Question
In 2015, some wilderness parks in Tasmania lost up to 108 of their Tasmanian devil populations.
What is 108 as percentage?
Worked Solution
108 = 10080 = {{{correctAnswer}}}
U2FsdGVkX1+1VDn8PTOq6dmQnZWfrsT8xyrurqL4KaYgl+0Uz3Zxfn/FRcDOW89IeKf9u2h3t+B/ZZ+ZI22BIwLEMVHN7QPIg7sBY6Gzwa/6ZNHaqwlcoRNXU3DbchcrwhyaBN6Y8c6fMMJOFAr8iVhWtUorUVbqeso+0ly4bINhjyjvVbRv2xtdI/RU7xlpoFb2Z4w6gyuZ07Iz/82NenP+gATsD43xXY0vqsEOwAahyMUqkh/QNZUMbNqUfkxZaXSzZiWzorozFUAFHiJPS6w1rNECUazDsl/1BUOT7OQByXutzihDcx40mdF/fp8lQji3Spi/XeF9UL+VHXbR07v0QxR0309kxd8Fp6yGAOXsHjIEOtsdEuz7cbMIsRiAscGWzSpnRbIdZXpGrWidvgamK8MSyMy0XAtcZOmE5gtmuRRXoPMvYQDJy4FSDBr59Mqw7m6Mvd31IZ60/cLHuEFnWadfOGMTusxinTTe4Bj+l1pewpQ6TWO+TUZp9jFAmkIBJv0Tu402r4j3zh2maAX9X2Gbl+siigvoTbsGTy4tRKpni1vLM46/kzBwwPZkgEWTGLdtKcRvUaiXVnfz8dvQb+4LQzz1292WBbZ8fvlw5j0LYVuhAzEYgRhbwhq5RgAOJfDGi/OG5qh6ejB0ktfH6qJUYLtOLzS5jAssKhh1eLYCGV/Ls6gKIimfFc5LA4+2iatQshZ0UgwbAVgsouEg5HIch1d0qn0q0KeGrPeXjaf/gtK0NUKqsm3Q/VpbC4A7jADW6rRHK31VZhuw1c/CVPHgY09+Fgu+KdkxN/D52QMqBPrCDQt+wP+xUTaq/hvLJitfhmYsiXuEwa8HL8tRUo3Bg65j7w6QBvOBXJDhvWo+uSSrMuNVPolfLE/QkOHyZ0cb6Xv6eTCuk775oZvwpnkI4Zs5cUzltT3x09WFfAFP7f2XIdqZM/xs2zKKzer2k+ThKlk3OsWdRVS9KlA4T/dz+GNodlK3bRUOhCZX7Rs3zohWlEydyrrSQwrpprEgMSPtFnE63Gbdm4rCfXFtBkaOeesYPy5BROOVt6nA5a2Ie4n9infPxjjNvR5FSri/kFbVeTTaQJe8+sfys22jAnR/Mv/WS9oOUU5vj0e173RzsiFiez39ELt89cEmxLSrd2ReBscvR0zaSdlG54Y662GqiCVYZs9XFPxRIqzc8Xma72rQ+GD9amkgk7z5iZYu9qJTQ6jpB+V7V/kJ2qUjyhmxc7OuTWfkfAoBuWPznYcY8ki6wKJQDuPm21TrxvfbvkTL05OvB91TDQeTkODyYNOkGXknonc8Q2KaM51xfxdui9zhK7kzwON/MiIUiLG+OaIzPrhQ60nOlXYeXHcQHApItFHuamgqP686HAeTuKC2xj4pW88zThj0/8OnjGogBdwjZNHKyA/KNJnG17oUGzndrKGliLm7iMA5FM49nOkGRnj4vJKshZ6G/OC9jrXFzGof7bHJjfSfUw0EtlLLzd/OX5QeYPB3e3eiKoxNWoens/uTDB43Ue5NMyb5QnYMuXpGPwEzLeU2tKRipwfxx6nEuK6aavdyIoZ2H6gPH/EJzJADnay0cGf0ivyI9UTfNGIVbKA22M7MH0axsAX2MtlwXJFhPyPATaYmyP2PaSciYZwLakIsUPNnmQI++APSi8VWeWWGMbgUjCZ3FoMHDZAdcQVWA4CLi4HTPyxe8K/xYJW8xHQqlSj8hDwSr37+Saev0WeipEWWaqfdKTfny15Iy0XHbcpf+JDHxsXu8SEbRaXZ1dgkBCRRm5BNRdc9XSWKpZ0R6T9Y0ebWafWkpEZ1ylYJMrt2aZUufxJIwzfH2t2JO6TmF4qYjU5DmSSZjYrJHSejXaD/CS8s4dMf7E8YD21KC/lj54W172VLUw6i6Wuc2ElvgidK6jrOYpwcUykeuYnSGCfFJzlU6YvH++yB9KHNG3sd3uyCFQQIVrdrlC6y6T6tGQ+foth9n3+mN1jzrO7+p/rALVjOt83rHPvmA4d4qkGOJKlQ+4g9sgJsVzGACCUZ4lg5ZqqpQJVh+wn/7PanBiQnO59T5KftT144q3wN/0X5BGI3sGIC4tdXVS/Yuq0fypmj4xC1QozmcFDEKJxT651Xdi7KyqBL3oC3BhLCtVwOwp6SsAdJDKlrjIWXkSYTy2TgLY4tOi5NV7p0yL5VKeTkhhyh2Aain2Xf8Fan87jxn8qp5eb1ncP58mhORowkf1gBJhmvXGs4+CRDIHpkOQMZAWESXsZ7CQUD83TQvzIArM1cJz5LbBVpGFOIhWOBwKZl9vhYQSnxOYH5Pqz+wsexs6uXOh2KkVNQlNnFKEb1ASHK8CawKp3eyr7/g3nKYmtZQ/GBEjvaAIjrZ+5rc16i8LYqJuyJbo3LyVOdAHJdrSp84GYiFmyuLk+1NCX0FZ/+acJpGjnNQdfGHb2Ido8qQZNNKMKOOg9YElcyso4wfq+meYFz3UmM1eI7ojaeU3vkTybkhaKZu2q+cVFuV4vdY17r5e20o+lwiSzfotbHUSC1lk5/XwZyEGprJF2uuNdKu/G7VepM57094bJe1HOLPe0wGosz7BT7N226mgPSDv470YuVhIHqQ+rLXE4CwPNi4HFU7Kp3XECFaX0t4Jx8PN7CgRQ/iJaQxP7544OGLaW0D8yNdZlckGAKHbl91p3APjEvYAzFIbt+yfwkdZ64VcDD2c7OTplMX76plD5VDO0RYWew2HHmzhMPsGtcrU5fQ+byoQSh3TGbkNXqNUKzTmZtlJ3CKkXZe5QhBkYgmhMIJ/7eoMy4LFOvvClSBXPlmYYy9cTgnzzniNhr5Eu++Qg+K6gTCi44eTTsUVmUM3AkZ+ePj3UdQO9QZHZy/toQz/RmV/pO48cduEh8wYhxmGapRDeAwMDneaNu2VDStsd9DxqAm/6YThZM8+SBUwH+N8McyGEGyT9BLEfl+iBUdl5z/YQfWLvsTOv8EOoFVihG7GxIDMgqOS0bHleol4lQbMwcKDMzH66UiTIgSoSY9fcGv2lW3rmEDrUA5FWK+BL4HYSmvK3GdL5fYL0Ie3hbZB0p3BzD8oGCcnViUBdyFIKMeZKhS1QY9ccqHWycQYXH3tETdrTC9Arm4/wJK4siHwtFwv1AXdmAxMJl04AEvKkk9gDVfe2MUmtYLtcVAVPUj1xg2aedNCvSy5WNeCtTYrrAW4iryDLzqPyo+nV0jGoxrTINF5gqPoOqUq5w/Uq2zF/OXx6vvkS7Ok9mOv5wJKSIJknap18JvuzOWHSNcz4NQKX0rMoGIL2TPlEOZfwXXfXxM4CFp0D9dGnGYHRiFFq/h1fB6J0ASYesblw8wae9eIX/jeb2mJhRFrJbn/Oh7qRSp4rdIwc+s7ZTrfbLT3FZoMPH2Ck/xxpDdnUlk6mpT72t4rk8YtenkCm08yprBK5F03sOW7tqNNrsILVDU4hpkcG0UnuhnqCoZ3phA+sV4893f53jQjjFsulDX4zb9qW9sAJriiJUpY1Vi6LeVhL2tXh/mvzNz1NB8PAvztimPWgGrUqOyEpAQbjbsbdBKtTd8b3GC+qiezR3E90tOQfW3nEYPV1w01TU5Nyq7OPMz5G6E9EXTZ6jw7cc9V6DyOhdsHkTld5CYW4Fmn31dw9J0D7tiAI03pyijQUeZuGFqMitnh1seXN2Gf/X5RqejK8+ALbGAy+rRuq8UbBkGx5jIxx48rLXlE1luoCO452PYlzTMnzQ2pNOvd2uu/0vqWAGvXjl01ymO1btu5IImJTbjgxNLiR/eM3k2bfYgx979sI4hBA7d89YJv76U5az5uH+h/DmAvW+PZwgLIvoujtaMldQa/wY3X/gGPW+MfbDJGHfOStLOtqgusqjtj3ZIS/lE2tiatvoUQrc39OOy5efiQViHSq5LmmOxi2C6XauAvXGeDincVHLYTC+9immRowmnsvFIXl2HhTSSa3Z0j2C4/6QcPFcDdq60YGDFkpnSWh6qYUoLsfFBojPkCuVsmRH0HMR2k0ZFD3f6OCt9mbncdK/uBTwkZlAGVXN/jgtYo6EiQFGpOabPw9MW+nSz6GjspfRwT50NMDFKL8VoUEQ2fK5G4FIZdHmp6pRbfpydyxUtGDB0OqZezvgrC11L98dSeJHAvG7CQUm2O7CdFwTNoEsXeEc+zydzLfzwaCFng8J7sEBAVL6rmsGFUipS26BBryj0jFbEewDSNZ9SMOJMWmCcDnDSrZn/JPK/xDOGlj6wOli6DStPfos2k3+eY5WbFMhn6G0DkOtPUHSNlsAC/WnGeQhN9RXKDpt4U/TceTd2AJdzrFsRZAOm6X5a8GQ0iMnqbLzu0fqdtGBM06fSP67SrDNSYpGgi4LBqXqoe/WusWeAZCIMAcgQEO+5zUy6ZTLHc/z9idNlnwmmBvXTBKMFUDPd0lmNKAT+MIFvXqWEFZ8dFbfFn3DRyJSLUInVIcZoE8cc/sIpXN15h+3at+42ZtNxhZQEWI2Oe4JMAiMxp4Ff4XA2BIT23oSBxb3mLNvCeBsFh3nypq+2a2ItW7WG/4MS9t4ztv/Am2+C2W6Sc6Ch3CJ2n53DvHk0LltvAnMwpgj5JxW/ZDk2fdrCxmOibluFBBuQH1FwSa0/G7nUXp86nkLtsdQXz57w/HxWu8sXgx6EmYM63z9uzwJmZHsq5QV01vKeP74rPrki/d2843wjQY6TjKJUJSA6NCVnm+pNjmqQTy0BC3AM28zUSyWTOiPjEqkpCPaDTS3mIA7UVtMFc9B6eUSRXzmwAMnAqJSkfYwSTyxV0/8if+qjomRKduJzA8ODu7bjIAnVa6+XUBbcaiqnDswVriefgZefQjvi7HZeJuEMMY+FtNMBxtglcACAVdIIALd8h62ZYSBD3yFDCgxH8MOj/m1w26wdfsGun5uya9zT8gDUcK7tfzM7mFu56/6aPAqp5lnjRAtZdhGmzXWz2ds62h019LXOfRnc5J3IPLVaidWcinTNN9f2Y/bovH27cW2lxEowP0nkxbDhviV2H6lZI+x1Sa8NAc+QkvCWPH/wA04jfbuP+qCH2yelNBjpSN89Urz1coJarltr6r6ObkUFMdeOS5RfIIB4ORYOkLI4upvD17gmF9fWn3pXN6BIzoAZOn/VxcggLI7//EFgbgcfd+DMkssp1LMT06H9qYRlZrFuf6qgzrtUvkZj/ovqlrjG/awacDgDG0UkOQyWc27lGmVh/VFjUF4R1dLfCmDSE6bWdRWgUjiL9d9nuBWSgiP2xL19zSvEiTBIqApKXOIR2OsKzudO6800acK3Xfi7PUMNF3M0Co679ePfvbAisG6tTPdxfgzuyMgUnZedfDmhE6gBmXwLVAB3obU0QXPF6xQs2xCK9zRXvCNNvoxZFAgK94p8sWxee1RDuDsZArsdVtVLqcVYCrYgniXz3YHWzJmFuOGuwlZZnOIunFZFNd7eYvGW4/2ndRpbI6qpFM80cioXAekUU4+QlAiJON4Gqqju2s0EuiJ75IfuUxvXAIUZTwbhygCmBUqLuydMwQwS0ZO0gmUcLI2dNj2YgGjg5M/9ToRK/NQMWnwzUfKAugM5pBADS/3eqGiqLev/W2ULxskpxlb2y43TCXZrfEfC6Ya04m9jPOL6+OcZETMpPzvDahFn1wZrrP8c27Cmqe42Zcc2qsB1Hll5yns3Thf+4b19AUEXjFkrunW8jpgd9PFwJ7bb8YCiHbxI8T9Um2S+1u9f10MxWR0JuIRL7hp8fkW0bRIAWb9DCAH6kyhgg+Uuu0gBun0ScxOUO7Lx8x+OkaQ1wxUoTjQqb6okFJQgx/WKTUrpOY8Ux62ERIZ0vTpmAk9rxiTX278ZnstoTVMP7AY+yEXnEq4yQ+2jzXYg2E6qv4IM59cvDesjTk5XzoDNW9uu8kp5P49Pf9JuTM0cNQws5lYRlccZzONmPr0eY0UhVx1i2pNNb6LL2VHQTmYnNzD46RJ+4JCMC4MtMBlwl36zHknf8CcaDowQcEjGXOpB/WjFuILDVdDYG/th/X3jsyAEQJ8ArYwF09hDBIaPWjDFKpK+qdwqlGbnrMRli4ECFScCqPXehJ0mOlxIVtDSmsNIh67Y+oVdjjByETP7RoohtVGhwRJ6+5jT/a6/VM77LtZ9jYWt32JSZMLBtnLupZpXhEEYi4moRLMpAu2Vqu1lK7Qa1x/wZKSHS0sYIyceQD/IPqmaRfLG+zUbnJCQQo6lcaRLns7HaGDt31fCbS4JhPcvD0mshHdfsQpbziZmt05B6j1YBbNK5WLap3+Q6l1h2WAjR2dmBkTFA+0Bw8ZcZ7wnDD7sZXWteuZLVvtFSgFVOCo8cFsBpHVfJWpZsKeyjGEkADiDH+KfqrWcZG/aZE6fyfqPwSvvJm42dw9uiHCDjrfWM3C7yVYueusl1UfRhnWlbhrmmsuAprpMxXcCd6pWGIDW0EdHgxmd0Z54X3yuNAdg6pk2aFrbds6fX03I8BHzJoj3KldUUSRQeuDEvk5obH/WBKE1lyvcLqnVmBQaPBDKLw9ktVCV6aXnOeuAoNr0biAECoQlTDxhCcUAOtLT/kp5H77QbUBblyAJfrW8ovZ1VkA6nym7BlI6K4o4u8F5I6CbzfYQdNH/BJ1BPT87D46aVMDsIb5dkF7dFZ3RFRvRV9G+1nSprG9dLdqTRJYDrZ2CCpC1QrxkiGP/o+MvFlzak456kljpEyAbBxCtjMvbIEVvugPO58FID9ELiitf7YClGv10XSQoiRaeLbRUbIp4zVb5IjZCczKfI0y1hu5qtHUCRusJBI4Uxubi8biWDD0pHDhxXBpgqA0HN4ghBKgCIxTwDYcbl8cRfiD6SAsTvp/38ABUmWMufxcg5ArH5320lYXAmasT3Pfl9d8XejT4y7SnMazcZKlbppeLUWHhD9f3PuCTtqW0KEcSfxbakzcqabqYsThkkpbad9W/mBDbyyMwCDO2j2e1yqsC/ACreeQ/DMJQHzEaWeDEAQOqVKyJbpbyMHCLuO5vWEbuX6dgZviSZER529+nf4Ctf6LwJ+qyfZ/58oISfNpbJsUrRDAOskXNzzKsI0LnKl5bGXdRo5apuqgHuMbcHQAcgtbQpsxdAdSxn8UV6RfhqYcXRbtd5j61FnwupunM0AizrtA5YQJH41R/pgY/dpFkWn7PM+ULfCYl3Cb9nHJyyFFOrLjz2Vv8j1dC0iXbLkpHu0lYT3xapALCwikkYwOA2uH8GIi3fuc6ZLx53tX+4V9a/AONIsM0n0rr8hoob9jY0YEyZSG9nR3xrX+K6XiqrT5yMmgF+JYWdIybKwgfZrGCAUBO3nMKNGVfGQ5UYi5zamYJEchEpFJA+1TRC3H6TEGQBvF9r0k1h1QYeOUkT5uDxoAJpbckeVMDUVl3NpkSz/dzIZJrXWdyu8L4R2wMLqdZxfHySPVCHS0m+6pQni8IHs2x8PlhwE+hNWMTUWWtlqbLnStHpl33xA6Fj0GvGOs1FCGDorRPcfGR0LGIvDhnjCbsYWeIywe8nksG+SzTSpgQe9d+qEyqPeV8EOANAjVmihJyDTF4HTh6K7pwNmhmwMExKMihDxSYxebYGnO15Idy2vgXLOctnGX3zPAy7O2NvBedj+Yuepu/J/FFBfqilm9Zjv0u7Mo0Lg91xyGZwVSa4Is9zleN3g0M0by0yx5eN40v0PDmkMstwqctDYH+yEKgS1Vak24lk1XSEofGzzkVfxUS5DvvcGlKMAimOdBA6SQKPDA2hwUZ9++0GVqxhRXDzglgd/fDfrI708eK7GKAkf/DCuOrrfWW1Zi9Gb2PjYKDdGbH4Gbl5h1KEFL92rLqSO2no30YPAIwBRrwFlIQnkoUrFvD5BEjWcT3a51BM3BYB8yEVSbdqq27n9EGodLSa2So/t7rPns+DWNRzeM14dzLPnU0NZIisJP4dNCNtmscYl97osvmzV+Q1ofvzDrh5HSPQI5zp224JliVNe2EFSFH9mR5Nxrtc/lu8O9ZHyJ0AwkcsOaXzwaURL3XoW7KWtZicjv/sXWlE0it9wuqYQLn4/xh9Cjf/RO9SWFy3qYisqiEoOKLCclwzeN/t71Zqy8jlXPPSCEJhtalJsq8wSoFSDAwRWAynbvaiHwGiXhY9oyCtJd0G/8mUrz4OzvQPlnvEg9cPp3rZXWTDt1Bt7TI8qzfIke8dlpCn8lRkWNZLO5tn0/9+JZkO32JK/y/9VcuOvM+nzaUpN4aHK+zpVTRB/uwS/jofAgjEXQk3kbm2XpKAxd+6dRr2Oqq7LMD1pInmj5Rxt7+ZbfMCdGlY7Aj+eM2nVArFDD3vxJVGR9SE/MF9lbaDW8HBIteak51T+OEUEBogdNIyMIqnCy7YpcWqlMcIOicmJwYRNoWO+fOgsbr3u89A7ALV7W6wCADHtn8cPFk0Ktmf8ikQYvA+6wtZKtiOlQHtVhIPS5KNFLGcWu1taGPkoUOpoSPeH6WFNpfA0vlJLDDVTk7Y/38/6J1rVkPiwSS+bpXJ3UREj30jA3E/EACZjBZw==
Variant 0
DifficultyLevel
495
Question
In 2015, some wilderness parks in Tasmania lost up to 108 of their Tasmanian devil populations.
What is 108 as percentage?
Worked Solution
108 = 10080 = 80%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers