Statistics and Probability, NAPX-L4-CA08 v2, NAPX-L3-CA09 v2
U2FsdGVkX1+6BPUQSvYQVxHcF9kjmlGE7X7lBkzXsdZDjBPeCNOEe/aau+4rK+sIaIwGpNbuwMmaE0Z/08XAct7cso/hXFFHHNWejIFP1I5f7Bx3chOzPEoI3E3zyI3gh4tPp5KFxpu4Qi+mmYMNISyofiqiFA4c4C8w1CUCp2w2fY7XvUUI2Nr1pJOETgW/eMZxlfo3KIgvGqEJOqiiYSCKpWAAAxL7vLFnu1obC0l6+QhgG675g5YXjJefz5dEB45atSWq35xmZSMQSloNqne3KfVz9TA1EpAwhCi2payo1WofYnKVNqU2d4yPNoDfcEYHcIjBHLYlvOiCYJz8f0MZW6flbefUK6lM+X/7csdR1nDrVILIkpwcXAmXG2PGwO24+B1px69T2s4v3dDrhGxJha2ydGn4dRxRyaoJzDGG/MQhRxTthxvmrV3p0c2n/g2jWg9B9hPI13W5/5uEQGGQi01zyIa1Pu/x87kr/DM/W7scN1oY8hfOxCBY3FBv6rrFwxOQrFEauIBZNyOO+x/we0slsqeVVWc2sd1tIo2dtrzh0g6IF2GU0+TWhGwuIO8QARN3Oi6LDu3fbUaVILax+rIF3lDn+gGwWL1DfQH1i1pqYN7MIJWUgeD/hz0baZv2KwGvGsLII15ab9vREkOPL1yfAn39B72k064exS9hMWGsLQirfpPBZ4CiXajiRZ/bFfMVMMNb97HmnO91J10whMXrm7CgvzPsLnFiDHDpwa3XvQxl4egM04a12KUdtsLKh6mhG8EV0Xl23MmrZ5WECwJU6TgjRs83MTNhKsMwwTai16eeSStNtN0eGkyLVXQiMd7X1mDeSRuI9hCodXI4X9H2pkzVjJW4+rnsW9QE2AR3EoqD/s9curTWA2LrvImSPV+avjwCzbjshNdbRkYfUxdT+JRrzwy3qA+nCPOxDe85e0HS0UqER0+fRHjJ0ihSRK0RYcCFSR1AT2b83wMclSbs6RNQ6/GHMloRL9GS5y0as8lDeubl9UCDSL9Irkrqek8nsn7aG++0CauukOdEVHWswYKJdfWPhWLsSdItV6k3Ia3IAUOft1427wL3Y2Q4fDeJTPoJen0VKvjrdgiI2/4wsd9L7xb1HOMokFpK+jSJF5hQHhJt7Hn83ZTSfSJoifRl2X/v66DJJ9OnVuI5gmCRxaG7/ve029JZvyqbhZGVLiltW7HJ8RqZrhrh/xz7kDptgyGgJFUErJYglHW2zCv1WTJg0fz96HQhyiljA8AxhnXyCfBjdIXORmZrnAqHVslnB6JSbsFJz76rkR4uUEInYuHk/oOk95zaO96xSq6+e+pJ1R50bjZfFGMn+S0O5C/hVio0PjbErLM6hecMCYYz+OuZFNbrCYrQvqPJhRbyCov53YqsheUP4Tpd8k5Yx0WcVWefV2uzELKpEaTqkUrvmDzXIDh3eO6zaDvyg+puFBz+W3s+9C8VBTfwTjpn475ve5vB89f0Bypc3OzWwf3/JdH57vs0oYYIfu9z+wa1Tu9TAee+NwrcXaPF1rMx7KvXJWEJ1ScmurGKvOW/oMc9zS0gpHUXTgoZwyU8ITcDsNiyb+k0c/5V0NkCNzLibW4alKAhIYdtelnpP2tnFki4JRVeFKOEpXqkzErYtdTbUYxx5hpId+yyXomZDH8grJFkm+usetGPe7G4DtGYCNim97oMdsqvzo2yt4MZ2XLFOueMvEVfq73q5QzzJkv1hBjCkIoYT27sM8R18/N14jjvYgEuDjwh36kRXsg3lKXzF1palw3Tgf8oFxiwBrDIGI3PUz0xTJLqN8UM5o6DjHfxuH9ZVyja5MvprQ9lELE1AF9Zpq/YfGr3QFu/HwjME/z8+BGJTw0cWutmsNVj1XEEUWnhcU9rSsy2QnmtqhZ80E5dbKDK9+srDgU66wAxhw7aPnHh6SU1CSTOYzpRGT+HF2aX4NaeIi64xaTNLCTRiDks/6KmFE/g1fQfGWXpfeLfFkhwoU2SEe04Et3W+zrQGiK/VwJuLGQxLxKjJHsAqjsNkII312gyHTl0iCCQO/LHXYzWG8boAraYx0+A/Cw3+cWKNylFJz7h+m2HmkPXWqZdjCgqLsGV9oStXkw6OEbTI7imF8yzIzGtpbO9dr/e1C41AZfpA0DF2bHx94XuOgh/m7PmcUM6PIFoaG7vw2sXXWu8XIkQJD1Nh9ohcPg7vIK4kxGYG8W+XZ4uDuUhpNt0XVlX0lKuFKsbWvPtL5hg3q21YQYCwSXqAVeLz7zHWV1VX/iec9Qw5IuxAncyy7KeOo20igr10lLlaRWFaFV7DKR5qjCvgcSJRXKkMjsUj+90lJo39MnuR672eU9ihCvmN+VRayZFww/VCpR6PsXPyvcdT8QvWWqXkX8sqVhmavE07xIIf3lDDc1nRn9POTDFaCFj69IhlfLtCZFubxrw1kr7qFl9MUrUzcje1q/CwVaurZp8uOaPcx+KXgURS0kwwsHHP8BWbqA6zLcVcc7IITdE4E++l12onLQlN8zt27lIQqfrhUnOlW3bulNKWII9Qdy15IMJwRsVA4lX/P/YzJhnDYQ4S2Fu3WPCjS7EjgvBRvnICRc4TJthmecAa61LmYe5ENBLYibHsonZl9c+ISF4hVFTMtPzPKdc1RcMYi15b74+kibRPNylWJoSjNTEy5nVfk1m/QhTLWRbw7+RcWgxoQ944zIgJO6i3VUUElHkW4HU6cAfzubp67lDxK+AjxMnmw8A1gLfWB8sySQTuzZUyNSq22UmxblXLUgz4tPYYFfHj1F/mmSqE++5v9G4/S6Z7Czi9l6l/g4FCZa5qyU01tWXUWo2XGOwdAYpEB7BVs0ZrChU5Li4bEFc+V2/8eHTXQgIWbJvVmfsCtsQYxOvd4FI3OQ8KvQUTDqsfu6C22O4zTCxtfMTruOVVHKtElLSPapSH8b5rwNg7H3qF65St8j30O2cZpXz5EiJHL5d1Lda6FFJ9MNMTv2AIAbRrKE+Iq2HIaA9pAGiZ/YFcyT6Ip30914LSYhAeblpr+KAY+K69kpgPKLX8CnuUUtZs0vRaB1gfNIuX4V/KamgvdknnOeK3s+/Sd13OpXqa3+G1lG5s/+azC6IisuvcdOR7N2BXS5SDRBKOCqSpmdbet8YzL8Lr1kAP7liGJKDWdXYUxYtTD3nBJkpStTvJ6eB8riJ+g1FBhskzrBbH3wsMBO/pydwVPSHjosEdu3bcPYZeChAhXbmI/inXyn1O3a8T55ouELO0y1QTUAKdSowtA8upP54S6Jqe5Pp2bECzbwxsD4XNkp/DBe+ByzIxGKPCM8awjBvTrv8c4E4MxSmkiTLTVp4NZjY0OFDyTM0Qv9TWAUZgGNqq4yPkrskVtkpnWclxpW8Z/uGeLmwRcPG24hyn79qWM4BIOULKydTQ/QVr5m9S26c58aGDlmDJoIz/2/UKzlp3QllpT1Pi4xGr39GrD+JV2fGGnVv59BiZOZd/0Ik5a3R1E5mEQGEEXaEJij8NMWQFtqrV3KrsxN/GRdxhtZdbXNgWi+bSX7x46587g+NItlZ6VG+T3/EcSXUUtRDsBhb1vMCqLKBwZLCgNxaNfCeIvqwAM+8Stv/ieHLD1gri2m7jON5lM/kG4o/xdOXGoBCfPfGnnY0v4C5mgOMURgOyjL4vMPjuQA1oqrAGwUdwpVCcV5LU0iAkjd3aY3/xPFUZspQJaMsixpKWQfjtrMFGGlUXgjUgVnmkfm2tS7vQUKEnV4bIj0KobJWIN9QDJ3bcEqaVz4yZqr4e2l7oPwSDPu1xocbpLF7k3z15NuiKAJIgdsmuG0+bnVpSXPLxODskiwBM7jXpHFVbbO6Bg+BYxVi2F9OSYze10WbSZMI7j8eNsvmXHpUsIX+U8p3weEtDd8XoX+QHS0x5ixoz2ubAwTGZUVkvmyh9sovYfw/D7KOI+Q9cvhylHXoj8m1CqKzKnCkr4wT4uL0VSfY8QEBFX68ZTaG/7ExmXJXxNwsXSH6TL1sW71VFbn1QIFuRbwLxEpVfBUU4Dyq6S1xj/qq1SDQxCqBrxAEt92PUxoq0JhA9rT/x0l6+GrGEwQymOyR1ooNrc6rmuyB5JYldRH65BiyzfimI51JTYj6/SfcVRbBMQyIVOAZ6vf++jNYJ1fPKQw/kP0tChPT6HvaKhs6PUMbb2NMHUtTJQT8zguo+ewlb56DVRfrWudDCu3EkMhFbYgpFi4ldeglO9+a3vq7zWrMwrV67yN51wb+boFQG+fVOCJlWLIPXAAb+CVQ5FLXGCjNqLq5zlDzXI4k2AdUT5RCmikkhOK5SsRR7x1g9rSIg0Xd03SobXO1js+mmvljgR+Fw1hnujn73LkwKRG3gHDR6Teyxzcz6z6PrGDHZbluSWzXJMkHU8O0VXzECcs8OwDrC5HO7HS7vIIhEHxRkyB1K4Ye2DxTbtJb/QRoGKNK8Yca8dosEW8JRu0ZF5lUL2c4LRz95SZOenU0GIaV2kNSJ6mhGBK23JdZH3dIfb2EPbQP1hIeN4sdy06ztsKLABkrzeCJNY6QqOsuXK3iVN0jyH5KfA28g2CW7OSrjX5gmcbOXteIWEack7+6c69GLHeI0jWeywNgrzhXF9314Mpb/QTKeSJWE2jsGah0ISFg37NqdCAGDNrJElQYS9Ln4b8I91F4e99BMke0AUzhP99l9C7PhzxN6WohEbEU86amPF2a2/EPfsToRmcpFFnWtDkddePBUuDNNjLxIL+919cK5iihDo1rwlCnTjdq+TF60ipjy1Y1LXN8cDPlpJdYfDo1w56bsQC/XAD6nIXhTX9Ha8LeZle+pOtJDA8uMOdd+MHfI2vRBsla+979Gj2IvNBIYAlvkaaGZ13NmBEvwdZOW6N6mDnovPmIewc7jKYWaI5/XBmp3fqPx7N7AAzGtCFQUM2aomk5F0FohiQ8qT0gq9nImfeAxyayq5yGm996WaK/kXLw37e3BLTm7Ul8oPOKoHDRe0zTKIzPW5XUEBi3ybvr2dnrievTKLtWX4BAIBTYPRO7dd8zIbT55xTBZMTHSJbthTaPZTI1DMSU+tzy7Srw5/hecMDeMlKUrwQbF2VMrEFI7+oUhz/L0bmv1f2hgQsxVnOhJOekRzQdfAODNhT8PJ4f4gd8ZpfBETMd8VTzj1ATlWk3LO/YAkLJmtszQijuAu+Gx1dK73aGFRBTkVOlz4FiDD+wTqFti9QeSek5YOMV06GPaxg+OEOjLXkheTe3KBJH/oLd7j9eNiQE4DQgdwlY44EqddzItqfSZ2GQFtNGSM7iUQ0FvIjm8d1OvJyixHAHW5G+RhabgCdWNz9j2pgl7GeZg5v+OkuhjgOCJ6sZM8ThOSWKzGVh4Eaj/EVO0ZtafteC4LprdmW0fhqT8JFKshLshQiJDEyYtDSa6mg64Mv8xeMg7Ypb8XFMkmiRRyoE//LVRKC6TC5oEeAMvbDRTRIZKl7jabV01BQ5IWQDZs/ommMoatNUVf2v6i4Q2bV7wySHeeuFrgByLW0ITikZ5kaHKc887WUxWtheEezQD8R1O3bshlPyKqRrgw859/TP2ZAkvPQTRoYK9lMmsXohW3UhOfW6m7HbGQMoRf3eMwxBraXxwDzQiQkchLzilvw8MyBQWAgkkF4UTeI/feMUnMyjqMuCwqsR6i7WnUsTL0TZbLsJKgcHo9QJ1UUjXAF6W8PSs6mTxDR7Ryrs9KCcsJu7sKeb9M9Si7KBoRoMfcd0ZV6oL/TAvqct6baV5VbEAnLjmzABK3pTP1NVbpcULugAqqqpyrw3i28DcHcmzrscJEWIoEM79vQA4JlqbnnoKX/HBrwWjNO+9zqnQkUwMyvMiYxDHRphrXn3pqu6LFCkgxzD0+CUvKE2TykDm8jSUTX7d0llMDa9z23uIYziKRdomAbpOcaj93PJm1kdq/qgMsVZaDdfrGR60hOJhhcc7W944grSxXjGlSjrZqXGn7ebr4wVUzaB3NQdLepHMDTG3nraku3N0iqJKqLrb1Ct9bKyPnzZcLUeDHfYDJhRCaesWPB7br41TLQb7vrE0/TEfvGea+5Qz4DMVPpzbBM66TbpT7U6GZUfbqD89j+vza0Cg0AV1sZMwBT0wmmQTMZsbaMvFVQFlNwD/fF0HFEgIsEa538ktt5fxVgE4QUVg+ERcPJcXgHrXEazmOjJBur33+zX6CfwwcnA7Gb2M1PGTvNw9Pdad+6UHAiD1YFFVaqhKSaS153QCDracr/gLQp7kKzrtLBOdHt+IU2+kuiUQ4QyQCIKz2/2XKZkgSXn6Ygdvs0DHOXM0vSPDxMYPYSNtQcdq3ynVoqUoP1tf8JvF2xzZqqx2hd0n6sJHaq7fksvsBMC7XA0+nBrdY6b6/gK3LAE/Xk8kphslzVs4WmnSekecDPueXTyQvaLw5p0JygLe6dDUizqv6/YuAdlPnT9L2JQFI/oF424JhrOXShvHNV7xIztI46XmD3Dcn1Dm0jvwDLDK07KN9m/6Ptk9XqIsKgR2V14vnG2c5KeWQ6YacVRUp6DjuNyN0eSTfJW9qHi9dMnZu30rt6BB/hoeokDm+aOEgR2kYpBhL+PQljDD4XuPUzaKkLc/Xn+gsFcBByfP9nRhQYdLF74yx09lyqSuvZN9HvGYJEW6eJ0ZHaZrUGFw2EE6LpiYV9abkLeGWSoYl+lpue1A65eBplpegqFDUZAV4bj+FqGPS1bdyiB2Ghs7fYz1NQi0gMjIQDR+akbKDEx69ZOEtCWgNHkAX8a9tDZbCg2uvewQ231hHHJP2Tz11VMTg4CwO+CqIIptTcP6798Myw1yMC5IsjsvSyiq/lLmodxlktxm/3ml0OVrhAdtbZIeD1CFqk/LhKlJifOvG5T4ICce9L7ghlGp825HAkjrJdlOnb4xbczOAuz58GPnnF6avKfpQ7nxXGR/32hyMcCoolGuqyzH6PXLRZ/dOOGuWqKwennM1VBfRcOkdVoQRIoc3lFmG4WRkCQB4HEtnSXkIVFJioNTLIM4ZSS8zz6UmK4Oo00HViPEf+NkZ8KTHygYdLxPr9EDtetkEMfvo8gO3p0ReK8w+3rykBjPSDIU39A8e4j/tdw35i3reN4T4+u3bokjEWafkZWP9mMNKLZozCjyURYJKnJbs4tHZeu3msC9TZ4zh99udbiHTd36VuQJasU5iu0BC3lE8GAyGwMuU031SPBt25Ba4nnb+hwM6FCkUlzFnSpiLA8/zzCfgymiGpZGGKZ/06ALiYMMWTW24AovFjt/9avCszSb0MsarrwxP5y1H17J3R2vOg5K5+blRXHzQM4Bg1JLCvpu5IE1NkkkZRveqd4hsqREcrt6W24f7jgs+7aQjpJ9O8hkwC00x18KfUDMDthw5i+goX532nu0pSb1b2L9s9jsu2HhQxuioooQaFyZTvTaWR0PWjBZuX/D43Bd4XaGZ+OoJsLFiBk5nsJkPcl1Hub8LnefyNu6IGksLdZOfVuqS7jIHm2BBzuW++LOfWN/IPN9r8jdaUs6SyMajgo+KwiZldEOJAru8WiFlr/P/ccQnrqOPm6BffVqo3LrvPAH9qkbDX7dylT7DI0DzFjpAE2nP87uWksNy32nxJpEV+n8yBTYzUyxbzGgNCNkGL3pszhLm0vYmoN6n5BFCxN+R9JvJsH2lNLBk5cyq8Xd7LHs6c2Y8zw9OOK4tTKdDcdRl5+I0aDBF7GhApVifUc3E4BQpgKcE/ZYxp5B4d6rkD5zKSLNgEpGyxOgbSeNjXDiJnzFPe8KMFSyYhJyrKX0ZmzhUBqiU/YQ770i/7mB0ZVYsKqXhkDUapdy+lWqdDHGfJja9itsMJ5MTyFGa5fSFTWSo+PPDLz5X+3F0Z+CbGNB3GMQnUGljNyR+cuQd1RFl2kySvtfg1vceb3DKonCgcrwmDANCB4CJRrBEKQygrBq4K+j4L35h5hcTfTi4cjdm8+4TvtnlaSODpoxUzA2V0mHAwg5yUg/J6GLbwSIM3DtACAUB4EX/pfgu15QR+jUkx/uxJKHwMAA7Ttiin0mrOTC5fJOE+5GtJHpQJ12h+FE17K2ZTGiuFIa1Fy47QMOXXaWbhiZjDbG+mALX3P6RbCDF2rdROCPU9bUeicf6mLnkk6K9qRj5KEpnZWkGAmA00XHGmqAHbIJXOXyJc+KrTg1jjKIw5tXc2zSFmtTAIfYNae7tfrTT+2+k6KnBvhpNqdUlsRPoCuRviS5TKapLmCJ3K15aH9FSdVQZ4wX9ySPsx2XNXGvulf6foxcBqR8lsULrXv2LlR7xaXcRgyygZlssFdR2tA+0sQ89ZdkV8eMIkHGjj4pE5moFya0Exnnj1yeEh6jmQSKCwRlTRmWlyteKKT54kuo1s+rKFKnwKMjaBP6zDbNiCiv+QvTUZPxWrbGVsVfRPzDR9FnbSernaju775AiramweDeZB7u0bmc4vFTFNHUz80YfsyPxG/De/7oSAfCeTFjAFFNMAeazNgh5M0EI2yN+PSoVhaHZHSdJJbsB0tBI+Fz8gwY1AjhnnhAYMr1Ys/CA6LhR6FZisKhJVCi/0vjsh4dwjKAw2mUsN5kmDWOFyAUHUiS8KlG/nGZ28vc/WB+eqCkF8T9jf1NY9DjdsM75RLxrhjkIlaIM6JpNPDF+C7MBhc5yc3GbioPiabCWTEmckXZ2QjmljOdCtSovQCFE9ouMjtiY6Oz0dfQKo7AQU3Z8SEUDFN/KtZdnhAvH1gyiJLGOu0YHe4I602t7xtOjwJfEJnTYqZsiM4D/fPU1/1o60XgGLYgo0WI+eEPx4CY0mB6yhnvOOUTexxqYML0dyXUEPhI3yXJdhyAUr7hnTT8mxAqUm3FXfSoMwCXpkddVeXxaI7CpejV7gfybkNPFMop1homCDMVaqWRv8TuTZcrhgltXzT/aCvlhs0vaU5esBjJL7RTtXtIECSW+ZeXiW8LbWr0drA9LjFXVVnBqpDeDGIuE+WPwEee9f0hjQF3ruzTVFBnoK7jVGNnpmJeTyShvgHTQQK1vHP4eve4C4ugceEe3n1qeRl+pTvxeW311zTYriCQ/J3Y6kzE04SEgCHZXAbL3LGAlcMtm91Rr7wDVFCAHvsgGrB+G7MK8/RRGI3bXzCggU8EP7amtG8Lf0eXEK/KMU330k1hwdlLZRSOrEaV/zJF98xIF5APOs5wK9hBZmOLQmh2Kj0qVEkcOPfdQrMEXKUCxXl0S0y2r7YVE7ibcWUG5XlOXQWeYumb3y4R05zvF1c5U/oJGd97p9+amxaG73jf00MZ1W44R7ga/xMl8sfafCN3q2+y1TqmlijCyWZ1I/Wz/Wzs11vdLFBvK3CgIM86kJHitdBc4jlnIShB5sT9cZhfCFXNKKjyLY1eD4x8kiv+vdA83TGJwzvp8X12ls296imXiH6N8Z1kfCQkDrIMh5usOCDXi5WCUFNcYOKfNlqjKUnIvT7jN3I7bUApob0puPkRK0TvxngtzumehmRwvPQebxDP2FT2GHP5KLEfvxxnElyHmlEudFaicLGeEfLV2pw7BqZ7B4shJkHZ0AwWYCI47rH2tTma1K0KngIs/M9pDcT8WK1BbShV7kDV2c6aC8pbG1Rbcn11AFc/iRNb6sgzdo+iRJxsGoYb4drneIryKGz4vqXjDrSGkELg9rJI2C0AXfMcl/zkYrvC0hBXZfmC1h9Rpo3jOwqSc/z51XFNUt/YTI9E8KH4VmO1SskI9JU+28ByHAe4pnoAM0eVE4dz/tB4JML6I77w2m/4DGhvDQURq8srvaQVlIDuXa8kKhOwKbwgkHhq1zOEPmzUDwB+bWHc8PjAFyaz6xZp7Tn9MtZf2mRaVINL4Qr2h70fua5uTPSSALpUpM0QOUf/jn0vwtdCYtigDHgXJWJdtc13xBlm12l9QFw83/ip5Lifr8/XfaOZ9rZD+aMKzX7JuPH5ctIHQAa/036FXHkJaZ+i64ojTCqh16GURmtm2jk1cQCqZMIM7k9o//foEWrUQlP/7v/XZYNNzbdszEHesgYN2GcVJpnMb7Hlu87/IlqafAFczLyj85fjWp6/yfCMl6+UINfqW5mWLim4b3o+hKpjJbWDGOQTQr6Yv0eJxUaZiigGNUh44atQ4iLtn1V2ZLCdNc2UC5WbUnSFiLSyJuYNphYsIV0/mnTpNtfDkMnbNYNhnKErN+QhKecee1ssz49x94fGXSD5SHMLs5FM+CAJwzE/smy01R1Smwy9GH9y6AMbKYd0QGGYLTh6/IRs6juqV+udq5F3roMp8ykbt84k6RDzPURbZmN6KYdAdtBltKoAW+Gx0/kw+tgWTS5MryghN3HjWDb5kupOIfOSBUBpSFVql/qDC5nGRkILl5RcgCn7wIi8R1JMXZTtLbmI5wbVUBG4mC3R0Sp8W7yz1SSlXgLrXn6iWPQEQe6Ou7DCg0jZgzbd0/9tD8yar6TiBmiNZfGZs47RoPGF387Htw0RIUelK0C2j2LkGO+4pSSY4u9rAvTpjfiXcNntIVWOadjB/M9K6R/ixzvPdmeJEmEGFYtCnBKqHtr/HBbIRwXZFcm0rgtaJM3HtQ0MmEoICkAwXYBGyPlqakIdrMcMxnWBF/zd0PwyCEou5L5iJPNdfxmNWrhbjXKGFsro0Ltebf2oSNORQSqVA98sKKR7BRdr+Kzkgepf2RC8L2g/6Jxp0chpNmCTz9M3tkX0okfZhP4fU8FvMCLjDqVgfNnfpgpQEUtEbilDIPaI1TSliCdNnYqroM/k7Ez2+X+aZt4Lqwi6Qjt90wlBKWyb38KpKXWkj70pJhC1uou+2jwR1bivauMUp9ieBt5lVUPj2VSk7MqCkjxDB5p11FILD64KQZMJ8mSdg9DSg846w5TESmYuYCdiF7E4VEGhSIYAZfBVkExGSWhwX6jX4m2n7Eir17oYtJ3mAXjkj1f52cfA7pY7cJcTqMQW8YhZarf1Wg/HNT5EB5+uAO9H5pJu7z82Vg4mptu8yVXC2ua2fsNokKgVfuVAgXF27H3pK+cik4zpemuIoxtNGqaG5ui9qkeycqykjU7rVqLw5SWeDwhlY+MVSKsCiFgKekvC0nNnHW6uaLDJwsw1LHMgQckLP0tu0X7ieKsrE/sMgSRGRttdbXHlGOAtQcNqzdUvqO72zcrfh2TCRYJIWMTlY6fwOEmETa/pWESNUBSHPwSI9UUHxJBq4AvisIL2OzfGriA7S+GDw3BzNV6NeNhe7tXIL+GiY5uITlGJUMXLW85pl7swd/KC+H+EwfIX1N3C0q2piuHY05nZHVKjk21ZZvNZY6VS2r2Dlk88mMGYpI1LaAbSy1rxI23qiKBOfmyl84VQorqxENxmUrCZeJr6qc9tgF4QZKjLTB9gzAvusOgmzgiKM6otMX7noc2//Vw4yMo6NNK0qoDjCiSa1xTCPT+asVE6ksDUAtLyancbqEevAhDqMtS6puqYP2ubBvv/ue/GFd9/x31eCsvv3Xg2h9Lmp4EvApfv95C0zU80XfZ+09nCMQl5buYMRQneGHJ1F1arHYFwJg9nAXOZA4HzPjMywE6+Xa6lRO068qwVTyOEIjZtfx9HSQ5e59DcEfSmWSfSR0EIFFh3XKoRqJ9Lx+7uzGBSCrI6gXzJwSE2Z8O7xmd3qplGXlYO36k28dD+6RkRMxhFZnnoAZmL/IwAE8DxLjt5PtDUqMAcOR7zwIS4pbxHTOd74frvDrTXnDXXllunthKkgS1wgmm4zV8V4y6aSk/z6ToRjnn1vbnR3ksUjsoonb4V8XIAl5G1p0wT+fRM9PsJf+FEYdknFNDRbPvC6j+dEni7hv9gGu1mFqqrYGcRkD4O7RG3bq+EyIsCCnpIsemeUbmQrH9WUhmWgXQawLyGAsyOnPhis9QeqR4Qigr+FwoS+k9WZ2Tgj76uHruFq1jbR9FtGpKa3vjqw8qyqwLplt5QjYTP+U3vPqKI8oRxqOyFUeizGjx72VlqKKef4ffDJwygWmEAv5QDC7Vth/syJ1RxrMnH5d+gwy5HDRC8QiMuyULIWkJSM43QHtJYdvPfNUBeeZURRqlrYQPkDunek3fxnC9YXHX4vkL10e894UP9MyXtRRRPnGyLK3lLo/vW1G1KmxdmYxHHgf8oUg7terPZYBE7NIAitego9EjWdj3PSi5R4DQBI6gTzWMTcfE7kgK45jzuB/6ntVXJiUPuJlE+r59pNJO/ojcFvSGK3/vaaoTOaKstC4W/RVQl20T88qMsY0rHsAQzeaTlsf9i75VUyyXMPtcSu3qbl/Jf+EGO87SG4CebsItB93lQeF6JMBLq0+TgyFZxzWFfFIT0a6rCzDS+D/ap5mnw20SoTLhuG9iq9LneFXZyNPsc1Eyv4WniFDbuP2epXbarr5NZyjLdc4GotaPCmAHB910ZmsRMwTtGlW6B2mIutKXp3JN7vWbaNFbJeXXU7jFgRRCUSJCiFgZajmT0OGmNlczmu+rRXM6NRMx+4XlXIJlhvu+QqWLTck/qQwuwpdq3cCNLs2iGHUAUC6qlafyBtKVm5nlEdqPUdrpTho7duzap5TSpjT9rP/k9zo9JiGlWE5w+e6dmHA+b20FJJ7FC9rDWUMhSZiUQIVvbXHiZVdOfaF9e7s+WR0POVlHauEzpDHilxnYmDuBBwRjTUZAvitRzTlb0/2Qlx6oXc0lTMNPDJDirLW9Ah1ht4ZVyUJzRso/d+fk0YAs8g/8youbhG6ZBw3OgddvcTa8A6yJXwYghfaMhgvAFY27kDVdzVdEZdUgjhf4/3oPswy+ALgxBuZz9J+R7I/+bsKIIelX9RVZrmA/0lQn4s1r130081RWJ6kDKlrBcyasBjVATtBOaGZxMV4LNjdqynYgNbunmzm1lW68VzuMIS0Zga9oSJDp8TdhNPMgAtmlv6Wyb89UdKenU6gKYdWHBC0CRBmxKY37gFF4+9G7hK1RVEz/fb958W4P/6YZr8x80VuOBlAB67pzwYPlIzMQMI6nc5j4TTTQ+vsXtyMSM80HrLhkBUkga0JCoMmndX19DjpHXgbcXtHXMBBhTRl2hEzl/k2NqHYWRZF08/CrMJq1GGYOomizFY7VZk0L56t2sNyE+74jE6DIBkDOtaNYML7WAMsRbY70MRVFI3KJUn5GifdgQhXAIlh/jaBC5YuWxJY3wwcvPxR5b83EhYh6nuM91cEAf3MdQzBrAUpt6ADNP/ILsyu8QwDiIM2/N33kjXzC0YGv3NL598kZPXzpte5AufBdVcLo3Q3hKyLOVWgk7T1Kfz5+T9QhWxTl+ZDQeceJZTzqOlxVnN/vlfomiBK5bt8bQB9AOUJkGnU0ahX9uTdht46XwDL87AusuKu6rswcp1IzDHDMTgtmx//l6V1TjDMeoFBHT6NmSlRwFBJXYmwbsTgXDi3Vb4RVmFBmsgnw9XCEeW9f1KC67xQBUAa5tl4XXpfklO+3M2RXcgwIxE7LWpi2ywUQLeeXwdB6I4VGx3TmV2pG+i5dxAOdi7jwJYr1TNaUPoX7Zr95Czmp8Btv2ghixGSK+XYUqKMBfSkEmRsmg3CNFONlKj5pXnh78bt8YuId4TANKH/PKB8w9w6k7uuO+LczQRcbUZWceoUvDYd9QfU7mgmMdxnpexVNjcOWSlFFVxGy2Yqa7f3fikuyhhjInUY0fyMmzxKntMwGd91jpkoCcYgjuwMVMsjhW9Mfu/8VJoStWOsVJq4MD6tLQz3g65ex6H5BknD5wO0iSG66Cn9ORV6WnLwsyoXkAsB5hcKwS+90FsmJO6v796QvjJo2ZVZvD/PuV57pAEv3EBmnk466I3DfuyTZvcbrXq4sxgzw1GBNEMYgR+KcRQ5JRyQ3T76vD4li3sUoPbXijkeKa2+ReZL15Xut+a+7gSmKBKwqtc9Mv7wVlpnBhMVzk1J4aON5D7BNWOEv86LkwZKkrVaOS908awYIR2zRZq53HSgr00WAI6Bzbxa80LJ1I15clfWFYGQxYc1iF5m9QikdwLt6Sb9/UjVLEDqsC2f7Qrry+NRmGtz5OYf5Vol1skgXMLPgMbpGFGO0kWICGwaWDxYuWHlVRHIZd7CFOkI7xrMLnQr1Nl1qvnUwrWrKiOYn+rkt7xo+3knsy8MGwJu9KaB2oH74ZvHoMhNidWhs6FQNSvEcgzSMVM5Yb5XM1U08tP62iYl4p4aKUsLm9liz2QiKuZ/uMpgZK/+4TD9BSGIBE5bivakq9yeAUArOsn+SG+7GSpZTU7XIn3KWJe0T5mMbxo/cjpEvh5ZvJH2vEU+isWL/Jw7AsNbNuiwKtX8y6gWMyshM9wHzWJXQcVLimxlHf2pB6p9YEmkOO5HTweSuLO2A57tg7byOZfYjv3bVHXMzUQptDT+kXfa5gWmBvXdfup1kXBSlQoN8CYRSTUTs8BxszN6knULgf8SNeboLR6M+ZBMp3PyYYLhPHzwUXD5ajxP5edURVOJOG9osr+DQPddUlKSKM/ql9mjNzJvSDFWrTQ/5v0DzvrKR/uk0CJYDJqh+8fwfSOJ2PzBRbj0Y1NOZD0UQXmT/dTFEOqYngFU+9TZN2BxV67dA+S2BmB+UCxMLG52ZKlSALdLbqdrBUAsU1jWgJ7bj72MOLNoMpLYPEIS5sejxOuWa5MFhfRsnC8nZPZ5NqpoClBkmgzvS7YU/zIGWusN6+42VxV/uDImxvJexoQVzXABcfuE7vJIuTtm1O+gaHLUL4VSpcV8Gf1Xaj40lNmVBRcBr+VhvbKkk2yA21M6EsOSSwGlsvEptK+n65MWpBA4jy2c+awVQGFXTXmuK3WXmWPqJVtCfxIqx0nNu/fY7hnykbp5pFWRKrYgmBQEpBsK0VAz89QiYVAXW0VinJhj522U5pvdSF+Kp0g0E8km4V5VYtiiZYsn5N30safN4G8QgA7D9DHQJ8atYkp/tSvm1SNWzsnHcsjz64gA/w8aBfWtsuiVQ0owIhmQKbLY9S0Ngith3OFV7E2NvrnAREODAJDzc+peXghMBahlpoPq2o6Bx0/aJY9O62NJibdI2FInxxE7qTlp+9EU+oulJCy3UG96H9HyY661yESJ1TND1CTkm6deSFM7q+LsG4n7yu7dWN7HDgVbgrJMqff6wk3ax5njwnHTfSONfKc2HG4SUz3mFhlMqP3tKdJuz9mj9wBTX5OS/CBDxDc3Gyt/S3thGHj6nmsN3YI/HFancyNh/QEnuIMUzCiGUxyRzR4Aky5D4DQHM4MNNcWcfZtVSKPnuyCV7bl9feZW3v3smtGeykBiGqzZL1ovMip4Tsm8APjLhwMWb34ojZlFvPI55mHDIhAt8GO4uRYSoHhK8qfaCAsVYGPNwYlBc6gESbambr7vtV/tgwYbA6tSDHyTVjb1hWzv3hTFgckh4y6qwCa6BE/N3JWjgCYbNL+T0cBvrE9DEZKbCjEtr8EHvNnUw8jkdDXQXdqYY21JODEfa+412cD5qmacPEcBcgOddnikJSyEUT2NqApMuIFnFRQoo4I9S+5q/MmnSnu+HLrfM2Se+adRoE1xW
Variant 0
DifficultyLevel
506
Question
Enigma uses this net to make a dice.
He rolls the dice once.
What is the chance that Enigma will roll a 4?
Worked Solution
|
|
P(4) |
= total possibilitiesnumber of 4’s |
|
= 62 |
|
= 31 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Enigma uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/12/nap-L4-08-ver3.svg 200 indent3 vpad
He rolls the dice once.
What is the chance that Enigma will roll a 4? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(4) | \= $\dfrac{\text{number of 4's}}{\text{total possibilities}}$ |
| | \= $\dfrac{2}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19tRT9OyPVvl37cJimALIeDI2y9hMtc5loNZfD1tGnUUEcf8pWLYJcZsoF1Op3HjWQxKgkK9y5lNs5S6hdC5T87t/NjqBZ5/emTmIoJkzIZgmLaW2/RP+2vdzq61+JZr6jYsywunTiDhSVWqOdE57BK/g3cycJhsXSqa0XveiVjYgQBn39oIuR9EnsniOM8dlgEXboxj4+zXYuflhNM78XL4uilWiUBic/fErfoy7FnlTNDVFMGdop0LRV+wGBYajBJXgV/e9Egb0MKc4e6xRhqgFI0uIqfCom2Vdq4OnZChxBXwee5rFqyJCkk3BB6Ub5WH/7lxxhir8L2uSs0kzRnPTz9X28Tbhdlwo3Rg0ptsuuhGFUmuCTUhVOxfFdQ88TLi8uoxn7HkCgSyg0c3mN7EWQfQZdiFLQCPyxbYZZ+PhXs5CbHWHEsm0Bcz1/n65d0O7HmlQLrp/He6VHM3pooC7UaGzEpS+7MOKe0B8LOLb6rH8/eDKCJhGAn22oFBOFrasT5vXUgSxLTgfI6Zr0p6brcx4W1+Eo6pZpGng0YedkVmKHQ3hFRAqWW+qCmvH6Co+aQxvaSEDKQdgXgi+4o1aepKxzgoGOnOrNz5aIPoa6Rol2VeVxj0b7hk0J8OPZfUX6Kiwf5a21o32d8P/+7E/3tLgfs6d8BA/ioXqtliH2Qv+H77Yl23wbMlHA+D8Jp35DcMYUhiW7kHRTgAOzbd6denNGUge0xcN5ABxBsqO+HfzXgAk1UHPdFEzu6LINTLFDCLStz9HnWiEtqWLmzEu3427wRozczQNmVcZa/CHcYPdb7Kzh0TkjkW78QRPmqU+1zRhaeVQ8+GHBYkkPbWMLURz3KtY17QSa+WDVIVi50awpUZnJgxLc00AKXDTrP8ovCKvzs9NqR6Wd6J2mxXgfFvnvXe09R8AC/PnRyKjjzh+ELMqfn2LEVPYCE+MMgKxLT/Kxptia0scl4UVgsQ4ciryNnpu0PCcamx9IXJHUyMsWJ/qOVymSKeicTZcmsLW02LjDSzrtzUd57tUoBACa6mbPpMwcnHV605gIH+f+5dn+W8Elz+2LxRIQ3pvCxKJosUZXcec6CjlhS9z4Ox0nkU5hX266dJ3PvMwUWiyBQV3YB+1Vk/jk/RmU5L3FrDFAPezKNFtZ4NWdSHwB2LAEUCJ+k2ZFy89s9M/7kp4EVJm7jGCs0D5U8vFPn3IUPoRBmT1AS1I/uUdVrpPHnjGUjN8J3NzVmxUQQ0yeVuDoCjKOjytzpNAFixo5RVFPH1DR9VkMLU92W7oQFFjMd2GOGpWmgrAN86Yar5QZB9z4P09FFnKFUMFZC5yDIY+mwIrHCIoWSgvcnxj5lr035EySXDyaL9AJabxXMjSdeikF2Z8m2JyNajW/0Apq99skhI8UBwRC3KhZHL+smU6bTXK2Wpu074z5cBcd3D9IGQNv1ncG4y3r2tdcdf3jlrVF8FF1k+pnZUypaVDwtpg8fkheXR0hsDLnaGH7mPnVX5WVuEi+OAQ/pqYO1npD7bJsPEc/1kwMRYqpGtVN5hO2GN04X5nPwW9uomYWICX5Ujj20WmTc9m9Y7KaUxgs2mgwJUL53K0ly7gKJ0U8nLir8MFC7Gpu7bXiGS9E3nwRrdwdqJu5iVGRy/upiZIhZo6VOIpeLmDVhD1RcW1UO7t1cvTQ4MZdSHxmR5UMn0e/riXH2mbmqfDhDstZvL8MDFGhup44wJN9Hq2n3sNbxFs/cJnJy60geyUvT1ppGlWCFOTgbjMwZBbvUNpcS7WIw7es8Q24hFPxIlnmaYwN5FJ5/GpLoJ0/1e9NIkAHGBgyy4Kbd3E4tPZKb0W4rPJMcWSukuYkFZI5Q0JECYwkgj/lp/MXwFB9ERdG2heDkYCowJfU0rCDfQY917d7PIrFgax5FgJqaZQBZ0USK0Culo/bsPmGKyGjSCUTy3vIaW2/xrkTXStsQu9/jdtQ5KN4NBmpsWdmQsGU4LTKj/C5y3o7u3At14k96gPocnVtlsYUpumLdDnRjsujM+eNh6HGO8BeO0S8mgbqMMZpJVQO4Pi8fixRaoG8/b0/0vHGf0cXoGVIfepp5sqR7iY19gKorIcCkQzdx8g4XGP7VtvuIvamB/SuR+96YhVgoEQrBqjMtBvFig2YM9JhDh/x/iUwJCucOxvsNIHB215VhavgYfqvdUciTXxSX0otCCt3jF8QcVnstnyXicz2Mh6hIfxGZDl0zXyJPONMoivkuLmC39zfBjXtcfjYXJ4NVjIdZHoCXyy6QDUkPNRyBfYzsgQGZt+z0y2m7JyrPR3ZskFOo+ybKShH181mbHV4q/5OhjozkuYNqbPWMNmi3lMoPUOxC3Wl+ovsBuAkBbyPlEBNXEnHz/PAXQDMixKhByvYdtdyysf+ms5wxkMoSThszvKROi6JoGlnJflYZJr0YK+sFNp+FcxJM4ZD5M50mTmXf+/fbtOvfLxxVjbPKWhJZglBDE28NrO1t9gZIUeBqtJMseEdHHjWVYNiqKGbyePIoY0P2ZB1HPhGRkcr/BvucnUgydQMS3n/g2tCG426Zj7DMS0POxclmFd3jgl0AUZ3PEWHlua5ftjlI4iZfZbqShXdbcTbdtHsDQDL5tFLIRZ5jx6jrwXyUqSL0pekGz4keCCg0IKxRVUJvH+Ud60uOZC6G+Vnkui4bs4Dp0XA7AxsXIEUXa9zVeC1ViRiX95CjLS/WApPGXDHiBwIL1OddSBA+FRCx2/nsJGHqp5BToMByQ+hbWa41m+0Vh2oKT51q1/iryhvu9ju7T90aPFeYu0lPerqvdWe3VLiXwJYgZ6G7JQN0CGXovqfX6dyXtFP38FSmpibvstTegcdXJVOcOp9tcdBaqrXkFLICPcyIYoBUyaJrPTL70rlPooy+fKlG7Z52WozZQeF9xGn15Gs1Z92vAl5UuAzoeJXMbofPPB3hzShQtzKC8ZULEIazj00WmxIE2tGxSuwoBEEWaSs2ZhWEAnyW7b7zcM5ZYD67I0QsV1nTXPpkh4At9uM1RaNTBwewOib4gRb6gjn43RbsK1ssSIJ8qVuPttMN2UUSTiBvTNBRoxRBW9laOJclftixN7W3EcCC7fg5UGS0LjPYv34AnpF4O8Su7nX31lJWzyOusZTi7c62sHe63FDSgmqXzDS0TugwgXN/ZOlbKY2evgQTM/mCfrY/n/FicFL9dTrJscfjIYmmG7hx2guD7LXVvaspG9KUCmJb1ZDU1L9gBuS+nfiJfOPXizwXY99vV93j3fQNHbafXgUQypTWRPOGbqrUVxvYjI0XtZetQmyfXLkHBwkPLuaBVVnWajGRSS+aLnAeoFcpeVp2AbGsfQWk3JbgweWfvZJGnDPgJw2FVEsPfY6Fr/QZ+WzPbjVvHf9Uodb16FXSreych/A6ne+rrSBBDb32bfmmZxyxC3itmYh7nbP0zI5hBrsF/lGFmdgRqGsZEHfX2W+obO40qZsXQ1ttQyVVydamZQ/mhT8z0GxhOn62yV6SlGpq/XrACgXZFhmf7+ELAyn1GkBA6U0SbgRMs7sG9y9S7YTFGJyKPp8Qn/EQWtsv3G6JrE28Lh9RDzrsg9DX6vNruZA/W9M6gzgnq51o1DKklsV+nk9nyvhX2S+eWJKVsEPL3ng8feMY5YoxnSjjXBhVpjX5G34V9kXRKPt9OkNH42wsBOHQGTKJbLU65SfUjiwGX7ZHQAQ6rV69ZFSisry2NaJSCfQDPyPV09PAf+JnynrI9ccLJRiUihTQm1hKBGBjSRvXe7bTf/OqtK2+KYBwrzTKlJ1NW6X3d5sI5/6cRDnEyE9ejp/ZPiZLBMo3pAh9CZtIDheBvIQSZb7ePGrked2mqCSNr3NjCrZp3X4V4VPLhvfY7qxkMyX1fWVxJo4Ru4sCmYjf9vtWTCFraOS2Kw3yUgmaMWXfDH0nJ3rLysHYP/T/6Hymk0RHOTrTZyns676PArFfalXlnJ3+oKj2s25AhIAXoXAiz1+xe1D/n9kuc6Y90iEHsev/jdnkSzPnI4gD1a+fxoz2iqKnUmO8Fmo4hphSnDvPuGqzAvieTYQm2Jy2ta1e9uEz19kQ4/pT8yI/l8GlbfXIOh8R7waU5Vcz4B1cIFIg+kPXr1aFSu/7ALgsFcNSW/8j0mdqQ0YhFHp/5IPyHsZddjrqg/TMtNg6rMVGyUt/hL2qmI9pOjbQETYBCMSJ1hVMAGAoAC7Zq7JuSrQ9i2piRgr9woPEszaaIcJGWc15plf24B5qoovzO3anDRiLm2ZB8qvjYj+plhCeV/XRF9vceWedl4DIIX6MoPhweGjsTMOBzvM0LF5Z2jIzHF839Q0UpdLNobBQBcWRu6qsgEMk6MkmVVTU+7Vh75dKd0copSENoiU2W0/l3JEQka/rC1CWt4uRTky1WTNO6C+PS0m60/HVrNWQozS6WSRP/FBo6H/fxxm8ppzH345/6DHRIXrs1kA8esiRpFvYAI2Gv0StYB1KJehJPxsvcej/WDiZINk+V96rDK/LHk+ewpTDqM5snsrvLFrnLV9PiI4MNsr6TuVLtslcOaTobnnBLoJEmkAao3vVt89/IkECIHxYHdpAzfT57IyhkH+i7HnPkJ4N04hxF9t+J7/2PrQAfom1ceBcXFMKuBNL1kO7+WGMSv8eC3MzwwZ1L+BMUI3yHY194wIU8QBJZoxPWFOahfBkwyp6NvEJwm3jKO5f79dOPHlOFLvJz89cFvbmiZbVQ+3JbO7tcY9ZaAFgJCOb6o0YmJdVhZtmuVsTIxMLVCJr4NEtdElTQjO8B3Z8RGMTJ9lySRBHeDeAqtA1cA8v8by5NqB2C9U61sK4jW1p7tVWjl7jaEBIDlUd4sAlTnaPGrz7wh62NuDp9y3ffiVp/Jn84N1v9vkxKBbMe9AVhbxzz7xIPXl3ToeA9TB2GbpLX9i631EidIWIGXLXr/jj8hUyezCH0SgQPVeQy8SMVutQLt6WGCzC2l+wiC5UWpnpbzkHR/HZfJocmCGY/4+MZ9jpJfiMCbw/Dn9zwgi/5blU7pfXsTxeIwfleneLn0Sm2T0+noSAey0GM5xmSNk/euDY6KPkxFFRlh+MdnPgmxNlKdQGAzrXCQ9YvGN69NFY2qFruu3WDWFUyMd5WyH9yVC+STTr0kQJ/TRhLdilZSAxXsamvR22fSrlim0r3h2v16d5hMl8mjajjazqHiN6eCbdGvNGuk282av/fkd7E2Ek3ya612NtrHxrQS1hqwSt5oJqxqdKPtTV97r1VD4bjHPewTvt7LoRiUQu4O5P8fRwGp7+oBTNKgk+/slodZP7tCwxSUtRxDTEvtZTW8nIF/YWTbDiMPyWfUu+TxR8y1JLmNres+6zCJjNdq+d1+G8rdLgsOcoqdNlNPhEt+5jrVUY8a3W1GAc6LaBy++i1T5lUHxLnamxv8bVI9D4E9ldR2OCwZgii/uTZD4aw57J4Ucn4eUm0Dv0VeMlnbdxWgY5dDKxIBh0rHmeLSKy5kevtY/4a2WWnoJz+PW15sTwQYwphgwbloA4A8ml0hFaKq+057NDX3yktsUbG5TclV/pboF1C9ZvEeb4FffSuTwMYOysUupUUrwDM3k65e0BuLS8sGU0NYut6vHoJOVVYb1RCiX7IZpmL7DDkrsEC+wQ+X0b0zQFBMRMsCOT9hPvTd/j7ICybAZyvJ+7AuWkUbyJwBhwkNU9IlqJGLk6GV8PFD5QEixgcXy9f2vStCkxyl+9zeu0e18wux3zLDR5YBjMvggIo00WppOCLcIoY1gXGM8VvabhYnepEm6p9YYI1LIo7wN1Bmy1SOzKTL+vlFsQu/2xGWQsc9hHbh9bFf+37qNrdWqcZ8Hmu3C72qT/q+0S7fQ2oZgPQQsG90pw3w0zBxoSFJ9zIaP7Frb+Xgt/ad0vLkHlS8zhptbAHnB/4+79WtJF/fI6y8ZdcDe33kTZW13Xv3NQf7GgqEP6Iay4d009rK28kH0zmBR54CQmvHHiGhaP8AtqbGMhY6A1SsHlqh9tFXjeKhq+JA65s/cB+b8AUW4665A4OYTtxaDkcwUP/YSPo0BrJ8Wg9k8Cbg1DfzcUHjPo2SYrbo9t59lz9yUnHLbQiaaTpCY8mkyat01N/DGpxdBZxxwIQLBcwbHRCaKhxwr2Q6xS1JtzVxfo9Eg3fmF6/nZRyXW4J6DU+Qe+4EXNrKEp75Sn+FjSp3xLZ9/TOufC4AzD/sAZUwROfth2VWcVCtQlLMoy33YEDcJjfGAYt+N9SohU7DLg6ljxQQZAP59H5BcufpcwWF7QjDtLY36+b0XNFkficXoehKIzA45KsiB+gFRN3da4rUmx55mHAdnbVVzTQFX0EsiVSEiHPaOwzuAtqf9qwXk3QAM4S7DtXWTeNGQ+RUeJ2YLvTjeyHtbLNvFd8B1sHT2frcbKCrYkfYIq1v71DTn+fMG7+Qew6KjQ6rbUbByVy5NhDK5mZ7wv8rb4Fz8xAVlA80J7Cw5jfpQVJPMJhlqdZflcouKMRAfPbkSrXIOfteRot4T7cOa6Ls+CtCp00+aGXTGVDEzs7NKESVh/opA2nDLi5Vco1+yGW0MzN8TvWWavxZBh8s2E6zoMQva3R7dhBVUMv94fq5ygyvVW3h/l1bA6bPMnE4F4JnlYYjEDabzQsjLINbZxm8ZLYb4dd/nYx9rToS9nhfeNBbH5IpM/2cnm1zinksiBntO6bbzkqGCiC4oUG4M7phsBO1PeeIN4R3F4lYnC4sm4RbxWpCUo1ma5/5esbDelTSo+cuduYNqMaOJdk/42MpNm1NsPYoPmG+rGp4sWI7h5CVqarODxn1SfyTMMQPieH2FV05ucw1tB2Xf0Ht/fIhCQYSovkIJC7UeqrKv9lpbbju36l0wNXjj7JUzqZ0GXbJ/yy3EJi15pDMrDeUopRIbVv7mYsOwavR0NEaLhXD7k38QaDIU0em39G8GY4/sLcckExydEj6rzI211FGESQFJhgwhXuXGnBmfXOhwxw0XXyVNh5YgiydBzfWFYs3NgH9lTB+B7haUnj3f8x8gWTHQWi0VQ2DFzP4VRvj95fBwAYSlSp0+Iqma3CdYPMarkIsPXoe1e6FxA6nHoHlZ8eTAVpZwqF4LeMQqMKAZSyHGffNVnYgEaeAuIHJT0bSdzmHWBZ0lA9y4USr63j4M6C3dQyG/uusJGLu9KaE/7bKhSLnApYWk1/xaWcvnWtFVtg2Gq+HcBMFeH0ovtxN12rl7VlTbd38T4hLycB7t0kEsWes4o0NAMEvNGc4uDba7McTwkKOUEGMk8Uum/RmerE7hehPjC8+qLzMuqIQj0QILSef/Mh01jKmQumajakC5QsQfjWi4E8MswNOuGje9PtsPPrjVYYa7pFlJxi5xkIieQjEs59jpgtn+J7uHGbi6hiWISiLeRyI+/pjXZCPFEV/1O2ve3j5356wrq6IcfMabfdiKMb6DcGL+L5EZ7i0CcN/Eawfc7Zk/Ixfp7p4KabViS/KiIrYGGWjVCSJlhPoNVJFpIEuYZsAEEckDTfRZW0FJp+CryZdCQMlkQ3ajz97z6lrUTdE+IEhoOM6F632+gu3q9a9rDLUV6fwRe12hKOayPf//tJUkqlhvmycSNl30ju+G25uvq2oU8MBhofq7/3WJJC4PugC2eDVQ8ffV4ZN+Taf25cVu6OzF94kVU5d3wSTE05N8Wus7FtiBkFKJvKFz5mk/ebsHb2u3mOmyn/Gth9yRIIB8efFRmtMflolhBYX9InKDnF6ESNAk8MOI9RBgwazaXb1wO8qkr/yGuAQN2edzkDQj8yuQWdDolAH7h3o79Vvx8n5EkHevRNltOWvBe9FKjK8JpGomPxEU6Gh7ixXRaCPWtD3O/5nuBfnPeUKAVeMM0DGMQUNyKEPWaLJtSF2FJOfkjf/h1xEaMgGVBLcHCSFZvcFdNcIo1arXQBSboO6cKld9+zTVJK6qrQbDvD2AnvBUV4FHbmGlxrANOFKshBl0PqYV9POyORnSUld1eQxnB51k0fIAfGDhOZWovWypkX9/emxsOTKgjA03KQGfAIKtanti1E3WXYlTyXiK2rkmGzOvzTQrbz8v4VeTXxTvWtd21tY2LNccIJJ7VF291hB+fk17xluYhMfvmeBcIa0KqEh8odxcgUQkXLiIwA5G1LlzXJ5nKwu1lP/NG8OGi8NXAeJc8BSWQtD8Va6HmLNAxv2NBz/lbktTgpFMlFgxu8tuuwaavsOKEMsYcv4ofSst1DDg/FojfCyFQgQH/VQfvdBPoR3w/RGnPBYW4VKJUEeH7tiLJUDG8tVr8EcKefkZtwlG2oFbtnGcrUKuL8ZSprap3AWvjUAmSnO7V0jSjb8K1G0nQVjezlZ9HrsQHg8hbF+sRNjR/Gz1GdQh6ahoCw4azPHd8/JQzicm3V9z/lSaScm6cnYo7+nudzlUX7qTPD9WIxWTHAyqhle9ay+yRRAXgel3wY+qf3EVrZPAj/IuwQI9JpYDPnC59vCGPTvTyPR47+Pd791+FgnkQ0PLZioEm/8loJj0JtLEJ8LQO/tVIZ9TIS/pYizhGuks6ynq5PKS/xJzD0WZdnzog5fLsQMSivq5WmFYOhaETj1ixCBsXUlDFn5SBbOkalZqShOuUmQSCfN60T5oao+xv3z0whwLQPMgsekeceON5b7eYd0S1QMhMpmq975YrJnBLY5SSWJegOLaUN2rUHiMWYtPvDiDrUk/jFMuG5LawzG/sIHXGLHpOoVHnWyD2uBaFp9xC98RgeUVWsj8IgqzhD2cjquVgz+xiadD55Q0AyaNvIiw0m7FUAgsY52esrcy5fqAmy4y5118QsqevPdL6ETeryCNcZmOIgw/BdP1SjzcSSFgsSOsiTN/mMqiwyF3ON9sOUTlmS3UD3hv0VAOwaQMO75TevOBlBZA+XI/DHXXwCt2D4hQ/nkLkxtN5m/Jsl5dq6psxEE+TvA/iLmud/DKP0Dgbyzuzj8/fl6Y+iJM5pllUwDKJ3ilEb6vR+YUxPrJlw58C6AG2Ia5v/9YM1si389eHfD1sqHtNJAuMj/49/miw4BFlvucUgAMBhw9rcxmXJa8pwcFWJy1Jyoxt61ZBSnGaVeChPLxkvEnBil+3P8NhEfnkOB55uPj37bcc0DmxeA2TO9hQfrhO9uCu30aUH93CSzBIaoY2fwThi9KatiuLMZ6ej/KVqQgV5hjmmKF+nO2BIs0PV2WL0gtMoQ8CzNPM8bCGASmgjTFTrG+SvHcUIwROCQJMijmwJJk3M0kssukp+C+C0sqKqSHX4A8RdQVRIv5Ju/My3HA3FpxXG+Pml+J7T71ZcXBzk8ZkcbpnQmJnQj2lxFwiUuqFssF9EDQAQ96dGFFWRyAylwlljH0x61lMVSf9/k5KOaIbo0u61dNwe2zy9K9XhAtpkuxUMDSV/7wj6F158jahIP/fU4B3sjFicYs8DWOUvKLrjbt9U4LzUPoATVNkQAI8lE1VlE/cueDkL+vdP/uHZDi7isPBmk6vFvaYQfx0x2MFybKKFfoIPI2kV/ntNaxfkTjuKarE9e43Pb5vMn3iTWTOO7JHyyZyqMkF+N7Knwf5+shFyFUtsYAFcUclr5Injl0KDdL0ne9Y95+0zPxUAMkN1lIyQWgSsCFh7Ka2CSvEtX/pN+mGBXWV+oI2OmfALHmkzYayvP7Olalw49hmM6iNP/v9Wvy0PE0RHuPdngJRNZbGrHcS2tMGvpXZs//ahqfOXzUuTEkCZO/LNOvZ8KOg8SWLp1sD6qTz/9ufetNWdsJmn5dLsIvQSkCl7RNlC9hQRmQwpsyor7+dK/59X77yK3jX92MpNjNZ7DS7RUmylqcl5Riu8CVjF/6ZHjh4BJd/lTnjMeLrk/MVPpn/uzriLE8WnRzhTDlrvhG5mGo18uqPzPBGUmctymw/kuUGd0gYyIaZ3iBAfN1OTkv2FyUbd6N8Ih3yq6RHNIgfokmMy4A/M3vr+5XSdY6uGsSDcU5eFqe9RMDqlPDd6IEnbFMseJ0ZCx1hK+a3iTAK3+LImLrw93j67xRh3QwNSNTtUVyewG3drNPd5n1zKWSVWdUSA1QmPfEbILaS1882diPExU5pEBdu/dWaaOfry+rt9frrZzJO/zkhn0I16SCxO8n6DYW9jFGUD8UhQKi0VBbk3XnLB/DZHm0/kD5oByESnb61kqYxl6aqofhTRzXO0stpFm3u45c5N3lsxFrmyrtEwhLpzgFykF0DJXdKSclsU+raYNH+SlmULll2Feg9ZbQMH4n5X2nSOa+qNIQVrmAriEMr19FhZrHPBbftkzb67NMpdJ8T/xAIfi8zD58Y/WR4f3pXQus7sW+m2wccUU9JMs6w8sM9fYROEazjE7kkM7EoXqzi6un/BFd0dBu+FRH5aklROVPl++9YYdxhG0RF7zY6yZv2+P07Yj/27ZVSUqJJqVaPZcn/HBRlNnVMI2VXoUuFvv6YJ8ZZ81d0M8hT4DJdFG4p1l/khmREoTtaetLL3hxOT+0KFSZXrNXchYZNu/6wYwpUVvPDwEG3+5/gjZfiS1OLM9cOZiDz6H29oiolWyGvrKmdPNO0rzRTxJM2pjNL9SKBLDCy0nfUqt3bI6PXp3+3vPfABrB/1xXLJFaUV0POomLbrwK9nvp4UAKNNadDva/diZN86VA8/mO8BX3hlu1cqxmzc7D9It15G+oAlyRsLsYvlvPP5NK2hHZTLztT7QvyPQJRkh6HR2KdfW8MuFxSML5utf4QcCL43tzARVDMcpqwmE06hV+aetoPc+Rhx8+bA4Wo3j6VWUOi7tTx+cosKDyIeviEQ3IPMOjuPMLGe25uoEZG74ZEOT665LhG0u3JsCb2KEDeP5ln51fKLjXpcwvWY9yKoDM1JZNZ8eG13ZpB1EOdf4zEtEpdVf8O4t887cxMz80i6t+NNtbKtovHa8c+A1plmu+ETCP/9iLWYjXmB5rS3zc0YcX+wn78zyKdhza3SnBwVp2tOEFoc3dUQ6/aZR2iWFUC+nodc5zANnLZJc7Vw7KVTjua8LdWzBUyWTPh8Pae4ydnIOknQjHjC4XHm9tWvFToMgUs7+of6+pSWsNOaAblxkVgyV94JZAF5UXclxdoX/PTl3KTlyndLzajfH+jpVpN2RtjsQ/pim5jppInR37Wb7bXFP0yGw/c8WrusLv06sPZAaKegOdzreXrX4Y5ftkzL/X6c+t00X+bqijWARhs9PU8ZPzbP1kQrNkGe0gFbjc3udI5kZTOH/Xx1PY3uHeA4UP1Aq2TzH7qXJNPPqg4cvGd8/8ryvFxzGXjw+GtqfGcxZEcT5ctgbpJx0scmCFBOq0FIb6ZXaQD19Gji596cisyqhXidiH8hgm3RNaoVh5Ipg3tSUglX+N1MSzhm6k7SQpS+8v8euha5ia/4P0IkO6A4SR7T80Ps5H9CoQ/qkl+zlb9Jiis/ULC+f1AXY5qJEKlZJnEGI87Fm6bkXXqfMem2/A9x8mMIx+PYHdWljQKQazNBup0IXisY2bDZ9EWCRIEkRr6rhxYxWtX/bQGucvIlvAv1l9fTzTPC4inqhVgD8+4m5ygHNPoFbFtDAX+LUIJVcI7GyFYaL+33mB5UcVmwnT6TwhIgnRiMMqSrjlkivZIVM6LHZ6gvQOIrm7PlXJohp3aTFsEjxvqxJdksst6YioM4lACfNC7kvR0VMKql31TvaFWppo31fyn8ZdQhfVnMz6AVuTwkINRTIuLI6CABdzYJlx3ewBGENa1XLOnTspP8yjY5O3TBhL2jRs2mERyh9k4J4DYBv3lRW7mS9VsHu5Vg1Q+01yZ/Obkj797vxlnBfzuFPJtz/dWvazAYXV8kKTodMxY6LfEwHkczadu2rPUig7UtRAL4P8Jwt2iedJ+UtxWHtHtMExc1QmLIRz2HP9raszihdcCLmTYAs9b8+yS7j9hac/Qj4OO9ii7TJsZMXKuS2Lovl7QKucOVdcLvoUZHFX8exsy7ao+QLFB2pOIId5FE8pMuif/GoBw0AHjgY3d6kmoa9rDqBPKxT1BlmkeydZQK0i6v7wLYzE21iAFFZbP6Twn3RCzz9zJBHeyfPUcoJSBCGis5JN8mxPIyfILu0CYm7JVytrOggNO8c+I0dFI+QVyYg+i3U3rCposNomaZaDPBRyClOxHwRVvn/sWd6HIKDxEes4YjO/MTKovT9Aq1tUJY+5uJc4LCbr5idvrLsW+fw9//BoP28hRaWKJMheuhpm6wIlM0gsTbIfpZGwIse5mgZSZt5kzFw21+CwX3U01ZXEptk+L6a3ODc8Ht35/JjWlyDkD3CMCNNsL5r69Nz1EiiNX0P6tQL17oQRgrPTNsVxWZpPOVex3wRRoIdwQzdc0WxNRPlo8EEbo8X+ls+hC9F3ojKIXgZchPNUCE1bdzmz1Pqb73cCsbx8hlXIcjXShezJPutcl1+wgT3bjChqmEzVw0z3v/8jfCyRxilrjCNGzaFOkDjwHjOIPvSR4yE/sy9qEiqu/1mq9lQQhoHNeG4PEXJiZ0MlhxotrCioRf/BD0xJqI414OksMbKP+FGmZEp0GOWLFveuSnBbcBpcmn3zHrlhtocWZPnbH8llAnEja/dsgCntEccgppNTwjGsyyzv87Gw2GLcOhlBMnEPZcbl4VGWLqlCMwgVFOEXhxVV2stNlvvLdK4UMPTkmnj05H03khtS/lb8em518CUc1YjMB4E1vg6s2plWQC/RY4sbdzpxdZsXYuQyxAUsyW45gByoOlEN6lch2SyuxY5WHSRYk/Ft8JsePXrStfVjhHuuCQlYoaC8jPyG+UZDu71cUqoeqco9aE6q1W4DVpiTyBbXbl5LFBStuh3ntLRpAVe/W8sgXFtyvcizu2tyFMJWNm12kOkzd9Iwmf7j/mK44QnfT5biGesD8OGgtfD5JZlTBpqO9maV7Y2ObvI3YjKkRgiKYuVITEA42+l2PLT/YuJj6G+UdARxzH6DVm8EFVN8ghVvFrFL7Ec2cv5jE9D7QzqRzZKHCH3NjPlbdUjl+F6e6aJi6nevNnIxP/RfR0DhBJJPCUBCoyyV0+aD2zK1e078dyKaneBcf5HJVG30EjIP2sy0UFjHlkVX5ixPtiuV9OkhWX7e84heIk70MZ3CtPbCxhOer+t3ACyDb+KR64YBVafGvv6wdSd2JmPR3/xY4QzN5rigL6Z54FuNTPzBuk+r3EHW7gEyu9EZyV6w7OnT2dTf/DX0iMagvpnceT4CKq5qR3ixl2xY0RqUxMM5vcGIiTagK8VEhrMtIpTNQsA5Porpf/yk6xS2yD1EQswTctirKsbl8h6dkndI2417ynHNeKo4a2vYEtDksHAspuihEk+9kJq9Ond/OHR6tx30QFl7UjR/y5kHswRkhtwBsoFSRMmoixMF+WBK9nySIOFlVJMYv9tAB3O7CXWhplfhDWGY+KOZeg2UYLAB3mdzw3DAjmNo5HfUZdfd/maw90cioJXpXdOzvUDE20JmEz4N6+RatY1IjYJl8Qy64lXIx9HXSH53sBmYr+HdJ3nlHaQqT+gXlr+4OlwgJyC88lHvCUEUB8P9nftQZ5GTwdCfyVO+7VMBYuE1Hbk9q0X0iDHLfbLgXT47pWgkvXvFBsp2Lc+sgp63htzrqDn9MaKiBFRcAy7zIJbosP3468uqm9+r4Jn5t/xNJ1skebjtjijn0d2WMk1iFiW+buxtrE4AttVUPcRaLR13Pr7QZPZTd/OeRgqArcTwujvE4PWrlWYOj3oKeEstsP/HxKmXI167Ip3HLDwp2GbIe9WNRYzs3O1c/dsIGwM8KNjsXr3SeL77MEefXAQwyHAgIc3548XIXjf+L4VlvTW97sfHCSTrKDyjQgZ7084cQP6/6fF9cT5xK286QvhXiyW/XKt1ORqFpIL5r3m7HbWBDWQ1JhK9tE2JsaPDXz/DyUYkUaRoQjeh89NkJYCUFysnu/P9N0esv4+rWc2Pwd5E0ZTQ1VTYZyIixYg+KGkzU+IoZCE2PLEgsLvR+yS5GGyLfZtWK1BLHgu1klBJkzL6u9kZbdghWBO5u07PUaTBELa+W2wlK5VGRUEQGg38Isvkr5UqrSUMZDAfYZpKBOdilge5U8eueoCxD37u7utGUA8ToQXWwTGebMMgrLRm7ePiSGXDKFPEoB7YdPYLzZDcWsecxw1ZMhIo7/v0oSbzMK9VOxD7HAfIBjQ2CsG7UpVwKQVhP65gnPsT0lggG10538VprePll6yK1awDpTdX21N/5HAbsJJo982WVkhgrr+nx5qv3vthlBHvtxJa5K1BgPNEHgqWdZvenAyqtTVB2y1PjJyXPMvhCRFrlwyidJi0zs3irgOmUH3JdCTsoWumIpn5qlS77b9btcDkG0zSXhSVasnshtGTvyr7EXJ9+sLkXh/C528+ZgVmB/F/Q4mN8tBY4cewK6UFQe6/92HNBtPwGODiQm8ZJryE8ro6W+IZqYWgmBPYuHeLRyYIqrIfbowB+I758+24qxvzWe74N4nH21WgPtcwnUsVuOY2ScDefLoYr0ls0ko91nAnR5JRLVSMJuTV977I70tDisHLs8xyq+g2TfypvEJXQlFjk8N7WTzBunxXy48JEHY+Wak30B7EsRaIG9vZK4viQI5in/T0/CO424sN2NHCKwp41yRwoVBnj/aOi9GRk3S5xDPwiQZ4ZfrBzo8qkoqTgJcmaI9TyaLzRaMQz3BJG9g+Tn1yddH6yZflv1pnjA1zD/J0ddYKO2OAdsQ5UMn4+ZW8rDg3RUQhgxiCdpVGevgFI5/mksYwxN0/Ycjbl9bdToP0sYKsghrn1VCl+0cu4ujsbwjGabH8OZk3o2/Exty7itcDjjVfCaP4b6KuznAQmZvoqII8aWlrqRLZq7H4UkjjP4yZZ5t0gLAVKiRm3pdxJwFW0ZTCy0kWcFd8ka5k+zWegSdHIgcnM3783oAhx/hkbsDrNDeYTxtm8Tp/mktc5SZk31Lug8lN80yOJUvtrJv2D9vl7N5SGLllz+x0Wd2YQVX/PbhcW0Pv3f5XFS2N0/gn5EAO5cIsOjAqsZuoQUYC1ezfeHtoOrjMxkP1YvupsltkwZdn9UvqOApJ+2XE0egShGEhWhX9e/5UUt8fJqLfDnuiiptI1UZa3YodUx6F9ieMah5huLKsTephGqWlJ7K6GXwnrOFqZVvHRjEZlvvWs8e+Nod5QjmRj98PXSa94FlyEpYg4mcnswXOgiNwsNFsHgIet360MRHtaqYZtUx81Ibr8mhGh5DJumiSuEEbvv1faS+ZPbqMnpl5+otXP9QP1AgSggT7PhxrH6w00AU7+4kByjD97pVDE49OTKBK2BcCJIHnLrRtmEZNkCbACfQTJQ06TLNTh9CYgXwW+rFj7L6chy7KCbiHnkDYVn5l42i0VWYEvh8l9hQFvvPPVO93dPG2MZ155XCQHljyDn5wqC0lrEdUiNO4LkAx8JGgIuGty9OnkHJeRMrrmv78++b0FbnSCwGlM3CRY
Variant 1
DifficultyLevel
507
Question
Tran uses this net to make a dice.
He rolls the dice once.
What is the chance that Tran will roll a 2?
Worked Solution
|
|
P(2) |
= total possibilitiesnumber of 2’s |
|
= 63 |
|
= 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Tran uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/12/nap-L4-08-ver3.svg 200 indent3 vpad
He rolls the dice once.
What is the chance that Tran will roll a 2? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(2) | \= $\dfrac{\text{number of 2's}}{\text{total possibilities}}$ |
| | \= $\dfrac{3}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/eDFepT2iWryz6aFFU4YDIywLw+DbeFEeW8ew8hOyCuqbmMSdo1zC5vWdLcTif7UkrRY8XEMsaqHQJwS/+rBk8FZBI3HWM0e+cBWk9CMlCCc8rpd50p3etjmEqveeueO/usnYWNZOvV2rIo+xP4Go4AUOmQEoBhcr0jJCoDP3t0q3fCdc1slA1Rwp/MvBRWQVSUsS7UEnTPMsIGA45YVzidVBfHJFU0yX1Pc0PTClksMsXz5MG5TCsiQ0U5G4/DSiK/yujqZJc8OlTwMaRQHjorFFB81Mk/YPNLwCJJh3/czM6/+BynAuefeE39v41jTw5HxMTBve3Df/5qPOWJa/B4fT54PW37SpOWnERtPrhSvd5fBmbJBJB28NKimsIz2k40C7zLzsGZqiolYiW8OWSWWnfw7YDfbAv2qfmeRwYgn6Ws1MlGOw2ACd2pk781MzjX93UUYwEhSFjB3sZyhiHOpcYaTZBZ9uu9GvH3TRLPcZHDRtUNzQ3IpQurigeTGOsuhB+Jqff6Ry8gOaxnyjbaREgSbUFX3oHe2d1q7x1kknMJLZztjz6kWmtx0IRfONb1zOBG6CKw4kgYkx1Y7aTclOeTsVLlwO5ax/ASKu9eYnjnh5VFpkw2f82jii4E6fnX3JADE4nSat2H3/ch39n8sjlvSz7s1kkcN1pjsz446q4w/kcMxZNTXC5MX74/h6RjytfkMlzccbnsRcX6wH7Hnhc/to86N0hu2St5+0s7lW3Bv/hq2XUlsNgoFwSlx0elTfL6l46iiw59SrHtYYFdG9/03VWnaDF3HnOdwOBAKyB/4xqyTn2ZDl/z47FlNRA35b3sVJsMBUp1CZzMCSVUnvQ3xHee7yUXhnuStP3aVdL9S//dyr0pM0SSzkzi1ISUuchV5JorjWql30ti2n1ie9d5E/v7mJAOKmfAewzTDnZRU/bg+qaq1Gb3zOjKeDzQ/cyWwUWpsIwlS3Kdlvslj6CmY63/FnG3+FOwl0TOMl3XuFUZiDjmVZBHu3OZe7z4HlJEZ/Ilhi68L6MMA1aPcBFUM+UbwTQfLBDn3skZzBHyGiiTCexgcbigHHpWbnY8Qx1SYtDUgfE9ocpSWKY/UmQkZJ6YbRniTTTEs4BmYH4kAIMSNvROL66xePkX4SGz9/06Pm5jbJ2lA2KzcWc82uitrz2BkuFssQod7EeIUXbnUVTWvcU5WFJZbC29EU07qxYkio1lkHQvvpZbo57xHGQHhQrzc4klOejpBFNo/4tpq2UaGY9Hc6boLNvYBNZeYXZF+x/bxGZE8kdXHK3Qq6J8jKQS1UPrhQVfL4Ew1j2H5Nd+0c9mzsFFx/7chFxhDdUXVSRSvcW9l090niS1uKMicMx6/PdaRxq0EgJPHoN+lItQ3ntEQ87A0iQrpq+el7ipB+cS+l7SZxmtgulrWmItRE45F7v78ZYaTPvquet2IR50BpEOUAY9Gd5XKd5SHge3ZQ1KLAstKB1M4Okrskbc443iTQEIaYJRAUbKJUHPNF24nIg8Xo2uM3LxVEVv+Kms2RRugLfXoOP3BUT7/1LhRC5rl76CsHU+e4kx87ns5yKUblhHkObsEQeziA3B+61pV7xMm59RcCS+jeatvra0qy4P2HAFEo238vKeZ81F4BVzB+CH29zkJB9/IN7iuERQeBFXPesaLjESbXKJwshse92Phi3OrsIE5CHJgXn37JnFBvgJPi1cB9TuH3LFp5IyDULoFlocTXMpl/aSvPZFDSonRO+saMmn2k2y6sAh+Xti1dtYmXtKjtnJQhiYlZCSdBOruZwdQjwQtVwk6xDw/ON32d40skxEX4LBLrYNIXHIpKJEhiJECiBxWxHnkNr6Nd9LfGuW3vn65pD6MCzgPgNm7O/O24t3tK6Y75/ZN9Bs+kZqDTKtwajudNjJokTyfWm8X1/XP8viS/gr0jY7KNhkZcIueH5lCfQl0ZtyMk3gAxstGV/0d3K90NXkQGhDXwqsOJIlYwkbrkvl2OlX3aBARG7t6awqV8jxZ7nTs+QCRuAurfR0CFQysu4VQ044le6CAPNWEQJlOUOsR5lI8MRIe7nG7jZ/yZDsEqRxmY97ld87+RRaj7V+mej7eAuuMf6F6Sk/8MUbzZm5hT9UDymXHxkPatvbAOwXDVtvX9B08FJ6k0reqvIl6VXUpITrsIkk0WcZFGdya/ohr/LjtGFI/3P/BMvUF3m0fZvEazY+tINlO29sKlogcb7nIph7NnVHkBZEHVYJxyFclZa5/O0kF/Z2tejScaS81Z4em1xnkG9PQPDj3EzIWVgbcUxwer+QKjGzc8U1B+c6YSOw6R1yc/DQzXnCCLZWzwHedaGQdWhjSPk8xkoreuw2BqQAtGTqmr0JSSswGrnoL+U0PcqNQUSwG6UjsuUqsuHAFqfkNlCmNf3Mi5/qugpO+PTeYLrKPOyiV6t40eFxe2OtLv/+0x9YI62F/8fLqInUtX+zUFNHo9+syJltf3jelL3AyzCWR5GXNCdsLZZoUWXX+b49u8NFDUp+6WM3Osp3R/dgHC7n7QftB+WDMpCa9RM0fCt1mvLtnAj+9+wtBVnN1+3alWfjIMNo9rDWErN6FPYRkpB5Zm6VQEW5rX4rJi2Ziitcy0MmzpHcY4N80Zh7PJsAhHemNHNbkvA6+2mzbxX7p13Hg52iYnfIQ0i10qiqbROxYiJKzguHmLEqSVh5F8fcsmPHMC6F8pGpH6wXan96d8udCXmdNzexGqO6p/trnn4D54/0Lv2si0tmNVTcj4Vhe8aGE0Of+eegJhjfdkxvHkLtKz8v7xNUhjjVmAFvV3UBZT0ovXWGFVNKujsb5EIqEOfvSYg0SzW59tfJQXRGACxf0mdKG+h5nfSqEh2CX7pzho3AxXnavdIJZ/5zSEBUms8dI8MW3trXKDnqXW/9Y3/iFYg4tqFpwkNjROZDhsT90Utzy9WFnJ4X7fxuPlhjO7mgGhXiIqNi7gZtn2WyZ0dloHGhUn6dvBnKC1O4PkkRIUlawV9yuYLuOZO+bBlSikl3aqCQftKrfr9DWnYp8l33rVNRnKobt2ZgLxtzzY7dycApGwyiyzsdFfkOV0MsdswH9fT7f4mZHfHp28ph4l2RTAE3KVsG4DV/d3J6Inq35dJQ13d99P41zX5MeO+MabBgSLIHvm3xjcnN+wQr+Uuz9iLawn6Hn/oO4M6Cpm+MuA3hCKSi0SS+dG5e+oCwFdCFg+zeRvn9vxrqyj/e0zkvILLa3cBNajYUhbj3qT4jfHzKCW5RuZlQluG8KxO+RGdKT3LgaK+bUCkAy9zgFdRohhMRseghZb6jNx7kYD/krvdkhBjQQWLaHdUy7lOKUN69HGhVC495Ft9JStOLGQQp6mVyk6XjnViT7e0JkYHaFMtCzRvv7FKFpTZYri/xrv+UbJpouKKxPp8Uw+k/KIBRKGdAXSkdwfbG1uDieIzE8+4NSOxP3PKNwlgMs4B2dapHk8Qkb5I7e8rmm4FHFZxPr/6b8k58cqXrIlaLYTWufXjGGCdPVArXTMZmFCHBDS8BrVe1EY/LqoOJEJRyx3tCexm98DI/ZDkSyDWwx0HBAJrYouWrKdjOMGGx1V2LPpVNlLGCq3kS1Tgo6RqvTIFnviXRfA2UbLmvFDYFFYejInu99YD7nZARbXo9oRUv/kBgYyUHFqs7ZX+KgnUFx3ckaJ+7Hqaokihr4FmSkb4esL1zw8vEVfLZdLPBzHgmWK1owONZFAKOuHTiwlpCNxZVDmHW5wPpaCz95V+R+jzMi6tzIuYZPsiaLqjZa+noxYpRF0Tmduw1tcUNiutQrfdXsNNBgImvDrIPY9Ir1TjAqUF90CMSN+iPXEvFj/p6PX5KTl7IH97ipZfzbPkwNwQufSsjdeXjYLcGQ4uKdRTxmEFfF7MFbmg5k1qnFOg+guUM9N/a9Z7wHSaiDaYcryuaXLPnkinrWc2qvQ8b+zK4AvMY6ZLZ7A/9EG4q2j3k3wkNwcgWA2nfxslrzQeNCDQKB7dhcT1WBfLgftLcBvHacfstOVJD64H97cwjfto/u6B4nRFLcpF0oLAePCjnOGDbbNIuqw20o8Wj6S2g+F+9hCC/RVY9wjc/qkrSfjx7ndWo++cCQ++9lQjMDHup4aHBqG/Z6gIUbPIzwCRmTllZm9UTPp7zq0uAYmw+evA5NyRu64d7IP13bIgkZBQRu+Mp7Y1qNFTD7mv4oS3JR3zL0uzR1cRrUYNqmMcHoP7JqUg/6bWHldmXqgFS/331uv7COZgIcIg5xAzbkBHp7REt8Y4m6Dx3M2REBvQH2vynKNJvW9kqNy/vCgJOro/nznDIHmzUxyF48j+8+zclP3+vNq9kkri+E7tmqmHhksh891oSvOny/exPHcUQM2DyV/jdANiI0lg7QYpCyid/XieksUFX6T2nzkKqV9zAwKh63H5IVtrfvD1QLiZtBoRo9euZKMCCAPUQ5etlyHc+9GUqveOekuiHpx0yA5u7TCXX9qJhIcLpXIfI7v5tRCa8qYhA3s8QpsVys5n6JcMnpQIZMUO4e1TsPiF4KKqGMunFHIYi6nsVaqxm0Rrx4ttaFq1S8L+iQFWxlQZPAxJiKBXMzKa80kg5JcLqx34LiwbSxs1eQ+7RN5iv3YJhY3YHLPlA0AldEHeukTy6+vbRoFZP71LdbakBn3krDLZx5uGbt/wZNttsn6aYN8TPjZmS62bM11/6BUw0HB4goREGYp3m/2ICV3ndCRzW1GPhSrS4LcOWWhgxuc1O7Cj+/5L+SGFCiYezS4DbxyADFa32hEWN+BPVjfI5G0Yrp67MaV1x1cHK/qncw/VTXsl/tkah8titployZNU27paWUifYO2YVp1TSqXq/sdoUdv6tdvxv3f8/rIunwdG39nXw2pYfu2MAnWBIylscVn/l9eglbBCd7NuF3FkajnKbbXlvMcxE2BbduJNgzYHLPE5meA5ia3oEKu0R6XRxC177tQxNLbbUiSwcjN//NA81c+r/TU+CaX1+k8Wzltj4EjUfSHFa/mnKl5MYpFgTarMwp9tNNfAkENkpx1hfh3v8Hw1mlJeMXj5Qj/nw5xsi6x3cgYxL/BsxHx/ITTZ7ZMVLdjdX43Takd4La+RgLQyVajjD+cTfkRkQqbL5vCsG/Ga5cSDcUlFvDk6+oPN53Xjmi/mlXbvmEaOTkbj2UG9Uc93AxyV6UHQjs7D10JBwTJgccKqq/rPY7+35HYcHIIFul00eQAmI4D8YcXmaKG4pD2PMSBvNyO6NJVbE6YXlaNov2xDizUaxUZftPxA6W6bxLr4+B+MBbCYOAWbgiPsYfMv1OxnXpbc5qcxzPpywOCl5XxGnqzfRHxzpl2N4zZeHHJfQLNj8GBQM1F8zva+PmFl2i/h5Z1HmwbUJY1WKz462XAgaXix/lqf74IxHb41VcwM51YuhxMI+DXt4sM910YEUruuiQFfK+pzAWNmFAUprmbMBVeZELAwPTS3q3sTPz06b043ExP/1wYGm+L2QD1eGso/exXaf21yPsTDhdPJcXZgbHKq1i2farIcxmlH1jVVZZr2pBfSmLxKjFGoNPyFK1Ogu2Fqztbrh/RS42O03/5rRYiTuS/wf/RWlK5ne5LgPefQkh+833cnfxjJ80vM8t6JmCXjJNJJbrg2/Wu+7QHk5qzq7vmQ7YNZVxRUTsRlnCOvP9mhsD2iiXwOEfS7bkccg9ftldiDCjuaRGifSUCHs4cikE7/dE6IKHn8YPeqygg85uAnRBU80Uf3gTxi9LP/e56Yzi168z3bZz+xCmC/YAsw4ZIiP6cetj5UCkVFLo1soQnEstiwbcA+yoUs78RjHxrrvARCcIRJkghyV3AdLEs2OLDUMeUaZFQ2rY3Di5tj27aCL1u5SFEue5I6rWNdU3EkmS0wTx7i0QvR2m2XoTU1Q3k/7tiQGQOGQUr1SBd9hblb0AjUr6vtVz0FjfJQp2Y5XwXWKc32YxaOnqXCPFiFOOqAnWTcLHvaBX60vwa+GRhJRWvWZsEKgPu3Eln8dK0/u+DFqGAuDq523aEW5M5Y+tz1fdysZpRWgfRYotFhmxDPZma3x/g8yOfnAO2Cb1V7LPyjr0b9zj7Fwg03cFydKDRdpfVA+pBnVwI+dJGiyzf5/V8TNeduDkDKHHg/b7g6FFS6lWibVizkZbYRahxz02H7g/UrMKcW9bTJ/UzSoCarHepxcdMbhsiqylPewS2UtUPZQNSMgFCPkAxfOP2uxe3AB/pIBnvkQWBXBhrfFSaFpVVla8f9gwkXXzITSioNCYZEVmDwZqQ/+0HdLWQLRrIyy71GreycjWIvdsy1ypdpvxN0eBN/mZTpEYXPJnNDWSaD1ZgHTiudQyeiArAwsvnn1EG+8lAuetN3HWK8xARQauaHBd43nPiU4lt0dI8BgPIqxqaBqQ43eb9IuTsJiDbrSyKCekIeJD89BwVh8nt9TIK3dPhMOc5jpyYG+/AiDpjoM+LTUdx+184hfuBXylZA9Ru6e5S5OY5ND6lOQPTAaRckF3C2J2GhHPe2S1nEYXgEbTkz84VzlqRBPLK+a6Tb7c/pJwXc/glVRnLbky+Vl1vF4o9/4AhaKbh7HfZQhbE/DkQaaOduibhKBbYloskbNIVkXfpS2XqzDsQ/f7g2aY3MDdmznjwjpV02Hfhgkhx1WFkS5736kvA9/EoxvuDYjIxcryiHecYvA8VLYP6pNDCYJx4r3xqR18IWZ4bgif21WsmZnbXznZ30qjtLLyj5WCzZpw3pkRCb1yQeIeRaDDXf6L3LadzOgEelUJoQzS2SwBfEeaSP7ZiH3PbOw249IzaaQnrls3QNs0m9JRYOckUN8EcOVlqE3T2PNewjcfzN3bnWs9JmGdB5IZZdoojCQI4lKKlZC7uCSTFkZL459lvknl0u5lib0eKTs2raXG3+W5Cc4em0xTXbXtLxeyp01ncap0+Vw2+Ejs/b9zJhIKE8xQnABikG7xqrtGKUEOSZJPwCdgP77tfVQTq6tOtS5mTpDzpUW/QjuNaHSwJEWtfx4QYdvZ0XJqcR1Q44Wi+R8HwvLAEvVPx6qk/XDc29Q3R3/XgpPtQOhKYxQgajtTKsR4PzDlpvpyO3kHz/ba8zgbmAhpcaDdV9A5Q8HN6yTPIB2uZY17ICpOtX0uQPSRHjT5WIi359fnNQ27DxoO+Q1J2w8SOqSH4A6U1HcZns8ViAuUZh0QN0CmSk21cxILZWOkWd06VyUkP7JcZYmoimlm2HDBQhE17G1dBaJWlBV0Pus0vfi0GHZq6CBqAlZR+RAXbwZtrReeAqnlu/cYwmQWR2ZBjivudaV5xz+0dLs3kr48yekkob/k4BL9XRllGT/LQT28KGMoOG9NuBxbwtec/5LVllSxpa0U3lgqpQPFFWb14LoEhkh3Cc/19dUthNO6tHbPIewVPJ2qhskTFAWPWJ/mqAuaPtaQY/e3xEi3uSuCEDJsN8tlWwSB0BP/MBExCbPv3rrxX0CNefu5IXwEFMkvfIF0BUGyutaFX4iDar+aiv7gjG6k93eCRmAA/dW8CBi859sU4V7wmfL2cMfGa/5VJIfoQszwDIQi6mW7usoYCGJQA9tJiJd1JF5lk0e7HEJSGSVgi8o32riZCAZb49cVLdkVwVb3QNZOTpMnjNHbzWOOzqGeZmXILthTLYNck7M7w2pUmPxKF3N/1fCrORSLgX3g6XNojYWiLiSDMrLGxR3yqtmYwp5eWe1Ex/i5Pi53/EtCfRKVaZyZUJKvnvof/CIuPI8com4/ODIWCJD7+SRYP6i3KyHdn9IBaWUuwV3dNX6TPnp8+DrVVRD0FwMzI3IErFQ4proVAndz8ovCJ08xCI92ZiyZkaxOhBi8ud/EiZiW7HQz2uykOCG7sRUWN3e7l4ZPcu+K7FJSMH6rWA8+AZcXwJKYcyAt+/tNqK2S86BjXCTqmGnx3gY4QjsC7lDlFnQsn0Ku0M8QFmHhl+Wb7gEBnEvVyL+xXSuf3yr3TKtwhjFfEQE65SabzN5KIHgrpBxPNqj2zcFGgM+qpnbifKiS9M8tRErGXMuwFbcac2ATYbGx9MJ+lfWRLE6aHx+HfF+Ou8qS3bZ3ySaqhbTFXAx9LLFdZZj7ifLNh7xm2ejY7/rfTOSHcSJhN2njgiZJ890makqPflICieBI46Gp+HJ+Qmq5aaoJZCUmy/UjpYpFT1QAq+WESBcdjFJmMb+tLc7oDfJHnEFZRL0dHxKlGCQIiSS8bWKcuuVbxbsuzeXPZW+yHJ26vI7WDcrtUutyMJ3KkhbnzVafqLd8xoTgd/1VANEamz1xOHPwl3maRpAUYLedAOMijoPTP54ZFPaftWVajzMHMX3QRGjvXH2HI2UV7FDGT7OZwdMzD843+zmuqVfOcTSRcPkv+SYBW7wxjv8IHG/Iw8WcT8NxnthON0EtPNXGUDQORBo5+n6S60Wc45D6ozpHPET5IaQJbEf1Yp8xC1ewvTj+YvAepBqCxIDrwaiQ7PY0vC1lqmii/QtCJzmcNWyLPbcjq5Xxutk/HVd+Lrr37gSpp8E7idDu3472t2xrbUtns9beOmNSXdLowOSrDt2MMSDyOTXAZY7Vph6VzjfTZmryxpUFELVU+Nzggov6TXZ1a0LEynSEpMzVdLq38FrtZG8lHpX5a/aBDx23XPhQkaQIEwotB/LEoTCTgIvfxFce8VmcHSetQxqa6VYQ84bO1WGMRfbD/GX8yliiWCOOebBI5BosMtHGhQTdM4dUoIUMI8j6z3SRIOyJZ8IssujgMvzg6AXLgkg9WX4hjSzCKZlCevDg1nhHt93pQuA3rfKyeU+kQd5dZNaO8hFkbYB2vGwgxxDqM+crto1yBmczk9bNXLzBf0gZ0LkcD42GxEgZtEv0oEEzqXxNfLIfUZOYCVxm801AIsJqaMgsOJHw2wCgIRHRabKrCbkSdP4i5PaVx4XuT8EDBOMmkSM2ccEJxz10xHZFo+RGrqqVUGfM+/no4oIo8OgyWqSLACd9cgu0/JaIA6pmLhmvELQjN09ocLnHwmw7I1FFtDhbyWfUZEMAeuuFDTr3tHw5Oq1WATW8PPAoUTikc8X2osR/z1xfKoE4O0bK/MAdKY2SL/JcHXdn9E1/s3mt8aOIqJqQpoMKCplCg1MpBm/6ToFy33S+4lo0B3sjNYy6/bDlaxNjiL6/i8+QPvLzxWToCXV6Bto3gt93XRj8y0uLb9AE6lrnrObRZ6v8XY7Y9bMzgIeEefFFev/SHCR2q5jhv1lorJEHYub4P6HPNlapDYXAJBCqjVETfjZo16fK9Gxevs+OhSHUylFgszUOZsDRidtvN07kmL60oWX4iZml8Lmw+Qa8T/2KZ6imaw/cH7G3/i2MA2vGvaqOdzFP3TWs1hoj+Q0zq3/xTpY1wD6iuQ2oRaxcYMWRtdOBoN4AQasAIVg8PmqAVZA8bvk1oTW1a2FJkMoLJ483U6k3g3u4E11wwSL5/c7vuTe5QQ9h+05C/NFybFXGTf3Ttm27hAHS/XPTmSoLFzZfJ8TRFsBAFpwbdRHKwNN2eh6Q/HD9eiep+uYDY2Wxl0ZnezVAiAv6AWQSDiNtH52qsvAUk6lGa8PUg+18RdFAW2nJbB/I4rLTPciYse505sHxysU1i+wlAAe/MWu3JKzNcAq/1u4qKENhoV92M6UuGuj0GeOqZ7N2Q1XGcnoXzegL/mKbfNYzDfci2cdHQAhan6hn5ZfhcZ/GamCGFpinFgqSxRTICv2iQVz9AySqavdv75rYkGcwjIWfidw51/sXOPa7c+xe9pApPJDvx1sqbtyt+P11oqVXG3aohfYLxj6Vn5rqhdF6rhDpVCINTm1Z/NawFRNo7t5fuUXuPymV+STIzF0C00UFc8So15BmhOWCFz0y16ZherIGyDLKYUtCHe+DRCuqgCb77sb5Suv2Wk3iU7P6IlqXQppi2difGBMMYDUY8j+s4obK0Qpm5a0wlYtbDKxTtpw+jl/R6QuocsYZ0N0uLyOkY3BIlnOdZbJIBUtOAzxIZ/0ZKohDEOKWeIrwH9dCO+4dWcVkCAZa0D32QH6Np+fTGT47ssLaglFnEilFX8rj0tDMWC1s3eVYtvFJoQ20ysLF2j0PRwB1na5WHJqxh2++3M5iVdWnyTEh4Y6Cz/ejd0A33Sk2mN+pIpUC1B4vVoBqfnpVINNG2sWfoDUABrjAVbdb2m73Jm29K+BltrX1L+6dEZ6TLPYfWhDJQP1d7Fkmoy+W6rqApGBvEgJjeObe5LTIyn46GeQs5sPSdduLewz/wAqo5Te7tXthiVb0PElJIjh6JRUXOnaJ+tIzb/yQ71CNw1zkP+qnKYVRwS2RGkovJASVMJVEoXFcMTfY6IPGMTUh3fYgAba0ic/9JkxH4bCZ0Z0SOb+bF4C3NBvyKbyUlj9zLHkjrngaTZaGWTm5TwoHHJWAL+nuT+VOd3k/BmNfoGcetN9KVjNd5E1gasAUl5VTaBl1MSWBCMSIc+PzAN/azt5mU9FGJDj3iCT9sTeMefDYXOr8vvOHh8637sg3aZM8vT1xA68ZiYqOyeNfegeiL5kJyZuocXnxd7Yp0Jpam2XaroOTHqm866PeCGVkXyYK5Sw5IEzu7oiMzuEiULJGxkvtx71eMlVAm1W+d05TmDtrHHwj40KcksEZC3RN65oqL5P0MzCUv0HXWtTaDuLJki01qlbm+V/wz6Aojrb6/Umi3pbidjwSIgvE3ufsFBBBHYM9ZBiHLOp1bPFOAyzT7WATBgpLrCUBtUYM1b7jwn1ZgQ2KaonWBa2EyBL/GdR1S2iqJCRdeJeZVfE8OycWY1iPcLqMxe0QTmPYOCyvJCHa610XLEmKA4nqsy8thdnsKcHdQBdmS/5auQ0MIn6vrtZqEV9WPOclaQgWMA1HRPbnYTeMp3i3Igxz+EOWMbtidpQ63IfEzuzuK+HhiNZeconxA0Yx/Mpxdl0rPOFT3cj8Z2twPDl/NOOzxGfkDpCEYbDlWVsPwRqca02nY5zl1kfzWvUneEMsLvRxFqQDLtIcISaUfSrc7rf3WxLfKB0+gSie6lKDVRpfjgchmXycQbkVn1W5c4YhPKYQ8Gw1xPT9FHqtpk7UFPszOzQeBgZV4WcxkQbTiSp3J/xQw3b+SVwAe4wxP9EzQ2DAk1svllc4Mb+U+9+QcmuJurpLWmZTqQUvUJV9MM/DIx9+RGqLcH4XCEv0etQ8cLiFAsCnUpJS+uQcu9YtNQGy9KHdEhYzrUwUbduYaGHj8BR3uhuDawqO4zKY050h4m6iCWTegOm7Gq4XVrqzq4U8hy6kOGKdpsz9uxJKePf2MBQefVD3psUKDFb0FcOf0LhuRpZVir8DYMHhgi54QDNxCp/ckuR6/e54UecsOciLQyP7ZUCZ7OUliTpgaclGbzeydLooJk2ad+KrV6L/2PyHH/mYgZaCsOiniiXKdj1DxPOffV6my8bVexkFKRspzvlBBHjGLT08Pj4uERr8JhYG5CsydKejdtsDCxrzTt/ttWKnmWwm+/H8jWWLprG0ZBl2WITIcN+uMZMDu48xk2iesXAheNmHENqtLEqanFV+3hxYRzptuxvNL3GpIHv+zIRGyyBzat3XtVL1Mdfo7v2BOZmas1A8LevGF9TxJx7L1COqLwEwzHkHAXyy9WwPiqBZnQ6cegjxrEGn5lM362A/2vu+z/rf7IPkBa91rDYdgaVH+aoRcL0+FLSavo3Fi/WWUxOm6kpFZwh6dGyB6uMVBaqYxVwPk/YlRysD3/kL/fo3gUhsIOd4cy7VVVFtxBoWci6PU4M39oXq8mNFl6e3W6ZbTbxKtvQdLe2GtuNZKEFQe51TMRl6BPAFh3p9Ok6RCKoXbjArS+W8qw/HeKiw7AHwgDe7s9dhZIZRvqYbzDp5gz1NWwJsbKkOwWxbHfGTkcfPHFkoxcAfPNDmLwBwFu0hUZXlLmWgiFaMn1n07IlqRlZjOQOkA5dKRIMtDFwoJfPLUolutRiTu7gmL18mm1cr+VJhq0a2Tm2CANtozxJwUNrH/nzVMHb5gKltpJY0l7iNmbh/RHJ2Y2ddxRxlxJZcInY0zsHnjrrcC2p6a+H4YmXm/U6kMORtY0akgYEhAKA5uV9aON49+LpEq9JHqmSyDiqChOgevY4H5jCIT5IAlk7p1WKUyypccOSX3MPercZz2YktJnGJ/2IUmEG2HRZjbHDPWaepHli7U5Z6Lhj963LJwwtjkwurz+LetOTQU3F/3e5Pv1k1ib/HisB/uIt6aVsQhteXWDrkR1H4Y4ytkKLSTEmp+vLs8a5oMfXZXAXtIJqq2fHhf/kD78XB/0p/0HoxdwA4J4ygpwJ02rOZ0rTm4uMhWByQT6KpwpFM1RRSi4XrWkSkW9F/t7IgIcMNy/PPCuzoQzpOiHwfPUacZBrC+F0OanBST/62BJ81fNivV+xD4z9Czmg2CGtSh1FsN7Wld+Yd3/BfmVqI3XIV5BG8NsvpUR91Qf4I6AJz/fEsG5vyLy9q3mFaO0BXsveGgu10tlfBIBhVVJtZJqCop6jWyZwAFdFLNjCi7IGw88TXibo/IOeJKhqi4asBQ2HSKGcwEWsl/Pzf9SnswaVrjHkbGZg58+8ianqLXN7kvbwC2gmlEA/j5sF6W22Uuk7YOM2HKqv3XsXYnx1dpsWRVHOyx1KGai63JuZZ3G7U1FE8mUxl5I0bK4blqBU0G28MxbzZgNqvk1UZqPr5XdXooEoMEjONW8BeV0QH/n0nGTslXt0AV42sEFPMh+vd1ByZ8Sweqdg0U9jhX6s0LKYM4TaMKWyBJuoGQrRddzk8dIABzu3reTSCjGJns8SnQM971KTVTZZMLNnDmfSzDl1hQfsmUhxg2CNqSlBgXnA0ykSEtI5zKHkNV1MSOwdGnex1sw0bbCVyLVDB+W93G3u/znlQlWNh6HSE5TcZCeDKV+DKQ9OTmBgLr0Rcc5oesIKqWUPkEa16ugRxJB/XDzlu5pLfino+/Zs4FNSIZD8jyagx5K2dSzmMRpcUMWKi+fWNpq558kCVfVv3UmwahCyl46QCW8d41epcw9tl2GVfwJ11j1GvMr5irNcN75wx7x9xmrbvlhY59aarf9+0n8OP4LYr+85DqU1NOBo0YIL17YkCh+KLR8a584poPQXWCkFNM9sHGGO99BXS00uF+xkFEUHwJ4nIdOl9WuTm4DpCNi9TqjvqpNy+vrjLa2w+O1MeqMGoAUMtRZ+W6zMmntYg+UiyedEeyy3dB9lRPPME2o5GJhoEFiOOA2OABzBSOV7GPg0pE9riIc4JJlnWH19d8ybVMFI3/2LawEAumFAvk4vmL5CizOxFnMmPK45tNCyFBY2I+rwg4GlBSiliZxwPVzlEkz/NxBl76KP9e1YwxUxlmzvaodJWYomEFOxPgFh/Og2YdVpdAZRwFwXfCTZySUxDMy4XW/P+YY5yhWCBHI183bvpZYZbF5vswK8WJecJDHk/po2Ovjt6vWN3UreadHYvXk4YlT5FJ7cDt3RIAGxeUxWYjrtJPnkuYT6/qgpbldx5oXpMPeP8VgeyNZOwrurySIhXiepFo/A+O+0AEy
Variant 2
DifficultyLevel
508
Question
Toni uses this net to make a dice.
She rolls the dice once.
What is the chance that Toni will roll a 1?
Worked Solution
|
|
P(1) |
= total possibilitiesnumber of 1’s |
|
= 61 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Toni uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2019/12/nap-L4-08-ver3.svg 200 indent3 vpad
She rolls the dice once.
What is the chance that Toni will roll a 1? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(1) | \= $\dfrac{\text{number of 1's}}{\text{total possibilities}}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+tPsojG5FBsvsccgo1cnLjtU9CUVeJiv9Ge/nGJGTZMvxsskVt+3Hpmyd32QpUHfWVxcFMGTsxF3dNmECBPr11GrOtGd8E7i8yFf2rHurfpldCjV2bFjwVwSJgojIsyvJIYg6SaBP0s53vIT8n/65WXW7q8wdK9A6Rd/ww3wiqwV11SDD20+a0YNMh6SfQO7zWNc/KVeB/sENH/y5Wnmol5SKRP7gapUevLfthgq9Uj3UEQBWWziEYdE5lKC7Pk2kLCdWBPe2SDoyfjyVanyRkqiGX9mJ3CAZ0gWfzMlNUfFRkvvzYKL9/6gaCGA6aqy0emZK0PNOmWgIS6IXEMTrj4RkvrFhefNfoBk7hoEhGuor/yy4LZAjotZ64IXseMRCRQrXWJTZTF4Ah/isHgNW7DHyFLAHIoSkEZMqk47QH0nH1aF2Q00owat+3/QtnsQqVAkCa4DZkrO9CVmpV1e3VpvH4WtuD1haMsH2DbIgCmDfUFA5Bj9CLtJsDKcXF69ZvQa0MWmOpo9GWH6ZLtE2lkxAULyS7WgmKIaorPttEvY1HBJFYztoXkwdHKIvfPHCyDYh4/D5XLvefffmgbZM+jBfpFL2YOgoNTTzXi+ljHJPGuQtLJBAuD4B5diA2RCjYT6sasByNHZFQcZCbXjBnehN2+dvMX+OjYBuKM3w8TdXyq/JvYXN30QN7obDw/ZRlHpUEE8Pwg4lyiNQPmxPh0hEoI5IrvgjM0+X288eDclNvZHdcj3Q84xQhGUTKu01NG3P7QFwhrlSisgvzrTrnDByGoGe2Mvt5SpOehN6cbIikaPNXU9UcG1hAN7SqYIrW6VUa9rFIalbxRa3uzeLY+rk8iryXTeOds5eG5QIfZLc4sv/Grev7KmvgiZiQ6uZDA2Ahh7B20yXYv5WSl3KhOVyx9z/ofL0Dy23X8Dsvil1pGyFdN/lZ+ZC8WG0BmsdiTZWw+u7IoXVNPy+El2DzMbXChyvTSnytG2tw+BL37ghKn4Hqw6DWnTn93vLTLo3R/x6yClLSh7O22T/1y2iJUJBdLIIstaJTKZl5eG6LrrkiKTG2SSoFO8/w+0RTg3QL9aSKtNNVypnlO3/lFqK5QxVTszdwehGST72BVbAOkvrLC33F9ojcdOVVh/T27XSYU6KNeRErfhNqp4Ti3zsx/aS/gNzS4FOp/Y8I+eBWfCbFG8fqlcvdQIEHBvnO+SgGSx1ZjGkguEExabyakAEi9ddMkS2BkTfUl9m9PoenhGkyOaFpRLzM5iIz71p8851DAYoinB+Ef+cLHFiMf0Je91Sh0AG3nvbCLNz4/NzTqYsGGk7JNcLRD35ON59DCxl2xConpBlKDos9KFK2poh1zupIMZ2m1CtdWrbXXzSncm4WFsBY4IvVuwiOXieZhoNLU23kvv/FS9kIpJZk4WS9B5Bj1MQpH8srLXzWSZflITlLRRvH9QAgiACzeCwsOrtbCPiR/WfSQ3e2grLUbYYGCQ7CoR6k10ViKJBOL0PQUGNTTT8N+1ILYzQXn2E0QwtqTIZW8jYvAyeLDy1Whg5Y00Rk7wTfznjheNWlOdBzVnXSxgZBH2JrcqQmlMk5pe5NJjL82qawhoqcxO8Jcl7fGCAQovQPeTOcjZHJmBneq85LsZSg76b0AZRvI3zWVQkK1Rh92qHpkuD9yFMT2NExf6AEep+CbcOWA7JMo7O06V8TswaK3/ZwTnJ712FXPR/Wxae2vOKCYyvqgQD70SsKSUtG3SzxOkC0QZWxMujMScKiReBB/CCKj/WHV8KasNlVxtV3J+JIxqdlPw9DxRTn9jZWDioleuPcfSWU+83xGhLxurNMbw6k/qU+a0gV+fMXLWyCanCkB9aeV9Td3iQtUaGGkUhupa0VRLJI/4EMuEcIxJGdnYV0lBa4tYSiRKToHA10ZcLjqtulYNzdLPOS9CsrTy/jS29+HytoRe+JFAB4vNIHoeiMNv1Tzg4xL13EO1S9Raz8or5YKaAYaKmK2RhPc7p8KzlIapG0mAvi8074PcXqmumps1gIpO10F1VCYQ9oDr8c8gACCUfrZTh7f4eRug1UDTzEQRNVUB5SKii/k3selw9osiE+Tl0HDUAd5XZx0nXUImbBzhCES7ckKBwvFdqCT7/oPaS/S+IajOu7tj5FY3yB7gd/22anrXsD/COP+oa+3jOo8X73JxpXqoKwuVdIPBD8a4ACsZsl+WZKAqdSAPqN5wpiG9dragGb7Y92Gv6T2F2HgacWjzXZGbj46P0L5YYOltfwTXjtrRztRU59WgsNTYrLEoNe7cJOvXUdRPdJMVsTrTGtv3KauFCxvnaeS0at3NciKtOdnvm24njh+nrwvhkPDvuIO0wJj7QKEZzPhwjqOSzeGenlbM11o/7HuBaFSJrG9bFnHCraLyCRB6Pyad4MUbHr0nqAPAzuNq9QJ8XoMI0xCaV8MqtoMYdcS3MLcErQEOP/EpR/PTJzmhfeGcYAAmdw5SJH8FgrHQPGjTEJwWZIKk6xVZcF+CZV222pPwz3IX1WOO85ezc5dI9ZF6jhOy1U4A6bUc3pNlhrbTw5cS0ysMUV39wnfui0pfwVZ6/HUliXOITOCajWnz7KaQTB1t3zSc43CBXZsaUKgl4Iwf9kcg24a3PmF7y8OBWcTRmj1DUMaXF75Yuvhi/zTZU/ygLAeg3F8PKEpsytLJAPBCA/hy/ar8BXhCrLonuuEP9E+gg9MExGi9R51670PxN+WzGDNwM0BVliNoOYpkrhNtXj+p/x+GQ2hB7Z9d0u0IpyVxeQc06YR2FjuusQVWTX+wA/0rhwyHSedsuaokiEGF8Ut2qAKHI6qJJnU9OfgZtKkVvpPaIvApZ6AIN2iah9yD+IpLxmFbpSfJcFA2T56IrR7mzMo2KD1CpxuqBeRbshFfs4wDgfggrWPe/nee+AlXqvnih21AKaU8MR+62LC3KQIRW4VsDo1y2p5R/gqU7rPjiG59MCPGsCLkOsYUSQyCvZHCxxikDxIvW3+IxhYSrISlBydnPgUnwFdPeVZ8yl89phGh7AkAXvPOAwFyItLFUVmb3YntatF0Z6hA+VLh4gurQ/BnaE1kPyjOq3425s4sJtboNLoDu+zFtVon44gEjoV9SnTH+ShHA5QAIMYfij+b0JFRf80X4V/9tkIUUYH/9XVFcw7jqDoWnJPxXzLke2I/g5L55s7AiadI28ybDw9Ql1D3jw1LqfzywnZ6/qFEgUFeXRHdTSCXEQpR20bdJl+ErZMvFVYD57Vi6GsHP9A5ThT/Js3tbZutN7JG+HFBSzL413YKI5WqrDTcF/6jFNRab87GQ46IYYwGGcZeS8Vg0mnHkHnokUgKWO9pVfmVv0O4IShIpEzULr7xnjYB90/KdSCYxOWx7agJthtI+qCid5n66nA3xl55zMMdmOSL+DJuainnnBBZQu2AI5L00F7hYNjPVEmouA5hgZNVX/TRVR+1fVQ2XpVN5CpKvvou8EXRH+7qOVQwFP9Gr6XknFzIGW+U55rstY1XCP/2FkVfzjyeI9/KcN+nendm+1VYqHxm4ihaj4Sc0uFCYjEenNlg7eeYxcLhSuGApmdf+VnmRksxsD05buJEJjyo8ELc0Yfr5A2xCKla9IxebbeCTJQMehF08GKiHZtvfgdxCLXnIWjhMElJEKu3DkUKjgy7XloZxlKK48FyQPK4TVOr4DBZxNk3AKG3lKvtq7WWv9PhwR89ciEd5iExavlqdQd6IdQdF3aFqhm40ZfR3MYmIgSx5AMrCYqYIMJzANMjsVispKxc9q1S1WOmfGyAehablP7moJKZLU0jveRqrUkUvyZNVpi9Dxme7M6HkiYeB0pxYDd8QcgSIdjI3Hx4OpN85i6eMqUIkB80hObQcHCi5+P/AUf+0E/FrXGoUiP6w+/IPP8krNjXd/FWh6ProI7ZOn8ip/vnq0jn9LxQ2mrW+lyfchmcANNuT6W6g3pYpcOJnXwc/H01JJneYd1k+IX2FIDygjlWs/gweTWhqtAkPz5WxIUjf7UOLpx/RS0xlzk47quE48EJC7zLgPGuzrVMRyVLD7rElEJGxPiGYTmHmGu4OjAiLyU2VmP9zqNXE1m1sbw/T5n7MXqQHmQ1f1luzQcf/MP/YsqxgvkhU1n8qSisj1BynPqNyl5ZZ1hHAQbpqs6siR74uBPC0BoCz7rI08MdZEKSZ7sv+pPCoq70/A/5RzQgVtBWA09DeflzfDqMsVivwmM2KBEuCgbFOL2Ifv+WHNlVZ5IyACc+swdHzcKkhWfBFyxx3ZokNsLmMB29xNiBoghZRajL9wkuZy/z8BSZLv5bnPkix17Fv259jzgN/cqOfm9Hu6VyyFfv+57LBqTfti5paUA/Rbia3lBCRdTq6wp/c18qKXnkfHvwQMQLfabeHCrMjPl6OFtRwyZAes9S8Yh5I3awAuss+osYqvBr95b8bYnxHQpuisxHBqBbeik5UeaVTSk2Zag5TVaLDfyHIvdjsFM9z7fW/t98+iNd4qDJ+boFzjqp4eOkCPxCmAZxRJocDE7ZY775RwM8Ye7rjj7wkMsIpOI4oe1VPHixx81azXmbcWW5UxleUZCxLZEIbv4qXUhUTjWW14BaV4mR8pjoeLANQd3hUqq9PAZAK43Ln7XHh0LDvEvaHzpCvEZt751BdFfHciwbROWrgPTCb23X13TtzPAWTbzfZtJ/Fd/rH/9ijXRKLMgz/uxDixb4zkDBJ1ryorzYPXAm/g/nRhTegTU29TxVBH4CtIKjToPox9YzAW5oupL0qs21omShXrHdhapsw+QJGj6KEZnCVJ5cE/Y7uZYIYy/Jrmw511BL4s3uLiCLRNkIcQ9K1zXDFNBHOMpBj10Y/YLnWrdX0g1BEizhMhwGDr3+wbSqI6IFZskC6ok1zp63nHGLCUlyTsJYQ0in8a+1NhsZmZ4aLlRFhR9UYEZ43QuSylamRafoP6L9QVh0XEfvNm6+brQZyDOXDTmJF4ZnHdt+7Atlgwnh1634H8e3cqUHFX9g/+RWtsfqC0ErtRG1Q7QhIIDGkIxMa4iW6il30i0ABtUN5jPgjPaPKwUrkB1U5ZFOoe+T3VWdUs5c8hT+0gee+183EAN/7kznjOEkPuA4LwQPsnnbEJCYHjXZejRfS7NhIDTNaGG9pXT7PrIeDsIseQm5ZkXEkx523SvBR2LZKdnk9gd9tOO0feD4YshZjrXvPMJRiB1T3L6bOLGGip8z2TMm+3fSbweyofbk20P+swBGlNicpTclx6e3S+ASRFC+Q4KFY1DEOUBe+ZiFQcTdNZRqY4Q531GVlzijokmaEjt5OqlqXLCA3kn09dlnTrZRPb1XkQg2+4+rqoiLCZah0UwGgROdKDeYMNZkct8y4eqZqp+MGjLiL8DrAM5vStULCNm2qxPh/LPbenToOjsIzdyvdydxOvWrtlycezeokZeQHfLF3vM3ZGt5R1LpBkiTEr5gJnZsgc/GyE7htr2ZqLNBl0ohjW4oF8W43JCJtMRBrEG0Papegt5pQz4peIZ4VN272dop5m1rvWJM6FhcZbrYJukVAiC5Nd7RD52sp3Y6BKEFnOK+xVVWWZtvGJrokzU9yAIrVrw6EHAZukhL5/Nh03qcTByACF75GYFiKgYkE9WRcsy5SKvMJcUAl/gRpf1XIaD2ndnqLZvkftwY5u/Vylf+R3NehYetg2Z8cQ0xQgGWiUCAti9MvnuQbLl9b6UTgdMeyOHQ6WZ5WNk6MFlh0NsZKcHEREoPay5IhkliMcge011BrTAZenHuWwTttP7bJRV4oa1uB0OaKvYME+YsCqdHD3Z5IfltUoXnVKijaPiecG2E5NDD2Y+KSOe+19hE8nzSnMohC7sQZPwLYDmXldtYX+ZtRurLwY/K2OP0yIWTmH9dvJd5YdlqR1H0VIJHrDqkn3/1YaTFoZ+4QE1rpCaiS2y2PqodKyRIgqSKTt5nbP4CtPkari4gxovdXSDToBhxH4DkEZZqqLAA8mn718cShrfZLVOwxjmlTr9PnBrZI6Uyk9fatQ6HrqWYEvJ2uzcp1XlzVM+XlmvDhY5b9loDwleJDfky4CWvYJd78dUaQDTAPg4Fy8n2BvFmTaM6DLVbooB5vYnwDnmCQm6v7slbfJxNl5mvgl/P4ZoL5zrNu86TvgKKSN6ADjdcbHr6fHmCnSDN/qj0W8XnWuf7KiUlK+UZPTN2yU619FnYGP2rnPeOUU9EfaeHYs/p8lfuFAUHVszRCFMb1/6uPjP4iwU2atFMUDbGo5DoZYKDHXwNgiNkMsfTC68TLG/ovObAkgCfy6Fa9X+GUyqrSFqXsWLnncsVs+3HhzbX+FR3rge+QBiNIQL9lQM7cXSSAFmoVVVNMNN3h1t2DeTuZEPEDvUs8FyOP/eP6mj8Frl7l6mspJDaZWy1LMLMyM5TOSCVFC4YKwNO4mu9/Y3h8PifKDGT4UMQng7H8I0MfFT5EskUu/3JXOTZOlV2F4pnuBkOg49wCPto1QgIgQ23pB+KpPa8zwDF0nxEnBZ4aBKvKvBXwHkoMporMoO4kR4TNwcZkWn8vCInzBm5N7BuupDet6rcGpC0iZ1afwzvQ1Uh2u6gZJy5gmvHMR1iM8LiDFitb/Eu5zdkrSf3oDQ/gHuAIz8BB5uIWM9inhKl0YbMNcB9oCVOJL4frCRyFvGJ0UUcVb9oUYs8elnVWhb8QpyaG8rGiwLrVHUgrM5iT7wedbkoksphtQPnNbI3luq2IBwx7C3at5FFlx3BaNzNMy/3qUO8/FxmHZSvZB/DPGcXKOI+gArWIsfqfX80SVqkUdx/3c1w5TaduDr3ND9l2jHqItZzbISUDNgR7JtIDp3tjyuf4kBJgVEHivNwWqBcJ3tOGrYOqEItEPf52BPuePxI/zDXjl8nMKXxRjqI6N1GvLCS8TMkgWe3dmfl8nUQZaCZAXMPenesNLSmuMFh326qEBYAJgOsujNzp/XQW65Uy70XuAVmEm3SKcdt/Yc+ZqvuFfA7J5Fc76dawA4b5zaAevHSafPCd786w4/pczdPxt1iQbJbX/MyhHP4ObwQBnGJcb1Gf3txCDMpMHF3/MWyR1GwTO75vh6HgCnxbGTWCFXQ+CxGGHqPHbBuL9vTNhLVcSC50Cmqe3NCEPh5sGt7gRUFp1Z+cwa5igiF3cWfSHd6168gjTD7rMolh41UQjz+MGrGj4Q6daV021AvB34L9c0hDSvIBGds6ZzNEic7Qbo9FlfbdDqjZX46jFhxZzXeBbqG9kH0uz6RsxTwcfRdkVCOPMOyFC3dWeq5R782YIo2JMD4GSPuiAOsjU7gxlCzRVzrFb2QnGnVqRZEg/Ha0SCtyr/mA1hjKphzD16JdrliHtRQmI9NyPVqpRWyINML0Ur+pUNvoUKq+foOWEyjsCiREBLNNyli3GZdtehbtsWggC7/ABvz0tDQ9oXLLH0JB8PVXeV0qUg2B3pm0H7ecPT7/TzkLm6nwL5+63iPwUyBgaa8FuxevntpffrqSbYrCJicOgZFNurUZE85GGsX0KRYJcxGggbsPfRZlX9+MZUJgAAH11r+pkQx8z53ldAMS1ezwLSYiqnQ4vlPcQRGAYea/mavnYKkwvMuj2jNJhq8zbRk8Vm4hF2rh7Gk+aK8km+5Ns49q35B9HSy/qPTRKbeecNj4h2G8dkBRO2gDtp/oqhTVJxWyyHwCrugwxNuD0I/wArlTgUnq/NbOTHl83J8+4895ICYxYpaFCLwZoNJz2DCB2EoL5XcRW+rr9yHVLdzDB4vy9Kw14AevUuN/ueBv+ZnbjMaE/1rKRW/fIuISOdZgSinfvQVeuFzX3OOoR/CvI4WeEC3XIzsLLDEpJlp3rFCJDMmEKgGixTH+5LGxw1yBWVXfrJK3qYV5mo2i2O97cjwV0lEmEH0KR4SyvS0L3ehex3NhuucH7qe0jTYOwRiNSurmsbIjRkl04QceyV7EF9oW5GKjs8m6HJggl2MsBFRUNUO6JI6LeFkB6YVIaOodHnafyewAvRlnIUGLaPpbjE9/kiTus8SOqYAvgtaAnfYLplqYY04kOUBachhc8GuQTLGFtWrNtIzQEB5+PgaMzI8X/TMQ9BmwX/Cb8jb0h4T047aiMIuXvd6a9e1GVIBI7c8mti3wmfO+UNvJYHMUF4UhkVcmOSRDgh1sxBkIir9WInTJ+oGIQISOZsrU3NNbEJew6biqUoCzRReHtl6Sv2dVgbq9S6RrB1vC4vbS9jQr2WS8qhhiaOPFK4oMMehEbri718f7c/K4EzWlxnDLPfRZfH10tHtV6SVHKXFhQ3Rb9QwAkpJlazuDbv7vhzYEuZ88GpeQ06qcKC7/m/DLD3sQIbJpL/xbpBRyeBNgCd8DwTHVMfDl2IRvI30Q9YXTwLh4373IFiSuHj3hk9ytWFlmm7YX1LIuD7TvmIK67bV9UzUhNDCbBsZrY7r71MJk/tds7VmHYTaxEWd9R5Cf8RW63ygRXDGBXmwdcxNzX1xleQg8HpdqCbDebuk+HshN7m2HDfhnbnup73It2CPclza2czZDDVoYh74DWIJDi93FYRt0Hxhl0PQJQI0n5+VHhcCWv9JphPLi50ifnqZc/xFJb8UhLN3ZaWrLHUS2YtQJ8oPD0J75+McJCVJyUV4HEJVnDHgeASZotjL7jdbexBP6VAA8Nw+jdTjwwX5eNB2EFcaZm2M4ILfJUFf6lXPQl4b7YKDksgIrMtiBDhuhRguhdw9kY8h57bQdL1mqiZB/HIFWnyNSccNfuKwXJeD93halCdX6raOD/bW3BOK1Bu260ZArrBWk91IXJiKHEi4FTWWNiGIGf/LR+Bp31RNvdaFJ3LHF7ny0eWF/6GSM/6wslgcS0+70qLewFuPBkUQ8FiYeQznl+mjvQAiDQL/bTYBVx7qHtyZUmzK/wxMdewKLruHEjkmv8ZA9NYR4EgIfXi3xoHAbOWzIsAq8W/BBFs4pmZq0tbhj1fkPTUdNRy2fVvddRLFjRcChM7YwjAzfJnz78MrU4c3JZObfu5o83gtIExCFBTXXwRFmsyFdsGgPh6on0HTOlwts1FU0YDsfbU1BvF6L1iVVesBRMLRpH7obCFZ4vEXJXMhmiRNQTFQvBGUtu29BJ8vv9k6H6oD1cd3u/xR39jiOxV/SBuJA18DfEXawtC8gbt1SbRE8Q6sAPkU9D3untMOBQo8awiAWEBxQA1QAmTRMXBrAMMIO5AO6hMTVQR+yXLrUgO8SbpHvyOvAo0u4HbtTkqJ+Hkua4iD/k3rpWzJkWLp+YloBxjsZqHgLH7XHNC5BuyHvt+0M7X1gKItAw/WLyXJnbr85Q/wGP2lWb8580P/WAPv0L1mN532zJx4pGf19oR4euG+39YIDILIf+PYqcI1QHUFsNVOWdjlGQcAK3tHuyiyC+8DmWQMoHyWfUypgqQEX/ND9ZHsGc1qyUlexiESU7+FlhYDCE8D/mlWmwjLnn6MyzZRbCldzWV06xc/A3vOnVMYZ0OouCBWwZSx9Io46rzYxpyl0AyNK73WoqwD8PkpqT4qv2fTOU6ktA26Rs04BbxLmpBMj12wGtpGB03+IBF07xrArI3FNN6c+8tgJI0o4joGE0XgMOXMoIYqpr2B8kx/tyNsVtAlZlzHfhOdOsEP/+PD7wCK/ut2Qmh/P1xP1dyp0mcuKSA7Jj52f6V5AbYjLmr+86IwPAS1uxyTP7O8zu2vklGcl19fM1zKtHMYInbs4gX6Hkvts+wc03MfyZs+AFMN8ZqyaLziszCuHFGsYt3FKPwk/Zq5X6IcqGhdsijWYvkXuBODpjhkD4AxrcAlx52oTiaNQEXucFwKcumThN9gwIdFnI9lPGduTUsWatltpWxynv8353HJsHCMUyW5UokqI9Mxa48xV4xfclcduf0wZZ+8rs9QGp4oqkyU8hU/JlanHpsdWlbdYR9qNBZtXGUZOC2WgWeS96zKqDAHkQMC+O5uGs2+g539LJPQ2QNYTvu5tyw8eGbvlECurAJmBzGi3vY6VgTFGp1QJ4pqxBqYPufjZ4Ck6Hw6gagssq0jdVnTyvyXRyxW0hEXIfoVU7ELqasWi6mQL7GyhM96FAVwJygWuvd2tXcuUBDbN3glyQ2M0EMqnGRFgoARs/W4VhT0CfJs2qjWqdiq1pSfmTFzEG0Phlfyq6g6qSZi8QNl2FLVBuhxDa92udH3XoqxJzRoePMF3kNH50UdHWm9LV0/93dI0rYHMP6RkmULPLs45oTSayCqA/ofCy1sn8jPYfVJozhKeUYlClGvSOFtjIRSHKextuR1raJtqb/p/+iqeXekqFjctw0uqnuyLxwxBvg1Q4r4jX1wjHxyXg3aFbAXbhQRMkMSxtbMDcJup7NOcbm3ztmpbX7s0jonu7Qk/frIKZT0cyg8cO7Vyq9QtzbftWzpt9ofuxNwIqHkQEPEOuGJQRRgtdq2ECsRaJiSUPsGbJkEnnTLhuugoyn+i+Bx8qK8ecnG6DmT0Qnr9FdKwCogqBSI5qZeawsVEnF7EfIfAVIuyUJH4C4K5i5sC2xShy6tLb575uNIZtO49BwkVlUJ3JYuN5Cp6gsNvGE1qRs3S6QkRTf5cLiDeMTVKEiwk6s1GBTVy76T6q61VoGZ3G0z2kNH5V4Ek9clG8cKnZ+Bx9V5YUgzNyfIT8xvr0uxF91cWixw5NVhfimoD+pSNARd5rcp4ZOntgFdbEoHMq4zf1OP3AX0Pj73nM7Lg9gTpXRT4wNvOBv4fVv1m7Z7ZtX1fcFi/nS3Bno3nxh4+K6p05X1O5izZQFzhdWB14VnW9a0xnvWL9lOEyzBxmL3dYYhGEiIaibL51tLRT+W7mmn/WofQ8JC2zyHGkIgc8fxIF/nB7EN09JDbR5zszqDEfSiXJcK4mwrctf3rny0yG8spfgDZ9cJQpBZ8C/AGQ0Af9Atw+kN7f3UmGNK0oiVqdDUNJq0GXlPaL0KxV/WdaWe1bvkeDk2sZVtfm9OzUA1pV0s6CsaxtweZVBTkDG0XOe70zIDrvsRHyr6JLJqMiqi9gBSpYtpLOYO2VRJZwpXrim3rmDdHvteLMv+7mcib0M9bU/e0uOTghEz+kZ2WyAy9FxE2K0cM8EBlPRcg68oSG7ZgrkYBcvr7ea4vLVx0C3pyw6uvC/Dh/YK99QAuilHmp89e6TiQBoqEhf6Moee8a4wADwePW6NHNMIdt9N9NH8bCoR8NgZ78SAJcALeLjDeEwv9Ygl9RjD3I5jXF2Zh5OvUPT/lOZd1ycMEdbrriwukPU7ofWywnX9MaBMyhJ2/gmHDRGadIQcMhDQfPdltSuG/el0YgH1eKwFfXKxFv62/R/wW9y/jQ/Wa7sEmroJchLB/Jd8row9Oaafd88gGSs/HkZbO2Egt+EshtmxOiuaw17YDZ19uEge061XZgmJ5TjElwHd9oNqeSySJXiHidMLRH5z0kVy8CmZxG8ZyfT00TehnEzTKGoQjF+OMyFjDGAsw0UwgB9QGzceZ4K0YMv9dkm6u/ZPcP7bY+qtqH1pwgKivClW77D8onBWg4GfwdJzF8Q37n+spfdiFBDQ1tUnEnt+YfzpKgydkPILuNhFcIVU5cotpxhfifl9c+ARUIcApgoGFvthc2sUULc4pBTjzXMpoigAEuWaFvcamL/7jxJACY/YM69P9mXtawD5l4ctK6WP9SEANaWnPvnSLf3/+B4IzTboCUjts4sv3wTdzhidar91OV8tq0HkGp0Qhxm375PLw4EZHLFcyKTG5Ds4qESs0+GpcNU48zujfohed7p4RKy2LGrtjZjvtOdxCYD/F2bQNF41+Q7hIk3SG2sLlOP+zbcaXn6JcyLxDSyVj0eOXHFmOq13Ev+b7vkUO9QIoY5tnX8oOATL6h9uGlF3XATmhoaxhW9VFZp+d3u3ZXyk3QxieJBnYiDv37L+lRBCWZfQ8hi1pK63fVQmR94h3u8NSy1+bIYVzKRq/krRzZGPDL0qW0zvkrPN7kW50hv1Qob2LRcrxJICfbRQ4z2lMZIJ9PF+pt3LFGYHrMqaOPRiVZXbu6KCDe3vgvkDy3VP22gSmrk8V/3b9DTf9SLxkG/QjFbuDrVkxO+lXIJVEqZuOSxQIPGq2E3yrWsH4FlrBVlCG1fgAqnkDWbmxL7qx2fVqc8v6/MQdBEhnB1sZ5tvNbUrA/v1vt5H6LB8QEokdL2FsS0nPW4oN79mWZ+xdwEn3EK4Rnmj2k2mZ49TeEpy5shNMQ9m6b5WvmvTyvg7Pbrt2s316yTgpaHq4AuRsJ0t+HVL9kX71SNgNlH0XjVnsxJ402DiISCtmOh5EELAnxYLtSFSJTJa9q0As2ziSGJsH2dIOPc54EJd4cp0NLf66GQC0dQfUZ5iToIJyNxBcLtpl1jUOvvl2HPV1ByAL0PtvBnNpFx0Df6ULXBZ+7uys/bYE5TXszD/ZqjbRfBvmlf8+AgtpjBHhNTRHcc6vcPxCDcxs5g4u1ZpcUMgjoX9BbwZZ3hb5X3ooxuZsLmd2cWip5zVh7xoxifBZy6ggAiGPQ3ZjZbzTTrWWSG70its7A65Cb4ep/Ea5ZVtW+yxrvAjKPwKkrwUjyS47Fq16gm+XO5bbkDtFbrwQPw7aPNAPYj1FSSKwmADOP/zXbrBwBFTUv9ChHp0azmUf7uMOYQdRHP2FS2kEGbnOdpq8ufWuJOZtInK3rwviWqSStdtrCBAgGuRsmSmw27csumkmScselEjYPgCZUBppSS2GDV0kcx4kUazoQhrMxtaaaTGWBcXnlcItM/cSAhvZlvNNMGKYGF3H2EQ3O23zSFpHsJuF5P76oB3uBHbzWakbGJgQBpQjbBx72J4TTGLvCgkHxTaloXBJfM64+DuTIrg1bzWl/QeO4fnhSrEyfcAR6ge1BloG+MXiKSzEtgD5ajyYt38W2Gf8ZZ39Kt6qG2GszzmUzcDlC9m94cmKEJYIlH7xIwBMa22Y5suRFWkZHMwjMtIxlw9uKQw77w31/VQraGHlVyf65S2WnYDdRHtLNHSra8q/7+LrogMGy5cB7IFIYOaBoKfNkHbAwydsDrfP8sdlzwisMhttNchUGe7gfUhaD14W/3OwhCtNaELgtn9hN8ElUpGt/KXF/ChNvR8wRbHVuvPQigS4F19hhaoWmRDX4C7uNqbqfDw3mdWOYmSpevCHIvQn70FIb5nhgFmBeLSDvhU+gkFWoAET6fkOZkZDIRo4L73hf3QAv5s8xKC8Vr+Aeod8OxoYF8/Yur5A16QXQFMDd0Zdn2+M15e3kk56mxwVXeweXViBwsCH/V3JFOidHGnUle761/7FkXjPxk9Cxrmn0tLs678hHcJ5zddCpHf8F7HR8G+L5BzWyMDekxKUqiL9e9SIr0zatnk/x0TXD6lwKeBuelW95EIMuj0PRPBUi9Ta6T/6oMtEwEyeFjtfyPFoq2mvFHvcBtHXVn+hHJrLdsL3vxK+gSk6R7rvu4wLOXcr0Oe+tKtSwDVLRWTxfQj3nkuRxy6OdRpJLhtwVGZMkBlKxqhvxRBCwJB1refW8w2khNj7m/F/aPnrWIQ1EvpBnG8BVNdzP+T9kx5NVhbewTl9XU+D9Lvkr2qZrW2KwhdvCeCk/cjTS0Dalnhobnt2b4vVsU541P0pOKM04TITC9Z2YdRLO3Lxv2HfuplmxybaTr4tHQpkR+FKbvrqL2dp73wZw6YUFpww0RAcV7nL5vtfVHUIAwVZs3h4h7KFkqm9H/dcGxi4mnrPp0S44POeL8xw8taQFdOVw5IvTmCciOZzu93rBK53xJZYZcBCSQocSGk2DNHqyQviA+iikh1uQRZXzEjYy6FTZQu5ezaIEGYH2upMU9FUfBT3RKehBexpUFNN8QMvAV82+7r6VPrgrW4w+ct4PRFy34Dkp49x5d/NXLgd9oaC315pyljcu/PwHj0QfhpfGITyfgIp8fxXUT0vZVCtENoVSWiKanSZdE/6LpVouUaTFNPSciXesHcuik7latAVn/KYYmL+9IeHkfzE/m22WHERk5B68xsE7dDWAJn2AOqKY23ng5Gjy5c4fCN9VxId9i7Lum3K00xCqjeDwQPYsNRuRGG0pZ3HMRzJj8Ko6ezht694PR3u3UBAI0eQrFb0qh5uQpxOqXSQhzpDvpgHu9+jCZ0PP0KC3HJBNZzHImAV71GF68inAk1QRCycQzA8d6cFi0XpXdRngxmsJky4KEfNKIUgBhXO88+t6u7kKzcVp1+uAppWLYfaZ9bIKQwWm/614w4Iu6Od7QmZubtvjOEM5xcLN4//WLkfP2crX6xHLNY1Q0zNd6j8HInF7mY/pYdIWp1Lb7tv0faYUObt3AqDZrP8HPM6xjAjAJc92PA7J4Ky2A0UYtRh9RN7ltTo3MDV24GlBFF40O4ZmsjyvksbCPzcG8pBTygmuxcBzsPwKZZN7sVJc5fWS6YelPH6UzVgpOuHvQN8/nam/G2R0JPzcFG4+JdrPW071vO7uZHsGQi/xRubLHrh+pO+Ioe4RyyrzorP7QkmZCc0X5DCc0542F950F17t4KJH6TCrDHEE0gUIGNofGjT+/q/NJLhsVHmWUZLfB4YiVSlhZqRjusDpqqfEh+OOaEPGpYouCfGCa2c2feUXb9d8sFXatAVPUXMJoZaBMUqFGzn6Sd0h/gzULOn2niYkAjsXvTtwesy9moyXhlvvvahlFk+ZNrAjdAsncI/kf9fpARph36nX0OWfpjzMCcNx1LpJA2T8VEI3NpVFcFXh1uMiywjxxTXa1NV+vlXSbMes6aS0mBCh+pWNM3E4L6z/LiIY5xSFWuAaQLfUpBWcshdZBVmTUBdmVJZX593TvySedSHCDvUgun5DYlkkzupX6Yi1TezAUniqsRVJM4wDhnnY0GBIxPMqMoGzSX0YF7f8dGJRMXcXx0r8tuMKeqrIWA1SQ0OOc+D0/BWZ40ObPu4OCR3WZTmbH1wtflMhlu64+Qer32PNk8GDBiA+qQSbsx3zuPIWN3sCrdpvq5yNMIwjqoo+b3k2wz0ySS81MLPjlN6oXFe0Qv1OXexU6j02uFzK/hNHqph7aVmwMtBlpEojxVBdSWMvpTICVw4blqJORei6C2OF1sgtrt6oxuov8rdSYZ4K5SbDiZs8SmKsco8WIX2uha/QSk6IHPxClO+Iv3kjS3I25MrqaN80+PmhZfbGWfRDtkajiUY+xWXp9kWXa4hjegmHb3Vt6ZKtdRuukur0BBJvpKRFaa3mI8gvdxwZK/5tgzq0Eb2nWeBYbLZrBa/0PV65nE24t5XMAnlVvMUYAGKCtDl2mLSp+BxYSyRgBK+29xEyCvbxhw1RQ5vmENbznhIddlo3uBKAR9xoWbAjarrT+DJhTHLui3k8P0ayUHpiiqGPePSMN1YcUpAmdorpgszP6ek7TqEM8Q3EANH2hZlXdMtkj4Vu/qIjFJYFj65IMgTYG3WUpMa0ngsLdEPCwPjx5x5jAzNEzXIZsP6t/W37Q8UHiSKM6Gzq2opp
Variant 3
DifficultyLevel
510
Question
Blyss uses this net to make a dice.
She rolls the dice once.
What is the chance that Blyss will roll a 1?
Worked Solution
|
|
P(1) |
= total possibilitiesnumber of 1’s |
|
= 62 |
|
= 31 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blyss uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/dice-biassed.svg 150 indent3 vpad
She rolls the dice once.
What is the chance that Blyss will roll a 1? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(1) | \= $\dfrac{\text{number of 1's}}{\text{total possibilities}}$ |
| | \= $\dfrac{2}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/K2B+IH252NxBP8txz2eVF48A6p9PqYLUgUVaGArwKXv3iz/TTYzqZDX5kdPuj+lYCHe//DAR4n5Q5yU74IqojVMSaBMjw1mpJocPAsVqD1h30LkDw14T5Z9+AENCVT+OZdlKBHLQelA+4iLGHYbA93bDWPg+fHLXoPGDTTG7V+fLqprND2HD9tcnFqfpeLfukXwEjDzY4tia5tinmD6tdvBqgYCd7571WXENfH3cJ+34KlhDkndTYeCfv0ca7VX4p0iQTl6GHsLGTCl+tWZYUw/p8Bj/5XXGvFjUnQXE8IHMvLqV9V6HQSDrV+A3mXgfQ7IYqk7K4DP4FpXwGUk9RV9ELBqVJYlqwHLxuAC2QHNh640YUr5CXEI/wzySnYDzl77wGgslne7xWuNZ5kBJy/77GTRuCo/mzwFrEajKPhZGvG7qErq8NSuPj9JnTbHFpxJHB47ejXc9sZ1dT1J4uiLGQMJ7zMn5Iatvrpj2CpM2nSfdWmfOFTpmylHQc+hl3b7O0nrss7PxG+30e4E8XHPk5JoFyYtNPPRzjj/QI8w6m3blMQHQpzmMIsWZ4HwvUwKoZjOO5U2+bd+jZvhUFHF/ef7Z9ugv79E7I9MV4DBW0CAf8tGgGtvNI11WaPfb/tLEgNkJOE72azbpNIU/cS7GW07zha4t/dO8H7SFeL++1c9ytCWkRUPu9IXPIzzYFN8ode4ZKclIt7aV61F2RIhJ34aYxo1lBj0GwGDuErsUaqslqIieiFA7L1n3N1xxU0JrZTXCYfVAQZdbD8MenP0/EHjWqYFpq3C1xp8Tha/ZsLT3nwrHNOAF2zk5l2itzPNUFvjpCtnqvwmFhpq6JaHyjCzbSMNoIht2CBFs+J+AZdH3ZeootQn/JlsA6hBn/6hQCfqZ/bck7apixSz2hRIsO4HoikcejfgkwLOtw7cLDyZ9rX925qRRqkMzRhu3fpAMPygkpjTERts082pF4Vi96UQslnUAmG+9z5EmnKHLopgboEMhXnGUSUx1rF3LloIMKdX1Z2Wtt+n1qipId7t6ZkBx8CRy1bvjJHNv+THqShzkOKzVQuizZJHm0vPZjNUHEhA3Y24IoTQOqFNc6du1RI5HSh8eiL8ck6hEMfxOUnn14bjM3ew9/2h3WJd8AOdFjvV1xh4NtCoMzFJU2dyTAf5A6qpHz5CR2/t9m6KT/Ccfd8x8fYgEs78mvB/3y2zF0ukGCE3hGu3Qjy5iYJzTXrAgTgNSDiERVgh61mdonUcYtuXyHowa/sshvujQtgVVMJnX1ny2Mp3NEysn/zEL5WaFilgS/iVQ+Crw9ktCWv4RtX9RtVwhSCdcWI+ZnMyQUh6tzw1W4cAPsSOwqg2k7B/6EFrIxD09Ac1x55EtF+9WjaSI2il0KHSMEvLALLz4NTu4UB+UEbZGPZj/YCBsamooygylHPXnmxMhabraHSmJgURydAwveFSIGA/R8Mnj3JbKGHQp3GrXzxvmNa+1wln6AWPDkqDoE3e0MhkFyNkd8C7F/gzZ9JI6ItAaTmzfynt0xIWv3eDSwQ8y1yBo3HpUooEBH3rQO/RAHPt2LFq8An6PRPtYTS02vZaemOD6XD6Uqod5aDScjC1xgBGCRJZHXGcHsWPuT/3zwG1kGuikZNqrcv5Rg6jXFz6U17KSTs64jcbebk6TDFTABZPye4tw/BQ/O2G6B8jPaXhaEIIugU3NuJBXuOUqQL2wp/pNRgD+nWbDsXFhB8SI7l7fchE+P/p2k3Qz+RQhtA/xGOqPVmU5BlT8jSzHiUT8jNXGjcFEQU+xtIWx+7Xacr3GQ1uAQ+ioCwQQlapIyc8QpI/crHGGcyDcb6PZgVNjES25rkqRie+Np+ZZgJKUdfxbbLF22OAx5MxBZuDZ9Ph9jg8s/o0QCf60uD/tXGjCVvuOA3ttI9GDXrL3ztTs/w0Sw627BU0HjeA+WY66ojvrS8ykZiC8Z4YPr92JtRZ4+5T/zO/XFjc39L819KQjLIbZNt3utkXlFKhlMMnkCfM9MX3yCNaCbotj+Q+Go8VArbqS++Snbseih5Ko8SPgHD2qO8uExjXQhjeCeP+HTHTsQXrur1S6at+iikZfbq4XCZx2fZbzQqiOJ1K6U4c2GFDrJ3eAHQC4Q3WPrvgQD1vV1nCy8Zyy894AaFK+KeR5pLr9X73dTqoFjsv9sbHjTjepbGhmtr/mk0LTo9I4/wdD/5P06/vbNnPAakgxeSQcnn7rp7+Z8pn1knEcABDxYk39qF71zQHVoyGD1QCnmaqxBatHoAcbw+ZNlWfPOilSKFKG3THbSNcHOkH5DPEDbtsFt+jrypi3/qOXcI8uldxdqXxJBNAQQ9nAGvmOIrKDI5aD9OgRAkLu98GLCvyaUhIUH7fselZVLva5KlUVvjoF6bB5wjkCdDUYBUOaeUgDBKUNmIUZfh8WKdpijoeASeT6KJPMxA5aZB32EzU2hfjxvI0oIJYby94gd0cbZJNuj0Kl6b8TEcQXTbG62GQr+Y2jnOOC0RlbEQ2lkHxHgNLfyamKYbRhp9h3c2Zzo92VppnctzCsWyd/s6v1wkoacd61Gc759ATbLzvyyzJfiFgQT/z81jznTDZs+3Yi1142z1lq1y/ygEkvwxW6iuJileRTrrzcgkzYfp5zSgzyrHq0H655rPUd50bkFaW3u+YJA5Fu1p/fEUoB7g3XoiWyr1xl18Nm6Ecp756XPnPxR7wJjeo/PKkoT9Ad3EhWs16OqhfoapJkYJzhsvZamgcLSiXkkiQJK4w/PXw7PKAu8mbZshYDmDzzwyT62kFcxDujIujLVPArJR8vhgysC0x2h4koAFBHQqeC0tVGOolhmTwCMwpkFLISGZZUo2U8F6GkzvpWAK41erjZHgnoklzmTxMdVbSh63asilevr650jIc//rlysS5bDDpglAOui/6GR1m5hSRaxhdXVlVfS0sImRbKa0Bpc6y+PZfV+aD7cb4dZoqwhxUoQEIsQezPScUWMX4dN2h0k0mxaj/7Q9I2cBYgXvNiUVwqE2yVD9tgi8FNmlHm2tptEWCFJyF/wPLGVqu2gKq5LlCyhRQe2B+OAIGBkg+FjQEv+2ScJwOaxWofTX4PDAYCgz7o8Z2VtbblBcNDtj/YETxvsenL+8OR5baswsT2viF3fmqw4KTM9PEaySXug2MXp75Z3VuaP/6egqg34vSt305Ze+84qaal4s8qpkG/ObGdFrA7ofA88rHqlvHYM/OE5nvZsjZiNnT4JhOxppvAykwrSoBiwGuzW1FSeI1UQol76/pZenauP0AiPdi7JNxVi0b3U37eRf4yp7LpeTSMfered5cAaJj65ivJEKDDiZigvFspjgU9OywBbbakDIQaUsCij/qYOHdVBjQ6Rtv8fXvby+yDDkXZJLwUx+Qj2ShGF/iMjZocgY31UON9WLAOUb0X8SvPOr+KIim9oS2pSZVYYD8OdzRxi7LgJ1xLnEgvSlCXWLbpKXHyZjC/mPEJfquHyTfCmjCUdJrwuX2Ww9KpOPHtraTXzqNIedY4XuWH+xKpThpTpeTa3PY4KvWoCFOtu/RZa+kOTsfTHQOJ8kEwNP7O2rlVNsSalxFZ2ocv2ltg9gkLg9sa2T0QJXgLDjNOpq2s1qBKKdUkiroaFUHTowsOWG04kDVVylfnA+F2fvZb2nUAtZBrvbpmq30tAyYreMGylLp1lnFkxJdLM9O4eGsSBd5cr60bJnAUBl3/tNFKKq9zfYZj5MIHJtzjvYkVHqd1OuGDAjpFoln4a+yzmPTF+uR9LjDIR2SeqqNZstXIGKOGvKD6LgeT9foeC12pZeVzdI8K3iuImmEzv/08EKSggfgY1MeMtcFlHXF75OuR7nU1rmBNReBgKi02qnxXmr1Yk09WplFnOAEoUno0ftRBM/UxzImDtby4UP4WWAvuBOJdN1mwhwGshV+1i+3UeLx5gW1mtk3TKRCFmq8Mo0GObwdhfeU34bc1AZ56zhY2xqKYKNKA/30NESviTCIbLQCoDwghk3QSpHXhUTo9ISqMA08Af7ObmWIkEOge2tpHNi3bc19Ff6vptk6o28ztHkjLKtg5oaQX0eBgnpyflBBoouoY6JYzmx8eh2BLmqzEvdT+9aK/YyFUXl0utY1TiyPBpPRSaHgeDFsUrUX1TOq0o/i3n65zjMilDfDnEN0O1HfpipTO+P7T3Pk/iZMxyN2mGzuO4IicTug/YLiJw34Tpz9+HGHd664lm3LHTdW6lbUamXomc55y4vT0tkaqBXgL8dMA7qkFzrgg+0modQoZbvfOXUK+pMwyFXXPCS8Bd1Us0La4MR83dNlRRUG3+a3gFWAgX78pCkWGmBFdS6DlaVxL/gfruK2pntu/IBR4xchbIAF7GCNjqufrj4/3hOiGRGfMgipsDmUTYDNwK3K/j8a/hcIZUZaO4V/dk0+ZhDZZfhdOG/5IEdtxCtIlADzGoQL2qrQhWsy8CQF4W4H/Z4DyQUCXKICWrRHg5xX104Oi/3QKPi8jtk1OQDo+PDlX+uxuSpQN/Mtb0L8FxfzyDLPVnHRIia4jTVgbzrPQRyzbjRyG7fmvtkmQdxgxcK2Elc/pJEoFyu43Uha0hE/MWqUjL7VPo9wXT07mDd9Ei915EgUVxSw1lK98K8COSJ5QZFchiHm4RvJSUhrSBaSVtU4f2IO6xq86HwkP4/yZhNxnF85Uup4xQrd4URnjTHClRZcO/f+rE7CqSyhX6wuMWYeADDsSAfgJEYyX5veWsW02i4kGU9Aq4OPo0pAOpwKvXi+f+FqsbWLBVNKZ0uyILopWsd8gfjV+C0Rsf+awwSmmDPaZENaAoS2EH5ILepQDEHoMHE5V3xqaRoylg9lqHe2BUyKRO2punEm/SqeCeEgs7vnjmukpJQprpzReXNenrM9YQ5nIn5BPxfvI1tNR06AtO6ki6An4tpZXbx+cWPfSPR9qAWGXdopPjqxM/S4s3LJNcXL+LPcYBujwlTjhD8hm7G2fWZExkrgI/7Afk1KrsvWK9KumLXrovoRV6uKimSScUaSSSe81uHTG977cYvMRY4df/lUZ6XxVgASk7AoASGbMnrmXF2CIVV5aXLiVMBNYzhW5NsBXBKLafrgPLYLnRPmuFrzl/TdLvfheEdGlfMm1tNTIIQZ5u5YunbnuddKNiR/xFbpYNmA7RnviMe+8W4fh3V5Q5Z8/Cn17yx1rNSqtdBkyKJchZYt+iMwEfmCib727E8T1IH/jYULb7htflN6IOZqoqdTwpiiaWqkDA0fLUjkn+xqf/T9LPDQlHr9FtT/YMcn8hV1GP9Ot8IH+sZq1LRexvLcilLeU88dLINyVXcVSS6ey0NSFUSXqkBhUpCZnOHJojgQgf4LCYKyM1jvvwarBDtU57rrtl6suEC4tarJ+8n2pNctu3LO3yMq3gDYpz76Ftu6r7G1q9yIgERdWlGZzcZqLe+yyyf4W1xp1H4hrK+G3sKC2Vgpbylb4njYjYV2Z5OeqoTTvycBLzQ1A3CABuvQHBNr5v9iubyTalxoTPQJtpjRA0Ecmt4o5/AMLVO0gWVyOSLStxsm66RLrw2fiH2YlVAOPtRvzqUx67hJycrlS9LVupuYX+qZcEzZO6rRpjE5k3VZ6Dmv9/hSiOr7abGCQC8e9vNH/CWnjNHtBTAqflwCQUQhec60hX7bvEzFh878pkGxCgBB9JcMPSDYqv0UJjppI3JarYn4LjWcEmZ4uffmLq6K7fdyuIazZtpJ7dZyu8ksl4/UmQMzFgBkzBoN4B8kqnSYh4BmVWr8D+C0fGQ8UNWu8ZTxAFFRmMFYyjxlzBZZYLxkGcbpwWNwFvjwRZigTfG6VoDXgvAhtn/pYwSUq+/e1KzwbWQmUAFDkuFIeKvhMztMZSiSgWqQKDOCdID8ZhYhsupijOe/pHKbkwBowbCzb9frY2sPBz7/AEtsMe0ZTXysNRQoZeL+PIp5/WZRqCnTkXxWMiljPk3AmtoA8khQnB6e2LKkyLdohCafgSkG1F6uLYBQFj+debodqlDXZIpI7NpnDgK2Vf4/T4k1H+gXTTgorKM5cOdXsQR+u8BFAoBTR2pPFVZxd9OlNl7LV95Gw69YoGlAVA2DPHia2vYch9fn+YBk7x8icQbZc7LkZOTvmpu9FmEbK3xSmCiUiccKiXkon2o5lSXfXuQDHfZ9ROEH93lVs8Yk4RpnKj1gAx8fz0bcgAwuLFetWn70wOAjWIxBDSQdMtayvRaP+MFInAwSLEI+oGF+rzsOk4xoTBvqy5WIvTJciaqkqkWsnwnvWfRRRodp2zaxRG32I2epHrswBxtdCUt2TUevJnEXO860tcFwKl+l3UghzQ//DbpGWIdja3IIKDCK7fiZZyVWS+nE0GkmnXu20WuhldfhKuqvSNtw86Y90QWyDpL7eHMb1F03RXM9uiC5Rv7KWElU5c7eNeCJft8G9XC2R8bkxrOYaVQzb1d1UwiETEsWFsNJS0sOc6FRMw62HD6j5JAXkm5bSzXU9pLG6C6SUlgVyUm9Ok0aFpRNAZdrHaVBPCbCsct/x/cvDyyxbPODNeMtDzZ6F9QLOWs0i/LFeqafT2LuvHaXCFBmQgvnwfCx+KslFhRKLpNGdoZimGANr+SVjEYSgxDKrJSV1I9m6tdWZpxhSaZrpdJzwr53xNhvmfQGbvqIJcRznMmNcr6vLUell9Vh/r+HDVdKfpv50Ke5dE0tbpzSpB2qgnxHDGXM06VccITfxzv1qTmOnCOyDyEvg5CYEeW8jaTzna+Vk8KZ3yUOmRxyt0cBxamS003TfSymF+FicJCmy37/paX3GeKT2a2HqTfhv+NVfYRSKNMoN7PDljyzNSiaRvpYGk2QUW8lP7iYqHiaaOAwZZ6g4mBkTljDa2qNAewd1NqyHv4UgCgtFHbPWpXcRJHn0N83QlSG+dmiIXBmUlGvJfjMxplU9YYe1LoNjdin8B8ZKHl75bqlRDHqksZUIpuCfVDKXUUv3nRYZlmMkbF1cjK7ELunsD9Jfvrx0T+Ym0lZSGRwVj3CvbfaojNPNCjo1DkCX0WNoG6aHO4jxxMA3cxVdDBG4bkbQCL4WYP/mtyX6HRI0deD50YBhDJje9lSWv6w4ybCG+090M75XvJKsOX6jaTAWkTsuVDlCZV1mhiUEMalDgqp6XkEkLwReL1rvTTxAb6lyS7PRzXTNM5PJJlJ6LbNlmqTZUzL414QMQ8MHhNBYXQjlsMvEzUCzj4V+NCeTnqz0q68G1XwUsxE8DFEcstk50wCS12AaCjS6/0BzACR2kGtSGuc5KXkpvoLsdUVZTKq0PgKKRPW/f3b5WWnSx/ODVUOW8vF2/fi0Oh++gzpO7DgPASNmRtSYFA4jHKXCCHvyp5QTlpDgyZUJeRJWgrfVHOo/ln1A8hdOGf+mWI43Tp1z9R5GEBhgg7FsvbI2vRa5vHdxKVzQ6p2FzpJY4/Jz2j2G5TYV8FLvwprkKwBG9FLetfnIS8Bx40q/HrmSvKRY/Dn8GYSVrCZ3mKVd9By3Xs+rxEKKrkvFq6b+/yONqN1R+qsR9Vd/cVPv+1aeGSCNiChebq7HQTsBBpCx/wwGaZK7DioImSwGUm8AoHeV7yRwFGlNMzx+ZpVfiuUD+mYvyeXiyBh93Ub4ETQMuCxnR/4DQpXFBU+NS50hnFO+W5a94CsQKVv/gyGTUxfgBNiNeQ1okSthE+rb/MKoeO1RxKf1hdpizuz/i8eXEZF+onDPExqRaQO/Ycsw6kdyCl+Dct+Hh/XjX+QHz5jVB9zPlfQdiUFbB0zVuUjn4+fnlabBn/9e11hLlZHFBER6D8XPZNVpT8Kg8gHzqRSQhEkdlkgPAjGvN8a3u1Mgpr4sWIE4oRCOifOiCr2jL9uKCc/KzZg2maZ8cr1EnmsgXttI9YZQQf5p/pIVMzaPTpODtRVn9/TRH9/ytPWApbuPi5OwX5VibxCeqAEvAP0qtQ7v6MSO3tzJNYJtBFHBdmsVnvPaG4wYUs9Oddn6Wlp5eD//Ral+orThMgZ8CQ6Z6PgRjlmo8gI8inLMRW5X+MT2INNXVHZUXWEN9rp1m6KeeGONrbsQmm7aXYwvQWMIHho1fT/UQT25Wrk5vI5pBoqlZM4SH8h53dLVDHiBQVeuLV4jYppOYXX/MAJj7o5UKM+pJNmtVT0agMzsG318fFn5M8pW6DJt2LTMc50UwPIKM8EBt1TiA5XCx3ZhHdxVCpuzn30i+1ZM1+eQUUZBYpb8WgEAMLGLtBlnOhWIBYRLNIQt2XvlOLeK3lBF6Zj7450ElWclT1R4M3FskYD8eDlUnZ4IW2xcanHfYUiNvgm/1uOLM2DFHvKQzXYrRaN6mL8FinDRvnlrKRqgSMtZAue/9ND8Vl5NeJzYE9M2LqxYYfRqNZwiv3fsZcv6q8PrU9/vn7JfwBu9wyEhupaJAoPS39lrx6cM18BYBpRXPOtMYGFOexg2iVLZpzxjj8m517XHIyhb+JCvb+CPxt0eF99XImGsHqpM1rtFWF7CzA5sTYY/qpvEBvPZyZT4UDz9/ewe1JZnZlW2Bvp7CgcoWgR6fUrxUBcdGUZb/0vJvQwVnr9qc88YEuKIrQLWSJjufIPxgny1KmpqzmGlJIz+j5Fzzn2sAtr5QZiZIajd7jLvKdBzP1bSjR4ic3bmSND8h0L7Sws2nluhnozYqxeDX7miH9Ittg5MzI15bvHIfBAT5okqmzSO23Ux/kENen2yOo4VZ4mtqhW3Rp/giAjLbhcik5115NaCuk1Gt5T5qssUSBw1R9JOjfe7VoJPgOPrqeIUH5AIWzkX7bOds88YQfeRHoujx6zpB6AYVy7RsHhT/KhRm1GLOmom9BvHlw36m674o4fjeQ4uD8L5xiADAAnXPZ1qgEhxjE+yCDOAB0aqn0FxWpcjeKMmdl6RrFHk71NG+rVDI2A/apfAD1bHmrSD2M17JnREOBzmaFfhh/OB1iHQR28OBnA3VezL4996ihVq8Mkc2dC1+9sFKnyQEmblr0UzVnpWm1FVx0xJOm0Uj06YEb2pD0kNBmPjqALR4Oea1ELswceEN/GPjgKy1do28P/pEORjo+SOKDSGWbb5Yl/8nMoPdXue3a9IfO5725zCQpRVE9GCliRIJlFo2woBJTL1fKfeWm9UScjReSig+GUL2Oe4sJIZT66bXxmJxUSYJN4WcfUEX7bIQwTO2XY7LYZB07xIoAmmeNhy+YpamrJ7trDTLMgs9inR0XBxlBFqn6THpmfG/IZgihGUWWf64S7e4VIrD7DOikvWQdnr0h9gikPwDC6XLpTEa1EGTX1Yqg5okjnwysYBrXaKwh6PnNO2S9s0F0z3iT1sNxv6TWNFFYPL25k7vMRQ34oK5IyUrn7iqbU93hMyaYh0zMe01/PFR/+faJ1uCoWu30B+cCgLcK4ckXnkr5U91+sfRUzxA7DxzFHoaU3dnPWRXUcbgfCVeGG/EfG35IsH8wio7Hi8wDoI+pOnrSyLnnyYrY/Dl6MImpRjBMHPaGvmYUvoBqH8+vXR6YbcRwhGphHxkZPXeMjjvBZ7G/cvNrUuh+KnIfIYDdNFUPL9xGXE68Z/HH2uI9see7+H4dlpmkO4PaYt2AWGY97MOedXpV7Q5cHH77l2Hbv6awVfcX/BMouU8AREoW3+8ek4MyzW7w+yg1MfXA+WlueBAw+K0W4rdf5CvzOreMiSJG97OSRTzrpTT2j6QsPC4W8tNM4huozjl4hxHjHV36/M1ZEKym4jTPT1qWQmlJcho1uXtavgiOMjMOwZEiM6Wc7/lSr+prRrGnPFNJZL/JFMLETC4/yTu6vU1iLROEUikMuzmf/VHVbQ7S5bBrBLZ9/8w5NFjjimaxP/0eSHaNwpWagtC8oU5KKZJdJm6njaqKiX2wNogCMkMJQuTI91xCEETkbrFSHlEQ/0Lu8FRpVlFHRi9Xdp7y09Q6BjdqNHgW9IZJflAkVSi1oBVYFBwO75tVQwb2unW5Yf/NM0DQIfVe9r690MIQ2Zq5krXjCNtpqhvWDrX1FfBWODsabg5dmK90h+dkduaXiuHoyBcO+o61Qd/X48MvKoXemYJalu7WxdSs3ZFIUPzWxWKYdbyDzT/dFym6pRZ8LlEGYIQ0fipPaY8gmLDt/kmnWb1U4k0iTTCVM7wCkIa3T7zIcaWN1OVUZzmQZpDlQfMuNqG6MBQXpnIYijyAeqP10pkR4CWUBudsWD0gNBD4IvkiTS65GYf8L83yAdFNAYNqqsxs3+xopOe1E1Mnz0PdgZB5e6tQRyEX90d3SDmhs2eJ0Hy5cUcBEt1lM1WQOkFabickz1VuZlU2nfFcNYHJFrt06RjVdq3c/VOv9kPpPSG1CJgnNNctbVCuZAeYM6aAg7Yfz6WgkqJwdwmMuJJj7TyHIWmJNn3oco/nvUnx1sa7w845+8ct2Ab5XaalH9tQR3F9upwmIkBJ0ta0ODjLlFb38T2sRNqXOSL+4pQzpp868zV27O8pXABAkvpvmkgmblnTqGwefgy8oP9SVe/iuJ69evKHDvnFSZo5J0n6e9AoK/+V9cJVl5ciZZqEIqBNHThhW5zpaAfCmOZniJnq6nQz0usfRjr9CNqg19u+LggUdCZiupAaQ5BMnnkPlndkQnGBp1JNWUf+F88N7HME6GmR+pxXgsEdTFgFhmzsb49F1raq2n6FVZI2zVes/mg2CRCU75rkqD5JNxWi9XUvc1yAUvuecQnSlh22zkjyyk/9soW4o2vukzYSxgepgzh21QQaKxxp4kg2+1AF3/liHknw5MS4rYO+/6Y7xflkoJ4rtS2Po6EKUDi9XG9KujqT1hkm8DoiywxVd7d9B7eRHnHsNEi52XGiK7d0OAromE5AwxaNsowspizBM3GP9jRY7g0SbCPWi2f9rfIlr1oR9F23BfPhLeDHNIB0NTKT4nKErOlJRuxQZsS23qoRBX7hwwjSH//h7eDZpF8Q7gqOmrzZ8tx20NdibKNJlsBbF4pH9b6Amm4hO7cw4rsM9IYNfZpCX09bO/dpQMRW6RRkaSWz7F0QXMTi4s9z+OFHG563nYWaf6KU8tFTioUQAUKHl4jPM7qqFxVYB9OWYJ2Q7wHaVASunlZdeyK60oBE7TOZTaWl5FCimWbDFjWUKb5Lzfo6u8x5ssgUL+mvMNdJsoKMrEE0WWNS6242hnzbGob+Ea9p5AxOAzGM2jMvhdrUdazGWcsEU08ZlUA2HPxttQ+d7TufbOsV8TW06/vnxqmbAoiR8MFxF3tetCHFmFGXNe7FIopwQz2kDDRaIWA7VUK2xsFAuntUiElTQ4NTAq1oUJO9AXKjzb/RNlqmlCWowu4gc9Aci7gS9I+RZI1Hawy3q8Oy58dT0YigrKcTVUd5EGWQ0J9lorvsdEN1WcJFbRDGvkeO50n+FGsWn3osxbs2UJpo+CgJRmsfzim7O8xnKaJVAh+aMV0IN2oJR+rfz4Je1eJFlLStIGnl+kkFJDoNp3688wmb4f7RAGylgyzD91Tv2WDH9VUkup+ZCUkNPX0lpdS6NGzWbx4woBmNqrqfYfSR2nIJIma6Zywh7qrQyOWL7Xxo3Cann99RxHVzUOV5y/svKSRRkcfvnmmwpP9V06AqBaB/F8o+arerEnTQLKxV2BaV9PgxQr+ZKDWhKJkUci0139qVE+gFNyplwftlqSvlNjqoepu1C1NkGN0urNO9aujAOoYCj0+ADPPYEVgN/96b97HxxCs7cPrJ1VFy+9QAuXr7a9IpwfDPZ7j730IIh84GEJM4rBggbd2QTSu/QsfW89grnySnz4s8GnclvUC64fPLG2zM7TpqbwsuE1i3L1/ooZR4kXV+nAPd6lmFlZ0Gbo51MqQ8hRIpAtCHWz0LeS/pz5RSHnJKw9RZvDyE//lE6qo62u5OxMCOM0oT1Vs9eBiMi96XwcCZhVjAZ80QVwKXjxiQ4GMM6qROBPhwWCOsoWGT7OTyg8n5GzaLXrrz1eoEUzxcOb0ddYdwBuExQCxtKC374DQ7U653LouC6r/LqmU3SBaUSi9Iz2dJpvZEQyPVs8+cWVfuNOno8jdM21GpwT/jxsnX8mI9XmqMW0Y+bmwaIeOoCP+lIvewhtZjBwdIyAEUi3O4aXYu5WRG5jBUHIZWWivq/lmpJe1+brlzSOvHWQFRLqfSggkOR7A1Mp4DIOVg5QiNcnuBiVRVcBGzLvMRhm8gogI/lkTNzGFwo+XgXPiGFiFXiUIW7jwSnpqNizVsI8/Ety8XQcyGx4liZo7j/ELMXGv7muQn5cQ6g4ntm19eKbkjnag3+ce90xpcD0YJ4sHwlgGIaX17G0pzOpmoL//rc9TUVX/3MwTl0TLu6SAPjb3yR8V/OwbmLIKXVlamqkhsSKL5v1+l3DpTgweX+65hY4+fiZzE9/vn2S5SjXHnLvmspl0d8+SDlXOfdJxWpcBM58D87CogMw82e1CJGQlqFqdU4ryuKd9zKrWrmPizndqPRSCWZkpCYx9erPSZa4D2BDk1HTI912Z3dhFLmOigxKp4qjhj6VN1uRs53mdobp+NgPQGWsK+l6kSrwpGGnI2tQQ4AnmGYibhy6pQB0vqQ08xRZJ1AbGMUTFghSkc1snsGvKCGGvNizPojcJoEOM1WDWxcMFLIlgIig/aAgpjMzegt/CV8zGRzSCfLNDL+bZZCrigw1tGyhMo//0DunhQHkBEgVRKH6MeF7RzEO7BbNvtqU8RuQjiQ0Rq5QsK0PB2HJokjZkdH2zpDaHUHSTj5LDg/Im1IRjUbqS41ryPcu6p5zhvTSeiILibrRlPs2mQgW18xzxQE29nmztY1RL7hBjPVpv/4b2yEAtb27JIRpXt6fuPy3NJeZdgY1LtL61SUJw3zmnd4ERTZmBcP85EYfmA92dD1P8QcPTlDXhvg68QlYmeZCi3VJP+/1zBwaHuHhauv4ZVOYGk2WmaBx6R8EhpH/PhPbyle3R1mJTHUbfeWPlkING57PrU+3b9DbHQjTo1Ro1y7faTuO4dA8/XPvcJprAK+BIftyNKT8vejEgCwsBbHeq3h9VQnjIK6a8HcqIUyd0zTuNqDOdDC+7mV+0vKy4bRizMY8jTWjrNq7gr33GiyvlMiJtPbH/Sp8Eeryn6ytHiZPSPb5RB4NQxrQXgX03wmz8gAAnc/EihqbN5Kv83RqQyh/M+I1O5fS9P5zgyKCBLRvhFoUDQ2AsFQLEjCQFNmlH5vXvlP1Py8vax17HXaM2tp9EvlIzBIgg/VUDSIuyCzVokS0JGLLbeGfdWIWX4oCIOwidVqXVcVBy3XBGvtlNSl+3oOmEVnA7ePcm0U2fXeUDxC2z5FuM817kJy9SgsQju6f7K1FGwNeJgVFT37HSum51lGY2b8lg6swCUZw7H+PCLLkyTpbo+ZVYQJUHEb58OSZ/ors/1j092Qxlbv63ga7T2ZKfC/FYCuCBv6fd7njrN6HvuwdmDMcLNUTc+hU0Q+ewcFFLLaYLkhX5F08KQrgE9/vuurTTTqVlIofODfSjmR/fRNoIg13qtQBXquGjDBm9ogBkT3QX3+RYQ5bu/f4dD5QI33Ii+j1pwlO7FHAZ23PSePnG/rpMOb+ZeYqKZUBa9bO/lZARsE7D5/1gb9dH1aJJ+ALhQXahId3eiusbYS7es/dULe7c+sjB3+u2ojINmwDtIc7a2ZsWbDUBMKTWj6DxXVO/H1SheDnw8R7u/HX6K4n9qy445yFVCLfkqwRU2diMasDT66g474VcaIlYVMxvphiyN4fHxDftqCpsylesu80btHaQEZiRQkQrAcACLU1VrsGmg2FoGUytKRTDeE2jZDoNiPMR6YAjgi05DCWvbFVFjnx5dGzCMmp245bIgfqbRu5Hm8pdFZHeyqJDAjQpBY3TRDC068TlpczDu8rR+1uWhJOuXCKcToNXNg2osAqdq4ViY/ToAYt+ZU2uGRGa5oePDXicZw/0+59a4qzdZtqHgzu+Bvg+ZGg75x2YFJEu1GH4hTWJ1Q5+BPi8mUYLhzHuyg1bAQlKGuxuOx1yD5RYQxtVhExU2OVtnu0iHTYyhNmiIRCo1Q1OBMkGV6JwQvWjPcsTT1PrR9OGP24LhVrSfT/TefDx+2K78YmWHjIyaIWePTT7fzdeKHxTKuYRMrxS80PxuAgYh0ru1r15Azt6W+3/eg0HaYb2J9A9UrlgGuPXRnV3T1dYTzrRBkowACCgFHGbQXWI5iw7ti/skp8hzBVz5l8MTCWTsnF9VgN7YMC0TOkqRy6Zr5ih6oae8BtXNc7U6HLR3c5Z49x4muHYKhqtrpV/FxgalTr3a412urTGR7N6+sfBhFKDolT8jL8B5SSjjTVDj5jyiyggDuDtbEzurrXnE0y3ePHLxj1e6ISAxh2UwwE8gHZsLVq6DF1zE5bQP8RPJEtxrFgfHu3fEJ41HojeXkN+W9eN908b9zlTc6YYZWuBm1BNQPUnLWzG2hTVB/lj052WoNpdaAN8Fw8K5xVbkOU6ux5A8oAAr1E2NQzIZtctrsE2u5Mz5LnAjlfJRoudxyan01uOyOjW8BkHXW0A2FKtpMdmdz1SNJ40NaB3Bc3P8bBpxZORm+Zw/3yTWkntIlOKHOShgVM+IxOrvQ9Us1QKO7m2JGXYehsZe7uApab/uDordFIL+7xl1WprYHlYst4gy8qQoAoa03c6Dg9fNDnYZ393UwWpmmk7z7isRX4pEIi5iZXwRdW4t24g4BiGMBk8CyB997JyYfR3bdRRRdWwac8LYL+VRqTQX7AKAuFsy4NT+S2xMbEZZ6+yjevNNWRxSXHBxNnwoW2ma0P4XNUPHgdrm6UU/aUSyI3rWk6rIMCOPOzxBXxI1lOfYRWdIY9AnjyX33R8i1Z9Sj04izGAuAKBzvlV0drtd3E94Bl9m8Ywfix3nw3BmLPnTbBUJafW+EzNzFiWVJz8Tl3ZBQkSrr3u76lEAHiHa+6qIb4KRiySrFbweW1rRrJffcFTOSv9SruCx1yjimw5NrrrFb1ZsJx/bOzkHyvVT6JNNiEjcIAbAlHSgWg+pesmrCnMhF96leEyoLj1xqknU6seVV452BSJ42tS0mmOfNtn01f4pmPEh2NvRk3s7gUbcXZgkkpMiUhbD5c/PEGHCGslkwh9hbX5dOas0gS9CMzE6iH38aEx7sVxU2vNn7AG6EnqRzH7UWtoMwiivP0Qdj/cnN46RTh2vvQs7f7CyJNh4nfSUB+SLYCI1G7cB0lrgQ9jDFKA4itoKAOqafcfq5eHfO4rdVpqz75/ACH/g1J1/J7DBYoSI+Kl+p7XQqTwf4QI6CSKrfUW8uJhfY5ibkVE5E9kt9m7I2VEf9iTUjPPsceC99kQf+S/8LKiUVGS27/hisgp3LbiLFt2TdUYOlWmxKOCoW2188bCv5Mmk7/sJJXiGX4vtQFC/jJUUWFAHgCZvTDIRmyzxG59KUijIDeCtGiDDds01lcGdBtDiRTymREMkWSQ3uY4HTSuCdrNVxTzJKGs
Variant 4
DifficultyLevel
512
Question
Chusi uses this net to make a dice.
She rolls the dice once.
What is the chance that Chusi will roll a 1?
Worked Solution
|
|
P(1) |
= total possibilitiesnumber of 1’s |
|
= 63 |
|
= 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Chusi uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/dice-biassed-1.svg 200 indent3 vpad
She rolls the dice once.
What is the chance that Chusi will roll a 1? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(1) | \= $\dfrac{\text{number of 1's}}{\text{total possibilities}}$ |
| | \= $\dfrac{3}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX182AKhj02iKlR+a5PF3gquHRn3tvUYDph37TqnF4NOPAo6uccXJnYW66DHwTA3MvMiEevaMzYnvT5axyB6XTbXRhoZr1U94HxtarQBBlaacyvh2XrCYJXE4AvD345FfoQvHwwd062Dvn3iA6YZRpSqJbqcz3T89N9s5pyByoSBhuBG2rZfNgymTJC1WmVfwtHGnUqDqQpSmVoHIzhJ7t7rcbqgIL1MrQ/IWpVbJTzQdxP0Ygm0K6J8w11urx9ZbNrKenTmRlZpSwYgqhpNGtzzJF7bq+lltVqqyUNrNTzRE6bvHyKWQTw0Z+zVAsPzt9mJjTptPf1aTszd6F39xvMfZh2Y/Jomu/WAmoHUonR/8HKd1bQ9Wf5A3Gyqd7B6HYABkbrLQW2uECQQj+dCV4tG44KMNJoUtxGL4zGtLJIF6lhigoVhxRS2jZkqjlJKupe5VKXXOvJCHhtuG4DkE40rUiZOWyMwWOsHaYyr9E1LMAQrAOD0OagGxaI2HW6qD+ldJgCiVhxoulPTPylDHQS3/CuS24YMlHIhB2/f1BOK/IPuGX0nKS1tD0NZEiEQ/dYvtSm3Hsy3okdUBGjNnB44qYzO5TTOzAEGr1DbLgAO5sTGIDoO8ARFFyXut5FWmp/LDxXSR/MEdUIUxBjGf4UPM5ou/p1TI3QYcTVixtsLrhmq5wJ0+iGweehQXP7uWyPJVg1g64ogfr+MWwai3Iw8N8/a+5mX2Dx/Pv1SINUStBWWS3GB7k38UUfZqCwl9q/Dy0TD8eD9z2ir3WNepRf0ney+VoHUA85Pky5YPmO+z268RAL1V+TOX3be8gyGSC0zkOnyesgiZNaxtsele1GPBfWFhYgF+ig2sR7iurqY7604kGC5/xBBUGpp2Ksw73FbCrofIQMIKC8uOXJno0XNODBSD86SNjGbfZHjPPAhGMUx3BSMl7I4EN0sJA2RxqqGNJ2a/wF7nZZnq1kXWkJOSgGapnAB8m7PcifaHpfR6vujZty2fCSJYPPI+Bl6wEc58czvRlQ3hszLUk+MxRqVR2Zu4TG4TnEv+fbQgcGAbX2hnvyYi22fV/1yzEleptzevOvc5p/yQdNPhBgntKExmdy+5Kgf4xWTM1dNzu6AX1xrqt/dfpb+4vIgFkouKFSvFOR5rs8lG35mjdWoApIzEpueIBC+x99E/3cBrZirANa5f7FgIjkFQvmYviQPz35dY0MK0z00u1oxD40r99fgBHGIlz40Eyu6SrU7MGgaB77HkrmzI3Bsr2QT7TqXEbIK422kDwyJhgW8lLH0XA4+NkkBWC1UVMZ721Vt50HLWi1P9X5SXP/8BuY3+IaZl7+rURxwL5cXAjFiHjcLN/GpUnfO1jL8AzM6TZMK/zF/nza1lVlRHA4ViWtT6Jg7PtUq/7J5hmgElANVNo2Pr2tVnEnTjkOv9a1E1w7fOJ127Y4fPw14rr43511NReYvdZmmP+wnuQHNdz7agUEwLctEJ2lv+NQlrZHtYJkzr0E+KTk4/yuZwoXZB8ioS24aRCrgCPVCfajG6MOdW/TGF6/aI0aV0OZCDN8eZ2dR8Hdn3mKRDCt7hRsdP6RPB+oFjKzs7AiJ2ZF7OE3C8xTU6RhLWtpsZ1t3zLjCVKrO4imoFf+QXvtZSdzpvLpvo8UtK8ecjdnHnE9tEJQFbFBqelMtBFjCGtqrfBX2x+/wgqXj2r7snAbdC3h8E0rNY0vPBEQgYsIZNC6gOni7ook5vbPyRpVANqXmFjKrjxLxo8nhVyRJqjGYmViJf0GOQ1jbckQitB60HerjsAXACWzv6NW4c21P2x1IqL5sP1UcoQpOzJH1ULLuabiSzHwwBL26nbJ+vBQjWJirb46fjOLfQd8Yrz1f6hRrmmWYWrLN+KTSidQgXeqJfDITuWydFKmkVSyEqDxJs7euJz3URwtjazaPBYlTjbwmIZkSsW3Nkov9Kh5lbZCn8KCkKOTMYjbuLsdxcdaz7oEnWCjKYzzPQz+riRjLqkwg5/n7z3wVuRE5P0yOr6B5hkmsDIMU8mvdM3NYRyRFe3mP26gb5EBpWdeoolvaH/HsTNVLBgWTVlq7X1VaOYGGFkvQqOW0B+LvupCmrdSvkkLEsV2o9zn8IacBxPgrDiBn4c4iedc0H+6szDI5hUf9vbGS6KNfQ9pICx3IhUfyoiXnpyhALoxQnvLkpkt4kIZ4eygnzQKdY9PT85Dd48LRaaBYFAf3g6j1lIkJU3qSlKoqB83q9ILC0u3LxIo4GhslS16hoIcf7rEUt/Qs+ExLUVqnZ0Fcq0YzisBwc3mP2fluAJKd2JC1AE2QKND7Aw17aMHr1z3vjzTQzZznI8QszDDxNPQF+caDILZuab9UnOC9ugHxsqKg1caTgwdgce98DgYLLv61tJSzSRPbhWJpxYHYKLvYooGhXYhutv/nxuJLgp//BhW7E/mB53EcM8CTgnwI73Iwwve/oH8gj784dShKuScG+fpOF0wmzX/OvNZgWMbMajeiRcvgjkR4Py0mgkeuzueJHrCQY/PCqsHv2tZGY8vpTpMnr7a7wMOBe+WmcvcRqQMaJ/uo0OsWlmNt+4/AmklsIFQtldEf7VorrrgXfEqDOLHSxYNpF6yAs0yebjqAUAyKZ+FdCd6O4/ssYCiLYs+wgq2aUpbAtYSzCcgX+Cxx1LiXlE4hjEf1H1VuYbShTSW0q49YsL0GId/GM/KaOJxtU48FC8HWnZ7A1klFIKn03mYe7Lx9CId5eDXQGS4SVw4X/3H8geLBcF5rwvkODYzE0pO8mNC5tQPNsP6yYwc35DMGTwRbZ9KZCDl44l+5dbP8yeRkCV+fSyir/NoDGZwGP+34w9D3hC46qDhxwiawUObIXChNkjmskVodD+u4AFyofMG5ArtmN6CnJaWhGRCcsbMO74fYhqGrJmbIznkz5Mx0CAjXNhDQnX07Wg916QwT6X2TtR4YJdobmHq9itDsqTE8qhiVD5vANtX0fPtP0vPutLpLqt3lw0FK+3lhIlJ5Lzo/bdJwQAAJq2UpcvhOfowzNkJrMZ+Pl4SyWHctTugCRnIST9frzIhxDb7kaFCt9nD+gd+6B5Qb+rADRtaQJ+px1ZpbdwKPd0hA/Pg9xwQfD0qTfsBeQlEpy8Y9Rwy4vKGua2b0ptmnRSksLwselPz2dutDbBKaM+vXqly8HDlGkC9qE7Yo4KK4TnCFlQcKlUF3B7bqnBzzYl/wJsz6p9h0R5I8ofLLk/tRRuHAPoFD3dBiWYmOsXfez34KmN98FXP/NhQ/fIbvv29Yx4bcdpc1O+sdUl/7VLfoC1kMvNSvT150fe4XdBed6mvXTxJ52xGbog0iV9+ciIYuq6VMQ8RXVpJceXfQEDlabnYbqrJCN6MQUJF0ZTuXQlPpB9RjcRUnVHsimgbezp7ATeLJn/D/n3+nFa5LKptD8fUh0nf0BRxKesftBmzGmS8YLvqhnGx8Nf8Hfcb/5N+y399pTTRvcW/b3mHON7zEld+F90FNCx5wjnse3MlRgmNvArCZFFPUkpaBZRX/Yf2b5sPu1dXipw5xhFWshQ4VYTIFRBJIyrkrXr9Hk1KAIwCnNXRNdxDbS7N0bXiJPTEGvvTJb7wdJgYups7bZ1mQ3fpMYdp7KuDVgNeJT5Tj+oeKSTqMKfrHQKBBW4vk+T8dBYHHslbC8b6f2Hc2R5komjFlONgqWttTdWQB5b7OPNwnzR5l4pB4fIHVkUSDJa6cwbRb31I7/2XyerehsxF4TiL1VagxmZq8av/mEX0W/w7XgmYZxRkNYn2Ki2JUiVTP1wXTgcnET7SInJvlCXJtgbQ6SjD00SEQZdBggznkQsHFjkpptRPic1sxwPnlhEiLLWooQzwCTz/8D/z9uBLFTIxwj2wfzKdBQMni8alJoixO+ZDVa3pKUYsdtTDuPcBai9hbBtG4AqZJa6e8pE8VmdH2fUHa8QbbqqkI4633YKj8ngYv+Apd0a4gslZSdu/cwfPU6+ka5phMxZ4Uynm/vLbPj47dC9eXkivvUPZYuqYg2z5SUc6ch4eTcciWd74P0OPGC3wxkbhNedsUnIi6J5pk9XSOlT+MpwkVGEpolKapnAFFpPeZyMV67tXPCJYOajlFW1E74EwSZyYzNvPEjgFXsSXc3INWeth6dHhOj15r7b45+NFHXvap0MgYzVoQAyi5MwHgkrbR66mFT3yaTU4692In/CBqNdXKNGufIb92YpoemMgK6cjzfjOzVqrh6bdWZ7E9UBGL2xTY59WdEZL9N/eO0AdjX5VSx1r5hZUv0Pi5hOIhAhfiATF0WwZ+t93MDYvA6oPlsM4XoVO8Fq7JXZy5sdA62gcbPQn8tMIeQIn16nYts8ihg2l0J5DX8+mlyqqCDomBNIT/rl2yn8ox+nrN9Z/Q1YJpadK7swpnx9B1TyecguDb1/uEtqvDCz3FtJWi1m3mhN10YqILFBg0oY58837IgMrUatpni5DH54aw/r6WtJ3w6aapXXTlsr1WM3Cz1f6kDTum3ohMEjZ8h0LjjYc6vZ6CZ9KdDCM3DK+wnxW2KSMj7r3MOb4xuhYT5EH7xdGGLGCG7HVstxVHPtZbIuvNtl+w/xT3I+IolEocjO2U0rks1eJD4suPvj3SQIprIZqqRcKTcxQxUJ1wIPdUXiGhoheA+bc5u0GTMht62qe67I+pNNZnaYA8vr2MoH9c7mEz85JfQVI/niqosmXMZUZbsHnbfS7qeiH9h6uBol0Fx8/E+9ft82yspkEjltqRdXyMtGgZmFLSodkvjtIV1Vbjqyzw8SYA/ErhUi4lu3a+X3UULl+N4eYiGxxUVEmPhlCUkNbbfxHiAwBi93J2MdV4ENwFGUxy2sGFvsfDHZ1czS1h1Q42Jub4OflFGH732TE9zcfHLG2hD/aitHUM/wW/zxj+2iuEChSRIlJFeI9r7kGobqfi0eTdjyNNzaTSnwdA98grmNDcICryU0jOI3E5Vt2i7LkTA0Jcff33xxhZWbvciJpdfqejvZdZEep8SokUw/7mXt+DIZFD5taeXXZ2WJ57D4I+KwInchZYdtXOO/PnQRs7QdZpQUWqjcP/YSdJjjYRQGUkd39eZx54iQ1yz+3G8zdRMZNaNcegz5SdecfqTm8xV/MdxaOz9OjQZDzuHa2wjOcDOFKIoukfmZ09oUeTEPjSKt8mbHOF04PkGkt3Gb5QgK/UfE1b6MSlSVP4bCv+Kjp2VxX0sijJ4FsD9cJj+CQhlF7FjYrwTg6HR1l7F2cw8ZOHTQslh1G4ZvfoOQ9l7y7Q/U3M1BLy7m7pyyGl/pBx5hAwHJP9C5OVfIMPSgsThD0XItedpGL2wvr3TMh+/Sp0sLT3mo2FBe9NMG0eG0T7DBntOaBOk4joWho6B71I59mHXcKHl8eomSmwyKMYxwolJEG9rL74aS086o/ZKCEm9qVDtcLom/+bnC7oh4JcuJR5q6bu29nFSGGW8Y1wwaSg463fPEVkefCOKgnl4gLoCEkMtk3TLhclhSt91+Gd7kP64kT3o1iADSXc34GbkyBIaKFBHlygbbkiUlf2/Yi+yzrCyJe/Y7v3ep4kJCGrsmyHFiq784HB3oSzxGLLYGxxQ5qf0spulVNUUIZcAd0F2Uiq9fdomNV9T1ko89l/xzvfBBrzWx/d9N9U9cmYGodYZjBASbawopAeF9UkcXznTsfRFzGEwWKnFYkg0vJps13Tg392irMAHitIIuVNEqA73MPQP6LhYwJ1RMyxY7qeWmab5HLOmOqCtGXOOHC+AdcmMP/MZ5mJxODttXGBfeVYcEE9wCClD4Y5Y+5rSPt9QKq6lqKvR7++odOVV6hciRXsxWZQf2jnHfT7UoajijdZh/R0yE4F0XuiaaY9tsz3HMSYzv9hFUTxFkPrYAgsHUyL45tg/l1v/qfllt7qTilMr3cRA+Z/8JVsXS/WaL94K8HxgHGci6RZVLrsMNfNXaQLRKpyYgFiFdimoQC/5ESSBZALTGt0VDOj8MUUBObfQHAfp29CJH6ifsWFfBnrkyH2rLYIb4w/5s3odqL8rmzo84/bujEjreoptXntFFk07Eg2z2XLl1D0mdvgLtceBSSPjoLGhBOReo7hbRyWCXDAZz1cYxbG1M57mAw+5WKDbHmVyfFgVzNQQJMa6lnCT3H4rCiiHXxgruKse/sDAhOz2JkNHMs6FIjq2AHtiMt1sQu6rrT32pF22jmovzIcCrbFJCSvquOztp72icEYEs1i0+B4llUjEMSsCHb3UCxwTKmBl5Qynk0oKCekY7m2nyvn//WDZy1Ko3xuE14e8z0t8SCyNZ5l9zmHx1I4IyKKwuQo+bjQUr0OX/a9Qq+TPbLcLdfR+ZU0K0fHINeKg9KBipU81MnAL6IPJs3VX9spVZf6E8EVeIHtzgTTryil7RoF2PKfiYIgAz+XtzLajtzJ8nd/DuxRVrSNR5BtwnJvOnkxt4jYagu1chNCS/a5gTg72U+JAk6fVbW3IKXOHIoVcsK/xd3DAb4NxanJ3tqaRG9ooiveuioMdPyLrIBp8GAXTmaDrFTftJabZUs0U4AeZSSTbD1pK3TiFFgD+kNQzukQKFbSlMlo0LPtEsehd2fgfrHYAAcqZlj12hud1TVogn9UgxSIfodD5f2RfEaRtC0VPjywPX5n4Vu3Zjb6LRSqb6cAl5sf5XHSdJa1XG50fhf7gpvIygsEjfFpIsS0qyD22WrxsyJjDpVG01QL7XBE9boWEczclxYVSnmrfoYwhBHlvHBDYHyQgceWa3rBmiGmziO0SxInsPtZzGILMdGxQODmlyKUlDKRX7m0vsNk3JCi5yMFyKHn5FpqD5CutGTo4BVyTnLQjZmaMBBLYWQNX6YQU1K3A7CP8uAi+PWhknsbyALDs2AeytUiywVA/N6B9fCJhKLjCvtjX5xMVzCy4mif8qY8JN6Qbv0YMxQ4arg8DDA0Jb8TrcKLl0OwjKyJsW+AIeYOkN0n9bia1gFfprNxrraACwd6NvxIueHtY2wPX5ZaUvpow1EUNSSL9GysWCf/oU46tNA3aXLIWBOmHm8tAFkVrxUvclnDcxRXdwk5MB+RanHqmEfd0yzsYKthQMfwWv19XvbtLdI4PZtMqfaO8eRjqaXtBP3cb9YIS7DQ/K5FzDn8oRygVPKPX9CsNC2v2377jkQBlASfZFrloR2io0irf9koTc1gaXxSsIZuFnw4gS739igfREIY93dmMbowBGPGZ7Xc/zbcxJwxNpatyPP+iq++WJA10iyfLq6BosPrc15lLqwF/UxTPn9S02I1RaLFuXEB7DTQyyT/rZpvEpoQV42V6Ud0/1/tGcoqLjonwfOmp0zLBJO/k+8eDOvu8cEy6EyGaiZ4vTXZMRhL4wioTrRyApsRPlXIBj1P5MguWWL+MmbqHCzslYHzFvhl6pZhcjgeSmJ22Khgju1OjwDTwKcpA1YsO6t19nk/S/FVOBPCn2BIl/Z2huVqGxsYQ/xmVvOGEaw0afATMgh3hzKATqY9/+P53cKsqAxLRlFMImw9AH48N4r3MQHFDl8sVqRCPIbF5pSb0SiJtigLfUTR9oSCtMiq12CoPzOLH5qOtEIzvrE27swZFG5QKLdegAyHKK232A93n0d9988XG96IsUWZZTGD6yhFTQzx7oH3I3fxToW6zcHkR/FAPsc33IXDU0A6E9OTbghpZyDydvL1eaqbPp2QMcM1QPmofYC0TcGsGXZPdHwdboakk5AjPu/RXBkGTiDLCNAVWhTxvQSvYMgu8bmOSEMzlYzm1LX+ucnNCxN6YoCqEymioq2ea8ZiuGCMtZPly6jUdrmSrgdDJ/LTqP+7AHBeEyCfQUM5MULoHPhOMW8xBGUPc5lY2EJhpn8qbtvdzfd66JjcxddJoClWC8KjALV9iAQ76f14/hhD32OSpBTAiDWZ46iATzBv6LLBBKVguunx77hpoWEnJXxLaRDgjBFGXmgwRYvyUCMQvQpaHnqnAipHS9rm/2xNeeeo3wC5ldQBItvcvwjhYg/9c3Yv0mvFIF5sDJbdGsrSMOK7JNZx52H4bJrSPN8APhAX6kH+z0a7Tyy+wYii9Sx+vCzqlgR8raRMkPVOnfPlRKT4Z5FUtPy0e0Li/Gp7fxpLACBzg+YHFDX2eyGR01oMukdVgT+1p7WmvOMuqgLhamfbheKMZdlLBhUsKz1uHkmyZy5AvNXkd6h8tmjKMgeqVyr8p7Lrlrk8qpydpy+3CckHo/nohTMI60Gr3JmYt/mkoOLWP0iKMq70ukp5g6bGbMwySSxPDvI2u73qsh2E7zv69TEVayoO7bq7wdvx+TryU5EYWSyM8BBzKuzssPGBirNEQMUwTnvZFZncalST7U2mWN2sjKb0nEL0ziUeaikhqBrpfY9olStUz53/7yEMuGfrb+YzjJn5g8AGCyzDjRPRsu4daKNeayRwAqZO7tVppxBeoFV6sn7azCToYo59xnKYKE93gf8gifl8M5Iih+sCJXek1UP5+5F4TK5kAADafvbeh8rYnVu35wMqPKh+hHOI7a3ib+Yotz0hcBQCPMNHtulnoggC8eu5uXFVZyax/KUwe2MxlbHj0G/DbMk6AOnWZC4rlerFlllPwrcPJe9rP4UqOA6RKV4vnDWRTv2WWgM3URR3Gbf3abzvuESaq0fVwOBk03I4DC7YkzVajSovCwKTsdUvoGsy3mxpwsFyvr83uKskkhaoN5cWURAHE0VRB7Ud5Z18WVg2ie1G/NcF3+/qGS0pA0IbOsBJQhtoYMxtFebePZ7nVdGT2lyCF4ZIM6jxszVchyTsa5ZymnAuPMzVr5/Qh0eIegXgwIibDSRqT11PLxt0yNCElvUpcmps8MJYW1WDIuJ61vXuZGYqieLX89jihJtHdR+5v7MVFMDTgIaFokvVdxNUqWm6BfAPLIF7WLCBv2Syuc7Ib85K8kxlFP2kuI0GgXAPBo/ffBz37FEo1EK4wsgAOOUcLRg4G/mujup6Q3GcSkc6GlxyJNjWhLn4I8lEm1626ygVKS+cILTWpQa5DosuXIgURsfGAiKNfAeDu+hQ2mSPolYHszQdwcs9U8Ldxr2vjOra/hUBT1ThC+uppFUrezP0m6ULT8JSX/2oNub/1vfRPIAJX4ech8y8Dk90kNgnJDNtDci4gco95FvDfR1PmAudRfqfmt1h3/twECF5uPCyLb158VKa9R7Wxg6StADfQS3x4P4PdjhZ1cpllwK61snLu28KhPBmGTN6ga3c1UVjiV8TBU33Pfp2BfIM8VtnpUb6KrAcCNoeha4oUoSO83hlYfkBvCXArdHSabuicyw04DOhwplcf+veaBZ/svDxRPMVKGVKnUxU4CsdK19E92XpEV1s7HyiY1g5bNmilhm3Gasz0DK4lhED/nUhaQPZ9z7P53/RWqIfNAqb/tv+5sYf6n+Hcstl32UqzKnnLo5tHLDipKnha1boM6rK97rHRkJN6TgyZH2Ku+EBq7LQtvm8AZugVGCNm+ZZ+raG8aL2/mGUrfGvWVXkN3nHvfuVQ1UQJ/m3+EEk85fPTDbloAa024tkbACqZDnJ1Rksgl2L+A+G5VwKAm8nHCetne0U9hRNUiJPVj6qBKZwPbZHP5zzWKe/uzzlu2da4gSW/eo/zUdVs/nrauPfr7XHVWHfeC9PCH/0EY8j7SajZVsbpdXLwO5/nC4RLOC2mB4G1KGl03CEv70GAQm64QSwXAu55z+kaWKpybaBg2Je1Bvs199JtS6EIbXbi7mwKo9lwDPaCT7HPgkpnzI1/yWnBUvnNZKWrnTMDXSndNs6/mnXlMUtgwNRH+Au2LqrVuwC/R4WwiRvGz7IOFIlQs18oHuA7dNu+0qhkFJrRTGlBkDMIZrdIJfktF0UpBWcv6p+g8/FxV8ked6l6Hmt/NAx437xfmm0IydlNpUmKZTNHb9ZcMe2N8E12hefwWhuqJRK0dfQlOxwMJFpPxpNe9mqmi7l5jsWi0PBpdNXdfOHx8XvAyXrNnplNMmZZf+IHKCcoXLnZB/EPmiXEt9QkkpjsPEhDPj+ldgbX2O8G5qfMUd1MT4aOsNaVVX6VD1a7iY2tly+jc5tqUGusbXFZDoS4eFYv9pI58cjMPw+AcmOcJjnlTRsjEpaCX99yngErGwAWQ7kUetryKK0epYGss0KQVstuJxvk1IFXvy/9SEdx5tcR49gnwQodLjYqDy9fgRXtShxbJLvTsx104ksVBA2VNqWb3iA+5xdViLh9gxYhKkpHmnjVNZPggLuTZTXS93lINMrJQmSqrsFXbcxx5F699wPS6/Amo9cpAdrsht2ufXsqbACEXu3QNBqy9Fopqcge5ScvplOfL8ztcp36Xb8jIgOCru8yJEAPgo2LfLDCpfW0tmmncPvQ2PTVPKkwi2ImFI+SbqdNHfoZ72IYX5HxkbbOv9X9Icn7JfmgpJxXotrEkiomGjgnbZvlkMhDRwWUTy36BuWHkG8f8WyJNhe/qOy8EDcmDW554MPKCFVC1uOG8pKjROr5tNkaGtdK8an80CLjj1jvs3wBCJleIAQBdeMArTxu9ozoxjLQ7CBaYh5Ifk9/pk2bJ09ertbwd7UW88eFYDGckcbaeZRTg2DVr1+3aACYJi5JUXBn7dvJvOX0CrqXcJUxx/i3FZDB8FheSRlKCDZirMS8KKxG0IyUFTQcCetAxzkYzfk2X7eNeDQNGyqeXF8WiBB24Moy8b6Hr5WvLvwbH9YZkLY3mBp1KurlbBbPblbYO9ltSsxlYrstB7IQmUj7SWo2iVJMGHXYRSbmou0ii/sx6QbXe2nP4wZMm6IbyphD26Xs5C5nAx04Vqu/usUXqgCwm3TzarLebpw5aF6eTVSMQc/xWXgoTfSxNrS2nf+pChAgQt2TUM/M/sKuzLt6WFbGXzIVUxG0ZI6tuF0ORDQPu//ryFBkXyGu9H1LvFq+a0HjIh/i46FcL85golNaf44VeTIpjUQ4MegooEJB52fLWwMteXIpkFGW4f/7f2CPvaFLKO9WGm8mJbQaIwhT96MAy6SLj8P018zpszvfds1POMNf13e8o5WjxZ6rUYgiuoZZvwCRDwnQNXoCjkqBdvDKyVddXX3dgOBaIFDvcp61yjeVqiNKsrNd7ltQ18Nr9vntAcGKChbtODp1BsoXldWhARHS4NYFfZBpgFxne4DWfWZLplP6lHzoc+ifN3Vkbnth0xv/eeOAxljXT81ZC2Yn9uvKRoxEQ13EHf0yp6zlX0zyYaVgu+AhC0TI330CZ1soCyeXfLvt2mUPl7P2m3qsuuq42QSY9mDxVJZhEh1IBpH3dzUqLcTEJVZF564rilnAAAbU/gnqgk2NiR9xz24S2deH9bBzh9N9rTun8CShN0GxN6xOel5SWgjI3PnKVcvJ1abZzMLi3K6kmltDGLJMYp3SNyeYh3cNlJ+yQVNFH6s4vrzegSeZIpy7EcWi0Z8AiLfTzEaD45TJSJ762s+2iUTOK/u/SWwVgflTvfyzvl0U6c4Myuh1NvfEhY0arPG5WCP4658zSYHQiX8Bq1XE5aFHYc+lKR5to2nu5u6SxwPIf5k6OqHmlyDT3Az6o5ULc/WGrzqL3TPml19rVj2ol4Q0QHzrU8cv4n+9OZvRuaXKyKKEpSsuoEnRxlHDEs0gHlaY4vb7dQownMKAVRIRc7iEdVDjvgibseaMobKRXMjozoSgdSKrr/bB89I5Fqqvbq/qs9AzTeHtcC1sRqH4jRXzBzVwNfl5nUj6pnC9So2Xvn7V1amiPyxI8mpBz4ws3yPSOGGmy6DTBI4uVENi67cSwDGvjcOXTraZji/p04NYVGCvkjYtibVMhr/AU7ER8VxYRctwf72Kij3NMv6KIB/FE51+0PMGTcvX3Zm8YROOBkFyInYV4tVx4ruQRqsJSKvVr5ONdzvkoQaLNNujcnTI2AAtQA8aemRe7HOaSD6p+hAPiGn/gE/dzvJ5EXm0RS7YIcMw5WqRms/OeeTdHSNGOPqcYH2Js3dSZbja44Mr/Uhx233cH4HQB9mCxFfWc8geB0DvRKXLzk1ICoX5sFfPW9t8OsdUW6RlzyC6TcBplgqZi/RmFrjRbFdmT3k6NXjyKcTpu0G+lTlpQp4xjOMPTW00oVYXiP/4MpVs966gvxJ+6CHHJfJMX8WvQcS77SluZkFQmqNCv63LgdVs6JbxXoINVt40VI5tQ8lQX6ZQu9vJDV1ad7eiFcrIkB3lXGLhFcRxXhYEz4H3tXhWmsmUBvnttoa2XEPzcL2CUn2GcFThCTO9a0wzwjmxcJX1nFoS2p2VpzMeGNosMsXSJ997TucJzNRLa4yCbs6q1IR7uxDeinMz6H44arb+Xjq/U+nQ4S/7QbrJF+GYFcLOhksv6xKVE5Xhh3EriczsnDlz1H2fbjkLHGS4M9NR05bxNDEQXX0n2Tln1RHvEzBCQ2WAJyq79MP4NIdYoQ7zSXwifWgkWOXTAoOQi7EIpZOV5IU1bdo5umrEGGsNKantzKB3+8czZm/TwO+7BsxiohphFghrb9MakK2lhmIk49O8b7gB+CXF70rTrBK/WcaDceV/HfecBsX3ESzj6w+mJNO+kWKS9Y2L9yQV09q7yK3HhsRA0U/rTuBYbfct6wH10+mySqZ8haDLxLtfh1EG+u169KdtmAUMusVA/hSBiiuftjkvuu4aZD9odsxcvYRfpiIt+UaI1fthygPx3SU6BtZFpHlUql8LT0P1g2gTHB9NyM9v3rywGhWuDBVR8Sq3xfHOQAX7SUHSjEMC7LGxGgGbIO+45EA3Q7XOr5G+oi6hcGmq7aDGSE+TAlV2sGAEWT+BCFmFP8NCho+4FpTCksFTdMjbnwQExJTNhF4qFrHsPyMJoD5lbyCSz7ckRmTEEoIWNzKfFADkQQRoBcgIs/NIcu46Ep93MYTthFZCQKlkhnJnFvbwvREwdKcDK5qvNuvSIO9LjKTSQ1xcLjvfLTevuIrCykTCsIrDpEkzG5EC4lVljGOM5g0qDETNI28MeBAZw/+UjPI3B7iEQOAIWajfAi819C1XXOB+IgA0nbUrSRwyGprw+0c9abdMiRg8g612yBQcdtBEeMWWSRdWjNbV/r0h1ilhr3HsCCRVu+jW4Ibr78m7CnfPyi301iEscnr0ytwaUpnqJSE7oKbrdCykuxCYmAvtQDA6M3CVm0EKJvPDPi71JIYhUFJFcKdHuCQ6XIjfopqGBULcCP34UoFZ38jzW0UDKQ+eoN6rPUG3HYSgfeN5ydYWlXN9iUcoqkBR/6WwTH7LzBnahKd0xupuZ4tdvbauxgWhG2BgFqfn1py4l9aGYhwNLOWnaJeG4DFh0Ffyz8KpI9sT5KBx7HJLcy//EiUmQrYwBPUYOM8+WhalfQhCoKW/2rRx6Ad2xD8PB49gcHUdTfXHrmvdfHl3C3J+l4via96W0Mkk6Wk0LdmFIzeaT2xOxL6iY3Q5BOfUJyChECGUC0S7a+TqXouPBRZLWaFKeqVK9kZbGSKojPQH6ao0OFEwxx7DIx/wfDn6XTTMlucn3JbAaoHn1akXSIt5DIijuprAEjxMPgkhm2bG2vC9Sc8tQ3RXMaoIrQZ1qQQf2NKkTqUP6xBmNWKpHYa5+VOyT6mDzux+8gapNSJy9JUTwrP4kZQoSZlTVpinSUV7JCM/uDN/WqRzSFOkR8aNK8A6h3BRlsz8FbIfQp1wBPILDp60+1A0XtVRxUO4/012XEakUJDiBiDraegBlr6AwGyKti6GZ8/MqoeV/wan5Cp+/SUaFjXXpzRBxfeoSh3SeY14yxs7/cpVDjgztj6DMYZWAHerNt1MKdrFbH8k8IawImcuBQcaV7DGOU1mCYURjXauvoWjBt8LW5evs68euCFaXy4Tj7llakc07HsCnwSrAurPQ+IziFgt7WMGtlBqLi4sa+zuKI326YLcQJ1pM7mXNz4sVn5APHDYq5EAVW9QOzmmUKEChkQ3+tXTJ33favSLaq1p4NbzJfHUV8hH64/smP6nr4NmCYrN3pYOiY3i7c5Rg+LDhgUeWSFOh902O02dsTddbtFz6hllk0coExsmKDwkr9oVCyo1PPinamuPmW4MSgYiN2luMDwzm6RDMSBEoSXTSClvnatiPssII1LuHkhPamRVcFbAn0dxYF5bt73MBnSzClAU/fQ15g3JGzwo7l/Ovv+kD/SpKPVrUNnDeWcG9K9L35TOZYNMemJ0ajFWFW9EtjN+3fIMp0FXKUxyrWByqHWctLvQlOTH/gdxKnUeU+aiJvaT09kttsQxejBCSZisJydLQTd7IMq9NNZnm/d0+Ztw4UXdCdm4V3DuDtqzgoccNYHKQMj0/1FfK+8XLPTfttdnpO2GWVa1/qPq/kLBV2fjc+B3Dk144fEneg+kKMaAryH9FwFBOCuliEcaXKT7AUTNWueZPzeZKpomM2NmD+oEsLGUE5kBATmQeJGuJD07jgN6xDC4jJLtpyKATCSQ/63r94CHxIBXNa7tNDjE1j8o1yh5JDZ2Io4pgy94SntefLYH1a0tmmSOOkb8GjkwjzGtNK1fYj3rBnxBEac0PlLRKSdhMGE1xBccP9Kpw10VGyH3PvuAItkSU0/Zj3VU8oAO+mcXt/EeJaH6H7GnI1LOrLiOg0j5DSVoFtpz0BIdrnwWB2BQXLEwLwL2a4Bp39qH3kGiVq4jkLZpKS5ueFEEaUpw0k/ccvpX0hjH5caNwhH4w3UE9Yd7e8WrfKaP7XCtX6QvheGAMeKlCTjcjGGgsCuqBRIuompVEE6QH8Kfh4KH5/k/3R5F3uUNeo78AvBw3Q+nQ7fY3d+xkr4VvfNc5oLcO0/rZXGq/5Xp/aCyuvDwyTKzWwWYPVaYPcJF76trYV4AUrWa1uObWfwkWvrkPgwweWoq02f8gLXBynO1LdjvLyJU0T+RB0L1XymNZenPOEMHCNF4kVkVNpdQnEaE0qB6NRlBTuO9i2iGaX7/tg1pcdIHjyXkQxY4Kr9xfmTh28n91AnwVRvdKw3vMfRPSL2XxtgeCM74YwZYwrnzi7i20TPnP/5rDHpiG7b51kzFqcYzoH6iedoSR1UUS8FMGlIVB1W3xYhbQvGJ40iYVxYLoWrZUfPuH/ViWynsHXsVBnx+WpG95bS4dbrs345xZM8usOG/zFX11RKTxwiFo7vaw0uYr5wnnN8W8nodJON27FGD/vSs3kvYM0lqyf9INvXMjOlMeaffyLizNHl1hWGWXSg4RQ+o6MQRBKfLeE0lIogIzzJsi7azZH+0s26moyh6uQGp9z4Z0Mw3X4Dlmm9lA1e9bNs2JiiJ8kHuyV0pvf9BcG+vQ3YCxw6k6IexxHKLfexQ3zuB663/zcZIieIZ9hJ2HsnSYxaUSQAZWd3+5i8vqNJ8uCV5R1nww7fHbs3nc25dlJcB98XIUTb4eF6MOtRILYXkSDEYZ1IYQn5IOVDzzScY/b66sJ+vgNKrELqvpMRquWntMSAm/YY6iMffbCDhzVEqb1gEDqzTAXUq
Variant 5
DifficultyLevel
514
Question
Aldo uses this net to make a dice.
He rolls the dice once.
What is the chance that Aldo will roll a 3?
Worked Solution
|
|
P(3) |
= total possibilitiesnumber of 3’s |
|
= 64 |
|
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Aldo uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/dice-biassed-2.svg 200 indent3 vpad
He rolls the dice once.
What is the chance that Aldo will roll a 3? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(3) | \= $\dfrac{\text{number of 3's}}{\text{total possibilities}}$ |
| | \= $\dfrac{4}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/8VbkE/s4F9J2BC2py6vkEZngcVwYmJu3oOvsOYOpTFT9WeDOLYjcYJj/5HiLO/T9xzpnjqRaanbKZmihqLKP7V9U4OErfKlAfDdLceSV6FgeHm3kfq3eiLM7UHcnl9Z/YmG7htW0ZOYDYWm+bViiU2MC3QLzXBR/mjlz3WyjPi5cegXS9UQf3C1BlV2goYx8NgKB4X0pooqYy/oLgRFN4KG79h0hO3n8tdT7B4WlvszIrik9M1VSI047SBho9OjmmH8mOYAlhx5tSD8YmNVTo93q42iQMfRG9SFz9eWkiJ/zERU0Ya8INgslYoxqw59aVb423zr+e3NxpkmvsgXq6ZwvgNr/SZ/48kfRAf2vSn9mwnGMW3y1/P2mPZpgqdXm2lc87CW8Ngkzs/IQwsITckW0AnrPiQYjjrxJLnPfe7N0EuappLBDItG7CSO1jIjocK4ERLrZRCkxtd+DfhlCnIuRt/C9Xa0jNsvVioL0PrnKvVHgapqEcJUZYZqTXTnnFlxlVnEne4QmuOvBuRJAOpHXHSRFvcZuV3oTixuCsmHWNulw4W6CRXw6zu/322qoBKzfxP/3DtOMcSzuxEyL/opGiCFj140mBaylJwwyMvIJDSXXKPyCUqsQUDYT5gW63S8ZgZttA54KP7MjbLLAoB1q+pc9lqCBhgVOx0OQsY6W/J/Vlz3HkAx80Tptd28ULsY+6LaijmxYy5tbTEoZFpuGvH+j9V6N8i7Agw/10i1EY3AwRyzFr+kI0cTBQGxPKflyPmo233ngcJQCmHfMfYCQ9Y9jeMjImHM+cCiVScR2U5enhTYHcIe0pVmdgrUmntX+dnDujtS3qsRJmWqabjR3n0B+yDF18+bQa/wR9K3X5lMQzW/2rBYg1bnGHlhFxuxQXPpqUrzk3OPsgDlwwq0hspJTyy3mt3I33mJl6b60zBq2JYKL1MigyJdRJUSyc8RwL0E/t+wSlWGAfmbW6UHtJD32S4tFjkgC3NkvOEmdbbC3sBhEBFOaSutDiy17oUx/WixSi45P+4rvUDosQpexb3EbPUY6MjtAr3Ydb0Q2JnTz3MrDe24Vzw389eLD9+cHyGai7sHDmI9Sft35d2JhEvKBuJpIrWWIop7VfUSsa+NXDlnPt/LA4C79a6Oe4KNGnCTKlHeGB2WUqDQrYfCnmzGpWlkX1jPHN4WaI8lvhhpvkHXTj+MyK5qUb1Oiqrgaq1J9yx/kCk3nirbb7hqPEweQpUHrCFf6rx1s+Wit1JDGT0OWCckfnU0gEF2BlUbFyqyA+uzFJTM3DFZCMJ8q/z4yJ83DwmLN09s7w1y8aZ8LtSFA2j8gq7wgW/v4tkB70o3j3dPogcHz3aqPgkeihkHtsVbkbDzGA8e0BedGEv57cJYnmjTIg74iv8jGfcM0i4+NK91CZnplJOv2bz4cSjhp5yOzl97pXlncaZnlMk4+lFR3hc6i18mZWxptfvLOr26q4ubpBtKaXNtHMQBwK86rhEhGyvYgF3pAyMZmTFyJ0UnSpMfA8pSdHQZvk9knzyxwkjkCcgMMYxnpsh8NZSYiEvwYVChik+AeUKHStiqFfl1519frkJELY/qiH63iSPJkIEDrJM2Y2ZDJVfpOVA0O1vkfAlvzhJ9bjZfnUWIYeRgyrFqd3VQ25hofIhg7bFKlQ/vXPp0Qlio5jfap9zWSIl5L4Na7bPbPKLHLHHUwjFV9SowIiaIX25Y8mLbIfJWOIwyCMpamBEmWmUAI/kD7Ff1MdNaYCOiQqPuUr+f/wolB/N95G/1yhqaoo3/nyCJlAhkNqrdG+4YhU3S6P/yCVTpjXthmfMhBxVBZ+IUGkL+mmh6l+hi/CBqI96Z3mxxQj299xWQlCQ03dI4WL/1dFVSIW1mhT5eO5+hA8Ay9In9zLFs/TFgxqLe+jAJEGS2iSyUA5EHHKUZiqAWQwqqW0yOyvZAktEl9LYIyYrfAMa+1dmV4jekWuHKxNRF9vg007XgWCNr91LyH9u70v/tvQflfxaa3wag2JMFB9B+jFrwT6KAI2AkSv4pp9aJ8tJjVASUbEJnDCTf+Siz+y/qnMVqK9iZLzWMZoj9NSFBWIbS7djddKHpzlQ7AeoRF1mHO5CyPlhkXfP88L/f5kqTtYtSkh0eiAJQ51shUQvLREmVlF98bgR69nunckDHOkOa2Kl433QTsnlCuyQCcgW8gvGcaUMQT8XP4ugvHJpdtE2sf3JD5tGZvODIhRZs05VcQlmTaNK0MSCqVJvg50HzdsX/vWfOhKSAErXSBr3w+5NoPLy22MmUr/53x2f5vxMJS1HwwWHhc6sCAspiwb6bZS5wRaxL40wslUfYM1RzwmKdcYVrCMtAF1qCAHdilTyANwkshZN0JPO/maAY3mw2oZ839/xFCNrqSZOSs9lt2a91vTamzsSj3+XhVqx0qxVeRczjJjntSlVisMwpSia/psuUEGs7wODxj2nRN5TCWJkHjucmqAJPFKHcP4Y7DlRK76PIIClPTNIdKp7FMiczXoXYKUh5dzBN0TtNHC/ZQ100b704Q5n+M2UsyYybYQV2eIcCJhEUXwT9iF+tMHJ2H/6C4Fs0bJI/jpWzX9oPqzn/+iciThUboaer90QqOg2KnEgBKi/DhzieZq//VP2tWkwefqLCxFr2K4JepdTmMRITaJNcuYtsLe2Y/+Wpwk/lBjhegphUsIJ9/KPa3raNCUQGSB+MIlf5zaLT4GlEY13IkzTdkLmbTHeUxFNMNQBxNTb7PSvaXcQUTnt70evR9+k2ejwr3aa14GFB8xmVJBf0/uoLqtXw2avMRDJca3tjpLahQiW5eQaCjgzGGpo0YHq7o0s+3GJ5MTmcYtMC6/hzaIw4AqjNhC6o0l0B1QkRAgamP3KWnMUhrqi9CeYZTiLhUsjFMvWyd6GUq0Gk+uNf+islet+t3V/ameyjxxcbwuHgUp/ciqM7wLouypVxRZyLJ1fkQg68RcxxpsV/vLtNbpXrhVWBtmQBkW6p7Z46K9vZdZXOTJbzcqA5k/Ws9dBB3GKcBaTtA3Ong7x7pYVfqze+dowQf7kwCt7dJ02D+S9STS+oqO0HPl8OmCRuwV149wKuUiXfn+yi+/Veqs9Zaj/GWbMRomImgowP6YI6ySxsmJqH6F/okY6Dt2QFhYEVxeKFEkDd9eCWrNmRjA+AdxXpvGXQhoNE/zOncwwFXM3Y0e09/wqDJ/YVpoTcnpxcyrCF8Iwd7ix7Ngg/ZNslWpEF/cwnXtLE5YySu1Gn5ml/buodFnstFrciGcmGm+RCsd7maDTF9x7YToFbQ3thI7YTPOlw+oB8RcxpD2+SLwt4rWqKmyUtsSrrFqr8SNRFUfWTmpvHvxX1DJL7fdWA94GGR1FwGFEj6QZEPPBpr6/e66BF9N26ldsdVQ6lw2HZDwhEv/RItaxmfcG2I3ahxtzD3JhTvCKreIC+/yfrpeVqlsuxnDSC7BFcXA0QM2S9bdHCUv748pC0E3x6ATP4GXyOZNbBhQAgz2PpRm7fAuqIqBP31GJlWc8C116fmMXrM6a3/rR8aTfpT4U07GTHQxaaG4Ik3kNI+o6oLPh6UZl1uc1hxy9ws96E/dEoLnWnyNF4+I/NJhymqon2tW2Cq28VA25poGxUOkJao/Mqy+nbVpc57tM6NZIpwVf6MbyQuMMOHldL0hSHuc7AmGkVY5qKhLmuho/1YxBARi2v/EPx1kHjJuhyZu/BSIgQU9uwZR/UjOjK8LYURiueK2EhJHD+DGo0ckI5dvnToA9/VqE4An2cWh2JHOoYKevrXC11Bi5Qq9UKyAaH62jrOoExZnPYB5lzw9VwHSv6FYIWh6+eWkRg+61tiEkcAkngpwTPhlWccwfOtQBtDjReSyAtpRBzGvYL13aWut4eb5oLzVSwMcsIISqQbO2Hvxw8U+xZMXFs4IVEWFllJ2+EspknYD5lIlr+Mi9np9wIHX+fvpGGzMnGwWzWAbzX5AqdqbFDptKS1JpW8Rpa0PQCqZukuXvWR/RtK3R8b7NB+t9EXsgtIuBgN2x6Mx0FC0s5kf7BzBc27OPBnf4B7i7MqoPdClvQVrjn1Y+eDb4fjbIXH3Bo8jHRoVLNK8AWIbL4RYzyFlf0mN/ZVhKQ0rNM9mkdV1PjCR2LsBfY3efgQQzcHxiAOs301XBnsVtKzoYMAG3Dch/2vP51ZakePZppiFnw7Nt5Rn0WJWt8RGym+hNgjDyl6AhWy7zS6z/Kn9683d3g/sDBEDG1i3F8TRAzotDaUnD6zLGA0e4ZsXui3yMkTs7BD0XHBWgvd2pboGk2r4dufuPBboSUYML8DSTAlXpNqKTOuSt4jLuJ0ZQyv+vw4Ttm8WMHV7BE+E9TU5wDFA7E63fZNvIFMJ6GGpaHKxGQ1SLM6YN8yVZ+rC1mdkcw7c2iWpxOzH8foBwIwkmVr6FLt+KThFSpZ8d6Yq3EztyvXG8I6DRZP5aZtxWfLjueYcd+atWe0CPeuTk8qRaXbH6xT99cXNkUlMDH1nSQDdoe7jIc0d1cDBoQroSBKkBFVMOPnGJyc3rZrSBBhIdb3zl3A1XkwJg9XiD/unKjqARaLr31l+/2HQTxeuWMnasdTdayjbagFgHyzo6jyUn/bGhnBB6c5C1IQQzfzwBo2NWuktEZYgppo9JOyGHsqyHp5vqkfBR9k3/RwPubdkY3NvKCKksvAYaCsR8AQ6U3DVYW2f0VQawft+UoicKcztn5cCzqmVqz8TgK6277j4T1QgTBKsd3gROfvKEHKaradJUuRo7+RSAbSad+9Nqlt57l693YgSaKa76zfNWCso+AahPeJqkBoI3qkvh+s+bJOGvAdacF4SZ/rgtl5mLJ8Twp7WChiZnT1ObzY0PDUsJ+CYMl/PM8eabJizvmnuhTAfa+WsQq3W7VR7zqGTaIjAjked/gyxXMHapmgjW/USf0dIY3h0/DlZlyVmK4F0AJL5DallNMpUJRaEEsyuxSvQgHYNSTs6hRP2/NNNEUDABWQvhmZEyk11zH9Upir/8xpT1jympKimONNeNEO2zY6qg6kSYOJi18PSnKAlRUVkvBxiQ7uemYdOcYN3w1ERcCHrgw4whcH/1HKDSgdcQ554d1IiT5iPXE9i2XeoJaiGBkGCjrzJT9BKUjey1ByYUy9ZseL+EOFmeDYdQUGitKRB6NvkbxJP0EvwBEP3uNNsAAIWC3vk41HroOO5Lg2n3Y2aZ/AXgyIXQZ4MPZo4yP5v4HCrHqOMXEQUi8oZ6UhTlPsVx56v0/od7oKib225SfoL2KrhuwQRUIn0MCqUKmOscAyb/SuM5MZNU6huyI0uDBX+RxJ135+k+qbyljjZDOXbOIt/oE00wRhEbIKJlbC8drO0b2QOvag9fTFA6rzW2bMv7Y3Xbl4jxLSzYNInOdvZlXVgj/3ikkl+nuFRG1Tb07zNKs7UX356DgglRLQDwOisKuNkCOrE5sC3t9DAgz3+TTQvikdoqp2S5Kq0bo3BkY7ePJAsVg8STxV9a4wWR50350nk9TCXFibzGPpUEDSXH9hplO5+pZrwmWIWuaFursWjB9A5uolSAiR96IT7i8NeWXwGFFTvq8BhTyKgNoMfdM2jyxBS4HNBCfdI/bs1fz6Vb9r4s4zyzcmSX3rDOWoQirsbx85ANCaqQseRrzjwKQRAQPhrnHgsg/vJ1HEGRy5DrHG7RD9ksLUDaB/QzBlqsINcM32jOP52PaPBDCWr+Pg04klxHysnO26UIrg8VDDskL9wWWQ7gF9+W2h8VY96xWyjNQlr3CZrMUxJ3rFsw2vQ7rdrbXkgLmblRSNPvaxGzK/G4CKf0jWV/rzDiFmmRR/3AUA512QCH3XOzHEoI34S1qfbvd9K7Jm71KjyXSWY5QkhOE3A2mP+oSXbaGaExE9RhiYg8tRCXrJckMt1t/FTAFGrSADe85ALuvAwMVoDSNUhGLOQYWewo5zlj2dHkEnYOx3U6IVihrJln6ugO6APmgn1lxTZcJ9olt4ngLFDOTTfoPL76SvYFPWlZA8NUY2P/l9vWSStJ/gUA32TXZ8g17seY1jy9k6SGxpyuLu2R+W00RSaQXycF0y+o/LJbMXVSZcPqQSFSdPBOYdjQxVq2xOKGkD1DzE+m0llmxzdbmL2DxYNCdF07O88usWYGTyZVmRsTxbbbTize5U/ecfRrrdb40qdMiwXaNZF9xZnCHjWgXlkBelepXxs8lKhDgUZkzJHiXvj9zfp027r0BmNhVmg3xcRZx0/QVDEhbQ9TuCDLZ4GU6tZVPpDrf6Bs6qEFrPOE/hHaW4p1vSPKnEWmZyaazVpzEAIijXeHIM2GtGcNHu4lHsyjnURmf7pALRobkEWy47xoH53TqTN4a8vk5ngMV6nrktbCcXpLNTUp4LuXPptti+QEiwU7CbFeU6mrAGYZRAQe+ZmDBDyzt1LxQEFNbF3qD3ZOMAagJZ7z28RT2YQIYKK49Nulkd24lq5pherrk0qXlqTr780L+TIk6jv/0fmJFxywB9bdkh+H+hQO4k4+jHhiHghG1938iN8z8pawLk7ue5zHNs8sXDjJRVvwUuyk38bsCKiU5rjNhGc00P4RznQZQxoumNK7dJ4GQ9Q5UEPGefrc0TbHmV6AowpSrf08wgqHiRP1HvZnOEyquourizz7BfF28FtTO0iE58GhEA+uqJ+nWfHWNBGOTsZeM/TIZuoyqE0grp5Z9369OIEbcGnBZ3RQlVWishQ1gyQfqSFIN4gEB8Wi6FSlk6cepAyb88SFm5U/CczUlrvORBdmZTuFezphCBOmP17hg5vTx3O/9oFK7h91dZF485plRbL1ICu/8GB1SMAIIcGm8U58wnYrkorzJZe5CkoocKUW9bC8PV1NH+zB2EJwX2IhyWdHCmLx5UV5TkXxCO0WQvzVvp44Yu/lsA2WduTyJ0xHdsDZRJEHdnGpU77HWdZyvvoe6GvO6fGESb+0J+TBFROGK/WQ2G8H4TxvZZMP8jYSZgvxnjC++rffegRC1pMbGuziaWcZwDgCx8hNQChUSbvPrMILDAbQmzbK3bwl7Os86Iu96RXUqkQhtdsvvP15drrFfOkrOtIHoM+ix5kAKxw4WfE6boFtJsLjWUjDFWp5BZDBfBCB7Op059n5UDCbcf9RcLpvmMFAWwCQX2GHscQpsQJcWIyKQj+/7SoYmcTsSyRNo2LlbSIXxBWMmQbhdgLeSBGgR56aCppOf5F5WBTDO8qhjSzrxSODtxLQWtwNH3a2UWyYB6k1zRpixbu/T+agF1ZLAqvxOabKYBkJ9793nq/Hkr6No/sze9XQg9VfRKe5nQ+qxNkIT6PdcLFpV5FIrE99zgyFXdr7OaYJBWWHb+ptbyPAbZkdu+dY6P7GcruMjkzpdTlJMMN/AbuSz1E1YQRUcyqgBeTS/UzdLnTOux5mfVS3hWbw8xR6VqWcLQ9VouVUqzXIJ2moucAbXFBy34DtDYYjCPqnryCwJBQ2VcA9xGwi+T71rpdapgxVlas4d19GFom6hasQB8GZCbYWRnSPIWHQuqk5VnW3MnUaQAHnUI2XDY6XsVneB/dUyv+UV4N4lVDJ6eza5ni+P+0VlfiesKAL/RecKykyz5W/dnmzi5B9WknTM0Nu0PmvELUKRXyz/BIIzuBkGDdBGoyV9PmR8Gf6HApr0mC4yWBavsOK53pB/qY9HNQEo7UHKw5Lb3NxO5i/W3sRN+Z7qW57Emrrt0W9KnHd4b5C3LorRoLJwktFElEGcYIdVvncY42XTh38Elw4RWuyHLuMXr0HrYoB0uUMky6dP7/UU0yyd9e1RuyyKCS2HdtRQtWKawetSGUyPTi5BJGJzXBBUytpahgkzT7a7yaMZlHjUZds9kq3T/+HBfjzziWVhTEzTwuSKhfUM4WZg74j8Mw1Kk6vAi2qcGqZoxlFyt4WUbxq1dKBzQqj82Mv+VruT/vq7DgF0O8vrmedLCrlxRwRqaBWjphiYVvlqjurIpERrrC78zN4CxliRtrcO6L/FwaKDGN1iV7BsVCiBMlIQ4p+LvIRbYKNHX7YxkkkC9I5/he2PWjk7Mh5N4Ogq60HWp0WYtS3ndvYd2QnWEZm1vLYqCEfqBKWcwhZZZXMj+OJf/rTwrJ3TnGB19eFkdUOVjTd07wvqZH4o8k6bYDBYPnOx1ngfAiDCii61cmZxLOJXYnHSZFcmPYh7WMlfaiMOBJ3ipu2X02y0EHRb79Xm1+iZgbTRQnOrkrHbz8Cu22j6QSI/TSGnwIZrmd9qF3YUsYyhoRSLdCPAUSdsX6T+BB3vphOFJfhKmSP4ExcNdeU6h+nBrvvugeDqz9vatwTw/84SkivVDCzACboNQmIyUKW4dZxSAyygqI3MOSrwGcxALCqipG38jmUcsd/1d2M9d+Hqx+2SKYZQc1GinbxuU1wwJMEoXnM6mC7T5CeMi4stqqL/N2nlMo1uHN/g4hh6dvFc6y4Q+CbFPVzUQ+mq54q82oo2cV313UTBFUlh8eQGWX8KCXJQXsnuVlbBVXrE3DH6drEYIIrMy80HaZgPbcI8Hqzna69+lYmhXRL1OHwp7sZBVtKZhq4A3AZmxWZ3Jfbnc1KEgf67L5vt9/EAYwx8XbmeNKjDzkXPsKx77l2GDsFlOTufVgfy60ja3IB2OKvApXAnp/G6AkY/Cpg+m5QzoESZFsROSz8uspPBeYk9d2sa/jLbZ91zSCJzxgFKNKWgYUUeBMXC1JcIepQip4qll9QlTnZmgQYfvMenS/owjGxz1Kq9dB8Nyl2kexAKD+kehTpIxQlxMzzzDH15fNaT3O4/ny13QSyc9hNVrmIBmQpaZZE2zCl+KrIqvKnslHp4mDNY7AqYBiJyeZzxwFhzwzd2JP3/TVt/H6+MFXkLiAAmg+YmW2udA2XRPQ4HIElV9fNaOCA/9c17kg46CprDcDJzCgPge2DcdPfacHgTeUzIaoThPr0feUQL1RXzJpGlqr0Vsj5zr09DUL7Dx6tf3Ac/gfRzjqC6ETBOlhc71t7zJ/qIOwlBRXrAdtbQNIjVkSrWOs6QpJl95/WxuanUvuizWFICJmjfykgNXp+4mi5gOWlS+qp5XOBx8OYLcp+1Nn/NoqUqXxOt1JHWvGVSdudlUkwok8QKfivQgcDmSxqHm9ngxv1lKhRh02GhKTJOChgVRNBi2NCQ7/nvTtUiF18jp7NEP6x03bSOiEoOmyt3jwX3PoBOQhFDrZWoc7GlTq1SpL404uSQNb0vTaZDaRbZF0mk26VfHRAHdQorNkL0Fya2W9GUvurQbE8Tgkp8WvDkDFXqzWV1toI6WkX/7UIJMOd4hgzRldXdOiYKEFYBf5bHM2qp0O70WsHSF3LXuA5Bjdg+lUKo/XsEO85bpw54o0BnikW21CI7BcRjW0IQY5X+6v6odNEHeWADDHwLemtU9UbGbEtt/Q648cF7GXvjYOuvWEA2OGHMFGTkkXnjLBgRekUIsMlPvqfuuDsesg8VJuVcqf4sYGcrwMWN2Flv1xW2Wm8Vr7gg94VNoVVgt5yWL8kfQCt5NM9Qt8gcUeLnSBdS+A+G0nxnhPRFIaKTxayl6/hRMj/34BnP/Qns78iDh2Be1aEO5mwpmzNlH959E1Vt8GtCJvV72twyVh4g+BkysNdTkka9+U2s94WBbNYCuSS0p/GNUlWb5cyxOy0hLfVlIgk/pckdz87cf3Ghk6yHrBYdhZ26aR0+6btR9QpqMfUeZ8JcS0SysDAnzkTwtJ/lS5s5WKKmN19k0Z+GHjr1lS0FIbv3PjoxNnJ74ab3uojbGK7ybp9fX626DjORFuV9RaaqAgozlsaViQijZBprrPViOvmSFIWOqS25JRfFZrpW/24GHvtPy/krBxjxgn3wCZikBz1sH/iXuNX7JYV42VFLXsHwbaHM5+QP5AUl5Am3msUbfuZjs9XOESY+Ow9WMu/I7Ze7BioA+/J9nutcdt4n9kMI8RYMK4kJpwzhQFC393n+0V/ZE9APiuIVQ3HUD3hgPpXCIxnHBbRzAlZX8IoHkfXT/xz5kCdwVlGVmlPToIZhc52eHOcqsIgbvM3EQH9iqgq9DubQqt9/JiaaEgDw9VCoa3cm0H7O3VN1jxlU7cmBlCfyfitL5NPFdaorPmH8CGaULSz5aMIr1HrW0kf+FAMiBElQ57JvilbB4bduAy0cTO6npdPH32px7V8ZZIwTOjcEcn6SnKRx/M977MnF/92tZLbuEEFtDi2QpUjR+XkS4NWnVbaIU7+PEvJto34dvygtjcMIrge3+1PBQtGzToPf4J61QSimv9+lpK/teWeRT9pT4kv9Pu9N3wnC7cxNovtkAYqEzoJTlDxSC+R4b1WNc4REyqBgB4JbDq4jkbnu8OVAPOU+tIGnz3qX6xF+VGVwPLe9KKOjqPZLaRcBl7ZruPOFz4Q50AjrkzSlr8/e+4lCjC7h2LH/SN/4+0v1i97CwHeCn3vPaKp/UH7VQCUjWl8LM78UqOCjTGCxD7BNk+frJNCo6KH2idSbJ9vWMn62NDFWIc6an0batdRYUiwhfMTir2k275J4hGf1XUCXFXAhrzAf7AHIG7CdALYvm+SZjux5Wd5RnHUvG+Y26oqAwY3UlVAX22+rYM6e33tw0S5DPKvdpgm0zDt5ky/GFEEP7QbymORCaA3zevi/CG67tIFuhhOtBlsURKPwlvs9O2LOxV6ZmSCIX+hfSHuUjMsNCiiIktZO3ifJMx2HEqBtW4wliADt8dNtjdW+yQQIporAFSTJjuQqhLvD1Gn6i8z8oUTiqyGFKwW5aiLHUrppLAJBFvqjFi5Ga/MzbWtBo2+ODZewSJ94M+Mx/52uShYXqPk08bU/rbOmnFekKmJ4YJYE+lyl3mAN4pQBEEaP7P4P+NcbRZGwjOpUZaMIIF0TtLLLx+0oMIopvtvcInkhy5J90e3HnMkq2RSfCqo7tqd0c7oeVtc0vumtrYmvDywHrog4yHwxDFpM5MgY6iNxOmUE7rO1D5kWv5LHTD5ds/IRs3ioeewTHbODoaNqDKHrToboFD3O1u/VzplZMVYYD4Ecg9grpCihr4+e7FicdEq8EUXb6BoaHxa/9MtMdvTtJUDCguIfX/XBWCv/rW8mfA62QVUxT0posOdiLhLQ+Iq1GifEEXPa4DaBxBqB1QntMqSfUvsMixTK8YKdUF1gZfcPAyFm/LuTNs89DTkvYHtknkPO2b+myvnbqMblN4cWLMJPDYclWZooLOUPcRD0YUTq6oQJRWByrurDXTtgEMBqiah0IrZ7ZBM0e08jW+3wzdbUSus7S/lI9TiBYP4Ikb4WogDaiLTNArNq5BsxV0F3jaYtj23AroWugOOQXD/Z6Nyb3QkfIj8I74tneF30kjZPR4EJtdN7uY45Qc/ZyrxvwmHzAqVaNkxpvhh5iajPfaVKn/HhUL9i8KuhYOLFfyLI8G2GzU/Bx2JwZtt3aHrp5S5CrJwAG/upcoMZsSo1tR3uwi9X7+UCnZ4lSMUbcX037naEw1MrMgKQzBHf2K/qS9yqmLvuHp8HaQBTQq4jGpXqqg7mwtj4YY4aCKC9Jbv0b7vCitUFg+Zr/FW0zQf1DJ6XSahaKYqE8hgLrvPKCBXn04+LFS9q80hdtDEbs6xBvclK6qTsPDXek8VyzFf0xV/n3JXRI8q1cf44SjFKd21cmEWhXG9E0eWq45mznE4MVllf4U6aZG8e56mFO5xLl1N7+uGMG5DvxO80tNb4WJWBvDYCWwvyQkp/bD4rv3mew8A6KOn/nqs5TI724kqvLj4zkw+Wh7u+zBWuBQU06B5CeIt44m4+fmgFzBkGDomcsmKL4zypkAovFahCTbI57SVYEc2UUlWlSLq5QwQhUxSdZQXV7ZHuW7217wii2SfKjk7FJhoiXWg0WCqZcOs9Y4/kHBHnyNcmH8RvEAh+n6dczDaGU6pHXyn39zHojtulvHU6OZkj01mUw0xWiU+ga2GI10LDr2zYxsPL0TvQp+/70bpEGM/2gLnc2F2p5/t3DRX6TjMkuhJWlb2oSxdA8XDpHEqXQdxn8+Au0T3t/ECeQuYn0/zAs/mRYjK6b6iw1RH7h/NFYJQ2l4UuFlYNQwLKFoaXnbJhv+Es0vlYObu4lXO4PdbndIfbLPOeS1VQeDmiSowoT2SIp8NQx4FTYncezYfFHMXloC7pD/Yt212gDQDnavbPI2hK8nswN8SwRQvbUCHNXatfD4qKYklf8uU2N1L5VC78QIiMuds59ugRrLZRpz/FghjkwWu/2O7TbUvf/+0GKrqBR3wzu9cBEkE07IbgxXrzmsOm38yvlavMMQLUqRYlr23UPr+ePVPz1T7BD1ssATrsTsiRHvT0e74xnU8EViXONrGKMYClRGqV9d+U8u5B6H50MKq2K7B9j7khLnA3idm0bsQjgybpLNx7Scn1y280cbXW2DQjoEJEAKR/oinDdHjf/K1wQP/ZG2f3h4RKgm5du2wdM/xn8Zui+qCqBPxaIvNmjCqmhfNim2WfWXSYBbJ1xqlFiLQlMLxGgewY8/quTxerTZEPr42KAApHeRRTU1Bdhu3LdgpeuSMTouqCsBN+CwvqsVurfJ1CGaLC7l9EQ8ixEyVQ7nnfJQxLLdYC3LRgFweZGwIBjsB5HIbyss16ukerN7/WlFt+Hn/ahOE3AqGtYfwIClpYTyAH4FrJqSKQTJhDD7KRQVICZoHf/5TMjO6iAjiSqQqWRjA+l2BPxYl+UH8sRMuCD4bjxTtSppWrZ8HqCQ5vDPRLy5SVn+pHhIDOdoVNUqyFDSpDdtVimE2Xtx7JkigG/u7lFx6cSot4nJ8iekC1KIzAB+DlQNG63gPjXPlPwqLQnLixjaK6uVn6qxKu8skAPARsFTBn5n5fRSmo+2ImEmTVjdZwdM412u2dUN7b4X3mrbvZEIT37oUsD9rQfML700a/HsP6zohTzjwz0zLZrwfD1f84prucJiu9+i6KlosrcAAAnbhNEZvt7d8PwhAAGcUkwgOV8giSDBMAyIl/N7hNRfuJXZbEr5Lv2GEh8YtcPBgN6eZNXQu0GqQ62OIyH3B1SPkDMtmdNjGc3TQdddTMNs1CqXQEqhi7f4+M0la/cKzhb4uSXeo1srH7hiCIysTPfggBLlY0oUlCU626oDu1iEf/9UQU4ZoySD9iYn5/K6k8jhG8RdfQFmEfGu/vF9KAl1Yv9PHpqiZdVfZTXlc2OtFBxJ148rG7BCwFcwB3cuFU7IbRxE+mPrde8WkawBltX/cfLTal969X2H+OnuodNWLZFl9ko8l3YQ1Fn+5s70S1Fl1L8vCaFLiwf1igEI82PkwvjlvBYDtwGEUoRBdNfx9aubB5oCmaDsRCJ/eyBT3z8k2reQKgIB42wTnBmQbUp2UNhrTZI2HKiXC5bOLt9tR/Fuvh1Ll9VOxVqjRI5arXrWUFrpjD//NTV8FEk9FUNIe5kNuuUU8dxaPorChh8ldPfM3INoumhGbZYVaXDRpQCjVw0XUR1gUht3j3bKHaltnOVjq/R+Syn880LlRdUrAW2ofk3C+vLQY1xfuB85aN/j0PjwmCapvvqurooHGpOZw2yuByj56IjH2VqYN/dH6nvohbXlYLGnxSfIxgFb/1qU0rJ5tdfbW5LZSuet5vzSalyv4SAk/fXpYVriL9IzdZPUH412o/Cx+AOqlndxB6z0C+rDsy3yXWkbQs9DRLWZRcn9mpFPPnc0r6Rl35mr6H0TTea7awuFLX80ZBiXPD4yiAQ/F50QUAen+cE7Z3LtjrXy9qUnDAxtShQaztxGYbnWSZYO5yEAaHrm5sAt4POPsL+P7zc1oh3pb/qQcE8N2yUiQkoGaoCFoDKERhOOJ2CzNjGkl/y1lo4bRRVHT6jBSpPIqSiHBgNQP0zxZKBii1Usk1TuZyHqU42ZgLp5h2Xa7VEwYXJrE0bTnXyODvVkCrMCq7y7xXe+f3S/VlG0NpGvi0vUiOs3QzhrItAliuXxEA/fF57u0Uoqmr0EqNbNpLoKXHBiu0A2yvMMQGewBpi3xGeO0vwvc2KbEwqS7NpdaVLXoFb7mKkkhp2xplNNthEfOKUFjHlodrj/wRfLHWuLvosXosdXFWXrW77mUbBlZX4QhOEJ6rbFxxfxg3ke/pVOteoCK8SLwYKGm+KFLcqIEx4iY6omjEAO6eOrdl+0k/SzPQ2bGZQo/fBUOakumqPVsAiMX1QjLelop5GWKmZFhu6IFoj1soPt5XcmoB81Vt2lgsw7sAsOr7QQ1g7lt6cQgkKb/nv11+uQX8dLmumoW0TtPYn/7s0I30A81dXOQlKZVNOk7FkGXYFAdP+GeZUopJgnyhQv7I+3m4m8K2F0ObyISLlIXDflaqVbp9F0x0zyI4QMVPmB/upEguJlZm27XBn/+psub8RxD31aiK3KWWkLQfrMQgZRSiaYOznv5dYD1uHixFbUTWBlhr396RyVCLL7IjX0vr7+lCFTSeFh4sMuBcwFtUnxDAMkv5On8JkzHWYahG6OzYDqa75POIn5o47GeGk2fXFkaD2WcZBYFjD7YL0E9ZVD/e1qdTdITNnyvaYmRj5rkmgOcuYqNqkyFQ+eg+Xwl4XT4dKUEpxHVkjM/H97CvvgoIT1blsFBTr9b83Lx/MtzPZ8iO3u0ryE13E07lkW+QMcw+vBLurf00mqaVVNVRBgovxIdhARwxgVjf7fp8u2T//Yyqtm71+MybNuzEvn8ju5Q2ehkkpiW/SWkUvb5DyksXSMONylXbvLJXk0VnIvlZ+YBQ1fJplKhLPHPXf0BvSt7x5R2jQM3g5UlzG6ekNq4FObo/tS+B2CMjGfp1UT3NBZO4G+FZk1hrGThVgmA6v5uoC7DxHU4MYnTFM19MvSXREhnZmtucC3j140MATYg+NgDvaV2FjLavJXok4oGip9n9gBOez4SWEyfsFQOqPRzg2duENlLcQv27xL4Woid/stI0cilieiLkiZwHaMKhfM9o/Dl/WBpbKV0zMX155KagXWTFY+1gWjJp8Hl7genvyrpjQ/ukqgDFyyRVsfO1XpT0fZcka42m88ftDNEkuxZFjPK710RHTJ77HyprcmGmtpjdVxDm/O0YqpWTsuhIMjbNC4omr+kVgRNRkW0qGIFkpdBGuwGIWhMzlP8XlJt5LmS88k4cnNtKvmvKb6d7GPySLE39Sxk05q6xEI4Tuq4muXYpPGt9r/M8hMsIpbHLQLhLD6o7v05dATOCoZKuHSZepyt0fAe1bF/VGa0J6pvCHjZB8iW9ERv2sdf+tCnf5LxRZL0LuxVVQmY6H33ivDpSmN9q1P30NUBLJgH6EOKUxymVgZEn/XmyIHMbZmpLuZaoZJ2GxBx8QyrzLXIdPVmmnZzQuODrWPJVn3Leym+q3/F8pdEoSK0KjlJu0w7C4KJCBG8mvJ20/Hgs3FnDqRLq/jaLBuVQsEtlcerbgSrQqpSCIcvZPoiGD4LvuwxGAE8puNmlu3TWdgp6sss6uGWyhE9P8nAJ3J
Variant 6
DifficultyLevel
516
Question
Ari uses this net to make a dice.
He rolls the dice once.
What is the chance that Ari will roll a 2?
Worked Solution
|
|
P(2) |
= total possibilitiesnumber of 2’s |
|
= 63 |
|
= 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ari uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/dice-biassed-3.svg 200 indent3 vpad
He rolls the dice once.
What is the chance that Ari will roll a 2? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(2) | \= $\dfrac{\text{number of 2's}}{\text{total possibilities}}$ |
| | \= $\dfrac{3}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX193RRG6FwywQV9RnJHzf/u73W1NHWco3ZLyl2hTL/rOStsjP2hL5AZYXUewxHPnt/ML0Z7i+FH7M66XQem8TdJAYt+yiuud+cdHnBBDzKLe0eh5S3vI392hvpuqA2PPeZwbDVB8wzb9QqtNroEsBlITAy1JlQKU5wv2xau0oPoFCRUsQRFk62FH5h3M/gG4F2gZahNr76UTX9gnRGxqTUoE199xnRP1tZnzJPZirxZIeIP6WntEuMZ353FaB3GLsMB1F3Jd3JDsCaNaBROfIlmzlU0C2GiwE+GTdVpUQyWsN31U4ib/sK4EP4pnLP3z98IkAA9ULWe4QKy36q6WYWkTIuP4EiJPLRuAMk6ek33wV6+KVenjUA4xQQTSjj4MirJ/59JlwYKX2csSUyI/tQTaASWHLhLLolLxr4p8eBp4ylaQOenavOJ7ENTcGKS7nz/h+3ZYdgkBFPESSdbGsoxaaSR4XSQKk05ze45daXghCFXNhcrU/epYIzA0vPufkf+NVJfehL2EfKyNIoJP2AqpuegHoDbmweEiFChA2X6Dpy9tQ8GVUX2PpsmBYZHAZq1i1D4QrnPtGE/HJnbTs1eoEq8VnZlgsAl/zySPjafMXdvaH3t1HxzZSuSeNDMC4FJOxqchC7DArIKn6aYpm6mRb20td+MhgOgJ6gbbWEm03nvTCRamzLBP/gH2PhHxId4QJGMFeeGI/hSQRngP+zACQmkgSYTGBKsJ71zO508tmflATXrjA2JwfX85iU97K1LSt3WULI7HiiUUunyGaG8SNEXhZ+tZEjaIcY3JClOfLZavf84JxMRq2g/Rl8aOWG7t2Wb3uoimwUSthDH27oVQiJgEwvjeNWvnf+SBawRM/k5sZVFgoe2JVzRXwOw4ZUl5ge7kdGTtUGn9cIu552jbTM9bG63NLrFUj7IPaBZzCAt+RliX6HtfsUGdGX9KYd2qDvZ0gAS0TZCUBgemZSX/DfDAFo/S7bOelib7TcfLj2hSuxItY9k7+Ca85Lbcy7sWjdDj7BoJ0EcOyHW1zAXUtQJ0Ul+26gx6OWry4RcGS9QOLE1B2x42CMy0/YBOvYVBgA3pgXRZ24wFjra0iXzDR23a+V/F/9Wqh4rhj3ybIqR+uml5IQWl5bWbcdjWBG1UC7GlHVrQHdZKACKIlP19hRaQjdX/4pWi4ZPTAIA3LOVhiuxoJfjg0FYbQzPmLVlAtxWW2fNae9tWsv3OjSFfHfynGU6tqw+5I/zHHjZRQdPU9wtq97lCyxmjp5PCz1wEo6iUI+ao7IrPSM6DUm+Yw8XswFT26Rec0h1frYsF7YmIZjtEj7XZ0/rL8WKiRiL7bVoLr72FJ/IUDFPty0S830T+8LpKZTpzvQ07IUIL2jguMxKfMNVS11iwbfJDuucbu1Z1wRH09KM/smOQ7ZzxB4cmzPJIG01Uk1N1keElN3YlZoTGAMlQs2X3Hb5H1nuIR3OwJI2CTIUhkh67k0qPNJtEf6+ZWXt/kDaeyAwsA5zY0hiDEmBup0F2aXu0LYa8cv+Sh6SxXcyPyXWGSLRtENTKWJbjLHxGvDf66OfsVbTBbP2RtZGG4LTzxNBGCYlscnAOaWCUHRVxdagratr2F3mwC6WXCtD0Y27lVxql2rXLGQISMTwVlc2csG9gigwnP8YTAcgP69FM2Nctvn75EwDJIDSAaZDkJ+Es5uZio4QEeqJNq3CM6kuaNIewWnmMrSeX5vRCA7K17bXw7DoiwfGlBQi+ZLdYjblHSYzRH0++7+wA1S0br76x7X+84ctGBFpRv4fJ3udiZFhP9aijplhW0VLvzQ3ah7qcIzbdrQGCnsGUAotR2Isy1IEPTO5K76dFunz/1RLp5SwYm+yqm1v/RZONkL1jS34W6v/znoPAMMHaMR0NQcnvWhvnE1NOCO8DWd9ekej3JtS7znLgo7hfWaAQL9sMP8/rAfV1U/63uCqsZ4lCNNTmPrjcsKJ6sOSo7OZJGmmeZGZaYr0+HqazylBex1jYx0ZapDb+xPy1B1MdLl8KO2pW4py2rqrE3pIbCgwA8aWOlTt1vs7W8jFBQdbx7pds8siYSQyiU53HG6daVMCtdkrqaLIgtCOU/0CPQDJUmlF4CZSKBbWIlT5doVyOAo535lGeWlWmO5jupHhhttkUqUacF/Bkf5LjlDbXS2rWuH/YedI65nJALj5JsNQWZTJczSGQmH8z112oVJPW5cZdAJo4zLXAiQsrih102JR6zo9P756pLRiOc+ZgLf5IF2RoZy154hnhwblSNCne3GeTwrjOazyi2n39YNlcjGaAX/Yg7Lr1ryFgYQ/waZyzdO6fbB0KZKtUxFvK6LhWuXi7hybhzp/1RphHY7DN3ortYiJ7yWDAmQP3Gt7IlMTv69QLCcIyjjKQl2UJC+YHs0VQPJDEkQFQ/qQD7xMqaWlaFCJY55OHYBDis0MfnGShci2KNn3+domOB3MvWniA+3fG1Inknt1HKWy8/7mH926TMpgAOM0v32B0w5bi1CQjH8tg17RwUBsrLjywPsukpdjGXqZvK/ysdRCQoVWdUaW3s+Jh39OZ2T7Ti0ehXFubnCUn6nWgCAjMJ2MmyIV5MPjts3tuoYn9KFIbDXLSe9uY4kfxaGG1eI5SxNdBcR/BWTskEe7RJUXasmikqJUNCBYwKxfTqAbDn93XZMnHRWUMzl/rLyGyLwy8SQlpl5i4kWgE7vta2bbBbqo+DJketg4cCfkz1sO4Ao1k+Rg1cioVTo5AZYgPrHJZaNFUiL8tApRS2OzWeXA1VRhRfkd7zUbuRm6x767iGVn+ZYtxUIYc2hw79RA7xVBGMN0QuUbYj+hOK75HqTHmOo6bQKaCAUd+dDexU5tOBkAQAXguWtkwDXu1NGDTNFjcNacPgMbBtJfjAWcc7qQkd7UvDXJviNdH+8NeAhag2GcICtiJQegKyebZikepIrL4J6oVX7U+scC/X7dCRVZ+kXR6b9f7kPRP+rUigivLaWLDxBvLs/KDRX+q2AYfwP+jgPtrm9cHrJERABWYNh5ABWgSSTBSrzbtpWUx2w5RYWBvh6lFIjas8BpieTL0P0kcXlYVAWfFeFE7elsnCvwHkXVWZ5pj2y627gOlRPFLgHFvfwE6zicAZhakVMXBmbAQBiuQWgEvoP57+MVNAqbcRdyMBQk654iLzEeXcSHk24UPSf6/IPbI0zmOCp2MfFokCVVddScKYwjHVBsojt4eVA4ae5j/JCelHscwBDLk09suyDZjViuXv+/4He2D6tokfHfDrN/dNut1y8d666eY1GrmPlPSMUeB47llH7qW4bYtLBM9nSRQgeA3Ljd2JVOGgTXKTd54qlbMdQd368DvrlsIq2mXjLThVr236N6GA1/9DtpKL+smLj7hrrr8jq/QcogdNrzZtW5oVIadHlJWvLWq8dp/IDY100NShpQjDGP/BhQtwqs53enn7wae+fsxB9Wmyf3j4wmt50H/o1dGdP5NyfGXohsRi2jXTMnNWJxR4sqkoQlBx4zYdLfHPBErKva1HQ9x6kVs0CT12vc8COSwscXdhIMX3j1qaMlk3iY23I2aut7eaFWzTLuxwmQBuHimcP6r+IJxy7pEMpUfX6aTgq36X5vVIilNjByvMNH5PY2PcxFm2VrksheynQLvR7OKTPMBK+QRLyj5t7vjQ0ZbRodDSqf29wuv2dytXcndyn+fw1TobMlTEymqmLe+0iI8zHOdSyu8/GEw0o/qQhRfyB8xSXm0cq8KSWyHb3yxzmKuAXHSNMohPQFDvXCAgiEwCQacCZossYKRqIe3dp8c/xTW4lmzoZQDyujOd95Jzyhw/y8Jd28Tq8Ph79OZW+tFZEfdZQmy/auMI8baBdKVfxUjo9dk7Ya3/hgcX4SYcX0kbL7lmIpT8hxoIu/V8hkGabb5xv4HqLIU6ivtT8ADn0X9HkWdBy3wSFn1matBPY0OrMSvOJE+Wje2oLs5vVEIZokkhpnvhWb9zonO9nq4DYQ/UwRkUryiZ5HYpBUulRiFMVt1Ji40KNl7B6bKGJUgd9rOwj6rFc4OOK31lB7BlVZoS2b3DesthlWhuwPdsZsZyBan9Gt+fgXIUVa5yCT2pi4YZMl2SE0+eGFyJGei++bJpQmLer/LikPMuBuoor+iWJ4JYO3B7c3H8UX6GbwGlOLmFXHL4lvnTdBt98hGFC9gPLVh9SbXWXdolEYqz6tyNJ8zY9zioW1lNXIlvQ9/9wjKvvqSs1YvkZlLcbMUo+HnGckaxLQS9ESDyRLwVZtiaQ7WipYmpQt3/daMcSATULO7z4Q7m1bvpmTQmYbvabBtuX+2Tp8G7qocH6yaDSpcBUjJudOBMdHJDJ99/FAATHmb/o7ED19alL5sqqn5GIxdO8Ag0u5NEqaNbDAEipA8WdiMUhWpZeGo0puFZa2RxeRHNbeWO6kAk7vK1IIeHlsj/ZtfwGMEHaogpcMR5tp+q+5ZagZ3SawMMow9k2oY9XYx/QVX+yZHPN95w2Hk+PXVsOphJ8KexIZVPWcC8TDBBsvCR2VrktHe2gtsMakxEwwmJYcBLcFMAcu4g3Cv0oKME3nXp043Bi1BF+L2qkAad7p/em9+5N/IHBhAMowPQptRuuLjpdt5kb4XRLHrgr9nWqXFuLMHsSGoQWWBZm8Cp/ho3w91pHQZgsAHs7WfZR7HlwlOFKpwmnLThG0TogS8kIKN0AMEBA2fHp00OKAIx+L9c6d+9NJaBYwuYgRo94In/8S0sMKKV7Se8aaSK2hh6cWCTAYYKaks7isi8eLabPPxw98DC3KhCOotwOrDocJEANZMVlG67v8XLN5FuEpOrVnmZ6Sh0KiEHA4fCjETGhvdxSFamEr0u7IBqn+HCt1dONkj4wM4ES7Uq7GqQvp4B/5o+Kd9JxkBG6aYMcta44RSlsCcjNflVJgFT8IISPhvQo0uI3/i7H2DQ9Uk0jouByNYu+f22aZr4FSI6fbI964B+wQ7XYNsptXiIaSmgkctHuUk4Uf/ts+5tU61zEgyNjmTxsdN4igVYetpodIftWwj1DICcH9Wn1LOB9xdavv/1+vxl+8MtmujeLIZ6d2Jhvu9461wsWsxOYFJuo3oSu6/h0fgtW7YAVWOjGRMOAQTPOOS8d0ra34k4kIrwEhM57YM91Allq/03tCz7xz2wCExNFk+tG0Kki747UI0A89lQYFOHl6IwWkoIt4PAkqo/tHB0yHwohkuTS/d7d6x0X0+PvukWeVzazptu1nhEcNvyfDaOXJt3h8PQOkLBuHk2M973VgQz5UhBfMp2bEC8pCNz4Iu6hqtEejK8i4as2CztMqPpvdEj/XbHAJAIoG572DWX5UO6mf7LLiNN9YSOVAbga54MrCGTOg5XC5/Gj2ssbdib4WwjBsnjmQruA4Yl+zaDy4s1JC3uq8p9E/XoTiX4N9yXMjh12EYmGaGqQV1/r8etq0UocE26EEfIDFbHBJWHu8SAOi06gHlSmP5QwQ6zkL67JM6UGYl7HBRwbZlBDts01bvNYEx1/b763MOm5axvKpGHnmHxdPwRS+9llu030f2g9sei5boVUHcIuarE+4X5Mvoer0MPV3RXD6oy8/hH6Qyadtb1iEkvLQxWdwT8nxsf4UqDhYxrBFgetQcv5VMsFUSIRms0YAeL0SOTZNySr55Prm6FpWoDuf+YR55i+pzULkpJ3GobtcJjfkym+Mdlv1OcrVuoWUCFCL5Lm5+OsdRZxkNwgvXwfRKcrKVmLAYNJoB0jWDa6HeyUFiK0aYLtyh4j929wm8JxEz1aPXhxJB5pQlgr7leXyJiWqxz10OsE5birgdOZp5OqzqyVyRDxjp3oflyWNrTBJL3oy+d1rq88az6r+NY3KsMWeo4XnNi550DbAL1B3I9cYtxtlkfmJm/2gcskXgWILqBCDY2yzqsHNH/0npYe0B92lNgF1z9xYB2GnyZXWV2v6GqoG7rXiDvgZwLmkGUe8lwbrdDS/0/56RTclY022huwZkexbA5XmoAY3COD5fJ9SPuDE4sb6haD3GLx6lQLYsgc/1DoqOkEkd7ZtuOqwg31ZUL7aeBVtWimpRGCo9KBJVzUZVjNSt4WjocjIpATV/LABJ0TMreQiySJ+EFpQQUnKqin7VIdVOUqfkcAcVhH+JrI7TUslcR7oMOKip92pUadmBbunVFKgRGQL5rhL0rLC+LXk0ZYB7KTx+pSAzVDsN0k5yX7sLHV1/wojaWH3sIQBxr11rqY55wUOQpMwVMwo3ATAB7Lp1TedGKLtxgQ+kd7FQbhQwGqg0doaxytZR+BLkZ6283N1nuw8k2X/RYiE7UBUH6LB2+FZjinjmqv5C0ZICUb1xhCqvd/1YC75MHrkVmg6CElcLjRgVyRcpMQ7wwGzkFeK1VUpqFtDUxgi3STbh/RWjJ+qhgmwVNxs/uOQwlgjR8b/A5RmW9GugLbtHdQr4+kG/33Lo9oSrU7XEzLlGdonM6XClIb8eAWJFsBxzPSmrF3G8cQwcGNGEej2jPfgsrriVs1dzh0EzzmpfVJkjyejkC9UGuhcGOCWDcECDZVA4TIsaxonDBSi62cfu1Ucm0VfJt7corl4NY3PXuX8R+nGVdfka2lW1jkOKReNK66lF3Oq24INyGkAq+b6M2UFJGfp5tJUDhEbBbI68TYRgj2JQODLyIlm28U9boZM8uJt27nPe9UyFuvFm6S7g0mGRO7Ix3NB3dVOHyrEqTx9ezmESithUMdG+Rrcl60xSB5AossEjpKIXZ95S7lbZZJbmgl50DH4WN8QabK+8PWfhMqcQMZ1RmHSW/FGthTRePOa8zFV0YGhxn0RNaCE7VnUhFneYUZqYjCDCWDsgKIrCR12JseomDGF9vuYzZmFGf5MSxjP+6aduNM7i6JB34kPR2Nh8tKr0LuafLkBXjkfqjqnBejD+sU2aOvozVq4rvPeyxI0v4lE8gqaxYx70hILGXFgkUi3122hQtxligzf5IyXJxPxHo+LBX+Xkx/RsqMr3kgjm3zjDrSm/rNTcyuH2ORaQUmAMKPbn3S/BkZTukNZA86MAMp3eoS6iC63yRRr9NO5JYMRkr9OR9Hq+D22sdzMy+gwP3U6ccZUzq1QPidoaii7kmXhVc8J5NU/qVzD7hAwiag/rj5KQVzCvsIdwL5ubAokr+vIeIxjHs6HF7a2F+5qNVpggI0aLe2oWS8IVQ60MOB11+AMPjEwrMf7SWxo/KGkSjnqKonjp8JAiQLaR/y8ppH6awZij2FW9ly+lhstg1PuZoe+E6rRryzB7PyU9Vaz5FS1WMEmOEZ8A3wX/dt3hQV3ePOQ1NqttBAunpCqpX2vagB2Ya74t67e4uatKUTvEWBBN1l9T9vMSW0inAy7HRDt6QJ8hm0f1g7Z/0jaE1LJIvTZZ9XICXWd1q34B9KmAx06sRMfc6JoyvPFxhxtz/if56MywH9VmpP/Ly/Klx6eKZzLZztiUQyq0KLOIdj2oisuUM8eJweQWqMlk2ILoTkU+0as/mGxltgE9fIopgBxcQiGv3FN/vz0riBOzKL3PbLA4FHs7+Kh59ZNMQlxVhYlJQsVDl+TXBE6z9w2dJR3cg+hFR1vsIOXNcKOgR2DIYObwvid8yBxULCUIfTyfNHaMn22ifada1o0Jmw0x2u+3eM2x4ZkI65qOEcVlhI54A8LXNhXNTNquzFGomyD9Eyc7jtPLYRM5lqXj5bOhWqrDVpP/cMbIJWngEHkGu8Y71DStHGEBs2e0rGtGEVCKoiB1BWwc9yn4ULHzYNwQZAxaZgMzhp7KWkATr5oCyEyYhd9UrqPMto3DuTbUlRyw041LEPOQFte2fHQ15zoum4K/L0PQPEEWNuKj995tc+zih95jWpzJgrkTXBUGOde20TFcci/9tAU00gWyFhSoMLvIHgPAY9ZhiZmrbVfOYd+1RxSx/Aku5h08/oVhRlX1M8oEcns/krPsthuc4zHFFppsAaWri4GgAPcJ5hEorZQGfuP5PcAhRLeN5UoSUk+l2O5pjC39CRrdYR/uLojP6Fxx+o9glBxfg8P/SFTRz0TVkKQ2XHXTn4qpmGRCD+0hkgi5gA5MI/kzNfuTlDt/bP4CMgvhUF8Jo8mU4XWWctmubDk4LtZS0i+xRDBZm3SWHFZGDGO4hAy3o9usXp83+mZsJS3zW9jiy4civTCR5COVO7NRrja2T9NnlM3rt1nZUJrACn1yQcUwkzzLoVKb9lYjrAU1d3aNhEYOILADHLhD4qQE0zhIoXL2txDEe3b35b/cRde0q936vQ8YNu2RuaYnirXvsRojK9FX+0Gt82qA1dNOKfE7+ZgOlRr8lsQ1SVevuH5RaYSGX941yQwCX7YwPFUKTPM2x3/RS7G1pgGJdlsrEWlJ93gS3lZtNFHAU5UkS6uCcnG8Fob3naA5e6nllHjkn99Oh6ebYOjwq3jUseHSv189gbCQet9Xr9Vs0IjU+BnIlxJSktfoGzwMZIQixsNJXcUGcwv7OylDlPR2nPT2scLnNpRQAxwqiq4ANxBsYQmxiau1MrC0wIwnFqa55V4k027lh0rSzaQmPFNj6Q7d5tXyA9QQQ+xLx6m4rW+A0GcgujJX2he/9Ww4C2yTOAytvLjKSDfU3priullye/3qStiD7ZgWErh16xu81+dQK/D6J+by8B2YZxWN7bXbjjprpg1vE/nNnwt3bfiqoqN08S5jodnZFhoJP7jz3tENG6U1pYTRpWtQJc0Pvb+uqLjHRNJfi0QjyIdUd2Ma3D28ognrUjgDQdZEisO9itZabn1GN0Lk5NamsqleX2+h1t3eLqyrCn75ACzvHqwhfcVBYaJcXo09lgQAGr3DnX3LM8vcNnrUCzxju/sqFIMO0gjtAQD9Np4BYgrFgKE9S9fucCvHdik5m0Pd1DXYHtpb9ylMKszIom+RkMC8iKv3zWC9JKAFivX/tWYO/9MhSAnQJea+v1Mr8uMDz+Nqiv1mnQonRWdTd7RiYzfnVn6geyhyGs1nfquGL0Qn+vxh8JXKE3M6f6dcf20QHj6QiMHf/41ICgsidk9/aXRKLmKWdlUuEhaWLDcjEkzkDk3IcpIB6BI9GMLr3rd1H1i96g5H8x7ZfSIKdcwRvU62M8/BDvwUYLO6nXNE7DicR1t67Mqjk5NpB7hvxAaxuQEv809TxyAjZV2CPirjBX4KI7pVeS1WyJ5rAnhOtCBdF8gvLuSQ5SicVussWewYjrKeL0yjLsvREA5DJxtbwtPtu21N0FQywXJFpLqKncxRGwF8Ii1gHDcNusKxbh7M4g1GEFtWzk/B7EkhOKNUDMupCcRiU830ie58LzZjt2c+Zz/saSqCWN3txa39xnUa2+cKrNRhetHAYjintX32vNIoYErP7jl/RPCoVZeZtqRJLR66//FEGYXC0rFTbhE0X0Sc/+E/VHs0gGDPyUwNlMpFqxx3g+sKYePwIxDXpOaj/DujvUpdEL7SvRi847GDWr4b9ygsMMMgjLoi8R1iPZ40vW1BrwHsU+Bw6VHlyNsVUzfwOau3v2z0FpOE5Pgo96qTxIs86hKMtf363f1PQqSGxPpcyTpjNBMpcboxi6sLOdFxMPeOnWxl/eHGafgTuACkzyMUop69iqOpRjmK0dL2e5xKB7/HhOBPhs0vxu4TBR/WKbkxCkBrF9347e8XXs8arbVWnXNM3lvYyjqz8E6TXtOlrBtCneN8uYWcNsbd0B9bftV2vyeG0E/3rePXcwrI0ri5DkRS4sL5NcKXpuIPM2fXKz0ux3lBA60+uyNUMl/oKNKISPgYskRuOmHsBmbwMM2Vq4LVm5RGWro/I59n2kjoekipr4SKhAmZyF03TXnHX1fLmOGweebQ7ByPG2eC5dKHgGnhPBV30P0kh2PNLSKPNoP9wZdX9YHKDNzGJIMUS2Li/4w/iYH7I+hNEFq+B/yZp3jRL0DG9U6F2s9m84lRCm+U7PG8aB+Mwo2nyuMggzLjDqaYVV+sun38PVAoGvZndczrtEyas8xRJzzPaLjzf9Ic2q/K83TT4hZvfM2FICIvFERBkvOFkR4TlYB5AXaTbMom38qwNOifkX+1PgaCW5Z/iczg7wuPixsKQ6ImuFXJIQ6z8J9nxFMBdOPxRmkpGiHJ9ZjnPIjCLE8V4XzmYv45uFnpra6MDPOL91cxv6OoiAXG6JS6s7jDwy8h/Q2HWlSvT+8se+Hwhlypr+yl0LtWFeNlCK6BFnGXODSzz+yDCSIAgYs6d8oMiPkHCc3njNgLigZWRV1UsOv9K4tgTWwCQz/Gn3/fyta0PMZdpN1qCr+rRySJWkABERCgrbWme7wnb7+3EXH0I9AyEeq8mJob2oZWjjKWSPxktdiFKlIzAAbNF1JguEeSYEH/one5NGg++h3niP9EwlbBv5xUHicxcE1CEue/tExVVAfJtS2eT3vn/tKV4vL53wj7QmsQtCVFOz3m0HPg0V3hYQSCfkJ1XT5acjeGY9PeK3rLPyzNwaIRREu77Teml3JGvg/eiP3t/yMXQSUNqN/3ujMaGsReC4soO8NcSDo1SsSWTPOYAEklpvENI4gR0PP0uCnBD9HWdJj8OqsxNWnmpyh2JeXQq3uSIwK3qhPcc3EI4p+ij333tlaS54T4q/wY5XNQUkKucdyzD0suUTE2X5043CLCgAEgovXSzK1TOcFSz7h2EjW1s6CxX3NXukjyFnv2cqVY6Mi7vOEK2NCT0CsSEE6ZxGKWkDjdsMvN4gKhR5sqDuqx6PpkMK1vsQu4AacydY92ogskP+kSw2JJUgEXjeC1/RWcR0iqE/ssnUvfyg+khQLiOgBsmD4kRfP7kumBlDkef5ae6SNH3p+J+p2sz5m6GYwmSwaMRQUrp9tYpA4TXGPOBOJITl//RXiPKZIjx+iNs7qctj3cFTDbBETM1MX/+/F4qqs9wC+a0rgItzcboI6xcffmqfT7YLtpKP6zbzhnv1/4h3FhtcjLazxrNWz61JzkkH5WKENbS1l/kKdcD00a38tcnvkWMT6mDgupwYhcbbJ3vvK3d8WIRIHjdxDocs5b9J4fQggYrPi/01Sxe7Hh8s8/HRBmM3ZnjMHlYynIWuY5X6hqvkm/FaWtpjeysBoQYzrg3ICDu8mjS43iwJ+FUP+JevAutLN+Zq7PCZQ4wLX4Eh5o/f7y75P3NOUD8yRSoKvVsF9hWBr2eZS3RX1slBYNG/hybznRVkXumLtzGBBYNZugTSJKmaBKfljp1ZEFY7jRr49p5TGduZ+SLGJnTS20PFR4A/UDob25oNfFy+MKcunhiNfu1zejKY0CzZfyaXiQuKVNx0r7h2R+hEmnWNlPIm4kWWBnf8FOMWhSsAJaMScMv0UZPGiCYSedq8V4Ba+srYJc5eDLW8oTCFZPbEExVdprK+BWwEDOHks/QBGZrOOwcvtfE3kzFVLO1UPsHYY/AiMbXOJzXVjgrGaqCe7BvhlKKJCnfGAN6Kb9J+xPOZTQorXSs3xd5+vXwqS5vuw7DAp6mBAVfDsc1paPRI7W2ddyhYWEpoolHkoqNzncqac8kHsQk8GD6E7cjXYq9SErVq3FtxCOrfXIx6vvYXQ0u6iJda3K8xWIBG+Ri/Td3qaFBmsWJkHMnWzjY4QYMLFKosxfsQV8BSyYaIRlwYzkf5s6dObkUhbvaquHMpd5lZ/YU0bfXK2UDFTIgfh3Jn5vU0gqsaFMRBX9UcmQTiRIMhAnb8b+zomx7HxpvY1GVQ3V40aOGZfqhCEIRB/Z/5pCQDLxifB9XUgHTyTMiPEbMf899W8E/syvNYS8Yy6t/M3jGH5pIb4Qwq5RWBvf7cRh915zKwPKCAsfl4L45X7eD8AZMizr2uv+vtlkHJonRSKp9atgto3kAkoJULOqAaPeR/Ju+ujMI1zqTptxGNg3fnQjM769KT8iQaASqJj0TJgQWmqlZE8ErfrPk7HX9qFwRJZugwOJ8irrUgn/NuRwsn2H5KrDQqf3ucsg/d9kNcLCGcrWSKoA2g3fXPuY0BEct9jZoC+YZGHqOUW4VnoOCCiVVH9Y4p2BkMlF91cOS0qGf5nStCduow9xAAATfrrEz4bHmG8s3Oo7AW3XpmMFmoLHxOt63HO6TmtmZ2UGwLULQuSemNcNb75JrLHcQl1COHzWub9+6yRGcZCZ2EWobb7K+DqD5UMMQQ7OiLGDPrpkD1vcQtIW5yqNjLj7g73NIBK+vbtqHtGY2dfHWP9YOHIyl3j9GrOHVCkUC+kFwWsTGW7pEYvcHBuT0AHwHRPrjgX3Gibc2D5rDq4LOzTaIqRZT+gtjzPmD/nxF9Gyl4oRAn8nzxqU7GxDrg0sxdrzVh42POMhGYImi9jJ2mShXxs/tPbKXCkMZ7NxitDf46Dh6CAC9jVTeU1WZSKidNKOEKmQxp3K2wYKl+1uhc9dzk4Yk05VNEkd1tnaJ4Nigt2uu+MCpOWEKz+bMKw6mikYHSvD+Zl3ZYz3jrT+lpT6s8o7W5PJ4Y3uVHSlfDxEqRyezMVe70pSr33sInFn6OvbpZQBWfiIfg4947vnHlISPinW1U4s+0UdeuOpCywmR+yR0eE3Qz/r5Dv6i8sOUb+LSN27yLuj3okNRpU9s4IgucYJjHKQr0c0EB9s7qKukgoz4HHMx2FQip6bONQcSFvGWin0xH6iKnwyiJaRVWsC19LXMoPpwaurLXpU3hwvRxi21Cy+/m7OKeXODM8e5wpeK+RTSd2WHXpJdcrbKDHr0QUSXjsZJryMgKIWfFJb9C/821SEl5KgTuaPwTniIBrrpDMh4KIlQul3laL26bRnmCe7nuoFDewmaZZEUhg0GNSn+en4lFhXnSh6GLTeaz0Z6awyOd6WzlbFGj0owIqQ8L57vwh5zzhPrxMefoYQxqq8CNTAWi/Ixbf1aZ/T/2o1PJxu29GWPd69+HNdrOGjdi05JMlIz8S3N5CqgeKcqlODVE2wky4AVVk+ImbUye1oPihufO9o+yKc+8p/FuTVdF1Ii5fp2o151D1M6osgK4UUq1dexTvIvt9HTTr7lw1tOJXlnFfX7tKuiUu9CzMjjXqKBc2XhlAiHmWRIe+Fa45Yez/61a+f3wrRHYr7L3o8bKmaR1aEar8FuDh2/MC4u6ZT9HpNNve0kya71Bk2TrgabkgT2Hi9nOp7+v87n2yFRj0vBmcbA80NnxQK9l21vcMwpKt8ByvqHbl1tAt+YC8FVHLLOEeLpyxbU/ih0lydCE7OGUkTd2MwFR4QwFV59R49In27LjHJvtn1CbVLETr3o2ihqfdO+ZGz05wi1WYWGSWq+IMW1pnmFl/pXY//+L6whZLwNc35Zkv/5QWjAxntABvS5zIAmYelisYNw4MIRQxPbE9W/qMLLzSRo5KJloR2IT+FLA9X+Edjunl8RmWtU5MkFPWn9vx6w2YiYfxDKh7NY8swXXWIZVEzKApQzuQgUDbjZFZWPgdVrIWwmSEfb1Pour0px0YBqP9b2A4FBGcrOs7H5yDTM69TNu+BWUqP9ECdoipWtE6+ArMFS7TepKF1i0jZTHAaxjxq/nvmcHn5SMrPnv2p+txwOOO2tnnvrIdzOHg2QDbnj/W2
Variant 7
DifficultyLevel
518
Question
Soula uses this net to make a dice.
She rolls the dice once.
What is the chance that Soula will roll a 5?
Worked Solution
|
|
P(5) |
= total possibilitiesnumber of 5’s |
|
= 61 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Soula uses this net to make a dice.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/dice-biassed-3.svg 200 indent3 vpad
She rolls the dice once.
What is the chance that Soula will roll a 5? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(5) | \= $\dfrac{\text{number of 5's}}{\text{total possibilities}}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers