50083
U2FsdGVkX18SO2PTfrx+YEapYJrf3KU1dSpYLIpgxn76bjt4NvqZFnJYKGN6BbYl6RtdDl+SiFp3lb/iv0YS7S1mOIndQOui21UyuxfnPAgyAVyNZkz8K8bWL9VJu3FSi9MLjfQ2i+6lHuM0DGghibqmc9a9NUKiiUZxbhJZqI4CSszlPADYO3Hz3VzPzXssfTbB7g1h7NdYfxt9ylp9N0XJCK6GL88kFuO/Ejk7lW4lhKMtDlsSoGVUmJj3IsKxE5rUW5nr9RpoRn4bnPn81cRghYdhuRyf5pcZFX01DT/uSE9blK9HehSbKSp3idNVCCCuWTFVYqw5/uXWlWKp9+MPxmdWMFLU5jYAeWmwnHfRgPb8dBwgxCR9J0mpQ82q0LsNrO3FVqfRsrg+voswdASFUVvi4JL0WIQQjReOWAEjVGeSrKR9xFtJo1Z4zMzmbV13GvRMN/ZwXd7Nwts2JrsmoDdDwU0XglO8leHFLRUA/6rP0zym7p04Qaws64QffNZeTqztMIDy/2kdcrM0g39sRgdjJJEgY/hRI8yImdmjqIc4qf1hLazYqUCHw1swXUBYI9T2FIng4fJn0aD9QQWkJ84QUUHRSoeD2JdKnpC9DgJLQyfWEB+kjpcYOqb2MMGKnlUxPUgcozdZQGZh1cuU5/aREKZI2ThcnOHJNAV2lLc2iqG7ZMwfL7jNBUSdeUOXhxkghpFP26GpUY8Ggq04cp6xCORcvYa64yLGGWaFPQeEAl4yMcSuKBGhjcNp3HyBqoWyhjGRY5O+7UGoFraWSFWN5IzSaJcGENpU7sjWS6EsF24BSDOWF3W2M/2ZgsDMJ0r1Cn6IE5xwgMD4MKZFC3FUkQ/uqbUMx7A2nodJVoa443e9V5naimlP5Dr9DNwJDcFV/UVC+60ELYbQ6eGFB92YT9uVzYxfIZ/2Erj+YVmPOYErSkfi3zZhX/Th267uIsGKsroATGaR+7jStOCEWa5F/zpaskPiWY7nvHPW2ZmGg+p+Gc6j8GYI5tSUwd3ieA7sQbZWVg8WXiRPXmO8IwihO7sx1X3CBPDPPRpf+LUR1cUjpZ9vcZng008kOQSg4iQH0yXh1Y4LlwwBECgrHEP/TO+3E/XnQwE2+w6Xj4UkhVE6+p07L0MIR1KlIZJW4uI4LLfqYt205uFE5nMfmdpcKVWL2szgMeRTHYGc9Dz/G2lvnCg1o6yl3p3+87B6qU3dB97tNYDlYBpmOxMwY1SxfmH5QLtH8Vx+PDcW5mPMcT3m4LUObxMFIheG7voRpqeLqc0dZpZhvhtFLpE3dQI/A1pbMwdyYABsdIUo0qVvGN5s/44LhKO3lgF+6Na0Ze79X0kc82vscyHR6/7K1Aqg9TI9lNVTpAq1uQ2a6+2faSy5DIFTXs9TPqXdzlAaDTVvlkw9i016WlKb+sSYoIhsDABK5R99IL/dBsaGJY16OJXhMft5uUKJ6RlyLv3dNylGuUvcg6zKDaJVbknRZO9/Sf5N2clKI0iH74cUR01ON6H6dUG+OYHN1k9VwHUW1UJiWclgh5dGmLna1tXwA4FQi3OkKwEhckox59KQtAH7n6StpKMsSofJkTZXvNYtHRiyNzWrvFEsu12+gmyVHq2LSbEZRFYEqHQkMYhtErb/LN5aA5Er5XKPQVN+gBJDMu1EQc8SlCBG2M+PEalDP2ZM6xLsedeQ9xtr/4/isOyYD+O+UQRQlJUdWSrYI5olf/xUWMkuJlKHOeZjtNx3Fp2+foQAIPdzZvu48AJtnP1/Qo0nTwBE0cqdYRyj0pC8A8lhoUXgGJyp0w6K113I6bVQSlPUUuCo3T3O7mGG8SgyfLL+8px5NxRBPhDMQTq6D8mGx/FXkyKRtIDq16QmVtyaUVAmWE9oxHWaQ87xQ0EQwoK7+MX7sCplYiHlp7pAp8kuPngjXHIXCiMJLRB5BtbKvstuNnhGQ9Zh0wFcsRWzMLIVHnxiWjTzFjAv8uSkpLnO5ww9NklZRJY8B6FhnvLgC5Jgj+6/7ZDIjH4KWKqoSLFDD2xOjpjdB2+rtQqpJBGtVZbTUViz6gQ+pU3JxvlGCYlf7sLAtyp4prUz7kGBwUJf6ZFtihKe0y29kmR/nFVW+fgnnVEzxfAgnbM6q7RMcDlOXkgEBHq7908KkyLDMqDufMy8mh4G4hS9KuWvqaWnJZsddPDbk5PIn4Zn3jupIWaA9OPsKL2ljN5evHaMNo390UOen3nTvki3g+3hyJC2OWcswmB8wqrEYw7/86dP3IyGwoFIoVMbpUNlV/pzF3VrRSY7IWeps9l2A0YlmNBQ2lSZAz/GfkRCCuLd0X5hJVbWhNqElGSKzHLOmUySjhVPvOZbN6fCbi+foZ+Y8Km6uc6DwQXq1MY59jEjGvW1U9RH8UmxZYKDK/zEeW789LzeZGiQAKEPPQjXC84TThC+4P7lqZEHAWV5p9+QFkFRqqNtZ2cPVMrJrMGDbKxciA5e8pSCoPWZvEMLVUSfYTlwCg9XD7MAm+jVOctxgXLdrUwTXAAbCONR4U3/NHNef20fD78xhEsDwoJ/V75tKmVC4R+a2wj/OS77qpybKX/jBM42EmhsHwpU6QJFYxRoR3nGqQMIwM4H4ReQMwLKle+xk5XKX7d0glkLKySJBqXKrjohQAjE1/r6fqfaGsXL2/iThxgAUY3hms8ipq0j5TWDKgO0ar+FmO7lhwNDasBCG8xlzNk5XANpFxJe2vjdtWc6+krg8v98OQxACH+6kZtGakK6+JEHETQeImXWAPugolZ73xXUYsY8kSyn1sbynPnDGDuC9gdJ4tVLXymNPgBZ9PbcMTSuxDhV4zRfyvWP8JVpny4hm+nJAzNqagxTLZw/ntrNKxGAMo9RrCit8L76SE2DzBdkfIi3HPAoSgDKr456e/Z95vmmIbcVMm6/7Ck+U26UwhgY4nTN32Y4EOSheWup5VkVWxN49qG5Kf3bCdj7+hwT1K1gg9XCgUCsqnT0Ll/yCl/cg9bzxbUJYV5b+hyieGT/4TeBYe2hFrQX964E1SQa1VG8NSGX1mYl9Lv45RI7pP2WqRmJs927CqrgBkQHFw8GE7HHa5xvK7+MWeCh8kSKsMmiUtIINUsxstXBpavjPj7z5yX4/CuTTMXHht9XRPBCw8WI49HUwAFG4ZEIy/IIF3t67nRupq9zDNO5jAVt3qS1cZerZFZuMjOsyDjwGmDrPoIHORpZbL+fIWTOWo3HgO7MA64i/sVAE0JcJM193kYAkKGL2z3qKfDFsqHb9kSwAYZPcwuQfxeX0YPfvyd3Qh3+PCyU2t0Jj4SRyYyHy79bTHh1LOazYagwxswSUHBEAZbW3LoM6n/UF4E+4DCUN3JPtQxKyYRjEalKBHEV71ARiBeqnQ+qz7nt3eE2ISL3kNBk3eN7OC3u+AOWfbImSXDdFz+gY/vKZPDbDl4uMzdyqw4l5NRo/KaWwQpeAzYYPCmheXNt/X4mym1DUc+RFuk9yFORAvYdAur2RETRXPk5ph8tD0drIDpON5TA8SKnYhFz6IrIeKDN+rFavZnVmvxY8kLMik0K6seKWxEyGFeHf6hRs5qwQ8TUv/0xmO1GFfJ1YVjpwhq7pTowkpzIIR2OWBCIkjtO1J8fUODvZBJbnkXT6dOh2xrkPuTN+gleVevfi8bvij24oxSGaWPjbee9VoLMod+4K/roK+QdThftsrBI5r3LuGP1IfamZWQNUXkmaKKa0iLUFFyhAmDFcX/XFL/+MxctxTuYhkMa1ca/7qZFsCtrEXbgHzYaTYOLfdoSDxVhndVYsVtIPVXy3k205SoOwlJl4dybt1mPMgK9owrlPYRWwTcsaw98cb1UtdQvLZ2G32/FMGxwBasnQCOk2qnToEiXp3wiJ3km20z4AKXjesQh94X0QnmM2nukUYkmokySI98RqusLCKpAogQ6Ts7lyvI6O5l8uBiQRzIhP1wYL1QWHqfDF43KjQak/7Y4/8xf8WFK7Nh01iFKmvrwJpZgYu+7LKUpbX+V5rq1EsuuM9zwf9MGUE+At6yC5lC83Zqyr6z1DBChky+cDmrp9C9fetvctug/qELitKM1UxRqQ8ATizAnj2nKktIHxIDII27Tb7T6GwB1U9XZAYBycwCBbZ6WFgyvITlwo91cgO0CaENeoYXfUx71a6dv+9WzFvCMYZ1Gz+1MxDs3R+GksRrR3NWl2ykRlMxJSThLu7wZ6NlZcoeAs61G81AU1ijXJaNsowuUeUaOCC4PjJggZsBToe/iB0vnVraQEkKLqjNqG643KILGfubRwzO6fnxY1GoEyN3UajoYjZ9a/UpoEd3FSFbWuE3GW48Ri8aQT5dBuB7UCbyZ5fP6VOUn1Oo0PaoONqopaUAESDx8G/5kN2LQIhpwnV4Di6sIDVsAV3w3mzVI1H7xoteij5NPLAhEtahYGOOrmdJfiCofPm8fToSBS4Yp2lOoAcI7E1sDSL958ZLk4rDmArGfLUg2M9RTUWkHSvmGh4kwwuxt27OXBr4mMN4w7IzlAAdM0FN6mutWXtqamiVXVLFe5W8hqiLH51uC4kqj/Jx+8bseaKCwJ4Ml8+Xt5GhftT1gT8QpciWwUtJlqh8YJW9PzJIDWFT5XYa0DrpjeneciLNpGR/fO6p1gd9xY05fyRaoOAk4uRAMnyX8NBopWBygWnfDNzzbUlXr5pDF2WQIqdqEInj0teIS+PMTfvNjC+M/FgAYnYCin6ZrkaQSCGLNei3SYnjTzwIDfRs1aNrZhNMFHhrmu9vZOme1Vc+8AhSgZ5haZMBkw/2CaZPMUBC0VplQiXVYIAJgOZt7slIQADHA8s2bUJDN5CkeEGHMfUXpgaYDQ9SIV9PT0M0B+nAJFFcNo4K26Adt2rRcNLCaR6Yx0VLqOcfje1QjBOyJaGtGFRlRCFA7yNoXqq4cYKw8IxjbQ1ngkyVpJjngn0SZ1FYxGmgsGVEVFVZL/by2BeXximCwe9ZO6kxW9PMg7pn706iAJcK2pAv/yL5mWQsUzo0SZIb6uBGWd9/DgCb7edsLUlcXbe0bg0qGB3AAP2BARZZPsd01Y6b0O+H3mjLBgmYe/8SXzbdQOBf/YRmi821i5GP4pQCIGmdHhbJinPUpAnwT5HSZGZ/COGkYYZISYKPa3uGJgFSVSo5FdDAAkMA1pbYKrQf9azLeHk5QMo30f1Zg1HpYmqxR3lkBU6PxuPhN4o5oXkwN8Lwwr3q3lSn4DxUzHbbWSb6ZHdot72AwIhy5cMfgOjcr0KtPPyEb/G6jk/C8Zo2crtbRG0UcqNY2YBOVb8NL2Aq7CX/zkC0wuuGdcLD7qJWgPQpYrlTOlchJ8Sjcjc0s7zz+yC6E9u59r53mQMWkUlgi9xL5kn47ycBhr84vHRoi8RyhZWu6gSZ2I3xdIlvsPU8HEf9kaQPOyTzRUPA2fbdjfYG2BS54woflwaHrZnqPH9bjsRcdwCDFekbl+tmiJtfc4LNkAeHo4Awt13ipYrjo0ol3unHLumILr6lb78lp2LaxMsCscpve1qIIrdOAB0b+4F09vLAwTiTwEfsmpexGZlAm1kY413hncGDa7UYHPFTDPO9lU9o0gxwuC20Jf0jn5VA87vLYxmP1yn1JIoIGXQPnldnBZvJQizfpFX2jcjGt8Dorri5Gve0y2lRJdsSNZrt0hr+DErdetYqTCmnCUgg1QmQG+wr5Zq1QYTpHNhhueR1grzJ7Ddd6hVxeiKZHSZy41onNmPcO94/CAs9o4ZXqv/8HAdvLymdPmEgdPCGKBU/JaHznr5Iupnky3IOqqBO50gVMZq+dzjWiHVKqvMOTxr7aOihlBWtj/9pul9A3Fq3Rw1R2IgzII00=
Variant 0
DifficultyLevel
620
Question
A local soccer club has 1600 fans.
At a game, one-quarter of the fans wear a yellow jersey and the rest wear red.
25% of the red jerseys have a black stripe down the back.
How many red jerseys have a black stripe?
Worked Solution
|
|
Total red jerseys |
= 43×1600 |
|
= 1200 |
∴ Red jerseys with black stripe
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A local soccer club has 1600 fans.
At a game, one-quarter of the fans wear a yellow jersey and the rest wear red.
25% of the red jerseys have a black stripe down the back.
How many red jerseys have a black stripe?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $\text{Total red jerseys}$ | = $\dfrac{3}{4} \times 1600$ |
| | = 1200 |
$\therefore$ Red jerseys with black stripe
>>| |
| --------------------- |
| = 0.25 × 1200|
| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX194T8CtCclQ8NAn4Rwf5TPegWJXnf9t9tP8TenNR4x95uHjKiTi7RGqLXUjCv9hRAlQlGCQWCj49F2oI2eMA8vuhjiMqoiEPIS6R74i7sLZxjpQKbhsCNuHkAkrOCxgB/FEihGiVZzxr6/8Da9/3KCxogYU1bH4EMFRSBmrl+S6pf5lCJtqkUNJJ9KUWI+VlrFJuDt1uP6Frv10BFM1Jwm0KP1DjoYugdti+x1VqFYnjbYTbAxrzy2rCGsqneTDeDx8kUcann4qphWtPNrsflwmptyw2UonqBWraM6TCRLZoPsWwd0vcwz1wY2xrFxfJdkHKbGLSjBcoJN86bxmHiSabFzznLk4FejWP8etuTG09LwVP3uxBucxo8oUhjy9z1uC+DZ4T9gmnyel3KII+Et8Hp4j4bUG9B31bvSprvzhMMyhHqNVyKDm8CTmQZiY6FNHOOuqtm84sYyGPGO9s/LrWes5+1jJJyKlIK9z00EWHkb91raM7C9cM7IfPWGXU5kkGVp6bL0GtVXWhzxuwyP5nsyJX7hbItgwZ2dgEkI2v6CgMDcL4fxqDoNEjXtMiiRxHpI2pLbW5N319elLC9KNkS2DdbHapUxjtJHRCOqjPmpjlMh0XU+LVxzdAO4r+FCdT1KWF94iysYM1kKEwuN8bnDKdATLeEK5fxRA63YEUTdY9oKrf8AlLtT5Az/ZTKATjejhLUMNjvcQDY1DJKwarY+8e0GNsUOP9kcyMKaAtgPZ1EMx+5SEScaaVxvf6REH0lKbFFqYWh/10Ahx/8sXLX6fyQ1DmmujF/xJXBYguJDep96Qcf7Ove2bfY7roUuUemLs247+pOLqUembwk1cHpBhq3bhkllIRnHOH1CRKTpBm/x25aTdqXLlsLxwJH9G0TAY1aYOQwEGhs8fFpL3l1hCazhmaAgIltbH0mgFdtaKH+JojKRCIRSvlq90rgDDuqdAW4FPWN25hMXueUAF15je4YdmuvyTBEfveCW4P7hcjR4ceI1FU5h7kS2SYMOIHdN6LysAbDogCuZaaV4amDvaLfVAwTBegLNE6PcgraJUubVnL1lbnw9J0k6wNSSMxpDs74rjomnVRVVK+EkYqxQt6dO+8qGQfw6o0Sggpj3cSNiByOEpHOXZDZ7Ic1MPWh8wkMY0rfdB+W5jyP7VDbeZvVg0PfQEAK2M+pbO+IWzgVUJeIHJv5Le2p8P1/2/zRio93pJAYqglXorknRB2fppT/xcgNrx1yqD7j2p/0+iTVuWgyLWhqLsuc9/9VeT38w02x0idZCj/+TYS5H3fez2JyET8EoRx/jwbw1AsRBpOHodtwB9FNDEupzrXtqp3K0byM5HBUQuqPnkCbv9QcNajBGSkNvpCQAXqzBHvvf3tuwjUenX6+YGfsVwb/wIt/NBNFpOIMTSpslT5PjwAKfhGCvFXHJLqAL/1Z0cJdqQ/eZFYnhidRkfIdHFnPIFj1DxtWKK+uDzCQfX0yHPQT8BsrbhOSl6OZejZ9ACra7c5QSjIsl3GbheJ2E0tAkYsIK3PeySyzv0uFPUNkG+6q5xxD/an40VsSw1JIh0nyBOmZ/a4p9AK9RYGbStPk4MON1952jhWaXrAxTNILr0qTrPIiGDgx/9k3hOGAqu5gLEimsP6MMI5V8XRjNyqzbBb/t1Z35V55JBKcT+9hfaTjMdfgMPemgMZnzAYMnOUFVzhGFxqFSa9rfqIqYgXqGw1U2H/89R+pCV28h7BD0DE3B1ih9dC8Vjv4EItdbtbldUurc8/rNqrz28NzQSHCPQDwm49GXQAKOACOj8HtTTxKX6P1o6gY8MlSqpK4FUOpqHfTgf5FT8mQ2LSOWKnsTPaaL1cy7w4o72Te+n5Ww3MWibg9IPlviwbhgU+DU59h/dYaRbKNR/4uSWANEDVuGzq2wqDnci+NZtt1q5cHcslZj542j0NTmpIpXT1Mng30f26lnHRxT6u2YAlJt6L758sk2hm2D/ogiPDlcL7MHxvT+AkC/cd13Ni3hWvzoBg0cUMPEE6HohFMAJU/0oX+BM1F1ZPt0ZIL8oWHU2vkP5B0KdKGm242anoFux9u/c+0fWv++nlXv/+R5WVOScFGz+CBURQRKn/QD6sJFNL5JB8pbHV8ESbJm0nbgYk0HbLZe6J6a9iLi1MLPXQHw6XaWy8pkBVNc7UwwMZlkBPMPWmTHUFwAEHHLSpE/qXmvFI1MQBJhUqPPZmEG4jPtLp/la0n1vqdmuMA9GlpjjjiAbPRbqUd88zfplJ+egl8mYzyptv0RgAgVfmJtdsEIp9SC5WrOhSZufwaDUu/oCDZqX0lhAKOUeMqdc0grTr1qb1sm57S6BWVNRGcj55l1TnlCFsifsCVqMINxbiTwOucQopQ+GGQh8A+4yPe06fYhP1ENuXI/eodKSIwlRh8SyqZR/o5IUk1de8Y9PljowusLB2PAa1WTx7wdM23g7BkHqsWSvGKwy3Uz+jia3J8jTLmToIynn2z6e3Mgk9+OGc+fY8RXudKnbg7r8Wfil/OeWxHgDH33ZvyHYNE48+pV2/SbDzNV1XZzpPcDBdZtBZkZqLNkQLMVIqRFfl4UdjqE3aM+N0Az9KBGxjfsWykBnJWZmphTFiYFnbaJtlxSIfVt+Wj5bvZvWX0Gqfai5HGRfAKDXgy//B4ttM7bPPltVfrLFdoyqJLDqwTNaSs6Y1x/5r7aEwsL4peM5MN2ybnLLrOJ9Aa+cuXCG+7jgFbIXYNaTp6mJA2ZuV8CK7ctTyG1iO9NodWmQKCbYxyko+k0PRPaOVBL+n9s+T7eoCbWS5lUttNBtwoeY+TF+sG4lCKbjfpHNrGAqC8p5ThOghzTv+O87/Gscc3qrZDgHXJjfJNf2I/37JqJjMyEMuZosKynbSK3fK5YsvLSNJiD0zXdog+OLAwqNBIepo8ePCFo7RlAs3wopOZ9/WICYJgvEtJ43yklyYfO2uAmtafghRc58S5AYNNN/YKlwR9BAz9Sc2IuCtTL9R5yUGWPA+EbvvCfbTeW/fKGX7k7JX/ybxb3Li0uYSsDsM/Mmk6F+FC8/vvh5rwh5/IYZtxi1qJ84+oyUQcKQ2p8VJsalhptk4l8BQRjfqGJ57ZCX0xiK3hBqxYeQgbGbT0IqHPA33/LItGLalDSQssxLdi82LKgEFRJPyRSX0PSOMoH8e7JzZpTrSvpDLQKcIJpFc6/l+rcdZb2n4Vhj8vDcu1OoZc1Wm2zdTZwS8Rt1g/seLhf8Ra63b6JJyhkWkptDDIWkT9MPVxVS68vwXdId/a3KD7wSEQ4iEKVULT8PXL4xxgSvaj8nGDVw8BmI+ioyfBCHHLNFnJclDDkQEn8IF7NoxhAF2g0WTeb93i4MnC4HxN5arZ3zF35lJU6PeSylIji97XxDIpBJhPUMcIhL8qKX0ixtTzY+V+fHUrdAHibso6D2YG6X0BrXRZa2+X8HT0cTEViSPdUDoxMMSC+FjciLpoC36udJLHiLP6Rc/C6EqzC8+lsRxuB5CZysj/uziZ0VHqoPkn9RmkQcu72zUpbkPkehhfc3Ve2nMlD9uJVOMq4Z+1uTd9pUIO9QYoJYEccerFc7BMBrBSqBBLsZ+bX/UO/I9AMllVKt1mgY1pl3cu5+dPeZfBf7lH6EswfJ0Ls0EdCIVC6X6RohUf+Puu9GZ7ssonkhE2cfXBYU4KdNXLjQMGOC/1z45qYhlgtVZ6+CSz2VpDPtfJ8vmOsCPxqQT/ZR2TFatn0V+97Gyz0PGfnLA4OPacMUIcFRLiSDExaHEzoe6rjhDj3LDjmr1B3UjZxNccAhlyh8ONymdcHjPma1QzVmKYl50L/UzMFkOh4X2is0K7wReCV51h4Bi6gUkSYVF68Byzi9mf3TX0xigZQ3xZGXRJZZOPCnaZQx1V3asVFxtTgq9L8iELLSiIUgztTrOG4xzvlfIpSpW+//bgPXgZe+Q/BwyhzApibcTK8iVvZxzel4J9ZNHlqpcjCtYJjUdTRaACX1sIciAZ7DX59krKEgCblOBBaYhgws5Hjy5FKls7JUx2VJe+WVt8VqrpmDZTDjVr4Kh48Na7hxVmpQUnqu0ZxuAvnvWmS4+ZTfEcJxqlZsw/egxOQnciXx8js6YhmaYigK3AeYe5CaIaE36gp4JjJ9GLKS4v2wuUzVwLkINWiOYTKbUaftG9N2IgbdBRZ2Mj6LzDRkZQrBLM3wTBIPkUaxbOZR8/T4Tt9NJetplGOBoJMEWdHTlABNxDFTKcchdJqqP57iON+ufZXNQs8jGZtVCMqL6WzO+mhwIcctUYN8puWPHBFGA3uTHP7Sh6Wk0e4nb7QDu+qxUpSZYGbSD7ayYiaJMQOf7KQQ3CIty0krg7VNHuDvgj8dkr45uLZUydflZmt/fzHX6SwYeMRlRE2e3XKwhSgbeaKX4d14BILz5W5j3QvJ4Aob3jWZdM8VGWuH1grj6tKU3bYwAvJqJ+sRDeJ4t0gq2FbLQ4WaGk2Wh0oXEHJ+XWp/WAYWrzQfUyTv3vYAhBbM9E9p6AcqucnqdzJ63Js/MkoJlPYBet/4dJF2J3jSH8Dc+6bU1HNCA6ATLrkRr4o6IFn21gEsx/fNl+ZRbeCVb3/Gn80LJ6tY4S1nJRBGrQfAYK9+ohK8D0O87l78U1g2WxMInO8f7c5HVVg80Ei3Mhgdvyp3zeX1CaPLTqxwQUi7MCx2OJkwLq2+GiFueeHr3YloA/KjRBfQjpgWH2EckIs5w+010P8d0rKqnbFxXq5Dvk3rfhp6O5Zrli3fEa5Em7vYsfiBF7DhLH8NLypmc8v2HxcsWbmMwaqbgD3mOKW2jU2X6BAIUS40fMcq8O3WV0sbxZPWU/bN1ntgMlSQn+hls4zOYL2OXbtZsrpt3Fm1d93BrViZVa1GYoq8Ih3hHi0yiAHbgUNo2NmwlKYtp6r2CU9gY3WIYC3JYo8eBq3AgbBR8SZl4wdKSx2S6G4J4TmMP420QLdtKTJrp7PlsQr+hDRqhxtHEJpYaPAZZoiFAeG3i6qaHItbKnouX1uwn8KB57naSv5+09RSO9wJ15mgFmoDtUKdVD+szLsiPzcIFzl0M/fUvH6uqfDl+2c41cI2etFg/FDNkNz79fufdIT1iDe2GoI1nxaNFqPzogeT2OL6d7GojQDIBIwFLtN2GX5kTI3V98l11Nvd5+C9/hxvAG4u9OQHuVbYjmpo1k42zWBFEcWdlgFLkMlPxBJB0/bP/fcCxnHQ3yI/dcvQNl9poXKvo/3I4DXxWzhXxax76pwE+4BhrdxfHjuLjRMKdlBFzB6xro50+sjEyDYhxqwfLdDyOY43NAmL/Byd2tYtyuXU5wbEvrCYgcSHxhUy2pU1H6cDQtu1F1ZPtz1oBRi7WY2wEL2KQqyJ1Rr0BqxYR/9VWnL/7cxpcsbOr34sotbj8v35LgMTBHyRwuxJVsRDClVJj/2HnggVWNUvxn4zfGm1EqQyU8Zv/t/0dfkdDnJGaKW5OGqRoPWJGr75rVw4x0bG6bYxQbsrekrUcAGuFSHaVnVF8hKhNghL60ma7jjmH9ODp4J928JjKPxYHyHTJeqSGkQ8yaQ2dd6FdNr9sjyGmg7ekUTic/LH8UT4OZ7lVAnDN1gNK8+elUnOUxjZeMgDYIi34yKyOmtBPmGkbUyldalD+tpxCJRkN1wJ8t78pXh5qDx+yUQHcMbSlHrySTmKdFqOk6au6+7XSVqCnyZKgAqz25XLd1LxxMga3XfmxFiyxVVjtwd/A0nl2hqsZEvxeVpM0j+jEchrAAtwV06fmAIa4ezD5upFbtsq9b+fBByRFntCcLRT9bmi3DLGsG3h8Jr4W/s2Qp5oFjdArlTx/4cJiK/iK38fSFivHZwNn99fuuSw7lMEoxxcNhwil6P19xYSuTiEWXrcQznmL5v3eAXI+x8PwTXEo9HDoTs7m6mBIQ6zLgvaITH4Fg==
Variant 1
DifficultyLevel
621
Question
A rock band fan club has 2000 members.
One-fifth of the members have seen the band once and the rest have seen the band more than once.
40% of those who have seen the band more than once are over 35 years old.
How many of those who have seen the band more than once are over 35 years old?
Worked Solution
|
|
Total seen band > 1 |
= 54×2000 |
|
= 1600 |
∴ Seen the band > 1 and over 35
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rock band fan club has 2000 members.
One-fifth of the members have seen the band once and the rest have seen the band more than once.
40% of those who have seen the band more than once are over 35 years old.
How many of those who have seen the band more than once are over 35 years old? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $\text{Total seen band > 1}$ | = $\dfrac{4}{5} \times 2000$ |
| | = 1600 |
$\therefore$ Seen the band > 1 and over 35
>>| |
| --------------------- |
| = 0.40 × 1600|
| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19X0q4H5X/9LgQwFkwIGX9tzuxLHJFXRZMcAwhZIZ3lBz4dPRF/gOaU5CpYxmUii1ISxAPxG/K/+7Pmwvn6vV5QvX7ndIEsSsN6RK/hDAiF1p6IlxmQhSVrAgVUlm69FOqjHOuR98n4At+ZCIHhsMlM0JrfnvQWBCu+9Pg1VN6EeTsNilSPozSsNq5GZKmWhdmBa3SQkH1GdfUNMk2dZi+7Ny+hQvi9lpzgDFyn8ZSG6RQCa3PlAIYg+UfQaohUrK/U3Kg8BAWmvBsgIxfnF3S6Wb4w0rcbHyUAxRfEbsr1j/wIPokJjTRy3L0eUsTaU5idmwH5B28ayShXt+jtBP8tSGRSYRBT+/38pwdyOzZcM5HanwHGzP4KiiZKWbZc9oCdlLEoP7tIchtE/TOKDQQs34nbhxxv30HYwte7VxpJklRyxuEFkakn8QN764zYhqfUP6Ly+lpMbpTCkX/aJSCBGc+kUkvupA8EV6KBGGhLCCVESJUuVKrzyCk+SQhS5RPmtgvebeaEMNsQTmpOz4Arh+nsYEVw3DEKzbkFmeDqxFHLtoSeKrHOT+PG/jzGgRhTcAnlyhDy0rx/ZL1+/qzgpp9B9iNtW4QJa7QdyQSHf0THItCBE7MXKLX4RmxwgEsTVJn+l1ZZ7a9z2ijSBQN6ZZkDQyDctjGsxrtqBMK3uAsGLXFdBMWF/D3fD7DvA6eycl7UsoGesouNcX8NFjIAQE1VlpraoMBQcfxKyZfpo//KDN0QO/auETE7AcpN/uaA96rssOydO7AAmjnI0Dxs/+VaOrDmsA9kOV3zhcsyDZVpQOgOE6L/cumoq39rQFHq3ur797AeWYfSqYlEaAChpUqx3dEhE8KfEiSqDuj4efa9/ihbbgiW1u8pDOKywvgdBTRCDI+4A5lmwqwX0+kXZ+yDEERZHddWKbXV/wVDks3BW7caVD9dFY8ChaqT7gw713HAbVy2GxZbD2Alo+ttwZkCH0A5pXfW+DcziNZKxwYbkt1T6Ac8Ey6aCkm8EBk2Ik+76xrl2THaBfhlU0MY5olaz5LOxJp0teZ0UHy7TcuQ+d86g5g34cUmef6ymYEWZgKWF1r5iCXt8FdJIHqJZX/oMt9NkT8GuqH+sL0yduWwVk4tT9rbxEsEQgRmklCznT0DhlE8VJjamZNooZmsWWFMBUp19sLlRq0yWCVTHV7ndwoJ53znmp2EEFVMInKDcy7ym7QMuHON2n2dw9j0f0vt87aziA80Y4ZTfuDNliVNTkYIAI7v81yKgHwcF3y2rJq8+PQCUcMbot49zMitanN1xUWpNmPhxMMD3YKYlJZYyvVygtazbYeqDodEdqM+nZVqHu+0xeeR3B6UykAouURA52J2GcYv9mFdEyyzpXJWptnCV5sLdHgDZM0IuTDiRYx7qkE+zy6UMdwcqUTd2RB+WQzrzW+zN4KDbwIuh7JtyazKwvXRui9Jrbr0gwQb3xNfsTOUoYUlJai+hYgN2lj4+J3RZMbL4yGUM6c50Bl1Zh9aeACoiSEJi/nJ4BQgO9NZXdmgl0ZnMaP7Hkz9Qyc2gYGZXL0a/dyN6uyXFpe+OXMLJUwM+68wimwojPz8xdNNcldWU1+wXVmrAjq4l8yGepjiZm1YVtNHJw7B2xfvYNCXUXyEFZb4z7oWAgMIkO3zitT+VUjFU735cZWnGAiDTqZSfDBbGgba3xgUvRzeiUGbme+yP1BaLhqJE8po+Zu0lII6+b15THPFSguTYxli3Kg/FA+8d65PBsHeFUhzmN++bPGI9PQt5iD4P8SLzXopM4PbcphiAzgkI7J5wGaqt1ZgA4vw5ovLh8Nojag/z+l2P3ncqLCx+rfWdKGbrxMqxdpdjgijSQk2NezGUDqA/Qpj7SCNEwBeWDT1A0LRSux6T3UHW76T4qXNDdzGcQ2M5khPk8eceYf41ud9E24PIUf8fnK41W21tibt5L8vH3VCwxAAH9yRl0LrA/oXlvry84e+4Qgn5gfqJwhkV8yOs9q3ucVkMJV3T3ME5t4AUS+G1lOnrLrg+QEHvTcsurjCdl/8IPV3PaolHreIMcMSOB1RbjyDgVxyFvhBe8k4Bd9QQMqTly6DUvmymajv4uJzBdVuqrqdv8uLje36CQtlhlZ11PJKiAM0p7fJZf1a8fYWtRoqtgO4S+oDJHyVspeMpFNnAWzqUQbqHKQZRTj5EyzvZusZ6lcr4av4+myrh++AIRvbeGg7KaWFU1a9NQsUmD57JEKzsNPOn5zKWWYjCsGXIbi3CSKvOy6edCJl0UT2RetFES8jkCLZdcDSskHNHXVg/CyQbHhT5AqAuUUmFPiAYv++52JW6PffY0Fg4tpd8Awpt/7jZgDNWLi6F9adc0ur3KX1YNEcP8EM4xLfsp7u8DpUqbdVrqz38fRS0yaE91d4vWIEiQidBXIc/Nva2iKtoUTMAUaeANTdelYidxbpFtcjE+kVnNtFvGVxmRGLJkxOblL4r6fNRfhgZZxr2sePKQzuke12f45uG3yfFeVn7FEzeynhCpbAccIwI76c+QMSRJl5g0aKHZudINN793jDMxa4bnW5/0fgDLNE7c5TnSGYdxS/XvYTkDwlnqSjoQ+cVd4ZurlPAEvUOhRnBcozpYIVL0f1R05KPQKvHRvwal/IqwOR1WWfMjs35Tu6DcCJgx2qCvELjGJrV7ns1Hv9xaJk/uaXQtat1XNK4zX/0jTU5t5tS0rlZHmyqo9zMbDSaukAVohcQ3bFFi+DX/ahxH+HZ7QBPGO8jWc9G5kBKtpmbxk109/b4bbT8nbAwBPe+6UJniS+ekXPtwybHmL4+mXZiO0WJ8A71XKYWHAD+lg22BsXJtBOPaQnOqKVyWn7lvY0Q3TxJc4g5Ru0Th1yMyErBSmi3535zqwdIAJaZm1acwAhU6/BL4jfMKFnW8RpbQG7zJEvXm5UaCuQW/EG0oocVmN6jEilg6jnnq8+kAp0l/PN31rDDzsPHbY0KvDdK5ZOtQLZ8EB5eVPaZ48ihVnV0klzs5WNWExn5US1wxw8QWQkw+mfypBbgUdGvSkMAY1qXfq6LtCx/9K0DEYVgc1CbiGr4R53Y9O9ae4OUYgUCwmXTowxnu+HfHim864oSLZwfSqX7HxYC1r03R/MCqahfnRrcREcgdzFOh8PK/fSL6kOQ6nZTkIFyt+OwJXzrS4R7wNrPsVxhNqAjXiVcN6n0Qv1RGCXH/cfAf5OaEzhnpwbbOLFYy+U/BL/PUdetJJDw4Ym545cWmiUR+mb102DJ+YWhjijGUWDAZmf5/stSOEPQF6hycVFUEADETmtKQEHHl2KCR1af7XAche4wZUzStMxPrVARLfLNyyGzK1jGt7RNk3LIyt31Wb0E2TuicqNUu6vLPkBd4QbM3FjB/q2VcPIvV04Wx8R6vnaqNZWaKc76XhjNjw3++NUeU/wnkihmYVeJXycVmGksH/xJYQqxp0G2DPHy2X3OEirMII/cyIn2uN+k092ndPdFnZkcxVKAQGc6mW2r1235UmIu6R7znM2sAsm76cAMoEoYqPiw7SbUqbHzf7FCDnXQrrYJrzkk0higJzHMCo3A9bc+IRIjdMB0J2bwuMedEOmG4XkqiG2VlDHGGYHQPT4wgXZDidS6zwSStSrEPs8WpOYvBOI/T+caHp4DmxERnbFoDLO8p6xPISpDk7PmXJLyi2MZDndAUtA1TyjQokozz8zrAneJkBcqQRsJoU/6ynGQxtoLRDOsJgarhBFwXrh4Z0SPQoobnhsI4slfDISp+N5JXJr9CyCtA6Ds4zfakzVMlU+vRIncpY8L+1djedK5E99458qvtd8icaWvxWwzbkyO97sGxKZYc6aOPdz9DMgyL4Au+re6G1+OyI+DLgE8pEkwG8PMGCqMZlkeOvyp61Ikf4OVvEHP93LegEmnxTd1E37JzTe6G4/oQ4Pk6Ojpi/VZyRn5ZzncDhBTaNrEE7xdGAQsGUYoxAxaP5jI/3Gjij4MtdSC5KtrebBkZoHNsh56IJQYnqpvAdc5jTnHr/USX8ZhPqyd7syBdHpGKF3ZE+rHJ2hyYvLTcAZCz8HfLZgKOJyVJ/5C6XFCir13H8qYcAYtyWS4OFnjZobrwMuLxuFr+UrUgPdP9QVSzYOO/HRs2ZM060i11Jd81xTQC6rWGpqTiTeQUb8ul1k57soyp2fRRrWqPHp91GWIGv27FCJznpEOkisEF+omvlzv+2wVmi9QlaGSolg6/u5We9kXpIlUj5PQDzyqKggJ6d/+8Y2gzmOxl7cRm/LMT2MTxzZLpo1mgXtAzGnpSVRvrd4FQ/JHT83NBeYVLhDhGjs/06zqG571bmcCKSvk5O3hhtDV+DRSYssOe4qC4CEKhJ/5plAA8FHtvNDCYmJe5gOVXv4G8WdIV3NUrun4YT1mVXLbLrn/eJMCOEPEwwAV0GNda1gezbD1pLejXQiYXSL7uZWVLo7O7k+gfOEZpNQK9vy4mRxITXu+VwuXLs8g+I1UppKbb7dvLKIXSgKUVMP4yxrv2Iu63PCT6a7QcyZ/OEx+H/OL1f5kzPP6a2JhFPJSX+fIaMtrGr5CAvQ9TmOnOIH5hClWlHFLok5iuJKuRrq4aeNEyfE5zIrZN74srObWCPgbl4Ab5ZV7SPkeSHS19E0BIrrs78AO+U7dGXpZ7MXqIrb16oCGABVLHW0StPbLvT8S2HNXYR+ue9Lf30bqSbcRJaC0HgKjkJ68CH9996xyNAW/W/lcHMMBxA6Lqgmuwj6lbSgfYLQZK9istkO9QDgjZNcHF5Fh50nwoQs/ycOFnbTX8XyQ61z1VyM49PX8C6zotCZxgegOXvumcfQcgl1qQD6d6WXw/DSC1xsO8t+biS9H0YZd2MzvnLCsuJlHXfuz7CyUZxuY8ZFKyYRT9zQG33wZTe9rexxQymDf+VRq8NU0+EAqCiPe+sXLx/H24YCjWOlq2xv/PmLmn8Ni9mQATsi+FckS0wLwEzvEEGl/rQWjX76Q6oD/nMitFN29YhZqJ/8A/7RiQsikmxfkMJTjg6uBRN5hxoDMZFyunRtJrSfoIoVuenHLNZvd5yc5I9D4VeztJ0ZTn949rS1vl5pq84S4zAEV1pX3lHYquuKVZ4nKZAFtxA56UEPR5sDsb3HaYZUueqbIiKPm+hkqHdTbUUfdISSp4chAsMVXqr4i+pXKkseLHg8XnTFSEeEaqEr9oOa7sZ/HyVbMR8KVLHS4MvNQMCHH2eNcMIVI9Zn8ozILDX6DhOT3g+LekxlSKM3mSfZ53U54unaWU8DQMeZYU+y2/si81xlJPQS0Si3va3G/kLPSPP2xx/lb1ncq8wigfKRSgAIktVzZq8NL0PBDXjUiofVpbf+GdPyskknWS80O6Ri6kFsEPg7nekpQgfwYeRPc/fz5MqGguEah64bnbxNbRKGzLVmWOwAluv3gQeSGUPASjIHgCUfHNmaDXJlIsgRhdKQaQYAxaXHsAdwqGbq9wxSHkMPKZVZHpRJGGIRLX21TAdNSv96QF2+S+C+FUChCPHuoTdKE2NXJagMiw1tNbGyNn3q1TCmw2Qh0hzrugN7Rogp8Go9V1K0EH70UIG2w+7afDr5SsJ3z9RBQkxqboyldaxGAmw7cm5Zm9sfQoszVIsZ/ib33shpSDCC9ILnibWXt+F2uMi5/1LwFrDac4XIl/3iCDhq2IBhDiwFudq+B5zsNh8oa6JtVoKHPnj2AhimxYbJ48bUvFzrAAjtjVqTbMhYXnxlFTd5AA==
Variant 2
DifficultyLevel
622
Question
A local netball club has 600 fans.
At a game, one-third of the fans wear a blue hat and the rest wear white.
30% of the white hats have a black logo on the front.
How many white hats have a black logo?
Worked Solution
|
|
Total white hats |
= 32×600 |
|
= 400 |
∴ White hats with black logo
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A local netball club has 600 fans.
At a game, one-third of the fans wear a blue hat and the rest wear white.
30% of the white hats have a black logo on the front.
How many white hats have a black logo?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $\text{Total white hats}$ | = $\dfrac{2}{3} \times 600$ |
| | = 400 |
$\therefore$ White hats with black logo
>>| |
| --------------------- |
| = 0.30 × 400|
| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18heWGQcbjStEwHRT0vQq+EmP6UprdRiw2cGV9fyby1l7rZ6AlJB6oXm3GuC3+oEom/zO/OwdHoFAU/2LYC8eYJD0fThuY+8/ks8qLw9LSPh+5JV/Tp+OZeMMq/mEpbFY6LVBhRn3ztE2N/rLV9Vyox14W8POpZq5FjfDLtSXALorEIEQ+KkP1pWky8UnpEeoxq/inhOTAEz5mbHI0IYPpWF4rZY1AQ9FJVZZQE9cGFCiyT8ttBNxTxfgwMdrvTAU0njBIYos372ksODY3UfY6eJypw/PA4pZ64LwZ3xRUTmAWhcb32sOtsQXE88Kf9ZMtLdcaFDGrDcLZ0SJE9h0hCj5IZHCF885z2XhTSmIfn9M2Xap9GCN5CohB5vm+MuPvpY5X1qB3YiXjdsFKJzM+SHDL4lhZfMxoKwAo+ZnrhtaZwC1HC/XkyuOVkPXguPWPZnE0DZEBrYXcuc0lxlaVFb1yzG1m3ninOjHTr9btzQTxv5+q+E66oWtBibyaldYsPhcZd8Iv2fU6mgxwJNgpUf4+s6k/OuFBJN0G+roLXmfOEQGcWBgjYSL1jpx/fauLcHpQF/0DEYEGh6mo07BQcAAAhNyQuiZd2smYB/dRDG3q95Abg3rkHtteJElAyBn5t2yyDNYonqoy86yTMTGx3q0FsBW6OiKb148u8n1E0gOqoHRmaLQRTjFoLo2WfUIW9S3g2Pah3Ur+OvWQvWd8UtdIbdbM1vIYqgV4+UmY0C79wkTjOitvmLFmcxO0FlpJhvT8Yd7+GE+DePkiOfl8GSyGezl6N4HUDmoEHkSBIPsOa0yuOsIDKWJwHfji8WfmGFyPM5Tl0Qy+hG2QX5d+qIBI1IjLHWo52OGlyZQn6w8HcS6ogYZlYiIf1O99s03OPRu1h5QFjO6/Jutzz5Xw/6nQ+aUYXwQ9Q65qYf96vm2EItf+2RI1ggHc2FAgPQXDymdCrHLJWF2tsxqZI3Qhx6bnBuXIXzrEZvSxOoJOohcd/IkN9j+u9iLZxG1JjxDgMIoYI7vMwczHTUxK8gFecmRrxUyg6zsTNTV/ocAZdFnQr4TwmQvx3LO7ERAX053bQhqjFqncHPGTSfN2wuoUveVVNASfCU+8aAHCokVHE24aGcnMSO5BBVuC12q8xbryp1gyHVELSxeL/ReApbhnRnCrysiBN/Rn+nKha1sNOILkxxMrEMu28uoMwaqJr/eU0NbZEgPamvttzy5CZnd7DfG3/68cKI72Ob9OF6l0MwlrHdECes2JRI/mJYXO5gjuuK0nDhGUmiaRz5If8JZFqlPIdbYANv0cYUp7jnrmGwIB7aWIAvqUJ0bpcmxxWmpaPkYsHSeL2oNzN8fQoZZo03gQrc+ngQeyyzNjpD9uOP0dZ+LtoMQCWk4D3W04b0KgUhGUBLsWGrnx5Z4jMQdLiGqOQX5i5fdVv6txn7R8kNedgivopEpQol2MwrBfzE+Xd+AFw61Gi7Zd+3lDOAL9/V3auRDgo9GsAZGLxtS6kiVfu8MWXRed12w6lxpHQ9yLiWgP9KH19aZxzEULcSf9hw129HZdcf4Z1O+Rms/RBykXBzKBk+8fZp9SI/g6mqAUS+4AHHQhLsGyCdA/APB36WEnnt60DL57naXAmGgbJIlPDc8YndtK96zefdOTzsYtEUtcsKX2uitxMPh0cBu0I0m8YhHcdJj31p8YXxBj5B4UN52XxoPeU6gnvbSDC6V8qF7xTYhrb0QR+Ki/iib4xQXuJ78sTXy76rtyCOujlEGeuK3+ynask2XNxJjEGKFghfF1g7+VScUFgf8g2j15DI3uVqdek8ftn51vuiPVSeZ/SxKAHeDYFWTZID1AnkYpyIXTKOM6q0e0DbRnULu+fFH7l1DRKpGZb6KMSi89SS6xBlfXwAFV1/VyFE3boXgrPqTU1yg1dcHLeoTUGXpebhD3j6X1L7Xg6kW6FCcv2P0q4BMMBY7nO6U3rqic0Y3jzpfdbzE7bV/RgAUz6WeoJhOPPB2FHV0dzZkwk5K10CIeSgKoc9U6tj5OUz4YsycxsStrq6/doPidLcwNlYg5Hu7dLugUo3FZAXNtPkBbjvP2kxG0Z7HxssxPrj1nsPMpMZ+RXnbYGSOSxHWZn747YWZpt8vEU7HT2/qdTBiKlVVyAt1ecaR14Sp9+1B41i8SqfDUMstF06Ot9JWWllwt1YQck92vmMruRXXkv79S1CDl46nAZpcjwVZt24Td0cuQUrUOhjG7VNcIXT2iiNuJK/vTN6kjJivdUn3FmoMmBctkViCQQUzqiEvSpoWnRzmJkZyDLDWcMBcYyaTH4hCpxcxKiFtBKxlQKc1RQfY200//Gepw0rlrzJKmAPLP3LBSFRq+TRh5W5tMotUQBd66NYGpxUNPt2fVptnPbanyyutf/loN8hWKdfuvVszAX++u/lNz8cnwXGjlqlnTGEudCi3lvyVFGxI3Ghq4sKFpSk3UK/u/+7AkPfXbnHyOO4deN7a9nNo0EI+pIy7IgQP/+R9JUUpQC9p94CI2N8FyYjd8xyaPVBiU696J7KFyqQEYZl1UuPxYhE3jcrTEbd3Aq18E01HzaXwgVESi/XwPAyVWKkbUUa/YdB/A3bJBQn1yKMQRywaREaygh0XocozDpY2Ul1g73CTPxv/TJanUATvx+C76hDebMwOyoqPk06VV0rQ6BqNalN7uD1OAMkPNLBbJSkkzzb8zCd8peqH052SeoWFKdt3TXSpEGXOXkPNCgi4bF33cYm0wKrEyWdP8BNe17GfFN86KWfF6UWvKmbzXOuYtquaBTPiSZH4+5O9gCwiq7bxfmuilGnv1OKakaE1fUrmjgaD71DPIvFIeHRFVdaysDhv5nMb2mCeWWOkJiWH4WlUeVghCQ+481ojGTV3JdJ18lRXH+xWpJ8D0N0EZRnlGkARFzoZZAoFp+rgrlEqzaR8t0uOXJh8tkoqpMOj9WD+7MqBjFPFjIEI2yr/Vt7AVDOP5vfU4nS5RapwHJY/6fCaSFlZxBat6dmj0TgoGPtoBca0jpRFDhaAKOxNSLKuEVPjEaMiZGZDODZpM+uD1TOarIGHGH12EwGIGLvR3I07Ed0uqeEKxCxlNltFeiZ2o9dsPF6ryNZi5be2Br6rQbHl0Ks67t0VjcvJNZ8SOjRuMvjBYrk7O4hrtPCWbRteoDzq66Zc8F7sRCazFvtLsyP2sLcUZYypHsD0rPhqOH6gu/XVNVhzdLSCa2/OZeh4KjRJOZ8UDd6F4fsIFIKvaFyzqf3c/RtV29hgTj8koih7K4m87WiwrR7biKhSPsT8GOS6n+1aHYjcHBy0c21dpnebFBxlNhWHU9Ahli63qofgGiepExQyqBPOf/SdwHuHUar3QDg00Xl2sAy0REEASmO6seyJeHe66gpm6RzS3Ms7noj/g+Q3e6l7Z5lVr8qKMKSx1a8Cb3krCh/4txKHLxwRZOXwhSEaukAuHR5xGaCm/tvrSYlQ7n/HQ/uc6B/U0AI1Mh5mw+m8PHsmIqn6izqxsqh1BQBXiOvJgtGcleAsRT6Xwn6Zj+J4dLC84cmUqwSYrjMcfy2D4eGfMtLrgFQZsiTWYnFxRjWrtlf/12vQQwBt1cTkaR+wUHAA37TFboY4Pg8In2v2KMB3xvUj5fdqs5qFwQwVaNi1PdOJDdXadDVZHhUhDjpztTMeaf0PIiwwQo1sIDHrlL7ZtpFhF0+czwJByk9i83AwRoIg7W1EsAL/p6oszDbw930l1O6lVIxMqAxSJFV1Kk32rkhLrN/l8YrVNepWzk7MvlZD2YDtwAjFLDK+3ZMP6G+1Z49u8pPc++RqjYWGGwHqtVnNbOS83+7CwNJL8zG5ncSnAIxLjtFtNLPdZhtR3bz4Mr2z0vhSlMQhpJDU1VrBtairBTfZ3eSYdkqczAHSmbUwuCTpxqqORTxkt9qLNiNMNaAkoixLWFEocZlzpn1ejK1mYVbjImSSUhVvbp5/bEKKbxJC0MZhhL9GlHrL+WL/156Ht2abjcS6S6cbmJODdPPTxXE4uLhiFCe/TIOSXe1xqXbYr65iGQn0E5jIBYvfCtSWTqTMJOffnJiqNj8Bea5zNe7ejl+bsHytYqAJ0NjmI08Md3VoJzRKtjx90c6cmRyQ1bJ4dHKmVPZBwiELjodrcoNUuHIBOEw884NqBy+WGANkFY9XOHhIT//c9BJGzWvxAB1PWuepQ+5ptBz+wpOh4pcV3rwCZXBlcCYbRrm7HyCLxkcYRLsOYI2GjT6H0JaNpNh9Cy/GTCZ9/qKEUNbjHE1Mfe20TmsI9U+Bx3sSmkUMFeOMAaSCQyM4mc2lphNYxu29q4Uzy2nqKlCpiNTiGHFf3iXyMDnMTYSDa4GcoFYJ8CNM6anwTVGv1n/+nDNsog7hYj4mbJLGWpqlTPY/EzYs7mZbMO7ie8sozQpeeyxQ7pSHuSr8mxpSX0Y3Ca0khCZqeD5Arrfo614i1KhueXqnl1XonBlrTMSpFmVGoHcTM65x9HyAA6y3GIHVDamn5tWzSb5Oq8Sqd6Ith4Re8UzviImBLCHsnC7dGqKCukZ8irG0nxcRPNv8tnA6rw+eZED3EURaOTTSPR8o+usGXyNjuPo7vikVmEpmUHZNiyDbpp7bzg3a4B60l3ApwRe5UT0SKiTxK9ls+96XTPTTqJd2vm2Tl3YS+h30FP3vEfFsl2FuXiC8FQJBvhpiRr6rfFFYpd77H3kT97QmNxlM+5G59CuQSJYj91csC3JI8J56Wek4KRWKVYeFcTL286lL6awhS2EmlsTnyVYHdH6wPq0k9e5QJwU8wmAnzzU5IRniu67bHKsYR+rNeZLMegVgUgPVMPGxYie+CdgrcWQdAMQvx/NhafJfsc5DxrEq9IX60yfJfRnT2V4xEtFuC73I0LO1VMCoVL58ZeoUfBZyB8seaNzmsHLq7pIU+o6ADj5pcBdl2j5Zm1g4cMUGKrGqjNP94yzDJq0EAWHXzUww8QAVRQwNyc/lTmDb5naymCuh7Na3YYykOO1+RpGkMiAJ9vco3PAANEcTDzRHFIagJIb5JPCXhd5jc/rqB92OCw5gRo2OJsiqqiguFrrYy5XoVGfAUufzJvv4UcH8O8wLucB+LmgdO9DMnnt6TMej3jCxejjb1aX83TXplSmCG/HTajVXXKNqjj1puPPm00Rxa3UtyVOPGCH5QXwkjRtKKb9iu3J3IRJL0HTTX5Xf4kskxPWqb845A2ZEqVbrQDhFRxo3Y0qU7yiqgTRGNdPkLtY8nzIBKkV0j7L4Up+4GrN1QHhPlCWjlbPmGla9xKX4FPY+KszqIn69+FPS/ybowg8VI1MyReWAqKbB8e1Kne8apgqfpPTXFeF9VuqLSVODPX0vt3Wymzq+0cXgGltr2DUM94y/UKLUtbSvU99KVc99Z+rD61sOWO7Rxia9pZjnEqcxfiKt8MFMn62NIMwBsQuU4rjMs24OCIX/Ggky+cD1f2SzKc5JMjjB/onubYNEAJ+kNk4Oj1lUPZm8Sjx2J5Szhna09LQGW/L7u40w7o4jZAXfOfMt7p1iQpBvfwFJq+WH6d+PNH6Z9uUjd7BSVdMj0mIgYgAv84kJdWGJrD2R89iSqpgwYmRc+kvivy+aiMneaIx2QbEoWKdu18b5oxHce+td/e8VFddGv+X4PSw0nX4FxBt7xD3bH+ewK1g6cOAUloZjcFMu5sYvdk9zkY7WrUh17y1r996a6Zh2nvetgGmMu4GBLHH6nG41S/L2pzz3YeGUDskdqN3MS4fgD+P+giZVel+JteVQA2LBsSvmJdCWYM8w/iTVVHlgsqcgCvHiGdbr5ew6r9762St4+hDrttBK2SaBbMzCxAAKi3JuFcGsavHNve0J5DXoEaSjpDxfeb0w9nMjKJuuurglkYUkTyKXr0vxZVz/iAvg8EaB0PCUbDibk6NdYbHV2hN/w0RImeJiqZyl/X31rwEsslmMlMbeKCUsoiZenCA2sAov/7RplxD8uThgjHRBhYP9FzZ9dKsg==
Variant 3
DifficultyLevel
623
Question
A peak hour Sydney Metro train has a maximum load of 2000 passengers.
Of those passengers, one-fifth are seated and the rest are standing.
40% of those standing are on the train for longer than 10 minutes.
How many standing passengers are on the train for longer than 10 minutes?
Worked Solution
|
|
Total standing passengers |
= 54×2000 |
|
= 1600 |
∴ Standing passengers on the train for longer than 10 minutes
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A peak hour Sydney Metro train has a maximum load of 2000 passengers.
Of those passengers, one-fifth are seated and the rest are standing.
40% of those standing are on the train for longer than 10 minutes.
How many standing passengers are on the train for longer than 10 minutes?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $\text{Total standing passengers}$ | = $\dfrac{4}{5} \times 2000$ |
| | = 1600 |
$\therefore$ Standing passengers on the train for longer than 10 minutes
>>| |
| --------------------- |
| = 0.40 × 1600|
| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/In1ylWeGMFVRbuSWuBCKdzbl2dzQZEsFlh+jMJupIvbtzfKCCwpT/2yigAv2crDsYz7v+Ah7/sTXou2mU+zSLZ3l51pgNubnFHZmPb5YlKLlGTwwA9i2x92SQ060vyxsfZucYWT+RwpRD6UGbG3s9t4H74u/+kibPR75NaNmAqJuQc97Gi/RWX4iskHl+Hh5M3rgRgA6wm/saCUfGIMcWSHwK34VtA8mMLaMWNi+Zu2VEm8trysCZdxs2jLMYh+X6JWlyyTU+P31sJA/Z+e0kBvQjpse1zCaaGw9VGcPw5DvCoB5n+qi8IBGQcGiAauvt0eAz/SWFBs0v9QDwsQDixzwrdOGH+KZQwsAQe6apXRN6jIvRcJGcXGW5icUWORJwzul2KiVwe+PlLhich/wcr89mg7iI2s3EJtJxp6y58RGE5CwlHjEU9EiaVTdwY0IIXabng6E3QJcHPhvjTpF8W1Mu13fjEyC6+MEpdAT7Xhfx62k/6pR4Pa3YR3sOD46tceCo7WmQA/ZtuDOnYJuAkRUGWLA4hqp6+uBVv1k2yc8gfF5CfK3Vo+gNt+MhAAyDIQurcAE3iNLJ0owXw5mD3lY+WAQq1mtCZJ3eZYovsCafnXTMHpZueCGLZmQ2koAQlsfwL/09L0hW2oLQ40Djstm9C7Cxu16N5nUyvISA5f5OktRYSrI9KVoQnimATXdWmPi7f9Beal4EYtfQKnaJ0Ogu0t+iZpGyAOgOVOJ8eUA+Gk+Omknf1Lif0WSlIdh6hQyqCm4A0ZIOHs4X2rEh4j5TDzx5LHPmJGX3nhyonQfSoCBVZVryMKrOax5orHgLXHQjBH9gZOKy19xrPrl3/tHQkzXC+ENFer4cDFP/2+v9p+qCUd2B4BnEKg4Bj1OD3/Z84LztQv0/aunnFBXoYmfHhEvWCq0t+Dfr6LK/7pSWswwV/0mGN9en6FvJqqbiLXDvCcTLkt/6YMp9XkkkyudYTtGGOC4+Tx+yaHNGRSTbKg9yOEji4RYYoLlAfLpRVf/CjPTAi3a60u1A2UXGS0298KwlsrggdNYwDf4LK6cP1c9XbJ5+49lA1o7Dl/N4jp7bG0BQLAngyM2/B4kMYq2JmD5xTPyUJRIYvj584sk91Jwx3DEbmkEuImEseheM2txymuaIzkAzs3JxvpHunmkwQiDlynjBlDXDfaPBNlEN4pAzRrG8QjaJJ96DT57xtaCwUJNMjkdX1IKZer6hLNukPCBIWgJEAU4YCsEwHZEDYBxhnU6nRuTaXst8uhzxIe7+883jYQk7h8x8hmZuvNYQVNCREt4NnWrDDR+PcHUMsCNhERC2eUO3o6oVmfHSPsjaBDWj4JpwXXfovNwPe0IcUnVdtvUYJGYrKUHn5Sv5gHyuVPCrPYob+KTOpaG9vQUrxVJ7drgObtHvdLDNsYAmLwLtg8IiKekofqCjHc5NQOTdco295HjdEYwD93R93ZUUVvcyfykTLm2ElD4iNVNW9WyMN5DfGFcw6D7PzyhbN1fA7DvBQdZ3DJRENGpawn4UKPjz922BcUR9089xo3g/VsrXLvB0NI3x4N9b9JqaztWlRvKrDS/xvyUANMOkV77yV35jofRpx4zNQSip+SHy2u8/f1x9d/6AvxRqsLmEmseFu9giPsgNiVJ6np49uz4iHP7eov5QC2JuxdklNQtBq+GjDw/27xRKBLedtoccBgcjKtbXMMRkzOp7ZqIAYQLav7Zf4ZfapCNYruB+iT7LBB5/32WgsiGIBqndLv2gju4kI75z4iOXQwUiX/rxbgRptzpNoqHvm95AyhxGGjQRXSrXk2do6Dyz6pAFrdzYdNkxJu93E2DnJwXcTOCU0YaUO4zPusyuda2LUwPElUJq66cigVzU1IfHJm5axD3q967apjxpBjT54/B3Y+ROWMddeOuVxAnll//3LmBeXCveo8M4DtwETsZqpZ4CVbKzEKBekbWkoTk0n5svVwjyyUi5S1T7f3RMbSHUV2n+gJ73EIWgJxqvx6fbT5JSzlaJ4rHkj3YJ+naoT4AfaFxtm6eVMHJ9hYJcsBLPklhR8bPDG8ZVodJ6R3p1P4z9tCAsPJx1i8rNxzk4rOFupKkPVBbqU2foUQ7pEUwZF5yXS/uk9HFmms/C/QcEgJo7rgoj7ovsngcVxog1hC50aswfTLTjnt3HhicyrRcrywKd03cYkpXJuifEyJOa3T0lIRQiVDy6Y6/USn6t3GY9XuVpFStEOP/O55ciq5gouRkrh86rMwcUdikLBndhGxau0jBN4KqdaSREloIER/VV9XOZJ5rVZCxSTqxmGlio9UNagZXdP2SOx+jZnrpm+EjA7eM7Sv/F88xB8zvKh25dtsv7fCad44gJDroxtDvXMUAIqv9WR0bueA8eustpIrJEG99QwSpCKfCULEKBy/ypfSUiZMLU6+KqsrwtE74iyg5LK+spdEY2tnL1/NOrjuu0WgFaYcFxOpnG1jHQM3rd+A5JtFMxc+Fy6/0bBeB5t5RRyhZ+SqV7TAtdAoVkR9fBzJQ3NnzipS1WS8dAs9cfGOsXsDiEA8eTEQwF4atTJ40+oLBTPvIYlq4EOokJa4ySnhpQdkUUmGJd2i2YpcF2AVNRFHbjaOPy8WrgK3HFwyp+3OMoO/FktmRnF2GyUV5rQfTcw7dwYaJGeI3qGg1Qi7tw/1j/PUmp1Hn58E7mHCdqCS8aBqFWkR0ncRzoiU2VeVMRmVjT3QsoYPXwGTaTKvDGASgwuqkVCNxsADlZuaoTzUhEOWr1na1MESLSJME4WeYvwJNddf7gNgMbMebbYI2fi5eaY9gnCR/vEWvejpFH+OC7d93NekIOhaqcX2Ox9myoOv8FMWPMzzbiq5OtEbi2X7AxwrhlHwnLgkuRyL9mU8YqxxnT70LTFA9QB8CfcuSsGGsRStkJUX+UrAmpwWnmvH/GrLjaVbGEOWL0PioBBqi+Jyzaqb4pOpxsik6SddQZUhw9ZdPgmU6OiyjgQdF8m0ESJEpFz4mw7Ou38xvMmPUHrHixeO8aLJSojr51NgQ13AJb+Od+7QFRDuFnnSQfF+Ld5eQ5PXm0NdYiTtsfPKGzoUF24TjwjZDKfhxf9PexkWsCI1fwB/rgQmctUM7BKd/LHLYUG/eKMRh+AAQOIMxA5G3hFiihX6lE4CAV+G3YcctWtiR5y84HV611klsGQGLAQhQcN3WWo/KFvXH9w0GRyyyA6fc83SDO42XtgJGbmg1LXdJLpgxAhmYzWia7ixpJGV46H04YaFngsVJMmbVobi/hjLeYmlBZU5N64VfUooo5x/tee4h+qFJo2F81l221GWLcwJSqRpLUsMVjVk4I+OObAOY190ewwt6wcy0fHISH24nYV4N7HxpZ1p0DARClWpMm8c5FVubyw16hdYpJmcTfd6nnf0KtZY8alaCz5p4iN57k6EPD9pkkH4uu2f9Deg0+GJobhkyBXeY1OGiYKyFDD+BKVFScRAaXL8qc9DxsRO4QU8jhlq6nwkwlmTY4MEpM57EKVTDq+tKXQ/SJW2NHgAot2lACwjQEqFc5MtJMibg0Car3JMRKwsjHSwIiNjsP0eOD+cS1taaTqF/dyXLUiKfdgcGJo156+NeuBbXWHRSnHrxvmWi3YhIT5S0uy6puhO62kDeGb5bxvJ5GMBNEn2VQ4MRYrUV1zbBmR6bI32xDahzT7jU7O3iOWMhQNzOxOrseoP719RszabTHyrYpUJfcfdBzl8etRFx+ONW6eiwl5mtcZ8LJ0F5KthbvICiXGxMQp3fWGbgzOYtnfRPEh+YrJpmsQnfhlXgQDF+qOsuxB5vLsRvjBH61AUwoLjMpELrjOUBIT8fd76+VXxC4A4aI4LmBS/t4bKz/txsayQUiEWvKkFVd+Ky+CLQ6iDjkerIDKjpO7c7XbMSKKCeiYq75AYdJmAlD3Qlv1LmQOZJ19brlw/ss6Q6tsPO1DacI/cTX9T2iKXU49NqkrIZVsAHS1oWXxUauSonq1RGc9DKSjzGUF0ppjYV3vRnBQeqqcfGrFWwETXUI8fpZssA0FjaI9+nIo0K4DlLkNg2RGFZy1lrLEM/9Hyuf7F2Hc/71VN1Uy9/16O03TkM1Vfs6+DbBIdRnozox7MYxTXoiphTDNwGSUv3QcoGvoMD1mOjUwiKUX80o2gDy2RuP7Ozf9ax7qRUiPiPEF9vNZvBZsw2yK+VPiP7BkFRQxeaKoL3z01dtgEg4sJNgDxgnhLsTk+8oTo1rsnEOYTWzhdaGBbp84aMQJNieEmDPqGkIB5o03uxFjlZ5CfknG2k51/XVkFOijnBe6+Zk894KkJ++SPqg0Zcx0ARWsziUBhxuXUxe6ehb3CQTqbya0e9Z0TzyjfFNoVnY/Dhtp0XvtW5q2iE8WM/Lz5v38fHQXNsdiquhdG2TWTpspoIUJ0lJZtKTGWF4C2s0r4IShEC81goYc57SwINQv3jqCfBapCsgozT1PbDlUYHLcPxNjywMm3p6YMYhZwYRh00ltcIqqxw/vISBNeFFasGOB8FB5GT9s5cnGeAJsE8Loftcv4mk41MQUNZByOAylKsmlL81WaY8tOk9KxkETecSqvYeazlwRBcqr5HtndQ1kQm5k9TCT2nMNLx6Xjmu+1f5lfC58zJcp607VOIaGP6FFwZVyOZmrOY7J595HRlIB0R83ZJHtNH9wN/P4SbeF5W/qBlZmsOuUaxnUKNKchxwAmIjxguyKFYBV0qs2m2yS00sv5NEGpREf9AM7FaRV2N982XWCYeO/4ipDbYCMLvu6pKs2onug2L+1r8sZ/U3xr/LikxgqqAJ5vCnjZQsS3zb217+8t2/gnwGDU7fdwcLjvZHdNQ6DkxiUl1PTQTkyireGD+EJYaa1HYoXhVd++sZk+CAfSNliLcCj1jPgUzBwkImDbGV8ucY0a6hiR48EvMjcGP1UIkGowBxSQut72RIRECMCNAg4cHLNM417W1EzlBYaaI7fI6CUVwMvYjnVwF6WqQ8u8r1fNBVejBYzmRdTGMwpSwdQHSckpPu6KF+fvSs8A8neM0nbZzbPG2UvExCl0TtDA0hk6TmLgM2Gb2HDXQELvqU+4Tu3yCFLfYiLiZwTpJQZOtfuh7g8sQuijHBLHDX+427w+aBtvKrkW5SaoCFjiXCMBSvdebQlVecbQVV7EKfjAm77w8sxXEE+ZRld++Bdod0zZHfbkdOmSQ1mKOq3D589IQRexMuRtC7608DgdNKB93qoDBsOSKgs6sqzdLZTcUv24MF9uUeCJZZVSHUMMV8cLdCVeLFRO0Z4GzMLdmta1qSRFAyRczvcVvRhqLyRzGxESbRVKBdrgCXAjypLQQtg2qilS4Xrd7S7LhLemJEnKbCNgK/e+xqrBtIXje+IRomqnDMf/00AMD0g0/MqRfqvmSzgtsZX5ROfgElnJqWYCqMxkGBL8z8dG0129oa2H9+pfZQjjgFqxo+qXJz3fIwvLOIAzxitKh1wcThWydsq/dlC3LivmCQRnYe3CpOfOLzfV1E8zCfHBCIj745GOkBho8jjdQTysglUEfOSuDjFvqXCZJqu3EYFvgk2diITZ2sGJHmF7ZNfc+ifw1XSaPxMLtepAwsbQVdN8prcPOV65hm7onoTtcF+cpJajbDuwpjkCGqqmQX1IvCP32nBxTspqrPO6c8ruFVyOwFg4OsbN+pnoRRwqRIFVDKa4+Xbf3CUJA5HcEol2QEu/dMj/dHaODX2Syl+mP3rYAKgMRP7F2o1YDrGwQqS9gJYGITsddoxqhuFKbdlKokzKuoqh4XwwLgq3WMJ+638nseGdQF8R527GgNUFlwkvnteT4Upb94dZWZ7dMDINE5G50JOajbiyeT
Variant 4
DifficultyLevel
624
Question
A light globe factory produces 1500 globes per day.
One-third of the globes are halogen and the rest are LED.
20% of the LED globes produced are soft yellow in colour.
How many of the LED globes are soft yellow in colour?
Worked Solution
|
|
Total LED globes |
= 32×1500 |
|
= 1000 |
∴ LED globes soft yellow in colour
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A light globe factory produces 1500 globes per day.
One-third of the globes are halogen and the rest are LED.
20% of the LED globes produced are soft yellow in colour.
How many of the LED globes are soft yellow in colour?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $\text{Total LED globes}$ | = $\dfrac{2}{3} \times 1500$ |
| | = 1000 |
$\therefore$ LED globes soft yellow in colour
>>| |
| --------------------- |
| = 0.20 × 1000|
| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/GYwACkJtFg+xVMnMqTKEH601XvCtJ2LJJBspHWmw2DL57Z/ZPUtI2Mr9rMishcJ6HpAncRwxgs2yE7lzdLcTJnNe/7bqqhNXRmkekmEwJs9dpxXUrZP3rtE7fhRjZ1Sgq8YvqLHRYKPG+3N3SSb3jPZSJCWboYkog+TP8YNucqx7XNwsXcdUhhv99jJ7nMwTNwak56yMWWpWsSzxR0c0HJxIQqLenohDuTxmxUooRtEr+Ti71OD7xb131CZeTu56ijF90yHpgbPLPkxYwuDhD1IWZNgL7AQ0QatP+pzYTLirXk90ITI5PXvX78SI83YgTZWvvO+1joQA1Hy3U/PCvF35WVlTMk9qNJ2uwOKtRs68oDUVxK96B1KLsPcOr4qhTTda6/hMIqisNCWUQ9ryv4xmBvgzI7njXE6b8WZUs9SNovdP6MAbaAVy48s8YIi4ionBadQGXoEkwcqS8bq5NqUL2iDCgVC1aTQJ+H/H+8pUAzjuWRK3H8QxF3sk8+PnczT+1wHBFaJ1/XmFkhOXG6ZHaVtutl20Lq8fQVBE1eSQlQrZ+XyEjICqAL5t7AlI2qYW6tsEiTEuKXpRmtlLtqSujQmVCXZSL9IjQV+2lU0sj0ynIGU27lxAvDODVi0kwKOKwOYLAvmsth8xYw1wTrWqYLrExGagJRd9dEoagwUGy1jUwF4oc4BTweJHZkZXcFgPFSYhrDeytDnTN3/xu5q9+9Kvpxw5oJ7Hz0OnWIPBKlvQfzKE9Xq9rZ56ePYhZWGuYPgS5OPIZ8jBW/YEgb4hNs/00lDpWTBvYMg7tdXsdxkxjHgIMXP2JGKqNyQb0jMn0TiRVvdPM9aTWVm/a1drySOJahRU7OxZRqgw/3lq3fIDfKc/7Fn/wJHu6j0GEJ4ugzDiOokh3+olbaTfCga0wf1yc7CurVfadLyUT9ep078QfvGOXJl3g5Q1tuqjQ92qdFI8j02LT7vmRNwa04u4djkpKtNvWBm1HYR8XWpSjFsF05OquaeFE47Z3lFRlX+xW8J51mBOwlI0Itzcg391rhdsXiFMNwghGcVvMxY/DVWL0ZEpworGXw0FRbfOGOl5X+3FkW+RfJu0O5xamfipCPejBYBK1vVtcDWlK8C4T94LCqsKzdf6769f9n++uQaFysp4zbzPi6Paf+17pLnaH04upo00uZdAWKi97FIon1MrS27bwsIVv+yq22mmFquEPfXsMk52Y/+hxHeXG9BhcaAyRPSXX92pQsn60GvBMDwNwDLjE/owKX1FifWDZ8OxyPQaBNs5szs7uh9N3KdqMU3BnrV6k1v+nFwdSdAUbmDtcS2JaN8Cd3W1R1A6d9heiN6t6DTsEMR4zLHlJNM+4ftFaKoXAzz0MWF1J8VRJHpm3ZZWYbVnsXBzYuyJiGy+jPfiSwXUK1ZfDaVCZ1oyaFBQjHSco6HYBlObKKIYI3iJgFXHFe+Cmxca5n+ZDiuLtPtOwz5Q7jpwJGEntGZPnRl2EM+Zu7fF4ilSTd8ORUZeqkWddkyoHj5xSiB4UiCqYhCZSg20Kp1L9uGxRXnznWKNRlZChJaIy2BDDTflp/IBAyM9lIDkWSjAyFmAbW5t1wFZWSQYO6Guus2Wtb9BGfQuYlpWXLWmFZRZ9pl5YfY5Fk3vTPXHhGu8/a6nFqX7oKQKpz+ETS0yHIhsijauu2YQiBSNuwfKqmsuZm9phJpCIOdSItBzXRY4l8DTQC3eF5884O2LXNh5ciVNPsMkpuZHa6Wh32Kk/QB1XIUFFrAgbTFIJaby0mx5Z53VuKIgEsHJddLdbIQwleoJUlKuaawMCvPtz9PY+mQ6mh7P8iomPEV5P1Jtr0fSZKMtx5IDClQhgW2WOUw15EnqN1J9nBZgmOykheGq3iZselDBRORPN7M1wWdqotsky5iiJLI+O7AC8dH5rPqQ5b7FxmwGeM/IKhZy2v4LZ2TBb2OXlgYZRg/4W6/AD9zd2uBLIlCaNX0kN6UXA0do2rGOGRjJKIPgo0LyASnK2clxxz6Dm8woDAKYqNzxuPg9yWnFGLYne1npfWHCVwxNreqJtjN1szQF4M/b33APqVNsGjxDT5PiV+MeEzulkmJGQ0N+GT3PELsTiaDuKtAZ3li8SyVjXJHzkBrWQF/FsEPmqHQJhy2xrrDEtg2AsLD2c85ILGKE3q7qZjgzPcWm/pnC8ha0t8/p7dAeigS+Z7CZQTHulnbJyDVKZnEfmMBM9sDUkys2ss/5Vuwh6Qnh3EigQBo7ZHqqorV88fnPirgRWrGghmjotKFaaPPgesuJI1cDfkInxNhTZ4Lklt7dxEPuQ70PDp4c8JUEzjow9n1z7fnsSQIcPFk/GYSkUNrxEwKawa6dlXTUwwGjWs7mKqNa65cYCoKE0SpEDdHMZfZpy1MTaEi9WJoaN2kX51CEvjL3hyeHxa+yqEI/Cqkh2X5aBAS4YSx2zUG3h+dk8kjruMLg5I0QB/6KJkBwAUhRdmCUT+OTyHETPoEPYaaGGNVph3m6qVGM0BaXLV++O9EIJQASjcs/kzfxOSnk/r0Pjb6egg5cQek0UWtjk08NRoZ2+jvs/pmI9t4krXALEt474gEkm368VVGpilf3zQCklwk1JD4kxmqip1nu77UG6UMA5pznuL+JkLYZpUmMVxeyvko7Ygrzjvcz9LbLeoSBnFY/hOheCfTmfRIXeaMOuFo1iThQXK1hvPqPruX0qC0kYZWcaEz0vxdD6/o/03DlPvUPFVu9zQZr4JobbLRObgqDqzTxnBGZjOILZOWz9ZXoxdJ1agJqPriKfqTz/4T3+rJT6mLvpMIIbnxYcH49KM070uj05owHb0yZJ25954HUFm/c6fgp5mouGsgWZoM97COk9D25F5IBhJkYvXhqYCv4dp0hdknK4mv3lX8plOmaKYWjNLU8vpK6gVehodScDEoJzRDeoYHBf9SpS2LbWE55AnGfRo+8nLZIi5n+pztPelunTnNCsQGXcgv9B93wd1eIdrfdBS2v7e+ZXeexV8ZUc3NnYQ0pkLc88MPs3XKK04GaRAnk48LrK7e0GgdFxJ6f/smyM/GnJ+QqXNOReDm9fOOwxmkgfFVxUbIwsg3xjMlf3S5r3MHTYV/oC7PazLnsuERddW0JDIYd3a91H3V6n2AX6zUKkYJD5nA2udcfHx1q7WucVPUfXxeJ7rZMeBXLXYVI8haGuV8b7RIeylbgYfXa87Vhc/BfISpxIMjxGvAABsrV2S03t36Mk9Pt5osA4SxmXP7S+16c2+bZpe5D6vC15BwkMV+qNN832idbG/sfARIjVgG8kGencV9ss6w/DTndPXzPtaPGysj3+n16qC/+luzBh1wU9G9b49iYVjiufs7ny63qzkeT0SBWzcjjzPsGdhJ9UF2ufmGFJCfHPs1ftJddC3AHhRUBYiCwq5stnV3J1oVuFp44HqEL9bK61fItMA1xegyKnqhqPhjkpla0SFeNjarLl6/DraN/f1udNR0/l6ckoI/XrklIMZq69g62RCSozUCGXX8/YSP8WK0G9hSDbeS60cdb1PrDkj9978rQTvk4iN2UUYG53tidn2tduakVdKr2YXwCxfo4iHbQCURLtnMFnz5V7C6yTP0sr2117stPhpqEnebRjxa47sO2C5dS1Ez0YhIfImry5vnvN7vLQVLPbSrOuLWRNwb3Ikf/5Z8KaI3bNlbiwTFjXGpESHFHtUiyQxuAaJbLZwBzmM/2EAaWyeCETohQytBBszq/ZNX4+sV7z9IW6HGDnSY7U5HyJKD++ImsOKSKEkVud9fCEgjInF9i2k006CAUkg9CR5VB/ucFvAOTVeNcxDoe+0IQznW7/oGyTpqPik4+QArP5qh3w4IaYb9DljU16q9HIfVagDhMz+mk4sQBaGNARq0R8nXKg+cCNv+L2pW5XBfR06XbRotuq/ohuBq56Q2oOaMFQdYEtv2Ff/QBygBv7b/UpNlTCLZvnA/3VZkyk0CohGFNHPBZhpWonThaC7ZVwx8XKWOR6eMZQnQ93aE/S06H9OcpFJvBvYCh8pA223/71LSzJbrJEX3ULXgBQz9jOtvvjZuSyAugUcBmyrJ1AumKHexraFVVWm6UiVeKqzEYR+cIbeyFZGQzJHL562ze2Xl76z6I0IqPBoFdQK4u3OmkS7akBLh2AnO/zuNN/3QpijdF858RBDdwdizIXvMk+/P9HSiolVH6cGVceB58D+hDFSiyULND2wpDoJBMPcwteiDoKBXT1Pr9CuWC7Sqcu3cFHjOYWuCpnRMPnLApttvYyLA3krFGCvgyBqqoaji9yaPUDzGqin7ooz6zdP4qkr9MB87dK6oT9/DYW4XqJfvKeJ+enY4TZEaNwKDEhsvl66KyHk+l0XhBtSjUej6mZUOd5FlmYj9nGbETvkGiOKgQsa55NLiQZAU2TkPxPlaTuhvaYsM7w4URQakffs41qdnsU1JCM04Do4rkyjGbWKpq3FnXWaOpRYBN7O72uv3ZereeBwAxxQ/7yA5qw51NmuyYzlhIpljKWTAMQFLdwgGRmHNbr5gnS1Y3It0asnEd+M5I0tNVVA7Bs6d34r4/qjE6MC/yhJ0+paC7PadIhpwRUOH8WozB35eF5CSoiH1nCDfmuuJ3IZzQhuo8UBqX2Fgx0zMr4no1Wc50b72+977OrOLNhQq1ezKMAtmPXtSxaajVV0vO+4zw+Xf/5lvzRtdIl0tKJLMp26cQnyJ0e9rRCFe8xsNuPKJwlGhqSyV1nA0ZUbgL2DKmXs78BUnHrFsmiKwY070BJz8uqx2AmkHa8Ipau6kztwRUq1tF380jDuuM5vLkEkGX3+FH9+Y6C7Ww3GPyr20ljx6K2y0ecIb2t1uoR10QxPuS6mOnz7H6TJBHW2GYkHwidfmgTOKeWvV+FGUfgYwWrmdcmHAdCdB4RNYAg6kMF5AwZ0GHH4ZnLGRu2qcnQFBPFlnTRIyRD+EcbeJz25+rQ8JIiDIt0p9KL+F1MktvgOKYMEF6VE7dZZ6p2H0Yv9xIaL26ZNV6dgIuG+YBsSI7S94FVffnyJ6x1+WwelAGF13I9pMOK7AwL2Zeq0wCR78dR9WIGQ4yLhsZ7LthpNyl8mXmHNEgBKOGVh1SeQrJzJMQ9OubbsDts2sQPmco9G0cs4KX2oPI1YK7uoRT08YrP8zIuksLZn/3oyO1XCuvZMcSutS2Azqj2ebGDUozi6oQIJuUNiz+hGyTy0Pywa4fr2FNbIqHhVbLyy5/TMoWTmHzCVJgTbSWOIuqTb2LrCTIezjKplAVzzb5N5uZCYhGYBMCeI7F8Ihui+k2Fekup5yP/KIJKXdXZF7dahsUyf9/nBlAJWSIX576b589V5ZbkHJpb3vw14J7nYbYysGwR2F7x5rpZ/aljyD0+roVlHMosdG2XoYcqkUHySvPJUnteqMEtpKx4VmzuIipaQ5Z5YVwmKv7jIo3nTqYO4yBnwywSI4cilCCCjqRKRhytSDuNXEfyd7Q2L1gJgTY+2SiOkHjMz6Z85n0GP9Cd3QzpwyTSmMC+NxzujL74QvNE+it09R18UuJ9/YH/wv00xG7rGVOBtBC6ULBa828p/1CwX5lYJsqLdJFHa74vkYbXLzWWfrV17lLNz4VGO8QwxQLTZHQHIHW5rMkPnlsHLDzOe7JpxwfK9y3FH5wk4ymR2ARhn8cY0ShpIevJhinHq3WXYbxXXeGY3JyQa/Lf3pw/9y5QtFuVnvjtJUQGGyTEOHKyV+SZGpb5ez0J6jMbuh/34snff0CAFh8KisKag6Z7y7OY2HCgglsv07ZbQUzvk6zJ3jVCP1BX1dOdcSLRNBMSlnPRCQzHlUAupO2CvjkE3yHmVqxQGs4VGHxIUqr7e3Y8uMwRn27BkaCEsuDKA61kNmw96cf2Zg0iCN8=
Variant 5
DifficultyLevel
625
Question
A hiking group has 125 members and they embark on a 100 kilometre hike.
Only one-fifth of the hikers complete the entire distance.
60% of the hikers who did not finish completed less than 75 kilometres.
How many of the hikers who did not finish completed less than 75 kilometres?
Worked Solution
|
|
Total that did not finish |
= 54×125 |
|
= 100 |
∴ Hikers who completed less than 75 kms
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A hiking group has 125 members and they embark on a 100 kilometre hike.
Only one-fifth of the hikers complete the entire distance.
60% of the hikers who did not finish completed less than 75 kilometres.
How many of the hikers who did not finish completed less than 75 kilometres? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| $\text{Total that did not finish}$ | = $\dfrac{4}{5} \times 125$ |
| | = 100 |
$\therefore$ Hikers who completed less than 75 kms
>>| |
| --------------------- |
| = 0.60 × 100|
| = {{{correctAnswer}}}|
|
correctAnswer | |
Answers