20244
U2FsdGVkX1/es5FpXG7T1Byd3CiC2air4XQAzTlAKQn0/At5iV2ilBl1RkAqT2GzLRDC9zUvY0rG0nZdfaUcjiuQwVp86Wn6tsHXRSBn6P+jBQO27WahxDDVwk7dlJ8Er6QCSnLmrE6ncXL5urbOPlJ0V2zx6BC5U31fHPedkmnb/nH2H8hBRIVfkEA3+xzcM+od4zKvgWWoQoUnlvrb3mP+bjlsOyPtEIWCjmFO8KSC7mLqgUHm2wiC0wZqwMWpsMgJpgVpIHfluGrVhJ47DcZ0ru49ZB5pBuk9R8eqWdlvyo2Kg5WCyX37SnQ/fWK3hg/B7vrkb85jaQjOFYlyVbLJ1+QCQWVmLt7VBqr7x9YpfHN6xHdam3BTffIMLd4h354Nv5ARigEZANjl5QucrP9iGgyr5nmcG/wgqTH7y5Mf2BvREDwvyT4AWcDv+1bUTKd+WqzPm3MMruoDmzvrzO6nsAwmyFcVhrQ1hjwoJcV9xLcB/Qcey2e63sWLmowpASA9w0uqo1Zia7lR5xMakHwpEJuBggJQmKr3Hhu1zWpsX3jb8i65iNADDgij4WHXox0butpNYy8uK3zFMD9pZT7MNAX4g4U5BwhLOwxle4jTTXW9hGLpBsJiZSSYtLzofq/Mhg8xADenHud9aoTEhMQ0I52+iojT4IRyLWqtJDGUG1Ufv5K+L6yKsTNRm6gHFunSOeiLHtg/UPueIDZVy2mf+cCQrQ9mEkVv0n3+u+IzBN3zqMxuonwK/6Ya+W4OY/NO2ieivXfXcF4jQgk2XW15HknogSw4nx2vsCD9BhvHhBagKOqDvPmmmRnf8HFtrHbSwpIv2iyWc0qK2RRJSigRy+NUjE8EjPPO7adsJIUMhnkEi2PmHAGXZNJv56t1yiGmOurj7WpfgpXAt9Q/nIHxdNmkf53TwP+41pn0BdCJQYyH0o60PEEh3LwClmJNL5PHz6pSdiQq2yi1ZNv6rplWpEbt4yweIUuotDegzsZsnmStO7ddP8QYR08iXCVOo9j8eaatSK8yEopUw8fLIyAwVC5TLijTl4BtNJVfvSTINrANna/AqS5Z1Ed9zwhQJR6EPvC0THCqqVfmmMl4FFEuCkXIfqLgq+Z1M+f4mZhgyiAkRY3yjjD1lIJ4QUXAZL4KgSFO3O67CUp89RbJRA/oJ7XyinBJ7vCptcFh9WnACFo/VjDyRTeSdxPVOv2Z+MzyeWMcBzt3G3qYiB8QONisuqXKmjksGHvunpxExhlU6waQcyw0a03iAKlsgAzI0cLiBEX/dBQFxU7nZUim5B7s466zIWDTeLkmJcLlC1wju9wNlKM/cz2YZXbH3WCMG4aW/vO49Kmc7NjmQfG+t3dqzgcPfOcoHHk911t9u8lelVeHXd+zRZZbRQp0rTmyJP5Wi7bghGnW8nxFgLaFVUKj9kVDoG3J/2zutkpjdCE7rnNMraRPQaJTchT2+9u3Opdt3G4q3MzajlfOE6eyGrzTkuv9JlVvN1xLyV55abugNQ3b8fOFPCxsYz3TYvK0mxHEuX4hhRIZOmDK6bgZzhdrG8yzZlfyV2v0Qrgxk4359Vj3l9dNhuQnUnRQOjzfcTLCB+mMc+gSbiZ4rYpisC+X63iM3m1SfeGKs2pvrcDAf/3TMMmlUGMBhYDrWz4+UcOuWELDHRC3FDPby3hfVHfR0djbaxYTwNCighsnbCeJO8NEV4+Gh5NU5HehQchKNFHSxCZqeXrG9bd7Q0XOIuYgZN5h9neHiCflgzI2fw4LMDaUpxOFcj0uTaecb/whjrCj83NQdTpj6hIj7juk2lfdKhdFNnDqaBE6815MJB8NSR/YXOrQV7B3Pc1LWqsbtzRgFDoSFk50U1sWj6dFRYEfo7svk7eGJLtyODjQdoFJogcNj57ksqxJX9hcRP2K4V4VK415JqgPOOyaX6lBUwWXZbB6eTPHSYr/zV2XGmA5gh8IJGrLz4lFxfHL1nNNvEcLAjIm1ddbQTHmEjcGFL3axZkVrklZUAbYXwY+oGTUVAoQehEAsQdKlZ3R6gQ3GBhvoDQeTlTcobQmWtf0aZsXMD7PjShM+xdiprn3fWdqGYjZHNgT9JfsDSGjEbiQ+Mgx4YU69uL8lMGuSKvgAB+EIweHI83bpn9Hzgn9hhzT64fSx7hefEMpjAn36I69Ef7xxkaHmySB7VUrYMJxvDDJjf3aBdYPESJ4xhVrGJDJbaOOfDHn6zCE617aH3nwbgFk+QZc95gX9A747ji4xEr1FYPNftoxcksWNozQ2VsjJIQAasD3ccBl6wPAeD3EPEjosQTqpGQvrrhEiKFxrp1SWvLVLHuBhwfgX4o/woopVBpUFtmQND+mDYimm62dzm15oa+bVqWQ1JZT/UAUBTRpboq1SQKYiu8vP9lnj5Nawqlu2SiBJVX7PWr4rA5PQ8o4C/gEqExM//7ODPDMxFqAZVqI/lCcON/t/sD8S0ccomLTABN3UNYtd1ODQNmHommKGdzwmjGzA7x40BHoTTNw2hWhlzwsSoRAUtXSLycpg/ZMRruVu2vE49Qrn0y+3wTSQQ83IuETfRD3zf63j1QsfCh40U1/1L7glhBUb2Wu5iLwkyy8z6oinjTivDCebBFe+69Brk9PaZPdfhBwW9Ebum0cntxf8Ld0fFdZszd31Fj3dQxJXrXr5xf5CcBAFEKDXXy3OE4TF94RzmXXYY8c3/UDDRvU9aXG6M9zhIPUaoe5jVHBE0SLwtHay56fF5TO6dOb16V1IRtUxz9SSsebNaP1xznMVEotzz7UQ4FJNZdkeQGBoBtpb4YOQWyqSqay5XSNTc5yIzxiRLuJdovvjzgwxn7giLtyUsNNxI4bS48e/pwrSLbLzjkznsNhaknwHRDPCyC9Jqan18lVANf161omcATGb0SVZB2iQ7G+M+T8+wALV2ZkO+Hln3wkpgkaiN5NNC7thkrE3QZD7enKc6eWaDHkY6+aL8NK6wiOOJKnk4Mr7509uK7xHHl2nxclO4ZeUh7c1qcPQGf7U3nugEQlmkvZmlf6JVjFWojPEGWyWiLo9TahPGa8F8nDKLfmdwY3HIHhY4FL7XpUZuxIoenQ8Q6gjK+A/YA6Xe7ntzgXAcliYKAV8Iz+2YZcE1p4YOic4DZ8eitK+ZlScK4yt/aGCZ91k7gS9k1ri0DtVacyM2oyG6v6fTaCXgUTZeLJa8yRjZwiH1QzSn+dsrc76DRjyUiNDxgOULYRdP+pxxBUKpPc1AS5Zdl6y0K239LRd57+ktv/o0ypc0kUQuKh9ieTyEtSWmht6IyXbiD7o6N9GOwhzkG7KWnudfRM6/R3xb4HeYIuwxcWejWTDInKSJUhx5AIfLc3C0k0b4CHvXFVihGtaojbW43Kd3xopJ2MP75Y3ilxM248MIufbSRAcdLN0T6ar/DmuIhZjgklxm5MsLuiaCahIbBnGoa3ck5bQsEy2eVLXaRN3bx9EnNdECDd2F+AOXCBYU7Mrp1T7lR4Fte8Zd811v8ETCtQ/ERgMMF2hHl2nEKIRh4ZkVPfM/zCa/oOYqqbedJoi7rSx69dhO28soFdQo7X6do2nKvJrMS3kpJfCSF3A/WJainkV8RE4ZHleMm27LVhq3p2EuXMH40MZUF026Psd8NDzZm4KCQIwvOKl82s1yDOJdRoyxJKIUpijMBCDq2IrVAoXVvAJGKFnuWcSW75qdB7tHoOwUO+ZBRCDiYCIG7DMkOFX1XceBl4M4qdPjuy7UDhlA2p4QIvwJmZ6tqstlI9tTh22DEWwWb5IqA2DjnwHk0PPBZVxzNX//MllCOdAqgXR2Ept+UjHbCDkIpBGacyCbO4fjexFU/4msfB7G8dKylhdXQ99tBFs8uS5x1TFx3t7jFQJhuUFXD/5ywPAPuD0Iif7xVRpcpctJXiC5fQa8OsSSMEVgQSSJVmlbIdx0BgbPBpfb/9YTYcOSRaYMKitenyNpk5NkeWULcSuTU0lot8IGmDvUSd1/5WKq27QWxZbRr2f9RaM8COqK+Vw+HUVbWbCrXEbZzfSBmQFFCpmdfPufkyOwFPJ+s3pmJ4/Yn1BTkNva7tx+uEhlJ8UxnebeEB48cYzQuPPMcBALJqMXbtbp6cWo48mEQ6rxmupeWV+im4lQUV5XkjFHvQojZD2tHRDyGE8ydqvcIBZDyLrb+jYndj0/iQrsAWVx7D/YcYBMLeBnsVZ7sbqKDrZoc+JZxdqwEh2ivuSAvrPCel8S9qWJFjYNb0jGY+xZjwTzpZH0imcJ8DftvBly7R/oeThe32B6rYE/hggHlfiAteLvu5PCFSQNk95njt8c4kh03d18ttojmKx1gP3g0U7lykI1ECMakbvRM9pgK4WFCEtRn3fPEsC1ICL2TuKMUfmyGTIWF0qF1eddZGQMJd+sE67qsa/corMnXBcEfCz0nNAmjLDRoeJD9Z0JL1C/R271Un2U4wt+freIpVpy5rxvCW6U+wcO2mPcbN+e+GZCV25EuiQUT0L0latoimecOFFYwcJM/w+v+IIHJ0svkrdrrKbkhjWnhTTCSidUJENjlUyrTX4Ja5eUcA9yHdJdzIcakg8Otx5OK7dIYq9X4deqjMHon1nEWU5WU07rK04J6R8djf9MzJPPb8IlUhbuVJ1yjX83oorGY5RyH1EfsZa2CvAagLEBljF+L+XWPuhvLt5wlFVtRCUG0OIszpTRfiBrcfW+5pgXqC4aHPGztWcG/3CoByFS/c5DygLRW1Hf0dLGsZoDPniOl/SNpOhI4+RHoSH+FwsDa4dtF2dsA1OXB+TsIfhJEE0MeVuIK/qHf1qjYlRGEuPHpML35TIbUkcVZnY5f/40TdhJI6Mhk84/bxqjylTcZq91lf5umaNO3ucIJBL675CBwrz+U4PjsxngJZaWTlfDnBkg6ItUoH+JDZwolRqGUX9Jg6bkn305mZ6efMyIAVqp8s2jEI2lDpD9a/KU7ln603Z8sdfauJh3a0yzBPuJ4Y/EX4Vel6fIQ8s7yvEi21u/H29bGVEiFYjTV8bstTHOwifK+d3IroVb06WHfckniw6P+2WYhwKv2hLMGmYZ9YZU1Ssbkm010oajhatcV3BR8LAJGtLUiIRL4KphMNaQhgCVODmhYMtr34j5tWtGbo1v1l0eLq133EiqtQhsADZl+VugKWw3iGXXKULMuJRqcGkEqwa3eln8LGAJoqOsnUkfHPfOmDiE3rkKhFy3yTg5/kiBsKgCuAJmHWhVi1q9AbzTFF7pI9bD0+T4cr9Ma8ZOUjtTN8pFqTM5a/hpk6ePzWd+PGnxl87lPMdX2uOCkWU8AYh51z/pBrxFNa1E1XJcUqc4Kh+sTS2w0aJzf9zmQtugDJ9uKRG/1iahMv6Fwd7KDtXaGls2BGRFEiSsYcEBq3JU59c/+PyemK+WlmweW5cChieQukan8ps/m7rWK+w39L7hr6mHRb7rYO98rBZg010OxwMzlO1Mm80kVWymbGTineTt5D43QELqrY4yMgPZu8FRVa+IjcqWBVz36tXfAhz0oMWQ/7OTqm0838CGzXUX98RI3q42XxRBppwP+lMH4gQ0wKnNz4uI9FcEO35SbedIprk/UNUD04Zj3RFFtwfa76ld0fmCVRoHo0zXpLutkXU5rsYBl4wlQeWv6p7vYdW8+ObdA/SowXVFs9Akg0NHjpSVxJlZorpMb0yeNxofpIxVj4jiLh24NjRsVNeA+K15gxQaL61fI+jvIPU+iZ9UOweG88b3vc8PuQAit3c8l1SVTDkWDBx73Mlk3IQPatuhW0jNX0p82uFnKKjQlgN8KDtXe8pinKZg8L1Y0lZU5bwNYHT/KfLYu/E869xpzQ1yQXrtoMuXpAPcV3UufZOak5CBnBs9zhsG9dcTB2kf1oNhhDC8hs41cXhwPQC3wpypnVAsxkCKWrNsM5a2IWkIurXd1NzI77ViYNhDF0Ica/e7JpCLjrA/n9IRkjTBce1rOh7KFvYo65IwVttqvDZ+ssIYVtpaakH2t3jPRRKDOH21efzlKuv4bp5lyD37oD7z7x3CN8EOUV2zIaEntVwAKx3Xfp7/2LB6rt5JpQMXwy02lBUujdy3LjoDFbiK8Vo6IgOk9anfrUs4NdMF7qY7D6wq/u4Yzoaw7cJ7ITpc3j/858OswXuSltB/4YNyK6yMM/1XufiMo8aGaeJzWWu3eTrbaa4TW72XEumypaIaMy63mqt2EW2wTG9Orq4Jt/A8b7Vc9jECIXVbZZkZu5loq8MPIoDqHWKnFEhxb2dN5EG0LAHnFkDhzVJ/vy9JK7urahSyAUoLTG7F3RvaSpSuqX3XMwWE6515udmCY7wT+B2aH8Zl/vJEpg/cLqoWXKnyOga6sbE1goZS2aRNYFZvMe0SdmsT94aJiZ4SAtwsYpf5ySDw+H3xdTR3C4UEX2YVYe3m+d2DP2RYHafcpSrHe2j2NlGcg0tGxzP72hrA/Imr6MnlDeOFIVNBFqF1WAEWf+w6FzgnmIJTThl4v8pvEqe0/Kz6uXtbJ+yYS8qiiAD2GivPBgCcaNPJIz1zHgSpzFsJdFmBu9trtdZdLMPZ9sWESSLBNBapv/IoGzDjgvIOv20bMawRnF8oAs8D0a7pRtXmTlF5hJtDrIU5C7pil7ybyHpasxzBRgHDc5o9itDda3s+8zIUMdbhyYQMzUlg4u5F3oj2Gv2FnAowSuylYK0XfjNlEhNIfvYBnYFcIWBdcWU8uRW34Hl30A3FCFFaq0XYawa8JIfzG6cvhFXrIDFTdYBA5rozGQA9I5my3V5VGkfJPopdEXhnxUD6NAy8chmw9mKZS6gDp8i4Tl35BYoXGMAMCQzWmss6qIb09YhOFcjihdjVe2rLwcJv548QaWGyWwN2ocHfWoCZkkesVRmYt5fzsrhBpnApglozm1jk0LL6KIdGl6LLu73dqY8IIAnmqzHqYcVdynaV95SX8TTCCslwbTi2drasEOA8ZYxyjMCmr+C59GU+Bv7joOJ2vCeXGPK3yNF10R1Ue5f22qD3/r5UUOxBLvLJ0DDQoddrj9kNDbGvjjduG9acEICVTfO2cSJTbWjYKIFWPu7nzhqTa3GnaUUjHHNSjFLC1oErS2OKwcF2nM59JaYcDcB7k5+POadSeC+xnwl9hyz2C58CxZKRQtn6zeTRt8K5y8J0A5nJ+OedsNBELqiLsBjat/OVlcLqM=
Variant 0
DifficultyLevel
579
Question
Brin works part time in a coffee shop.
On weekends, he earns 1.5 times as much per hour as he earns on weekdays.
One week, he works 9 hours on a weekday and 4 hours on the weekend.
His pay for the week was $270.
How much does he earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
9x + (4 × 1.5x) |
= $270 |
15x |
= 270 |
x |
= 270 ÷ 15 |
|
= $18.00 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Brin works part time in a coffee shop.
On weekends, he earns 1.5 times as much per hour as he earns on weekdays.
One week, he works 9 hours on a weekday and 4 hours on the weekend.
His pay for the week was \$270.
How much does he earn in 1 hour on a weekday?
|
workedSolution |
Let $\ \large x$ = pay per hour on a weekday
| | |
| --------------------: | ---------------------- |
| 9$\large x$ + (4 $\times$ 1.5$\large x$) | \= \$270 |
| 15$\large x$ | \= 270 |
| $\large x$ | \= 270 $\div$ 15 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX183EqlFrRRFjcxx9MfYtpHHcID1a3aKsvUcTK9JfV73/q37gAWl/r8DUQl/pVLgm599EOuGGPQ3fgzXQVlFAg/r607F2beXHaxhDlVnn9BTbzExf8UkxFzBP60BpbUVZ8Pn3kdlKh9QbQMlMdlCF118TRSjUHsrEiOIyfoiVIep7cn9QVSRhqMcGBwFwnpIvYT2A3ONYyQaQ7IpAIYnXFxeYnho02oI/9EDLROPAFJZRUKh5hcVJKCeTxYcDMENOHGmC6i+YUjgXNoaMmUbvD2+QNxx4lrX7sLJyK2f7TBo9YTLSey3rbJs8JCu21qGX+CZ5NcaOP1z4Az3/j0a1d9pOsDF0Rxd5vHYaQT1Eq3jeMZOcl3X33RShzDZgNi4X8+YlP4Anb1m3yA/zcM+ph9wsbaBr5hJ7k2qM/E9iRUDc7tMlZ3g5BuO39EkOmypB5lATasSyZ843bMmQq+Wec43FKOfmZPbP12WQM7qFD/ynv+NQq+VQyIqL4WMQu4UkLBnd3U0zR3iMMleuHHe9BIzrldNZEVrY+xRkpBspGa50NJJvKLr2FkpOUVyY4zwtIFTpt1Lplo9BQ6bqYkZJP78onNr119TjjX2SHwS+Ge8oRZC2xgndpO8e6bDzEBE3QlEdZ+XkpaOkIbRmnJSrreN/JWwBulA0WX00D4Ns/11AZMeK2RKdsHDMPw35tZtgvwG/u8ShCgsMhV+X4ccNpB61mNX9VdSNBSfg89l6HMXs++/5jm0j3NjJrqBhypflbfsQjgXN53TBKQQozkWZpfsWFvmsfDjjNtFmgAqb7yrWrTUXARNwSPnV69MFPPV8Z6YFTDlQB1wYqEK9Ia5HVjy8cmwyq46uvBFs3cUvM9WeHq6hIyEylntPNRFnPaQur1q+FXCIAc21Ej7nLNylz6tN0wwIiwKq1RSQBwLyyYLcv6yw6Y3S9tqdlQfQnoh9WvuPqgl9L8Wj/7opEDC3tKQ38QHl96UEybHEodp8svs4ooyRNqM+RVNHEh4rik7KAdjg9t0Knik35aN2aTT9roa7Ma/H6JT/DlAsHymhNALhrNZFXorL/wq3CG0w9J2irQNTyMyNQGxpXsx7Dbb284OEH0DYwFhg+F5JV9CTYp81mYZ35wVKuEnl2SOd/iqi3GfOOF7gCdIRSVcJkLAA3WJ9LXABPADXY15rf69V3JLFerWsyEf8L9DfUcrKku4teK7maiViITsp8Z4szDZ2918cht4HB8BVmpkyjVVfYNzXteB7Kwkb32cw0Ul4/JoLjKHxGmmh6TeTfM3+uEEF9G0ufuwBEOi98TldIWU62H+zbun4Mnhwhefo54Swomnu5Bu+3jJge1Kuil7KqTFOOiWJMMQVD01UWSScoJsx3wcVttnZnUsLfZ9kBWyMXqE0rfYRWdq4U9jDJem/xQ7jk7DzhZYv78Edk6j806/CYOcow4XXzK5AD3baiW0tzKm42h45zLf/DAwM2DbSphPAcYG8VekSVaJgdUIueEdwc7n0VyDbI+Vkmu8ivBzH1YumM1TcahZR1AeuZuVy0g+p1rvO8/rTBQolmTVX9uGVdXcZBO2hAOfQH+VpSMNcQeRq/V83Xg9YeHy2lg6RuxL5tUk2Z/xuCKNfbfaCvVqtazXJMJCIZhXxi56S/CASBssRGISKLzMuPbyKyasaEaOmYv/UC7gTZmg4juwnWJHX8fCepd5jOCG/eDQI5W5hAcVlDoVQ+ZL+ZkC8uc29c/4pIbUMbxs4alQnZTg4KDpjOTHqc2NkYwLIPQK5HpXgS/35ArFuU5uc4EkTLAE0TClpJuaBAQ7lqsM6IAlkRAytedegbwZKEgA95eTsKKNLyFsFTc2OkTdvcuRSo6bEx0y/MsxOtGH62QX6VXmrWKclmZAX3/VLLgTYnV/VTXhC4nQ9NEsEBW9CvnMGr7G4QLJ9OXL8j748ktt7T9CssfZhT3dSQY9wPqOBIpPhKHjSfSnYBs7E6VLLSNCZLQBrg8VGvcghvZPy+is3MG/6ikyl/4tG7hYcLvuKiUG8gJ/eED/Trc46tpAlZSEiV30/N5fhaXo75FMXEAHeLJiwZM2EFKhNTOKA9g5wROBGIrU8DtOPKA5oJjfa0pPXRJUHzk0i3qetKUvaemaqmwv6MBO0H+Zff6RkpBusGTJzX2zMPAvLYoLj5tgHARFMb7ul7AW9waxEVvngic8gJOJQoug1VaB6JYguKp/7hTm2yM3O9FZXv5Ub8nDSRRX3rLDZmD/kxKFRiVK4G+8mdVMniQorFuC2lpB2qy4rMjfqKCvQJZdCI0tkxaNaT2l0VvdQtmmE3SeWfPVKT1SIoC5dW/7g7F7ti4WVLp8AuwHWfEAER1kUXuXeZvJadke8c5JEehoZd1gvO2RttaGaq3ZCvT6Gge0VIcxF9hDtzcWp9XYveen5vxKi6irr2RVuwV160aiKDkm0Qp7lZtalaNqI9k5ekXYwSuVptZjlc/CRUFGXr1pAQ3r0dhVCjikrMTDkoy+NswGPeuv8rzRZDX7RB215gTnpcA2L3RKIScpZ5boWfzfv/Hrpo54KwShasZS6WXA0GOyv7jOroW6/VLUkmEAqUbxL/W56jkC78Z82BAetVPjcFfErv/2tGMjOOOP20jycJhdsaN70znRvIuTop7q/AHPvVLFrlM2HDEfrHAjW5Ap0jfhxY1m43yE546hskMiEHNzGjKwo5nwCWHt/hXlpXNNQRKMjHbnzgEhdzsWNzIpj/PlpW7fIDwzQU3oU6QuoPxXhBsVBKbhNH2iYR0WZZsgsr3WtG6cfeORmuaTlzv5WtiTpclUWITtfI8bxU5k1OpnlP9vC+nTfJOtvW0YhrP0kt6JORbLYajar3phcIS1V6tkWEqrFv773C5RIO/ylRG7QoEcIrpiZUQmpWu7KSwHlxtmbDjTyFNW3H5JcTE/rd4kP9jYf+v2VZn8ZKwfTi25mUo5zpigbmi1tqPbKbqLmeykgTwKqW8oiQmBdWgs2e0Jc1x0I34cWLMKHc+mYp+lSPyhBgM5flIB7BywBJFJmTwWY2BbR5/YJ6EGAIt3fFnRi6DHaYJo6pDz752bEXiQTluHVWri8nM6zxRAMwN/QXqBT8ofb1wjizF5Wdq2ydkjCp5EVKtcmyZ7RfL9Ald2KPGvuWzvZKwYPYs3wOWJOazeOVhCeg0R3FUv4QHwE50u1TTTAW77OsKhW6w2bOHu7KfiG+5JsqVml+pPhne2Bzyh2KAfB4pApLCI6HCBOQuaeAZ7MkqO1RLWY67/Fy+WeXqmnVSeWL7OIxHiKWqqXg08GTTc3QmE9Edl703cRhl7jZ0ZYbEm8anWMbZAAakpbX638TYXs9YB+P1+jgZzRIhxnOqpDWHWJD2vb58sHVSk7lo7hcwnOJ5icIHRamIDqYJbUsiW1nDPMqn8crPOgXDL69+vOiA/RfTFBMiw//mWLv9hAXh1UsDxPOLkECQlvfr0YHm8uCepsMwo0BomKgZLG62qxBcDbqcn6z1B4mMDRJFmmxowA1S5qn/lBe4qcDKsxUJT+lM6LD5Xm1FtGaNqtqsuvZPgLFKn3T05QM8Jcdx8ZB89W8t7jIQt28WcWNcH8/5ykwGGqQy72T6TRXqvLogvVBpaViGkUeCKRy9bfPumbVVeONs8vU5iceY9253ZbDwMh45Uc9lnuQ2gpJqM7z+09RiGc+d2TFSqIK5919RGgDxgFq9x0RiOOmYXINR6zHNZ4e1GGP547fldHKWOWUHVPeYzek4jGBmViNMrnNbaX6/LwCXE1CF3Opli76GQP2tIzY+9mxpIeLjXy3gdgkvyMFn3tHGfEW7FTPNJZN07WPj2rrZxXA3gUG2TNdrMtjFXLhupcRKRZkVqgKtoFvmHex1l7FtsFsFRly4cOK1EoUpDGbXVAU3U80GneAt8SnCeM9sHhV/YGSnHb75BhZcHeB0PFNwV67w33yZJ30rG9P8x7pzHRaSZxE5NhuZgNTrvtA9Wy9A5d2TnceMlmknGk7IVruosrxBUUjURZJKeYFGCyEgLQX1JORid6/PcUEv4aCixJbShyiefc/bBv/N/Ja9RBD2IMHLRlp+d6KL0mzCEozSX0MWyC+00expeeay26LTCE/wGgpXlHDv/HY80+1V/xHooTTxsnhp5j00ZEOdjli2gFTIVdwPi7xrcelIhO4gIE3mSZl1a2+Ku+sGT0l+MZmA/tZ1jDRF+qHh8gMHz/1Mbv4L6lptbjfQOqkDn/fUp2clu+wEYdEKh/RHS8zl9pDu1UGJCNNwG9Dcv7ne6HBgx3vTZ4MLAc7hiu4dm/hpK/mqsrbm8lRtF4sBGr2oSRYufE48gqdWv2Uav36yYcupcNSXrQrxZqNbQESK33VtobtDQWVldSt2xO+mIex2Mhyfq+vzjVz5Q8RI8nWHdckeyQ3ntNF5PO8Znf4oVpkD3RcCHF3RZCGqVXsnhfN7xILgR2BgmXOjMSe2Kdesf6GkiqeMmraUe3viS4Pk+eDy4zcwRnnub2LveFSl5cNHwCREvMvjkQGkMy5Did4qxPoB2FjF78xLEOGZvL6JNe00C+HilvSCOjbBTEn0tC60aJmJ4AQ+XTH5IaJ9/0KrQUCzB51CT5LzDiyp0EDnqseMpIoO5fSJNpTzKF+pX/6mtFZcgjxGRJev24KKcNCBKiFi040gO6CBPwEHcR9WuSHofUp7V2agiJRtbnlIjaS4PzKeDuHf7eqH7L1iIeKqghx8BsACMQW9z3kHUqiuJg831vqwWachac7ub2BKKVekHWStG1C2uQMz9/15mSx092JA7FqsrAwwrle7wiSf+KUhLWh/mWMY2sAzW2+vzvb99SHfKsTJVS8xnPCEmCbWw1HEU0ElGVrGNr2jIksWaNZaWagEcZyqb49fAcO1/XiNjL6dT2qdSOsvhLDOdnHlTLihIN9aYG4HY/IL+B0AvJYDFmoaNyySgF5bjpzbJQHhhZtWgM51yLl2N5CrU8OTsoVujdiRLShomihamy7lxeUZjg3rHjJvCXzJfX2n6K3++GoPMcS5HfGgoWLh/sGV2FKZpAXZ/yJrqz9Le2vdVmp0ILpg06lOc9ReNLpupnq86PCIG/AqfrS0wNDMrj1ukFHRpPrR7xHwz2atSI5XAhF/NZYWQ9pfb1MHAyxgOsJFGZgtcn6FZPucfYzE1hjw6ZoOwhw5SD5HsLSrutbECJ9wTDDRdHQuh4iIuVbKB1Ja5cdpg+DvE8bMzetBsJreLekejx8km6kDpB5gCm/rqQwo32X/Y4NPOZ2+t6wRn7QTyS4u/ERWYfZY/raVhEJW6Ck2wplhCTWWnUi2f22B7htrlsaJ3FafxdA78g0kBwssPNA9xvCHztJbuQWT2C7bYdSM74GuiVMy1BdrsDH4+VTq6JCLmAC/i/iZzc9bKuQ5Apkzjy+x7BkznOXdMevHd3ddzqtXrhGGYjHQEc6f+Wyk/cq7t0ZQT14/BleXc8xyr+oisF098zWxbp20OYdzDwqZAdLp9qKmgvo0T3rce1xFCW4JqXU+/c1d47VrnMYqc/fl2C/wK+Wuo+dqhLHfrhev8gRkTPxFVX4p5Vc+NSObb75jq+NjOc2z7kZvs84Zig+alrO3jRJgKv1UnDMlvn4PRDD0RjEpvrQKDgxG9oOME0UKdcfd4IX9ibKjc18tmBwzkGDax8YAmGxV2RETnSnL5k8+x3u5JQqulBqa4OQtfIpWkNBvqUOfjCpMnqr1J9Rv4mjtZBvVUreQY2E29ORhSOhOi7AGimiUPNmT3v9jL8TfTm8AsMO0amhZ96CBekY8bRSrHYAoXENUGMjKjOJdW4/8U6g2ix915yv1s7Q/8ej5ARJLrsQm/0MR9/1Y7WbjKpuTq+ISf9yeTyz6XZdvrRV7vKrqvv1c1nr5t4tJXyctYs0IsvVpsXccJ+SIzptwhE2YfEi0nvYuP2c+Ml6ksVxWdSzEL6EWSD/ZQ6vUnb3RytH58j+7/bmOp21t3814tKhD3VSIVZErUuRq/TGk0WkfkzEO2gEbUffWfSCw5EMhYArrSC3cCn6DHQYS+gYqH4HheV+CSHalsuRvYsqOFQI/rEGbEem8E76IqmlMv7hPaLyN/U+5XgJN6yIils76HzgiectOoTsi2Uln2NQzLtn/7UOx+5Zw7hMWhMaA1G4vaoNnP4gmTmcUsoF23k+xFzh5Fs/EN5lFgUE7YBPbH0wnNKbbMn9piPwmXaL8pLtfYzKt9hSJyTSHI/lciyoV/mLeSahJ8qyaXE6wBLK5K9GMH2sD78yue4WbXE8VOnGojcWGwnL63gMXRfRvC96K6sqOET/WLYxLo9Z9tnQJH3c7gvF/g1aNYNduRkAIoFS0E0SW0aKXPzi5d7K+jDKwzDVDLrR4A6uuRzhKTTxZt/8F5KttZDWNrAuNyb93VrnMQwjgboas+J2zvEuKy9/xOskRFe3VcHr+3314rjYHqHtvoPpiomc1JLjSha3T4lR9aG0GRZ5mH/605PPl5jBTNJwncZlmDMw29uNfEA7ifwPpCLGzCul7pjBx02O9lGO9t+5OJce98bdJfqVXb2fO+jQPThVTE7YjFexepmFsv3YBarWI8k5mqkXsAwFqb3cZQb9Vdr2+XArJEb4ilRGKIn8bFKcJV3lRJeJH/Dv1PaWaP/mXE6X8OnAsyxmeRDR4GVFVwiSCci0zNLoyK4eFgtNso72KZnQCJg3iPQaJBr74e19TcXbAFygQuIcBKNhi+lVUQhJGZEfLnUcmE8iuEVxi+C+l/H8rnDmwvCrUL9LUI66QyPjINt1l7V7Cr4r72ggj6GnGlnZernZyKMKy5Ft45QgDy2ZCsO12EHy/x7m+ogX0hNP+QHCBy5lIy34R7o/tWsCb3ugXJPR6VjX9gCODGETJHwhZwMltL8oTlBSJ7JTrkDz5at3qIFEkjyEUy48qXfOOKzjr3dT03xxQk/9sTugIa81Ax7n+MbAggdYY5DvJ7miExFYFKb37rLJfsMixHStIcMa2QQxXSyAaCTDIu4+pIskI3LVdQwsLKfNacsT5DfXPWNZ/jZ4Mac0yzEm+0dXJtWivj4eNvagKk0BiNE0j0w7jW622GB2Ka8ztBbq7pjdIG6w+iKbaNaRDk49d0FtVmTx+oxiqtsEKy9vquUdVG3pfxNy+JeT5kaNFH6T1dVPn9qdKA3Wn7N9o8P1DNs7Bdvi9XsZfyWf10PUtMzHjMhKv+xU4K5lPGW3vMfVMgGVIig6uIr8g=
Variant 1
DifficultyLevel
581
Question
Betty works part time in a clothing shop.
On weekends, she earns 2 times as much per hour as she earns on weekdays.
One week, she works 15 hours on weekdays and 3 hours on the weekend.
Her pay for the week was $367.50.
How much does she earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
15x + (3 × 2x) |
= $367.50 |
21x |
= 367.50 |
x |
= 367.50 ÷ 21 |
|
= $17.50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Betty works part time in a clothing shop.
On weekends, she earns 2 times as much per hour as she earns on weekdays.
One week, she works 15 hours on weekdays and 3 hours on the weekend.
Her pay for the week was \$367.50.
How much does she earn in 1 hour on a weekday?
|
workedSolution |
Let $\ \large x$ = pay per hour on a weekday
| | |
| --------------------: | ---------------------- |
| 15$\large x$ + (3 $\times$ 2$\large x$) | \= \$367.50 |
| 21$\large x$ | \= 367.50 |
| $\large x$ | \= 367.50 $\div$ 21 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+N8yZgy+fBrW/0qQ2paMT8VQqtaKuVcJ7NotoFuuz+9nP3ZwbbwH15upCF5/N1/Zpk20raFarV5LIL7pVelv5FeRnriK9l9QcEqAdjP+GXiBW0t12ftNYaIs9Pl0NBmJhU461Izs7+kK2t6CCkOUbf6AYD+8oeHB4FiEeNXIWSbe/YJCIrsju3SLzTld8onrXyNCEDXBi7Y5k3T5ZXnA4OCKS/1HxY7PXgnTPc3UjPI/N42tHz7WzHMXGekMiczVbNnn9baKr3T5oQC8UjGnmBPyQmy1sfkaQtUE3JAfwE6lTrmFXgNjRIHM4f5MjYEZ7p5L1lKiCyVbhZr5VYJNdqsFPdvshOc6e1orf+S4y0s8vG2HPJbYJ2DborTf2oTrGMdukYAGN7KPAbl22ucFammm8pCOsnTPEFFSw0QjP7m8N5xVM/xM0vUCC7Ssak4NHHDsGH6jdZrDXviNdW6AFghfBEyzMKtfcMstsWT2CEbfsk2Sx6PY6VoVA7HeORnBqFLJf1YSEG1dRaT7894FqAqmhSUyej23tSICq5qA+0OeJC8qbE3y6gIJHCyYXFqihetyCGiQrREiBwyAGxZG7fPU2iHf0DElOd5RKWRTUb/iYvB65QpyIdu4wWmfg0Xvt2FFeq4U0aHqfUdCzbJ6hbISC17ZIDqefeA0M9HMWYfXDEncAZ97FLi4WTDvlAmwgFHZiiJ39ibPWkpobO9ISAy/Qit9idsR0RIZpyZgEN9BJWYyemjz6X9xcvX6Ni9VhPzeqRC1176YGIxBz7EZ27hBi/W50obVlFfhWESGBXrgcoiWPuw8u8zarnqdW6SCRWyY+WjUmUlbOQgpgfWX/AqRvoouUA0CQSrMSOVd1/tRzRzur6Xl+jJ4c93UcaQShoeWTfIT2o3/vRhpAGcjZal4rYfK0hB7n3yMpJ8Lqa7D8/PEKIrbd/pYoRUg2Q85cz7RKh0sIJEScdrMWKWZ+/cfv4/4X8Y4LO8jpqiGXQN24lzYVGlM1sUUsV/BjImBrPTnZmxeD6PZRgls9U0aw+tYdNI6SWSskwF4GhRPhpxNAkfvJQzHheHtJAz1NVWodEbEln8H/dVMxuNeQb2EfC19aSQiISumor+q+vANrWW/y6rHaKriCG/J7Yo6RzHHlt7bHv2bVRu4ZIysTIfbn53Q3QyM+6LeeEJBMCQzuOkG45qqNKewsarLu2MuUl7N3r+5DKEW0N8UoaknhSkmpz6rqn74I2p+X03GCDUnHw80dYiKegvbJUt+5NJv6P26jjo+J4DC0EWAkBg7wP4xLl6sARaEI1dCjSK1ig5h1Bw4t9C0n5HmB5LGBGMgQQdNvRgpVhCZYfr6KNnZqNGgZrqzXtIHnospyFHOT1iy5KxWj2ioUnzZcMO7vRtrxItDnBs5TeXEK7AunJUQ1DCVEtcjfLGiZ79mFYDTe8cf2WezTjB9aP6X9MDSl5izDOLQsyUgDDjFIUtiQ4gQb/Ut3/FTAKmkJzI2Tb+HTSlPNEcWC6b4BnoTj4mcyzu4qbWfFYKeMfdU1Zjz2WqnUGZdZ3+MJeg/ZmRxrl2cQiScJcCXnCTxGB+LTwB9UQWfmyatTmup3marbKH7uMmHCmrY+zrPxC8bGOC4rlJxClffcUJDyJ+JnI5VttSQKrYPhQYcYXnelxz1f89gpfokWATmCcSLze7Q76zVRQ5QyVDux35ZRVmTHFYHZDSHICjPTPegqLmdelrLvZkKvrSm0LWzHMUNDPKoXVgMwExxk7+ZHFwNGTQCivk+l3lcxqew/7bJNoo4ePz2SCtWB/JcpwrpJgBApiyIdN89BfxNMj5vQvL4sTBI5RJcIY3k19gEFez+s7WFXEDIig26TMaYg0kMKDhenvnjPrwNSfey7Nd+u8l0HPY+k7i3gCCjdD7Ko4I3RxufgviPz7DR7a9kDHB7zSBqB0/Ce7wakuTAK+5EBEgT47rcnfW8NOe0lmcHKAAMpl5ZCVW7yWXTjCSaycaskSrbuWGDjspOtVMliOzxUdKuImPBa/NYQQfJI7nc762ulzsvqrNH1JJs+6ww02fGpkFqStQ2vyNkRGdOdTEbNsfpsnT1aKNS6flW+8OQqvJVRKu/mZSQ+wM+PThzLOrGjLnhckW0utwCXXjRC1LBArPOwivkvlrHNg9m5FXaOQapYtXCNAPso+BXmQO0mSxpNd0wWLwbXdFZyxUzWnaXFqQ+bqD8ALPQZSYA3dPsw951vhe0rNOEVaeLOSJgltroY+RXaHZjIoai7D8+JcP9zB9bMztbVCTaWWubiycGTNyO9lxujjrdytKqxefgu51hwfnd6lJhvMkKCIFZmvbYI7yvHEZTRNiBFqSohjspkL076+jJkYLIikhiPCVS+PObOhsnyp0mVJRSrBnFJmG3H3RrH/Tw0CwY7Ir7vNuZQ9r+GwqmXAitppi21DFyB/0PCWOwiWZ7/pvRw0Qmeo1xZIjlifNXh40HAFKjNu3MyjHhnGVXIQ6OMM6KaQseSpxGYvsnRTZeF8ungXdwOpJTLZzSivUz1zdSCoIQEs+yaM03mR9ywd/owFrDX5grEbJF8CmIwIHiwDWbJMkWQAhnU8rlWtUl7boyiQOPTijLDma4vJsnwcWfcdIsY8w4v0glgQUDVEThWy+ppzG2saUPzNB2zHFV3bchGjyhNIin6HWhZYcCulUYu20zI3L6+h90UGpjCBvuJQBo3I4l8xi46X2i0XyixQ08+zg60UsrqrDYlJXaXOmjUwWZU1XLyeRNiSma8u7VoYE8yAUFxhGV42R9DKiNBI2AMraQnBCUW8Csb8ihWyyqoFmkw4Q51uiTiMfRGf2sNB0vneBTD4fvgW5Ui2bdIR+N5BOV3zfHFWpHZqIvJXKysfVsCA9+S49IuILBcoxyoiDX4S+aoj338td5iA6Q+HlfQLR0kbUQ5QAyc+Vn1O7OkI87jFldbO7fj4bpM0T1AHciFmHqKeLHlkylHzofQvwkKNscgkhS323iNCXvheX1+FhiT0gy1v16GRH/yzWnU3Mx4KEVE9z6IBK5d/UJR+/BQaeO3E9XFFBFdpJdaNOW/bJ4sHwxltlJSSr/inUpVJ6JdILDWRCtUOrzfEDSDBOKHSMP2B9c6KLm5uddWvNJZvNNpRGU9p93AFiKiRrJ4qdqrbmrZrm+lvtsa2UsdDl7PiIKDKmdvhypETjln4lyHJ1n/ce9KoigRCGB9TesMQ8Zr5RZFwIy8eMN7PQMmKka5kUDc6CiRjnSrbzrndmeEzPHA6K3B+EOdytTJcKXv1r/BJ0fNUFEokeupcvcdsZQzAxA6oaagtPsFJ6ZIOiXAuNUfXDRLzMYNHfryI1eWUdp92mK4G/2yAn8BiRDviQkCwFeSK5CJGVXn/eqKZ4B1nQ99wnTx6WlrIGiw079K7Hd6kVLC8PupVOufboVfeqAMm6Nl242hLHRJT58j0bKH3q+6l/5DtBQ0WGnMmvYVhfs6Iks7r0ra7xi49ZxgTyiMY/O3Bu9SWsh6rbxoWhYewug595aPbXItdjGWT60/q3Qchq80bU1hWCknm031DN9bhp7uMSjADqxyGwBpXdYG0y7oNrfM502l1K3KTjZA2KQ3oPqzLLfDHvbLuKiBJeTIkLO0Jyu+LHeqyJ+Hu/ZnK8hSTOTwxm0T53WRimEhM6OjL+ASf10GZvQlRlMMLEf2+kQWimDAsX7OHE40EZOWLljHMf8Mp9pw0xiEv/M0KVZoZYKS+XetvjAOs8TPbjWrZdobCgw7doa6duwqxpAhqcEKJjtyysyt9y4vucB0SFhzqlXpNSZ4uVTUN15i9k+V3HxSmKCr6jyGg4/uUerhkZ771Z5gKGNSw1rfLQvxFGN7qpWr0Jp4HnhRGcKGeY5aS3GtChh2VuQTqJtnp51H0GfCxl3ehksagD3LiSXzIhUXofwm4V0FjthEfRSi6uAj+7VYK3acVvpSFxvTGwRdKLpCLeu+kDHuW03AXM2pbPA1cXXPwq0ybDaRJir22gf4lNuYfXR8zdwc3NyArvrzLqhnQAIOxz0sdODT/CGRNsuzGE/+bzEpSRm8lqvGWaaip7ZLxQkcUej0TnJSDzgNwrZ8IUpuRCP7xJx+PjR4Vo0mtO2cFUsgtNDNgxXGImPXGzg6TH/OeMMg6uSawqErdZLYHlOP/hG8M8tHR4QBmCJCsiPcfB6xRgzgkaIeYFfU1qDovYEz2k9i7huY5xUbd2rcaean58J7u4KNfyKF2r5bmYkFe7sBssmGr5LISPpgyeVMn9btoLq3l2xV33Erh82rWwWRjCdTHU6zQuEKxzVEvuzj2QNQt4fZpIjlp0YmpEJXB7RtizqpHrEGTkkq3ntZZai4c1/SmgHleY3DAzhn7AVu6HbcwBcCMuN60N7KSqrcEFSGki+1tFCYdWW1ojuGQzDT8Qgan4+7A4hJSxpgfNLrlYqxnrTfnUASxKbKYU2WyD+4lUCVqT5kU7LwY2sKtdfYObYIiLg9l9/bcL7b4IXvxIZtgmrOry2iBBK8MThdCVEcC47jmMBpXHld4oweDhUOXT0OILlOVIrLxQeCKXu2zyt6UVykyXJjTQdfPkVxUYigrF+gFGhiypvkZziDoyU4HHoaaXMHACHI1fKVjcVlEo23weWSOEm0DfhVD3jjpTTb3ojRUyRQCW0Z5o0vp0Gg9+6KKDT2W/ubxT+v5k/Pe7x1hn2jHi4KkUZJebsltdbDO04zjVg7AZRyfF+EYLFXR9GlqDiesCW1Z9lJbl9E4jiKBI9Ywrvq+3Lpim5E8lhRSj85PAt41SmCAydRvYXHbAy471ngf9I+KvfVP4+84adWU5W3LYMj2zEDQur7mSCvtgQrhVT2jXI+JZ/9STt99CTiKqxAIQL43ZUvB0ghpIx1boiGda9ZrvPMzW1joL4D+V1IyKOU8DDc9CZ4Wv1rj6sr6VC/Cxdx39H6PzAJiL1Uazq+SJ3E3XHd8uY9Uu0pWBPA71DNsrOi5zTUAdFg+Q99xcf/tlfuy+TSHCw/tvI7sGqkwp3UN3C0bjTq5w1xw3t7Jw/NamEGgbL4etz8FoVgYjQ4I8p3WOdGigaRj5eSxo8jtbAeYDHpcvVgY03JjxcOQAjBwf6SPdHL1i9o4Y2O45mZV7ThvFKclobVB+S83wUngx1+vt4VyXkH9qH+4k26H5Y5iqESHNfd2toLAqUs7XFVtx4yVye6/glb5Ww44vSNMGFK/Cbyox0K6HXYjGRR5qVZD5CbQk20CcnzHc/lUt3BYZ/ZrtLi9cOIRjIZ/o95jRRoY0BU+ClyyFBRLq/8gVK/JawKytpvYZZuWG61uF3EVKujnyngqlGFEZAlDVdDaOySagjgmS16quP2AmjpM5Y4k1aSGiVffk+9gJ2uhedhMGI+hZxCv0XtPpflR595QPtK/tThsdhrZFCo95xkCM3Z6TrVbzNh+ox4BIyQpij1+xUPeCdRKcuJJfWcYocmcjJLku/eJ4ksxjYoCjdIlrequ4+oKVo4g+0DzvRLs1skSA3BO0K2JZE+/fZUJmA2hnuvwigdqeqbn+y30eNCpjfodDZKj724J2xtoWTFhhrlj/ujM2kVekgiwnSwI+s/KNrhWHf/9c2xVw/0ByeKTJ9/IgOgbQEcsMWChAN3JQeo2iic9oSi+r2CyHC79zpxsm3bk68kNIqUXiowjDH78HKMGO7XVMSTzou6ZFU1D4LcZGEPIwuGZESHsQEaAWdDcC8px0b7ZYbJl3JRzazwvB6DdEWHSV2dSMrVy8yL7jzNbapbvr3h/7lVh8OokLGb8dXOwqOlxaKA0U9yDpkdV5jxxnAkCAgPt7XEBYLeGTDarlNjnDpREwnlrt1eK/ph2doIOSRYxlEIjeYB5xRunw5SEnE81ORiWgTydk8Usvgswnz1yUqRn8c1OqL0jIYwKpR1YJXuGZR0TIJSOtz2UoSiU4Q/Uald0mjU+TZR2wW7fnuZ3stOfnBJQJ+R5m+MrMYGkrqdVjbrGFkzlnuEOyZ0AuNgvLX99VgB+/mqr+J8tmt6PvV7MyCuTZMOlM7VyEPhB5PD3IQt2uyEczFwPKSwRXthksBorbXuQmJosR/h/l38+WeJjfZig4BS1ifLDyE63rHYsVJaiIzWjeLmDlaptJX4FZVhi086IVW3No8nEm372Sl2Tj1UCdqbN/gqix3WEqED4GR9Azi7zGszciS7N2ieVRtViAVAMYJimhwjfCvFQaXHVB1G9+Y9T4FGWtO5plQEIjos7z7t35afuJpp/Ki5PVcFe1u6XX4ZYYs1hm5d/g2ILhXtZVLiPu/IHrmecwsgxW6zrlhZQ8pUD8sowzJLNjBUPMyWOOOylhJVod79RRsDOv+1b5FbKlRlMjxNEs4jSo80k4ZaPhVFG0y293Azdb7yIW7s8B/AMufDT4pMpCVyTbtuvNz+4EbJkKstGVlLaSnXz4xowTx3n6SAwZo79645n1v9ZMe2ry5bhn6QCmVjaZKavKo2wUzd2g57a0tmap8FNSgGOepyHru681nobj6+ynxYTwp2LZyr+aDj+B97ONSZjw1Y6EiRmde7YVHC+chWKcXFEW94owkorjz/BANZ0bOXGji1GqVzKUA/a9puoHmMx7g6tfgc4qZRQ9eO9Hs0HZGWDs5lQm83N8Kl1MG+z2iAZI7LoxesaI5R4B5daMoylP5mJe+JdrPT9q0NiiI2dlIfNyLQijvOKAH8zofcD3iviiS80zsSBsnKYPTbgDK/+TmwJmkZjA3WCW2rmNv0DLfCzmAsSfWhq7G12rLY9EjUvtNAXXje+rmpVlh/N5Tacw2OxZaViWk4U38vJ3h2qV6BSoo0O57TnkSYpqpIj0j5X/1EKSOvTaKYNHvNsafa5rLQ6V73dzMnqiyh+aEEyY7QyrbQ/DORV9J7uEkh3uGsv8PP+89QMGvejxUNtZTO+kqEjq72iukWMcDMyLQqta3ofjhgAa5KAIN4l0UYg+A9au9v5Tt0Be9alxIq4GahoqzOfzA2sWXnLWvubkmfNa1fO/HxYB4y0PSTTNrtv5sWuwBWM02u/R7MkauIKv902I1W4S7jNTRMKpcUHkZwbFUJvLd2XCiudK0OzGxttprQ6T1Xd3R9P7/l2G1ssBHqqUMd86OzDSTc2S7tzU1Dl5/oMDU0LIxA/ZUGJ1HbXlhHtfLgrIco+10AMTgh3C2WaAyUi2Y4PaQ/pMSnPyFah2KyTdMwuHL5VZ+H2mX2AQtqVfp35GC8kMMgMwWgkkOgdQUb2uQ/9w3ithB2h
Variant 2
DifficultyLevel
577
Question
Clay has a casual job at the local movie cinema.
On weekends, he earns 1.5 times as much per hour as he earns on weekdays.
One week, he works 20 hours on weekdays and 6 hours on the weekend.
His pay for the week was $498.80.
How much does he earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
20x + (6 × 1.5x) |
= $498.80 |
29x |
= 498.80 |
x |
= 498.80 ÷ 29 |
|
= $17.20 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clay has a casual job at the local movie cinema.
On weekends, he earns 1.5 times as much per hour as he earns on weekdays.
One week, he works 20 hours on weekdays and 6 hours on the weekend.
His pay for the week was \$498.80.
How much does he earn in 1 hour on a weekday?
|
workedSolution |
Let $\ \large x$ = pay per hour on a weekday
| | |
| --------------------: | ---------------------- |
| 20$\large x$ + (6 $\times$ 1.5$\large x$) | \= \$498.80 |
| 29$\large x$ | \= 498.80 |
| $\large x$ | \= 498.80 $\div$ 29 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+ltQb2KIMQL+2ioUp9ABwL0BazW776BMueWrUQkd9zPhnikeh8RA1adWeFFBdgDk8G/kxM5GUttxgRGC6BmvQy42csEV2ChrIL0vyfS5pjpLQe/dV5+FpZOUD4aNKpoZS30utbaH7RTMCEkcXBNOB2aSPSXWfRojv36Lacr7RrJYXgi3l72lnqlGEdlXwKou3tTKn27lUWknJYOouGL/pXk8f+R2wp0NkGdbccnLmN98ATJDZCJH2ef5NND05k9JQi0AMjk015mO+Paor7EB41VjP+dbS3t8pgNFQQCDgc0vUqt/Bpewe70iB+JckrkesRjUJ6kW5wSCC/CRYpdpXryFF6VENn7N3H9wRsgGHomiB/P7uMTCOt9H9KrXKc+6ihPQoIL8VV7aVEjrzcVCtCmdqakN1hJABXz2rJeN8NLBzrYkp4KHRxKVSjP8s9ke0YJ325rPVJ/zk+wafIklkpE+UrR8P7/kWXUNgDXMdYPRPxnqqFdZtBosPdfsolCIcpMEN/RtmME83PTPEDKDoxmT8VfjgZ8Hqeth7cyuTdBBfLoWOgF/Gz0t42kWCw7KsUwY6kFdVgUM2eXpnZDoJXbNKQTL1N8SmtmP+vEGh/ayQtIKKnAoQJlwJh3mNcabON6osqh8uPtzJlpxMwGKjohYRmziJ4D4l5TH+GJgeYEWxLN5UqgxCOf5kE/bP2k9d4wXiWrt9OGp5MNKiXF9FHwVpD8Tejt5wkGTrldIyCym9nNEPAOTUcbVtfpBNHfimg+U9ti8rdS8Pm4VbK0eP2h7rSlFEcdR6z7XXIbkY/HLkQxqtAVbTW7bTpPU/BDIWYBwDJtsbhiNdo7ifmqKmz9ypqXOf3JIDnlownKWBg2OMf8o2SWmCqLV9Qg2rJvkPwfUUkiMMFMOmTbtwaeNPPUqukM/5DMfTe8435WRWsjlwLKLfV51ZeQGEivIRWlsw+dMDodMgAEv3FyMx7dRyXGyhVfW+Ar2zYNE1yrwRdlyvgXQEP6jRc1VvpXmlf4E5lkL79HviNJ1AKBdL3ZxI/un3jUOGCskJ5JmYEcO35E9KrgUQs7hegfVK8Zh/qs8P1D5rL9vQW83CR6Yi1Jf8ng77BqzWKXNxmldtQhc+RIRo8DhwpiokMqk+6cMqgqpnkGIvlnYaEbWBZPFCmAYvkTDgp/uWFvrg43TV3ucrl1jzZy6JOahaGvSev9egLGHSwUHFA87v5RX+gqBnIipSneqnJa0yp7xeB6w64edZwg5zgTmoAdDNJ0POSEkciR2p+40WlnAnTm29GzyYw7i3cJOT71vmKTtcHZtPengeE8Kgk+jqn/PzTii3QyqsOd/FcAxO95uzILex4/93XaamZFqtOGtTj96aifvLW0IWABXXNmXUDpeI3UwrdzZSAy70g8ql3eiQaRr0m5vjAqI/SV6sclNkm5IB01ocGn0fEpX1wVq9el2IqRlrKon0nm5/kdkB/mcTNdfszzjL2YNRBQZVfDMQlpKArAunb6yIAIpJuplel0Uk3RdBIKrUU9bx6Mik3ZkiTS6L78i1GaqGJunI9P/7z68ygDo2lKJzfeNxnafwi5mmw8rpkbajxNSc4Vti5NYN7fd9qyAjTtQu+gWZxadHDh0dLuwCCtV7xmAWwQmD+Vx9lPP0nUOTBtW68T3Flsm0XITnGu+FpLakszQtZLFsG+8/x/x0aWeMVaB8P2B9WRJMOsbH0q9eZtyXU5QQLALMup66lfdG2vH2JnAhNpT127rQZO+UKrgBwx4fNDkdkLiP+I8gNkFrCseA+sQDmYidNCPRTw95FTn725/vD7I7JI4pRfTVtx+jKD9ImP+nldR8VOjyoNKlfFBsSMVCaZi6d+UKhuBzg46o5XgbMRs5vwoLhUE92rIn2pTBn6eXEClD0Ap5beKj9l6brg1NsX3f8k2SBVH31Q+H7S3zb2mMcPjxTAXZalt/vbTaQVa29qeUQbaWvjINZR4+Jq2ZtPba/b+nXquS54clZofeBklJsDvMggHclZO7ciHd8TsuB6H0Ax0mMcMSaNy9sQQsYxXAzutMvg3gM3gTm3q8AMVh7NNkumcOODeGeR67+fKTdZQbvl2j8cLJLOnqh+25vew0dx/5cbTZ581a/lBrfifjax8z32w5Oom/gpivj5DgUjJrAi6xxaV8VML+ps9iiM+7RIcI9gt8VqVuTvQlw5J1W0hnr/XsXA/4NDeS8VwxCsU4X0kNI6C+xcfjIYJMK6Kie1qCLhDIR6Qu2JoEb6F9YyorvxzVoHLZI35jAXMrmQkBq0njiMOfFQbYiYS0C7AeexoOXkyoAG3IY0SzNTELrCFwb7Ac6YEMeEki6UeCiz8VJDze9Jmndw8Hn+Fsuu5vJXMA2Hyg2QeiWvj3ggRcbfm9J0rhsU4EAyN48iUsRg7ZoFaJa9GpkeyvoxPxzyDd89/ozK0vkue1i2Sg3dIl/WVtTq7qQmIMmXCkhTqN2f7XIQC2UqiaAHxMeWmipnCGRfxiLHUUpqOX7og0Gkfhg2BH6/EXNUqYZoHo/KmIdd8bSyOE1G+4P4ygwFS304h7Q1y6W3sTZamC+q/uGW0GxtqLN6Tv6pvnuEgWqIVot1H+xohVeLfqfZiz3xz9iCxylIPRBLuYq+ce8RyFm14weuTjnwcIu37cahYrqdbm7Aipb10mfRfBFdkT5O22bmSQGbWcoAM4iC2bnjFir2Stdyad6D0kC6FoP9Mn1NOYCXx39rLVtdOSCzhxlSrG+8CYSsuKPMHw06Lo3pucQ9TDCZg0urYU05uZyQHJ43CLf09ww+MmJUPtTojjPvXS2n3gSxKh+qHHpBTeeEeLpx80xg6A4/97OVxthaGDTYvyFafkHIhBwnniHngXEbWUyCyMDNiddLvGKMEOjjbqS1BL2WiqFs3VYxNeC9s459X4ZSialdr4az/GYnioCR/4lMJNUYQFj4OTSOXtaH68T0yXJKgYyNn4Q1woOVIT0e0Dr+SHdHps/NXMWKwuhDJZu3EYSaeGrmsnS01d9Y9gNTO9KY6HT1nH4pw9b+/rzM2mHhs8utkwv4xWGHFoEJy1To0vkFOcm+PuM/F6ma3tJ2HXUijTg/knZF+CYcLJuXQGtUQd+ftYN5U8VssoXZR/FtDeULRznLQgFo/HJ0IAZwZTMICxArJOJaYC28HmK99qpzZknTxe6swMZoUmWMlr+qzoUGpQrm+VmspKHBeSyXaXQ8Ra9Bv9lCQ34eTfxoWrA853oO0CKnxlO80afRAQBNccL90PMLepZ5uJf+vzrt3T/YIA7ki4mfy4HJ28IihWCvmSw/QePeHedYNcSDheMgkptiPJ0xW2e4IF89Yl/4vSA+zXjAxzPxphkFZ/9fEpcdST+rWr1iHwVK9q7ggSVyGbn50io3zuVERReLBx1tdEhHKYYqPNe5bY1r6m2EciVr8uUtgukFbyLc1zMr4dty4XgCuZuzIvMv8BdCGLq3PIHdC12GRjIE2xxKtqMgLF6quWWbS+KZ/NVL5B/3UtGSt+A3/6MAsjUxGyq7th2sXs87dDrtgXgwWAImF1gSiUN3g2S/xZtqQkRyqCHAIIjS40ooV7/ady5CzZakf//q3MsazbhBwCsuBIXyLElEr+fwF3RISOv1Fqg/hi7fSBxKEMgbB2FXOpLAL1lejiBjpuf9AqVF+nghiVjWBXCCsXHJE1SDVvEX5Srlgy5oNXOLCfAqy+N72+RBYmGjaQWMDvEW6LCXgsvRkk4EN4GtuKogcuGCBFK9ZwPu4iNiITXVOEEQHtvtNLX6Az6+Y9MRazhS9kUbNXJIG60pZ0qQjEX0C/zrM11L/rT8O+e9IOeBCnqLYzAEbaXtoy98nqJSXyXKD+XtXzjMP89ciG2ZKaRNqJSo+ClI+5lGfCBMW6uFJUYiz+WULHyEyneFd/WqYj/Mqa6mDdVIOWY4uBejLtWV77bL1+TzCs6aDusvxqvfU/PCtWuJky1Ycr8vrthGqgGc+5IZS19FwidETRczm5C0Ec2UgALrFScxBUNV5CbaLddcc9zo8usEtrDiq87bCMii4urr2xDOgcVNwm6En1aik0k08+0V+0Uhl36cOKn8H2YSYHUAKpI/h2eUGigRx9fJIy5gJ2p/5eRta5Rfb356dBaYH7xyyPYxJe+/gseAMFAfbG6QGwbSc/nJL93WJUpPIk91DBug7bmqX6DuGeWI8XsMszhY7TUUsfnpj8asNoOEcXdqd9neD5m8gcC7ijXvPnjiVuO8MfJZQhgkimXPxSZOG7eEXeocZwGBaGawVm7h5LBkWbU8qPgdPJ9nsmV/FPCH0VLREEL6oEbPDoEKhCUm04BJ9vALGisB9mOvtXyoD1Lg4XCe2oweXIYZSjrdlhK7gtFMkhSk1wA26To6w6oTapwHLbxJnrGoE4CnkIx7zlzMuQ6UjERN5EQA5UoKZsV7kqOJxExWaGM9qRh6wgh5ciVhfBCgYNfoQupGHcZCYVBWvAQGwSddvELMqewGSrxKNegoT2wYw1xeOXpihC9b18hvMTB8jbgyNpMXbKqZ+hgACTwPM4yX6uuwp9awW+DcWSr9B0n379gQJbkaqS0dDMFw82jBiENXpEnyEQc3tgInEvfAhCFImeAhIzI8nc3Fxp0+1aOwh8hj69u2pRswV3tLgHCCS2o8kN6CXL/dzL8GIye3zpqyA9IJM8CdpujhVCO37mQntB4SHIKNOW7JeI7eaL/W98AvqDB0HfKy8U6aC/VKK8s2MYAsiYgsseaH8pV5NegVBcbl8fZ+MAtX4QoYbKueAIN9W22Q3Ck5Z5yR9ucTsLrx9lCbhK9yqK1d5KS6b0qm7TuUZxwWksy3LOhQdk0TpB84GZFQWxfSha019tB5JMLqaGWzkGTc4NagNqBXbS3vkabOZfw1Pf34gwHjAnTOA8fcQ72RHkVRyJ4nhrnKJc0tkMJ0Xtcdgm0MQl04/WVONrWPAvsLAPPUYGTv+7bIqkDQoiSkD/WIVk+PoGS5vtuJq3TvelsgfsFYFTdUjEXJQcTV2Y+GYu/KoPs6fpTUjXPyw/x6WihgaqQCLUO23tbzfSgX9u0h/dE7liV68YOlyO02yyO0H9JkqN5Y/HB7ssGnFk77PDMDfE0iuIJcPnFSvYeYgPVg0IVwIZhwXVZ60rdU0P2L5ujdAFpAGU04JaSQvWO1eQ2mE00Xomo/p6GmM27ohP9KHdZHD7utKBmT7ASU5sNJRjflg5UmsfroTE8nIDPdDhIvR8U450GBPPNSh8ZtoJHn8kp2N4opfu7aIOPIepcXpnVr9llhXjYNagVA0ISC80/NxBStlEAO9fvIBjUKAMGZRIcKf4aPx041ggtVhEnvrztJz8MnlaSlMIeVzYsMyRoX9W8CiXTmbp1y/wUwaO7wfzNcNZJ3T8eXDDDuPgFiKp8rhzVZM+HuhzDwKhotOTUdHGGJJjOUSNiftx/0tmpndsq5X3svTjmFzL5ejH9XeCtNKighW2tiRs5ExTuvRJi6bXRDpHsC+8upOrGTpGYP+ivl6wzyq1wjCZDyPs6NhU/IJOWFy6QlKuvNKJ9+pAHjUzPBmmvDAYVmOUUOM9BllWw4SOv+uECnKMmORkq08+aG/IsdAZ5tTtKQb0U0qB5ZdlEp7rBY0hPsVVDq9cQKWiGZrVqKrWdWeyJ0QpYDKS3Z9GuXztVp3H7h32dxfgjn4FBTzpm5kFhxxLWhnHUQZYo+kFOcbE2mad3TzU2zWbyVoCDuewoMqHsGNwyL2NoU8rGz3R005/UY4SGSCS0dEFrxTcY1bCCFeU5QJG2JAyS7qC+ZZ3XytE3AWD/QqoX2QTnmxaF7nyob+j1dilpSihMPWtE7GFgDMAY+5agAGU4HTNe4BuoTqhA2k2DEdx/cs4HCwEWddmkGOUykmKo82nZkZykb1eqleSIp/p4WNAKfMmdxjplFQOjGPflY7mN5JV5tknZirhwe+lUW4znbk8O5LIgvkYMc/N0+r7f9KegJvb4ac0pM+bu+dPjGdYlQFAP/miXP849Q5BDJXjUhchX7mFzd1kB0mMv86K4D1ALZnrNUbW3UF9yV3fpbURBjbPcp0oxZrmJRp/MAPygNkdl7ZyQZaV2kBPTM79f/5TYnlJK8fgT3O/1Ewt4rF84Ckb6oPLOKH68GY/830xqTNnVMVbLEgdXKQl0fsS4c+/XfZ3rFVoDK69tBnD2kNdimIELYmMl16a9m2CTFHccq+kXrYn+ZHm8fsoJlwqLiL2lrABz62Qo03qlLaY33L/gxsE/P4aXiV1jVQRbVZE7Y3fKDnfwiSJI8wNsvAtOgC8ZElIBDVbQ5GQ0iORtm3n6NjHQA4QRghfBSbn/F5VHoBj/XjADRW7YY/bzE/mcFdBtDgTSMUh5cC6MPZhoyzd73jgPaeANO5eehUu+5Jq7K8rppFeeNVvLKsV2zpsWBhylVDc3a8czXutW7uwwmbWyZuYsfTQuJsg8EZukstIedZxzX1f3NNOJSTbS3UhXAqA7FnaSw70Rgzhaw5jij08eIbFclwG2h0gHYFp8rdZCH8xN39NRZC9PYSGtTHUZKY0ghIvXpl3MFoZ4r9km6AjAXL4XJb5GtWQIl+RUdMFVoH+n+WCIO2Ph1BmZ0Hbc9K2qpX2hj/NjyuaT1zZhAMbGIe+E73a5b8XxqdGTteqrSDABmEY/wEjHgiov8ps4d4Db8hSy7/zXPh+jRdc+DnXmniosIi+SbQcPR87gq6awboGeY9J7AIXQMCUcu3FRApUUhotx67i3RZQJpP2QUkp22CcpxZdCtB9NIhDrnEk+IVnEUvpO2twz+sYWtAp8Cf3SQM9yIYQQugjOqybe5kahpYIYb8ezS+NGTwSt1S41oyyGVahttrmZO6dLMdj7n4P4axhZjGFZjG0RP1IBSHdSb78lFQNZ+mEUq+TVKfDJhEs6K+1XYYj4ify0rWYXmzXerJ/6MfvEB/XpD0TXl9jRD9J2JTldIzolQzPWyCGSXfUM2FLI9kk1D9Z5PnedBUX1CN1qtnPbMKynZl5XlHUn2Y5POoM8ketuYmE0c3Y5jCPqEC859gbwRoBCN0jOjifhz3oLzICR8IR6qXDQDlxUEpAexDpQ8nWUR7xm5xymq9161MEzXeeF8HcCGlRl1p9TKUKtV4ROkitJPszh5BqPh64pR5KcCZD/HfOh+/nLdevrJyzR+c31do2Zk79kZRQQUi4pYMs0cAP+S+iqHCkivGPEeQ1E+UVCekisG3oX1xw=
Variant 3
DifficultyLevel
574
Question
Fleur works part time in a flower shop.
On weekends, she earns 2 times as much per hour as she earns on weekdays.
One week, she works 23 hours on weekdays and 1.5 hours on the weekend.
Her pay for the week was $351.
How much does she earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
23x + (1.5 × 2x) |
= $351 |
26x |
= 351 |
x |
= 351 ÷ 26 |
|
= $13.50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Fleur works part time in a flower shop.
On weekends, she earns 2 times as much per hour as she earns on weekdays.
One week, she works 23 hours on weekdays and 1.5 hours on the weekend.
Her pay for the week was \$351.
How much does she earn in 1 hour on a weekday? |
workedSolution |
Let $\ \large x$ = pay per hour on a weekday
| | |
| --------------------: | ---------------------- |
| 23$\large x$ + (1.5 $\times$ 2$\large x$) | \= \$351 |
| 26$\large x$ | \= 351 |
| $\large x$ | \= 351 $\div$ 26 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19/VOdx2DyXTrkTE6bXDCq1J/tVK0BisDlWaQdNS8S1hioYAbwuKTpdVdpUxgtes+PULshCXtQYwof8SbkPSeVGRynWzPUShdBz7WTzTmCfQA3uxJo7bHiYKHhudv/+GvZI0Cjq1ynSi9Mfa80M9bhBOIiqhjVadnQh4nqCTGNKc8DXdzPWaZbHA/r7Qf4BTMPY6cdru7sTP0NdjzjP/vdTBL4FDon5GId+a22KyXb2R8nhRTJ1s1sY7DVdS4MyOcg2qftTBvoH9fkhIKuAbN/AAlxwVnD8hTzgtaFH7n3KxRlTaPqO052gfVZ8UBGOwviwuF4nkYCrggRE1v/vRtdd5KSDEUxwo5nbKDAazS21sGDFNy/Ap3GlNQUtt5hKMyN4ib5ldgEo9snK1xSuORx5TkQRnabDMLOKgtF8R7xxZ+vgU6yA3ipsI7mX0tS2/auIespggMeqi/808TXrVi7P5i68Mj9TuRRur3++kf2HeBeJo1PXUtw0gzKS9m1Qqkl0n6ElnRV9tYQ0RzPKM61UmE0zJ5z/iuId2d3A+amjoi8SrI+POG4hTye0Wdpu8BgNkTzyuomZWLhAWaGeg65QW8pbrJ01rdX9sLmAvDYMEATXb5qXfJLxZ/6R0LIw+tkZWkoa5K1s4cyQP09jDjPBnF+wcLwX+aSr+pV596mI80k7+jwmN/b477S/e0gVemetj2TWozK1FN1IKOCFZGPOYeSRGrQfpXyuoOVZ4MPsvVsSesqD3aKDT8neDebnEzigCKE6AU3eH5/RQEt+YMh1NpgGVP/NBeVljwkM5x+90SxgRxureB4w7f2JGxMrWQOMvT+7uSNq0HYTQrktjZBkupCqZy1qNZT7RcHkIddhsK2DzhfOY89iKySs1GuTvXURtw77VKjoqXLju+TeCEDiTJOKGLC/OfjsBvSKVtpgDcQdHeHOjxVqZ9zBfP2DaCx8GKwjDaZJx+p5B53pfqxkCrFX6vt9g1qU/ydfUJEt1TaF+QS96b0/6LDuOrsJ8yeFqDnWC3SFOxBj+uJXjwOb0MS0YUfYx/QEnLvhrilkKg5DaQZSkTtlH4Cm0tovVJ0xZ3AbPb+ALDEXbZxzralAaPov72Ui54VLcHd96Rq2y+/61hGfIjDR7qIAzXpl7pp4wdpKrBS2lZiFLSuPphKymCdexFSpfnDIc9+RrIWn19K6IC4IK02w25mDk9VEp26xbL4WXQcs28u06LnFOBg0tM2sStjE+OP+tWjlthi6Z4C7f20uqLRF0kWAZiuCAOlR5C0tNsX20Te4hTKQb8s1gqJr4BsyYZTtECbqQCzSRzivYzaRjmEZmRxKLDtzIBfymv0wo0iSMgcB59uWYsZ2PwSvVWNgt2VBLXo5wtuTmhqsN6pEY9YQd3kkBH4upENuSy5CvuNbaCDP4aK8e/dfOn9QRHzFbZ20Rx2wtomhQmLoXZcgRzcAVo5irZ+pztiJosscPp9xd5UKel5/oWL6p6ma4tlp07Cxvpe1wEnmiTQlzGQdKC9pFuCq1Brk7X3/xU0snJsdL5DNCguLi7Hqo/WsAW7MPaAe/pibJYjNrCX/NCx6MuLghLG8K2i/KntMVQb8KpPT9GgNbg2lriavIkolXQDjYOQ5yt9KkyG4UxHtwkDuo/9toAMDApgFkxRLUePDn56GpyqXwIiQVhbY53ghJQ+3oDr3BbEAbmZTHAfe6GXW7lMJCdfamV4VkZPWlc6Ct78R06pGra1K61THkdKLivmFc/RzrZsjLyRK/7Kyet+rykH39ZU//s3WOTF3LAxB1Yh4WF14QkyuuL5+ZLEpXCj8GeN+D4hmraZ8nhxFIpNpZui/EqrCX1IgUPwt/scnqxwEEZdBEGIuMl3EuYiVQBOtxvE3ZbuuzO8izPIj9CgK9CGrRfy4ueZAyTtb9Dsd21upMje4n6LPBjI8JUBF86QO73ep7sf3euBmI6WLqVALXPMOSClGuLr1CT3M+yLlbvPH5fFqMdNfoih4H4oswK+ls2myLJHZQC/2+Ijjao1Z644ZzzOXAg8dw1gbr65m+lKchC3dasyt0pTlEdb+hLpt+2p7OVdl/4c1boHGWSLFr06mcgtZUQZvxa4nKaUt7KztNIvYMfeffW5hYBlaPgX4Vc4SdXJ++PCKyGBGM75bIRbSksg4iaLntAki89X7fAQcO2+SSgewCpd89Uzuh0n5hSJ2M4NpkzqA+cqX7WHdyn+445QDg63F5YQRuxPJnxoBiL0pH7x5C/j3Fn3O94eIiBL20fn4wu8s6Ps4rPZbqbZBPZRH8Ed6h5iD44NP1ORpsJ0fbauOKYpLN91VJ23jREb6eVFyA+j7qyGAviNKFvV0hUV27Mi2knZp81yZusXcBH5g8kb9AoyuDWS3IAkSmxteRbUT+wINsPlC20ccF71Afks1NGfMuzZ0sxnTPDDJnk87ZMUIfOnPt4W0gg6reohxxFzr5IXtFg8xFlFbhPPueIIe+2n9kK9Ot+Q8cWJRRPekO/fIekaTgSDcS1PJDdH6HyoTxrg1CuIBCyVcbBMIVUn7b/FWjP0rLoMzbQTIe9iHsRFEJCuqOdgVzpF7Me58ROh7fuD+YXhOF1NyqphgpPNHmeWRZcP90mhQHLkHDNJ/XQ0QnPk/+GdnsAt0RDNTKinakkCaH6my/kdi4h7qlTiYwwCjhoWcc/NrHJwJF+o5YNM+ZHPYK8pTD/mFDL0iVy7pgd9RxW81oUirZxSwcqhoIcy97jaiMFctC7/HQ/tQoCXO0al1hIXl2cowr2uiRh/NteCsI0GK6Gkb7hJ5k9JCordhz9K43HhaVNfpoTHcXjgXc2rqmp9u2CotLQjEumHrraKm8wMdl8ipHUckMpD4e+bjd9ZsWOfK7qNT93bPetDY/IXNxQXqdKHnibQK+TuStQTlEbkvXWMkTBygVkQudmqp+XKQv2b0dcArmHW/6v+kb6576G92wFyI6D6hktWfyrpBJoZjWaURX5weSVpmZDUczc0lt35rDEMeqzxiBWmrmu3ItsGGdufD7sRvoa4Q8PPF3ncifnZVUam0AbuhF5qz1agW2LubcxlPtBRgoQVDrNY3I1TTQ57Lzf8fKEZETydMEab3WMSs0jUeb3fTUF+m6XeyyinQsU3sbB4oTV3mKIqmrppZMvd+Wf53JF4QCertpRBXKUxdidB5Ykl4aBfDN0k8SWqWzhaXXktuU3FZcQDXCRufdxZPJ7HscqhpY7ISKgwJs+vqUYaV+iWBBYcuxK1hVBgd09BcOnDnDkSIL4x5rOgv574zIbKGV+aPUmnsN8Ajvuunms+I166Sb4r1cEy1KGLK9Urx9JwICFeaMPBSEn1EbYP1CjA+P+z3i3djo9341i+YR4JhFunb39kTMHcFDOEuzS6t0w0RjXC/4hUYw1YhfSeIsYLGIf7o0eUJy/FqoJO5gJcSKZg9SWbrPK8FaEa17HKpY4d8trNYivDSTYYWhdlDSEKdmZwbyAY1mxuGlbKq21p22g7FbUwfFXa+9sdutq5mMi845gbPL6TnB3UoLER4bvSAtYlBu2fG+Vrm/uNRkHRjQ9wUK8G0+z1H+K7a56uNjdn+qM05cNcjnQG++f/5448lQmGpUHhxU4BhND4TIFTwSDOGn7crZnwTYexjV0j2a82EECO3zSI2Kp47RUcX6oC2otbVtB8iBt7/z8pmj5EH1493O/wVAnBTxfLhN51cs/xjAMYzJM8CPIYyY2a45oPJIZ8RkGgYUzNmPZcLHgJ+mudrie0QydMIO5tmXsUaIe+FNqgR4qPOqUpkPsand4zMdEcp5HwJeVtAy0/tlZx0LyGmMnv5OOs9EPOybRDPDUHAN3QDNymxY/YydV0xtxlpe3OnovkOSDbIfzvjY336MWXMWo/Ci9TOCTZ4g2A6mCIhdSr0njNkIk0bZYPpxPl6psNWM4BcFz+wla3elqkhXqziaEDbhRRiVp+JiVCbj2fudzGYBhDZQG6dhn/iDKwfBf4ne3CS6d3sosttVAgNkv1xLkhy9TPln4cWiryCXgIeojOyuvqAKX0K3xMBmVandkT2FMdNoy/7e1J7OBx3mU+hff/FoooPUaxY5b8buwb4FJVGftiino5vxywaAJK7wrT9uijMKTHplrY9EortmvfssJ9Cnh70raz0Xau6/wsNwYhme+tVCMQylYoux4J4/fTjmyJxtrs+8ZjkEb9KQLt//5XN5URuA3NNk0DMKxCWEghWC3xiTxVp972Wdw8Mi2ZEY03mqgDawO7zCCsa4U27RWfrm/ev1iu5Tm3VTZz+CxYmomnxN8jNEeEQimjieaQHsCMlqxigw5YqPwXZ9ih5CVMPrd7cWq6wmBoRoesvan8FDposgvmlnlevKXASglImCn2wiO7fdVkUucLxdIlc5WXQ3easmHslY1zayfY8eB8Sz9u8JCucagCOPPjjLg2Sz3orkUvZi/7MMnj2Z43uzIzqth7X6X3O59u5xL17RZXf88OqI9JTkOLde7+91YKMIdffjvvSNfkm2q6keYkWu/brOAXFbdzo0sMZAJItwcPM+ojNpZvbFA+QFTuPz5VW9PkMzclCJG/QEQ4/sj4t41NdlTkNbvtaCwLV4zEmlOYpZLRv8A4i0UnUPf31PpWO/H83qJYJ+b5MnZjJadFzo3iHBS+TSy6D/Wq9FxruGPMNohNWpPLlHsLXQXl3kr1qmGpFGooJC7pNs/tuJSwk2+Gjh+mSJb3pY0VKaHq/UJLTkEiU7St9I9FPiyM8KwzVDmffI7tdlbUKrhVMoIk5yKdcng/GVhgEEYlwU7yGGkTXjHhVwK8XL2Qqh49vslAfmcF/W5apyNkulnzPIoi8xBbvZ592X098kLQIdVbwxvvU+Ucv9dv95/hfbKJju7Aj4mVu4s+fF9Mtx+Y5kURKn7bywkm346NAvPqNBYSsmdSwk5mFLL0XDzFBDy2E+URAWnTNE5vhDdahBuGEf/Ea7mxZddgCkr+Egm2BT/tGSZDOmxCHDnZ/a2QK4I4n8p9sjYavl2l/xt+AB8TPnmkAnarAdYIp7lDKhdw7e3/lPP9TbXfGwFNZVWyoHYztq0xJBa7d1q/Ql++7vopBktnVVF/i3Iam0UQa26b21DQsKsA7B91KfvhHpprYAabLMBKHsphi9iFQFHx3WHIncUF9vHeGNuz2nqNKeoKq8hkVEmgCjvpObXoMQ84xbzaPv7/f/d2XtP35O/QVzeZxOKblmv2iCynmvFvR5xmZrrtekb84QOYUZL2GIe6uf2bVzqY7Dt5nbd2Jj/Aw5OTtVhuWfyvzjlhnKbTjYECP2kvHYOAGz/owK+5dtmkW+3Zjr97HCVql13JjFQmP21aSRKlpCD5wvjqDdg70peSboJPUEalGFrhiYocCP89tjuUhbjUsbmDF1E0qNxY0oUvh6xrrctESApIwCHpeOmhEunkMYxuljYLnc3EHAoroxUmdw1fpVe790rGtbPXatDbFHnaUbOCo57I5qAExr2uGDeUeBYKMv1Zi01mnlVehuhJPO3LICMNQOchhDPfHGYUmLNh8+Q9Ar2P09iTog/45TFeQHAXZr84kHOJtVjA2cm3iU8040TpP/lyigeNKPQtbvTEBpKTEvB5sMh6cjxJgDVpcnO8nKlbnGzCe2U7bDSUq/dlgNHnN2YMuFl3c8NL0C08PWwwBeGnZcWW1/8CWD66MKjuAAXOTwB/+E8fL4DsQ8wamvalPs5YzYGsTHgkC987k5uN9nZcOtjhIYAE5SgfPEveDfg1wyQMyhMz92JQ53H5TOSStbykGDp6xhuqxJIas4FqtWOT+VuwJtjj4HGXziEqo2dCbUYyqWIoV0V7rotZextJCo6pifVj9OPgbrV5qmcvn5O1Ho5P6dda5njG1tgAkWPx2hnyq3+4+hpHuKUn7Q4UuVBUZvKN+ShcEg9Pbp7V6cbsBBWEbQrWbI7tlFAyWAXaY3aAWEH0CN3QCmrxY94tmfuxrnrMGp0OGbFDx0m3SnQgE7H5jbGXw64EitPX2tCxXFmtlbz48u25v5YR794+cbFllesBW6t7jlGpcOVmUtSJwzAmGv1N7rF5iocLd3zWldu4xQ+RAce6aKjmU/WiCBYsGzRjiz2lORk2TYOZfqXhRLKg0ht6cF05XRhNI4+hmpvUe8B9GnaqLZc3nKoykB6gMRWXDco0xANmA45cpyJ91dQYXtPwXA3we9jFbPXf7rEFAr6HxbjetgYgKz89r3Ye+tL051x5zl3EynwZLn6caoOoDP6X2d56lKkuDdkHmzAG+0Bbu4Cn2nR9DLBx3vsXzHOAQX3dOO8l3L5JfyWsWbUJRqFbWtSE8MthH+suFjVjIPjgR1KDAAryGK+Up7raD07vBQY8oHrzsvzCFYrTiQv/BcWQLiGLXFR7q+3OQFRHxSUUB4E7X1giol21P8nmfAjAM6l4A29RGJ4AlYVNTNDQIEN7myTxjz9SUET5/G8TNSRuKjEiZ8JN9JhPfJR0Ux4QUt4HySqxh3cgu7ph8VxSbp6rsLTQWXOYIIi5UnTyOj4pEvyaznFNGTMhp0XvLP7VuiXNp2cbg3FJBG1/4hqzmO3NaNZjLYpJNWUBpBLHQO3XRsC2Py2DGXQQL5CyqnmgFOS83gFFLbdeRFX+eTDXDT93UfdEaocdylqQPe9SPLtcKsVhwVDLRifuL6Wpk5dh74bCc4+XjNI8AH7+/LS4P33yZeY5Nj8wMNxhwwCa1ZfLwZTDvbOiuDy5s035O4W1ibP0Xyh4X/zU2wLKNH4fipWPOiZw8nl0DODm+GVm7uMJ/X6QUmv3oMBf+GECBx7O65Bw0IWldHmcNvjPBLaHFyxSgl9Md5Busc8v0bRZgcxnAEKaRSDFIfxz0RKt6+7Tjtj7CMrnLrhyTuHAzVkvnPC3YehpULKkssvywmql/JsPA4tMyAjbIrrdaQlLk+rNEwH9jTzdCHWUx3Ao8uExNWycdDMQXwga0rzIZkJNcExGpaCDIRKwZGvumsUHo2q/pRL8WoFicNNJ2v1Yzlhx6ki1YXPVsZx9KEdO7K/xSxpm4ErIzPGDLWRRdKJWxf78dg9FdpBA6SYY8RtMHuYEBYoR0UcilY2N7poqz9IE/uJQQ+eroij9wTEug1rohYPpL6f0KGbTrJ6VER4Jhh+HhWAl6smLlX7ppTmifkB6ieH7t9YqIaFm61UKyPEsgzp3di1lVotrAuq8rxx1JcUA+mqCWJQ==
Variant 4
DifficultyLevel
576
Question
Bodhi works part time in a surf shop.
On weekends, he earns 1.5 times as much per hour as he earns on weekdays.
One week, he works 7.5 hours on weekdays and 3 hours on the weekend.
His pay for the week was $150.
How much does he earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
7.5x + (1.5 × 3x) |
= $150 |
12x |
= 150 |
x |
= 150 ÷ 12 |
|
= $12.50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bodhi works part time in a surf shop.
On weekends, he earns 1.5 times as much per hour as he earns on weekdays.
One week, he works 7.5 hours on weekdays and 3 hours on the weekend.
His pay for the week was \$150.
How much does he earn in 1 hour on a weekday? |
workedSolution |
Let $\ \large x$ = pay per hour on a weekday
| | |
| --------------------: | ---------------------- |
| 7.5$\large x$ + (1.5 $\times$ 3$\large x$) | \= \$150 |
| 12$\large x$ | \= 150 |
| $\large x$ | \= 150 $\div$ 12 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19qw5wfN4pjmc4NlN+579lsYM+TaQq8R81o5Z1B2XemJgAFkVSHj0JxkAuU6Bs3rAyZyQK3mwSFzkQO0AJzzP8TrctfJejJTAsBWVlHQjywdNZ6caHq/8+syYbS9AVhUJF7jbbdNSkuMGEaqZG6WTRuAO/cE18v8L3xODguahNcffgFTj9vEnQNmloNXCGed4IEmnzs4ozjdnG2+8i3kqyk0KBGN+fZ17RerxUEtZTi7tN+ObkaLjRfWIz1XClrBN1tvjR0phBj5nVKF7O3UQi/7VZFQZNJuf/PXYgZBCGHr/MlMNS8QbcuBLNcZjHbN/FogT7SFLrJNgrSm1kcGcjQ6GywJovyUb6YTs+GJfiRtK6OwZuby/YkuYhSRxQj4L8tErl0dzJYJOLchTixT9z0MaTnhz5RKBnpEaPvEHPsEvr5mmvc5xjsNPPBtEatXF0Jx0RxXoPcQlIHEGKLrPjaL8J9HuF8Lpg3HKt7/ATd2MCXuc4d0Nj1dpGz8PTyREYltV0ZzHI7c541kYiyhS3sdj5fc5Vo7Fmu6VNiqbh2bhSStvRIF8FXLDmu/0+ZO3XhCw0ojY2sOiDpYCHnInilml8u9msFwDfj6GoRnpGUlV8R2jdQVF894EpKOIZ0OsN+j3CAnWl7TXg6yPsNAN4xodm4eMsbsFeAkVhl+OSx17E356LPHvxPRiP++WCMbYsi67PWLh5LQLKotJFHx44QTp72nkuloxBzVGO3YVrGL9WsIYh8c61c8Azc7aodTdiUM+xqvF7xRWQJoBAsqYat6YABMit399tYGIUJTODVpjQc11yemA4bbPlgwON1S2w/f9Q7xgdty3hBZH7p9gPketcbDm+gJFi/g6cm2pX2I38Rl7815saA6oFiex+srlEXMpFO4FGXsy70SZEk9eYzWE7YR9YJkwftygr6JNwQWnlZdXD+Q83X6UuttyrkEKrZXNIaOMc+inlhaGYmK5073Wh+q+aEOiXPC/mCBRPliqx2jrZsRuBVFADjMzi2yPwy+C9y2cO/r5yaSp+X08SbCqUrc+gtYDz+LULA6r6HNKPf4GzxSOkRf7bnYcefJ86hxDR4dGU7iZgdlWkou3NrJG2HwOneEKJry/Whbr09mrCa0j9zh5C3vhNBMIqIo4/Wf5uF4syaKVNZ8A3PconqVO9cHLccfBHwL+Dcs5YcUfNAx5k6ynMcS/Bv3DIGh6lKgCwkNeaNbjeu5NAVTMRr0rPNDQvHgwSZo9q70A9ZmOYA+IqXQ5fafchX97PRJe41750Xeg8304H0a17EOmH4Ezw8j6WKpxIV+zc9xKJipNQ9X7dfp9WrndfEQBqoSmfKeEBxKWD8j4R+H7JIzSR2cxcpPr8hs6dT4O6Fq8W1J5mO/Hp9fUjxzE04lpSZO+z//+G5RoX7rCQEyrcDr7i0PpZrihGqAxF2zWEeSGOmQ6sOoLfyWNnn2yTtW+HwpQkYLCUsElngCxyF01kCsl2j22Ri63jKQRi7s/ib+K9j/T/1N3kxFa+4ku9tF/iJaEiyfl5p7Bc+EJhMzrLR19MhFw3QPboyM6km9+UJTtxe+UB76cZmFQRWob6lSVUzjj8JYBU/sJlxMVEfTt72qt5d7iVsYyJntOhVoVptkQy+bLSuJnpJlY8tt1nEMOaZs4+7u1dgz7G6BDC2i6QHNrjOcimXgGzeHw+AIYf6WDQAKqUDBrPUaiegatXXlBdrKcKkPy/l7YJQNTRdXMqMTXG83CNkXDuh5otuZP3xsRfLStqEbEFw6QCck7gI/fkWTEF9aA6W7XJUk5pBs2SSyvulCyWHO66XVTiJB6wSrzY63CI5rlQ1CxpU3LlE0GLBB6+Marik3K4L6P2UF5NFiBo/dfLw1D12eIdTtumLnzkZ6sDVJ9MovB7tjRgcWLs+4c/1XghIUiZoi0p4PM2/9c5IwUobCBTlmGAf3vGl35inMNAY0bFkaCGVuye/iE3U+KPyratPW6oeXtcUxGzu0kTRJDqJaNrKn/NoDqeUC2e46CoeMb1PNWPdfKZTOGNBZAwv2cfuCPc+qUK3PxctVHzpM3NREoloP1pO+FRlLtB1DjpoXdpBEyTtsMSxpnnVZYdIQTrRA81ie3sGNVkWlfF2aBBcpX59Rv2hv8ub0+f+qfcWs8weLO5zKUVWqfTFqtoL3qigYJdAkEL3u0QD0luV1h4DtxJd7+HpN2BhrnTt3WzR+HgHtZWrJD5QFXR+QAsKnqjQBMsLvcJmPrxdl6QyThwxfl/oJzo8xwU5A5m83Qe1VCbSw3M3ztIVva1RTXgGCbqfdX/RNeUwIFKnsNYpIe7X9MXkRo3beXgABB/rp3G4CV/a/PMg1X24YSgoVcqS6oZgU30PDityD+UK69sKwrPpoYesZBPMpc4kwDAe3FQNKQnumzGRA4exWcepZu1VqBE3l7523ucOtCJBeofvJGZA6iYwx2au7YZlukhOVtbiAiTQ/T95UuUwlo+61YV/k31h2r1VZLRpP/AYB4SB77WELyvM9eRE1nAXjS42LKBKbd7kmWZq/CF54gN+LDv5mE3W8N2HTDFBMQAnNIemIsw75guEtEpX7Iqll4FcdAFZ2p/oRl5Dk4pwHDtOalgOl9bzKO3g+hfMg8SVmYKWeKmlaOlf+lLnSCXTcO/4IS9L2kWruAj5KN4QnmnYDEcuLEeYs2KQMUK1jB/icnH9luneTxGfjGflfEZZEDk24tHKO1vMeEHXuinwZcBWX/VvyJA9pzjrGH4o/YB2/NJvEV54G1eDo7wxLn7CR3wny9IKLxK61FbL7CVtNrpQ8fEe1z5pRbACO+dHI8G4UvVPJwZLwOQFqif+jg44OKYoFvsdEiTgShYHHtPk+cfmyDFpvnlj2xRplVoOmBOE4GOhmGv3/r8uq1/MADoiUgP6n/8sWdfFoLVIqVyaiavV5saCO4zDGb68Rlup3f8NSMKlJRRT88s/hHbq+R44O3KmHdZCvUABQhIjfz72RUu/n6a1Bz6UKK/Da4i6d2W6VBEZrhTObK7S8dKFBoBW5OO5oa3+y91RFDG9svfsXhDgpQNrhZY9CMZuhJBI98Cp7hdyhZ9RAZoNzKbBSLmkilq/VqNav0rF4k5btXw3vX31DEl9SPna6c9uBwqgioi4gVMMWygrOIe2V2C1DZ1LM6M16upXVuY/awcBgv+go00pBdxCQErPAuit42mW5qEq5ObeBDu2GhOmnefVOSYM8Mq/u8IWYizsHqLAL9aZhO0a5jgDnFpKrvPvLSnhSTnVjl7AxM0w/nSMq64TQAvuOo/T08nm2bDyZo0rAwUhhsFeQNNd+A1bj5w171lsBvWso7sAtudllTudvmrCdvazClr1t5jI8sSwvsXey89MK3Jp0wZqs1p42neZnVKy2GKZ1VexlrbytyaB7+jH9bQ7igh2SF9lMPM38i5oUrPWuMdMI83AHjaxV70lcuxZID4KTBlD2FMQz6nbJTBJUUDXBOLMVb71sl/IrM0Y6MCLkfpKmv9EomD+w05H9839fYhWM/OoFhFWrlveoOFo3FmAdM/pE5eAndRGXNlCzGc8gfJY9xBbxdiHQHH4aKEu0DROBsy42HPcYtJRsmYfyxBU6pmQhgqzDm9KuaIngdhg2KiXXTEvu6300iq9YZtlqwLa5+T15FL2NF3GFJ9dQzf57ZpAotIUYiVkP/ZVUH4CR8iG5jdzApl6DFbaLA8FxA9CNXW0rWh8c9OdQblkNFcqcFgejm9VayHuq+BwZbsquLOA5UFkL6a8XBr8Gcv1QMVg5sIQt0D0FVBcdyX1PEYOFZXho1NSKbZ9PktcpG3N4fY2LtP8zy3aOd1dIcX7V8gQ7xxwh5mZoQxD5Q7KhE2lmrznxyYIvss4rlPEf41joJcoDpd82QK4kbGVJFUNqsBu4BabserCVPqdt17LB6R/rGjCfz0z0h+hGrFVtxTJz5UwM9I/M5NVTxRbd9rwcTOsGOS/tIRMd6L2YLtwfdrwruqAWCdtlKktcEtgve8oWD/kIm7Gnga3T6nLdIF2LFASAB97L+Xp832+nlZaLB43CiuqIMKnOf7vFOvcUzGvJBbx5Z4viW2BXOpXAcATTS+5ZuF+OgSZKGhfPwrdQfGmP9zOsfBcIkPDLxW1/6TFbyRYC0LvpUA4ge3tTgC91dz47AJSRFkV8BnBQCFSphuRyuSrO/5t6xcz9S/e73umY7IqwZUYEHhQ9BCMLvTL9XHot94QJu3czcGfupK0OZNqOhZiSNnGP3JMlf7cGDrsfFmf71BUnDVxGjCz9NYpB67fAPR9AnO0I47IX168wGu7mHdEBnUjU45WQTV2mLqfRbRSmT8ABGU0wrYMMSoWQzlDgsXpozeimqY0/lMrrF9w48tfuWGF+1jOI6k6CpGt4yNJttH3GI2kyIvq2MGc07cpQd0FQV6bai2gCeOWe9dj16+5QPvgC5Z6cwAVGvr7is5WDUwlfbTpds0ZT1n+FX88LMqpIgff9Mifoq8928kWhm8USb4J4anYcKUoM1jUmPvIlJSBJ+CVYVH9DhAh4jIWrXhu/flbR0GElUC5geHPVbBOYeJETrXdujvK5Ex9zVdLhK68/UQrXP1m7Z3sYl4a4jU9XzVvZlFFWdPKNDEeuJ5TPs3DrQZMLIJCkUPMfaClg2kuoANqdTM3xZObdBh7NoHzN1iHaPJvBppnQ5nTJkIUlTEE0ZpZfKDueirkZUYVOB8v1ayXxMDLNS9nsiwX+8lKJeXSKhmmepVUkjCRQo94CSI271bamI9kYBbmVswsR0/k/mKJb5TrF6vo6Ep552GkUbzdJ2B/DSIGtz6NDTIcqlvhDLGdNzwOaNOW0KRYSj93W5vqeJ733kURSJJlbyGa4JB1Vfdk74ESPtdEMHxNNYBpBxMtn7oLyaRnX2uOHWw71cslyvoAu75jjCK86ehALFRhztJaE72LCLt4vVjisUKVtv130FLX2oSTT4leEL6vmSAs0NOJ0qHlU/NkyxxNzc7NXZSVuryc1MejFa9PVh+iLsoEd4hcjbP0I0FU+xS6ZkmzxuE7wloKyT5yYsm78KHrdRZQ8YqNSAiXnpyvDgnGg4MQHj3bbLZc54gE9B3IXVZxC9fV77vm8GVRiqJzFCCl8gLw5XaZQHv+mU1urUXxIr2mjQ7v0Us5049MqGJox7Uzm5IFxAUjwKOnuCuJTxz5p65SL5GTF6fDboT/atPpnzFd0ADOYxZAPEJRHRIshuwhw5yc2unVYhVJWf4DZbDe+zfQ40CP5kfib1tAdTAyyleK+1jn+nVNnXjPf1fz8/Tvnyj40gZPRrsKBUm9LVUNGVaWjr6W9ZfK8x6fv1wmrGqocCVFb++opKbmX3iY0l2dgtTVbIiISqErAWOIw85WYX2i4fckqir9Nh+U5IqkMG5BoQNaz5OuYlVU+4bo5JV45Q55i6H+cpPUWRM61KRusyXUbBdVGAgZc9Ye/vhqofHZ40hkXm7qyUczLQltff23ZAOVw2RYyyAxZnQdLf/bKc0cxdFBK7X3uzc3vHYo5yh313X/bnasn85RlakWA3Rh2hkTWEkIYPo03NPhSbmIDI9j7cNKI1UXnPd663TnnOXubXV8Jd9KEK9AQR0oh52Y+zjMG4Y+bSLQS+7OD3AQuOerdsinqCNY5prwS+AdlM8xC8lD3jrks2JkyhFU6eqKcyDnyySL+uXea/h9qNaa/KDckJeKiVcgkxiqlRZmOz5m753j52WW8tzB+ZVNKJGZO2oRz6C8IrbBrpAtyf0KDTRAMtOPvsUYrQR+tpId4g1TP4AgxCN0qGjprfsR67JHtxQ+sWHkWEE++bPzD9+uSUhvszNjb+bgdjLHZ+qz2ObS/3ujKvtPtq0jYXpN2uOsZ6WfNAdMWhBFct1NFMJ7mSMWJ9ohMKc9irrA/NOQaJUvkMt0vNzJDWFofYVDOYoAH0qzf47ss+iGypd/xIPUR68l9bilC2+fLLOCXbYPMBPgJnuoViXlTKou3RLbVAA9ams7qcb+8lpvdS7TLLo5JKihHKL2pGK248f5G6IBRmj+5+WIsczVMI6ePqaJMQeU+owp+IjXT6kbpdxDNAnAV6psPygf1oHLEKU30JhyTBpN3Uwpd8Bdfmfjapcb+e3i+sMCF5zEezdYsQBR+MYPmZm++myEvXNxTDDm+PPLTw++eir3c2DONQfVVShRpSEGR1QPcLloORgDIB5jz6y11+BbNJhmZuWILHy1jpF0tOiZXIsWQt1X1FflpWAqep3/L13wOMqAzq6vX+B7MZBad3iJzp1mzaY8vTRIxLlqaPEbG12MthWqlYZBKwaexE9eAyCRab6fUXohoj3xCjlEuNu+eThrX+acJV+FtQbx1QCXwlt7pn6toQGsv+yXlWk3eNu3QlSU61yYl13CyQ3O9gYv4HxsuggYnXGwhgBgPtL0kJUMVsIMU7wT035JW3V8S5jbXGlDZPff4xAaKMJjPY24wM4LeP5WRJUjUO1lOaGuXb3wQHU93JDGDLufVL/cChzOcoYdHcV9vVnZIeB4rDvRk13BYQETSFwrJtBASLnM7JVJ3pCrxWePMHdos2djFGiFxgoAXUWEwIK4YL0q+gQyGW3jC9h2/OBNBt5JJFfv3d+KAeTNlZquE5tg99FA4edmqCce19W9/0blIeIiYHVbZpChXEKnPVWeE5UjL0N/Px4QRZ7+cZ438kluRf5V1lAdkGHTJBaZ3HErthsrs0SXHMeeoyEZh2A8ebu78caNYil+kJKTSEjOCvHkIa3Wpl3krc+674IoSQPsLZQMUzl0dWdd+Ly/gfaQAbe7uuXDe8qBIqrgPH7qYRA1D8gNtm0TYi3ZxUWrALRnI9UOSBSDIJN+wmHbe5pfpqLbpSItolfmspKnfW7Kumof6LH8W4SBmRvH79TAfD0FefHb2LcMkpiSaGhQE8pS4zbDtvR/RB7RAN2mfEPDe2lmgByyRzM+vCj6N/eSqX/pzFn/+Tgxsfl5t9MHsAnrL6De5m/2FINpZyiYJ91xyBLWKXlImQk8nimykodphxTZvcIsjdBJi+/J3rDfUk5Fgl5j3FLZRP7Fyrv3NcX2PAe/J21a6VOGR1B+OLhiyWqSQGhjOcRWpHaGPOtCUbi+1+qFr2i1zil6PTOrX6uYIJjCblTKI957DJz5KEO2qjV7Fx3ZMg3UoSJJj8+wJQvGLHj4KdOzsbg7b5fIxVDJHxuAwUFFegfK9gNa0L28ZoIgAPEo+9NIwZI=
Variant 5
DifficultyLevel
575
Question
Aurora works part time in a donut shop.
On weekends, she earns 2.5 times as much per hour as she earns on weekdays.
One week, she works 14.5 hours on weekdays and 3 hours on the weekend.
Her pay for the week was $319.
How much does she earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
14.5x + (2.5 × 3x) |
= $319 |
22x |
= 319 |
x |
= 319 ÷ 22 |
|
= $14.50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Aurora works part time in a donut shop.
On weekends, she earns 2.5 times as much per hour as she earns on weekdays.
One week, she works 14.5 hours on weekdays and 3 hours on the weekend.
Her pay for the week was \$319.
How much does she earn in 1 hour on a weekday? |
workedSolution |
Let $\ \large x$ = pay per hour on a weekday
| | |
| --------------------: | ---------------------- |
| 14.5$\large x$ + (2.5 $\times$ 3$\large x$) | \= \$319 |
| 22$\large x$ | \= 319 |
| $\large x$ | \= 319 $\div$ 22 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers