20327
U2FsdGVkX1+dRMFMIMutPDhXmjfxNFVpYztaTGrmZJD8q1yB73bx4Fg6UyvYBKjAGMew3AolBSjaAu3RD6+NXYQjpoDVc+crp0RCGRqtZcWfMMZsvMrPv/Y6icb5j49CO77Yoikgm1+VY1Eu5MaNQffUYwb95kEykSf1thEduGS645YD6FqXZehgzlGTRWSraBfe2TIISDI6V56nuINju8NQZ4csFcrLCzuJlV9vPVFTTXUANVBHLydsP4g8vTpPEkUFnywlYe9ZJAHHUsp+UPt9gu96o7YT0LJ3XdcWn97vk08N8wiV4GSsTd2/bo7H0COMcT5brym9V49FGPgRZcYfjv9Kpt56KP9BnVeWolMYKQVDntSSNGS2PBdrGIv01aD8Li1uQQejGBruGMWKN8b+A0JTG9/9V0uB6VXFEDiOj8vEFG0GONXw+VKMk7v6kfnM7Tgf3T/YH604x8149NblAgEemS6LWQ28T8soH06dyGdpAW1KRKfjRAPh/NU5i3khn1x3RFgDcOtBF8RsxumYcn+aJ1VmY69ipTnjNZtHJ3wyOO02tIHz8U0ql+gQRpE5Nnu+dGw8z942Tj4dJf8FTp1ERt/qZscru4F14WrlvQ/maCRGU7Clr0TupctFQVBONjwLgEJ65Vxiv1f6tZEYFuVT/vHy+/fAjNRgCBh1lIkh6rwRCkqv6tIMVJCKwzOXZDvkQroAnYKeCnXEKJzXvIRP/oQ+xo8jq7R63QAd/KI+kX34ZfNNmc1jVvbsaRDQZuh6IrT62HSV4Xt0Wl4UNUwZgqqj+Cp+lCARDQpBJFUgaF3ARuMzFOCdZpD6qWCEeYRCqAXvAc9kX9hc5maxA7RMkUa3ubtcBFgcG2HEl8QWZl3WmDho45GYBIlH7SROgQYF7DbSLtCPNzJ8/MAug0BwcY3CqiZkP1VhmWY/PrctMN3dUFG/z+tD++QU9tw6fna/Bvot3JLaCNuuMZ829uU3LTCG3NExfLWzNfEXPAVJ+QTYngLx17aGSIlHo9SaSKKTHhEKhFCmRrNXv/mkmkxMcyuJub6qFewPXrQqfFpA78t2cKyZAyOSdCMGc+52jsE8/NYJKTxCCwYVDcv0K/qxTtXN8TpC1QqdXymn9ocG+YPzX74qOHTI6qxapGeelHW+MhvezeUEx//9HkFJl9ZOH3PLhqC6HCGE8u/9LGz0I//VaDnjYtmoTQVaLSAo4fdeOaOMJYNcTptGBFXsjqPQjmDkeMaT7xVNJBOwV7CHSgeQXmrSNWN7a2qSC+MjyG5tmSTr1Wh2z7BsSxwylAJM2an+FGMdTauHR3Z+KGVLPlIkOkD2q6iMP2mwDrzeTbSzDU+kpVhB4oqM0fQOQ4FG6RRRQykjgojKTKlVubA93ZXgOjWh6CSnh1YLaEL3Ze+8fClq2+DFyCjD6B15bAo1kUiCg1RGiv9SX+PMnJ37/oBHgonhZUBNz+26WsJ1+sGFQHwz/ATFhoL2TqsqUNSQuVsciXxj+HbMMKZZpj77rF3wKzeIr00mwFEUllSDViQvfZEtlSddJLPOxUdLy6U2QqWC8LqtvjgwdZsju8qp+WB0BpmqYlLv+2jji/LfRt63dXAijOIsoQHB9nIJVmfG+QUkfSoN2Pl4TD9A5qJ7AXOFQANcV9q8EQbYNyRutS/JBGIW3dFrvVPcYSuSa4WJwzKDFmvnEMCpwZ+lQ6t8Af9W6VyGET/i9jzavHHRsulkLJb2txIOjbcFlgf5Hj0LZhbWGQdPKZxRnXST3PYSAoYQ59fdvPazPjrzGZcgRhDj9qd/WGehq9vEvdIGs4RBeSyr+0obwJT5A7VVevwvgm9LYvrZP0RJCjGAsuKlTgTjmKPr9mkUdNpj6rYvb3M9FU0xMl44Q7cGAS5eIlo2FjuR7t8g/2PY9lkDgfvdVP7k7cBlLra8/NydXDgFNdkCO3nX7J6z/g2hsBqBh1cGY5p0nZlu0javZxHzee7JdBfggKPPwOXkxUjbWmgPVKxIgWgjtGoEMjHbnru1eHTZb/bjwZH7/3GjVTkVBeBzbxliQpk75wc4KSirOgllI/3vlzWQM2n8GG7iGTZAKX3vVgpqwxTwMDeQTxnNS7Pq1KWs1Q9dRbfSGH1qjosJiuSM84vPkGyHqzbcgdigQfSRA8UySxEyeeELHmXVf07uteaP7B43x6CbIfj45OvSYsnLx0PgtB6AKNhes6Q28fO88K6QQEdAYOSWd5yAGXnTTnP40c+FddPbfwp0kVVnHu4HQ5aKbihXEGwvIh1ktcRfDJlfzNvEGEynYJLZMGY93H6NljpiLhluWEy0Ze0ewsK/aymdLMuXWafbpLlg++0Cv4Nn91uNgYaoqQuI1tOHqcxlH2VuDngssFErGC6h1xULns4utEn08ciNrr3ODXTSDLfZerebQjfCvd93XvLGf0/YMU63Vb3MIreFHI6DEnVnlIy6yPF9SefqjKDU6YtW2M1DQbajR948DrteNt3oJM4ZDOaEZugEbip7Emu9ynm2O8XB/Oc9ZPwKSGSicRr8+zAQgQuEHwRvOaG+MYnTr+P3W5YTAseIcs4WB9EXfCaVD5r3z+abrmkqN4VcQ1s0flpM6GMuS1dluPHpFocJD496m4/B5HUBEQGtR6LLtvRoYTEUAjiIahxA69CiryWddfZ1+YkwyTKejsEMFeK5xmibJwhcFlP74o3YPJwHG/othVFFQqo73XYtnMdJQoU7cC1oiEyyQq2xjBbfurogPhOx7/rJtKsftnwgvH0EyECjQQgXNyy+UlgRrdTjbeBtTUYxyXuKXxhHirUkRVzKwVQVQg6zA5HcBHljMsZReO32KarUNsoNSeJHEcZLZxoiTTuoYMVaCNH/twB0zntWQPxWQb/vBJ6MY0eY53NUybJpVfI3JZBrP1awAYQ9d16y/ue5L0kNPjlk1lRO/pbq1h2JAFXPvdn94ErbNJetb2Q4dmtwsO+mXFsryeSIUJMUZAmE1hvy3EpzGzisKL2sf8M0TavV1PMtzbbZqU81Kzzq0d7TtzeiPLo4ILo9V2b3v4V5jbyNDYDbq3jZpjnrEYzI4lAQUUTZ8GS59taBiBE65DSnRiFkT/2uTDd9B75LYFA7xsAXkTgCXU1XZDn2UTidGMzFWGT5NCP7IRYzdGLaod/aUU876uax3NmwYjuUrHSl0+9oF6NmsZozu7nKjBLa2ttDo5OAn1W5XP+8wO9kPWCjohi6tGgbwEQDPlko72WXeIV51w8g3IwuvgvQwng2Dq4i1dZq1brHtapnMnFf9L2nbpzx8vurqYFqQiENtKLVOfAHymIfLIIDOPRGh2bEuF/PMsppqLVYHu5An3+tLtkzU+N9p3WbB8SE6t4xANk/AcNTDonsZZXcMpCBdcm1u6D5k4GICxTPITWq3cBeGBe8fjpo+k6MHQVOgWlaVy1WIL8ivjmZ0LTjEaTGpvIxqUr4LgHiS0veixlN403jVirvG5IrU6Yu07PgujPH84G7r4C90VVLOlE+5EWDiayd/ibyBLtsY5EtqslAiUZlzFWI+WOEb4VLgV0GQmYCYb4REqYNgf7dChxL9p4ZEBUUDb+EYzFYPkZkvt+BGroTmisEID+5XIe3dKaEy0fQVbII+P+k9Rs5I6W/uyv08kyzTLOue5LBwDGSPxlcPAbaYnshfk6dKm+kVXCX/IuR+WCJ8/TR50bKIgEfrKQsMBBdhe0zPZ7Pakl1/lpM8oDhETxAb++WPjdhbNUbFLDBTbhS482G9KtpG9LyOBt4VG7a4AIIGmt5BbyE5V5MGBxAKckqrhn6+XNwbneIe+pUS6Jr8rf+5epkZfQO6ygNY+B//X4VPWYK3LgBMq0XvHdtA2ueP9fX9aEYB66eU/Bv6cwvnMNN6y5GF5N/ak5B8nicQzok/MZpiNuUb7aYciKo1aWiuiUS2VbsTlYQP3Zgy3quIq8sgtAZ567OyIwaetYhUQGTUhRaareCdDMKvGt1Pqr1Rrg9kp05YpDP3r5dkMleNBTpSA0altQDXGonoHiUm6t5I6qGOBWxQbJeQUxzI5ZMAhlVv3EZuleGMTsJsUYNt2KEAC8SJ1+IFZ2fRXXy1tMb8hmMc4+lBTWkgX/4gDKuoaDPxe2W4vgCv5nTzfCI0yC1QA4mAy5tYnWOMn6JXcKitPyOv/4botpglsHCOdoOQB+n1qDyBVu2ulpIUhyvmkjqMAowywt80o9LmAloAvVdLWFC4xhyDvE+pgMRrNuwBt+OJHKAZvtwpJJx2F8C0/xU48QoCtMqY8uZVVh1e3okyND9Olp8bRST/XfNNQYsMuMH1OkZ3QuPaeoKMGi7dNWkRLS757poerx61c7tQry5XraCNdKKWqpMNs3b4mN5hnzbpMoT8WI5Ze2r1Q7yIc+g9/e3MYFGhD3UAD7a2kePNYO8NqurmehLJ+AIeJdyHaT4lPvbMiJWFLCY9r0G25NT6V9TRnvZ92EUa9LYbdNxwVBil6nvIo0YgzNTlWtvdUHoxJ44YxPktB0k32YaUfQtGQOrUn6xNqWD0NboUDbcTTBm4Cxo1paKh6TfI3ouccFYN958gE+ZAs8glDPy9xMbuj3LOMRHJxjpjLDaaUHurcFWu+ptdNZ0b0AnBYUKR+dFJGdeTBrC0zRQ0tCPmLDZRPXKXW+E+ef0iU0yrBMirN7T41hTyX7+/JYZ7Ai4+8+loZ/wA76H5+9AnMNvrzT1geCpa8NMhtPVmN3wpcqUR+vk+qd//tA5kwzQvlA+JO3v3BBt9UCeFHRTboTZakvQ/alSGULnf/pLD9AHaM7lI2/MO3QtUFiNa2chA7Mp3ECPdYNCzuqh+NFy/Hu0kp8w5jsVeFEVfoIaVE25F1eZCJN2tS7FBKDukkdMRsKiFxJ12ALozbt6n7JQkA0p++l4xnETsQBRKRTjc12WJzwTpCe0p+G4cImWzEjrhskxMwSXDaZVJBy/olYlJJ2NNf2zn6ooNzRW1JoSHrHDrTPK4ZH3Mr1kUVHD0Pyffoy59Uu10Z9jtBet54qHruVc+IyEUqOi22GNGx6ZATVSOVG5FPsAlN3sg9+3mq/BTfvdCdi3zjAjJqqqDO7cpikkBL4jnZuA5TexFoWRLm3LM5z2PfuiEv0Z2SPLaHLhHsoGY2ga2Ni6z7982xbqqu0JPhsRBjdd0QFrS3vLcKhS80YE6iVR96aq2QgRjUwl5RbkgrofLdm7Gli3FDKLgY82vXxYdwi6lGmAOC+bmI/pmhMRYy46CTLuPANTAbvjutfmvcMNY6y2t6IsPCpAaVI5HeRFTlnTqyaJBw5pxH/q3YPrHNlxH2L4eEL7uRLTMhcsU5MaKujkz9i0RqEAsSygaOQ0hFaetJP2h/N0dGUHqr2bhr7QUIfKT9sDCOgnUH3X3BLN1sUDV8oFDkm3nuMmoagR4oChkJ21UVrfpVoDp/Vv6FNBycvx3QAbAQks1wIpCrqvBAvHKn71xwK8O3Tc8V2KrwRJljNcfygOfhwBNmtY2/StoZbZAYq6YZd6aV61cIlt28kUWyQxwmT5kF6rF8VgvAGPXaGPSLRFhjYHWiXCWOf3ebbOleF17R47DAypJ967yaP6FbvQ7sXX4tqOvUwG+OCDer5bXATWAgUPkXg1zh4T7kvSM3cVLVtWsx5tipueXWVJd28=
Variant 0
DifficultyLevel
580
Question
Surf Legends charge an hourly rate for surfing lessons and add a one-off charge of $50 for insurance.
The overall cost (C) is represented by the formula, C=40h+ 50, where h is the number of hours of lessons.
Kelly has 15 hours of lessons with Surf Legends.
How much does he pay?
Worked Solution
|
|
C |
= 40 × 15 + 50 |
|
= 600 + 50 |
|
= $650 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Surf Legends charge an hourly rate for surfing lessons and add a one-off charge of \$50 for insurance.
The overall cost ($C$) is represented by the formula, $C = 40\large h +$ 50, where $\large h$ is the number of hours of lessons.
Kelly has 15 hours of lessons with Surf Legends.
How much does he pay?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 40 $\times$ 15 + 50 |
| | = 600 + 50 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/qUTM81oEZIRHq+6Te4nP9AhnWuUnXeGwayHINLOFeupsm60BEitJcFuNCyQA+UkCVaTNZaAUK65umRfbACnlc9N82BOhX0jyLRahIwrbPLe/INUdQci4PewL0Ej20SIKM6Nm0DYGctjXEXeR0KWQtn3nRODa+UvNy38J6hZPvgGYj5WvI5Jf+UVUC4QJhQFYORIUqurVc0mM+R5eLL4TaUy7gCzXDn9B7rmSg8+N3+edAu88e1qcEb2wWMtWrOPP/0C8/bgqeVHaYNfr2is7vPHcwrk8MFI2NAJW94wYU+lOUN/vuE5kBWFWQMG2ip388Vmmn+W7Ig5Equrq1u1UuAFkT1e9RhGtaw4t7/eaBLbyUrA8w35BEAHb/ykeGUdH41d64Vy7sZQ8wIF9Nrv20EI/EfWWYj+tQtx1ISvZNf0Cpe90R44wAfEt7h1+a9h7VtEybmetKgMjBMjhc9DFkexpWZx3GP2EkQTr2gvY5D3bILih9jYehWWphrJCwB81omLoOanlrVi4lbVhDLmkAfuaEKQ8BpZuLDlxNXlBwXbPcAP4Ca4zzkB9+xRgKoL3XkCQwsghVGwW4Gr43vQ4orcFWhyGotzDTyRjJtgKrTXVK5rAhVyGw92dkxRw7PixHyULOKfvuEFI0AbvqESmjo4esBqGxFxpXReukBkB8jXsL6zpQTOVbUqDBJ5e0d004AGMnC/0YE+Fh4KMaYDv2SoFYtWAnas6DbujxXoD+V9uPbqJH7SrZ5W5n//Bu60xaDL6dMxMw67kfyFt5ZIoH7y280NdwEBcm/fTkcUE1KMwv/YGe9PpTl0iMGUgS+bY0PjXxmXBF0KkC4CHOz7h61JxgOIFADnQeQKosJZ2qO1YaA3C9254Z6e3YHNIynzzMByTvL9H8bJF4roDTjpEsMIR5Tm7ojCC3es2YjZEYJZMB87xHWV9sL2pm3Q5IB4ayURxZBDUqnxtcOhfywU4Ac7BE2gjSc1aNPjcqQd6bOUkVE5mWfOnF+vq3j1x5UI6Gv7iQqz3NIabnVu0Dh0FbfVN7J4mZXIFcfi+Xn0No/1DKTm1EoNUXZsT1nogaLFj3+NYrQPYEaLIRLTIxFdxkf6lqk/bYdm2tgI76BPdFmG9MKTyZTXYvdf9NRBhQE9tXM0pUZYrT7rk00xH6kSrNjMGgPGWAZ8bkaa1cYk2LrjEjSmTUgNBhcqyx6gVJTSyfFRiBKzaZnIL11iICCPgAvKIRYCKRt5kB+Qx1nj+1KR3m7V383+SmI4ZDaXG/Ha1aWoJJkQzp3LF17cU9oQkYM4p0UixZnc+jowYHxns+CYpPIHjmcvX31IFdBgfHsgacNYM5a4vN1jX5H5Tp1xf/Vj1FYKmVEJ5t9cddulIfjG5LMmE3VtBvBX3lZbd3/beKysjxP5NfGk7cqRc/GLfMbgxyQip12fufz5HggBeGBlND21MU8IHuwHnbk0ZeQvmWGKDwRuX6ai5lAl5fcBGND6uQHJK4ZwYvkdZ4Bi6WpH9mhzOVTqZJG6+i4K7ShdUc6QCLoNS9f92A9XsYWFkA/HLfCc/Q99K9lUvDEczeSVKObpaofyqA99QsHuDF4QLUcfZb55J2rNi+lKSxEcKcnFNbpmOjLLY06SLo6MjNvXFg0qTVr56K7ZpRidRD/Q8w77qvb7knHAumUW6yBCphbKUiRqffjre0+jQI/gAyWSjOZaCfx124H/+PU/0NfnONr4mQEXRg5dC8+zVWc8JZH6KARjR8E2Yjt0cyBtaIfD45pokyk7N/CaC/2477g7DRrBoG0DFo0zVtZ4w7LqH+5z3ZZZf96AtVGCkn6GxbtYay4ax/B4Q3SqDg4xYkJl4LAUHt1AklM2rQxkImEWPcs+FPZcfBKMCPRDq6BNyqn6loRReHAJEIIeZOFTZSeObJmCz6IZBOYnNeBmws6iYgjroFs4tpzgNwpwV5ryDfCnsriNTHOTOsMP8Gms7UVZP6OiOE9j6UKtWBuFiV4yzXpIfPnrc+qSU/fTj11bnTmwwllXo6SgDH33W2e6PdP5EqtB5s54LULBSjPqBkoVC05VYEL2w1SI54BAPOypSiMA4ZxC83w+QQ7F3bhFT3C/jg7NXDXUgjKRCg7+L/i1jPMSv5jCiTV0/i775Z4DlS+04/SJ1oZWvqlCH2I9EIPUAEaEdZHDSA7OGWsYwvenebqSCL9NFwubG1RTKAjKoS53Z6uh10e/DqDn4tyyYlTZSXFGVZbgsz+s2MPCWhuv1A/MydJ/3r0aWR/9EX48K+Gity/tBd/NoyG76KKVxTZyfdaSxi1GHh3nB+3BDj3vtoLqGU4rLXbDpQNIM5+M1xn0iKqKnYMrl6V+ft2KXz48E0Mn3tHcoC9s6r38dVp4L/Op73c4y9ucia+VngimjjAscMiRAQ702ngHCvVLBOktDPb84odOgjgz3f033o9Rkop/OmNo42jXKP768zQW3c1llaFoqje+1M3gVBgGxCtd17TCT2dKkShKfPCWDQssWd+XR8B2YafGDBa6nRwABu6uZXLS1XqzvL+xcsfKSgv++WxJknFf3h8kgiJTnC0itSKmqJ/aN7fMUgsReKxy74LQl06ye/+FjHroM62vtKlLEhEJxaeCJu2Pt+DQvtGElTj+2rKoUwq4JVnLSGEwKNS62tAILhT7NSPA+qlTYvk6/WgcVFvce2fXAUuUOjnxQ4bH+jBtwaO9ith/f/oICHeS5ZiqdMZ40n2zLgI4gxfQRt/k5RQlfgJCHnVnf8tBIZSd2bWBL5Jiq+pecOQiSXMmh91Yz0aPLXDiQBZ/Xo+SitIQDTqBQqlPQGX/7tiWWs1W8hN1Gg/1n++bsmDqnwxPMctTgK+nA4NwBBO1a4P5dLbqcBymKgV3sl2K9lHEBwyzFxVLSHeQVQunfOFsi/nnvwyJTblLN6xQ2VX2FmNM7P0LhJ7JE2xWWQJrh+5Krd0bwxqwL9UoWUXIZcijUC6ojwYLHAoAvfaszYjeDKgd1oIJC81X7UI+LknLgWV3aGf9ZAzsdz7J8ZyEImTXOBYilJbPA0XKZzeGWeXTdSUWHyuiSFphtWK87swsxKAdO8nyiyuFMn07ZJ4rFsDMTYlWyMmtKvcj2AmAwhiB/Djo+TeXZ+jwiC4AIHsD4dVPNdNIMOtS9gdszQukJs9RQFJDtB5VWt4duiFwiCg06qjK/L3ZiBfVSaSmyF6bavit7iCzo74+CdT+8wC1TlX6x1uDYwEqUo23KTGuED/slAUS0LATqDSZaX41+nTfpnRXznNfx4YH0uluEd5EgYBT7VUsNSJJbIqqeEs8dPML3bSM8XcV+HlQZuTMZ4eyzzrcaL0wM54uR+ve1q/klG7Q9VY6JDgr0bcoJ7zAsmhJS/8TsSbZbcis6GvnkpJOKVPdkv46EtWob6I+D6yjtcSVCTYa9DFgxKpkbVp7h6JAuApicSgPCCEK+1GjtFHn9WacBG30CN+yt+KzbgnDAKCLlxp36eXOjYs6di1PhVVYb+LK9sBXGvmR23BWDAscfcFGczdwSWGhoib1719uij4/kXKRHdL/OtmQSGkq8OYvBxDeO53Cid5YJ2jDjcBz23TBVM4XJpvy3tQ7hryINopB4YPXMxgO0qXsuRs1kKl5MDfbcImytwb/dkpcWLnrUL7I0gjviyzoX54ZCD2GmwljucZ3KXi9Q2pQ2NtXkvwP95sMeWsWfn82sO9woCxaKu4ICZevVTo+eJWSq9C5K7cjqVIvskR3FeyKOnGfBtM58rPOLXadFUKnSAZy1MGAEZ6Oh6r4VDEG6LbzdZc7cFmBZvW3Ci+7Lw3CGsf7ivaWyvzuMzueI4X4bkelh5cBk/Fkir62uP6dvzxLIDWYtJ5tQ85SrSONV52wGRv47m/PHzZPsLUZPUXEiIlpoLUp0Dbr5J7HHT8fDBgpPtONw8OWTmRLgp1gDYD/QyAsmuUW4nVKp3amsAwORqdnknDUHjfbBaK/3TPyqJvwybKvrFTUsy/oJv8iYkQIUu4pOxTPVhMCOhHTCQof8w9PcLvtfl4X6M8Qbs/LW4Vh4pnrxqsymE+cExJdA4trCVvrbktLzORQDImLMGHPnp+byeXltIRqlk9lV2+4mhArC9k3xUext4XdforcgA6TbhOOhOOmyCMa+yjtnQUmkH41UcL8yijI6PXAE9+97cE/uyjt/WgQlGwKEseLcBsZLHxz7ry2ZUtNUiGze2UyNzfsk6r06z65dAePM3iAPml3pNNebojma8PJBVzZTcmI6gTnD+q00aTKFsC0TyGuRbzC/Rg5S0sqPhOBdJDyBOs/lFGwPGYYU6AG2HLFE4NBaUgUvaPNfZrVg1mbWTgXCH3Djgx7N9PiaiDb4eBqQSQjQkFwH7O/XqUfpMKaffQhtwpksWhVNg51kWus1rRusQTy2nu2I1ZiDSjoROgy7qypGTMV1v8ip4+DH8g9e7lsfn7OAm5XGclNkwtS06M1F5HAGoz+fsdMOywLJ5NcIvKHsibiub7Ly2593PvL7mCVVjUDXACHDhY0X5CxVYcVfWY871OnVbfrRZoqCHFcsc0yirYx1zf/vAyUc+pVnsTDZNPYciFOgQ6aKKAb9S/em3rGCQ7q1RZTSwtSfOuRB4fti1rga6Tm6JJOzadp14BKU0BsFAvWdMWfjk086/pZC6sddNgAUoSTelnJJfBpGlwPW11gabMpMoB3MC0OWjQSItllETtVS5mgg8lCMbkPwicfBsdhbO0uM4TQGM4n6foNQQ9XIY8ZoO4qWwJMbeiPMrspBkVvjjuIXM18wCR88/IStMM5i2lSZUlD59FwoFPuPAEcwe+RS88rbS8TxsDHiqprBxTX/ZV+g9lEmvhtmWnfvXKkzeqninnLkCkSkaejGtFetI8O6IyXV7BKve8NxV0I+8q6mVulCE+QEF7zeGYzgjgz0Wzm1v4U6OVaDLfG8zXbzvDyLfQAYhTtf5lhDAMunb6mZ+qj9u6Ma35jgdEOiievlooFkxbOUg9WmmCQccbm+HJyUs0ihNpwDxU+PFwmwEDMH8n4DY87mF23KU/wvx37WAW9VrfsJfpaKNhwLBnvNUPWVtzQ03/Uywn63JmHE2DXywJ9GjkgN3R3b5QSeQD229Xu+JeI2cUQs/q6GK1gBJ6AkrwTwGJV/gQ0PpH55w76CqjV3z5hWfcr2Zjr1e/gD8DsaC/9nl8yb+qJLSZR4f3CcqqdfsJgBruLKrNvrtsVFKjDGmczeGxB1nIddfhuV5VIt/RS/00b7nxMBEgcNSFEH3FVLSpJfmFz6n0ScdH5qCCfkhqp9MXKlVtg+8RN+pjYsQhCrbRllij9TZtOM9w1R5u5N3jYjgUWfkyVrW+oCATxwTYXsnoVJpkpM3XfGEk5J+5ukO2CgcDqVX/KuvuaagaVgis3iPdFV6emqI/TOAuQalW/xM/hX1pqYNNtAplj7I+VtHprGX6U5Gj5CgpTbDscoP4YopVHlS+YvbXfBd09n8yToWbRU9aK4r36fZKtO3Cb1lEqkQJaEp6fTiDsAJDhzqH6EU9STneGIZEUK09ZP0pTLNznt+8To/DkMhvUxgHT+3qxE63U4lS7IAnG2I8ThUp7OMMSFKi0dbABjETgXS7aN0B/W20eXVJJaWX8hGPzR2kMsAjlYCA+uZyuMBJNpZBryOWH9ZHEtlMwVArnzgmaudypZnZ41TofV57A526MQb7LtO6MkG9Sdg+tstxetGZuPvWKoDD1HTMuwibOgqUanq64oONtxA3FViMFrSZ10yGqLRJk8Sf3cyrtOFfqUfFDgI4j5TF8MTJDqm4VlYKtZYI/4fphHJFgd0ga/tjFo9VjNOVGxVZ8+R5DpsIiRtpwd2Sv9H2MjnR8gw8X00g72w1MI991VBPW82i7iBONYuiWTg8BLlDNYU+4TmNN5Xx88/u5dcDoaLl6RuoSHqQE3zgsu8uf1AO8VIafr8slXBkXGt+XSAFLmBZX+TDHbQZabEQWo8jxzCZsaZt7yZIOfe8p1ZVUKYoRK0R8zHJLptcZne1TK1mcNWs8/Cy7TkcAgNSEtv4Gbw22wPorHkccK9QFQkZp1BQfZrnWdPbHGGaymlUIAZi0nTZs9N6rqJsRdxnidy0bmEcEUAAm3IvSpqaNFtwl+DrXp1j4beXHXEtNfr0WUa9GTAEgsXIMisahfCTNG/9LEeTIx+DJEvh4+69VgqWCvCG6K9mpV8JokGDxCbcPvRU7DucZK7LbYJ2WFHNHj1o9jD8pH/ucNaQ45P6JFdqnzD37bHcshSmdWwhsLWijMJSOVUg2nsg+ACcuQrFvw36vuP75iZMlLmONKqLdLdeT56g8Mb8+Q702VQv7QTJFzHlAPZHTef44nrrq43BkUWjo2rng4WNjzrkYf07lc/w9wdFp+Yaqoqp7se3jUhJn2bMU67XSURMUxNQ9R+/w82vaSjLJFGqF+yXV2KZiTGjPasflvlPfdrt0bo3L2aF/u+QDC5zdjoEGi2DzYpFDOFhJ64FaxZaqAw4pkr13298rbDuFcD9dZiFa9HGSl24D2KDLALEUt1qb5gSB58MYOUOBGH3QvUQumoLv+/9RoHHogUY9ai6YtvGXeWdq0J3zFO1WZRQm6d1I7IM7rMM81m4LI/NfOAa7XQXyKAGKP5cMRZZjTqyvIF6YFbpkkZa4jVR/LRoODqihlqbsiRKHDe89gRvrNrTaHWQ0aRD3ZVWLjDt7FXsGWXzYj1XEK/FN6D/qeZyeQuQU2uO0alTzU6HnL+9fWSvA8eJTfMsclJtjGDH2Ixd4rYW9EZfwU0jtdbQ/rnjjH1LtIy+eZ6ZP1psfii24BZm7WgCSIFW3/PBNZHaFb8unjxJsFQpddaiE1Rnu/cecFITlNRlDV/QH1jn0e2zH+YuOoxRQi+V6DvfyQeHD4xXtpTBaTGWJKLvb+y80OPTQjaFBLaysN/lBovXlT8lnyco+RdNsEa5JybKsyQlXemCCg716FGZSUfdt2V0aQjBKTQFXbUrQIvNfpGQM2iVJedQX7Mgi8xvjrgLk5Go88JvgLDao9P7pM8AnSHR3cyIOxkVtllZtJIp/4u5lx+AO29R9YIidjpfsJJ7+EbjHT0J89R77M5DN5HwLQgY5yzvG3sebyHn6fbAtXhjDWXbtbLPxbH59hcjQkX9jV2kZmewwGRPbciliaJTAePtZwRUYhVG8RuKCdjlupSWe3hy8oylmIokKQPNwY0pZt0uNklBPngCgaF4eR+aNZ4vbas2vCHdVjTapqq55VAOViLH1pC7NzFbVyla+oDvmw//NGuR64AMo4RZ1Jszt1On+COX4jE/boNj8b8SaqPw/t3ulUADEH6vmACmfjFNdMu3E3KU+HXWcdPNpoAPW2I7EgjbuCag+RoZ28Z2g5V7zJtkn5enZQCqWtIpHBsgKLSJHFRZH5m8ayOMH9bkcdGLrWh8MC4HzdBOBLbVL2JS556RZBGwA1MmGAuU9N+Fj5je1Ua8YnwtaYBVuyKsj2MIZ+gP1p9BCovuTcbAGFA3y3S5rKPHGzQzUZ5FNSYex1dcoCXUbLXjSqmqjNqC0hDpfquMhUQjeEDAudC3nsufQ/ynyeAwIxT6ZJRrPjdpdGAYvALi9cXt15wbmuc5o5BXMgviGEeSgtvD0h9MbWCBiJTcdhxsi08p/xYFD4pzKFizC65gJbs3LAWFLH7Te3CgmK6S594JpQmP1wmZxMGZT6GNn7I7JAqV/pykyh9lvoqLWF2y8K5iyRSa8LkNjP2ruhuVCUctvRe2stVmO5NFg2KaZWOGFjjzDM5DCIsaBca4MsTCroS3VI+OHcCrssuhyCQ6nnGinu9kDb4XJ0wPSs/bknaucZckFw91IXEOKkBVzLXK1PGFG0GDhoiscmqRCMXu6r3Ma5b41NJbYe31Q1/qD78dbdutwx3tapA54bzMenahZeBgDTsPcOtn/AA4YNYBEVF19ppW1pMqLLU8BLk6F9RcsAHEAQ6shiqanFQNBtGjCDTX9UcMi6BgOy+paUdN6hDGk5fN19HhyDp
Variant 1
DifficultyLevel
596
Question
Surf Legends charge an hourly rate for surfing lessons and add a one-off charge of $50 for insurance.
The overall cost (C) is represented by the formula, C=40h+ 50, where h is the number of hours of lessons.
Amber's surf lessons with Surf Legends cost $330.
How many hours of lessons did she have?
Worked Solution
|
|
40h + 50 |
= 330 |
40h |
= 330 − 50 |
40h |
= 280 |
h |
= 7 hours |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Surf Legends charge an hourly rate for surfing lessons and add a one-off charge of \$50 for insurance.
The overall cost ($C$) is represented by the formula, $C = 40\large h +$ 50, where $\large h$ is the number of hours of lessons.
Amber's surf lessons with Surf Legends cost $330.
How many hours of lessons did she have?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
| 40$\large h$ + 50 | = 330 |
| 40$\large h$ |\= 330 $-$ 50 |
| 40$\large h$ |\= 280|
| $\large h$ | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/LiDaFucf6tzSvCN7V4hDtryW3zYf09JmLR7C1cgyps73FsI4CKAlywq2BKGBncWDXMaXk+meC0AnE4teVlyDvUg3ON2v/du0DRdz/jWHo0jklEJbZ0FQkSDuLHBYTprbLnjRI5wvrSoYEQDYMoigCJCXOKDz31gEB6VkYYDKh87J/oXKDkWyFHEFqK1ojsnUc1BOvEhMiiddbEcjh+FH4+cSJbxVG8tva9LR6C1VpG2bJRHxKE6yGXVI9zLW18NUYoeb1ZcBDzX0WcnE823nLBO0tBY5GoG62oyLbAFBvxgagE0ybVmFBe9mB1GzHZVAb5eVUK7cWQMv/LkexxV8lCFp0QI/4a213ywLGAgRHon2pLyhBDeYb64no4kIkMce9lNSD+nQFNaB9FW0RdKsGCr3ymliWSJ5xkY+DJ13Jhr73GFrHWnvAch83YMEobWdWnZkvOumKKycexvNj+jDJiYy632mREA+D8DWBKhVLkd5+n3XsWyvavn65bTAjfkpVdpk+/rQEpK8wbbAiZEKw886fCWmGilKdGXlNsmMRA9wXZFMzWyJ07YuPPZAx5seebmaeonbGtWu3QmA2mTD0mAk3m71yRyNgGpEsgh4bkhrjOeugOzw5mf+KTNMADXrtz5ow/kFGTREknpZGXSWiaDwbBFfv12Ap6L32BQakEx9/W1OotFXECxNYIaGp9s8azbIVThC62AkFYSaTkLUn559GZn5plgAXyaON1v4alTyBAR3PkVZKRbVO9sGooI244+4ZVaE65HWeqiAZ4XWNxFlpbRFpj5YwSnMBL7/iXuZsVPRynV5avgxp5Ri+iSonzl8b4Plm6NUPsw82XpcgKl5Pk2SunfqSeZcONZfIgwT9fRGpCNze4qMrxDuXWXtfpja331TUCjdWBVRct+xTxQ+ay0zvw5G6aLsbqoZAjxM+S/uuYkUZmEtVhZ67kRhtD5ufzu7rzbvhO1Tocj3OlwyWDkiuXSBnrpPTPzCO1+p+eXOccV7diqJClarTjJOYx6ucPEo2w6bo7/rUO6592raUaf3IYO6sYfb4Bm51JiILbTJdfiwY4nIo1BoJJXJrkhWjl5nT1Xuz4EYvJTR0EBYei5+dxuVai1kS94Aw0PeYYObLa82aFJ2TGDypMWRF5p1sTD/jquKIH3nRq6OsxKEAqvPTvykKWckZ2K6t0WqP56msi8g7PW4WGIhlCJ2oYpaNQY+p/7G6D//5UULM7Yyxl5QcZ8Is0YatjlQq21wkqX3vA9RIyNvSV9q0fioRtguR2fz4v4Zj6LOGgOVFJ+LH/7/n4ItJVVHqWGP899jRW+cK1SKvv8Eiw90RHDOiVYUAnnASHIpGdCAHV5TKIsYcptmhyeKvasD9oOIUpPdshwge8/kcIlQWmWyDkb2Epv7v7oj+94jUH1/ol+Lzd3uozl0iTlY8vi3dfOvpqicKaAf5hgUOYh8/FKqM67iFAnu3SrQXznARpBRRHqiUZShp6TtHNp3Lff6lkelS8Lqm1M3k2zlVYzS+zIkMhl9pSE6LpkUmmWTMdwjoAPccWDAdd6cLC4aNADJKwQ4hz6+fBkqDyZ38pC1AqrQYxhaVqgsK8VN1XOe/Lkf7saRodcoKo173whMivZnVUsu86EfEBsYXl3sWLZH27UwNIDJsiu9Sp8MPfvdxlHxLYKuYQh4oAiBRX82IwvlnGBNl/BRnJy2QqF178r4J9A/fB1yN2U4jzX5JzCc/MjzngTuC+KYDvQOJdwVTyG1TSJ8a2CorpG2ASob9XHETun0NkeeUK+teZ23SWA8JDQa1ao5vSWmC9ehVJ2xfuQxo84RWEIc+sbUtmHidPrMixw3GYqTzO7QdUTQwKaXZlScqPMPfEu0AYP0jhO5CZClcFLogJ1ry6Vcm/stZAyBY8uFVIWXKBMYJxjy9vp5lvJH2zu5v3AErRdfDdQV+36gaUHMGbIF3EzdVEIsTKrzzXX3ahaE+BrxTUY/JzBr/hPLOifu1Dam1fjVTvC/Og+S26ZFN2ee2mEehminGesqsmtZaxy/kH/Z5oCquVOsmlPllc9Qmp4Ae1Vqcx+OcJutSLj0Kzpu6VmVOHkvJzs3jQom7qVFF/jQqlX+hhsY2hqnkzxX5lUCQ4vHi5cEkimb1Bfw/p/R5HdZTN7HrKCdjtEHlD/j9yPXHlyU0Pfd/kM7qIv8ZLny2YZIQSVsZhrV1YHs8G73k+oGViBKBnHvGPF05lLSIxFy/KPXhWyCVLgoTP3sHtB4b+KuJxGfkh7raV8N8R9d5nJzihos3ADHMEzCrMUwdav0XJcvIm6ozNMmY0LG+iOR13F2ha79gIm+gYQcKm8dlwT++bxLuRc5iUNs52mbWi/Ogd8pjmZgfsSJUwT5aij/jzUevrRzEJANkJHeVbh/yyUyoIOasHlARWD7Pr0aNB3a+CdcxYiSoh3HI16qGOYxWWeqV3Dsw0q+c8ZZy0UJoOUtc0KDFkW+/IgS8JkCUZ/af2blPmYEHkF5Zka7/5TcRCAy2GVDxHj+NrUMtJfdzpvfQVm3sP4w/1ZW256VQ2UMKWN4Inlm0BglZTSzIP9nH2ZUi9vHaeJsYPp1wVoYqfJQ49ScBaywsdwcozbWiW9zi1f2+hKRq6WI/vt7P1+nMHfD1n/jnTSVcW7uurMzM6d065UNTE0jMmKZs+n/v41B/8FwMmGXIEWMTgEcSAGfmgaah9pzCgAhuB7iNo/mPiADiMT0dwxoPMmTbqZkisS4UVIS0vAaQL4CdYYLzEet2tyAV/153YcbvGfhJgDL65xtvf5xoMzJD1HZGbreDdXWTnmEhcnJdlA4uKu5ReGamM7a2KfLOSOTMOXPgyR6gN+cizodLAoS8yOALDwrlRBOxanOblbBN3B3rDsv93e8ss7E42kb18oXVlAtaYldwhAVgw8v8iKIFleK9uBxIaaKbrvWNYrJzusOnBkENb0Upbt2T9ppmdln7QGlug0MpLgg0uNJ15Xj6bL8+JApHxdqhoHhxAZwvfnY6rbOlYFy7PhDPpBsbuI9Ufne387XEKjyPmaR3WWMkT9WUG09lImJi1TQysxJF8W++eRWBJp60FK3szQDQKdph2fr8awCeTTUgcuD+uO+qPKMJ6xg0Ff3H5EGbG9le7A+us3MT4hA5kKFab0VcGrh3+6EHRueNboVYYhzkqFvWm/QeqIMFCOjUoFP3AVaQnCVuqgYd27nzZeYnvByltALqgBPtEsN6vO/99hzPQnpSzIP7ItrPiTSF5tFWIFoQ+avlVXAD+OK8KzgkF0Rh+heYEPMyCfIFshjNpx4tmVh28LbGRdmQGb9NU/t5xadQY7g706e6I/eijEZTHTa0QkroOazVX6wsdyJLosjPThMoE8WLumxhI0iRnZavUXmprxK4LZGshbMd/e5b6f3a0oRbdx8vPz+l4C+RkyCGGMrBS9Gl9WMYBaCSiQhCsBSlD/YqEPM2K07IKXDuUzh5ujIFjh0GIPXPSkQHRcavAcWw+Byx3AjYKVa/KuvU/oqW2Oa/KqmTA6hp9Fju0JxkorX7IZfI06aOSA3IJx5incy1L5UX9nrXDa/85VDPZUH6kGugiorOMgw1mvZzawuQeVmhm/2XTXrsu5xp+Z8wDfVqkCdX4S6EDQu6YZfChU8C8tkpRZuWgp2evnQNiB1irmOGpl/+FTWit2raEXX4K5/yCMAiLTCZRCyj+B6FiPcgNwomR2mGLFE67w67o0loULu7P0RAzvjL2KkhnwhqfwfQ0fpSK9BYEOmsJtqFIv9rtDXl7NW1oY3/Kblka0x++8MM0CxlEo/gVu9kaXThrkYAne5H3KXCMn7iV16mahBoTgTZ0oRy8ryQEiVgBkswkQjk67UACFa0OBvbr9AKMcXWHfYUtM4wlO4XTXYFfyzKhsYw9A6vGaDOdfZNsyEeukp6vij+xNWWAd7Frr3b26MSTYq+9P5wkYLGMICdEmnHAn+5pClgVxCYNzOrHkJmFe3Mn0jPnY5yi6GUAiReEqEWHOTFoDre2L8IJ3g9z2ktMnao5IXnyG0dn44Fuj7ZrXvgg3HC4JpSMQBXfg3ClNszX7MbuivVFoKokp1RGdI7C0w42OYlG2DYEwkkLZ9cLR4VCzScawR0X1nHTpoGUOJbWhp/fTaia06Njh16RhTm2FdR1S2sdbmAKfapWQDUEENa2RxM7WOwUqeDLHaU3qiswfO5/6Oz6Ca3endADlyIv/t+VkJiB+Wp1UYco61plOTh26XAzwYMLKaqIzVZNF2mK6wwCVt0KTIFJwtdJa/0YvjW4jXIeNEZfmjR7c9O4eiv4/IVIl1o1LT9P8/7L7buabZCEnkZ7ICQH8qUYFENk/02ZuNQQyRLgwmcbTdnDtlDkgpDHhB4GZTg0SWhQg/Ko3qdXiU+o/fF+2zi6eRK/2DCFjPRzdKdO7bP1LWa7v4oPcTZRqUy4hol3pCaA4WAvTVMG4hEBgD4LOYxhOuvs3ALYecoudlJXuIYwLapXJSSCoEfA7KUL2iIQ3N21Q/O2IF01MC82YdlchXoHr1PCyj1ZuHLtI6OJQ+t6WWWwypjDzPzTH49CFPNUl5296H5C5hFiYQRR30GW/ZZT5CgS5LXgERy8I4nFkU3n3QCxNYv6wlk+yPk4Wca6jTjH/AquI1Q0cLOrTBswBkSDN3AYMyHMskcbk5AGUO+bhe94Lt3sMNLLSIDp651K3W7PYHFDTmzHX8TJg/7aYKirx654J5kPesog2zm9Q+EGLbY7UtLJ087LkxIV9sdVNStws6wGhreVOIdgbwLZPrl7Cr7OOmaYWrNJwhFzJPgCT6fypzu0hZMEBZtiJzi749GG2a9Pv/J5JWGrrytyJQQHNkEISVWlP38kO0maZUKlHg99Zr2LJoNqh3hAgWWOoeS8pyXpjgRhATNtRdNiPMAdv6hfRM6yYkrIJsPY+cp4EjglEU1CM6PT5kvms9ANE5+kGkt81gqov90NvG5BhjIXml0iAv0WfxU4Jsp5UTv4knrORxvxusBrlhDu+wZ1jtVxrEYJXqbY9rs0tZ5qMCITB9MokT9jk0PoNWenukHaJmOL/94yqmrK1tTsutFWN7ilI3+wonGfzqeV6I3+8ZSmL/YlRDhKbUpftVwq4d4SsN2B9UZRuwM33JE5O3kyCL9u1W/TBHL0C+4fHnb+JktOvXwPOA2UJdV01UBqz5kmNnrfHcsguW93hm029EnN5/pqfZBAxbdteqW3xIKAcYAVcxdmklar8y+OwJeOW7SUhEuka/D6OzoS5NxpMgiKQrSHHprynFwl/bw/n5xG1o1Opl3EyRfVkihFcWaAAqp+kp5URDv3hLrvJkBpeb4G0lmFBVIgt2cIGr7re3YytmcMyjLP2kFE8QRzgdtlskvlu+27EzZWPW+AFO0s5wxe6KvqRe4mB98VVj82F/WmW5kOZoAPNAO7Tl9u3xCc0uVxoH9dYekc9WbuZyUO+9CQwXmD4A1ezLqoIZFi4hPORPFo+nB+E26zRqBcIh4EnQfxZ7RU8Pp5OdJlheMu+4Ocy6a6o2HBkbcOTEg38Kxkr9u33ckWygjHy3QR7Z6sZZ8cNADWlVYFZYZL0AGNacPCi9zrcGlD3I+Q0TrHlaCE20Rqg==
Variant 2
DifficultyLevel
578
Question
DriveToday charge an hourly rate for driving lessons and add a one-off charge of $38 for insurance.
The overall cost (C) is represented by the formula, C=25h+ 38, where h is the number of hours of lessons.
Benjamin has 5 hours of lessons with DriveToday.
How much does he pay?
Worked Solution
|
|
C |
= 25 × 5 + 38 |
|
= 125 + 38 |
|
= $163 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | DriveToday charge an hourly rate for driving lessons and add a one-off charge of \$38 for insurance.
The overall cost ($C$) is represented by the formula, $C = 25\large h +$ 38, where $\large h$ is the number of hours of lessons.
Benjamin has 5 hours of lessons with DriveToday.
How much does he pay?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 25 $\times$ 5 + 38 |
| | = 125 + 38 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+UToeRTHkx9VGO1VBb1Zs1aXMHU98aBUjbdy+WT3Jygf4NF5d5n8t49EkmB0A0bab6pYhXVQ+5K1+gkkg9viKtTVBOM6v+uO6SXgMVUdQatNtvASJ/3HaEhkoTIREYfzGW2CF8gfK46EJnIVbNd/mpxaWuDwLI/uy7bpfh2UOVIku30H83/hMtFQIkrZWtYdgXSjQuszyHgS9EFdwP5qqCl1coiiJZkioSmELlpcIeGc8XsQszUaSsjjGUV1w0/8SrsR/WIv3C0xlhIslcjunYk1ePZXU/3NTXuMYrrXNDcvxUic7NuFv3xVcylT7LuayS9DRZBdsz+8MXXqXTw4uGEBZwy6aQBvN2JlvaJp6UoUgs4HybL3i9c2Mn2BkklHkCw9wuiStyGvAdvnVbaV3cWJqSlB+6X3fXCgsJjInLvBIgI/DwXQ3Qz4IgMWJKWCFbcHWmUKYL6rIItbqwy7+7sEUArR8Z87VcmZmtQz9lAj+rkydnWXlF239n/KtahnMeiQvKMaFsLhojmInBx570z6kOPgxXgakhmfW6oXt8Dy4b0G90pTvMdWQyRhm8EClG+f/e7gn806Z96XaAb4nzwaFjYtssd3sNTub/AJRcxTJZ/t5fFkCuB8LNQigOZ+w+13mGUSY6DDJBDWyhT6zSmv1AiC0YSjRN5bvBzqSaFlSgetFEGu51RUWLm4p/nGuYCa+/mQjcdUEZKIJWmBPEoqNfhMhinNiDMszk7h4tR+CFzpbfN1cXUOoTTmxO80wPSvxraRFhv92R1kFvBbIyLpho6WBZGOpHgiqCi7VkxeQBruFqD/JozCsk8Br1BFrI3kdwfvqnlKMKfQ1fKLFTWOMzuAjVG3UGS09BKYi4+A0cftyrot4bFMIYORnKSgdAXYvaEL4k+XHshQeEmwg+3lDMVeYH13sPawmWNIHLv8rMyGk2xsT1o3XLG2sXtDVo6Kvz5aCtF2niMrNnM9aoa7cJJqCvUanHr+tij6U0WqkikOG6pdJGV+A02McsMECrUkcYgtsZcAiMTNDG+t9QwwcAvO/zAYag1vOOrggBO6NiY3EDshkA4TLpQtTwyupOWq2cyTh21ODQ5oJFgnbMxHfqhyZg0DfufH6Dj/1grtnQe+WkleXWw/0G8mmDQAQ7ZHc6HKA14uwKVl7Ks3QBZhoOHrsSs4MbfFd4Zk0qlb50qcnwgydjp7cy14+uGa3rFvB2AuZ643aeAHIhGe0FpiNWTO8OvvcfBRXQC/9GRAaq0ulqNUI3LO0qwSBS+4asvrMJ4MoSuuFk6bOwptOZfyLeumKtYYOXW1jI+b9doEh/0Q7JikKWuB4XQ6AWOlHdYiGOCIzCgijyhGuw6Xm0r5ycVROaB+muJSbEam/R6HS9+fca7ugsDap+RDkAue2diW++qfbIGMWIP6408SXanikNT982F/lf1WADon2KBbDRJov9t+XNg8+tP28OuynBUOX9A2tl1D28U2jVR1pPXIUcWC156NA9Gn8Vz1OEyoj8MIDJbrjZXqSQfu21ToVbX+f3KtnxstguDjegiNCOojX2zBrumjpfgquev6HBOOc/KvegGcGhgZh5L9Aevy60cUN6KwVScfjfi9MClCtj9kAyKLTp7Tq+hK1cksKcYFxAx8Wz00UI66xSa9sffaVo3vgow/qsQgZaUN1F57pvt2CZ37OFGop8zd3uW4cuSxeDPM2/ZdRBL/uNVbpYCfPHV86GIW8fdsVLyan1aHnttFRhPTXrIeJ8pkdBDKOti9gPMRBiu2+qCijFHNZynnk0ksyaFgEtB1JCPQGfxDqdZhQDicpmjEKCnwoYSV9GS3DbzU4/oZcn1wBplGo/Idih2CFA8plD55R5enGsQPy0ExYHxz3MyKh3jzIBpYWFM6LSGWrxF24hYqa+5HBdPxFqU9YayP3ca3lEXTTbn9UqQqNRbVZjp06mOmzXMeeMerIGCL0gVFBhbc1/vEieek3M1FgfEPVIWngJNPimeQ9sLG+Ft+I1irfvXVBHkCuxatDr5i1tnE6P2cwUXnExYiRU40iG6MmE5ghbdh51WXiZDSM5Cck27ERYqTDXGk8n1A/0IvRNaMmLH+NBgHNphgVAu4SeLRH8u7MOtikyL8So+VFlFx1dQ/rTK6107UjnIf1arTEVGsjAsB80eRhG6v9iAJpPEhAHOQdK43QcdSwCfJ2hQPOwVi0dg8V+vKGpcCaolNMBa0N+oJQMyiWWY5NzoHCfuhBdK+Od2oDf3KwSXI0xj8f1n6IICjFfoy8/JWhVGBlf6XFs+2JfKG97xIi1U/+W5Fhv0/nqdL9UdQXgqPJrsu7ZtmEartzvPfeTRGlbktTJmK/Yo2624XqnIqXZSVmlU3ig8cuZRVoS09CUzK9KVLSkFA4LZw8Vh8au+ng74PA23g0bgPs5BPe4vGp/fZnaJnLVXHM6Nb4dcOmT3tHXr/GKArf4r17dq4e513j7aMq0NAOOMmU+Q6s/TvvB6uIJosSJYgbNySHcNN48Fyo4jZmUGIPGWYKYf+IOTrQwuKmDopcHDsujr8jQpW3LuTgNypgUlRUMK5249Z51Mq2HF8wg4bNpOp0Y6qAqBaPlcv4ZMKXBXVvnnVx4E3qR0cxIb8AyqHOLnN6vKxWLkaT84Chx+RqgPpeZOIERqYTS3hYl4YIQbvOjBP1Kz3ZZI4XqpMLoGADhxs3LJTTdWOCnzYIycxdHHuSJPBK9M+9neWBqVBnlKqBfsUg1758anma85R9UMn0qqcSFJ+wt4oiVoyP5Dn3V9rOSv5LxzMvINPDXomhBz7GCcrFnSq5iMvSG8jxg8qJ/9tU25pmg6c+z5mZbShOz7JRB6oNhNVCI7VKZHfVB7QiJvTTl8x+1D5/LvvnTUTBgEr9JDQrOGAN+K/RaObRPbybKphvIYan1qFCQLOa6nIbpxUdi+m5y6U79W2Kyr7/ZnFacZakijdkzZF9p9gRmn7p+6TbHymsaxmp343Lj6Anu2IQjxYNjdU57FGREY3aRGFD7zWnidMM/m5W4nPGGeoo7OuQKfIe6RntYlctmluF4Tg2u0wz194yxLmewRKLRBvXOOLsj9sEPx/vvzBGAWa/gSop3TTvwXNK+waOS3R7ME4d9pRZrodHC8nrfGa/KPg7xkpmhnEDKrPFLDJCDzBii+SsC2qRHwBg5e+xIi+FMiU0oahtP9xB0OxlONcEp7J5sW6nwdZ2zuHNjTfHuMRk/UeriFLQC/iTpQpUuxZSEZ2sNSCixBoPYP7KBe0NVsAcJPqdDx/v//2x3sbMFU7XaNUB+0qiUArpSP2BXtu6NxOWyDJwPaCDOqK8O97WDjDosv/abfJ36DZzsXxPSaDmEDH/qIN08oHvQGD/3k/PpybLPuNRMve2zJvOMuodfIlsyLWpZDkKuf1+LrlK5ghjo9m2ZEssDKjxFxEzUUh8oJUZr9/2sjZB3xiwx2IwQWklM6YfKNSPBQMEabGJLnCFDuDFpGW0D57LGqseYDIad1ZaW5Lzp0fMSmQ4Gn2W5Z+YfeC88zYO/NEClJAgBXEHastq6WpXyXt3/UwurSzMXbYOQaSnxnIClg3k+mvgKNN4UeJz1QV0gZ+Ys8JrLWusLk4gDeojWD3TDOmeg4PdF0qmdkv1uO3vnlQm+aBTzoQgqRFoQSVUlo7BYVY6eWWtjY1/Eh+tqAHGFwImg4gTYUAewbDR8Eh5R07dIH9nRNeeBXelwdU9ZjIB7DWAkb67MztzhdiOi1m++bFvbw5MbCuJjvRMje6fT+bdIcNMHL70wKo3eVay2BJ8kQAB2nrQwe+sCC2+ip4jQqcCkEiitF5WzzhOOUaI+LW2JJKhbMA5xBgtZRW1EOQ1ILHyT5lf4Hm7xVBi5w9nAv3DMCervGWKdLN5eqx6RC/f73i45tPg3/TleSWvmxjoL//a0z5JZ5SbLvfIglK173sS467g0U7Nm22yVGSYQEY9LQXWN0gETBVljrFXB6vbfj8GYE3rmgNP38XH4GFGvXKUdYMJebkekg14Zt5eWKMOATq2GJPy6hfjR2rX9qNedbbXFA8rgnZgvSpkT72RhyMRjCjq+2EEkYKS3EXPjcG96xsglwj/uFM7CLf0BAy8stUd81km5dHZNfgyIM+R+8wYXt1BPAZk+FDIFLJpoqdawv9x0cnccPsDAyrP/3q6JVBmOU71f96QnkUZ8y16ZxAzAeKDwke+KOIQ7cg8sgvaqRlxRFcC9SKoOitH5HNLQngryOfwIyOhJ8qZcC9I2BUx7QvukSgXzCbJX/njHm+csCEI3gQnFzKJnaAsNrFvmo5nH0SDzf05vPvkaM2+TMIINZcYOcWZoH4TE9YduWshErYm8DLlhKQEU2nu9Hv3ck2OnP4oNehMuWVRV6nQsCvEh4QQCNo1YtGSkRDzyku+IgRDAb4tsrnWG+ECauM3OwEjHWVgZ2amxy8x12hw9Zx1mPaA8tLfxolt6RcMXqb1K51mW+UEnM9paUinzjnrmFBAbOlDRIJx7MIMzRfXLt6p9qCo0ujdSIrg5HwYdTnGJkI05JdfgTmbomE5X6iYsgpOVQnP5wzqZZ5Lfg89AGtGQxeBZCcNiIDWe5oTScjhJ4NOg7NPhLfWGW6aUovejgCkQi0PWO1pIYS1S0LaA/dSdHU7GkJWoO9KYKAEiMBQKtuyY6+un4SRZpYN4tZLIV+FnncOoTFoaNveV1eK7ilZds8rZ7tcDFNphlBdEHEb5Deb+YOKcMoVqWpNRzGw/5uExht/nIOBEeNIPf/ETEpsgKTN5K1bEWzA08eA5bUbbS9dr7HApNknSadsrccE9p6ZPBo/xAbFsl1CK33iRTmuKecUTxQmfeHIq168s44Uj+6HDeNk6vCylUnhourpNglX2F5cnul+PyWGQMxithBXzFglyCFPqNsUGJjTXZdvKqymSQY6wxgW9GK7TRIzeLNcnAHCIbwwTpQzOSlS977jqyJS30G6eOixmow78m/n6VLiK1ccGmuJDjra8EBHqNQWace2Df42zxlpBC7xWnbhTBU192MOxTWHdGHNQn5Ia18t1xBjY2bqO3OyN3hOGBBUq7ignWtyv5az9SN4IoWkgCrs9YMHCH8DfqCNXEVa9HmnZtK5fl9Ixy7ugV5dFYHmahCyn11bGNrHKD3DUgkIlQ7QIz/dJ2kkyA04yJfwYB7DoCCziooXEXIbfs3c/tiU3SBAcJgs3ADM8O7i6JLe0sd8ixQDc8lgsFmPeBed238GU2JYURcg6OSyVYs1rKC/V8ujGvZmrYghUj6Mz7LiiNnX/c9vbslUd2F/jn7MM02GdUQzp3jCYZDa7+vnNUg3EWwRzyXFT8Ag8rkp9+PdPs0IlywMJuBvZfYFGyXEkiaHGtn/bEwcwOtYJItfxOgivopBPmkISijdCv2T26Mr5uDQCvUVDq0xSDuQbJrrHIVo3S5DMKhM6GSlhGNBt8we7Fj0oZypiafEaltEdYc6jd300PS1uQaehjhdQkurrY6L+3yhT1dkp5MHxHc9p50gqyxpaaiM9scHAII93NGLxUqV7x5C7WdR/SPTxG0iNHLSMG/O/RTWHDTLxkunYicfFwS2gW6jZrYEcLI71iPKL0IXjMAxboyNx0NAS6V2QL2226I3PvGrvPKdISdQeffVz1WDktvhxTQq9SuuR3HuqMtP1Z49R+JWTMMkDa9kEFuJy0vWkINBRoE4hd75P6M15A4Xz1icyTzKPVNBUrw/tTZFqnoVsmhhJnIZ1Ljs40GIPf+W2v0v6+LMUAc2LtXUDquVyT9DQSRDP/eiDC0HiEGFjAGDDtD4fspYl2GRT3T7muZ9kWeuBqTjdKo7mDMojqhUfEombuQ4JqnbTfciu3V3qX96j2Or6YEY1txRIx0brmOkMEInE1mzIb4SfIds/bds7oaJ6JGPzymgPoGr5cGxjxqMMr1i0HWtDgIy5oZ2s88xk8Ai9138Y2My67fHEFDQxzN5DPL62bz8vUfs7atXDNJmHWnv0dw4r2jOTSwscElblf5AGeHAPD+J3Wv0FiOn41hMKWQdGSzHU6e+Jq3PFmuP8gBayDPF4A4r4HGexmJ7EH+ATMImoD/jfom5MkXS1YqWHvpSmlLISBiKuEXUQO/CyIPblDPvkfdLr9oBprbnc0pIcZd7eJ0kW9Cls9c1aJWlNe3a383jZVMkfxhdmovByjckRIvkLJNgSRhYoajxuW8ayIsyd0dzGXT+SM7A+aI1jBsH4VrqmYXNLGLdfshiSQgCx/7BN5VQwwmiLXm8IBvb4xqSkqdCgFiIaBM2tMqf3puw0Z0FW7YnPD8kNmHGps4eeBsicGQpPSJc+NDnR34eUZ82AToYVZWmQWwTj8rcmNbXRknjMepvT/u9npTnb+SxdC/rjz9J4ct+R+4BssSdBVHPP4Ixp+xh/qFsnhEk+j19qNpQvYtnSW6FPA7IsWbC4d2tZBwtWXChlmocfpdyoIJh0r6T/mIM21fy5qbVgjelZ4cZrVZM4Y/+MrX8BCZ0oOF11j8K3XSF1us+sOopfHtMcG28CDynaSpJO9xIYHElDy2+XFlkWq5aILuasccAlfmYr60mgj73PL3MSKD9dDoduB2NMV92eLjiubatyi54Z8JYWy/M6I4GPgHCNRthD7dde/YRjUBmBfYtDeVuEAU9Oc0tjVLRMczuqUbqe5SXWgSOte0A4FKWdqxg/JIzVURpEVSMFoohpDRaku2AwRonf2cMCI22wR/Lw0alYNb5GiAWKnb96kDbb7p65NXLYhswOfVCCbpBtFUEM5kEZdA0Ip5rDjN1ph1OP21llzVzPtgJe43BxNJMwJQoz/jPTEnKwGapiszRSN5U2YHiDD1HVIAJQ6ZV+VeWNr2Zxb0iAfUmbdOJJ7jDENEnZAN/4Ra59kCI8aXYOR/9nlrKUGCrXtTNUe1cXddsIoGTmJ7oUy92gTPJjgL3MuFq7m7pT86GHdMw5LM07vaEDRZNQQUXt1M3S5bBeLIdgx49p0hQlE8/SpT8MmOuM6R4UkRo36bCMza04KjEDfUNJGYGYl8nxEGjbPSQMqwh46b7Qcezf57/bU92iXjx7Xpvj69Ry5A6QM5fMEiGzhGjciiaeP4iGG5y6W68ewLED3dRW/fAkKJtcz5xTjY/ESuOzujNYUUjrl9BuSoy4guMWlSNrX81ktfOy09cac8saEemOXSUm7OioyDUUa/bllThHxnKeQNf6cJm80sfvphf3Exw2ucZ3d0mY3yvubyUnSAcrGRpC8JdIMqTe/2siQyxjJ56psvYJ+wpWnZd11tF3IObq6CckRHinB/pjcg+8SqaIILuhir7cXNSjfdgZLBQ3jTT4rqi2Va1BAKL5vt8jazMClMb40IZQFNMG1rwN4TGrI2q6zhmlK6xJih/Jhr/jMct+BaJ5lBUc9dISq9fa7TIxtNed06ptLTssnEO8CnqHTvtcY+Xh6wbxpHCZ9QK0mFm07LHdLwzrdnT0uCBPfBgggFtNgWo75mQBWkdwxIXGvcp+Q3R30BzkGXuAOB7cj5tjxv441CkjO4qQGcVC5olfTRmLZW1gEtcTCmwLOz86nhDHmkW2dBW2eidC5zwilqR4rLW4tDMBA+zgPkESOXsSXMSYrXgJz0TjAaqNBze2CnnUA9k5RBH0khM/OVAnP3Hrr3PqUsWDkNQCd12DK9ufAtdgV4whML0qD00QilWyTVcIFqvRvPGxP5/AtO/AAsqQIt4Y+njjFrd+wKNQsSYWrPogLfw+bvWSai7CGqLsASNpUr7T66RATdqjJi+hPJcgZ14eOAbdoOkX1cEPYKaWnyah747rWsU31cmawEdV+/elrdWNo7Vfm5KXNbxw/mgG5WDNZpprdo3m5yrbLJYlB5yATH9tlieevlSq/WcID4RGtXvAMz/Uv2XZh658MxEFzWEgWAOrPdGA9K4v5fFbKB1AgUwRF3XRbHrrOPAu3/M6/NcZnhprX8+kPSD7Zh13L3GFQZTLgG/QGQFRvBs6aLqbFjVi8pRbqPDjJo3MdpwUSb5XDhG1
Variant 3
DifficultyLevel
585
Question
DriveToday charge an hourly rate for driving lessons and add a one-off charge of $38 for insurance.
The overall cost (C) is represented by the formula, C=25h+ 38, where h is the number of hours of lessons.
Rosa's driving lessons with DriveToday cost $363.
How many hours of lessons did she have?
Worked Solution
|
|
25h + 38 |
= 363 |
25h |
= 363 − 38 |
25h |
= 325 |
h |
= 13 hours |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | DriveToday charge an hourly rate for driving lessons and add a one-off charge of \$38 for insurance.
The overall cost ($C$) is represented by the formula, $C = 25\large h +$ 38, where $\large h$ is the number of hours of lessons.
Rosa's driving lessons with DriveToday cost $363.
How many hours of lessons did she have?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
| 25$\large h$ + 38 | = 363 |
| 25$\large h$ |\= 363 $-$ 38 |
| 25$\large h$ |\= 325|
| $\large h$ | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/FSWoC7c9CKhNxkTdlbefSvbFrzJZkTnFrr3eg0x3nLHP+NCtMO8CJXouiLWbCYnwMxQ38iJDgp9kxw6iwTD2V5lJgzvxTez2tcQNWqnnHDHqzQ6ijhm+O8UggGo8yS0Hnq5tbzT0GWvgPna18Ua0yPQf6jQeNRVSAIDU0MSUZSN6ezTUCeT6AVsTdPluiE9flgqMFL5EiSnFHG0LqkCWM0iqWLMUzT7M5qxLF9awHz1YLIShw0OfX2+eBPWuI9EQZlVubcgp2kTuHksFoyQWFPSu5vRHdD9mu7UUvaWVOFXV/v0waWz/cs07gSdyBXl29BvISwZlF8DXi9J9SXgxffWnrH/LneYfgfTxGNHtbHQK5LDjkEdlGaPQ33ZCSmw4BsAJlyjvKbgJTwYALm9lmeLdX/cbt0Mk0f6yRZjxAyhqytMAUvWh01oDMMeowokK/wgt69u/3dGp6632ha4fvCH3+QsvliH4FjvP8EEkBspVdbrOpfI+k+hDZT5ZSNVdJfgDAgfeH5HiF7Yko/wZP3TjeJ6eEQGOxfpLCRTKMxAdhfQNlDOL1UH6bvxANCBTRd2blMfOPQFOTQXfbvSm/+dEBZJlqE9jOsm0cMqHtGZlN2K/DUXTPYCPS4/QYVSMv1yABXTm0QE6pbqoJuB9RrJhi6lkEJVYJJf7TrTC5k4nfJS08zdVKemh0ywQf0ez3onQGnjJSu6yvHhavB4/43TUEqjHm56JFA6VUInFExP7gVUVssxmfCS4Wx8hEAZqkGvcdZA5Ig7S1azwuzgc9z1iQ3enZ+6t1dKXz/T0qyTCDIsx7SItUOdYSMQ9E/0WI69lpuDXm6G+U10uZ36Y7PkQJxPnltL4OP+MF/Shc5zQxM0Dm9hQkBUX6lN9w++BdPQfin3EkRyoK5ImdHqMqp05+TaRRC4yF2sN2qUsjBfB+OhIBi1gm2FRw9LA3Tfvpaj/R06+5OosvyTE6noHxjjT6TSb4LWRKjWzSWGv1+gjL4PEmiXhZtheQRzAYqxEXa10Jw7IBwMtIH/BOE85UCKKKThDMYa66pIourCvYUbg3ECFuz/o9Kklw9fu2YEpcAtlWOznFGE3aPAjQ87i/Iom8OPXTAKpGBBqdYXBSmQxRU2NkfqDCs0sq1vOw7xQ1swF6Yc9qDaFf2r668nE4RKIThOSJsV1sDL+XqMiYlrrTRRebj9ra2Zt4lUSozlweZAG4jq/8YSumYCUyJdqRLaeL8vTabatgLX41jzWxm4mXO/jFjo1izSRutcyPoscMKpp5KufLrnx3Tlf3St/By/yeTVony64JCwKSnMK6XIIdxeb4D+OqSBZe3dPaTY4F1EH9eW14v7yV08Y6wDrmngLFpjMPCqn6YOn3TxrpYh4L1havlp8sb9e7xK/5GljmZXTvgQcf2YLaaxLDWh4peTtFl5dvi6C+ADVLf/ubPnMIkLxupE0vvpkuaJNkD7Lk0RCs2eMJvPpP0ziZOaeyQ+e2pMAUB1EDayD5sbPNdXba5fdt1D1kezhx00mzeLJYFJSUkRykdEbDW3i48pWQTWYx21VNi63ISD8aAOqG7tlkuIGJ4SCHeFdqBKA2muXgkO7+CrsmU7cUet5EgYygCzrFyvFrrYZRR9jQiX/unyggo99kRaMNvB+YmccsmMalYMu3nPaA2ttgmnajIzkq2C+N+9GKGNgTiy9InBeV8tymT68L57Mz4jV//XBlNMD3nsOQELGH3ND04s9/s4U06MpEpn/ElrBUTE37NudODPgtY+CGC/dP0Ul0z7IWE+eECkHWaQ16kwXiN2O9P9U04NTZVU8EnA1N28eTP4Q/bv1AKF1sArxY7yuZf+K4NquAoKcT6XCM3C/DubHOQraBoNy9UcCVWKagQukt3ziFe9ilQ1OgZRbOAYaVjsfaiJnnkfSFL8NvBZeddxj2YwecnIryOqtPOGnUcwTm7RBdWf6GZ1P7sqPU48e1ZaVbMx4oTo/RnHgdbGq2rr4zypepud8Z6f1zQBYoY7IagyznIbz5vjUEZhwgunCWrblkZhuXjx84XJk/xUg8rJdoHQA3r4xRkr+LSziV/EZhpJdtoMdRgX9Zih9pjk2A2My3ov9RwrFVB3EzSeTrsd/js6LDH+CdvcwmveksreK6gxuxSSPZfK2tnIxKnkUAR/mujyzpymf7kgSvsBLy37+Bne91duRaWLP9iOM0f+piyrbrOd+Yq8tyD0AZe03KKfSOVi61eqbfUhv8Cs9PL4Q6+3RXHm3bofxgxrvWJ6LjFYuP9TNjTYZ2lNMFnni6qdaJKHmKP5MAQwf1QBVpj+tVBYgB7qGg0A9WuoCm+4ISZLbwMTd81iuyWV+ej2OE85BOAg6NQiQGYo9+pSQtOz/DEfH7GSwaZM+eE3sk9Qf/1GRdj56upOwuMG0yyL5IIcCU5EAQ6eaYZ5jLwfysq5D2/ix5nbUxXSg/XnTpckCB7kiBbfl9+YfmDkbnAhEuva3D4ZKebe7KjQPeiP9iAK2EvWz+wQV9sDrlZ53LVJNm+w9vr1hR3HpB8UhklaYumDLisA0+xkTomgWqQ7pITSKBwGyruYWt00N/OxLyGakg9WPto7RENEFMa2/lySxc9yzx88jcRF7TLzs7N6QWsi2Og1GvUetLmupVofyOSNgKC5CD7nKtEFcwbSLVY+/21PACURbfjl4+538pWC+qYIrL66nrGgleuip63KAC34vTfpRUVI96lB/5srHsX5nlhAl7lfs0rq5YE0hkjl5+grngeLPYgBv4cInj7hleABjzwu5hKyhsklhu5D+3dFkFw0BvKzk68TXKd9x8vzP67lJQYSYw9Ys6EofQjI0qqp/nVl2dzEMZuGd+WGAgZ3/WJVHmzd6Je1sO1MBiYaJ5YLt22E3YslHr1eJEQhunnsIymia+pycz/p1qlbGAnPCI7TetxuTT3tdsuO3wGvddT2Z39kMMnIDKHvS9VRf9ME4szPLlah+tDh5ZV1zsnVtxbqjGpzQ4/m2w8hO0Gmxo2zNpvKv8eLk1DuH/q9Hmq33bmBR0MKWvrR4RYvcr/cJNP8RgU5nnBFxlCR9Gv61UI23wBdF3+icRsui+L4xBZ/J0PGp/2DN+7388/Todz2dDLySxojGy4nnfMG50DvL21m7cg7UQUqSWU+EwSik1kmOs4LHkGAAZZKED6Ahd6L/0d4DRqJ3UbY9tK9JA4XNy/r8fBMTmw2p00Qpz+3c31J4KSJXrTDNcWJM0fam0lkzO+bT9+DU5K3dcajNd8jGDO4mdqHX0NUOshEbWQu/jWUrujxt02GHV75AcemrrOFP7pOO5ULZQMqs397jWo7w6qiFFBqSMT46VSsCfN6ymewq4i25EL7ulRGv6wbG0Hel8Y+jtrqLIf6re/eFpEEr9YHUOEEHdAnCOsF+Vm/DeKtv4yWYta0shkv38pX8bxuk6kGvlPnak9CtXxesi3ojTXdecj1QAe/4B1MZIOx8D3nJc/ag4YOt9tDwuHhN9tKQFrDq3yxvu4uM2PtvRxUW8iiFx8RcR+wU323a3NgNVEuDsU3pt1rLBtSQmMQxodDmQnOGKnKxSzlgL59cDi3bbYcAwhBhnIjdvYZEHJjTwVpBSa9TnwGMddP3JInt54Da9LcxXEvwJl0NuhTf49xoBHHxOmcwEWTbQpk2Spsn1KohWV5v4zg9TmAw81urPIgDln5k7hGqxW8hNfC6Swgg670Ccu9/RPLUTtwsQkgbl4CYJADqoVs3m4oZ6Ani5mngewTHkUThVvhkIANHY+JijBeJqIQYa0WYZL4FZPb32Kh0zFgMJGG14KbN95mvEVf8nu3xwucwDu8FO03Vieiso6yAFo1fSXDmdErwZrHH7Ms/3pVKNjdTUzbBqxI/SibzWhWEIl3n0j0FRFxcKGlBo0FvIpGvDafSY8pwhm0azEKFaNVIqGVxWZHASwgKhZxlYRt2FrTmytBWs9kNF0BMf6SZOUQQVW4JNdjpQN6dam8NZreBG0srBWnaDlcLR3Tnz6A+l12D1vLeFHZ9J1gX34Gv0y4ce3myHmmWgNgI0ai+uWkGNBHIEAg1TNhuLOXJc4XeHJsHf6H9nGvyDDeNnR67mJSIRVBCLSA1KTKDiE7fJdkDbHIgmmjih6BTtqMaPixd3jKo/q/y37NiCmTfjgfeAWch9CfRy2E3x65EAQp9pL/uC9zJSrelIPgUH4BmAnSxmiOrPLuxD9qZeQXdNJuYBGzUoSkrU+fm6wHvB5MkQxgC3HRsXJpW6KsIlQ4s63JbPG1FZaFOQYq+uPMKhLT01s5F5GGiJClXomPp3HpfDtf8cGHwMIrwXpl0WB8h0wm/1QBnbmiuBnExfTnYdfkuNcy45xWGzEbxomKWC915YTjetqbnKKfm8vRW9v1FyW3/vvcRBIv1glx6iN6kjp+LXBskwcXq4/RxHzI3RSkEb6ZKEUxOpl2XkXYe9tsOhbTvuWzJdT4H7jixkVo9vBPLo9sopTRnjpihShv0+Zx/nDQhSW2sPt/KvGDtjIO8VXoTPe7viksFxbId7Gv9cLlNN9HUmsHeDaA4mFY9oMEs0yoO7DKu5FLBDbyVYCnKpAw/72C33ygw58IA/BoH2ldsB94uPin0jR676muuwWjMdbLU0+w4uIWp6WIlo4B4XNjVONUik/Eco4NSiwR/DcObHBQFfdf7feRYWv7qHXfMNoMaPXwIy7BeM9LvGJwPC/CFjXZcxJv2Gof+bug6zIuUq+9rgRaoKP68zFP7tE6/8seRLXq3X2z6VXtohW3hiqQo9zvCUqWxEAUokacBxhVuut6cN2R/hjF71pZyWxybm0Uo3tlUKpofHvf2yvDZHfpjKNDDogihf2G2ly2Ylb4WG99XO/Gh7V/PHJCHGfJsPcMJYMjKInN8q3/Xh20UC1nvEw4U2MrSAAmvzkkPxAc5Sang1HemW+dzd9fOQdoZ0JQS3iavA1BIMrr52Ga7yOqdh1pGOx7iobumCtKPQt7C0akn1NLA9A/bBvIPccYKrBusnPovNXhem+3hyOCKLBRPWR3jKQOmm0CR6ICZ8Bbc/uryP9yTSgsx1GNo+Od6GFnu6HczLNWOz/pw/Zd4hWPtpaXeIHo7xPh42IUb2IDJ3jw3+b/cqAAB+0uL0YhLhq85XfIroOtmM0vDu2S7OZu+1+jJv80vkiI3mdBB13LupewTmF8f79Rrv5aHhqI7kNNbq6SaTGJ4UWZQw/uI9rQtRvAhhMSj5SGzYnBos19CeGNo64kGbsLWwGb3LKanLOleIeYypm3YwHpiPOP0cnmHZPUne2PivStbLr4hWOoy5YSzqvn6Xs45S0vo5KElTjGqkDOBSQHxLzken0/llfY5K5PWUQSimhyAyyCxu1usr8H2SyZrG55Z3bMoGZiCqiSGBW0aFUP3aMPBhK7hSD5NtVPist7gub8HqOiEQy5EKR3PnucJvlK0HL0H0euOQaIWdHXOFqRkeMbuBNmIKiNkXQE5Lzo/dfh8o8dz4s8GUn80JUK4pM1t8prOuNIsFG4dpx6DdOb14p4FUmAoGxyFbqi1W5AxP3qajHGLHfRmTh9ck+mYJuHlKrCTNhrUn/GJaibRPlnBWGbtJYci7VvTfIWll8OnRngqZVOPZtv33Xxb/Hl+5qwgCUaZ2ILbS+LBO06aON+J2qafE8r1ESvnPXy6M4zsjqjNUCw==
Variant 4
DifficultyLevel
580
Question
High Tree Adventures charge an hourly rate for the high ropes course and add a one-off charge of $55 for insurance.
The overall cost (C) is represented by the formula, C=21h+ 55, where h is the number of hours of on the course.
Dora spends 1.5 hours on the high ropes course.
How much does she pay?
Worked Solution
|
|
C |
= 21 × 1.5 + 55 |
|
= 31.50 + 55 |
|
= $86.50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | High Tree Adventures charge an hourly rate for the high ropes course and add a one-off charge of \$55 for insurance.
The overall cost ($C$) is represented by the formula, $C = 21\large h +$ 55, where $\large h$ is the number of hours of on the course.
Dora spends 1.5 hours on the high ropes course.
How much does she pay?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $C$ | = 21 $\times$ 1.5 + 55 |
| | = 31.50 + 55 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX182ZJjknHmYGiOBoLClKrXGxsrsHaqzz/57EGxUHVvFiWrwgYTKrHeGlgjEQMKfY9AuCPrnmFdbfJGQLtFPqXrwaLFlm6DZWIzZO9TSIqZJU4rx9g0YnNe4n3hweLBrLd/jh2rgxudFXGhru6xrqBzhCEqXja7QrIODXHSNoLRRyn3mCzT6EoBrVMq8swmguL93K5RCpBZiJO0eNCxPos4SsvRt+6Gqnclnk8kY9VfzYOiqvEh34IsY8j7r1fs04n5r8D7t+k5ni3D+Pk7bSn/D2abeJGmBq2fN90qRHLWE55OEwXkLe2JDOta5g0vbOWbVp89fAZmr9gKaOhcTA04ojiX6lE1/2WXmFdr0krS0lxkp4+5VQS7WyT6dZhpAd3SaXfhdONKOPK4fk0AZTd0wI+EV4C0xHj6xKz85SETmISIkbyEh9j+PKh/+PMz8WV+ls5ZhgKwqoFcDx83ztPHgDxBqz/oO7ge4FdQ4hCFrdX8Iwyc19wUyEfXdL7kRcE5Uhs6DGIW4UMc8FEASYUEiH5Q3Bmo+wrKjR6VOp667RmMiAcc40n+iN1Vnzoo0gbo9HVFT+mya9riWaWKfHebw1ltRzxfbuZclhpK40Z/YrVXskqjYwqdV6o3rC/aYiHCQHVJe5h7sHxg01K51as4IcW1A4ZFHApdhyjixI7jC8E4e215AyZKPeAVckpZrKjkRBNsNiS6UeLW1NnsVO/xDvS1F+DscYbdZmdBlTegWwi/aKYvO1o4MpPcs6R0y+pqcwtDgMp1TP4Tu8PvnfzWr0wfU9xHC0pDUUMHe7rpYbuHRLwaJ3WiEe0lI/x1FjoAVfKwcjrIYK+mxYBJEJXbDNSI3JkGqJxcKHEm4H1mKLeun+upgBwas1iRTnkUdcTDWA6OB1u8fxZreOn0+oHoDrx4O0q7AZtzVRpe9w8818uB05KjFuZ9LGNWwuSqEYbYqCvlF3RY0cyXnXbqOnasWbxZWDWkIiS1PGvLKqIU24eK+n4SfJ8Ul1Lv1lTce2wISvQtOqCGFhDeE7dU0T97pXUgbXxKyZksKXRWKXCsbV4saY24uX7bg6MRaElewPzWP16CrNfJgVTjx7GOO7eL0XACdY/i3u3PTkM0QAvwm8iqIP/if7IN4RsbQCYfINMfBWihoT4dPLCXCiMXsxp04paD+07+NLc/WyFTGmRN1As5jwlftwLQ2aC8YPCeyVSNh63VyiOTmPorq6zQ/08JImJCvOgw7N6YJr9ZIqWks7whpA47nk91mIFxSdkhLVVGX8Ycn+patCd4jnxUZa3p8HZ92R5ZZJXESp6b7e1KyE7vSVWJHtvbalUqAmEFuUgGjvNLJzt+xgT+HHyoI4tABrTlz4Nlpcqig9kPwVaUeq9HMO2vcmQ6i5kx+o05SP3KWFjtjL9+ZG2EtcETMIu/hvhWufAbAsB+Kgcz57M1ul5af5zq5etc6ZQoKHLs1TQZGTslwum+dvfzAviDKJ0Z+TcCDKwb46wKktd0x4iw1+Aauk0853/dTQXAH3K0vRwdF/OUEE5LbR8Bf96CgQUOn9nIyAzuqtSCXtYdsRzgFu8tR3QclEfywniowk2sW7hjicJ/l4NiVMDJB1DdPBy0D0eYjXv0nzEJUqRk0CfGLF31bhTV0stqU0JhTyb8NJrntUyGEdSzsl0nSr5Sckpv3rfJ8p9vOmQ+7CMxHyxKp7D2Xd8N/cx16vKUf9/hvcrU4E08xecfPO5gEsfgMOYDPoi/Pb6rRuoB4n0ihmq0Qj94FGSZ6uA2WuPliUN7sliHuGvEckzQ8guk6Yi1U5KreytN/0sgmrYU1ZM9snSniLG/0ZuEIu8ZGF83VmivvmcvGRYULKGzX+MX+3dNDByQ5rwinay+4+gAiwpOfluUgieO4MBRKXjs41JdhMqiMEB7KOoQSSMOhacVytvfIOFu5LsgxAt6P/6pFv2jv6FnSf62AKw2L2dfZCrHcIFbmH63KhpWWmrVN50DqtwwsKrt59f6DRjSZDtmLzajy3t1v+R3Tvfw3g46nVOqXpeKGwGITm5Z3TpeYPvMJ3o8bouVD/WlV1PIP8b72NPzcHwp7zgcwAC6iMbW6+vRu+FuU1TkKHsVH7gPoAFpk7poKdHRx48LqXYtDqDT4aCkgilQLA7j7Ye7GIQ1hoxxIZ4wDEBFuiZaRG4E3vKHZvixQxYJGSeL9dCFlsCk42n9/Nc9w53kt9cgYznB/qQxg1Pn+QmzMVQZ9SKuce0rY/bpvomnpQwb9thsllt8AEFql48b+jBtFinVAmXefzb9BZqyy4euVGcY0hsbsFkBOIfl1mJdXdlP24kQfhYw6JFn7XRJc0JmzBaqPiUZwdObT2G+c9F+9mvCpra10Z3mx1OWipqPxo03gGF3PY+Ey4MoGGV72GuOPQ0XePx0GUg9ramZp3nsXPDMG1tfCstay1zkfW03Qb1jiOiMJzajnxG5FTQc2YFCHuj5Nd7AFqc3zmzWdee5QAb1oBrZgYH9SvxLBz1xaBDv5AmCTTDzEfK9xeKX1d7iuCHTy83vvlIPIDYo8ECKGM7zgcd3zp0YE/QsmmXpaK5vtRfV7NBVdTdknD5gwP6ssqwrMFbvYvJ1kDQiphpUgWs2INHXijM49SZnmAUZ1AXbOVvFb84TmAubVdSQeP1YroRjGhJds8IrInF6dorXQU2M0c38sxj8AXPN/J/04qwJSMQqBK4Sh85EdVyozB6IQ8fJNM4yRMPHc3kfNcfzmhY2YOk+0VMVD6uFqWgfOHFBcNAmpr3lwwKCXvOdyY2ssAhlIySm+jqKyGv/59TnNh6eF7qVAwAEe0lbCLX+pCoDvnzWxvyxEVyxvmY4FwXcE9/wDQEBb8scDFVuwWjvfRHvMY4WBY0q4FXCmlgZq/16lRLvZ2IrwO2C2S4yoUc1IExQ75J57FVnJAcGPA+XvBpcpwEXA+rTL7XBgjiVbHDInXTVlYDwJQax4Cj8e9EElxZBZ2QSLip+/IV4LnSpzbpuubBgYMkiXFADtnFYU1RRoAhL5gPyiYug6fe3Ra7xFfT290kJzmb9xOcig28TQU+4N4A5EcrAmVqE9q15SraHfiliCx9rX/jQ3dK7Ww6DLwkoyCX+NrD5boZxTit0pj2Ak5FXskvP6zQzAxisJZpzV20mz7WS8V55I1QuNK0M6WTr9hLssDo+i1ieHUhhgi/3w/MTXMXmVpBxzzLmYfkmedpbFCpBRArT47Mw830i6Z993bLUN/KcjDOFAq+JG57ZKbIUlXY+voHDoi0V17oMqwMqFydbXOgfmpRyXttmZnAIfH5/gsdQFMQygcILfX8tGn7ngknslXCnTQ8V+v0dRfgWE9yQpco/DGfd1rd6tuU/4esXGb8B9N13u7X3BmHHMSIhZRrZg+NJRcdH0dnqz6bF98fqnx3GUS8gluS6qVFBC0GueVOPcwuG49ZPXNGajFrh8v0sYTMiOFTNL741+0XQ1mhgnOJRgOgTclapkE/Texbzg8SPjsrmeYtsWAmX2nT5OL9IlEuo/I8zAGeldnxCbBJUZA+WlQNrpwoc1f7MEgeQbcrt6deTqAUv4W5HTufWWjbU39xzJCtBeEq4+VGzRXqQaFwAdlybwZEqZM7PpE+XlNAlxYFCWM/xMLPG9wx/skJEgNgjz8my51lEqj1vUPkeNx1VHY7j40Azz8WZouVI9kqGf2tqAdxvnjNfkPIsxNNtyVaKsI1UXtzvX1YMu0QxbhKDlm3mqkqxNlhn5JLkfV0j0fLDJ0on4acp2Rt3PpHGmgsM+rvtv5gC8h/SJnl66NeFvKSTBOUWi3bwCBXZY1dAnwt1sa18d/r3Etol4/uXNHvu3CaRLcZjuDvJVB9u8QNPuZAUqE5zfgLJyfTLodRDrEhp0BTFdQw7iaZINr972+2dwIZ5RwM5MiOez75rjatQE9akYrkuRNKW8l2P+l86DTsmsdgYUSowXpoQ/2wWJu7bS3C+v35SOufADFxp8u78E/btqCIiOlkPQqMx4u2kWPbUgBJP2+h0E5uIARWSN/mQxWEUsrkQAzjiWXOZNGEbOk2Rt/lMWFzXReZnmpplT6LvZVhyhl6sykBBpZMYPfywFfXga7rXYLb4SoeSSupqBqaDKxVS0ffmqpUy/dxaWTQ/FFQOplk5kTTUFbTrmXfESavKOEiTlMlrLuFcsExIIdj5mUvYECuHTR7lsGiBfJf9his1KxLfE7hwFJbhVkWa6WpZlGRv2DMHJRYF3WelGXh1w3e4i9QlDcH5SyBrdeq9bgdvNwp/Z53YdvH7C3jTZlew9o9MMWfdYzpIM5c/ZAVQNKhDVPt9ddWL65k6IrbcWvsc3o3dDiLt29+AZTkgfBX+wKJCJEUuByTBSN25TD5tkQIVrc2TDdvpy3Ge+KICpvuAJgfFdEBzxNRZ8haFiYrdfPIAjd5hmuWeEOGwQuTgMdkgXS3xrzpF+cnSDzdi8m9aKb8Fxuaq7SagfDqVxpecNsZiBt6R8C2qprLCNKi4egsMed/hSZd8Csz74BgATlER5fh+TEBHu0BoK7v/fwJun0NIv+PQTxmSW0AhAlqrtp7U7fzsZhUhFqvszolsL1xdKzDlS38T2qormCIC/r3rWVe1Tw+6dUywt9/McQtIIwca+9TWOVhjp4mhckUs1F+/KPe5ZdkKvIydf/Zco/8LqgTIAnXdMx1H8Y9xl4XxBDDR5LDMMJvQFJqSFyzsQHedoQdTY/c3haQbJHZlqID7/1xPmhEKBs9fZHIE09JxmYS3XC8VLXKy8DuoFaKfBdkDwkuXnoZkEoE1WuevluOl6V8ACReBFeyUUS4H8nTz4EwtqLXETjjWzmOaR2p4ezNQilu1EE7QAfrLXF0nvo/kAvjiHZrt8A1POSHL0impKOzeKNJIPBRwog6gXRM8Z4/DHB0JB1QJkJpL9CWxBTi887FQqWKHu0ZRziPF5vTGd+rKmTxPIl3fZoeV/y3dglZgjmtGpmzIPNA4uf3GHE04usPbM3q+te/9URMIzfQkxeH3ByTuDh5a5r/ZOe8EqOhi5/9sPMMDm7khT+e5raZGokan4dcFaGyNNB/5UZnYhvdOapa6MlsBimS0GJAtfmTIO7dtt00NNUYWUTfRp0fQ96G40+7jRqQ0hSlcyhapQhhITJikRdYU4AnHof7vnOYz4oDvYHL9A7scdIl6QHrFLYVFbd1FSRvTT+b7V6SN5RjnfCG/GNVYD5T0zMeFAI/bz17izn7chwKmZBhIOk+jzQ2HqXIbu52+aOjtlIy52sMz8RQ1V9OJlnDpFwaOZQfwrVg7PIvTxPjU1JoIIeolRKjtUokR5QLof+NoSGsxx4+p8rjypquOPPA2GJBMhUg0h+H14O6gOYPEhGJMBJtu1Xl5KsQGU5Az75GIDCqBF6gAC5aynJRVLbk9B0vIIBcB52mTtxv9yoaQ4FanCvIEGnkGUXKwW2byDUrokWxbadmUPWIZWNNHLT9DdsP7mVCpm42UUCNIjxqKK+2srLHoFHi9hl9H/OUgcTEcwpCkrrHvaaBcLRfxT2E89Lm4cO5cx7SRgpIJsdI/Oyq5wA7k9gmeirDvm7ol/hSYW/vcA6wWqpjWSjkET/Y4WS91vIuweGvSCHWs215cd3C7NjRwK6BBivmrCUQUsvGUm8t/wUGDQshemIaGhzTyz2Hv86G5jwo/qofoUqXZH2PwSBjvYzikW11fFFbqrL10DKhazmV/bnddHqFcISigzztrmJK81dvezPDKDUQMv0fnRHXstnErQNC+68FrrAhT5zwL8bIgIVR/WKvpc1G5qScdC+GqYr7czTHpVHBlz7VibRsGegHzRG7HlSoLzp2MhCFlxeqd4o33Z9qzewQjdDgKBIlh5U54zoJZspaYxSEt98JFDDzGdRP8QPN1MgQdQi//N+kirBLzdf8H9leDDqy9RlUblmTfizPyNdtmn3Myw3nUQUaNoo58bbDEWI1rke/VYjc78XWYmXUZT2t0Rk19YEAU9u3lWjMfwKKs25NOgYhIuzzwnh+5MmTfKshm+lt6pZAV2abP0NdoPbbSuH7XyiUe1lKt5xewWHS7hb8de+c29OrfsGT2Ar02fusLpaH75ssyDrRGWz3wvabNIEPG8mSBgRmHoso5+SpJtrynSkzyX/pHjxUtxxx4xbpwDD7CsW5LjmeoBJbuTie8eZoSS+LIfJm9lZ15cIB8YAA5XKzBenq8Jdp9eiJXKHUPBrwlhcLAoOMHGO6KUCz9VxGjXPClKrjri9BhRp/SXlMMfIEsR9pZDT9M/IcOaUFUDdpD9L7J8631uu2EyZpvhm3LEbOkuQ7+dX4kD5O79ueFXTci7vwwM9t5mXB/aikjNl4cUQfDPMsZWYltP2blBCE8K1Je23SDQcB75h8u3PgQVsgJ93OXZXqvtL30HHUW85CSHoURxVJfW/E/x158ptTNvlsd3OiwajUFMIsH4rUxm96Ei/+DeuEhuMGxZTw0L6MV/RYTsIh9k09PmkhxDyeF2TMwMiLv/FnLvt7eiYjI8HDdqXTeAiH29KH5Dv2/QW4sRNDp6sUI1ewg5EtYi+rRT0HB8tNjOBRrlPyZH4QQZY/kHeaABTzcNIhxC5F9jqftn+utHnSX27MjGcfOiNB9gsCKLi3rMVgUBOh/9DWe29EhUYrReqopJsh5vobSwzG1ePOw8qb5JjS0Ww2AqXvZCB6Tpl5ReY+73HWiy53d5bNryv3ysea3TNIm6+6S5ciMxhGf+EIg4werdMSIkcnkiYOWwAasdQk6UJJzMroMSk+hD5bauYJacdbPX1Rx0N79OKkb93UjUA5aklXIJvQkd8z+INlbAVWFhZcVgUlGsgXyGcLanqqonBDLHBmP/xdj/YiclUZ1yFUBeNgwBMHf+eZo91SicDY+jukjIYC7mcz6/ep7O0msMWVnrxA7UlRnKZrtO9wLMyHvJek6wVRmgks73YIkKhrvWiTmZMRh9eh8qqaXQiOSCm+Q0Vln7DpaSFZwXycChqNO/lfzH1nKmLgJTSaNC4zk+CsGN/2+oj279CH3TYKf1CX1a85Ldfl9rKrphhNql61cNW8ne3R6jKof/PyQdU6jezhkOxm3U4eSPqOGvcPeVW2cdohAuaHnt99J+/Kq13vGAXL/iwDSqcfwOeOBeH3UKWqfmj7lANzJryYezF/J+AjCzjA8IHN0+434O70/jM8o3hRXeA7+Rb+Fj0w4ZxhDa3n5RlcOgbeOLTyp43L4rdMRgNI57B0zF5Bf1jIgVzg8iEsJiUeYGJO/JMIV9E4hCZgPBkm9eEFli83U/NRFxzs3SHdTW8VlwRnpUbSJrcZpz3Enp243RhEugMMiu/i7JnAe8oCQkMaV45aIsEi+KQMpPir+KKht66a5EdznJ4REE1rBFUF2oAv3P8qPZLAfzgpNHJJD5po+qUrMCu5j/qisLlJHboLgHBgqD1iGF6vpvw5DAXSrj9jGQzWfQaC2c2c0scTgs30Ehe61j06aAlrnuaaasbodgh0Elgmm9pZOuYMEskcQ0CI+3lQxqMDyhQo4o2RVK5fSAHrxNLe+l1gm1uKoJawVyrO/2P0TBbh8VXXbmhnzoE1xaG6rC478cP3fMzOWlxVWaehplTjDPdK/irUpPi7V6+4Gi2NELoJlgK+mb+NRn82MZQOCbgg8ueeCwDoL68FCcS67DKAogeMlUX5rWxltnBk6EuQH/ZDutyJWAXa+hUwo9VvZkOne6I5Hd7nGKv+kfNjIkfyIKIIX9lyoMCiF0RQZ7F5b/Tp66GPzCO+Hz+uKlZ8CwlgLvz8VSFL9i+QBalFid18bfnkdwVlDGcu7bPAbGyFwzZ+jLjUKnV9qnss6gQnFyaKD2QQ8YI5gFs4iId/r9W5tBRdVr4tdD3FKu3HR+ZYzufyGza6q/byn/7PK/KoPMPuXvgmhPqONzuYuigLowcwZxjSOmeaMKjMhVBCbgaxnnZQ9z8o1F1uoNYPCesWNjMVZ6rxCQxZDS5VPa/kIRPP1bj96SyMQR8lIAgdmdkCAA1wUnDpbScxkYYNJDqp87Lk2J3lzAGKXD/yrN2S8AJ6tiGcO/IiUlW/1b7nK+rEOrXfg6
Variant 5
DifficultyLevel
588
Question
High Tree Adventures charge an hourly rate for the high ropes course and add a one-off charge of $55 for insurance.
The overall cost (C) is represented by the formula, C=21h+ 55, where h is the number of hours on the course.
Banjo's charge for the high ropes course was $102.25.
For how many hours was he on the high ropes course?
Worked Solution
|
|
21h + 55 |
= 102.25 |
21h |
= 102.25 − 55 |
21h |
= 47.25 |
h |
= 2.25 hours |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | High Tree Adventures charge an hourly rate for the high ropes course and add a one-off charge of $55 for insurance.
The overall cost ($C$) is represented by the formula, $C = 21\large h +$ 55, where $\large h$ is the number of hours on the course.
Banjo's charge for the high ropes course was $102.25.
For how many hours was he on the high ropes course?
|
workedSolution |
| | |
| ---------------------: | -------------------------------------------- |
|21$\large h$ + 55 | = 102.25 |
| 21$\large h$ |\= 102.25 $-$ 55 |
| 21$\large h$ |\= 47.25|
| $\large h$ | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers