20056
Question
A {{item}} has a normal price tag of ${{price1}}.
At sale time, it is reduced by 25%.
What it the sale price of the {{item}}?
Worked Solution
|
|
25% × price1 |
=41 × price1 |
|
=$saving |
|
|
∴ Sale price |
= {{price1}} - {{saving}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX192gY3GIIerPPdMq0m1B0uYK+wmuf7rSLv7Snj6PcgdE4yqix9c0V6SRkmgDgXroK3mqzrtO9GzrLNR2BZXbB+KHqqgI9lHzA3i0HDOoUQ8G/gLEpnDXdVSBDxTMUFbRujWfr/vJR5XEI5ZtktIffEO1iiysgeJ0v9PmyHUha6cYjwpV8LaVxADlf2cqM8aaMcM/zbkYaXrMLkeFGnSQ5TWD1OYFXTQ7XphLg4cdoS+6OLm1RGyXP3TbW/o+a/zjki9R8yohM3QS4uxVhBToXxHEeLcNsqHpXkejjzTkIJrdbgC2IOvB0ffNFWtCWa7Aa5QuxB0sgwe2ERrVEqkfdJKNl6AtcREy5V5IJDyXsahN1ynrRIfkpYnruv7zXB71xJ+vtq32MtUoufrKJEuyEQMfkRBqUAsTeui3UxfRPKUuHD7KDIX4iAleTuBcydt4AAWOgJ8bs8VsVdhT69O3Qj3cwKymnesi7faAwmnjd+SDdCusqYwQ0/m5tbpCbAX/BPMh/8U3jjuLllkhQet3QXcICjF3xOAvoQMuu0ev80SNjonsoqGGSgldE9Y1kbQ9O/fBPXvaeRKehwPV7jD1buu5Kuwjf9AgyFrIq/appUJEMh82zqtkRCAInGuGxNIvxUDW566j5Z+N3Xe2oR0kYZ4KErO+jv7+EuTJeUf2P+uwi32umNrtG50camwnLElKNuu9CASylBCjhXHf1r0BENd02dh5m+msb3hmM7VqNwY1FtiEpySKvR1HSRv86fYu8hgljfe9lUE3WgRX88eN61dUpPuz9vn3q/oaR1pcgKReOgRX/jTsg50/hvE+esdFjm9hZSrrRCkGuSxxgP16KUHd9dBkq2TSVjOBy/oR+xp1B+uK+HHbNw8nhgm8Hb+slstu5PehBNL9CKO2VNweDyTEhTW3fFdvBbtrS/cdhOQXA0kDer4z9NByq0D6PDc49b2VriAPCMfBVHd6tBQ9DMtkmbjwRKG/dc2ysnufrxOeSl25nTiALhW6TF2EQWQJj/sA59ranrjTQjGqv9MmaAcX+mH1/qWRVsb6YHYjFsF8gVhHujGSjZCOcnXPsZmgh/NDkLP03twlejTpxiRi/bfo1VSRzNET978MNYSyoavP26rZ/hrU875HKfJFaU0DSyg+1iT8R0qUYu9NYg6lMhumipUHKX0f8Yuew5mJecn+JmC4UkxD0BoXG9jeaOjWBwqDf9jjDCi6f83klNsnlRSk7BDWXHShvCF+M7Ewv++qNyEQLYBbW/ahyL9xLbNOp5L2K0BBBG4GiZaIFC0NIM7/P2ljiPerNQCExrLKGmVvUX2tsjSRfihb1dlemiaY+r10v+4VYm/B0PlrtDYW5wy6GQ6rrD+839qHEFx9dGjI7Adk988Qa6fIWmQL+bh4BHh/isLNjShBoVcWPMfHubDe9oZW9EIoJ/91zIIRUnB2ydfMaETIUbUJs/H9OGUqupMRrLrOb3TJrpR6nLARxenoZSHVIYvOuOH6EOqjNlfh1Ine7cJdIpa2YyMYhYPYqxOeZHxtQXC5Os2mn2QKmXcYvZkhdcBGce3LHxQgb+KJP8k7oM+XVMWeMdpHLYuoZWaVlnUDY8ACxVI6QXRSICHcZiniXV+1DJKhjoN4uV2XbmojBHJPDeAA5zpZ7YgTmBaTA2qeVEWQmsKfMp0Y7GuLVoC0xsTrS/TUQ2ZTSt/iEd+Itckfovrb7Yg4ypwBizjp9xy4QSt9spMJiztghMQAodPs4SfzDoX3iG3Tz/tPD4G9HoJtoTS0GquuCMqJGnh+j8myw0CA7SdvboHr1V9Tbp9Ix5lNQ09fKttev4DIZGQvXkq7wrtwovhU0QaaVXtcp9Dokc3+8NJ6PtZtZ/K05z6bM8RD1PG/2Uf1CVx6JMfltBcGJOG2kCTsWC3q9vcZC4tNfiSARmjhIgBULSynKu1qdjqSyzbnABN7u3pkm3pM0N4R12D429FJKDogA4ImCR0E/Y9D3pqSy78IuMFmvy+taPQFKliumOn07iBOCZW4mZWhWBp7ANN459vxdkfhEx1eLFoWxeTKLA5ne5qX2YMSAe4ExXOIMjkiv2dru8mClS0x8Q5WOVMbuTY9kQrCsDirlK09CATFyVzfU9k2xMmaAQl0or9+d7DbgAo5BThfz4goiUnKaWn0+uRonUTb43f+RWYuhW6yiOqweuewlbQ5rXAjBiXvc+yXc8PoRCV1tX3XTwYggr3UQscAgvJYXry8jHpsqScMU9g6XPHqZTWXRUwaUEYNtVYWthRs4xauhtjq7F/mPmu3af/7OS+ZHNfuYWjE1J8g/f4ZaeSjy3lArAo4K77pLrJA/SLbGr5RufWtCs/3FF2+BiThfRwMoTFHtRZD6A1pyCwP+Z7Id99j9cR0yzMEjzXOfLWwE4zjtkDIw2UA9E+yNOwknfqbbjPGBiLDK0/J95ECVDCZ4XdggtEi0GeQjwoSSDqn+ztgQ8ll8erMbd9JmeuP52tuHqzhyj9oFSy0/LJdKMEnQxYO6h0sy0W4KgP3ziaAtn8MwbX5odynJCVWc+CNbymCvxvYVk9hqFs5YlZuvJ/J1higVdzjsMWdEkIjyb1WCPXUU6yCN8asBwcZQ6z02E6tm4lt1u2+2FjYgAR0Ksfhef2WDaFe6inIDUQ1v43JmY9rxycDJZrytjq8A8CZC68zdFbeXDdTGi8FXFrY/5kfRyhWfFdwbVzyiBG9HYreDl4G9cz1R4mIJRRjJjua1Nqwt2LgmhTV69Lm9tRZg/TE9eEpwm1dYCCLO5tcYBfk3KuAN5DVHlAt9zHRhiYfBE6DmhIPKhcCJoksqGmO/tAwXEkMPXSrCCJ8UnFEFimW5iD5ScHLKn7/5MY5+dmaHCGRKWSpCq9XCQG8Eosq964VXsaTr/Ne7gmuWt35tTvx/OLzYEPvX00vcj7I6SDBACOlXS2INihkrtCVoZGVGUBnEh+/KjywENSdXD1DMXoknwr4FAwlxFAE8N5BUmn0gbmVnADmHElAH3wfC11kW9U+GCTx/RgJGcHzWDeT6Gg1AjMIiNvwDllsHSf1qikw8McZfD89NQ78B7RHZlL02OkwsYiJFq+98uOd6YU8mPsZ/GhbMhYogzetrpTNTU+82mg1mPundPfFOsuMMv2NNrlTdbRA/e+JGcD6D607PjG4MMWlbeXJxiRtTdzIHXM744Cb1carD22z6QtviwEhZ/VCguwkfXc+aHlquhWO8aOUcALE6UekXVJXEP7raDdTFQy69qU74MfXzq0ebJ5LRzHIp3pVAgYh/rcVOn5Fb3SSoMwR/C6Wft/wNJrxtYl3VbfrrieZtRph+RWbS5FTL0ES9Hvk1CPiA2E8qsiUj+NInpDFCK1kMZLRVDb2xPPXMqn+8MVD2m5/8ny3ldv3Wpi63u4PgVO/dsCMzlnIQkwI2PClDYXwnrJqZppEUgXsXljjhlmzY2g3YAY1XQ8iZ55X5IIHAXhclbRwsaU+0AXQi9AWB5A2zP4cJSLwnkQ6kl3OmCXPqQcO7YYXEyW+Ocas2+drR4nGjOPo1x4OSSvZnnpsPmFNIgQEUTgDHAYaAlQ2j5Zn9ZbWVtPiphoLiwAefNWHoSZXPEliy/bWLXodAcB1ZiFlHERZhRUcq2j4FQPEQ+fCApP7GyewUSglqvUgPwix2kS6ihXGWaI+8wZ8WUwblfsGOnuc2ux28gC14dpAN2YH9lOohN8zqTY66d9JwXt3VDMkSWRtkjNnFXQtsVk9IfRr5vjhEuOPrEXcqyezuEEvWXHwYA4FHRIe7KcTuvn6Xyy9WYKAGF9wz0Z7cnx0oNN1S3EWUXHQYLjWxA5aQ4XxfoC0MqR3c65RmXOaGx7ViWr9Nuuqb95JJS4v74noNv9Df/PvUbLz0EchsOxIjAxwEvN9SlB5hGwx16hF/jAzu3/Qz6y4tzOmjkW0HBpd0/5+4MljB4FadyPfUO8EPtUkxtKcZR8FEyzgr1uMQZYklUc1qPjUMyJbXRvclKfEkCxYpihRa7ImEsNn7dUmBe5esgHOGZOCWMSS2O64G/duUyAc4ffpeioTK5zj/J60VUm85i1oDXk0udovJZjw55Id4cba3lihd/xnA03jDJN0h+wmhTEIVxIjDS+4co1LbO7KIv4vGGUi7ooOQUBx6gBfJsjbZL6vgi+JieqrOiAkwkdjswCSez9aUHD7+jmlH4IQZLFKX8xpcSrcyTLkG1OeXgWtY45x+vah4XDK4tj9oGzZKp44wpGGClGVj6DKyNC2Z5XSP6puOx2E+3y3ZfvIMcGv3SbNp1zNA2pm2TXTSQxhyDLhD/DtqzFtMy6EkKczA7iRx4e9uAUUIsKU+/E5josMDLu+5GSjJyql04x3EXsjDRhTemERB/cX6NiXqAYTn6MPP24ntwOJLLjppchg6fqiprlZePtvCtJFlkzIChV2M+y8LdvkKoJrXXScbFU5VDJGbnPQjRPWPe+aqM8kprqU5vQ5rXyGaiAk3uufqDGsWogLoXUOqIiG0sGDsWKUtmUbtULkOwVbnm9Ns25WI32BhNoDkkKjJ0wJWae0A//2Ts9sPRRnfW9KTd1UkqeClsCYnHNkh8dbz5xZTLfkY3Xm2Ve2NB7aojiry9mXw5UZ6i4fIjbX9O35zVwuj0dTu4qnR9z5zgF6IZEEbJzVW1rZHt6FY2JlHiTJPC4Ukv8JJYEWUy/xRb1NQqSagRkxpBXT44h/i2O3ips5smxklZdO8ya0pVZaybg87hcDQ6RJjCVYY6l4ZIDYw6tk9zGXlzHZXQO7rNlQhdSKzfIibq+68ZfAHIsJIfQZRnBS4cca3IvcHbr/oI0TZlY34LUUuSiUL1L8AOGagxho6Z42ICD/tmvEcZ8qnwPBhn1KCJP81FL03Cun9DI/cQjfoc4E4AgveyRcM2MVo+gI9IprwEthKmGBdLBKYNt8ivEejpcGzqHbYdZ2/9iTpZoMtpQhcbOTvvPwvf5ZWPJFO7kQk4XSjVbraQ+gvyBeWp0cwOQqYMm5yEZN1LmDn/Eo9C3PKNb+e2qpcChgU4GqMYvOAOy6Rn4yIotXJCY4KdpArIU/xE0kFeue/WoAyx9B6e3GUvWgCJyEKSMQX5Ot9IFyifyJXX8OBWsSsgJN9evdyieB0f20dmqZa6tnHPLcgXua/KmK7P/tlbQtj3XW/Nv3ksB1yLCRwGuVcfJg4++Jy/VEjamHKzLx5I1pI6FYoIEePaVSAomTiFxgw1Dn60WOfPPTofM2H7T+JqGzWeK9+Ot/jT/Dx6zuoHxbnYfNcigJ++1j/3r1hf96BC8JcUIAb/xBeNu2x+/qQ0WqRe3qL1BGJiBmAciO9XmCLoEpBfAWk48b223gcmnIKSdWJgYpgpBKW7ixRHyhUf/ncg6Cn7IFvvTww64MKylVFszjHcKlN3j9Guc3kjXM3lFzpUXX9qSQMRF52MibGB4Xqgp8yW8kLDpVkJGJckYK2GdZzCOTI9DJB8LlwAyCoBL/ta9t56fCO7VxiwU5tVlq7zucd8oRtQmNDkIuF/ECTIeQ8T9FVscNp7wI9tDraUoDOEGvfoLMD090R4b2krrVu564Ui6PxRKN9Nbye26q0pYOgyOuZ9b/QVjlg0fz5dl7buRufMk8EqdJUaPJuqnigIsMGmiHCCMZPQEn+HkmRX6zXynx9lezkXtVb7tb/pTEaD4Yyzmlh611iO/K+hg1NrPNJHPcjEqcHmtM6dUsPEDFvba78iXd5xx40TVayQ8A6kF/xxuQVNf4XbAwCBB9MjwHjFyLpGmdO+o12eXB5E0SsAfBdf2FG9xLNCeqrmgPqDoVtv6DKfbWVh9h3H8Uh1qo/zsL7ckSQpjK98/GSkl7N3lZ6dWE6t4RVGKkVL/WuoY8J+BVrK8Fn/0/lcw37sow1bViIOvL6/0WWHEdkqqdKpgx4X4NNOknoBrOanXty4N6/lphR1K7H30M7q/Nm4D9KdzQvhoR2gxePOAEU8QWTJo9pn7JPdnkP30C2tpWMSk2KW7a5WWCOMlZMhHtBD7GgPVmgvW7Fsdlt8krf/x7cmhWGg1vCuLqy+QgladzRY2tGYiLOR6BfdJvZnefhllwc66Upb4L0sMHwvhFHm9TUrbYmyMREGjrw0XLPBsqLASubaJ41c693inxdO2jgEY1M+aMlb1TnAhwM/YXBQX0apIGpTYYYKIpb1KUjZKqywnh+/BLB6mDVEywL6BQ8nPnA2KgHzcEANwFUuEgoWVqJ9EIiXu4CxSbY6DYPvMEZsxxB2z0MNHPlZVmfN5P44/Pcs65m6iXwYrOc7YwKRULaW1teQ0SkJu9Ctqn+RQ2//YMizilVFFtdt4tPR2X/UYLCLTlNxYz2aTRdR0jA6x1R8bsoDFjCZkTeM0zRUyl5tsfbSHd4IRxOba4Y19xqnsRetTtuQQE67QBZWvK+ELeQvgVa+GNm2ZqBOauXg0lYmiiXjQNiKXt7rXiFHJ2UpQYf/dJbCidH6R+MY1hOeT2dAZqM0P9rd6Je1IyNA9GtccRXRG+aJMh1qlvwrF9mCQ2qJspINN7bMCMEFce57Lm8aWi5c+iyvv4+pzoti5PC0QBUaJsiV6j8YQhO4k2dOYLGDD7xQa5H0xvlZaMV5mZR0ijIHVuXG25n0baD8ekn1b3dIUEX/iFgQydpnvn91428XgawBw2YIR7LmK8t9TLrxTLMocR/qKbiTwHYGZ9jRw10C0RjOHRsZALo0ePoE0334GsgeUZ1pNf9gPnFa/qlVYMnZtVxdT1ELgI02RJocMtb6Jp0FR+/x2JegzIOUJQ2sfrwE=
Variant 0
DifficultyLevel
567
Question
A watch has a normal price tag of $240.
At sale time, it is reduced by 25%.
What it the sale price of the watch?
Worked Solution
|
|
25% × 240 |
=41 × 240 |
|
=$60 |
|
|
∴ Sale price |
= 240 - 60 |
|
= $180 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item | |
price1 | |
saving | |
correctAnswer | |
Answers
U2FsdGVkX1//SMv1Y8SpIg7CtOVhBT3MXXOc/PEX/iQq5mnBTfYT3rh7fQyJbMcc45ropLyTUQhT1X8epBMQ6NBjlC8tHOCh2vUE7v49LcGZ/74u2BW+NaqJmW9keR9yDWPEpQJj4eQv6mxwmcdRlvrg5uSmwZQwDdGX3TgyMhUl5c9xlgApaZGKHsLkYlblTGvCbeLn6y3ohFNnmTJt4FcdobPfT0qPUmz1IDPMk5ifsSnXCwN71uTwOCq0fxBWYucLhWRG3byRP8mlF001kqUlkuowHTUX4DnzY82BTiKLY8SZ6D3TeFrrpeSBooS7/+3bwvqSFvqVYsk60e018oHsNIrsHNGD2CoyjaJ4IlZDdII/d2dZMtzA6hewhPC1WPBm4ZUmHOerDHRcg/OFaqhAgIct+Wx7Ev9H1MslR4qhbT2BB8Q8WdsOi3iNFHeQR5HSLlrs/jKHWKChFuNJ0JC/jxBhQ5p2XnaNdkEUzZCtXrrWujwkRal9eltw1HBnWQ0mym61C2xyskckCq7oBxIztAL15lhGvd7bl3Def+uoxelN9sSQWTXwV/VEcaDFs2CC6y0CH55F4jLpjQwsOelB3mmGz2tiVaBZ+pqvX0uNLe70NuB8goHEfQL1Ljckdpr30MVZgNlsJoL0PMMarLU6/vmGRpqA2svXd7ADTM+wPONeoCGbTEy6mUsC8CnUdNJBplsXgNee8U/8rBkQzuF3S2KweL/fMvt/54ozL6XjQTK9UpS418IUTa8fi9PpMLRLus4cKALEpQg2z4ACGQVwa9b4AIcgHT/uFhOJCBRQ1mThyVw2PUF0/eysV6hIq+JHEplJVhsupdEO8iO2OnhIsuo6YhDCAr6EkixT82ubjqr4Yvu+IcDNxZB/C3xV5rl+Jzenbgbd+zsaTt3IbsQ1EWQG03xvYvEfm4fCW2ugMdUq8uV5Og1jrer+/+q1EOklWKfX7Eksa0DSophaludleszl217x48cBY2wH0hFcstGoRW2B0W6uJlBwtPXTbmk8+uzIXmZQA11wh3UEiJCWTD1vW7Jwm7IEuc99AIk9/hQINuykheyuScva10T6e/Zl+OAJEdl7gsjkVqHC1XwHdyDEAcRsFfqFME5z7yjZI7UX8Jaip2Ki2Hzqxbs5aaGP1SIPSqdashblxIHQoRAqJYAllBIzqIDZkuPwgtYh6fa6O79AYm8EIg4/8r2RPt6izn3kxqjRkILH49uieDvQ0ljbVkTJ8iNIZxqokIcLerUDNbZ3e6d2z6ex88XZJMuIAWCYhuOE/yILtxfez3BPER6O2jbPNz6V2JziQt78SH5pGWV5VDIJm3PQf6jp/3RBrDsLhswmfQAWhUJ2AQHq9yGsRrOi1Fo04Uh6UjP+6gXbNN4dzNQsIdBDueGIbc6UdLHGfOv2x7VEaKLINpXfDKNgNlK6xZXClvmL/qrJEAPxAzhYUkN+/6Ia/bs5NcFqYm2KqiaeDYLnp3Fzb5W9bb8rmCwQzav6qHaAIEAgTDWaVNRFAswBC/tMh1phEKkTjyW3bA9oH5djL5u8MZjTmA9yyajUwIsGckwCNbx0k0T2aKiiCWwmts6KMohc12ous2X+W9Moh6lA6Uwoy0nH1tLJ92YJsHaSA+pzZarF2aoLWiPb9ez6uaQwaiAOm5jDAsyNWqZKze0NP2Q1oaUjWSAknDzCCUQu/D7TomHd5/Mm49ULLLopdnOPKych2KDKeh1o5TFOBOoeOzfTRarH8x56J3bMm1LIj73srwNkd5sX6/IMVon4cSn4xMmkFh/wUicCrEWGhppQNGtzPwyWOhqrix3sLChg0+4/WRBMYeDem0pJdbt4f+FMxfr5njyMWomBRsdnVqAJ3HzdP3H2+xiTVpnN7QPTfPq7a4JumE5zPVnFy4IZoKYmfvf7gE/P/BmwJdiiOC2DQwilSyJrA43VbUuAJoBio/eoGM+raLnQBCC1De6/9KMRIqHaPz5owycYvo64DPWisyerBj7yTlPWAgOhSZdG6TZ3wwn5mxxOZdPq1OQYPiSPlbAQQzQg+NoNCuoDJ33ydoSuRRhQYxAjUmUs2r+6xnyEgwwF9XNo0F8hAArTT+IrDk5lgSYYxQHvEPN7pqAxUl4PopFBcnTM7aWczK6m8WCOCb9eCwz5lu//J43Vta3C8wuDfCNTRd+M2OEwcBrAYuWa/dmSECiN+xPzvYGwBh/LWJcDiH94pzAESrMBqJAijnj5I+mKsRC4um9o5phy02fxoDEpW8ZYfWnhe9w5UNbioXpappuQ+SCoYhvUls7sfUUwHTLgByPYViXndFarxPPOG/81+X1apYJoH4tTjQKQ+a0D4xU1lwLW7XLKrvVBiHZh+Gj82QXp9AzPUzYHVzmt+4uhTIZOYVfvuTy9ctG+lkqk7mVk+tCq9gXs2rNbhCo038Ct/Lg7pvJP3N8HfNrf87jau9f67WLajkvWLokitn3bndTT0bWCVjHeqg+mIxQc5cTBSi28cjnVsJLQVlNmk09wkbH/6vNigi4nts7Bo51wupefQ52lwbEIoVdFHLQaUo01l8vIqMTQNCSzKDmY1juEu+4RCIqvDUB/5KHIzfYdbO2dVWhVDdAPeCeHHUZ2O0Drxkw3MiDS7diR1n0nWL5TR4XVpL/41QLy6vqdPu0xX5Iq5/3VZVTvXAGr2wp1kYC9aHiY2UTZCyIsclFNYsP7Y5/5CaY8jPylpXBiaMtbyJHYrFnnp1DbGi+x0noVxopRDb/K76fkd80Q9NHfng4OJ7jOFMOOite7xgVuPS6G3cDk+mncXQzG3USqFXvnmNGUmkZybaQuyEx+OuJOY6wjPR/NV0Ptm52tNCBoVzrB0pFugJg1cQqwLegtfmoEhEnee9niy6NWjpK0kXtF3fwBLPaXh2Si77Y8UoCB7XhwjX67tWfBlItCGZiDR3b2Nylf755+Ta4bM0fweu3zaz/woFKD1T1VlseXFDx0Apzb0pvmUEI/fY68KYU9VtffIuVzGjNk+fvvHcFz+umXTxGlYkFq3WCykOe6/IDg2XasiJF7D3MC8YCGv/xhXqQWyKiDgTvWBH+M9Gez3gZkDDvN5nKCXhk9UStlDocnpYANYu88H8wpvmMpR/J//uoomtEoJY+1x+DRnF8ydwqQPZgDb5WiPW4HolNaRuOlow3iMeUSvJc3El+Y5Dg9JgGB6WzAM9QV2iWIU1lgtkND+4F/0OPP4n+Wm4gm62KdTYeR6RIRdsQzXRDvuJM0/xnOA0ddWesugDAyV0DVGjxg8eFalormIaB9zA8/QqME6p47BvWnZR8pH9HPji/Z3zVXzofW/A+kP0I0gvTVywj+KL3UQiGrIfocmYAB3yGNdXZBtLp1VoFO+05+M/TBiqY7Hnu46sqSaDhSGl/QO+jZWC46eBA739L8eWaeSzhQcn+j/oFdjcB3GPoK69/PsT0DXFgO6SEn2MqyIyJY04GOF1M5EcMZzKEI8MaUrLZSup4fO9k6/fgRUIltLkNqllo4ruH07qkv7U0fcAuxc6DG5VioubPvQPsxoiY38AdH09ENRZfYeoPtfmY6oe6a4v6+ZWzbXHF7PCHXbrAvfGKmFI5/zVpQ8X7/tcMzxMUx+YLtfuQUw7cXqsxcO2v8gB9lR35LXIfALzKyZhga/D9oaekcsySgDj8+jl+sDej7QyrQ+Q6sgNBdKWYVvmQH4U9WCDvVN9iXi/vyTtlCLKB4hz2uT5XZTA8AGBlDqgphZt1XgE79LxyOa9WeUq6/uZwmDK53o5wNebb6P27GEoIh5iB2Cp1nCLJokfCkWTvzFe0MHe2Ur847/OVOwkZ0+zGxngaihEzChrTjKn/ghG2zIKYuY56D2yvhihYAG8GaYXKzWL/Jv+NMzRBwxS1B/5F14oHD4Z03XreTlxebRO1yXMrVMh+wHRIDGcGS3Lm/w+uWWzNaI7Ym9WCQu2C48F0SCJY96GfCBt+hyPr4tIBswMNzjt8cMw2jUPAEkQMFWACR4HlT3noEbRQLKgHO27W6IRsLAMch0v5aufhLereNIswbNSoSxHE9eowBUZpfb314r/kXw/tm4TggjQ1ZfSgvmLTU3nsU3XwoYLwsaNEn3s5SUvpzoN5N+nNr/6N1rKPViejWuyzedC4UAqajcpYP1XOncEMqTSJsQbaMablU8fsLFOw+w6gKRJ5PeC8Mys2/aH7aKNtByva7CeL+ME3Kmj5dLrYfOXyXJ9BN9iDG8cMoItyeK6hyyMehIhSsvbtwwCW+3kpg+sbd/agnf5owcaEo0NjYMCgW6J5Mv4aV1Yo77ueGb0In48lHeFEhRO2RRlDfvKbgFUsQMfaaV3McJ7gyjlZrBaJxVfO787l5TlLvNc+wBunWBSswlspyFpN1EVUzJcQqlzHeUTii6dlA0foNLYRoo9STpomUdndf8l7BpV3dtV//9pGgUY0LmVEYv2UoT62OAphWCWB+R7NHaLEpvJlme/GC5Sb2TtJe+MUyXq08HFa/3fF6OgcqsSV5FWNBcXrqHai0cDQQy434dw9D/lF8C4wAMRp7HqBPxCIT5ZZoDqjaHV+ATGigEg28AAIUCB8SjMEauS5TsVTzXD7E+PepM7DyyvVR4sOaJbJDtdJjeq6V/enlUXKGdrgHaf/ajXIPTcAvdjLciT6gtuluHtRJ5jYK73OcI5uD5BUC7lRWNsuankC9DKfnjXVf3t3NDPGSrYtr+mmyhHqdCgX22UyABvVT/djzYx0ilvekXe1fvdCJPb5PKOxoVOwj7p28QAofTu2GJNWFIqYG7HynjARlSGKExgIayHWpYFyGi4Fh8f0zHVv1wF5GyYW4Vf5X+W4qJZUpdXoabOeR3YyPpV9lOSnud7n3RMHtxK4TBz/TGa/oEmWVFDGmL8F7dcf/3xgprw279hxeMNoeCS/1BX6yqxMr3cmNG4IaTmOom1Ge42GZbWoBvt2pIxKT4qGY8LtGyun3VfsOJiBSikheegmdhZ5Yw9ShRrPYHfu6yN3jfQIHslLW92DIpWbh97Kc8G49+9LwxbtMmAW3hHYsDy7y6IV3j5QwnOhny322BMeX4z8Ow181J8NutdyD1y4eQOE/yMci1vEO/L/eOKCuHUGX92Uj3i/QkjkDFG4esNIaOzFSgwjuwNtJkczzFJYmBwH/eAF85kCmFbkHu9YxfPbSCMUeZPy71MP9E3LOCr0bI9SrXuTrzg8pDn9T9ZuzPb/Jqoqe3d5trKN1qisct6JWl3BraHMKSQhPVYGk8pjyQyTi2VqHyCVMfTSuNXTbpn0fF5VV03y6NGPtw59F5Jc6tgCEyLlqqDVhIM+GExQRthKSoTf4GuYf2sFFZtvBqw85yid7KaO08FDrAdW4Rf2OZ8k7t+S+JSY2X2LVLMOWg4CbrVgyFw5G9AlR9S59/NvJFfZR9EM7ANV7s+kmGX2udO1L+gA/npkf0MibzcUKoRoC4xN/QLnJdkCEHnBMxHEgIqEpVmaOa2S0ejY8hURQjandLJLpcMUUUpaxriNzYk2ndGJbtMCgFjGJeDJt5uOxsNrWlUkNyK3EchaaVh6+Py9Z3aXSu/itWupUVxOw8SVrm5kjMF18d8zjlwPM8TcAoARqfZEnC0oQa3ArI5AoywvhNDE/2d8SzTv2cmVVReVqX6BvTX9ThECyBOEeZofe+u8OH04/taHsQpsPZKdwtqnRBHeK1rFkTx5ZA3dRnOKCer7NRwOp1GmmOpNlvbt5Gmbi0YhcYQNBpkghllFWh2dThrGkArS72ZH9mXSSUkr78KSyhx3uJyq/CVf0C4eVueLMZ1Jcfxw9t3yV4fm35f+dJI+leGgmTEKlU0rrtZe+wsHw/vZiL0mcVtuZhfhzle9iwXTiNRSp0fogP9Ze15hlbvigbJDwgzF0IXAo3V21DDt516Mqlx0xEUnDfuiD/BKzcGCzxA3wypaA93t0prq0Pe0hKrOvgDtMKEJX2cR7DhOweMx6LyhbZLxnzNXcO9CPW6oqj3MygmcBq49zHBO0DtvUaqDS5VkzxFxsD7B83xZfpuzxZBPUYC1FqygU/74/93g2sbuocGuo1DAAoTxREHkK5Eikb4t4KOt0Tk+YP4a+H/6phZJL+5mKx2K6HfpkNSCz3wYYTQvUJ5buZqNrLPOGAv0Ih1zwvP+65lvioMHaBDUA/NUXy0qV3PiDNRrlr+9kU2l9sWGzMTtnCvePQSWk566gJpOuqeurB1FCsozJAbT6h+o60SUBYky6GAiqdKQZzzRYdjeKHXi9vem17n+IkWuNyKEXROhjaN4SHTRhTE4Ja2IqUpg/UvoaXRto65Pnq4yxaVMlnEX3dE18MJUBf1rZ8Hbn97dGl4bDKpFwBA39xLypAemE8i/kQ5avDC5F5j1JFuG9gOdp5sdTAhrN2On7sXW21mqeromKgjrQBhhubez4r/d2POvbnd46yyo3bHITbKb+HOZ8Rh6vOm1ahA8XRPVOm81E8eHsNvwXZEy6uNoW7TMbuiFFuJrZEl0bGJ3kkWv1HMuQV291YenwnBYWiTFa/+NLb+ebMEhlYWWYido7oSiasRoCLcoMR3gXcTwBdbS8XmcoMVrE4/TRqnBZitOKHKmn3XGE8yMdXQ9LTFVpYXPG6zUkBNoCb65UjnmsNjrQjBSb+Nj1Qu98Vpld0i3c0SP26HEg14pK5K/0hpY6ChwuC6RTOtaOSKpp3WUYw5fxSxrT5HfBxGxXPjsHXdxvxjeojckx69TVPYBOMgV44W8brfZPvL7Rr00Uh3G79omfyOfsNzOnHYp0oHmywqPsZ2XLCXQKyifN2ZDdzos=
Variant 1
DifficultyLevel
567
Question
A ring has a normal price tag of $320.
At sale time, it is reduced by 25%.
What it the sale price of the ring?
Worked Solution
|
|
25% × 320 |
=41 × 320 |
|
=$80 |
|
|
∴ Sale price |
= 320 - 80 |
|
= $240 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item | |
price1 | |
saving | |
correctAnswer | |
Answers
U2FsdGVkX1+2u9esAxjlXjGJCGcsiL0dT0TSinKHfJo+nmm1GDaUH1ysKLHqzBtuJHhyFV6uw1tudJoJ2R5/YOtXwTru/1meLa8szKsKH6Ly6jF/sdmVreVZTZUdp5dLvnCANsoHFKJETX2TfLj2JswdL9ZaVvj+1G4MM/VGN4wyV3nyRFC/68hquDhIXX+SgXUPmMAJjBywgiliv1HB5mmwdMtNprzW+bcf17uUscyqZOewh+xPQUFd1S4h+kDYSXicNAJ9U1DNiqnKxBpmggoyrTpqhShtRau04cIB0bejGngTcSp4IP53DEIn66PFdBfN//RzOBlWdyf6UBLMiPxiuEVh0ayQU9iFyf6U0dTiP8wQ8utR9SKzMAuBaQtPV5oIkqRuMhs1A2DR8aRr5fRF8sfveFR1yVpa/eiLHqlX66TqUIwqjtjmQ5fDWPK86ezFESc7EP60B4ep/gP0Jl02qTAjeKCkyUZ2LaPHe8BhGktcym2q7ciVqGkRc6SUoWyhh2S8/3XK6p2R12HnMgJF0VLb9JFAAYAkqgrkBqc84JQEbheOC+osoxH8HT1F/dddUqBvcInv4NJ0J0FauBQ2NwWbs6KRJqJC0uzzqa3PYfAIsg/Cqdm+jRe7a9Kbxz5vRANKCMBAZuX/oJHa0YMsuR0oxLKgiw4nwbzxpKP86jG/23d15BsZ1LHa5O9g1MDKtbfi60knAXrD1G7Ri6XdKAF8oxgQXjirfZfTZWf0byk/mlHCDTXMXDRuHssx9KdIKMAwFUnSUcUxjGKS2ILCsb4iKwhZSOrwJ6doWP7/J2ynGCbTLQOCawD/SfQBFxd/nNRLr7PblAy/5n6jtDSFCF5/DlevEhcLHP+oJkw3qesSTDJ3exjwx76bwJ0jm96obhZ8sF4brvmDs3Ur50FLcBOkONOvRRQ6uwXjnoi71+X7EIOW40GjuNZ8HvmHbCWhalyWCC097tEybCShM80IrRLfxtgECLqn42l2ckIegYiVXHDxo8NVUnUADgR878LffT5XEhjMgu9xIjQDuAt5EcqQKNQ834sI54ZYqNB/vmk50Eau5ECm7sin3HP+Yf4Txz/+uO2Eo/gQtkDSrXpBfAYrxeKwOVR3BZlrUTWN7WiHXs5d3rWDASzWt9A09oZKH6l7GSBKAK0wsW0TXco2ABquMG+qi7qNIDIEtLBwQnM9UiDhCxwvRSNghizu+Q8R91xtpgndRDKn7BICm1AlpSX1NfPvMIhhWXYd5dOEoKngkAmKNixTt3X0af0fyqds5PJMqQBwQuiYSGXMb60ttc6hEP3Zrw5KJuz6AUNIXh0q2nXvl1DEYiolZT0IgaaQ0+U2Cnfeace80LAYJ+TYgfqyDh4eaxT4XYWvi0cLtXeFaGR4wjlRmbpVEUuKig0P604+p3tL8kVHTymV1zzJNOf5tX4CcxMEjMJTYl2StNcQQokbZeCt2vv9WGt2nnRWa/F6FQfJc59fqa5e/okQz63AWrn9TWnpaziXFuv8ZfkbSkDZpVvyu61Eaol1mfMvq9nKNY+qPKPcS6SUPa0lGR/wjhdBo4d6arINesO+HJl5+PTcCp1vOtg4zsjJ9QYmuYH9Q9S3PtFFSuLAn5Ew4VDdPVayTb7i98vS2FHGUvf2AH8fqZKEvINo7a8epl/RQ7a3gLA+gYQzCrju6gU7ENlEHa5B8MbHRWGSi5sZNtK3T6Nl+lwOxDzQmMG2VzTx0WXgEuOF0parROcYPKLuZ+9vLpo0rRWbIoC/d+rgkghnjVDy6rchRBhJ1mTorOREnXDUoVpdh/h50+5bIkJyVR5GsY/J+nIi7jEcZ1/turIKM15Goa68aZ3KeoxKTZZjcHTmjk4W/W55OL6/d3A9N6yEvpvxGVGZywpKgdZnrIhJ722ljqfkIgyuubqLjzNntT/SCUlX8sit3Ek5my6y5UyIC59bT9QFWJ7iqucx9jYSeAI0VQkByO3GcxTXjAr6J7lPwPCjFG2cO8nivJG5YcVg6uDTClEP692uv2uU9zzPM4RMcY4IOMmawnn8LiCxMDvfx2PtuGEJwAxkPZekW89EpOMjgpZ64imzORokUZ1tNroaA5yG/dU4X7vhIQPFDWy9HraLNeSXlEBYMs6GIQ+F1YpaAV68eNQ5x4UyzMAqrzzkUcet78ZSsZEe4wFoKSbNwnr2DC5odbp0ZSL7PnDbpe6ojPwkNkr4B3opb2blV9S/K1YO1iTM7EEEiq4rqB+Ezy4EhBkjQrjkACYpwYVxmlHAlftK/HeKPVD9EbU1FJFuOGn0nnPbremhD9/7Bfsv8SesyBpDeh8uNJSHuV3cBMaDCOKR5qsdmeajqOJLISKYF3ASM14nejsWBjUMw8rTqalfiO5Lv+aeG8nJ2UH1Uy2tNB7LNshnd5IO75kHBzDxqIANe6HO4nqB9SjgwKy8cIPGRp9BZhew2egInLscNfQeQm5Bfe1xcg1bNU5l1ETCGjGSKuRhLR+KtEEU2/9ojTsv9hzTGC2R+nchj6mRehHmllGb192mZ5WwSh8Ut41ReXDztC+bF6bAiS8iUU/m7ZXbyf0Oqxx4R8oMRn+zoeV3se65V5X9fBuweXQEtdS6eZFRcOnhsYw4bEgWcwW7QPMax+0C9uh506TePIhDd/JFlGVd3XMzp8T8KM6IGV39xHLe00PMO1kFoPnbyfUuQ0iT1KtvXHh/8EwLC9I3p2cYHP53MnvHIpf4AbJmYX3OrWyix7mSE5hy2QgpBDTKF4etcH8GLJ1H3VUxsKeN5VknEwVzRnGNd+p5DWWxXbEzGKUMzZbWZ6iyMf0bQAoNRI+5PzfPYv7WV+3dAhSKW1+GzfVtOtPJR4WQk2yoW0b1Rw3w9uEHu2spIhCrW6OpN9jyptns0zd+GdiYle4Ip9Txhli9hVDhbC/acs4HnPBpHw4e2ge2DZCW+KW2uisit3hgR+0MxRoI0clvnw+XHyf5Ade0rprn76xq95oMMGU5nmR9pMdylV8hqR920BpH5/0HT24ok3qwzM3bQvbIVSCtAL4/I9sEAsbYPR0w3vMLG3PRkJKf1VdTde/VHmZPvbEg9tkvYirhaUE07EmPViClijS8OFNBj6YmhxpfDGpQKHfzPjVGfEHvLPvxsFFl4yTbDFY6Uee1x5gKyJUo5Pk6rSH5QvNGH9Nzg2m7oys6i4fsuwU2K9EbSt2bdGw4ZAhxCCq9A5jwgb+GMCQd9API59lH3YXVR9J2UPb2TGrRS7ge522ySVAVnxiE69PpgDrzNlRDREElz/+CCHlm/sWPEZzCHToR/+YJ0n9GWBfrawQP18YA+5Zcqo7LZr3+D9o4G2XLBpwM0FA+cH2XLT0Qt8Br77UCOlqrN7IzAijvBf9y7hFMWPfP+jcNlCH4lOPTjkE1CaDrDugR9XtU9tThgwJaJDWMYyn7ieGt+N1mH9eHZjsZxG24lHyk3pVxB/Kvy5lhR1z1/xowxzOyYXXyxSxZ29qpWGQbXZcrob+o9bLQw6/cFv/VK/7tnndpE+8tyVvya2imXgvfeeQ8z107aoYxRkInGzZWfnATq7hSPXA+NL9PXerwp/Mt92AP4FB5q9mmpvWfu3lCOM3n6T20vlNaB54QyGBPDt96vdnfRGfZWV74gviCSC4oVFfPm1mOrJe7d+Z4+se+9otMciEU2eiJIt01RztY4bUI8jMCIK2T6+5UXssBMl+dYeWcF636p2847eeJ/jrkqahAhpIi5vCXgqvWX5Mvr8UzOZalvjchgV2FObi7Re/xW5XJ52kzz1FCNAtHzcS/K6O/qZLF2mxE7A2p6k2tbyk7+NrXxAdnszUz7yYwOszW9sluApzcU9kK6ACem4MHVNndWgmvI6AWd3vI7msKce5hRlzerbLLIFepmBLO8V4b6UYr7x14y2hTaGM0e0r/QAhRb9BmfJIia/Ka/UfEogq5N0nJYAz7cjRj4bw8YrCxMY8eIbuplyXaJm7qMNkaKpjPUrWVF/33QsoTIvDnq4PLLICfft0c+5e910xjClrIVYa8kTr8Sc7GBPpxuPHlURIVCxVrIs5PlR6NaBvmV43/PHBgjLC1iUsF1wBpg3UZ2bWalq8J5QGddAo6+YM/GtHRTYDXOyEYsJPcv0mJ62e1IgIBB0U4wQNXPdUCEwGKMrybA6eiuGvbWih6T0oKmi5PDBzz5/r2GXBrfBfTRYZJMJqq3NiCcPHdDczYUISqPMwuKppSGFkRpG4QNYUzWUjSfePQSa02YVVngbopsIDLaPQzSU+bFa3VgTLkPYGkf5mnKTv1BStXDqpphM2KJw7dUgzRFLEbRBTiBBkdfbFqnuUwNXBFa7GxtwdTw1y3W7YLSojS2e8CfGpo51R70GvrFy1ukfxwypIfRswho5Wi9Bx9Eig2itno1+HRX/DXlVnwSxvzGeYM7rKjTa3j3EYSqGRDnXAtTpjgq3b39b0I5KMnzndcATV6/7H+nMdahfbol1LnenPvKKYZrmaiGVOd9A+FvDwJmRMzmEiKf2MuiD9GJF0o9j4CxXd+DG5ut4lHPYTgGSaKURJ/v9nSJrWAw9OWGgcy2VXi0umPOZs/UyFCfqOktVBnfhOS4iORTmQG+KfcvuS6aBryUU/fG93FF7QL+kZ/1bU4P4pYQtNLDC/j8dKNc5yCzJdPWLFiYLeWE/0SKCa0pOXA/UB7jTD4/Io2hhrJ9jGmq1dbYdKYCNakV9Y44VYTRChz+iSSiEuiUGS0iymGgsSYAiOyx320oXdOWDNCfbWR6TQq3Y3qmBpd15B8UeeqRaW/xb2dcVudHNEu+5DUQG3BjP5T9IBFZcI4ibWSDRwGaKEN8+Gvxr8B0fl3xm+6pWJtAmPuhSEmSb8lIXpafnMS8VMAbdHTcn//rh+zan0Zxyoyy8Fq0HkvN1C2xSviHHdgLwmdhJchhci7Orr5dtZcPVyRc5/3VRUzJgLvVzl1XT71NVZ3QqB1SGLVaVqTF2bKUlvns4wsd8AzYt3VKgpAPMAgwPbuCkm3iJR2DwoOPWs1RF8OaaG7Fp7K/ox4MilF7afPGVydncUEGs0x5f/9LxCk+CEZ6N6z+oTw4Knht+MySYRKo0yh3nQQR+zUYJx2SErTHerVmIDZ3X7iw3IaGGGnRC3Nv2RC9e0LqYpSMZHOJz1wANJ86POFyVyfoQ+3KpJ6IUPpl5Y37nFBLuJ6y1U2wh1TjvgoTvPJujvlJwhGaDbvRtHJD/eUwLLAt2hUtpXwqvbTAaJjoCm7d6pTllw/96XPYEP1zmiwtTISQcqopQfcsHLTTuq5Q165V+3qPG7VxFE4bZKb6ehbIQ1+sDCli2r9r45G4DlrO3MTVIZnZ76HbDuKwl5UqaiXXMi7zNzkfE3dgPtTJuHxxg9FLcMdKDurXTIpTNJ1QxNUYOWRVceH/zr5gamyN2nPy/OApCj+vFmMnK+zrfQjSyNVwQNyxvMpaoAwf3i5q0mDLxx3ZASobHxLDxTP3DDE3ZUd6VDOTc/bVuyhOSte4NXa1v4ctc2F8+LNnBInCHqkHmbN6hyg3dsE8XwXeKgAWP2bNtrM6QbUg45xOJEQfTfmEHn4j8jjKYbu3AwPls3huQg6Ze7j5ha7O3ViAZ0ZK5HY7AlF7bJzEWxo6BkQ67DTHte29y6172YCxhLfcPPDCi56rF9yq+WeAiHGQOEMJN/jXuKeFcS4QkxMtw1Rz3wP8e4H7nyMDuVhzGchV8U2DDOe++LHIiZwv34TDdMV0TyxYB0v79JNoMX7rd+IZtB2AbueHhvMDlm+qdsr6vl8KxlDaI+7fMa1vk91bWfVLt2ydXRk+7P5iBzqzeF0VBpJpnWTJQ6Ne8XOsX/FMZ1mR62wHiipWwApmjZIjnLF//1WfrcMSlnJf9986BODWVWue3zuDhT8GYPCHNk1gK4JwM32e9Cb5r6cpfD//w3550QWBc7Pvw0dwmmqNOXzg5qqlvfiQp/2y68svS5G2luNSnomYPqu/KO88qR3Y507LJyR6ggKfGKoaUGEtAjPi0xR/KcjKkPB59f+gI0mVHRcwpKJJezqnsYHAcr4fxwBLtguKZvi7ofWV5welkFPT83LIw/Ka9Mrgqjr8syk9GiWivh4dUgoetoDykNTNm4NwbuIuggCqnFX9lapCMU8IS7StJXemGtik7BHoV+PFKS1MdrDtimj9cAYRsL9RcMOZm7RR3x5JnsN2uNncIvgEyMBo0bLANukFOT6gC3lxVHCHlt71tMfuX0j5NlrCii+uHeLbOpFwy5eGU3EA7tgZZb/Ajf5OLlDQmuXfDRTaT1LYB/VNxNB62kOBdZUBMPPaqGPkkznb4O/0Kg4EdZoJJbxfv5FqV2ebhqaoGE3+4JmH13dMn3cWhxj042F4uJG55f0VcmreenhYq0RBAgX8KOetufmIxJT7s/5rXUvVmDjoPk/TlOfu/nAgrgcbdUTe6xUIsyStxAn4El2tUNCVr5lzo2y+6auQlfw3KsK1tfyziZ3BOJKzusDbVVxqvua50gq3r1F5LcwN+aTwB5aysHJHKFcv42/K6+ciB9AVGdrujrQA75ncLnzkYNd33oaKP0dgOtBg5+i+bS0vk8M7NvNzduy8dY8nM/5U/9SZRpW8XLrsdLfSFe2ZSKSpsJkdi3TJTvxGTfISW9Ghjj9vUSP+SkOeyYKfWcVmYvdnkS8XVZ+UbV2qW46osBPwbFUfMv0YWbamIkZXdGbIQN/L/qRKXXrNbves0UpSsSFPtH3LoFW8j1XADPdV/3D/lyTanRGa1ixFh9aMGSV73g8ULxMbaOLaj04k4/zOfgsuDuynyY=
Variant 2
DifficultyLevel
567
Question
A microwave has a normal price tag of $160.
At sale time, it is reduced by 25%.
What it the sale price of the microwave?
Worked Solution
|
|
25% × 160 |
=41 × 160 |
|
=$40 |
|
|
∴ Sale price |
= 160 - 40 |
|
= $120 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item | |
price1 | |
saving | |
correctAnswer | |
Answers
U2FsdGVkX19Tn+oilfxrTJvfxlOtKComjlM82dTgErTyW38/hoXwWDYu13vsbBS2un8rsVbZzTUfKTD+Nx9iZxEPCnH2bHw7Kjl4F1UtOwCQwNrE3BHu+5peUKmUFpueyTobqazhxepfZfsYlbmNOau0JslHFDGMQXB+qyvpSkxwhYtfPgwJmc/8gz8lY+i8w9y+ILdZ6CByDpqZVNbOtvLg4PnabLlVQKP40UONJiFw3VjWnjQvFrH8G71Nr5qoR8/sygPvS77SzDjuqeZZbXHVrMo93gX/tH+vLufXgIPuOhCm/0+K34AePH53m2hNU1XeOh37yyprwRTfJNWwLLpcQchodQofcf98IVQULlnQX0ZSd4PjW3c0dzxhuHMXM4lKmhh2c9NkZ32j0Mkt9tT+t89d+2Yck1sWG7KhsXVfJswB9TeCObOI/z2E1CH4Ij2SrMKTo3wvg3z+lsECtcKrYWv229c/Lx/k2l7LyQLHJY756ptvpEkQCNkmHEGxKz96r6GzYjPFUbjOe4BvHUIUx8b7ZKQCOhszSImB7hHTdt2FxKhu8SK6dlwgdp4tQT82NdCVSon36bwDffIdU4JiGkopd4QG5pIU5p5LX2FxBm+EB/jO2/jq2naWu2wcnWaZeaxBqfg0dhgVf0vLBD4CbP09kyE/bKLklmUwpJHDQaBnqEkcV1BvEWujARZ+ynA6JJ5K0ZQgtHqb2KJEocRRbSfyDd1Bj8fHc0Hb0Vpug+Srzul5h/TfW1RqeKtwAhZFM9cMKtNNI1PM2DX9VN/d9f4PZYI/4CHm5mI4opXW+BabyK6HkuwNe/9Ed1qD5cpXNQktJqGg//bAY2xPgNgFm9QCB4sdjpZCXwQ9AEEKbyHPpYcNZu1x+TIBBUFGmco/wmuYVirbNhD8eBnVN0bAObgwgFwZYoVhKhg7y2ZQlaW0gLNBs5bJ4VEm+Vz0ahkaAaQeyMpUH+V3M7zNpLq1wt+i3ZKg1s4qsgzXuOUgiVT2ahO14Zz+Shx0cqdKHrHBAZii8pXYlLvb2C8Npo41sShOF0oKNLIfWTB4mggPeC190sfIAltk9T862D67hkCqCx6Q5HL3U+PbUnL6ZtpTu3qgF7g+jJ0vYjvq5jSQ6yUW63HId+X0Q8FG0nE6uf8zvT11hQXvi2t8TrLUiKVL2WiT7XnN2XqXwoGARa5aDPJ8bu3+Yp4qMsY/WuI3sEZPu2AtIM9cPy/A5EOJ0PquG/MISAwETqnyM9EZI7DNuTCX0mu/EC7Mj6gXNanpiloyERbHGOYWUZn5LqHTk6w6dX73aytGPA6mUIx9c2eR+1UlTpaA1uMBUUO4YqA6jM9wfAxIt93Gv4w81pXmDm+caCdQEPONOxnF/T6xCUXZ8W/uRn4izWXKI1SOkib6EkI6F6j69Y1cI2TtoW/RF/sJ48noMSIGslVvbL+1YW8IwEfalZ2fbeN7a1266O7PeSpTLLKivzoPiDVqz2nA02E7ew13S4Xmc6Cc77yftZWa1m4JvKNrSEDoAb1LRpAB1pIeUZpnyvWEU+Tj9c3NyAinbqUo0lG3TtlylQQBT3VRiHi7G79LWSBgBgoMWx12W7VW3eY/ui/bI5cx4zxo56b/1PQZ2k6DagHeH/lXKvJz9GC1xrNro+22VR7HJb+gEuX6cCSIBO0V1qqWlrzxcA3sIA3pP7FoSiueOfFMMN8mJwSC0oNB86HpnsEKkd410MXINkPpzof9xm5m+In6O3q6h56C93fuACC+4PCkCOwMG8m9AQfoYAwCMkeK+BZVWqm7jBlgK0wB3/OomcyMDniGJD/5gei8PVycGD/hbva3d5pvlVL6OGlUhuwom7T1MTSl4Ji8XExrWtrr7eD2PLjU0ZoxEV1+1wBXievIuFmSxbQNqpWesvsFW5PlYu9LBFQQ+HaZ8zIE1qR7gQh3ulMZ7dqp2wzV3iXcTwL2uIvLh4W6olqVaoGD3CUj5ggGua2rYlSyzu3laKba6Al/KcNWmyPJ5tIPCexBTCOvVScrnIx2QKA/KvBiGVEjX+wRxw0NC0taSBb2zIQWoG4ITEM89KILzEwL4DztWksRVCS7nHjUig1mQeNDoy7EeFvLClHxocEzDUNi4g32nGJFu7hSCGnxKuNsptzGLafNyjvKEAKdPfxmTH/V6iW/Zdi2XVCNFbGMxUi8IN0pssjk7oAhMsTkkqB5tGCFbe9Xf6kF4A7M2Lh5OsYZCMZpjTHV9A77wO/II+hwtEzrRPNfqzszJagLjHMznHqCgeUAX4oFs74fF00IXU6+M5rWgeaDth7uxtGPK7tbetFiFiBk8G/D8jBMq0mrY/c+Jult+LfxUhk66abHY0SzqS5TxsSWF1WLtasO+YP4RCnmhDCW1iy9Idl17AaO3UWRGhA2ZG8LtLHYcJf7fwL1bySptC7PARUFjV3BkwPX4S8utm/rMNLKml6oM8yhfXIaQl3MWIzuBEe0mGiV1jT2FIDtXhqYqYvARg28CAf/a+TeDxZFzDXUNRJDjC/9dzoFOrI0d0TeiGbBUZvmhCmVGoVEcekfzxe/7Pt4Q/WKiMWC7l/ZYT1OKHFKlodse5pYkPKUtYVK0IdXUC4UFLDkRtBL8Wj9s8IEgZyNr7LnnoxuCHFdaScZzoGHblPbNM97IYbPbFZYAm0+TEB5T+m3JdylxAv5ITU/X/Q1nuJkYyN8Owa/xQZvfHm/tPvF0CQDkf2ZWEZGncKYai7x//3x+leZdDgJ8ukUlUe0dQqQKdIW0Pr7QBpLjryjiwHjz7zu9kdk9SKSWucss5Zp40b5FPEQMMm2B/PZphUFYUVOFOcMTkN6/4Xt5shsC21QNhbag8KYB8qAiMqBrzScv126YoIPDLayPtwMjjyniTCl/jvbVXLuUKZD+oBgjCs//lmYYBdXSdsOHSqAdC0M6ijtzmR4ppj2CD1eVJy/kSptg2KxYU5d3hBHNfjolyRAqBe7MQHWGAjUFN7SZX+S/+p6i2c2ydEBeVUBzC8Ful0FPFYHm1woBnBm5m2zS111LXmFBG/uM7yqSfY1MDO5PSTAChqf9VJhrFEacWby+BD6wad4/EUWMeAKe2wSWN6+fluL2G38ghEqxz0SqOQstDZa9XfaO72tHURQc4VaJ5ly+dn7pi6RFoJyy1hF/KiG7LtgJb9aq1+VN5xxPncdLZNt8kq9ZV/x5GqvjHOa84c2D7Zk0U2i//7rZ4nlf6BbJkAdxLQMqHXXgABKtDnK0xT0/mgakxL0sVMS8fIEnJhIlp8HMqO9pmmyDhNhczrHHWhxxbHdoKqTC7poD1RRCqeQ3TZW87m0w9cyaBhaTecfuzry3hwW+c5seFMdbu6Ro++uBlOJ7+RA0DEqJPspf62lwr6HEnxmvszflMMBFywv5tV+fKFWNxbFA/xbQJFBbl3jGUsRlZBpiwavrIAZ8NUHOQIQjIJowIR+jqqRNTDVZu7zNUiDSMoDja+13DyW3WFmCoZPRJ60oSlkzJBJF0IS/oKuYKtQ1K3LwIVN4pcvYGHS76yq/GlaKxWmG/tUntVrHiM/t+gUz4IjuApbFY6hz+a4efr3MJ8lXVlIE34XZTGlyg2W/S7Bf7BZh9PEuyHAfsqUhjbxoaewq6GRxObzh6Y1ItHNP1Ntz9p76Kgn0kvGIMVCsbPiJdCS8SZIh2TPxHSJSKWAYvB8RuoISqKiWu3HNcPuek4qm/DFBElYmGNCJYY8XWxVzxVtah8AkvT83AjX6QAfXXv74fq9UxGxkK6pbE2+1otaNTS2F0efCQWD8NsygUZBCtVP4JWniysCOZqceOTX5xYDABzzyfjiPgTrlGUCLAZqD2vA9l9usntSuylYDfQAu66IXGpzE23fLKrOIHa4BuVdfr3vc0kFHqwbtJnH7FkeXjINlpU3i5lf4mn2ZWkZmYktRuRSUK30FWiyLeL6TOBFcEwrwUFb+d6k/9OW0D6RcNPezXzpoKc07jI921lZtmYFj07+Obu8hHYjfICLgrqQYi6UywySZcPBw0vOHdtdA52ni2N9H3/gd3CjOXZ7hTrxQvURX5ydWe3HExQuNEBpBx1hNYftHaEMXRKn2rc4BhCjUiodYenNBbUYLmQlFB+f0DuHb8PgC280x2vBfqvHscjqvaWBux56uhZ/o49L3sg+oLq17BHZPFQ1dEwQBej6F61jprMkLtQ8KveYtXjkQYFEkfKX0mFmTScT6ymU4ShgaEwKmU0KpYVG4mM26VfGUdxVonfEPex3yUQ0fPBYbIdycRr19N8bLn6X1FB1Bd4b0aJCjX1Bq9UmJ2RXvofHkO/euRS0MwexDJ7heZ36dvv15dBhgpkkcc7JiCw5P5hbYd+zqsDtr4RdNgFd+97AveNf1zP8Becdh9ky4wQepg1z5XDnGBmnxxDZbECpLszoHLLEQ5Wko+ie31Xy0Yjqx3QgSYghBrc4fPSrWG/EeReZnB77sJYtKrZkjBD6G1YBln5eNM2TGvEFdLRLtpo0zaHz0sgz0bQMRN5FwvMKAyJWxVSwH+1wSyPpl1+6RfLJQ6hKd30Mfvjl1EaXA6GyCpm9Tftl9IezWRRIN9nUPJZsYOBJpt7QGBx2iesng6wye54NNwQOhjFMvl2hbh9AQL0WePgPWN56nJhBQqcLZKkgoYNjU9gXQ+BNoNlcciV1EYuzn64w0VXku2durtw6R8x0uFu+z5OiNBlgK5YlywAnI6YRJDklNn3IdjJN0rSpAyU1DqNmewea2a2bTzk7KxR2EquyPeSgtOvpQM5eM3nC9POMq7xepJ0SZJVRDHgPtbG0FxKKTtceM/GX/vbry60Kt2DN5/UEi0hAvTSp2OAWbtn0wRntEDN8jRpg5jlL80MSBW3/P90uqKUUNjIikWt1WmuBVQSuwTq7FAxv4zudloZlfe6D6qKvOuQDbMTBOWRBXN7UrM9CZP2Uigi0e22XpXsH4kwR3PrzmDxQRUsY6T+w5aOiBveMSOrSn6cGVtz+eAFWtY/rBRjHPcWnNpDi57qzaHN6//MhOwkD0cPHqI969qId6UFgZGmH6csBgiLnwPnmIpfseaHwT8iUgi4RPMDw36dA6LgRxirHCWiq7VqtoKPr1r1+5zhMUCmqJ/zAIIS+p6wSklEXInZQOVed/Vhk+Ce9kHDHJYd6PrjBNSZR60Osg9OPjJ9wGKmwd5xgJWZuCVfZV6RyAMjOoXRwAFGFX/Etnc3pwciPH2jtgRB9uzvqQkrTei5K1jpzviESujRPSjuIURJWXca0dgJRLQrjS7GO6sDCpCoZ+3LmGJRMR9vyDwo243V0FW4FwHREZiSd5gSE4I3f5e1ymsd5uh16Wli0Vb3mlymuN0Rl2kJoa8Fbfjf6QNNxcbD/QpUEGTV7mvzM06iMOLKQsRwKbOw3cNPlPZ5K2sIO65XbAhxJ1EPcFwUQLgBIvmVy//m9yfeR/vlTnqoZ3SyYiZr7XvQRNOnSKvcM9kV46vd/6JtOFpn+1kpVx5OGzTFEHMqeGtdCKpKBcS5JaS4XV1fv1f80ni+Qbk5TK4nC75awioe5k2O/IV78HUI7yQbK1uA4pnTzzkZ3u/iPhGLUnTR/X3HbBRdQQqyD205/Bo+Xp3XMFECEnI/UYtmzwuepG4Dxc00jVjEy12wwEQXc5IV5q6THZJErxxqfLaAGNpQ2QfiPKHBRHgCtIfU70FWRN5spvTaIlAkVHBwETkRxCDmbELb1KySiiLPCHICwmbqdgnLI7ziIcqhP6KzAg+F35Dj9eOd2PsSdJTq9eduoqj16rGeeRrRU4vuyTreZMH6UlpGfZjz26rN+4i5YKe8WeA7ryM0UmV3dlVwrkvaH/sOFzKqyt2tB7/tcxy8TMGtCwrfD/5/dw7gnnafngyCTqEKrVyaAyW2qeL8l/aD3tmItHPkE8XzwagmFQf9Z3TTaZpQ9/yd8lPaFzFGkmhpMJqUc+D+mGSW3p9KfazMMlFAJqQYxV2mHlM5uz18DtSHuSNV+g9z24naqnGaC7varIE1UojsYJusOJUYBixVK0h+ov6aR+agGaa/YFXyfHW0IEZ1zJCPg/Pxth9wamvguvipt0bPbNzI25ZDvcRZhCy1ppEJnch4YgUhvt3gDfjZo9C8OvvM0yWOX3+5WTfgZK6SkerxMGLuLpJkIhl/y4FvdcbMX+QghSCiVFnALNhnKgcCDuabNY4WjOqZvOpJ/kQRuv4Se2NPPQwVwWDI5ZCNyg3KMxHnM1hM60hIqzSUOKMm5wOGZ02/Vh3juvVVyPVe28S4bGC1nHPjeW4c9fQaNyK9mBmeHVqWXdK+QBSMkEFoIPRGS+A44EhlpqpC41l3XMTwVlz377zym1d93fDIiaBJThvq8wUiJ73U+yPbbbiKQFXdj9QHGXEEaj3ZJijs2qgCoSmNIKW3NguGoDULb9iFvYb1NwlR3z9Vp4I0pRwPZvlyGwjYV/kyeQxXpmD67sB6zvDotscYDgHP7R9x2+GanuD6407QJqbRDbF3YXNWi4wrtP5vlrUTKZm5s5RCL8a1jXDig6zTZHCF8ApY9ggCmEWe1xzzMd/RgrpOGkCgGqlE+NTCQlGyP+k7YUUT1eaduNbA1NafJpwqMhiGikT5mekRquSGxtwuYO+DNulNUVHyho2SO9mERIoPzZhraah4/yPzD30gh0BlOxxvuzax1bJboONuL0p5g/T33P1E4SPuHpiRWrn9ji42Js2q6bxiHAJO9fvDFV/8weosuOXqB2GDlwzcqQM8GEgXb3RG7UHT2sPIJCYdNyJanGeJ6fMTtbUO7WQ==
Variant 3
DifficultyLevel
567
Question
A fan has a normal price tag of $80.
At sale time, it is reduced by 25%.
What it the sale price of the fan?
Worked Solution
|
|
25% × 80 |
=41 × 80 |
|
=$20 |
|
|
∴ Sale price |
= 80 - 20 |
|
= $60 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item | |
price1 | |
saving | |
correctAnswer | |
Answers
U2FsdGVkX18y+vda7YKJsmeJAnHFRhhcqGhVxuV/E2NbDtXP53Hv9soxuH0yF54f92kuCMXNURCXJBdApLB8/NdzaPn6/Oasc97N/0+lCdCzdD3CcSEC23M65OWvBOuW6s0JFQ8Nedwur7eTP7Ut9Q06LjVXAkJ86uopG4FdOqGI8BMUzFe1fZOhjTqPKjK6UocqLzt5pRKstmAPIFhzimHv8cs7QqxxknQY8tinC/ch7KFDtBR9yMuxK9VmlgQ/rgTxD1W5seR77PHK6IK09FGZd9IV24QrxwP6AvMpQk8XdN3WIbiveepTMyulLG9YKSEW4uCWTeU0jaTDRw3xnoj2yYqWnEZihPxxd9biQlk9Yxv+WYnAGm0CrAiuoHQhYZ8M49SbBOIwye6ZLlSexWFOX9zDE3MNinf9f9bEZLdGzHG6QBu/Cvdt/fGlMa5F311CJBAgEOvI7hM0kd1jjMTDRnJxK4vWKY+iR8VHkYQPXGDHIVsRJcKhwqP/dEe0gtXwwhIgWIR2oQ0iYM7r6fNRR7i61jYWnLUE9ANhdrsqQSaw3bhvUPscAine3jy55f8YlxzvjRHq9boLyMJHntzt+9LeKaW69LvggtUdR2cTBpxSyluB4oFnvBQkTnlooxL03Ux9spBmsehMs2DSxbzdT94jveeWkLePMrIyWdmK2PAN/9BCLDasn/+sJY14VIjWsKxj+4t/Ysdo8iI9D4dGVZwwVTzUPBAK76BYDTVgp/cXON6vnf9thyiLL5ct7Oo1yCnIY1s6B2yNoBEfDlAlgIzl5m84dIEA2RyxM3Td7xxN6EJ+Psd+L6HC2j+ItfK4k4CMGfRTOeRss8RG0HkQ3fOH+3AO9Z9WyO4mhWWRE+65Gs4byLlMNp1tFw+PD3iDcXTw8JV8sFYhUX9uMOiH+GW6bg9kjzLsUc1XTJRw6E5H8TYHKcwf4vMjlOLOgS2GG8GUzXfGrF5zYO0hADQ3z2y8dGXH/Rx1xZPVoEh9kdGcW0SqeZ4kLOnwoUAE+2zRv4MyJ5coRBFO4kizOgkcdhvXDrIVomGX2WFAZIg6ViJB/p7FfvxUix2QoUlh10V2njm/PdtKaNG+8UEBTzySiJHtvLOSQzRW2YasQ1ysegA7I1FWPQptLEFlbv5mukNaaXurGHNLrgVOKrIG5XLaWTN/5h3QnLMszqnO3Atza+yh5y/1P/wRxel0VYqrkTWouDhXWDg0wTGT7MJ1srtVgsFL/WOlYCXshNnh/hAeIG2wwu/eFvGhqMbYzg/bnBIMr1QBabgjQshB/vbAK4nJXpPXEgUgtZ8uVi3FIlSIxnhjEnyj2BwU2/wtzkZBXwk5gZZw8Qt528rs6b8qIisq2zsoQY4LaWtxiBJ3iH8tUGsc8UWkuJuyCMxo6WFAmvD2xR8MkXzMIoqptGMY0ZhQsHLuo2y3Z9OLtx/W9TDByn7zramsf9A79nmP07kMjWCBnejZnYTIEX5XaYTPkD4Uw9+AW5unInh+hW5T7H+7SUtrQxHUzaVWP/UAHDLoAoUQRaSDHGhqga2TtitKiDf0NrdSpRhVXMUE5YgM6pvefcTyC8bFY1UuR0Dq2D1pI4vDPk2MC7X2srQH9LP0jtPt3TDcH3SXJjTUuRqKeqDXiDZ3LRY6j8EK2q3jmd4YUwkZ6uKUMHcc+7sgKrfhSpeEHzQzoHSUY84hipbY06YPS9puLbcKxS8CZNKEfRMbMp37GHIoIPAKRgqXnRKXw0sjF6UAiWr3KL2ANUg5mNIvVZUsZi7zVJENdBicTu4lAZrSPNJoOjyl56wZX8Pb3fRVY3oEBLtInZDiAmSBdqlEOYmxSaetRX4805g9b5bV7jWWXokJz+7lByIV4gQcTlsiziPUpb1pi2hK7uw7AFH0I+aFJYWlJS7WPUS97oBhqtnxb/bzpnOOgCUbzmPQe21aVDrL26x8DixYi9OSe1PCR5fC5KFWU0XoqXL7l1yIGSKRJqqOiknlj+yAxxk/uFAUin7iDL+1irlgxjmt71htwCAUQGNtEp/oX9mWiQIiynnTfXVwozhUocABEB73Hx4GtNpRtV5/KlMa5ntBX4J1hP0pNCT5NB/UMiJMFTENE3+7b9vwbp0LNE2qaPoBksRHkj+hhxy6EH/q3+zx8knq0WuWnrCT6t/R+rTJoPMNMd+1QXEeQR4c6YnhIwLcP5fPGS1+IEBDBrJQQ0q6X5DyBqFv7y7Day2C44TBn/uizSSTVUqoc/M+EdZsYOtbNCllMt69oTJKq1Xo7wdCwqvIeUE0lodH9zrtf15UdHiki0dOprwAZcg2/U3drA9PVeDyf8407gdoCTrfvdRh5tOaFyU3cGgPjOYXfrP7ix/AfMcOtQdRd9tgg3c4Gf+hbpzJwU0VkCFVqH4Q1MB8mwivCjQq7J2WCCQB+QPsSLk+385q3GRXdu4NcYMCUuFN0QemT11Uvo8rMRIwBNP6vMXJjX2J3F88sOi0+rWfwHLCFIs6drtGjh38PmenuSGb9szQXch5urlXTgwriWWLIOvhCvR0aXx7wiOywpAvB74ivrWnL4HwwcqtGCTYkfD1hg3mRAuhAXtOSg48xoY3iioGvoRG8lowHtGNssenEte9LpBsc25xG8reXsarjOY4IpLNq8GkndXFBIuDne3CPU3ZEGMDACvXAMmfRLknm2CVhAyfNhbIzu02Tx8VLm89WOY5t1tkawTAnKwxHEre5FGjxGB4RVL+dVKeugSVs/6I0SLYG1Dc/uUpZ/lb8eoywiG0J5XNazm/835WmRI6bggmPgqOkw/bns2t6Wjz0pxspYglbuqZ0iLe5FC658aQiUmrfq4xDqvUwwoIruFRVyjEzZz3s8Jnl/eoXLLoQ+OlEpB1G6FZpj0RPvb5WJA0e8aO/0WDrx68/G3ydy3jSlXceZlYEBPamVnaqB3eEbAX3hrUOz5r70CIblMbDxkXwj1LlXfzstEMynoD1cJlsIXLF75YfndktKrTnO72svFE+aFnhzgER836PHSJrGu6QwvzznT+2vnctqSfpm4Vq8QfDZ1itH4uAvwbIB3Qlr3khyJl5nCd8xLGY9OpXAWVqfv/Z2d37Vvil6JKyMyQU8QLwwvhm+NnZ2XB8FnKzIVsMlb+HBSmFyIw9FCut3chQlmtGbnUER40ATdOeczoMDWJp6UCVGX2ETU4jxs4ZZFW20qbCjV5fwHCDEoFR8f9klPcpUrDqW6e/tR+Cp1RR9DuUWf6bEYz529iGsrnpEdjSGfVLNTa9LjVJZI7Ca9Wdmga76HQt96QBk7AWkMw4Pops/d4yRJ+k5i4dyAJnWjl/ssP4QXT/hfIeNN4zDsojNdNeYdD97HLe/eEbJ2lN74ycLdZz184goe0AS0+lNhTFUeMzzx58Fgut6+rW0PD33CP4ewtATSm2nzDQ3RXqPxtw9/boi0qkAp9infVX5hZ8gk4HVrCJvO5NcH1MnvPgKtNdYurTv7X4IC6FSSY0eIs0QbHdBYKCuhrnkequkgDhnrjq5iUrylmrGf0qZ00S0mYWaPzai5L+yvTYwk4+V9kBUSDobRAJ7hWhDYz/U0o7ozhoYj5du7eR+z6+z37LfpcXLwCRv8PUMJLYAKJF3cQrAGD8riF2rko7Qm1WeafeAKuc7UYb9LpN565+StT5fWLvF76bMv1QUP4q1s2XknMi7CUJPy41dtdBR8D1aUhj/Jr58G5/TwU6abiGYNgpMt1PAcuVwjI8CWdJreLgbtPZdwEkDiu6eH1rUW2O4mpg84p78a/2nRaKUNyCVqryXudVQOEYt/P75QDVe/8UhFJi/oxSafat2RIVqYezOaZaKCrMHQEt7H2ocwMsEbmQuImK/JslBhhUOaJu5ijUoTWnplkVduG5UEA49Et91kbLZD/Mgd0T/i6NOVF7FihigHk7VR3nvOPgB3odgWm6p2XbUJBd1QvFGHB5BpdkbThecdWlzz0kJKUQ6Mz40GVCGxTdcv1RLGPbwLhYOa3yRVMR4cez7QH3zLpvyvaIKf4tlzvvi686dkklzv14TRfWGpv/3whP1jBcpJycOAoXtiVXATVzKw7Ja7U86uvg+wsFyKVRaV2O+mg94x0ds7fPd5/jz/4RreqGcXWgH0mGTi4MqesA2ljWwyjyR7lw4rBtP3Q4kOEc822HKDGqe28ecj27R5pmAPjFrZWF6cwhJ9gksze+rKVkhLJAt8bcqQZZIMm/w52SuRkN4wnW5D6pp90aqE4r8SaSLnkhajxC3ziVEmcfvfWSvYVBjRWx7Q7j3i5sx6zh/dFFsay/gByRTJsHhXh/Fl6+8jBleNB5XWLJzQKbgmVgmHmCaHC9HeH7xB7hINQX23Z+JXQ4dRX6i61bSy361t3iYpYEnXh2iW6ByloHBcMxgdoizGCB5ydSxtaZK2PX3HhGlIgYWvnljCeW237pD7c+uDuJ+PUpmsY8yUFrBRDBdS/m0jyi7SviB/oQ4Igc6zQS0avWQ6WfMYUs4n5BmWbJt/FNO/L2BBjPTTn21GM8x3qEmfweHjkraqXvcSTjlgvemEW1h3j7LQrMppEyAA+773eRSe9otFnSDAnrtJH/73bXFR+UK7RQIK90OZ9+Pc2Am2dnS292WVv0Z4ZuEBR+9l4Kysbft/COTpIMhiTy7PkIWErA35KzS0depYCboP5ulBl7d5EqIhuuHOvP3u5hDtB0d5cZaXLpsVfL3jofPP5LIjdg4COM2f6out3wPvfRT93+4LFCrJ2WA8wrIYWS7aOSSKoGIcV3lB3IdL/M1F5+oj6epIjoCl2WsXwY9YrQHjoC9m1pJJsLiL9GJmHjh3rFy9mgxD+wpIAgeN6nwiSUuuCZqVvkSahMKskmdTmJ129YG4XG17vFgJ4u08CZDY5LQ3MviTb1XtjVmY0v3MHm8cY2Ccp+C8lT1WBVBirC8s2qlmC/C73JP7c8NKXGlbRDSE/S3FhGMnHZW+2y9Tf+A7W6eFAa1U8LU4/0PPjf4Yi1mRD6hWAsFok5dERMQ9+i5OhPodxU/09dZX7CBb2hGh57VOq2gAVXP0ro18RkG5/RajS/vCKThBqQy8sDWd7Lf+Cunu1HDtuA0px+HhOASFuVfjhJwRkWPRtQsaNjJZEQFJcrNkBVk5DtKf+1JVYz/zpkOp6I5A1pFo0fTvORhjRIpQqQufSbBgsxt4NSP9YSNt+MhIkPbfULS02/4RRYHeFcPli6sWr/2fnYZODSGzp5vkXiOstLaNTcUpt6lI7+mYHyvaqrroKgj2oR5TVlFneMzlOWyVT/viLdxGFQfD/E1Nq7XOskZ3ZptJj9AOQvPJMb3ITmi+ZmlmLFqakX6z2MG5WJOmO0WN1fSAp4leIxR0bb3s0/Ajhf/4NUx7txjg8gbRzre+pgWXyAjgSvp5VvIIusHPtQAc1GHHYEf2yIqJ7Y+w21I5IafybuM7Dhx4Ntbt4mhz1AuWC5ESJ8SED1PmD/kBePcDAM77x7TZq5MhhB/xC7wKGu9hzJWjcEGkhL99ge966ReNqYkCFF2bxOcMICEe+FKcxOIvSUQBL5DW6v7kfncUoHJT0UeJE46ZKNNZLMk4NQXY6r7obPdfWiRL6PvTYkAi7jPvqNKIHCRrlF11W4Vic0v3Ifkj1vbpMc9WgTqXdg5WkfBM20vaEXHzuoVIlHSO6rptML1pCaICznQp1cRRJNU5ZVkUtm39L+kTQge1o9Hlknn5buHiJS9Z1AbTn54ToJx7yVer73aatZoxfH6guxLV7nA1+n8vYDiBg09qpNNGjsNAcIb1miLM5NixlQouUqClF4LktmSnX1r1Eg2lL7sOGq04541OHsqQEcc/P27UVXG5YZ91cY07mtq6XwbIHZ5xJsgaylZZkbA46lrywha/I9+AAMZce1CCvGE+Zb15t97cHQWiQRwGD/rQPQ/h3CGa4GRqx7vDWZdr3XNEQsJFq2FxIy5BMBouOkHNPkYQBKjbgIVZJ/kX6hTkY6DVJqGKv4kYfhDeFThuGgpa2aJ+C5INezLXig0BEP0hQMrqmAHfu8Y4bi/sPEWOyoR1SeJgduN24vumBJyqsSRY4Gk3PrM7Wqnj5Kvk/vVtHtmoHozOdY1gEVtBt6v6/yE7JrKxZRCx3IC8EiNTSCuLhYZAVAjinfoRMMJRGs8+k9xVHPylqywmtAamg/T5CeyYHlspCAXCfoKZJAVxT3/cQCFuuqSunfpzafOLRKxx95T2WxzV+8l10PEpTXc3uhDDtc2gRp3A8EPYA5G+auj3t96orVNsH7TX0ywLgfslrBgacPuKCKcmEGyaxVJ/sR0njmn3PDAT4oQKmCL0GvCW46+hIKtjZhvYR5yE1vQ3G+SJ0Z5/vgalQicc3nVQKAe9IlK0ykVeZuBfFBjG/o237ThDEnDtlRbDFwTgcSnsrgaVs0cfnoDoCywY2qyTOey+AiHpxo94XXck6NCXB8dutkmgLXiSUJT9Em6CRt4+O7nxFBfbh7HJGEdeyEkWcXZYU4lZNS92nF9ml1krI0Mo7cGTUnzhvYA3CfUfIPc5WbXKIR5cRRTp7AJ/y77uwEh5mTXdZTb2NrVfZusue8NTLfnZwFqsPZgywvNKVXIdXjwKECnDgkrJa/rMr1++fKjhHvPUuLqHIt8OKX349o6829DyffTCO9tniTupNblgZBT/wH6ab+vusWZ9SR/aPXlI3SZDvaNqalphYMn//FxHHnHCbHvzqHAmxO9LHyrFd5+qrnf1OTB+yXESEjurvlhbNYygIYNpS5wkQVsQTLF0uMkU3CMiyZGZjVOjIaT/2aXSYnMXP3FIz9+1gnz7D4N6CcqkY9c1EDpTq
Variant 4
DifficultyLevel
567
Question
A skateboard has a normal price tag of $280.
At sale time, it is reduced by 25%.
What it the sale price of the skateboard?
Worked Solution
|
|
25% × 280 |
=41 × 280 |
|
=$70 |
|
|
∴ Sale price |
= 280 - 70 |
|
= $210 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
item | |
price1 | |
saving | |
correctAnswer | |
Answers