK71+Ixqn0B4izWuLvX6YeQ9XxLRMutHIRxuSGrtoPtD06m2conte5G5J1iAO+1tGfW/UsfVB3SJobzsQTYpl5F+2RFjUtvDBV3Ddq5lS+Lp2ZDZa7zbLtWT9SUup2Ubw+MT+GqmJ2Yy4t7Vb26S6SMe+Bee/Szfam+BnxbTzEZIokDckGo4w11FX9qJ2GaxmN7e6nmY8aos5U2J63luDKBNn35f9Rp72x/2MW81LTrQGVKZDBvjk2fu1Lp789bYZekDcgrSUl1rCWEGuwm01GTN0N/ZRCfdw8+K+31k/OlRpZejUe8n5V9GuOWwO1RiimOtSkxm8ICpXZFh87yDDWT7ILLkPXuXo0zHttH8rvXD9q5d+wjx682i6MZrJ6j7u/9u1xZdTKA3TLYbnmsOhLr9A9toJg+UmfUxDb1q21UfGXxyb3zL8BH+lWHE8BB1vhvH5gKFTM2udvWDpBNmjWD7gzHyAoqAKIaWujo1fLiqidnuScI5RSvcEJsW0486y/KyMfpV0oUAboq2esGxZR+7I/2ROGJlypQp0LCdblZaagwCqTytnV2jlHDclIylrBSnmnZDgWp7O1ZpH0t3WL5Cgpk/3rp4fd+6HTOOlG8Ptyo9vjMgGrb5ijBB19HG1fDFYyTRZBP/DvM6u36kshXX2O0+ggwnL1oM9lvwRfebAl8nFAEeHxxjV4P4mdWLBHb4zsP0EFd6s5vjXBrgRRclsR9zzDVawhPVlwMdaHNEDCZ7pPyR+rbUEbYal/SXyCIIarvp6GMNIAo+TQq18cG08xa9ODrGvDhh9bsmPL5E0KodSu2+p/2VyuvXNgnd/loqnm2sur7rRlhMKUKqVashJP1HJeuc+rh98ofUCMCBTvJ2V2P0i5nWY+Vmj4YBg2i7Y7eYrR/jnlaLRHVgHj6aRgujSFLyvz4AZrIbibAeqPUhOx8/4NVMGh6C2cRJ6nySIm0+w1U0Is+h8Jo5548NxfFhHYdATMfRrh4mn/jKHu2BGnSqPRcxFb4VKgk33jSTpEr4GKwAUsE5GG+M8XUYYMadfSPxOXTKHrXM5ngVo7haH2QCnkrsurO7avTg8Rfzwxa3yJedTy0QH2XwnNW7oLQ2iB4JvzdRBXyxHhF+PLNNMrpYC6g7/x2aWIrX7/vrgkw8ykEF2SnSOJblUKFuQQ2OPIyU8kZoXzYNW76ekoPdTnemxchaCJndhLiOelD63ixuAqwkjh5CIw45yOiTjBAGz9TCPNC6s/dLX+7UgOfqla/9cgXmb1nQBKIH8D2ni5yRCwY3YoqHIIWVjq5DNAAqROo410hqhP+ydCS96SBfrZ2LSKjofaxTdEz1eE7IhFu0LcbvIiAbULDNNq+ItY15pCSxkwHxKFYasFcStxMf+hnNDAJYxP1/+IMK1P4eFMqjfeXlsNRfvUgKzSbymKGyz/FY9rHwiKaIIMD8RaJYaAy7zCczHP5EYqhlSZHvUH5Pfw9uFmZXEjsqmjQuzxnDVsmhn2uqlpIaYjME11wx+zPz/JP5qo759apEZB2dQRahOcBtzmFt81UCB4B00MihdSlvAG+Nqymhl6EFchx2X4Ni/6obyY+LLZCnkOMC5fGsQzwTZzMmBbPhc7m9hW8bWCA+zDgIQmGJ9DZZY6clrlxKDz5s7Oxd+yA9plP2zKP6tptxCwOa/SM0akBfrmQqZ7LfJrhoTuHFmYqq6DR/2M8nPXE45aDbFvWZJtBPSIqLvGtsGLzh76f3SRunRt6P3uLNn1TynCGb2JURq1o9ooJIgVMIqq80Upv/uqHGvb6rd/mzw971WIcAf/3dAyN5qBehaKF+g1Ia3WhklLoti7nwzlGgbLqhZ50LbLzdxYMRnF13zV1/nJ3as89dVrV3/II08nclpsF40BRo/n5JBme2JWr/iyAgnaCqNzO4NxSDTdgsVmK0v1F4H8sRo833B7GW0NpiHl5UDrupxm4Ai1OLibqxgQJxrlMTjQk2Gkjojo72kPwJVGISy48YHoktQ+XernTwsOM4WJUjpH/6Z19N7rZuyx/20+LE1fBr31LkWhOlLmEhfm3ZfX2qGbdDo3FLrejFOhKh2swTN8iXteDqa5pZig5Xth8b0063keULWyj+XaVTQi8kn1etX68sn5DG3CMQgEThlMdP/ksdLVhQKuUR6c7fyyQ6XWT1p1hMbSzZYLCPqdSQZ2s7mwe3o3nHoeD/uLdtqbWRhYRyOWM/oHEK1o8mdIQo5hTlA/hzO/Kzu92WrmC6W5erTpKb7nCsOOOs3dWl5JTW+mQJqmez7b8gEfKu0qKUJtL6XxHATDD0iX5r+X7Yo8PpmdF8zCIWklK6xpX/eXI3irh/dqwY0apjgIIr6ytixBIUe5f9iNxOq6FTJI7ivgFsZliRbgdDYN44Kjd6arXFk34JImKN+JYqi/OLugwydm+dNN+zWMvZ4HLQMVf7yWWieMt7eDJKvgk46ZNnj3bvBodbLavsSYisNhkEA3+2P+Xd78FYnhTWRuQtGKtIdEV5zcvIkSmuzqoBoXOCkugJGBJQa/8ZU/QFv0X3thtnI3hCZzUsX0RBG0JTVkm3pMC36BxqRj7F2UKg/oZKWkdFghELbYhwKDmWSoUvX6Eoupn1fpdM2/bWA7KVwbWQErRJsPmfdkEPfVLo/UC8XMQuP0PtAd2aqdYFeQTcmy+GMDIFPRu+Lz53K12TebwFQM1caZOUoU9Z943+dZjPvVz9f8ITQI8oDTvKFepfB25TeSGhu/+bQ58nIODbHphzldDTZm6+lz7E5miaVbm5eGNKbAEVuUx4xKmXudva9PUD3Cz96rxfY8oSmW+Z7RrCJvnQp7hg6+4QUf+uC1XFglF/8DQQ4DSLIrpspKqtUXdl0L79rQXDZkHGdRx/a+M5OMqzNQdHQrrvkpVlPvEi1On0Hage9sl5Ik7+xlSmTs6VgXZJfAUS+BMAzxcjj+hoQu+97zQolzj1mVOZa3++L6wJj2EHTu2I8diD8YsaCi2jfLxDa83fc5sQcsboHeYrJk8oc2ZkHFDyyYr50WdLYyHUX9/aE7Qtmd8LBUHcrwudwiqg
Variant 3
DifficultyLevel
574
Question
Prince draws a circle with a diameter of 28 mm.
What is the circumference of the circle to the nearest millimetre?
Worked Solution
|
|
C |
= 2πr |
|
= πd |
|
= 3.142 × 28 |
|
≈ 88 mm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Prince draws a circle with a diameter of 28 mm.
What is the circumference of the circle to the nearest millimetre? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 2$\large \pi r$ |
| | = $\large \pi d$ |
||= $3.142 \ \times$ 28|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19+B8M7FkAHDKlSpySPOZZtdEhG5/BoZXCktUKz4sU0QN3Lx/LapSt3RIC3HYdavpswPTdXCChzpFT/eUlRom3q3b8Mk3TYCDpYo2kXI2VqF1CTBA/YDbCiK3zeroeDsXcumo7F9HqZPzPEaLS/mqmqBaA0KCi+a1NGaFB/EhxrGouoH7Sqvbl8uuXm5T3BYSnmSKABDQNcmv0zyEjMsZaA6V9WUmeUVfPCUKWR//MBMH+0zS2XJk8ARBM6bT9ugoMRhj0PZt9LQQewkDz9eUNcqW9zTjWiHvNn72ZeXbTYvbm/SyyclnNZzJxFuH4+l8Xnc8M6G8eHLgcHp1mn7lCK5N7Y9pUGxoq3C/gNYzHykNcYZ8cfDCjIvXoF7JHPi/jJwhHi6VqWLQ2lRvZD19xRVYQ36K8/067uIGm22SIrtBvXMfDzQ2nVe+8ngVb95egzDQa6+sQQ6uPlQXfAOK0wdM4wmE3w5XY64o2FEYFQR7XbpkCvB56E1wTww3tZAgAZm3wPaxYMfk9eeqxZsu2ZTkjqagrfQtIqdDZkYQ6nfRH4DfqxcMmM1FO/blt/cyxazRsfxSNuf2ImvL5W2W+7hA7cp92QN9BVPNrptIQgndgzkR4FCmyWO0FtpZ49KNCH2B8mDZf7RRgdYJTd+iYhYkmMW16n2bMSwSQGB2aF6xnTuk0NWrBmgiPd0a6CN4Cdc+tENGMt/Wpoh4h0FmH7QaMZXqE6EeqOYbdW79UthS3gPeRTm2YARZptpqnHn6EegLwQLmKftcTeYWsjiraPPAMM1t1dYBPfqJb8BRCY+zSeNFMN7hyftGGM9EuqmE620+E7NKOcH9ujybFdg/0EW8z8ifamnd3kzPgeRXXP524PT3PKuT4dpATTFAlk3wtZxkU1/aB1T5ULc9SkKG1Zzh3++AZDnXVbAAJy+CVyqeI/RAybFCSRSnNrz7GBmHr1bVT8MJoJbD4OyseZ0ug7TUIip4bEdWBkOtjioCUPOGtTXhlYMJP41b3gjdZeO/I4HNSQhvz8EEUDjbPx4WsnBY20yyfoQMEsWQ3vRVOi2++AgiZPwg4hbb/YDSFbfLGPYq9NI4MMrN1mKTMuQW4Q2zwekxyEojsR4ovnUW/tSBu7Eb5RHWhH+Jbkv/y1iP6o88bYSkjUxDqQDooHdRhEufljOZaEzxo9+gxnASsYcN+gQJ88L/wnpkr9Ad1ReDXD4xIyEIbt/BGFIWY8Q8C0JZmvEnmuZBTco4JC14rOcXvnlwXO2KEDR0WbYFp5NpHaLLwUmBpMlKO9mjoo3Q76cE42hC8yc9bPF2Bz+2PHhpKUQJJELG9auSmqdYPz6t+Y4lqcyPbKNICroEgldxCU+dkpGKskboI10nB9oS2PiOt22KxNnLoXmB50q9SOEXR+V2ckOkggelY8a5/28xZtTjzc8l2eVu79LsylMlLyuFt3VKF9bX0nXGusV/j5rtwYW6G2b+p8wsLRUyQaDyrwbmTG6/WH3CiyhTNXi1wC1vS4+2q8OQC2UwxjYWNhVZ/AQyMABqskIhQqGWy0vDoWVDFwPuwaMnBYUS+Ruzmik5qR0zFrr+H5SVBb2vRLyhe4UGTspbhGZjH/Bt7srmnv7dhQw2dU2AIO7suB+MBIXj2HuN09a+cZc5gnAMhyckI1W/Qjk3XrdKmfZ05Ln4KemSj4tiBlXfEnT+0WRYpZQCV+M1EQ1hZM9u181qb5AJvy93nXVrKptneaQDZFW6Ro5c9gxGxPzq6tQylasDqviyLhyBLAVJWdgjZLJxiSYYhhuiF6mtADikDV/Z1lUE6UNXDMpe+31i1aez4hfB9tsvmbTdHNIs8GJ6LYQ53B0a/50kSXW+U6n/Mhgh1we8X2+sg5ctFLARyA8RWXvWBJ+E/A8v7iC4Q8v3sv/XtBwLGXuNRtnc0s/T7c3yuD5Hxmv2jL/vk3SwNnsveW6nma9ZYZlZqKADeuBdPRHMWfXpglnWqXHfDHPPmgMRAuDDJ0sOVzxKivmNxwrzmUGOD/8ttussbmcnLmbK20wWmJsdFoEgjoxaO70QsaSv7HU97rpJ+UKNk7QI1V2ZP29Cohg/qabPLbDPhKhkP7+CVs8IbtD3QdpSxvOatuJ2IVBaB08lD4ofILRJydy6QKBzNhtTd5rFntt9CBQ9D4SfXcOMvcdD81xz/Ctvr0RJYANZQk60zC6j42FF1OcVIeebgL5FuR6tJa6iKExhdS+38oMpRAS8k+mZRPQEhZIXQ0Hsop3ZA9sq74INWg0IKJE3nLtE/PIkEyyPsC1NpDkM3mggagcZDZnG4p+vF17/GUXeiGWZRw+lok18S+SWJk4eAOqbL7XIb7K8GlNFsqE6JSSwyQDzR/S63K310w6OkTBOP6quXMRdBqsZorIwZNwEhEFIGkcDGHAxddDnzwbigZs//DL7paPeP1ayRaHZHIpp+8RCWgGVQHsmBNWDrzNGtSGNg71UdM0/HZUNT90PMHWQYTjCLp6OBO0UvH+s+JxqWWsdadSUck/fMeTvy9jOoW1FxhinRp9MOMPWBIfMsItUV1yGci2XaSrfg53WFIhw+L4jTG8cld7Putkfqr9IGe1/EWxxRgpkok1NtMTSPwQ/Urn85QKdEz5IRjQbmjjywkBUJTovmdxqnExmXYvhUu+4tWJY+kcYEs/ODplV0ihY4sabHL2Rt4sUjl36NL5taYZQdIX2I0BcyFD/e/XvzWwnx3BoZDqDpzmlbZN3ZDk+S4G+lQWwtE7kBv9WPgplcmlFuwl71d8KyaWqjL74lXZaNFabk9KTjmy5/sZoKxncF1jv8z1ETjqnVUpFATDtYFUD5fXHP36h0vdEp7M3hVZj0EXA+VYJUx+F4df5FGr/4Ww8vna28BCCGmKubp0kX8WOpADPjqO9Yh5GjeYMUBpeXKC8S43cAbWTa/n+psHWIm9zwzGwzj+OA8hr+k6MrbjRurW9KWUPmhkemcrqo5LaDVFR2TX8CV/ZJFqTaM0COP3An7IFxBeEYcDKZuS1NiPw6/KLI478HiS29mU7ZLLyZgwBLz6cFsE0LJZN2E41FicSUhPMbO0mI7lPnawwiPN8OPHsOM8JmqCSV1CXOMckjbHTby8R+xsAWaZRs7AueR0sVFdJZJ5wNn6ruRNp4f+kvlIAyyiLLEh6iSaFQluEFIpYg7jcc9yP3hmuS4W/8E/W8LgRJSjyJeJAdco792pPxzI+N2re3StTfYSTOZ95IpfOhJoVCqByrhwf6+6y+jq5mPrRtrV5M1Mml52ihkIEI5bLl4YaQwRqci24I3W5SZh1JHybQSSGbhVVBwrKUDDZSLopkRAjLKJewKPPVVvmpyhR8NZgbuxSZHwrnvfHyCKrhcHK2AxG89oKxTfrVzL0Ri88mRX8X6TQ71HOjm8s+Yx/AnZW463O9I+MgPxF5KWtMIzS7veagdungKAmDOmZb7KwUCD9zyVPOwOcUJ7AKEkTSFWBSBYJUo5pSAEC+qatjlBt0VyUbHYdU+Oap2LQwrCPktPpIJqFHetSe9FprPfBSEqFVjvhnpdcCOpTkI48/ah07DQ/h3Y5HyOueFC3v7WMOxYunXKOSRp3ZCtGy+FaGXa+A5gwzyzHIhy8fF6AERaacmKCt3x1KvKwd2Dzq5RoaaigwIj4U3W4JqExghn6iWlge/10DbowO7vvg0B1wywW4xwIVx9kkbjiQJN9qgsaK311ryR0J773buQMXn6AFBYAFM7sREc3WlZGL8bn5CVoykyaVYiYv0A5IAbSwxaO4dL9PbMozDw2+KkhF4SoXovbOAaozeN5wfzo+XwCMQYN/6igoJFSTtIsipS4nlv5bAFvit/GuoSlSlv82xV8aU9/PxMzHObMGhX3o1laEGSeq1RLLOmKZv/CKa3ZrVa8HY0W0tjMnmSwZ+1xUJik4xxyT1KyQJVl5V3Tai/Lo+K5TGv4LX6TCpJC23hRXZxoIpe94pGRc0LwogdW2NS4XMEjRE+cmB3+3r36YpPlqVPUOGcXeO2Zu8uVEZjxo2PPgnAAErvRoCN9Z9wje5x3MTCZxZtrkhKuN8pbghDEKXi/V9CvuXhfZkf1+MSlmwBdP4tr/2pSB8X7zxiG3UZPenHMf/57JFErIKhEwXB5rCaAOwN5kqSbnIy49n4zMdlDHWsibJI6gIg5xvGxUmm8zyZEaA4q1sIt7sY3ecl+NSwhFvIwfYiTbTc8WXfxgm1Zf4dzLeRi6QrHbinzV9ClIdcrlhkjXh//Bt0+kmjAAfqY33Y9yIYO8Z9sCpIIvxDgD6vPz+ngHtfiUoby478Y1XTHKCK4AKn4KrlOZ9ZBALXftlawoonynTu795MqJ1zK2rSQLMQU+mHcBlE6LvbZyCPw1fekroIpZHOqnMecI2gsjCPm9qRZffYSds5GP9BS9F+d4cIAuKYo1kPwbTfgxcPZ+XSGFlS2h3WyqCYIA/UqO1NvVfI2duJjzKntm6ps44V+waTCuZeFI4cIjpm3iwJsDkO3KawKSLCpNSeUWf350HC7vprsfR4fSR5kTBdM6P9Fy63vwCXmaAl6rxcitpaTrJSuRBHXLH9cvJCNjHGccWV3BI5edD8X2A5AW3vGpXyjykVYHrjdwmWXBOErqDBD16+9+3X5uf/YYOIOhbTbC4VZf/Fp/9p6unB9AKgRAq66aRSMSzUchMItI9qX08Oc/L470MX05/lIPTjjg4YNaKMgcUe83ZX30sV90BcZnDQKdXG4oeA8HpXkjtpHEFduL28pP3pcRZEFtI/ketysMsAwJaXwrO02Z4giswI58S8vPaVnD2u9covpsheHfBM6w6lD/8PRvfutTnWOloiDt7EcMI/xNLaOQoHuaVjdJ4toEz4HVyiQzGm1VTEwZ5GsCL0eCXP05cgS/Hcln+bI+HhPSUKDF8fykojSP/37f+5Ub8wvZZH8POHbWpDjwzONcvEhKdAyZPonbyyFa/BHJr9xudQx176AMBwGSxoLxsB3teJyVL24kEWQ8AazdgcX2pRngeIVaHpdhx+Hku39RdmXNwXbxsTS4eucFB5C9e5K8962o4xtj0ToPZvusqMCSenScx+HJzDG9R2deknT6UY9qqkpNrgzTp7eAZgynhZvb3H2s9t1FjnBvjeNC881apPkR9psohRDtr2y0r5geQiFNSBxFZF/QbS8Takta81rQNAdZyT5X6XMAan8qeCkQEaYsi2CExLcSBQUezjn0Faap6EusV2QRo2IFLgKGqRUXKm3CH3/1H1n4vMRB92MpSmN8RPbffvl4nQCy+bHhD
Variant 4
DifficultyLevel
592
Question
Scott marks a circle on the ground with a diameter of 19.5 m.
What is the circumference of the circle to the nearest metre?
Worked Solution
|
|
C |
= 2πr |
|
= πd |
|
= 3.142 × 19.5 |
|
≈ 61 m |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Scott marks a circle on the ground with a diameter of 19.5 m.
What is the circumference of the circle to the nearest metre? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 2$\large \pi r$ |
| | = $\large \pi d$ |
||= $3.142 \ \times$ 19.5|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19IfYjPobPrKcDpx8hgtiINSsDTIBPCqgktk8y0ig97i2T7sjU9u38udbgnHCU8JrgItMkfF8AWKYJE7lANP3bf6w6tL/r309uTBpxMr+jaq/vWXIi0Q+rkooKIcVp4fkqgib/zIf2kMveWeJiy6a3s4IcwEjJMYbTqLOA+dX9R4KK/Ns20VgSrNpupHG7QZBMNPDLc6uKO5hnQJtUw+wHedYgMnOFWxa3xgksC2z2pv62fqLpZJAbrtZ9qCOX/Oa297cxLXsx/3u3o7S1k9nO2NAnOO9m/JsY4c+Q9MTKW5y29VvFCh93G3aeoomZipr09cdTVLcheqAH9rEJoH8ISKm+gmrn0wpl21B+MxxywhlwnKo5AN9m7ke9a5FmlN30QpvG5ooNRZDxrtN94NGZjMvWR/eJoT6fi6Wq4ojmuTPTz7y2RjROCLM/tw8piYNCrPK3U9MvCrxxCIQzIi4bAG7pS9tmM306TPiRGry1wxqlkzH/51t26ac83DOprQoOaR3zxRPC7ZsGMLrqXtvg0xYIEr/XfHdUdN+I2uhi46nok/I/75LSrjhedhddsWOvDQm7A5xgvjpWaC4Q1rTqb5G4+jN4lPIQ7laVgj42BhMNMFJVdTJ1ZddYtQ7OYBTpJyRgt1IFBa0ojhqSth/fjqq0gW7H6au0zv1kWYqtDL+VdxlUVetKkz0gUZ09RzP2gpfjYUGu4BVdUrWyNdFWIYbU7tvqztWUkyiByXmb+pZL+WlwekksXlpwLvBE7dg6+mBw6Y6gPRapalestorV3Z2OV+6ZMzDJHVnLiOHBfzsf9424EyTombiOLCjJXGHliPszwtNCymQstGwYbMnUl6CFRbJ9YdZ0rMKli+GLcw0EcsDEi4ci5pUt8Wi0XmukKC+rOZcbP3bdPp0iF8LIMw8hgTxn+gpeu5+vQT4tM2xMZeK2zZoOtKhtNFlsNUl5qfXEPOhOrVDxoUbbPxtTAgPUf8UfKABs5O5Urhm21zfVJFosdfQWCLm3aqQh8/+qPybvUOXirbR/chaXRfqOu3yYHwku8sjDUu6+llcp4dr9FKVbh1OWtPzXuce9WxX1FvjJrKMEfwdNMtRXggtsXV/59jFAmNkbD5pla6gEFIRCKp/hVCW/OfIFHoHoXzAfCfn2B2SpJ/RaqNlJSR4Y6YnmSanLW5koiM+QYk+P6jxBtbUwdOdgUSs8qzioLrWGRTBRqKN4DiDBNVb7RyUHAd5RpQqlOM2S7spE5GMhMYg/6D6yq8t03i34h5IUrUbEOpZ5mo+1pcH8h6roy3FC3hPLoxCmyxO5FDHaeg18Kz1nIpBV6kbrlUJN8EqtnAVjOi7yf2YlAlE0uaENsHzzVb59OZAklyE4fP1D0hRsczSpGou3VzUxZ1ilJsk5hN6vNGA7Nyx6Fi3KnN2l9PUvESGhBrSkIyJh7WJjzUODGYOr9QfEOaBCVkJKli9qna3dD5jHiVrG4jgIyuinm1WyMGJqR1Py/ve7/FWKbT4AY0iKG24Nci0VGPXlQPOi7P55Qg5q1OEr3F8SOj2Wn1x2I65aUY2O68A63+fIcb4QmP01avo/lHiAsW9yhsfByhWJJfbcgRlciGvfGh114GJ2hVVJWwmuI/BftGeqGa0bMPEkrD8prBqz1b9Emad90YbhfZ28ztZBCsM501NCc1ropkAqb3KocLXKuH9/mIHcpsXIQn9Y7JW6++jLr7niXwbg44axd7DFrnZbQeTRIiTl3XDEs9PqlB+py9CmKhaU8/2QdAYgOlBuL0gS5/rs9v6M2Pj5bE5nNw+3/pVVNb7xB3GWCLy91J73+E76ujelnRge7KR2Na7YPnokz1lTUW86Kh3ARseic13WP3wMQj/bWLxBmC7nTdMqO8OJCdkg001yyp6vCz6zrvg5hxYyTWXcKW1xNzgCklw5fOsfaT1ioM4Q/fBS2YqsjeFKoPhO74Tm2aQ9Bea0ZdniCrT+c1e0yj72v6lED4ovEPmJ4YNJSdZm/pZ8J6+BcyEYfhcQXFsLZaUxSQ2yjZWCkgTBKxVveOgx+RH+kolFKQkqzS913veEHjabTf6+MGSkgVlrboFVUjykC2xLAvLDJWDiUB0tDwEwdDstsEuEK9uiygHPhKtiugnnM46We1Y1guM2vWo74kN2WUeagWoMHVhW29VYo3kGBPFTN0C2eZWPgh/pO/tGWg2HyHBa0que+RNnsCTSZij/RRCJIOxIAxok8XsDtsf8dODSPwjGR2EZRpkRztJ0uQEdt92tCdefKtB0qS8H4yw4CQXOaDgEJAUoVhSMn669juVWbtElmXvsn16F2Yi76G9exXkmEfWScFbJShfHsdJXbzIJdH9jRPobamEZDZ0K1YzfuXLfEWBl8HJQZLwZZH05VltOCk5eaXZOEFG2DE15GfKVVN8HWKTU7uoAOyJThD05wbn6RCEUeHMFVO11ek62Dzi1+yPHT/CCHKZPUS79Czd1Xd6Oq0IAlNCxgrOevXKcQLicB3VtyRSMTQIp5RJCTuF4v0F62vBBfg2IZEMNJVuzb43dV53rzaC5uxZMxi07INGj0h5dGypEUG6YTnyIQrcBG9GCLIf2jnN2IydQ34IHc4X3raPvEcI9uKZJw4kUIfYd6mg11lgD8/TlvBeQwbTvgfk6Ev0e7KFxul0hGoE6zgnLWplQJGwzfMGtfAZggirn4eKltD5Y1wtgj1Pf5cZT58GkrJ2XDR7upTihhtOKIKpmNlAaHzr4j46Eq9F8ZSmsPD+9vxgj8GilS/nkcjdFhJ+HQsHLQvsAa30CH0hqE95jBedeGOu1vjUOai+QEfnapkh3PGLqbd/QR3PPxSwTvGmAmXG3x8Ard2NFRpfLjvUrA4mq0k0nzg5K1AUz1M9wonPMaH73O0DwFWXZqFlQFcudJSM5YEBeDU9Ir+WejmB/aHTQ8g+is3kUKHLeGf4QvsD9efLQ7on7qCApVAGRGO7+rxLe8n37keiHIz7F99Y3naBaWrHK2CS0ar7TxxwV4KSwUDiKc5NTv1nouLalps3IunoOCgz2z9UWlB6Yte6mJ7YLOHWDNfbU6Ejvo3iFpZsQ9JpOk16j6o7JExbgyHZnn4S+aPdnaCa8sYaIU0nxrx3Cp3NbIcQW7QLEJYla6bfHarr94PBL5yyh0cuarLJzTOw/TD2u9KBKB0/6sozfFUDCGStOMK6voth40UCFdiNT7Wo8Kxm+y8pJe7xDJCvVkWpYYhDIApYqcBpX0w9n8+W3RU2YGJQL+heG+NIAq//OZzRcUuwguW0nz9R6Ap93jgwugKd0J8VzluVLtW+dFor50641iqhMHKGt9ApMV6ql+AOzvdLUytA3Grs2WwVYm877rLMsazR+FhpjZImiBqgayw1ZENGKtBJG3E+l7Arwt/jlObaZr9bO1QMQWIMvD/+/aw1ArNNJrbQKXHP5PXd6jt2WXBrcJBm1jkM8Apa78e7fwgpBBb1R0uzrRXZ1hG4cWiFTKAmb6gZqHGYsfs8VZ13UoPFd2PpXtsYTHemVqH2C61U/6+r5K4U0m5t2SvzeY3P/81J/Zj7ZvTZAk7dCOAXUQubdsbnBSLMbRuyxyF9mN4bzatEE+XY3AJGVeiwZ5qV+AT9ywl7t2J95aur6AUyTuowCiCheOq/iLCijQHKxhuB5mr+GISWLE9cBaG3yfbeeAVnxt0uEN4Z7/9CLUIHss6Lziy7tCLBfPLEvjnT9nti66AdTGLriIHP+pC1IyvpN/JJrVZqU2IMmvrm+NNur+ASGOUrZFWNlZUWJ1EQ7v4K8WsUrXCjBHThyO81Ouku+BfM6uSiyX8Qohw1NA9WVV5qWfELwoM3/j6eB7Fs8j8eCRmdfQ4YtuC2d3n9p6hlpSsncR2GEI0/bYwPLknF12Hn3RzZOWk0RbdVvX1+WMoaWoiAzCDpIa9YlMYY9nDNZv9e8eCkc4ATr8UPqjVLoat51VBQrLeQusoL0m73RL5LH29FZbMvIqQGeOxBz4I/tiG3m8yXnhHf108MAVzPTtn5iYFO344dE+5Ltk+HhilylMi3qSbiHeqLKpLrFdQMHFMY5zDmDe5Q0bCIxvTknm5sh2mSDNJ0m4K4wpPkxkU9hz9xMEYNc4RJvjg6I6pA4sYD48Hj++1btzHeDHph3ZlrfAkN0SsqGZdoELMRNU6vyXg5zskQw35ne3eN1Fx+8N2pk+zeywXHJLVGZqLRMwqflRFNWQnKqA9b09vcxBq+rmEP6pBo/GNI+PNdkVFZaSXBZc+M4lcJTb5cKN/p9wvZO3t3A+uJ8Mty5d7CNFwWlZAvJPe/JVJTCxOqtX1hZdgtKvMk9gSWWS21gixvzo0hPKP9Bhox238iQGMiOcJaM9HzLA5LOXa41YtMAMSfWgfM4YYjOoP2U5cR4/MMLSRFLO0A3BCjG/+j6/HB5/XxvEv0nKuRqS6QTRREWueDhrbNoDK47QJ4PTB5zZc/dweAXvHN0SIlxvPsNLuS1lJVRglQzccot6nQ9fH9Cw7EcAPLgs514CHWetrF92pJW7/5Fxg9vts2lLKajX0DnxuYlKvd7i0JfmtM+wQj/o9fdZTDETiwxlXJPeATN1VP1JXNt3sqp61kVjAG7cZ+8Mkfj4UNASs3TWpqdMcaD2yRtl8FqmVs7hATNKIB0vQZ39OTRCW92cL7Iv+tBvB25gBmEcz8+8tSkX+wBCup9XzU9fxOqgL7lqXQSNYFC/Ele75ChbQi+8EhejkjvKwP2x0Iw3ryU3PGO2NSxCBqEo4kth1o2pnEZlCvUeRh6QaHXA+9/iLBfQHyLZXbSgEdZZpVKwHtHMIhWw1zPMu2WHU8zzS5xnbwsuCyp+MDHAmN3tHuutY4JIXw0jkYBW5dXe6l1N3IiBwct2e+qXb5qrWZ5iR1MckqzYa48CUVQYvIqT09P9QpxcKYR4hTDC1WEYGyPQDSPFB2ltnoEgwc/ZpG5oTiR4PnUvGivAAELk/NBNFRzu0BfahF3t85fX3adQQwSVrQehmXUW+kDfcihFgm1CvxFHwkXUsK/NCa1Ke1bnDmnfKrrio1LNAcjYrDFe6aw2Qs7IPg7WwCIU9pKDVM62wypYyq+RBYx+bP/Qh4UUV2udQtXLkwSbmXskFRDDiD+3icAtCuUqHjXTHbNe492lci87Tb/3jPNzNs0aBD5nLqH3yG5p2KfJS0m94FoNS88uJAhUBlrfBZDmv+YT7vzDAucMCA4X58YnQSGW0+mh5eDwuYv+GLWy35YTiFNFcz6371chn2kfmbe8xwmkzvuoGZSEf7KTdXIEPaTsU95f+HVpsIzTmQ==
Variant 5
DifficultyLevel
572
Question
Tommy draws a circle on the whiteboard with a diameter of 16.3 cm.
What is the circumference of the circle to the nearest centimetre?
Worked Solution
|
|
C |
= 2πr |
|
= πd |
|
= 3.142 × 16.3 |
|
≈ 51 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Tommy draws a circle on the whiteboard with a diameter of 16.3 cm.
What is the circumference of the circle to the nearest centimetre? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 2$\large \pi r$ |
| | = $\large \pi d$ |
||= $3.142 \ \times$ 16.3|
| | $\approx$ {{{correctAnswer}}} |
|
correctAnswer | |
Answers