Probability, NAPX-p167455v01
Question
A bag of coloured balls contains 12 blue balls, 10 white balls, 6 black balls, 2 red balls, and 8 orange balls.
Kimberly grabs a ball from the bag without looking.
What is the probability that she grabs an orange ball?
Worked Solution
|
|
P(orange) |
= Total ballsTotal orange balls |
|
= 12+10+6+2+88 |
|
= 388 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+9pBf6cuZ5Mf0wfsYYRIfcFow/RCkJSdeRY6QmsH8NTeQ3hyVulxBk4T65fORP+GuY+wQufoppo3ZiWkTtXBMPtE27QPi4p+Gnm1BU5DATWpq4qkmMMpr4cleSkiM1s0bnnL696o60TDhyp9IdDrwmh5+hRaU/lPeoQA7htBRO5qBW7OqIJYAyRvDjW7zht0blyzN4zOmh0Gm6oTjbtttYjBet73X/25IjQh7MgCRHrIr2X246jBuxTXTewdzeuX8UilPqTLcgvcsf0mP7GixC35gXnBZR1YIbrltJw+WWH9iFi2sgEmJr3BCEOFI/vnyNcIA7JUHULvaNsFk2XpajI4Zp9EhGX+ONARFzVVSQF9w2w6rU78HcnP6P1Yx0vOCwQXF7ek7KN9iRzwunVNjpWulcw+Ccjfat9+PmlQGgpux3H0ke8CITbr22R9oxSQ1gYJXcMtdRPRNaPhrUDVRqQsXTxbBzmsVQmI6crLLRx4+5fgSkxRfTNYiKE9N+EfHkpjPcwizqjp6JVcDVad//1Q4ZH64QBUsr1vmlXwyq+lwYFzP6avTvS8PPIIYknqQu8l6Cr5wNTI2ik/1/TbHWHt2QLeaJIysTS13QqHmuA9tzVXE1aoqnKnz5Q1jZKSeJcjyEDB0W+5uR5yJFzet58+E6q30ThrsAx06K74T+/FNd6l4R4IlrNqxGqpIwwfvzoEzgiiZtItLj4pNs3yxVCM2/uI8Y9kUmDazUJPcq4/hG5c7Zt/Jvdca5J9IKKHzpu3AdsdAdwXqi7xshTIJLOuT6a6LdA5aOwbZqp98KfgxWdhA0eogYr408Z/bEh5p+8PlU8+li3At313icXzSyktiP+HyWrp3EU+KQDZ/vHa2pNmSCVpwZ27qCctLU7WjszOGUiBaVZtaHxxhehYzOBP1QQUIy16Yx+AgCP7vs8cvzwPkDlw0YLdgMGb+qDI/kDth+R0N/FpKFvT+Ce1RzJhz/m8cG1BflfOOUmC29FXUGOMA6Y0faqoBlmCwzl2eGcfC57bEGTLOut/TXJE6eCPJFLaPMh21Ts4/wPAYJu0dtIxtpfOgQ6/fCQuZd1c/Mu2C/CdDlDsGuXA+8cSnKhmF8WGRfCiAfvqCVi87nqAgyeZaSTadQfYpz9FDwpYN34cugQbrU4VIwuHf7pQ+W/Fw8o9kyiWHWibTEcsScoAskBj1Oi0nb2aqQJaTj98qLnXnqw8rwCqBSAGc7oXCwod+usv2RMekJmHICILK0BBnkm4Jxe6mx9bzvWqYN0G2zviGT/mP7ejHVcTzMoAhsIMxu7p7ixFde2iq33uun+Aqj1L9W5D0Cut9uNmLB0CBJ5CtBrBuBwq1RhmcIysWo6dECb7JGzdCuXaVIP+KJhv2H8RaDsUYhFDcPdggXJxlttQulk1klvKiwGzj3zaiIAESJHQ4XyS6STc+eSiAiOTL2Y6JmIHQyjLaFPxxweKtCcUjhSuQFShtVmsNMW02oh4YkW5XctYB5fsS4PzAjWFmby1Y8CQOuvkdFN79vDjgHdqOYXV1vYOfZ/MjeFqC3ERqg6Tnj9IuWo5eNmFY2AByjaQeMLm1El1G9hnQIrNWqGE/p6HCbFSeSZPpEIQtw0SV+HCcbug3oZnU4BUaopsc6dL+lpgvDAb/MW2Ceuq5XDvMRYJ8LjNUB5ZHkRAs+Zb6zvqOhWqUwsp3jLNsqnznEfU4rirSopc/Pa82gu+x7ea+ql1snGFhBDWAOKE7K0WqGCuDxxFCn4qgL/l0mB8FayDJGqp49FWU4Evf2P449y6tYECl9GuHQ3po4iuXVf2aRnFLO3ETAKMwyAaF4g9Hf1oRZ3uZkKPXAzvqdlCtVNRCvsh6lXH7+rR+EqFGzdoPBYSPFTakA2xkHty/lcPeAmXxdQU4kT6dVfT96gHMd7PLig8x9AVQa+lZZVXTKZznLFQOEoCloJ+y2JhvThqiA1tzXZLtr4rQVkJ6qKLeULicjmlPFkOOrnRhaftaq+9PfjP4dGOEcgjtO2rj3rNNReJkvDIC63np3HP4NeiREuGnl3PeEc/jwHdi2oS42ewjxWrFWSfeLb3OWLuSUXJJKg6leIRC70Q2au5EAyYEsJ4DNwrvWLkg37AENhRyanOYrXuoQOAWiXcdQaL31o7maDIkE41co+1i1TJ4X1gZcvq+t7JPsf3KkC8nW1JAlJfsPOgpGGmOcEQqN+tr8RqY/JjbsZjfos5XDf7gWqm6ToE04qM4fhILKDhv+LGVbhyeQtMuY+Jk7TbPqzWLdUXkgHy8/5wExoH3xgd//H1G9wfY52l3Xi6atEhtQZEvxJGypSMw5/sn9yXfcWJe1yRfjpAdG3L23VBsn/taAgAB4fnEV3fMpjzCriARNz9BID/DAxIY2UzH9ewAXiHPU29sGgCtq+LYImhUv+2Nd+3GF0KTdC2uCKHNENBkBcHLAnwcLq90oIYJ9MMCkaNkcSHJK8m68ltZbRhJJCcBABIuAwE9s38dwyIlpcXQA94vSMJ+mcLb5Zb1Ht5f1lmqs06ockWVGA5RC67HfrAzgObyJO+RWUpkOJJN2o9AU8Tc/8XOUPz9mPTHjVmGqUBbrudoGROoumU05Qk+aQVOYiNNluhxAv2wPls5yfSbionlSPHyQLEHz4yl9Jebjtsp7t65qhbCCk1UIGpcrkLsiOy+ScuGabdYKEtlVMZF90v8rR3pQkf3r+p15UqpDlVtCGIhdcSn5/xKsKnzBOs0weYnKQXarejTtrS9s0788aJv0b7hVEtw9bMp9LRtcI5NDivgfWscGVyZv+Im4RjXP2fsU7gkCPXk9bWS/HBOJZKfJRMBGeaWl2LEqkYS9j7IqEh90a/jFKyB9gSDhEOd55Wi+8O7wlgfanqwZmIo5AVmb8rCUDMwhF+XrMStDuSK6aJL9xcenXsw/gApfKx6lZ3ZfUTStGHoMqcypZv0o0kPgiarU56ku/SKXeK3qVbOTF3tXyNbzSe3fjSvNRYZ4rnZssJyzLYEDP4wYWKEGbIyJzue+3JvMaY7pGaQ41VWo2jll5bNSyoIHja6/qmdxmnbX/DHmq4rXqW4SrqIMtll1ukzheXxAATYoRa9+izc+HiDRXTK1DTPvR7e8GHU6hC7vMsW1G5yC3fr+rMLOAkvk+/M6a314Bqn4uv9L++8LLhUJDkHvcgAftH6/G8i6D4V7aZpM2Zz0g5fMYLMjCFh1TBgK5aoy/NOEP2NxE4IhO+gxr28IhIaxodWTZR6iG0hvT5+mmHjNoiMH9iIHkqcS61m+RC38rb88FqEG+IPtXisQB8TI6jk+/Kfn1EWz3TLbsm/ko03VrVjnE6fVQa5EykLUfIn8l3XB4Ewmub89JoA9MqCN9Y1CZbPx9EFXiagM3/d+6rR5XArvUii5eCYlcNDVJXtoW9iLgqYsXM8asFQ7gi7xe1xA2IRX2JLJr9iPxQAoeL2d4udogCTg4ZLUDMzX4wTQ4YJJ5pD+dc5Xwb+RxMNXBYnHlENnKcGjhnav6QqmSsVSbA5wTmoCANXvSuQAGnGEO4VRiCv52pab646q77VsqPSS0lMKRPsG+QFew6a1dAPgwn1O36GRTPIDafh/9ueenE6INpEfT2Uh96XM4f4W7+uzhMC698079mZNqQk1rAGj3WJgDwRcwzC8hUlLXwFmSAD3mDKbuRS4GzPxA+XsgU3mUQOBUWHfVL7VPdeZM/keUrhU4XKFfyVffWCaitWC0fET+Q53sP/DRke1wGmA98z7UDi9QoAaliKK2Dc18R1ApeT8SSSECGzNKVkiyQ5e4BKJclMHE9QU5zXi8QrWNsu59Yz+4YQFtkh7sMLIbilpFuu/jYcvySvrFwtzmchoxc+HpKNTaUqqJDgs3PvwP28Sp5gLDpXkzjnkwo91hav4lnPddH0f7AKjoZh5xrAe85jardXCee0CLt5AgMyMUChjA5MJk4v+mP9jBBycX9DOVMlKqf0nzsfJhlDN61OZEYR3oLJUbBWf613r0gLq6vVIvo/Fn+/D3aMcUkhar050qQr9rAF8aU9gz06nnucPIpiDkMCq41agUdOL4sV0QO7OotcZoLPSNuitKXQroKZKuypmNl9UCW5S8l0XEPedSOvv5wrE0ECFOOutJTsOZyC1PyDaroSXJLu9C9YYDhhI2q5BZx3cHvjXGHxuz1ldGgfEfTjnQLyy1U6bngmGMGPU7f2YPJ5b5AgXxzhJw2U6H8KF2GkKeMkSyF8WUU+BMU9yUECjCA6VGmpRrHazIKBJWblB2AJvd3WFp/mXszwpLlEmD3HrORUL/fGjKaZEVZQyCBDSgPP5dMdGEtn+M8WDwU/Qs6rICJZxCguO9BRUDYW5fxRL8H4s9G53oXTKoDYihAy/XNwJ5rIij0hfJcqEibAO9x6VchCYxpuKEJc+pTkRDykVXeNhzGr0TbPkjubmw7Xvd9Odkmfk/UvIb9UDTgYqLS8hPSmQxFuTaXoeO87fXOfqrnp+8/thzaarisEIFfPhqoiui8E1NkYOzWxYDxVyEWpPtuz4CbtyKfVIti+E2o+xZ5tphUsO9xMhsnUrA9Ic+pDI+o28pLxSynGBm4dO4WX76+PIqwAIkVY9Dez7C/YPnqZToF1taQeh+eH7UaTJRGWI9gBcQn6UzR28IiJwN++Gk5pfnwWVFFN0TDCSB2GI2cW7uh9MikBNQ3OH6iSbQPU2uHptgwvsxSmUZctVcKcFbhh8NlhGqYwK2vcDzzOEtm8I3Z3MTyvL2gRIubB2Utv+41qqWIWg/xgSVT89aNTD6yeHSY1YC9HOXjBUa6zECPPbOTOXL9EWu9NlMLaKZdbAvwD6BZCXgNYa/+eq2ZdkCqHNrRgFcaXmc3uS1vRwi3ZtXEhPhNWdivLdq80pXcqWVIMrsYqB2uQl+fZm8ZVxrntewLJJf2VGLU16G1uss6gw8N8rFLVVvrTer0PHvAxhofBB96tMLR+KhqRXGFmibTc7J+JXOzk7o/kJRomYGpTGmAXzaf1HYRD2ykO4H4twjS/gIw7qk1zGAL1Qw9mGw+PW+dIZEz2RcZzD4oLL2DVkh2kFBj0gYGzBZKhMFByKZwlKLsBQNJO3u8DRxJH8ET2kZm1ZtFoLeur4Byu2U2SY3Xpk+eC3lgAiyNyml1KtW+FfEmnLBJEWUVHwyNgpfLcVAcnHWIOyB442EafjstYYd7GPH7ZOV2heFufLS83OuoGQ25/I3QrCB8SrQwqlMZwgmJ4AVIl6TSz+kDLBp9c7IufSBpl205q2siaWXWc5LjJgaPirkMZECW0/EQn1771fcPBGLPl5WHJqYHEfsiM9mmu5rqN1gvpDRJ7MMj46MMV/KiZkY70xA/u9zxXvQbRONVit5BQadHwK2GBk7dHH+NtnBkmrVvmQsc+p8/u5X20V+fvETJWKcLQDrwFiyeNsIpE1jSFVsK2tYcnR8LCpdPkGIXBvrYz7SBewUqKA3zkFBHPfrjDCCks63U9jxZ+3XmkGzbhw1e70osoNT1p98Ct5Mj4JO3hp9wnNr+EZPPFCe5ExwipoaHlXlrQJIt3VBiMZTjpVDYcRoN7/hrApL9ypxuVp26cGSgpUKxugO+EjF/hlrDchlpJcoGF3AICYgYcxKVnftJWsj4OndDXOalxbMlSW7/g8Uu6u7yQ+5LdwvjcSk3Ahs4eyxrkqti5La+1Id5cDW4uooV5VcktypDSFkqpdzK3PUkDk0Vk2IN8eQKTQdZZVf1DghJZ385iVhiYzJ9/sca1ORRXDhOhANvyh7GEVg/cgtuXJnRhiEr2VVASXOVIikzsdSXwQhs5cf6cbDLO/yfMA+vHRoz+bQnGGwcZwcjtSoclLmUArNSaHXxyBO+1oRXyB6uhAKneLF3Qf3+Xtxj+RgV65mvNT71DgO8Gus3GNhUmPc9RmKED29ae2k65EwQyrIjrYhDKa3fBh35DIZGM3KSSYwuMUsjjvcTPp7yVclL54X2BXMXYwxNpffsqVDrVzZmF3cBr1nOgglebqXuOgbhP6gtC5VIMsqVEcFv/cDlE0UaF7e3Q+A2sdKCBLpoN7MPPGbwXGbY4uPgZfWlYRFZG509HkTr/G3BaqDhrRGjkaTvWDRLC/JHECNgoi3pErZObAYWlV4BixI2SevmCtzR+BOYICPKziv8Lvz6jIiM9kB8evxIFOxNPmZWksWpealmvddtswBw+XDfUpYInAde9FZEweENOshcVjvc3YiopldMtqpHpWxrskL7I4rUwbDxORW5NsiOlpjXzHZPnWZFi6hvbtKHxeQ+Y6cTACXHalkKIiJ8HHrfu3DDXeN4i5Cw8ImzRUNgTMOJPhG4n/X950pM0ugVZvmvd3AjgE4QcIwI3nG4mOm9AKWEdkur/aMVSKUh85h1BVwqP69XOR3ilXiczjmvNEW+80Sjg8DTSfq8xmF0kKC3EYEwfu8hwERj4weuf2Ay7E3Yv6LRxNKykPinvv0zDNrOCe7J98iGFGJPjFMW54M3L++Lhy5ybOXjSooeoPjLI5Eat7KNgIQqKs8BUaiXxRjFcTBNy5ZxilQ/p7Y8fG0mQkpO+BQCOW91pUuF/Sn5ac5zjjNtVJ0hck0wAXgLpDOq1nl8h/eT4ENOoLpGKonVPoY4UCFA6Za/avsp257BTJcFIb/cSV/booTMBUshmubkzjkEluHkdxuoEmdrvL4GG096eNynEF5CP/hvLZx6V9F1m0oYNJvyGLQweYofwYBczJKHHzvp6Lm4bJ2v+DsRsPtyd0kK1cKe6pkLibh7u4P+hBHXZe/TekexAFoChXfTVn1wN9ALltcRt+G8eVNzdnGZ70KSt7UUary6jvjbNl5bKcCT1OW1rHujVUTDVFuhh5dARSoNlmL769XVYDlmMAne6s32LM0TQ+xB1CUXzmzaQ5a9kYXDHqa4LeN377OfwL866UQX1hor7uVUpMeF0BEz+uJkCeqFKJj9g3xmvcwey/YWTZOhkCNB6Ple8rX2XmsYjSv83yRutJS0NBNfZ28ZK9SwN3I2J+H5ODR/Zh91npkYBPmH4ShzrTV3wU8u5/dV/E57kTB+FC9MbHEO4MGdZ60d8SDrIJwzAtKojTOS68RK8zOpTFD+cCbIiPt8hbc8zDYGiflJkdN6AlxQM1V1B/6J8AIoXqIuJs67O14oF+/KuIz2ZHlGcahpVupzIBvMR8PRAlkXXX7clfXD8QDf7WxQwcmxFakAGAz7eHFtnbWCDzfRFRKgi3oHCoqxEydgfG7/Q82oa8h+dTebTHaUgbik6z4ge6WdhQIoc4sk050nqdh/a/ciVdtVfXZMhovMljPA+kA2qxv21bHSplskEy+BZvZfgEiW6oPMiVH4IKZIsG/RV7lEd2e24jZgwbF3vCfsJOc6AeE/r0C88NqLsjaY8I4Mqc6xcNChALIiGhUMKJdX6ehF/bbRELKXbQGQrONUDxTwKwvOOBbdzFjZ3mgR5LhIZ29t5wKY0D5Eu06p/PE/jtEMeIs7S0LxFZbDIwe8RJe/9LlfFuiLy8IFCxnGSKW6pzM9mJ2W0g1iMtJ1pW70qyicVXC2cyGcWmnnR+hFBDwFMfw3lV+Xx53b4YAyuWcruKxjOCiK/nXWdISDghpn7PeT0IMc6zTEwmfBmK8WT6XoOpjXdvc7MHq1pKaxIN3lJG/60h3tKdvQjf/yxA+Itj1OcZWi2KUy4EQTUN3/SEoasrHqewf/4TyVcoTNhUxEym4/Xz0sG6yd41MG8rZrAlxezYq6O6LvQJykjD/7WGhTDN1jmFSZqdcVgPoSw/hk382wuPtVTb9CVymyFTDaJcSjBBiuVxulPZ9cTHn0chbC0Ycmklx2Mm4+r7HdcUUUizXlGW5VcnfOEejHDg9m1WhRuW5p3no8ujVipZIpnqgrzdqcZn5C7R0tlx4WMYHOMUPAYurYpfcolalwTMuY83QTkU5hT0hhSlFyQaa/aP4XqhPjz5engXy+INfrkONB0fQ3Ojmj6hNd0cbRcBtBAsDZOwpRQYv77ma+KiC6J1VNRTxRHvUjTjdLs31zIIZ2BiQhNtU2eZrizsSNKulM5/Khf6Myg5Y+GQc2sK4RidcM60A/ko06uKYOuhHDq9MxOhORHXPV4mLtLQrbHeeK77dNJAbnEFIaUqIy7uZT1v2h1v6oQpsqf5+MhQsiGlDwdSmzu8rgcDpNihJDmqMtZaB2baj9IwSXMEq8JXLBXLDWDD3z1opqMHi4DHsA7C7BCMU4HliPIiEBfx9OvHfHsfN+bR40P0R1WgPJ1z4RbkrCspeAsANo4uqOmJ0515xSJHrOGTAXyH7ep0ejOkTFRCshPxpmJUkR57IxX6M1Hsi1WkJKD1dM/NT6QWfqCoR9ev3soVowIC5zv0Rj94iTfUpRKY+26Ae88PyYR1uypGz/glGDqGWz8PTqCc20+PDZdpQR+l8kjk5QI5iyC2x5/CFacFgx+yULomY55fssXL+nPqdJYjF/L8CrrelyIoxR2iRYsSZ7rYTMhEWeLkr7mOYUpe8gcKNZihMgncE1wD+i1fBk3cmZt2vpZbCbZzmra7nmlvJBgpHYkkKwVZ/7LeKz+DJ4Z9aQcIdxRhnHp1q8TUrpQdhuloDd8j0/m3QPixF2lyWS1Tvf76QypOdR0g0dV3B5LYaGwR70Du8J87WuMMzKgWvxPSx9Y9NHcgn1avMzEmlZNIkXnPwJEh3h0OUNCRr/hwxTAZnSFhRQsV5t0wBXUhmKOdVrR7UUqMwMc4zzidJwv4SZjspYVjbfQTjt9/5+8jAR5nIqu5uOH5QEmsT/AamS6LRkQTj+37Fu1/T8JxhTqQt4zHx7/4lHGJar17p5O9YhsdEmAa3eSj4ErBWNuwPHWrns3JeFtZmJ+4E1iCFdl+gGOwGZvGTGQWZ4aLA60WFq7oDXo9H9oWJ17JrAviJrXk7whj3KUtoQpBHGF6FOH7rNglDtIS6FNrRRzJjM34FEWrmQbZ46ZRD6JkYXtxd9FXSINUd1q2t0FY1WUaGh6J108dfSq1p8lB6z/6OfTqxKJznRRTwecS1myvceOuro+3zDVIW0z156Sast3nAnyBYldcVMKNoAe+W2ixb/WjfSsZAPhP+Te7JxX7J+Ip2TYLuHRf8RzAjxPRoGLSX2kJUDtTMHLrnJTouEuwx/h1dMvL2PBaBY1ZUUSGR2FEIMmZAGZW3dhh1gTbZ86I0gWDPonTEdbd3gfeXWCDcApPZt2UCZy4sMNDePdseDhwBpCHBtvSJLnrCQHz0dOsCVCWll74iEZYJ8bqqRsDjnvJJXQfg72CjGsKfrpTtUno6MhW0xQm7yeNo3CFA/trGpuY9oJ4tI7SL76iVc8/sWmuvuVoCcX2l7ZYQdx1DoZMyjz3yG8MIp/FKkusd8aWkOA5SGvdeOQKaq+RTkxi2kkMM4rQoIFZOB2k8WbA3iJmFYDkynZ1uRxunSOLrgOGqkxuV3bnN7Za9WYygqd5pWbfC2RqfJgtzSyIXCp9tGjC8m6N1xFb1/J+irkJfQziODhAammBBy6I5oFo7sClvIuNb+ogXAayQnYb0D+GYoyO/VKBfiafqUQKP9Xva7Wd2Qt9+nLM4p3AEtKUB7TaUDn/4hR3i2Lrjj+0WEq/cvOIFReqQJhYcXX2pn7z5+I7TzUa95DXKpEvT0c5k7OKGvGS5P1HkB4Xql7hIGmOMCMd1cNKi65kaQFAXahHkYgyJzHSLUtbEz8ENQQqkERXcV4defvnsm6Eacq8/Ia1bnFfGGmEt/d52VPiKdmuxTtPTTswNKZsKRL6zT+PeqivxgU+IJa4xPz6HTY46GOiX8CKHpM7AeSxEcO3JiFgIaNymwQSkv0Rpy2gSBTsRdgLcA+coMhvqgqb+tALI6waxVkK6Wz5e4qSxBA+tYeBrTiNAzxz9p0SowWkwnZAZKNAqzeZkmBJmH/sBb2XO07qhFUeAdOanR+4qbG6I+EJkV/dNpXJUWIP4Q1GrO9oX9xfX1XxM00ptMs/9pGb7lqSk4YXMfq69HcXR5jEGcWe9fDendgYu2x0WDbqBKmSVoaSu+PHsE5fJsRyRWfsavYqt8tZAW882cEVNkaw2Q3vp5IJ2J0d95USzoDgtiMFewRgHxzF+SwD/cd36oNvSk87xODJz5UZDV61eidSqt0FxZEEdzLgM5sWx4OW5GnajdvVY/LkjiJD8iK+VaXEZifvyZx4q/GE95ru/o6XmQE9/5HOhaCALpMLWv0kVPg5E/BBMWXe2g3DfbO8oKydNBmqg9jQ58zExJ4xChELZrxTSC2KWLc2alTbYRpYfghkZYObfkbZDLf7J/kOE6OIjWGEVnJF6K2EXpUkf6gTVimkCsQY+AS2OlDWbuVX3WmvM+5ebcl2K/a3bQj2pf2bbLGz5b1RgyomKaAovuvmsJKeTdEPpkzQWlPv4CKK+UxB+agjRC5zajbVEe25XQ8xlmyvr5u2JpJ/1uGUsWu0gCdejbt0X7LQjJpaslhWdwWFStDSjzeyBWMAsGNRC+PLjwn7VlCVc2bOObEWkULz8OJXLgOzlVPsOrPEvouCYaIBTMyunq8Ze0sCCVWfOrSeWZ1A+Isv1x6v/egD/WQIzAZ8Mj42GR/gi18HL9LuhG4uKqD55iQ4osnV1Cl1kWW1doj1sRnQ2IQCjbA8SGJin3BjRWBLUNGMrzDK4EuXvSbKdctprQAwym3rmESzQT1z2ueiDS08nVwW01z9sbyy6Q6iZelwOqc3tWeOsD4lV7TgyOQbSMllCRdc80ruWKOP9YNfIUCAsaQlLMnky0EJDJZx/QVfSPKQR4ujC+Ti/u1UwAm3lPduohFp50nzYFc1yTy6Lr44Jx2BM8fjWPU1OF3hw7iPfu0MRr6JaoR6VovSPISRtu8Ly+BiJeDcVJJVu/Tr8Gowawepw0lwVQvWX6Lvj72M5p6rXVYPGW1fyXwj0s1fQD9A//BDx1yGsrT1xRWSYF3weZ8tWPvvCDEWOeQE6gb+HCrX648IwzOflWA/K8A6Ah5Ew8Fx/LLrap2mx7fB3mq9eBQeLUUorhl1lyTmj7p6rF77Zp2eCs1X3WrrNd0LutXhUegJW4wf65I1KoJyHDgdk4IY4y8W7cHH/GFzdrj5ndsevIL4uAEuWvhSmMDb6v8WXfXTHaSzv1CZE/7b/PhYJc+3Qm7TaHdktVxZ8lV2Rb6o2Tw+gIUKHTEgxOt/MzaWxnAQTLj1pErD4Povuf63QMQNpahTmL9shDJYmiTLZsZ0kxowsTFY+FAnuO6UMMBCnfuRwLOL+EhYlkIOVmRpehoz7ljhb+ocYnWTbif0w+A37UHQiTm3EuVbR7zCFopy0ll3rOrvQ4AJro/mkTcdoT7AWc9ADr31oYS7mw+gF9LvoOBBf/KcgZmMZvy/tEWcZm7HmbmHXyQu5JJ923TevB5Ms+61jg7ZfgbNbdl1ZOSQQBqSSeoY5lMBYgT/aHPOMUaZxbp26Dd1K4Dqj8s38kowyfDPIiLqOQJhzWMOFAXXoq1lOhN72sCbktX33O/dNi+oovKonw62hTd6h/OqX1c/lpIIHjlMs8cBYDxzLiCYFIZ0OlIu+w8A08N8pbkrsXYp+iRssebbZskYSe31d0qy6oOJv6LgdORYvq+qiYOavrfqzLjKTKPGY4DoaC8w28Y9g28LxF6w3EJnvTFOSZoMxjTgTWO7rZqkluygY3rwAB9jcghjNXR5HjMTdiqi+Pc1ysGSMW4LJsVTuLdgpkAgutDDcJ1O0UB1/IU5Uwxeypu33Q1RKlz0uNXNWw0K3oIz4hX8jvCTSu+5ixxDf7b1gO+gbeG9GrdaJl64N5JkoCjJnCtItFo+h6bPL3XwnIxPELPGQSw5tDS1iz7Nvhh9Nk7naLAA0r2ocd7CJoqT1lTok5zXAoPkmn2KQFWzcTlZX5ddoEof08aT774vTaY7Z/IoQ4DR+P+0LZuqEBLuUuM9p1tHOrvrvqgyKNdccCAOT/iccveRZRLGG/3gkWIYUny0jg6UgXKJQGMd3guVgGlbdVAux4l43NN9Ji22MF+X/iYtCmR+ixs6N1UGWtMf2NbgriTNid8NnVkLiINAsIxDrYtQ2WhbxfZocAz7pfDpie4hJiWVEmlPDsnwD4fJRidDiUdZRdWeXL7JCOyrYcoogpT0CmH8uPGYP83Gxv/4Lz4YFPxpTiTftHjngqGiP8FSk5ngRm9jxjsaStBbLVBAxJXgbax2qYkKwtzwestXwpHRFc+T0dgqJOYRQVZOGHi1/RwQ2fzXcdUJlMw74Bm+0wdRDhdny7E3McbMtjcbdth8TVAXrMSnu7GMv9+zsHv0ql1Qe5ZKfzw+Ib6lsyoTx1G56HQvrh6pPJy0RkIPb6ZeTC/s2xVk9iMdagcWXkxxPxZC7as569fyQFXbkPDaeQ9cVD6fnYLr62VTKXF3+6BgCmw0BKixdlLrvsWOSoAxwsR/AdEV16ML/RY02O19TKSJb3SEGwuKLeb1hTMs8W6mRRwcl00uM/zIsMyPVekljNe1tqhVmRY4BMNdh3907dcm+bcGDIn/BbcMDjKBf9PSjt2vYJpZRSll3SyQjtyidWCnZ6f5jink8dc63Z2yV0epVqoPXjccZakWar199HUCkoqIYaHuAEWLgR+r/MvMVMjBzo0Yef/as1WbJX7hLTXVyur0fWUfmUtujTu5G4iqkgGWZhSbUziQ9heqjZAltCNQ5bbgilY88++ukNWDt4TvSn3QobIwVJ7blsHxvaznpWbrkkrXj/nGC5PR9wcRwM7N0YKGWB926p60L0wgz1OXMZjJ6JnDzNMF4BwzkVoI85hbb6tP+v/utOu/GyRGfqGkH9T5ci7Dk9naxzt8N/TMhJ/DfoGBvMlgt6r6piZ6I91TIqpFdU7lDc1d5bumfrCRur/ZYDx3kGjFsbuTpzf5DQVJIKhxirkQ/6TPPblnOkc1jqz2jnfWNIf0WVYK/qxPDgzDpdEkeMduep6UXlD30XsKtGguay+nnNMYbhoBTLjjAA0B4P0SvD0k9hsBCU/5PwICvW3On4bBpx9gTbMk+Uizl+m5Fm4yisWAyvF4sYQEOCn6o9622/BaMELP3/aYRXP0AZu2T88ay+p/I/8a7ae5PM9yhAELD7wFP/P6yFJ2Maf+zrXWkx9ouRJy+j1jB4POiBnIsmZ+h/iBuorJ2s4fWVqjedV6M1u1PEbWsMe1TVUXi8BB7J997apUzT6SzxuLOiAXydFt3vIn5S7N/i9xjWVd9Lb3ee1y+MezAZmzipziLir0WljlG0R9Bg5qkjg9V9s3wicjkBqzUP2MQZvqaHSTH89jKAGEvx0B3jYjhNdDEr78hONKdDAD2GvRP6SZsqKLOnIx1wjRaEQIOFEMNcQUqTJasGnpqUdcjcbBDllvRwcbcSaPR1EYQE8xySVdgunJSf/70XG7M6q6os9JA9P+tAAdHX0qf2DVV/TS3q6RsrPXfxRAeJYg6TGHQUWg5l+bzWvdRs77WjUQERVqOS1+D2NSLrx46nwms46sTs9EZtlK7rUR5YMMNyeEOwm+EUWmgaGvd1JC4gWXacVCsFbm11pLeHILJkAHNngeP0qxzf4GONrkWxoUJbjxZBeNvwBYx98YXDquNNOsJAURaJsP37IErjueoe5Y3k22aaroXv4Sxj1fJSiVv+tHTkEOzJdh2uASw12R9hyk9wvDC2lyn+myULik4mOgv19oSO75fx0/bloHx9cwP65Fism9VWVjqcOkJaf+MFbxmnx7zduP99rGVGNAy+FoAuQCISG8Mf7wIgJ7OrcYcpA1XkLHrXA81J9gjA8uMuQclM99IMXurOwBRust+oxM3o8t9hs9G6A+p00sVKxqC0OMf+Ibh6JrIOdQ5FSw0nmhCWucLmrsxrjMJzfynjQlqVlIdfG8GV8VQjnXiwchcG/niNJIi2l9RhY/9A3IYL8P2jOG80HXTJlTqgeN38B43qh33mVKnqArz2d9OTCrc7oRYh91JxKtaGKjrifig4qwIXiKTqk383OsS500Mef1QUyTIY5D7VOIKRuQgS6Rqe6fSXEjZk9yIqDwFDYus79JmBQyXLmN3YLzEBq+Uw8LJj49TflJxVcp4gXD4hEWR6sTHq1tKrxW1+RKJrPxiVq0I9kYNaC+9mivZ8tP/ITKwY+SJvun6OXHenaPzLbsNJHWTfwzV9gCpTFU2j1SfbOZt0N4mvjMvvB54F0kHbrEMiulsj5NsPJawthkXvmQwqSHJ07o7CDSK39O+5Y8uZOxbjEpR/wX2pwHLiuJGWomQnwCf7d8Uinr9+Kdx3OTCaOAcEsTquuj3M/HSEgAisKNPzVXwXnshcWjHv/GdmXcZv+sqRlfEREZgpKUOXxF4mhVk5LMqAbQLgP/2jqFhLxsT9oVW3O3yWSbfFFfbJUo84L9irYJRZ/mp4SgzjWynrlMkefoWHs8irz1D9kXaJVvmwWuVcqs2L5Y/xyYrevvMYQqSWMOpX/XgS8q6/Sc5+dUFfJduyo6hfDacIZs02tC4tLDNy3drKaO5ae7+IZLKYrGXKKxa+hCwBhjppSzpua/PvPWqObh1XS52/hID0bPEIYmIfvS4fkiahMaWGyc1zkPsoCM69nYXm+3AGUvta/5QD9k43RbBDJ1+7x5g71EBIfF016DOmKkSlNALKOpHKjlz78lfWnnZ1alxlI88NFeBeLNp+HpWC5kp0c6sOYINqJcdbfL0LT+0JMJTbk361PEkYvvHL0LcyMcXnE01CNFcLwZaqvvnB+nGRDfKC0R0PVXPuMbLXVX7wPsiG+Rjc84k0zFTw/pTYWOBnHn7UO7BE0t0pHvlmlNW1uyOx2Tu9Fqjkf1N9LCX3bhHi5wP/WFU5kKPaNgxlrl8Ck1JYWUVDJJKVoiSR3slSPnkZvDpDSalNCdNNZUvRPOP6+AySZTjC1RYhveXKbo7UhzYeN++vz+47UK8XJKK6iyhpBisDENZZRayUvmcJlHI91WjUcpw5VcbPRpk6daorwY7ViSS2J7lXvTastEHjD9LkT+7ab4UdEIXTEmG2pGYz1YaxpVeBaiyrHHZgn3edtCBb/5n+E9dcAWmQwvztqp1lBQ6jO3lKCNXeCwjM9T/N0YipCf9OiH3V+OtAGJu+4iyhHhXNwdcShdxr7k4d6nqF3Ht2WU1bGvxuxqhU5aKEjW+WRgmufyB1XF0A/k8TQ0nG3bkJ+R3+ahqMMqnRxdZa+hnzEtljRQDFo4RXjePSMApO6ms+cRW6i2dgiIK0XaIWNc12/n9BhYkodmi28cu0wskOcIrtKSDGqwwVG6E24et2jCd4sBvffchkgcnf6fkqiCI4WHIPg2rjl4359JDxx9Bw47uUQP/t4f2wbG0cxcxUgzB2Qq1aEiomZsOYJV1pAPoayfqTJNtx2HBaW70fivdvL4oN/fYxl5RFg/AK31zx2BaXjZkhOyRx+ZaC8zRmfytBC7CCJPRaKVrxRJlaXd1vMoQ7Cmtu38BtC5sQRiWdMUiI73xBm9fQdEYQVPE7PRtETu7Ukkky9uIx5pc/ak6RTEmBV5kYfghNRygEKV7qX4ZGrq1+yDzcY1uDeSi6GuDZ8RsNaiz1j3wuiAsmPdHnm7kvXPfkBlx8zsajywKBiuRbfSL+LYdZEchJmfK7bryiIbSRiX0uLiwbc5QR6XWKuhTyg4VQsD0w+/5Z4zCOSo8hoXSS9ZbVZGEptOt3tcg1bMcIMY0UF4F6Hx2ZIe/xoyy8mVDfUdGGsm+vXIyUydg+TEe5ECa+kWFoF00fCryfsuasr7k+mkNFtHKSymgJ45rwoOvAlP50Ug8Lk6/iDJXYassZ+L4tutfFo/2rukQH3No/WnlP1cdPNumgbZPBvOyqgrIEVwFoqrTOr91+A8IhbhTe1Yf9/VFYN2tFz6K3BNAjCfVv3mjkMT9cowwkyVghuvPv1EJ7wFQK3UZX8S8IiisckARcmY4eBRFGqJrCt2ml0qFlDX0ywK5ZmBdUqfk368VA4PxHaUlcD1oZyBn+igG3USS+6l9MmHTrcgvr+sbdY/nTpVDEWL/4Uk3Hm7olveavf2y8sq6zkbd7YaSxyouNsGJNsQqw/Mvq0dKs5sLtvTrBmyh8DeTo9yeu9iCptkqmBLc2Fw2lyABnXHV7ygbomQwY6wvv6OjToF3WMxZ5zFBWQ6nzKuR0w1YavuwZGp4uoDhIi3vjXR4CIACHPvUyvqeQwI28e+mELsGJ/zl1Dl69a7HZtsOxpmVqrmwTPqucuTVTBBwM23RHVFlGX1xxKInMMmzmlV+x8rf19pPy4m7clk5Mje/Pr13uyasC1nLF7xFWgnnPLYajOvrxDJarJdPhIIlbv0rqiqQQtj6QJLCkuehXOjKiOGH4vgKm2i4dPty5h/vGSAZcvPZmXvAg9lmEUFS3gOvzTXFUXAw4h/IJ5BwllY/HLdWW2Hs1w9M3Rg6X5BJIEUneVWOreu/dLB7KwZKelAw5NR3DJuGMkPN8mxNPB+okUoTpDKYVRs8dQuF/1FnI5djuL3RQekgeHYYRUGjrlQWqphQ+2x1hAwV8OYjnilnddKm5sZKSp4oDvSuv2W8px6wGiPfW4BdYIc/d23hHusiACJrjpwE3kFiudhteeWdnL555bGWzDp8ALPEpy5U69/Ud8Wloc6OiCUJQxdUkRIJNXz02XdDj/Y9bV0uFt1/e4NOxM0dhVeej4xQDzz0iYDn+f622vNpeKiE6mY1DmtcXRhxJTdzzG1kzJ+eNjdELyh8vZ0WEHSHO9V8Qorp7v61CDudiT5UHPB7d5uHU0eBLoniuQNGLER5vIwAGe84nfEnSfg7D/YYU9MWJnBz5/EFWif2CtwqFF/NPGzHlhzMunLXFqOgz18wD39lPDBMupCalvMZJ9zy0D+MmF3QX3fzrZND48rw4ik69WLRpUXgG6HGmTUQGkn/0S9rj4ohah3zvj3lgBsjcS3ZFw8qCgXY9modwhum5efeM4E36F0069mw0cDGIpVHQiG9HSw7QmErTZWeubMJO+l0/uMVd0lyyj/KSDyzC5xlMyOEUBcoBs7MhZddvUN/IKxxAhCJ6bSqqiK+xjrm4F5iiBwbFUQIWIGCsgkmFgsyy3lOioSo9OaOvEycUN6IhJEJdB/7Y9EYdm+o6C6Q9wZXilwDwjuoYtJ2ZrSDIA8PJ5Y9g3JOLGgYuGLB7gZHHqgfRZV/nX+zpPbSPmAmjd0vosLmpjPYs+t3KtJIsbTdPv32FHh4TBAPlPqjDpsRda0O2KR6Sfp9utkZJkEDNqQJjWut98TFWsT2sA/5e/djD2GWA69anytcizn7IYIfJ/7gw3zfCbAPqQYAtiPpU3xxBDGAqnDqDVgYw59IDjKwOBCUk6SbGReJiLTBFStt0lutkkv+25khgnt/JyjgC9mEw01PKjd2OOnoJPb/EiL/XTu2UITS/GK3yvDAWtuSIOtileaNRw7hSD7EDOJ1xGqy/cpWr7vMYgzmUmqWeGmVzMs6x0UL1cZVjcX5KXhDuJotN9naToJ3FQiVsRqexUak3W5LN/+R+DrfV8A4Y7Rab/X25Zkocv000IukRMd9vamvgbO0/yVhPwTHfBF+icj+BZLmVRkRP432+gOCG9zwV8gzQCrj3yiYFVEFIeF1WX/hViDkbOndWGRXVpepQeaNooON5SNT2seECIQwrPYD0E/G1iS3Q94YkR4GzsXKiEA9pDfv+BZ10yiFsUcGe2YDW0bN6V/FfkRYYU2x8GBqdASzkCI2T/CwUOW3V9xs7YToo/O6J6VHpM/Wu4VZBMA9sB9uVTcghGw7TjyTbr1TiA5JajmoUqh93PzJi14lmHWCEIWAEsNN1mfeGCJlKxvLkd7p+JnpjLSOkfRpuS8j+7/kxl3s4vEQGc0g/yJOtxTJMhnrGdf5MJ/Nax2s1DJia0gbpmUxBzkx4wdkm0pBNrLXlFwNOpgsHvMh0iooKEhM/UCyMu51OcAF06B3dLKlPYyil4imJM2wfHjq8A52dGXoVD74SYJD3n5NJuRGMPOh/95gKvrpZLgOO93RUFNAMr4z7Y1ttyoTlhntJ7RGJROBcNLculw4v/RtolkdjoYM008UKbwW1o7qglzaqmcvbLD4wNqtvCY434p1SVz8h8zn6TX42WxVyvLmFjxIi0Um7UW+iht/vqDlp8g0LWHXOsdfbitrIiiobi59LR4gPyd0199xeoXam8X2RAVQy5ao/qayEmci5+9xaMV/HxqN+lITdlKFh/v1NWb3xViCImRZeotZZvkxR2I/leKiViNQDOijrYwbmkP9LSOh/6viPKkdY5TH5T22toNk1bZrSnXbaQtrUbfpE9CTJExXpdvQ9Fuv66ghcniHkMx/tI2LQHdeGJze6MqEwJYLyoQj7VP4GRU9F/hOMXOS5iLQeHGgDlxnsf6yOK7b9U/UxlUs7prrpMEn2cqql+/UHMvMXFtVU1AmCKkwcOL1hbVyc53xFwBzzKJXxmApjeBJADlo1qvYtalZsvtpBqSO0ItB4u+5Bq/LDyQ06UycRmypysM8qBqtjKVtUPqcCfRqPglxkVbPLjrFO46S+4IOTaTPw9uLkl6V8HLAwxD/70NcppjVPmn6P6jptLVm8NbfEvwv0xsQ2fSxZzu4bS7GdwIyIFfd5A3bZRS3gXjnJsV+zcyMBYWA6Tr8kCVp9NJ1ntfWgpaNL+HdHuhWkIpNDvVaUIgJQlojNk0jcYCOEt3tcfX1aXNF7fr0njncUKrN/HnDIlHOZS2RR7D4uNgSun9MuVcrFDv
Variant 0
DifficultyLevel
562
Question
A bag of coloured balls contains 12 blue balls, 10 white balls, 6 black balls, 2 red balls, and 8 orange balls.
Kimberly grabs a ball from the bag without looking.
What is the probability that she grabs an orange ball?
Worked Solution
|
|
P(orange) |
= Total ballsTotal orange balls |
|
= 12+10+6+2+88 |
|
= 388 |
|
= 194 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers