Geometry, NAPX-E4-NC30 SA
U2FsdGVkX18TA3uZbCLMO0/dGOPJrUhM3nCVRckGeLJ7G/ccZhxMSqR+wDSR7LHVZmuJjXTqHVv9MERIqnmUtZv90cMZFsABp0L34Xt1TUKed7jG3H7FMJfP0yIqibY2s9bWLBuzSABParB9LHIOfeFyY5WGVDvd0OVSQ0w++b+8Yz4Dse1O68kCYcjVsEAXS10XEwU2oLux+uAQlmGBVl+TntdFrrRWylMV0kP5CD14cRstTYVDo8UzTlTqb9R6U/0Nr3ibBFxLYw6yP080hitvmYsfUgmylx7TmYuX5CC8CbQ5fbdwVaNvoGI/TzkkJ7dyYF2DNTG1Fi5d+tuum8EMn2RTAvdCaLggrqK/Zgpudfc1U9nGP2PpiRnrLiKFaLWfNCgFiFl+SG/l/YgiLiOtAelvxp5dnGOyq5SF+VYv5Q6+dTTo3/9C+Am8sE5tZVhsePTWpDhQ3ks42ueA6Bbei5hXXOE8owbhC1dxj38ESxt7NwY7ZtK9nzxHo0UW8bi/3rgtQRK5f4eEdrNhij3Lml/1tLR4D5JK7ImTelbGz4o+k8Z8cg/0L6udlO1ul6RGE3lYR3yKAZUkGXzDwqUJQsVoUI2XXm9qnPvkzYX8zxSwI39NWi3/xTB2LOBvweXr/G00kOpuAbWzleVZ6tKLgucamx7KobGZ0ojjXLgIf7hzy3Nf9iEJPZqeKLQwILYlZq2YN/9sbYNaSLlz/5VQtRMbfGRD1ZSXeqN4BnpxAG3nLUQbITUEKZTPIzyF3lxracD1JFRYUdrxxbKJQxF+31LP7JQAcl5eUUaSzD4LJTYGzGyls9udbt21yUSjR55hnsXFvqJcY3vmGeTRlC6KVrKJptYG64jihRFRw22vGBmvyveuVd4k11j84qFwx1CakVw+XZ/4wW1Z0EuaiYQz4+3iV4+SwHZif/Xxirk/ARMBJeY4HRuB7+rWsmcRYCyaki8cD2eR6wFXL5a9CuAzXjoW31THLeO14ZLdMB88wBvWRpc50mYsNkaGjDMKcVMYWSU2+Terkb20Ixn3FHcZ4l5x99uu2MKvrNwQuCFksitDIqnaPAupCn067AJuSg+k0T6Q7ObdR9HgFJtr5qDFHrw3Zqc5Y4F/AvIRLp017m3+OgEVrfjkoUrxvTaLNTpB3k9QB/KwzZmxMTKcQxhYPoL4OfRCokuWT4ecsVkRv1wuE7W0urWZFWXIItG3Foq6D3kPQZ8Yuwduqogg4lNArz388DNjhGYU2u7H+noI9U2pyT1hfwPgyQwdTcfTJuf4LI+LFAL41cOG8r7LI8gYqbjT6qTU14FV8GTSrpKOxuzxYyUlCbz+yRxKGEm2ETMwDQEpyKfn40zRwjvDRQJBYXd9ZBCW4jKkIq0bPerLIAdoJv434WdjZVBfcn+4glf2Ke5Z04yl72LnJq6fp2QljV8fj04FTQjEdTQTuAjvBwUDUS+lDQR3fWISwTXfj/EAE2nxfDEdQnKWehE8lrlGB+TQcwsuk1MbSI+a7sVgKYvjCI1OgMOUt244eI31qaHpEIxjvPLmwiLUkMIffAbu8JO596dr6X2DR5aOTaPuqYy3bidRvnvFD100asw2AKMf3h/mxz+qReQVrsUs3IPgRw+Ac6WNFfF14AAclPjkzCEFB3XytWqghTG1uFC42OdJJJgEpMHs334zKIJe2C93A9d4/qdYodan9OSLGLrNuA+22pHkfdF9gvHNm/YECQWxTfr1knhmYRpQNVnrtGGcPZWzXlFpbvuqPsScnagyuVNfB+xxAZKau/vTfrgMRcSX+W9FnOWRt5H67nvy7AaXygx4ZwbWA8/7yxyDGq+fIiI1HhBDzIgu0U+EwtQAyb3DiurwEIJOHzaw/v2HPsfJudnOTYkvf4hxT8AiCGHPjbuszKcNekrOsekgG1NYjQrc17K4n705u74J1FbPMY2oqksYpeDxajtXsgj2UWhIlamAYO/WXtvEbiNVq8TLZvMW40Y5ltTocdwLYMYt7vSNTNkRRw0yldZYDe0LAb/Sc6UxUXQKoJ3PlFr77KOa9AgVAhgwpDvrXPc7K2ElfcYThlVm7R/URhsxG2we14wmeRaxmdebpSDP20asONjsa+1v3oOg3+jnqFqsayhUbMmb1gLdJRv2tlgCBGXcdkW+KgXNKZhboyb4Ju/5vj0akhuDfb6iu0TKp90pjAatGq09XNrVL3HZu5aPFnmahvhDDOTC64smJXo/oDx474DTvOeEaVwvzWG0upNpsiF7KPGPfVcO/HyRMgqWP9QRumxbDLCLJDQ/8Td4kIs78aUglC92/gQXi689Scv3qUlqu8Q5IK66lu3nurEXfkwErLAzgNSW+5/vlLAkslDq9XR+lusJ/90Jk9XbQzVADN6me5ygmygtpT7F/Cc2UlTyz0TmYMXlzmDJCdRdwwuqQU9eNP4+Fz00rfufgaZfyNwhdPc0mxKI8tqU0lVE1awISBnYjKbYRon7F3MhH9UqrsuPfHCrAuxBaf//kfmJ35GBCGlkcHBV8pt+gbtvelDNDaeqWgpYqVXGjtbuCPEgt5t7HVfPK1xxNaqSB0qBJhX2q7MKKVFihhrw4ynFxcyHCeliC4hlBptipP+YApq0Tl+RnjjrUZCAWL25IsQHG8KqecaDZ2VGsT37WctD1Q/1wLV+5co67USTpWaEnipL9xku4CBaAx9vKR4KbrnEJfKk2YfVJt4qtIWKCl4g7bB1xghy2OukAKQnXB75bteO/z+YaCwFYfi91bdkfvsF89Yqkes9IqdMrz6LF9k1HlZ0V41Z3VtXddhE66IqvUbbpDdaf8k7yIpneGcWjm3F9TIBl20Jx1PRXorkzkLI+941uZsbpQ9wDiifOESeJpsXVX2NDAiocLKPsIjvo5Vnf3rvgf0RGKzPKr3jxTjR7jWlUXJYev4x9CAGmiFS9X/5F0v6Qsmw5arks+zOntIZBjXPLOsDQHJJi8Z5Pcd1wa2PL1nurnCDHuLP91RxbadQ3/3bTFGF1y6r44t9ROgGPMGWWdSXJ0+oFerJP4jiwl2vdc+dH3yHSVQI2uOswVK9ziJYDvtrATMFXApsR1DkthAT2p9Q9dBeiWhkKe+rNUclWxLx60vV/sPdRUo12tBu2xwgNL43Kf9B7a14Q/0rsY+p3dQBtVF4kejxnfCmxR5FOZwr/5jRgrisvOQXUojvL5i3suWr5fhbCk55+VqInSRF+wgiaOMYksKUxk/WSGk4CpFsLiMB5Ndpf591Qel4+D+omcYfW6PsKgx9wm3C5KXn8LleQy4W9xQjda9Anm/qjoEyc8dGbQgWS8EIR1vsTTTUGn3TyHjRlksoq85D/l04Vc1VbsaOYJENmN7+uoyfABjuJBeRu2YFOKZKA/HcGCnwXgbZB5Aa9E1QMexb9M1KCDgKYIfg1yFUiSyOHj2sCsY2vuIk7a00nSkI8ntPaUmkZndNMXwAh0V9Zb/38ptPG4c3l+CsgFwF4EJgn/xLh/4HDEDEZfk0WxrEZvhfMPhJGwHV444BHJnns0jnbLPNxQoUB9VMOQNtlRden3d+F5e61hxBfKOJ83q9T5Y5znjxvfQVry+quebguvWPsLxevswMata4y2etw6yCHhBES/bdu/twsFBu1FtZdYKTZQNV/t1QKAKiS64ukeacfrPgSI1EQlHLUgTwfu1ti/5r+9E4M2PhyJUKv1kLCsjUtbAfEV4Vi1M6ZXx9sYIUSWuKhp63F0lyUsTW0I0LfBCKnhV0AHnfg9HZucg4oewO28onsoevrRvChlkRgI+4k/fC/Slcx333C01FshnNRYKVonZ5PvLaUSRXvqCrccnB5aeLYVMgT/RmXgsu3pGTm1GIUCdwCQy0XO77Eo2KDDb9YCnEQgr0Fffn8Z5kWWmfTcAi5exOyeq8yVjgqQQDkBpJTczmuacCp5Q4jXl7dVHCwnnsZfHJtvrDreLJIwZglFCiOqpLKzgDErpbp4Wp38XeXLrnDH4XSV+N5udA9zrqQzl84gHroz+WwXjDNbn7tsuFeqcMSz0CqmvEmm2VZCGof8CiJcIlp3P7AauTCan2IkXGTUI8KDy6xEPCJSLdNJBaiBq2aOXbelZ+W3cme9SEA5z52lV3cNaX0Wy4aH1wuTD2JaKYMnKbJwopZ/FbjlrA2R71JjhlyBR3uP79P7j0bt5op4vOVK5tSo9td3saa5+FFdG5BwRrJ4VmrlP02X1oPFYRpe7YYAS3yf8Fqm+x18Bveq1/VZ8i0KpApDLYKDnbTc3uKq05WgqnV8W734tm8/kjrG1a02b5xtpc7UFXSlPUdRQXnVPZ+aV6oNoUiArWh61SjmSxfIXINifPBltMxptRE/fm3Po2YV3ImqH8FPFb6WNfo/HwU5w4ncVBYloOIMNfEgk7HfJHNjWFoeI4vVDmOIph2kQKnlPaQL/dwMUMSz0ZNGrgPhuuV80LfRXdgw0PKppAbdzcfeFiIoh/AgIh3xVQo9n1HClSKmNoFuA5nT9VC1bL04p0zN1X/cC5limHWx1UZs1B2jGzR4nuPGlzHbYzhmpX9wEbiO58rd/QYTolV4RrwKk7q1XD9q9pHwZxW+SayGjmQm6Zo2TGqUgI5ZUb0q4lykd6Q2RLTi0M2n2wpYlrTalYWv0F7skH1msu/cEFE+gnNuI+EP2GawblNf0XrsvN/itFI+nU7+dfurAEUXrrd+q70CT7QnxhF0ogCAPOTSbGldBfXWJWzAJJ5NFx3cuZaAfwEBeQpdMshirzFERVkBJvfLR5GMS/oo3GxxdVkatRDC7I1Eu7fMAJ0MpcDZf1pVt9NuIr4Oqb/8sjkbBMNdRwcbzn2XJmIaQPmTxYw3ch0Y8T87ZeqZhZx60BayHKCCdyX9SiVZlsXgo/J0VIHq04ZOI37s+apeSzwQEavvrjUsPK7XzV2Haz0ZaLZjsXw6GHJHe1fthMg0nwJ/4s44jow5RyjFUnA/X6hRgFFrk4xVXe5TdajRi7Nz4TI80Es71VzcB6J9E7xs2NphkTQGhrqFAxFjAt/vXzCOdG0ruage48+NxONJ3zsM7+FYi2IIsn1O9QsBKu0FUAPcDsW4rzrqrppsWrJsTRBR1AW1oOy1Hr4lEimeiXmG0SP9RTGL7RoN4ikqlJjZWJSzERCNLL37ANMnWbFJ2PUZSBPsb0W7IufQ4tqCvfigie1OV5IYxAKeodVMiTvSTur+A8PGkZFQl9v2UiRJJd1Js1c1yqWQ8CpBbJ30zGqhY/b7cwGmRZCv9bd1a6ELCDbg0fx38GqAJrJvNVwHJrPalq5zRAXMNe/gwZ/7mKIThctbwmtEN3koGTN2H2cGtUsek/dn2u1hCIuh6CTgYn+00xf8xB3keuBJspwrXxdHTo7wCP7DFBbnfXe722ANdHqt5VbF94y4/vgFKsxZsQRYL26S/SK+577TsGxSxROxQ5+ZR4ks2gNWDTqeK+ggdxIQ2U6lAfqxqLzujk+rO7+4zH/zh9U+ZeBmGq8HBEomOSSf3uKdJfCrqLIWaMKGuJWCDuH/y9Af9S2b5x9OiHVvtanpzsXZEtSMltovg9v1GuXq0WKIIhhVnaNpSYO27qBe+eggZJe5hgejvvsHs97+QtVW5Mb+Re6ki5N3FCPh9E8wi8w1nSfRFSSjQWJlKFOTj4g4GvalFEuW3eJbkwixh/BkkddGu0+ina6qzholDL9ExDmrA0R89BBzT3yIIhjHv14P7nYjNy5RA8E6IKJ/V0YLZJ39mRHZ7mFVAOQ46qtUiT4dyDj/nFQxetsX/dgTUoswPewhuHBxLjd4PEWr/bOdoS7Nv8gylu/IHaahE6RqFNys0omKDN6CKsDkkvTVN9V3hye22OuaDZmBLGE893RWzLhNFUl3yjPAlCVD4uhl0CCZlKTKC4AjRuc6h/9xZeu0VLyp6mIHFhkDKwUHNqVD8yqv9GNPMjBpy9Myk8eKmw9QUkdZtF5vaK4cjAw99+XBGE4qQPh9B5KrKAZrWbTelhgLFgFevwOXlSXIEIV0mV5+MTcHojqvdMG0TOsM9MHqNKbx7DoKnIk/eIm+HLCzW5uMeUUyiKhseyq+nTrE5ci1y2zCq5643kUF4xXMhRtSYqdkpjmRL6VUgFe0HPQqHquTz9vtQ4itD5va0XSuKa3cCovcJuGQrYTCdugkmiGha0OsMUX7uXZ2kiLoAyQVYGfS7zdiDonAaOn98vn3YimixIJOBl6hoi7Y+YUkEXBoJ9zK/HU4Eq5Dva76F6i9dQYB1XfnG3H5gINrb5SfDjb4lpicZZWpa8ffnwcs6AjbLzIIjA1bY8kxbryXyugbmOlJ0JF3ISL0ZZufRwBgq8H3qlWQh7xNNu1fQElaFEOsNjtJfGFT1ZidEc0oGMbDrKA2h8tgLY/P+UikaBmuwnb5BUpXD5zmsEsYwlpOsN2PEdKDmGNNT2HJkOnhi8bxYzp3R4RQvq7XZfmjWzCCr6NXNF3/OSsixg8rG2FgBRdkZ4gyCpNCKE1cWJACrRcxtZ8ntI2P0CisyJ1vP/tZSi9KuWmm5cYRnSVDkhFgp6ooyb4y8fellsXViqvW7jY1GwraIX8Pa2D5dQixTWnegrkffca+/ojSKsK/buqRDw3yakusDUzjGJNtmEGus4Hxz73mihxQcszf6sT41Z4T9DB0OgA5NklmmR9DjzGz354sBLAfmc0FC2ZzNd2CvX2gnleSOoroIjze65kSeRUldYouu1foQCkFNC80dBhKjU2pnyxYC7TlE8UMl2cyJdeROi3pOV8h4ve+JVa/AtrElGv4cBcqikiN1xPG9gWJG3SllsVqhx2SqVJ37X3Fn/iiQXHp1qpi/QF1oSEeDe9sP2Isew6RG4bt5Mu01mhie0JmmBR56l5KE5wvnhIa/jD/mudTBHang5qwDtv+i/wuCeggYUG1oeE1AgMJ9W69FTkphJ29uxmF3IKqCNM6qJSEUs9GxUi1uB8YPlwsGJyY3uQgUm22CmD6CXQyRcWLdBwJw/10fY5NH5n+FIi9M4a4OELVCGNqSzgqyy/4iBms3EetXoRa9oAHt5vH263CNtCl3ReACx0FTbXWZmFMD7VU+GOZshw8tyAuclu7f8iE+kxjoBQGlENKollIua2Y9/Oz5laAlIxthV9m1rNskcqPJ9tWSyDVVG3r6SrVKqwlhMPUjDi6Yf/pC8TBpSl3jC79RdynrDQ/WxAvt9Zn/7TWUlUx3+yzzyrEoCW44b8Rc0Obz8MH6DtkxIahZJDXaiW74cTbzqN3WWzHErOK0ZXfzv+6N+/6CC4IbOVIX+Ez/ngFQZ8YVibD1N5V+0TuYmR6qZlx7LqXQs52H3J32F2PbG2hf3ZNQXagaBtSYA2o4A8LazOIM5orfMz1HhPdgzib9CEKj7eCd2B+bYJXHI1WkTHlG3PR0fEHWPvJBj/gqL5lB8AlFJ05GtxXbqnIDnn+AFnC5rZJumF/dfycLnfNSYubiYsNJmh/09XsicA8J4jlAynyyMSgPMq2eWGWUJAXvRILtIIQ3Vr2obLIYnbu41A/ROz0vnVWYAgBLOgB5Mu3A1/fHt3iczPqY0xUBZkUgAKSFued6etfPCzDO/S7mxH+LDcfNKy4aJYwLqlhwrkXNlyR9YRHnS1zX3YtJa79Qo9f7o40aD7TDvcQxQxmzElLHJVTftz4jlTGNdq8iFNVn5b1f9BbUYGXE3jmzTXFK46TVTQvc+agla/JmHwgceHjKBc6t5/jZhpGcBG+GGSMaga0h8Rd7OrJViZaTFDdJG7RuHOMUU7MHR3dbp9tyW3yQ+4rYLF5mj/TOgIXu24AArTbdUGQECSVqlMRBXE7yxYcYOAWF+MYrAdRfcB3uk0qHKeUT4n14I0t5vlN+uJ6pTpKhFChbrB9LkZbJXj2fGAjopCCk1T2ng0qroB7s3+I2ApqaMuKjcdQ2iXvCY6sVNi1QbYGgsle7OE5C1Pl1vbUClBLKn3NNQi0/N6xYHw4eJtipeO1Yn5W7AkGiVAOHoG4HCz8gAuMIJ3NzGpCsS0P15CRgo8iGgEZsgtyd6rHnW7BD3m2I1tGlyukeEsHL1+kYmSoTvalACy+OXAEPQL4URIsRhrhpR4n/USmp2p3MK5WDc4uc4ybNuYsFb04nKbp4iEDw7e1VVtaIqt9wqlD/a2VuKCYGAfB37NLWPAoUWo0C5N9q5jX4AzVxH/kZrXZh1RcZBlixWjTNtG6kKRgxdHQgFQZkEt5OfjcYr0V5jUvEZvUwa+zA/NbD6PVaNdRfqOK7a+3+EWiC66L6wW4lwo2HQDDqwIHjntCZZz2LR8Pb0l6qSOIAvxFMq1Qsg76dfmbKyaUPhYk7YyuKw1S/ETSouh9bYHZjLSktnazD4sEeI0IYzla3wWIZ2igipStjvb8RIpiF3vPUd5Xf/6QAwRX04xVoqafXYtOXgoTsCuhq4W5Gfg1PaE82TLXz49Y0ZDHZVnFD7XugNOvzy1zqXHmM+zLLNLYXAk48n4GLOSsMy3UWwLqQIovVT6isIFdV0xvMwygDhhBhAN3LW49V3yyZmeDnF7gxBVvxY2hNwp4Osce6hgMEETv0lp6eHqMgMPZg1ImJK2MDmDV3sm3+ok+Hz1BUaDtyriQDAYtAkCYgEQnSPYzXGedbM7+yOlHWXeKxA9A2hNFr3RypdZGG9lRljw6aLyACGURR3imqncztmnYMyHwFNqPjkcOI55nHhR/d0WOZ4pUodurPZHNbh+Pk=
Variant 0
DifficultyLevel
721
Question
Thorfinn was designing a viking shield using 9 identical isosceles triangles, as shown in the diagram below.
How many degrees is the angle marked x?
Worked Solution
Angles at centre of circle
|
= 9360 |
= 40° |
Since triangles are isosceles,
|
|
180 |
= 40 + 2x |
2x |
= 140 |
x |
= 70° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Thorfinn was designing a viking shield using 9 identical isosceles triangles, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-E4-NC30-SA.svg 280 indent vpad
How many degrees is the angle marked $\large x$?
|
workedSolution | sm_nogap Angles at centre of circle
>>||
|-|
|= $\dfrac{360}{9}$|
|= 40$\degree$|
sm_nogap Since triangles are isosceles,
|||
|-:|-|
|180|= 40 + 2$\large x$|
|2$\large x$|= 140|
|$\large x$|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 70 | |
U2FsdGVkX1+/oi2oAMNLnBcvHtZVmB2DxmMnE+19JqGLmI+p+bh4L+jGY6n0w0GflsNekBuODQH7d25m7hQ28JLCNP/HZqyf6oi0dI/1PO8+KAKcvqwqMwo9il+hLedmF6aVs3/MU/ZBgNyBtj7LCJ5WgSjI7y0IK6i7jqGJ3hym/tj5FrexoLvJTjHkYjcVyXYrJroCHYn70etaqXzTV8g/r8+8JTXtgVFgQWYTLspHTeFkvfKUAYALVLWyOkGMH/glxP7izIa+uJFfrnxvAROuJOWNeWIMR7uujtUmlRifSKyVBJPu9MDy0CYzZH9m3KPUmiAfdKASeEzibMAwTdcczfZ17swX5wa22OYpLhtQv/DUe7o0j68plgtbw6JXA794zHFARIluNAv7qQwrgFfpoGuFv506U3VOc09kV+TRIe5866L69GKw5xBEQr/sEqfMMhGiFGbRAz/WHSHAE4X3HIQF7PWLPaNS/8VrxCtF/FBWsaElUgNZ0+xH5EDAZ/z/1gXasr66kvmKs9WbTjEdxUMPsoogBxbVVsCK0WgdwjgN4CRoHEX2YABsQzQAploAyukaZN0N+YjnTBhJzp+qVjTr+fE8hbula40DxQVfRrVQynK/Bz6ZopTO68hTZ8z0QhNQtsKU6X9+TbM4FVtU7xJzlLk2FWg4jHbMjj4v+7g89r2yxKl8ah3uWnQGgExhCsVfSCD4maaB9DbklB259bm1OZt6h9VGgWA0roykSdMiD9r7DwfQywinrfgT3bXsVPpQNF+02MFSNzzb1C1j/0xj2M1/wfcyYORuc7PzroIBWgzT5WLy1XJs3tlJMWpqvK9wH3Fn3Y9kVIIPVKH4alnXTUDDbYz2x0B2dVj8zjIghPQum/yzSeOIajFMJI2l29uY07PyjlEzYjAcMpu2LfaMDcrZPtfp+ZzW+HF/rwVPPhIKxIDFeDQESIGTrmS4PVQXh+Rc+Oo4m9S5Xmd0Zszv+oqNQ7oRBLgXJ5oNO0sjUBDtl5aCvcxC/qjBT4lNnQXWvoXoDGUz3f94o+FfOYiz1gEEf6/2SetP+FknINAEZA1+NUd6L1a2da2Obwy7d6kr4Kuv8SBjOMOFxaVOIRiPW1no1FIKwM0j88iUNyMRZOMckOlLM69gIKquESqbE26/7xf8UVL6EQKgdzBy1blAWh4pKeG/j0NViPmMghcU9EXwMJcj6nqTOglCFqKPztVFsGsm//Cv+v0hDJUKqSzJ3vWLcwE6L5CuAnQkz0F/3knJf6p5GTCJk7QlCKhTbnK5mOIsJqIp+da3r9fzaUaNCgVpTY2jaSwQiJqE2y3JNa7ndrrHxxvBi2Y3OPuB4cDvWM1zA11qxz611tjWMuHfHwWlnYxGc0bR/d6Wopy5Pi/dv1BXfU21AjIowsJYcixB9U+N/rnuLPSnNKywOVS7Vm73zDDtJBHxJFG2LDOUw2oJ5PpRfouQlEB9vmfn6ris3TKc0DqvRFlf6rvf3JcwuluOMS41PJ+5pzp66oJQ1URk4y9CFqjKTmKknl2J9XQ5EjrwNjlC3SpWnq9wvAGl639gk9+5UVGkMetB5f7gKoohKvw3sXiAhBEtAyx0ye+Ze9Cg5pNfF06NtuNejbRvs+EVoON0GfIwA0bKeCFeSNGA2OI1S9WITXkIaMqwJtZyApcs0rLmUCP3wZBe1us+UyS2wRNJfvP9n5kgtgBSbmksTeCm0f4E4PmZFtDUX7Qz304bJ5XK8rGIwl231tGtCYcivlz1CIIQnuRB27auf0rqVjidiwDcsKg0T9cye+YteQvbDK8+nrReiVF6E8dqGV1b9/ExI60YQMqKQRoCPuUIqmOPCIDWtrv8MSyINj9RRFduGpVy+F9re9RWbXcsFyJWBx6kMIVuzowQGsgX76MHi406WUH3JW74FZcYYZdtmyLE03/c82kNXcdwkd2WfpcUemoix8VUh8nuZmlnVqB+qlxD4xSCq5D5ki1uVVkKNhapyda7dUesX7oOsS//QW6CkktzgapmcoC0zbqCr96cGz9V1y01I/JkQhsvpgFi10L1Roi77wPZsI9jYcU46vG+fbboMHglgy208szSV4pIJr1wMGXRFK9/H2f1L+3YE+D6Daxc6wKPfzHXQGn9y1wZia0QkBOM2CIo3Yi/3waiRSWtvyECxWXnU8moJ9r1nMar+HcdBeKgt/Exu9I2Dyh3/u5Vr+pB8Jm1JP7QqgJu4LSlVOpm8ODvFMH4+9IXvQL4cQC908mrgzB3FRSqu1ZWADqXpIOPdTTPZGWxdAOvbpGSYVK1RnWSPqYqSAev6FeH3sL3B6SS5qEveoIdIiqWxl0jGkgNlCPMUpupb2y02iHugBPQTRzN7AbOQka1G9CQ4TmLMxhi/H+zaCRsVoywVb5dp+ZbLwj1glp2Q/rdqOaBypwKJ5wQN0DExyibPG6DwrL4HGC5fgxh6r5HrI4oXbktnBG1soCYcfbgCYOljsajTnBnd+3G60dzdLW6Ac6xFFvFKhp67yiPWZhP/jS64vXXU+ZOny86DEHBAp9wkR4hggUpKUIWNz66rchG/X0D6CjwUmlC1BOOzL69oRxYe35mQBL/9WGzNyl6FRwcQxcgwe0Hy1kO465qCZ/tmWbshTqU+2eZrNHPPOSdZEnqz5quwGAFFRR9aR2+iPb1fzntKNkfiVLwk7hIu6QLqXpgsWm7M46wNFSjWkq3cF78k9z8zn4a3FrMVj0+if803XarUOya4pkacdCXRtxV5ob9I7cCN+l24PsQM2DdY8XuYgUwXPCU90yo8macrJVQXNHszdryWxLkuILlwVnYnLnAB49bI8tejQFd8jHNN8rmFQCC3YkhTvkSDvRakS5c0lsB3cfTNCTMjzJ3u6MqetTENvE98rcmOQSX5DUPNWlk58M52IzmMunI5Iqh5nnb/AuTf2sxQ4iiXbu/nC0CVdDlsXpOnRjhPIAv6W/Iwfyp2C8Odwi5cP/To8qXT5aDZQ7yQiv5kZuH1d349Tj4DvIdMpP8PNCpaJ/OuAxk3DMoKB040lf3KP5GGX5gNlTNRYltt0wze6r3MI/fQobsMPc7IWuW8AraEpK1QggFu0PF1iGf6eU7XGJ5l4NOsuWuqSg3iSOogOYvxmviFCZUuqaQH6cZB3oePK4vGM4F+ezrdt/auWBlzemJKKLE9iGt1KMC9qmiKJyY64qRYF/yDMDELcuXcwanVJvqvcu8UUPNI4/NdJSok4d33KcpeLmTLCwSlTEZUgC0Zb5qydUneiA/D1pyjaeEzIsU34bTaXAjjWn8hy8zsK4ajEYujeRCOWMShgsrUIei5Nu+tDLEWedtyYc6wnyf4u8Up0PyGbdYMsXBjOD3V/k98nnXXjC0ZbJ4YcAvgSC/5r2MZBpXPcG70cXJ7DmrUHEmbElaZEriUFk2+ZhOhcpkJ75+GQ7RVju1baWmbfbo3Z0VDiiUyjDQKZVx1Jwq1VgutcKmIyUlRacoZFNYrX7/IY8Lw+RUbWKjiU/PlSSriGcil7vjRqxPOJawIGWvCf7G3Sbzde0JI2gsrUvtsUeZ7dMwIw2ikortR8B2GQl3ohCs74CK2Xlb7sJLS6EAjiWYZMn9IqvfSdrapw8HNptUGinidzn97+8LSfkXNkDBbrjiP+cqy5VqTnAVpXBnO6fTyp2ROdkriY0FDazsVcV1b7NpUYNhJlnHdwLwgsID9GTzuZEX1/Gm8DVJHLEe6cBydF3MkspvPiodIedseGfXIRtmbO/Au9CGg2nfJEIPYZTous9wUp8Ojfg1DFvASdyqGPhHFUqKoasukFq9NgnkDGk5WK9K9wlyhydekqw+jn1GOkq1XwSetRq8i1vxDGroOm+uH9iKVEvS3NryLPAJ0riFk4JOVA7FUG7yB1MTY6280bkn7X2kB/AxkLhO47YL21jxGPiEVvirHQoF8u8/npkGB18+vQiEaThnJwVBvtvoKlRjT/i041zfD8AcsX/QSqRHc6NoG2OEKLzrZChjaSsG2LE+1PlNFI5b50vZ40hVi/3N1H3onYqzfwgThJjt3a5nchURAZezbvSsPD6dfoPrJZGEEh1FMw2cwcRgdra2tDsJ5i3VJwLM79xcEpmrW9Q1C94FcmZ7D/Bq7gwqVhQw//NCeniCcnXbr9t9S5cjri+HI9MFPEhYUeY02tmtzUcYP5EoDrPoDrBf58w2ir3y9MVh3xF0zXTGiNZ3ojOGStPg6PAR9tycf+U4zxa6HH7k9tm0v4lHJnPzVVGFkqs+8if2omXEBX6d4rAu3+fw8bKS0nHbPFIiBCyNfuNSo3H2Jr+dpq+Alum7K4Nz79wenV2g5f0tmUrBKQHSVw8cYXS6Z+OgQsfHGb30JyfPatsZ03SwP8v/Fa4K6eFogtLrbmSq8CifA0dLbsBMubaBe9+zEOYPSWELBTszZLlb2KIRj9SKsYfQB4NxQsKWSKNYE7/8SIyyryKyvwYbAxd3ly7yt4TQfnE8qJavkfZveYbnCNBxojUAxJrThLtylMQBeDcvKBjp4kh9PEin45OBK4ASHMtmltEIgV2B7rSt3BF0LLRtMDOQlpjNbdxJmUnceGF6dapexNBhi5wvQifS+o8mu+3CkLD50OmOC237HbfE3lV5/zXEH/UHR0QSPulAsVxZPlXvB30a5Oj62HnEGO8cI+LvvM90ucJOTPi1QXwyZMUTvYvYDvJ4KvG3hSaTenPoz5swT1tchEXd6BrZXWM1SmkIiJ+QylKO8Y4+tynmGjvdbFVi57qSa9aIqn1MGO25Rtt+G0WOIErmpiszOE6qseWw/Cl53NqMrwSgikL5FHdBFrmeOnJFDKIQ4yCAR7Nbzh4vVDDQdenOU0XLtII8H6HzArBaIBiEY2FGObXcgHLqJlUgIlYsXtUz5Zwlxo0kWXSogIc5UjZuxr2dt8LhkdEhdFtHihs5NebObHzqT0zEDOBtdrwvlH5ANurZPOUWB21R3lpF4pTnGfuRDD786mFVJ6aFVkjKEM9mC1EtOclrkW4wxwoAKOmZJEpim9j5h8EjwUbrAU3qwoHS+YooJZe5s5Vuz5xEV4tgXHxaeACnG/bysCR16/inaqIvBUU9j1ZNeEzGQx/3wH69S64PIX0CcRyrZYggKVcuOPJLewmMWyF2VpiAqagKptJ1xGlVvqp/OyKec0edmdw4ZoqFg4bFxn1rvKp6EVSVAMiZSRejiZr21p4NxyrYErvxJCdR0td0C5LWfJg3aI/Sl0DYLNgoEdA/PBKdThzK0C/jfLol9oPf7IniluqShkLSoEktfY0Af8cbjV2HuztSxCf1VQNukgo7fFC2v12NB+h7/Mdag5ppaEocJWzLm3aeumKwCUwIIkctdibYayFa8uplzL4mXackn956sDg/Z58qg9SyfhBClDs7GXneOO25ODzNngV+wTe9FSCop7uTlWtjaFbPipViGlDWBGdOrqUlfGVVQgXHA2OMH6omXwNAjUb4l1yS5DhWT4+dgl0VANeEd6hWXXZlkUnvWe614IyLCFbK8NeBW6CdI0HaYibG671Jqkf2UAerf5xN3b9Rgu6wmwvpOONz53bOcffVts1RIpb7niuTEm2UGj+P5un7O7flWOZoa+/jf/dWj3O72i93sk2MXOJYLyca/1HDrG2B4sW9cRv2TxmgYTmPNVgVOBMJEtijp2ipXzKyfkJ+eDSw1PHsSpzWaOHBXAGYRs9ZX6YFrbMar8XuEKYzdzEsJuF8s30F37m8QWoCqkRXYuGUt05R1FZABps+hN5dyAOR3UZK0PTZmtBPKYEAvpxgH6yH39hde5yCYlIGbASgFcr4LUW6/M7TgidZYOu8pxwc5WqugzEWRUrZeZRqYl+pPDgl+Qm7MLLp/5S5DB8SZ6FH03aZXY/NW13rnhzTNtqC3iBpqGPwzwei05IpnVfaYZpigYAS+YFssiT3cZnRimV+iIual9QBjGcuupeYz00+aZsSL5EOmHgFO2PdHp/XN7bhKhIKDu/G4v9UFQ0TskcIFMXtjFBXhhKwk2QwdOUfCFlnaUYOVImV8xYf6QkdyB5Z/hDKRlUzByuS6SrBCF6ou6YhnBp/OHhQkiKi2Bl90AKWWg7jS7bxXRcJ4uGbAoysfNAHwNy0kLuX4VW7+qEE1I9klrPb3j9sj0BqF3Yrjj2TItOBpCKuiHdJiSoooSJXBY4yBXq4HuAKg0ig3SiyuI9PXlNs4SBLq66AiyCHVf7K9ZHBOzn8gnXA3ZQ85vZu5CNCt0O1G9lFsgsk+FOggo9ySfYI8nDErzxgngUyhjAafhh9qIff2w7OuFCVI5qDnPJCWY3nD2tn7QWvzKoRo3ndzAqtg0mfln2T/0uR28xwCafO05sWQ/SJdmCM/lhSAmXfw1y/Qlmc7gtSVaLDhh9pSn3PlEOaEb8gCfGTnELNS7WcAeSejYiRviz5wIdRi1JJOE1orWvXXJRG4CK4SCA3g249rawyuOOR8Hx6fBEYYrDZ5DzGHZkfc/cAi22EdUEOM6HMNoOeXNolQfoLYVJBOXSsIXdmP7Mm1QgHl+Azqd0Gau/pDc2fmox2kXj7UL9BKbTcCfoyTDQUqlFrpsFPBLgfmS7CtsvajWltkoKOAxMYVy3i6BHcLQ8BsORETrR5uPcWmPW2VPc/sfvCJnm6WpbbZSr8nXuP3G7vVLoL58pYuB4zhAzJ5fif84RRPDbeC60AcCh7eBakIPUAzUtYhyXAEchXlcQjHltaI91Q3A4wdNBVIHpoJDnRZiVsNA3BQXrRaaZUOHIQoptRqHR+ZNWYTXWmBKaICQkKKwhxyBzfdtWowDAWd44C6o0AAVRfGX3hqvkeeNbxGvcloQhAviC77Ap55jEqNQ9atfN8qDPoagY7bRCo0VBQ0ta4YEu1p61Rqc2iztzINfF5Gyt8bBNIpHVz2OiNGl6w4h58g+G3nI5i7cFEAJjJFth5QYY2cv8brIcbHab75/CcnvxVunZLj1KgjyXeTJz7hPm2mY78h10hxXABYXT7pL/gsi62APk9lHzZnKfVd/yOL9NxYkotWq0K9Q5KZk2IVNNO+g3QIhDxe1GdIfJg7qYYcN9kRwftXrWeKJS2zYfse/rcxwJMKYbWD19LMcf8uGPYnFaf4uZ8orbLiXlg7cforxIacoIS/ChKW/pEzGaWNReX08OcfBpKweyTtHxLW2q1ibIweCHN2zd2qrd9+bUI92ay0GDgipvo5hovc1b93lUS1fZPlioB6epr1XHfJHw/8WD+wADVsVL0iNj999NB7hn9gy2y/gvKaVAiEZGXwkUMBjhfiSlwN3CAEmKCWa/rSkCiENiEbujOi4DFmLgWftS3AsCXuh0HON7U0bG0BbLL066wjT+z3HR3KxNmsenDXEyU7JqzurjJUjpMTTiW8R6I0kJNKHYQuoN5lrqIvimhU+/19Ag9T2ln2QgUzfvkM5LiwYHKhUHwKeBd2Xgc588Diojm5Z5doyIvEKqQa/QY3TPlewbRHkaw8SsIQEkxnjQ6hO2TDnBplixaS71GuIVh3fx8VTvzUDPgQSinMpQjxap7Xzk+XD0X5ZAGBQuQq2WAfQNFMkd04kn/wCelVBdUMPpghvPbvrbHXP5FjZrnrjK0sbLcAnfNRVRCY13aJSRMBKxqUCpZIDIQeu1L9q9SdvPL4vVZhDQrbuWikZz2XMsP9yxUVL60eyFG3k+OmfOfDpnP1rZhVHOCLgWIxj8tsM+l10lAOIQyuqvR9PSi89pQGpOv6QyFfItOkKgUPJSI73Q/KqIDcKgT2HzGQc6wu20eStoeNKcowkfW7G6Kqlv0w4sRakXjra860tkBjzZPfP8wBYoZ4ArK6NnQkjFxp1ZJMvdou6uv3Ph9MNUr8gel0ZCLnAUmKlimRPwkctYtHR2H71JfCcLp39sz+DeikcXrCS1rDIDKSmkE0Zq3Huw+bmpUQasg/KVVmbxMiXlTs6VmVxAYXwBxQ39//EZWndFn7bnQsuJGfw+M343gKXb6XC5wIXTVGTKu4ImrNeDYkvqs2J8/DQL6WugDedSBVjSRenbQ7wczVCTPr/8NVaSAZPM3F8L1+xzzKfTZsgWlvdXA58DqDPAFC6p+zup2YCqjMwPLu/rxWsvVNhXgiG7Al/vLNR2oHkzCykjKgK2GdtDdBOaAjTXXIT8BxIeiEMjx94LZu1W7pMz3ORImbRUu+N6lSbM0DC3TfSJeBhxFv+uKqNGIt5SQnbgJrT2seyZ4/0jZJwZtptMHEZ/A5i0k5b7fJTpxfIx0HpM67lvniGBosqUuKufF1LvEPKRGKk4olVCxdZr4Yf+a+0yMVrFlIoJ6/FqJWr6x0OBsbENf6hbdP92RgO3LZ8GLb0LfL8EvUgyLcklEyNff6+7E5mr8SK9Zq43VfPvsx9EsST7oz/6e+ijScn0vEV4gIcZvyHj1BnUtMV13iQj6Psk8Xmi9sA6KM4m85iq8DRwAEJbHn8x/9NO3RY8AsJ4O2ZJypS06SPNJTJOM3uK9GDupxTEuZQUzEpeFfEweMVbOnF3aWb1f1LaRzu4ZnByQFDISxc22NjSjMhqtTmGf6A1+21OOk5nqHcS13pj3h8JQo6teZiTjydmlY4pA9hM1L0+N4zfigqEe8eEmpIgO5wZ4/tv3ksNYWMqGE98ORp6k+UU+cHameU9Z2UXa1Jndieo94uvwnWvOJnaBfPagGJjpfCYjpY1wDX6A+8VYVe+RDc1Pkp3xKc4=
Variant 1
DifficultyLevel
720
Question
Terra was designing a new frisbee using 3 identical isosceles triangles, as shown in the diagram below.
How many degrees is the angle marked x?
Worked Solution
Angles at centre of circle
|
= 3360 |
= 120° |
Since triangles are isosceles,
|
|
180 |
= 120 + 2x |
2x |
= 60 |
x |
= 30° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Terra was designing a new frisbee using 3 identical isosceles triangles, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-E4-NC30-SA_v4.svg 150 indent2 vpad
How many degrees is the angle marked $\large x$?
|
workedSolution | sm_nogap Angles at centre of circle
>>||
|-|
|= $\dfrac{360}{3}$|
|= 120$\degree$|
sm_nogap Since triangles are isosceles,
|||
|-:|-|
|180|= 120 + 2$\large x$|
|2$\large x$|= 60|
|$\large x$|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 30 | |
U2FsdGVkX1+ddOIK9V3TosY9MgMraEUw5zg+0DbsAYNsQRldaBu2L332tgbokxVUWcINPiynDRRZJe77Z5uFLH0jW1XwfL1Op5AbXTFJYPXRs0xyY97k+WEks9wlce+PpgXwRwgU4mkLzvMo3vTn3hBH4ConqXeIc5FX9dWjm7NgMVyYonFwqJzUNwbLbqCRjsqaWCqvuC53Io/yGtbSvSX/KEIQ5QToka/lrKavDQv3LNfRqrcyltrWIktPmq4fGXT89cNQRlQXi9BbXpk0DoDhScoZ25kV8JfMEJ4rbnTKjUi+Ni39wcORUcxsXfJHEE2woBJ3Es+BDE8tWC6JXtkmeqvOSCP4WX4o+PYEQoGQYkOvCmH4mxnFcFNchXGVLGlCKS0VzzXGj40Mmt2H1GtYG8zdsenp187g5Yif91AT6GpwDNcH+XtvIiBmv/auajkWseCi0ZiyOGdgypNUfmm8RbEGELZnrwiIPETdVyFy3CLfcnQpXT26puXeADrm1ZmknqU8bgn6Y4dQGfbtFmE0oshKri3v83zuBRk3E+o+y7ecOJDqImoe4jjQK2PdjM2aRLZpLD69lnTdLBJgBaehzxziOExaEnlJKlMs2f9CwULa35mbS0tJWm6iOb0OPazYbT4QuY1vlaFgH5cC1DCzKiFmr+wTVp/mca1HhrkXYvWGtkwTwM1C2M5qyQLie63EXsK4Y/1Si921GawmDjs/HXUEPOd+ncFqj+QC8QKZu0Cmb9nXzzmtEqNAxPSWY29/kSN9eM6xIOnmFW/v/XGl3jIBQbSeLrR/vYAGHslcWCrW5RmE2xyUC1S6Bkra5FT1R7/I86E5Ap24VkqbXFCLF3re8DH84sy8TBpCnPiy+lC63t3QOWzpfUz9KZbQ5bHrs+UMk8/opHeOAFtLGfVq7Hh08kDIO0EfmVsYBm6H4807kYSvhWEppPGiwFOWPEk8JhU7tAe9OFYz5P38N+k1iBWBiTg2hmK7eEYovJCSfFPvGSxVnuOPiP0OxIQKis+aXb9AVGH+Qqf7fARS1LDRZ8ohvDRTyQKxDR09Xu63Xpi/m0jrFTE2jKezw0+U+6smG6/Y1tRzKULWO8v3LLBkctQ7SE9NGFDRGSiZGBeLkVzrNFWIAoNBCRdNCed8eR7gxQAcs5+WSI5uaHdwFKxB9e3XBXezcMlFZHIqpiacrX/J2wo3slrozrINVx/BZy++GJkWWMPGgd2RQhNRFE2mBj5weSXCWuYzB/xrXqw3C6RhnWPYpKuhc/X3rbxzfERB9txeR11PtnGy+0/MlggXp7etsHFDhLs68zEq7XHga5cQuk/lwJpqD+yv8OOzifGvxSuFm6aZd8HWpLJjL8ARf6dY/k/9sDmWXV7EpLvOZNYHKALxxJ96ATUH1iRp0mk87ztEAfnbbA0ujZAFHgPf04hUPQ2lfs1OmD7sd5HrVYqOGV9D2HgBgTbczNi4hAMmz9qVWLCoVOctVoeWtFT20IznY15iauXG62Kk0F6318o975z6yrGo1qG296sOnEgEzCXOkXZpxFhVPPtb38o1SLff4WIEzlfwL+F4/JJi9LdQl6z84yu4zu19BeyIPmH794/xx4/thqv5IpilGYHvvGuFEFwBvdbIDAkdyKBEXg0wrwPlv5XmTMjFQomuz2XiITxfJcVLblixf9QA9vCF3micIuyf2SCjRXcRGlqGPAHYYl5cPazznmwbIW99heuSvzsXZ55gynwU+mGJ7525qDS6+4PhbdYsHbiWjnxrRLLBSprJ+AWSuOSU2AMO918RSSTpjP8C93DdlVTxL3ngH0vXQuWCDbcj7zQz0QixWEhDLdhCFKg47KXD2uvgFO6pso2vq/q4k43+HKEJN4vbi4E/38Yt+RaGkssPLv2EuvbTuSTfB9e2x0cbO+lX+vm14AoPWV5Yw6cYxtiFXqvtpUUAqKdEoj9sASkV8ibNadlBCpdA7fesmwNjv72+2QCwZs9QNrMQzTOTV2QxTUKKZ5l9OcCEgrNKVWmQcXaG2yOuDuaB+/kAx4isyGHB0CwCfBwlbvx6TnbTWcif4M1baiMN1JyCztoyoCipxtPhLbvualFH/ws1AwB/FoqNzUuxCIYdz99fw72iurLAL1vZpo0aeB26mzGwCRW6W/aqwsqGtfLNW+/p66KTgfE7K6/CNsegrWG8DWGYAO+54CmlcR23e+hqXktglSN0l4ngJEL2uHabz/l6O82KGNOB1drquWWNMugNUcyewIueTldcGp9qLVGOlG0i3y2QWlg8rarfI428RO5cJX6iAc+tObH88B26qUqZdvPahhcNzWNKy8FWJey622L6DBC3edNiEvA4ASSSs6WqyJjUJVeXBpp/GcYnoWAaUTepasJs2K+SPWN+om5aGNwYKgu6QqoEZbSC/8QFVp/sc86MJC3fao3nqGP4v7S43OZaKpCLSIArFxzcGJ1yM3HaM/36ofB6Q2WKHhvjMuhfq1VTbUddLc6gMnFWICogoXAs/crUZyfOaz3gLSb4yNXq6zJ4VkZJURjXzuJ53hVDSz34FvXUoQ5exegnRjNg/RzAAljOf9fv15+1etLLNRUbNN5EMlQm+Lr46W7A9YhPGd15eW8TL9s1WoImgnsDDTzwN4GVe5pp6MePMTnRShsUv7vP93AiXoow+3dNWc1KqV0wbo6BZ6sLKlIlZ1DjxaAtEcMb4sG5pYcZJVV8FWIlyvtIBNMIWQIzh+R3mD2vhzT+W16IkdPDn4bE8bKvT/KXLkk5Mj73ouw3y9DiwI4n14RU7pOJhrJRJwRjpMEhCbSfpn9yciO0G8un75bD2eID1S52W3TLb4ZaruzS+BsFMqPI0LnLDNvVlo4bV8K6zh9p3kZ34jJ4OYKFoRKmj1smRdTAm6+1poX9aODYD7E994PcgrtKjAlGeL4Xd9B/9eK3LDUEFP+htaxNWLmjx0HVZSDCDvu8ZnwfjvDmz9s5UwfXUcLQX74DPxTOJJVJ7yGB/CZXIBXyAn25Zq+Yk2UQZw+hKv+dK1DWee29H9wNr+kj/MfFbJPRZuWldmMx8Vl26QGmDh6sb2kyAlXfDNuGJ8QsnW/0qlydthaMJKXiL7JmTY9FgKRqZb0Fk6i1dnh939RoHhXcfuw4k6GbvqtjVeeWJhJU5iZcQu4DE/YFLBEWEY0bLwfLK4MsQXWybOICt9FW7z6lsH5svKUcHsBRkQ8adg0A32AInoJX6N4byzENDeD3jyvkzmijJSYSIKoQ/d2G5ZmNBaHWBZUEc08Ep+qyCIT6r3q15xkPWrJOFbP3OdWq6i3gBBmPWbzObJ/i+lGO4dbUPvfhp2glwyYzFP5bYeE6/0pmMpApOVT4/xNoNUsvkWYhnwAWI/OY/mm/ORTUyJYXhBfnu6E7MUznayB84FTrQkgR3DOxHLXUqEKBDwCSjAtsYJCn76HBJq/4ovuLKUXzTKf7j5D/mFQnS+ySsKKNZaPRI0Qdwg+eZLucWTlTwA6RnA8W9kVC4kcWh1bWM+7yok+rgKjeqG2XW6cY1FDxX+gw1OWdh4vHffHVrdI++9KVOe8SwV80E++xU0IlgEbe6/t8h2pGeiavavOytHvO+xKX9XBgYPNDigkwHn8yLeWJVLEeddgMTbvGOEAgB9xvIFZweC2sWy54MVbk5ErEJUZUHi7vvRtTy+LgMLiSyk5JEwqJmTBMtb+cb5vweZmQEiqQHogp76TpIuel1cMbjfdNF/mcZ80vrduA+fH1wFfQaAq4hplEiiD5e0oSXJP5i4EFwHAUrE3Yb+Kz+r7g9+0gLStIPLTIkp3QguH3Ncl62BGhyxpZaWtpWtdi6YgzbiRTD6iGL6LsnbuwECHZHCPFU/zbm/Ejn0ikoLFmMyoT3xwbIc9mTno4u6HGSbVls/jKs18JPw43SQkYTnjufdSS/kFJPj2CH4oR4w3keJCk2FVwdQwHgq0PTQr5OkOyaPFgqiLLlgqHvIcOob1cgDwkSTaYMcIkYIyu3fXvqZiesHpzck/2MSipsBP760L+3jDeBdZtO6BV+6dH55Ss2i2pEUJs09/Uk+bfTt+WZjPYRZOvLxdXX2v6mZYF7TT+lXlYuip5mPvOWTbcsiNvg3rR1lB81ZHHlFFusV4qNuu7/jDZeVfQwLnQgObDerGqSHie4F0Sj2DROWcTfbvBwYH6WlSzYrVCUUluCKqDTElkawaK/UrPfeLLIE3+d134LGdxkGmU2GkbduhKzfXXjhv1MM5PN3aJR+lfWRnNJa0UCIPfWgOKk0VYi/NsuwLamP61D3DnpGuRW1GW8hulAhN9sUUbNu7oBqaBKTZL7OX1zhK9SaUIbJOtrJPGoIOXzZ4ja86KyO4oqjDHM8Vd6ZdPpsPY8HNYMqE6xrYJPOlzQJ7tYLRbpZ8bcUNfuc1zIHbeH5VQ9Sbfe88++6NjVzj4YX4Pz2kZ3gKgvWT2M8gYlKRuy0Rt/pm+pzZxpfTvlD3oZDVsscdbS9QgCIVUCiF+z40jOtTkapoHWoo5EmwljvWz4Zw8KQth4VgNXG/J0YOWH+wMDcJskY2XzY7QUJ+DiTx9P4KwIDi1RCRs5Tjz3qEuQbSJM8q93Wsx9a0k4rEjHk1KYy5WjBV+mBwA+EfgnXYIr7UBMXlTVWi0pOgJB4rPZC0VijOKxuI2U5rCU+gunFlbH/tCjrZtlj3oOlBLVUG3PZAkd3RChzmQeDro4c8X/w+LfDcxaulnsrE5VOdEvgC8KuH7COUk69ExPgXnUWJ6RN7x44nwLJ8YKlpg7FoAdCSJ2MNTNnZ7p6VYN0dXtPKyC1I4XCV4g4G1Q07z++5WD4HLtaL6P7cXcuH0w7k8xQlQm0TrNPibqGLwoM+RAXpCyw+moRf2KeNUUuhOLL8Lu4sWXpZFljyRH9spGcorDh+WnU1Xq49KoJ577FN+tTW5yJ2kW0vtkHqv1DnegGr++n5vt2OODRXY2Lc1eGBFmAD4KfDPH4PryLKSVR8l+TIF6ft18bKIFs68c7oJMbydaRCF09WZo15sAh9b5p3FGhVpKkgzY5n409VxgyK5yAdn6GAY4NxcJs7ILL1BIZfyQDiTE93sN7BSFxFJo7w0aY7QsrV/fivONjc1B+MTq9S5bOaoGfhJQDliFFFjuKdSAg6f2IKnjjlCYVdQEsr1Tap+5FUdPl5dj0LimXZzNYAJTVE48IsaDb0dWLrvJ8/WNkZLH9hp9FZeVahvx1ruQNT2XgoDAXmGeTcmiv2uO2ZKnfe1oK3mIO5OV8YqCxNQ/Ink64INsc8EZQ4UnupAvlndSlwEvfg75YStndpMkHs/PApemDUke41IogLWJ1Eb7KFc8AHAUcBLiWCAl9ernzUp1o/mB590Q/Klxbh4r8cN6GytQKKF+eIRQ8IS4Km+Ehi5g6JcsXLtBVxEOzbSMLCw29Yf1iu7BKJH/HoM1hcmnkMAl4MCOy1W8OZSIRPlg7Tj8UcJjBSFHCq9x+Ukvpa0DNJnA2Y/h9dtUoi1gZtc9XNXYc4QLDdzmhzDJjPm+C4mcxVyNfh1cs70KgknKuTRSWVroO2Pqm2JEmx+YjGX90dnjh261VnPWdEBcUkC7rikB0zOAPt7OzI0LAFltcycqOCZQyAjwuOXS5bmvNCOlA+fGI7Bw0vM8S82ntp7yB+Kann+TWMtmqERLcnks43Nw6ZqEQEqgmPJotBaA+LUzkKmuyABc1UrtUsLOYqu1VAJ3oDxzvXP7GTF7FU/sTmJbuuHnrmoeX1eWFLpaDOl4rSy9ibTQ5+6lOBu6cb0Kt9jDVCAR+cI5gjn6xeIrCu9Jep8qJmU+Jj0/de0Z139UP1Qa88uiJdhK13/psFcOeLejVWGI98dcLboCpPATWj7N710R5CKPaY0+6MeRv2LzJAAq3LFSiRIn9DjNo/fU/YvluuVwfskcw7Fim73Qfdp70BuabeQdUiwOCSsdiE4//LUk/USUQUxhWLEMlqI3zUSUZF0gWMSGngdDCqf9yB6R4H2ocZ9/C4tXcThEdPJZ0nSMs3gMI4Tx1DGIeSekJfUuIUc2A4blTcql/mj1K5fKcIS98Tu+2Wd3u2V1rOXR1OGsW2zRZHz2tMoiwteOCEOP4t9jGWqn2RDaJvuGzYmeri8QwK+Sawb6Bzb1moLbKAqrPlonTrL9XJ+4AC0jj4fYI1O1Hg0HoJaPOgVWdMczrKlC73N5LSg9rSJy2wlLcQpHSdvbx3FVGmBZE3SnemUdaQSDWacGuRg4f72S7m0M0z9/N186puik2ZTVeEnY3bT6yYBd4bDctEcYDI1HAznC5fQgspSQ7FyPqGRenyJsHiFWt9vqs7RKihXIIzvRtsP3L50n+YCmCcPB81TUaAMeP4xealwgpLJkbSwcVmLv1REXNVh/+Y1j72A2zEvAXOWmuq5V9Q0R2aKnpPV+CYgXsPll3/Y5gklC/LbM6uBPLwowb9aO1RWUQe2t1kQqdJSqTVUUNcM/RDfyikprjfBnIzmTF5odEzzA1CaWH9ZBnTWhrfzv96KqtbI3HMy9TA1BeXw1RhTzIAEs9xno0oSe32Bp05i3gPW4ZkvjIQIaO0kbhDRVb0rGCD6D5q/S36Gk5xEPOqdN9bJ1vNjFRAAI6qEdqGTRzrRZX3LuV/XcOxxXlYUbXhrr/tN+TQGAVklXWfR4lDgyjxNXTlcsgRbdaOe/JYU+pa081oLwHtDjUCDsgf25+frhaw1A6ejAzEJ6T6nCsim/ekCjpgHFgXEmqZ5TjUEehNfyCm2bLgiET/r2ueZg9HJcHMq3piPwN6Qu2hG+ZW+vGUupnqfjyHJNu7nGmaiWOnivD5M2spkPtFItntTQ7zBnrkqhSQ1rcLE9L8QgTYoq2d3NNWk+pdoVIb7l8HNMpty7KX7DvphIdkoNk5rjhW6o1cdAZhdAvnzc/rmwwlqYol1p8fZmi0s5zd7TO1pCxDfXDoPYvhc8Dv84qe1Rti/xXo1YH13MAUqyKUoy8RFCGsCNJJKQjWUbeQkbYr2z/xXLYIf18Eo3UgyjmmP7GxAh0VStQD0PKSvRJkBL/2Uu2CV21bk1YFhqsOaKmeLGf7Wq03mPo/BQ/ZjxwRrXT6mwyNI9me33IK6wo/8UlwgC7tHSM5y96kvpEEtn+cg3C054hg2RI7PMVuvIxItK4mAHUGpqNnLS2bxDrKeX8EkZTG5ODjODLF3lqMVa2XxbmOuE9QP64/3Tpo3EmTBoa5gUDb3gL1Mcn5xhn2TwbpEoBPjEQZKNNHLU5ZMsL4tURf74vxLCdD6ergn07eZJPTYhNq23mFX8uZ5tkwApdnf7MZVROua0raYQKTrhKFaRbl5u8i+m5KvNSRcklCoLUYUen1wgn7pRcgYDv8ZzF+y2zQG5ZzOKn3uQdTQsTR5/C/iP2o2+VrkTcOmPsdgDa3EiPdJyiXSJ3y1cmFjJeZ7XgWJYwCZMXRbze6WBDCFUetnpYtiiSso1Q92XBoHWm7ojH0nFg22T/db9Wk7Zck3SAuUJA5GV9UkOzdLfDToD8N87FTqAdxgsUggtUjLRugl1Gwj6glQAM+ML6G5NJLREIs4XUUzTx3/dYPpO0G+YuPVWhTlzooqHOnXJxnhkUUnaR5dX8WekkRh899tviUtYw8cZ3uxzwI0bLkwq5zsDvmrgmULf9PJ32aZAf6lMD313NiaPdne59LqoT15PdUDnqbJL+oCzNaDYbC4Iqb8iW3g6cXLt8boo140GQNey+OxKHRczkhmHYF1wHKlCSJiXWyN1khS5E52/uxxZ4CmRHZatdGKPgONyaoStxVPOZ7L+2DxWPSrmfq4csaBFk0w4hVxY6Y3ayRLSPVRwI5azDhVPmigOLMj7uKMbQjpPN79VDHatqeOCVzMGhA5FuxPTJtwa96ryJOcTFcyVGUn9DPJ/Yh+oibi17ZvhgFMa0tpJSCDccV3q//7Tak4+C2Q/gLRKbmV1iQbtpqKBR78nDcwkV4Ma73t0PZSM90Ih3bVEGTmB9GHEf2z6Z2YXLWuvsLaHr0ocMA5RQ9ny7GmKspd4GMFw7FEoSIxD8x+lrCm2HxQekop53OGfdb+YHJtWbuojFlvVA0AsLryLsTHrNl3A1g9uEieWnFDlfiuTWbPN4VksOU8Uf63XOlQNC0CfScLXEzs4mmvjnWXscDy87f32sB3mreeyvBEpBDPZlfpT4B4qYxwzMF+6dGsfahT2X6Z0kApVTmTGGzUkunhNiXx1IOza1djAkxl/bu6VrfRn9wQeUHjiAZXoxdlLuBjYejTi4i7XkJl9TqpapgbZfRtMnoTU8grkKg8bYvFVPjhtvIW0Y1FnTVvj6dMQNSt3Y5dcHBm4JDjb/DL9v77EIkmFKY0jlYqnc6NFtKi6NVW5nB4uc05ILE54pIW6QIKcyVhu25gSo/qrKMMSUrPctvTwZNmzih6uxT//6tDTCBztJpQqPHBSnqNlxrKR/Jxu3Z0Jx79zQF9QUrPqhd03PsciBD5McmfSgzvj0FlVXSRAWBJRl3a4gDyWm8wLS+aXkuINmXubj6iHdHHec/hpl/8oMNAw6zDEIRJA9Opze/o8gSfPhOYGoYDyWRHHY4eBCKJymrVN2upQaVblRaj1tMANIuv5li3z0p2EAGtTufcpyNFZn/K7QBwskaks6TK0bYjWxB6IxCniZi+MQAmv/JTUQZD2/35LpMznBCC4dyErmdYgIXRE6FwtKQ+qTdIJO0tn2UNkjwaHz2EctfklCLtj+3pwYNko6yOZbKtTWOb4YRMfd5gLUpUcyUsU7BlIYKaVpOBxc9y26dQu25Pcsn/SOMbJPCeaZUPgx34Kj5RCeHCAFmtn6OfqeoAM/8DlThqCQEupcCLe3uuboE=
Variant 2
DifficultyLevel
723
Question
Glory was designing a new logo for her catering business using 5 identical isosceles triangles, as shown in the diagram below.
How many degrees is the angle marked p?
Worked Solution
Angles at centre of circle
|
= 5360 |
= 72° |
Since triangles are isosceles,
|
|
180 |
= 72 + 2p |
2p |
= 108 |
p |
= 54° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Glory was designing a new logo for her catering business using 5 identical isosceles triangles, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-E4-NC30-SA_v3.svg 160 indent vpad
How many degrees is the angle marked $\large p$?
|
workedSolution | sm_nogap Angles at centre of circle
>>||
|-|
|= $\dfrac{360}{5}$|
|= 72$\degree$|
sm_nogap Since triangles are isosceles,
|||
|-:|-|
|180|= 72 + 2$\large p$|
|2$\large p$|= 108|
|$\large p$|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 54 | |
U2FsdGVkX18CgHYlq78xUdPBnwYcd97rxiGAHM2AacXIcEyHUWsr4S0vemjOoFYxrCWCeqolDPpEtdZjv63OM7q285MN6PS65bypsdd/nbxQgJjHCzO5g9vO2RhInUZXBQCEQ/ifeU28QBvwRCNl4Tp1yCvHw3oaT7ei6+cVDJm2qxsFc8MNWqenf52Ag/Km7YvX6bVUIWW+BSuUlSobNebEO3OmLnbjts8VyLIuk3JlADT/84uOlregLwjDgzXN5UJIevdrBcKmUFlFX6H1GRUfgZZDrgAaxuNg1NOBB0buwxLAEuTt+qmqs84UCvQ7w67WPruTYnE91Nd391S+tcq6ys8UUnwI4MRfqZLWI++CRzgfG354CEAg4s6pg92v556NObTBkWGe3Hd/dlAh3pdDgQb2YLX1HK35z2bZnCD2ZiGyi9rp26LK+jZh+7oZJPKmxh0cwkM6G9dAjb80Nu6XDOhvD0uPkj1C4ugCltXB5Xk5CMfCP7WVovMEam8mW7f5uUINSILs2qImSoBOdc7O3AHkw5NCwBDKve0VjE3r5ECKKrtMqcoI31r6BIudn9DeyllPCCDyrYQ7Q798xGEWXrjeQPH6ixMnrqQh8QvFPCpdFESZyh2/bs3QF47g84wXIpNcYwaIBN7cIkzOPTDf+urcbIfJr05mx3VKfs51Q9iwgSmM5bOyeIqPU82a6mybQO1sYhKEzv7b+UDGr+vyvCJot0LA1VowI/y5S8mEjX5abP74eYyTDOERHwnvyYiz3u2+mPHNA7DJk+iOzYDWHbXiPiD//jRhlp9zrDj12BTKIAi5VnCuD0+GqRL35NVkN5BtP2e+aADN/lxUbala3N2jNvtbB1PyPqysZ5mydvjUWSZphMUGbxdLR0URZkggugw8p8+ToC1zmNPF4o7haQpXHk8Tsh+S3BfdRnR/AG6KdYHxpfEMg+pHQ/NnFQUbKdIDV3uRhuewLxLQionpXp4Puq+3SWeac4gJjk/jmgnOVCCfR7jGL90jHgnwnAotovf3gjhjNpoz/Ln8rXmaB4ukrq8FqJNuKVsSw47ErquqVulR3p56FInp17ymmoPdnk869Lgr6RR01ztBkZ26HUY6CpnVl0CF9kOt4QXnsfrt3KBqtko3nCtYGbIlJUPfzfQrn1REAkFj74KehruG0HbwrwChmVXayqWHkcmYZ+WhEbRc2NnH2WZfNr0D9l33HSpfKARvYQIR3k1C72IILoIWFvI2T44nocASJHVDK84oxPrwAT5Hbo1aFLqPecU6qIc/ONrs9b4HcsDzZgb53ysq5hDd5jFeMXdsrvMg0Gv2fIbrrMF6AFfsW1NDy5xRhWjSDi7ZGcdN2hkZzPc351DYvibtUZyzHJUo2njXnp4KRSwTbUSEMLmol58m3Qv09FblAWafw9ZZEK2hsI0x7qxXG5F2NKsbmF8kfU0Q1uMeQNZ580xtmU1lNkvdlL6Av02FOXZafmN4iJNU+Kw67MrgnfuH9Da3Hy0+XSycrmfPDB9qfI7kUIECWojlsvIp7k9Ue4QeKFrBre6YNu3wVCh//zNmANkYxz3GYYEG7WK+WUFDOD741l3pBhcwjlGKyP7FLvYrIu8+lZPJ6k1h3S9KPgWSJULnzxGrpSoolP469+fAowAWgZfIE0c+9zkZqlkGbINm/i25bygXFD32+qsbLMVV7jVW+7K2IUPdUr6F/Zr39uzciEkJe0tjcw/rYvWD9iULaOBEQ2m5wqCEgV4yw0nSWDr/6MoCWvkitr7KcxuK8ZqSCVkz4Ar9Bvso+K73O/1V8vz+8KjMkU0OcszNc/UwYO768epdg6NkRCWogrulktIZEdL4m3xolDL+Wzc9eGKDoWPciba/A1c08MQuB/jCuAHn+h5LsvFJss4BEL5lueObjSqRv0AWXIEfAMMWC7W1JN9IBLHPOIXNxYn67/GfQAkXAY/o5FQ/aPzQeCBJaN5oT1lv8IeeDCZainYdqYPYXcEhtOmi98DJufNf6zZmjDkxcFXBq7S27gXFCiCxw92NbUGlWxzPBM/pGdez10mx+JmeocsGtGlexb0XYPOVT56AZ+sVlcH/JZgdpPeSiANLZGjSej70/eWA7uvMjjHOYBVGn++N6AlAtJHQ+LNDIAUqYLWKivHhAT5OG5M61bga5grTu8b0k7huY934Tt/FsMZEt0xf+ygeZVuPCfxSa603cwf6qun9CAtpe/MTHcg6dHjig+Khud66y21MQrvTZKUBmhqXiRQy7hXWzMYfM101tBi8rxcU+N9wTjH+EZq0yb/my30OtX6dMfajO5mSyf2TSYzb6Pfm/ViVS8qdV4eZ7OGkDSqy5nv3So/zkjY6zKZnEXnSAwHIkUDE80m7PHeX4YZm+0zKPoIZ1RZNGOkz5BOORd47UnqJfIzIlROLUqpdZ+zzmPQ9xztOQ3GfiUbsZ5MDyTcEaVCb28hQEBJUs+XKwSv/sFK3Wpqc19yoSBtJg4h2pGxmjTlaxwIgzHqAEWUdekYhTVZzikID11H8nmlURDLbrQ4mwGgcLzxYQlIFxaLxvXfY4aMtxIlNev+RyDO9aGRmgwZu7P8NLzvDHrBwzGU29Yplz8v6PGdUXAGGV/71iWJeBwkTgvsvyRzl3PaBriMkpSuMCHT/3bRrmteXnMJLsBvg+eonC7L9Lq5SuJgCH7vBmsR2IzKNQqIw69M79w2X6a62Shi28uNfpsvZRddTRFJu6MesgQ56MW3gQ0DMdJi5EmSfEMFwgq9M3RDnXrTBbqsGjzThtUFutP8q24DDz8VksvM1mgOnQNUvjKMKL3W6F+p+c2KcYC0tpK9g4TGKRP5d7cpg1qZZRXsxnzhl9NWdI8cyhuCkFOjijhr2duWUEyWb6GChk7natMU5g3fDnfdKKGmKR6Xg1Xf5B0MLbatZhe+VJhSRguGnH8r06cvXaIsMzhSIHz7WC/FfMvN7OUyslFjL1Ov4JbZymIBiXIDQe3v+/S7M4ZUt4bdWMHxf6ywhl/1hMewl+ku1mwVIcEXVG3NO2evUiXMhRtONE9Tz/RfYWwwghbWjSYYvMjzpaZsHl7ej4zh7b2sKngg20eq15+2f+yvP5A//hUUfQAl6ZR4thx1/cYS6RRqb7u+m6Ryxtwnq5CVipoiglnZgcm5Slc6Fc1xjSejX6F/SMTDRZWE3T97luvSsqwPUnvXF2KJadLLezRgTYU7K73NBvXdwUiF9ICtGgiiV/DuVZHmRTC8OiPXweU57upULXrvZQSxvMvV7hNqa6VD5Gm0TrN5nnDnOh94Le1qQiC67/+zRwKjHZta0ln6V7gc4mTkuXPjZryNBNlJfczLuYTbhA3EwUKwXtyRey+joC21fZosO5pAk002ULTplg5hrDooqtPEFXkcjGKhzh7i2bXp6Zuqvgi04vZK5DYgG/+IyO29vgT7F10AXgQYOApnGnKtxEJDoyqedeyyqsSDROTHx72z7x3RwOM1tOQXR5flU2JudA82fh1jiCXe6Nv2PwibYY4tOtyR8aNvAlMOZ83qKx9TI1h8yKmxlcHW+a95C0DrCUf3f3jiA5kVrnN3QUIjID1ntcaPqJ2+R5c/qlCfSyyft1OGI0OXVo0IUrADF+o54AN8VpmD6m17w3cL/+WmRhMYyyFALP9VjcofLZ8ufQC4Rr1K1tIRXMLZBUtqz91uGezrRW61hU8zN6NwEo38IqFYPpDw2ahP40AJn98Z6VQPj1ihnr5RCtdVGoRovGpxZlMAt++P6qgcGMWCocB5j9RMq0jtLrruQ50EC3aJIcHGNLKVo3VXpyJ9Fk7NSyqOWc0mwyE1gZaKQYhV0Q68BUfh8x0u4qIHQRBLRDvaRJqNpTWJNlHW0urrjb1leWNWgpwXz/aaiGrjvCWnSaZklH0C3AhwlIWMHniLWGdT3tmo6S19C+ainRAZMVfA1kXlNbWCtJbMaxCP3UBkOAegU6MJiS9F/8uVsUU3F0BpLblJFtNzatcf0ST2UPpbpoz0mPkx6VaqSpmxnVptUOFKGA4mWtn0NCwCQ+XUNYC9BXnXlKZRfn2yiMRJBLl0rDk9+NnBJ8JccJphAnYyMSjbAb+4ZmGFvBKm8+GWDPc4EfnhxzlSOrBRkQCDwbbZNJIo7Je/ahF6nxIbHfDGG8Kvla+0oVYnv7OhJDwGIUFrrIukhRPQprSDmpzKBorHNE6IQMwDNqgPMl6uFnEttf8ZyqYyLBkBLnqqOj0Pjs/uHuO5XscND/pUrrRKJR01tSjcICvTI61g+mvJMzD8VUkqG6BIAhmzRkM/9rN6KHpiu4Ai9QjsOfw89sxurZkQZGOZEsLX/zoGK9iPm5OXwiYb4D9NocI0HAlErFXFjH7XM1ePruuah3eEWKDttK8pcfitLvr9o2Gk60UnVnbH7kUbF66dhIhN1mX1clIATKkcKZWrjryUXpCoYT7XmZKGl5hjBHrYaKfLNhVyIwaHkzN8/i98xQer2DDFFLrSUoOQ0eVEKZIRmLep+YtmtC9s71riXhCAhklJ3QMmCc/bk5+T9rCqK1neVOQOPDNHh5Yf91olDXIq1bRL/Z33ZtC9pzFf3zrkypzXQIg308kHdR/0JuXPcDziUX4Nm0618USL5uUCGANMh3bTkC1h9JiM4KktMlExYs1VL92fcL3LWVUjecPR6nqqlX2Acus7zWzT+IPYdKhaAHNNHG4I31b0CGRs1qOEYlYMtLWhHCCcEvssWEviTLzHe8h4m41Qp76NNt5XcfEuqHbyLXmdZyXCpHGDNKt+kkOa/X9MM2A3lcisG8UnYA6fRuYJrG1r2nYTr1oql0pgSimM9dnjphAXci047jxCbP5JbB/mOtzBM2MmbqQrpCo+shdZKss7JGCYkG8nQzTSyJYx/h97d07Kc+MNF0LzviVPy1xePN3cKGEtRIctGn4pw5ioE8G2tOjuxNlyavSYA8pqL3429s3Mw9Vi4eXahAcohXt3BIt9ZrBx5Crl2w3eGEBxHvH9uRxybCubyHpvxZv6b5g+4K2S823RMNfpxRQuVRV41B1SQO/hqhQIKWlqoiq/w0Qbyw4SbuuXvITACwEoERDEZKQ0tYfNHYBumhNlrUQD4L8mdH3en0YJrfFH9+ohT6RnXIEWeeczgwuIa2Fl9YopuwFYN7Iiph0sV8sFLzx1D/8wTtCJWZbUjBS7AvCZ5zCZ5BCV2ZCItp5pkDLCCE3cx7h+DfMjRfVzC+1dGJ+PqZo3oIQiqzBRCmgQUGNkFR59KSknc6YUkWwVNItjSbU8LJoDKH7ZZKxEPE96RBn20yEstoC3FMoN9PBZAaC9G9ITGPCRm+TujyUJNPp1R39sqZ5JwhxNYmz1fIvsCx+0rgmhDY/4BD5wywB1z9nU7ZmOqdlzRxObFs/BnAfBkh2Lj0wLiJLIGK+XtHCtmwODY7uiS3sMsZOn+4RMVvJ2W0ywb8zLupV0mwplMSBS11xirju7O3X97Pn1ksqDk5tQSLCfaEo9BhJKclfM3Du+SArzK+CtZjlw4BibctQiJaO7OTIJ9xRt8o+yIYx71qKH6weX0cMVItnKr9fU5R0iKeXr7mB3bglBQoXIA/sBxfj+veRCwuXeMXSThZ2uegqNgXsncwORvSO7m49XoHhuHBkINXvczkghcF/pFQIKZQCNMqpsLMIjjdDi5N4eOweLqOdpuPVDmGZgFJQ7OBm5yq8Mdw7ErVW/NGNh1KAXOWqskI5YDyxRhBZj2xJ7x1+uZVu/Bnwu34HRnY8cFoa7c0EzAjAXhOjyFAyrLu7jf42MpPK1SLjGdG3uQv4h80ZApKHMuCbeKEUL7iF20g5rI1dsf5+vhd7Vnmj6Z6nr5ZZpN7dPE+VB+BfSFNq9slMV1hn+jaC//VNKVClJWuWvqBuZVa91XIUNud5Ic8B+i/1Bvbs2IDDq5xMQbiDG776627Y3WeMEIGNru0f737AQgZ4ABZwfnZCAxSde9fqcrJTMaJyYdv0C4XfD6NiOPnmNMqV7lrk2XkLW4SrWtO10r8xh/7wxnLRBQ7UHojx33P4CWVQIwm97Z3J3N7ZUFjLyEjeTAOSSTWFXTenoeJSsJBcwdT/qfrFsBcs+79srubhCRGk7gRD0z//KjpZlUx5UquzFUNH+5LWxFBVTzW5oqyR+eMGTcPDANtoFA9HOyfnRdQjZi2LItWiwvsdmCHIYPF+XcIUgnG+XNbk97fezGDqouy8UqavS19xEDEDQNqK9Izk1sKr5SPUJeYqeozyxcNpAC3GduBk7Zdn0lX+3Davoc5TwnMzMHja9Kv1tQQIH26QJH23kxieQcfd2U4P1gSCgZr8n8uo/2f8IRFdb5nhQ05AawzIhFD93xC02HkTnmXNsjff3cV2BDbYdn1nnHm6+c3OG4Ab5LnMw7hxhBgXhNEyiuKjQryVKMRuyg/sWX09QXpdWeHjM5qSMs60IQGShsmntJFbuJ5NqCDIVxWr19DcN7iNHmagQcuvSs5QX/5MAGG24i/P5nW9/ldu4RIhxZ040t2v5oWfHsOrn/ybNF0z2PzdR9IoXyl1WH4RjgQqg6Bm0NGHCf/gcSOFGvb8ZTCkRXaFF6RKgWUQWL5wGH5j91kmGMPiA4JLe4d+AsZl+t98w2p3hSrHDFdFcGETRWIlBZTACszsW5+f1Ssq1VIgasix1qaPDhJHeBGzZx64NZM8R35JT34dav9cEEWoHTf/weWLg95yHfQ2YhaoNgkIWaOymxdVvwT1wfGbtPjZXgG28NoaEDyo3a6G7+ylvZ5N6ta8UjQqt2Vht2nj0mvb1PvJ7RUIfl4qjLMVaiLxVRejNpdWKpCGjTmbyQ9uPl1yv9BXUzlP6k+IiDCi4TbPR57jlYkdGbYPkcINQjYjC9lKCymAt797a+rV8NGjVAuLroYJA6aaimx558l0u3yR8jiIIdJDCtlGzHs9SUYvt+JRCSSbBObYi/QiSquhuiCZu4CFGltIITSGrrgEAKhwgkCOFarMzOCWaF3GMRtI1l2pxlcmSbVgPWRmq/rI1FBLz1AkWzzSvmiSiQev3LlAXgdD7Iv6VE3/05ZU5puahio9RrOvQxyt/XAK7Xu5FWcN78VMzVGoUHxEodFyZPH2dJMZ5jgVOz5oDOhwMhA3maltSc7rQ8KRRRpJGEFsF55b3EHX7AzhGo1bv9G3m26XMkn9YFKNg2FYy5KzPWrATZILTs9PJaa2dk2c9xMd7+IFYB8OEZte0C5KT9Q4DN6SRTfCGc4VAq/SLyJTep7pAE3v5Rm0BlVqiYHkbgWaSDA7umjAngRCU30rAlC8HyVCTJeqg3MYjotyljGkx7Jkf4L4Dh4owGmq7dlI3cQ0rIqOYZwU7/kjGj0IMY+H/wEV2ltAjcvxsyl1B7TxlVHRA1wyoRz2BxdGMhq13XXSIUubPLCNjmCAFVwzSFOiW+t8m6fBVKrLt3j+36tXoLCB9uRGrXPwsSEYxZrBvt1cX9QaVMwRGsGWY48xY2cdlQFnRja3JeNMSuCfRoilfQklHqvmTQzU0oRlhzK50V3LV1GXEyqRHDDL/6VLjC4ThS6U74Exn0VHaT9KPi18TGDW9XQoNZA2sZ++Oq8kyVUY75mUL+Yw8k3s7/K+934My1P4ldw4Ud6/EVPJEOzLXanfn4Q6+g2BAeJSYYtP+uZ0DmYNqByhSQe6dNJT3bSuGKEL1g2C5JvR3n+m4CrKdmLktQIfgI8fS/tilh6SJVkA6LdvDlErO2DaPWbnhFxr8E+1M+KEFO/khUoVqn6Tj3ntB9BvD0g7vaCBgStPssMXO8Nxv861nBeQ8oGlLpcZ8wYE3mnOKV6QYfu7KRU7ejF9giHqYKKUT4oBEVZv7/+eA3z2VmnVgk/UOb4oYzBc15Ln40LtKiyae5zVAigYNJDBw1zlIMCeg0mWAJVX2ifOjRFHRdhTYNVeTUrNL7O7MYOQaAOBz5rwLPkaJglhh/uugNplVDnJy6vVq2cJ72XK8MkQ1n6VPYEkwI2Nr4tHdG7raR081y/4omcOWKdA87ELAT6zquzn5rP8AgxF0iRT62aeIGkygJ9kxpxKFkPe6Nn2PRWScfGmHnAjrfWxManO0K6Q+EYzNPfUuZXA/oCRRoC16K0D+BcJ2yRZpvr44zDwlTAa9CUGTvzT74Pz+sCkdo3AajiIM/+QkzUEg5Hg1e5gX7WbhQ0Q/FEru60fJIxGOQj3eTFZLX/IbzLdy7FEb6c13fM2WozWif6k6bCZ4tOPnW4+OBbhvU/RCOE3lMpdJZOZr3HZk91yAwV40ZV761ZNxd4qxvolm/MvNF57927rc0FZouvVx0Wc3HDu/tSYc4m1nBs3qinDYucf3R9F1TZSAp+cAkl1t4so9mIRjbztcVKTEYV+KKYq5+SUTnf6bSjydnHJtt/rzhwA4XoCskOslg/vrYHPPiUu/wygpOZHZR8n1TH8HIJP2GMIBQCHA/NIL1JfLsewx72GrFStLyI4QHxR/vn2CCMve1xD7wGdo1KFCqCKDJ73mVHdaRSZ5E2Ctba/4eXFSjpNeIV0HjpNsi1E+4nV1b2kW857BtPLC9gyBTTxADzM0vdI+m+mYgm2pBQfqtzRRCAydIT7gggK1wdaDLzv0+5Yw2UARShLm9e7wCK1zX+6svsuCkF6SILaUSYqbq5hEyHdNg3+BpEzc6xdndkH7TF4DfNQTb734HDVF5Y346E6giiWDclfLJiYoa5VRgTghv45EJjwqdaZ+H+zaitu5VKVrtvy6t
Variant 3
DifficultyLevel
725
Question
Bergan was designing a chicken coup using 8 identical isosceles triangles, as shown in the diagram below.
How many degrees is the angle marked m?
Worked Solution
Angles at centre of circle
|
= 8360 |
= 45° |
Since triangles are isosceles,
|
|
180 |
= 45 + 2m |
2m |
= 135 |
m |
= 67.5° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Bergan was designing a chicken coup using 8 identical isosceles triangles, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-E4-NC30-SA_v2.svg 220 indent vpad
How many degrees is the angle marked $\large m$?
|
workedSolution | sm_nogap Angles at centre of circle
>>||
|-|
|= $\dfrac{360}{8}$|
|= 45$\degree$|
sm_nogap Since triangles are isosceles,
|||
|-:|-|
|180|= 45 + 2$\large m$|
|2$\large m$|= 135|
|$\large m$|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 67.5 | |
U2FsdGVkX19sgsmBG4ih2wWBzf6jfhOtsBLed3+oPRJFLN8NVKNQoEih+hF7MYzsgBLDh0aoYhudBrv/MsnGU4Rq8VqhxS70YZPUk9MEYfOx1IpF5UGuHPAWrfUX6+ipJMEUglQ5PlgKStThZvWjClntfINbxhheEhhcaTwtsVFEK6JhimAb7mNdU2I7DuHMQ7ntE2+ONmZ5atMK90Vc4OlXpLb2wXtdNPZ5ensAsVW4juxb/bHexK1h24ixn0/DktLmiyxzOsAdpxtWgqcIxomX+aoFM4nBflOV3bp+nuJZJCe0KGvY2aTeqbPdcmVvvk8CWCadXl9GG9s3JNg6rjMfk2Lf3dZEBKaOAAAfeSU3caP7OrLW2pKiTKfMFKhGHn6gm2qtGQrOIKlCh51xP9hqaxgGknwTry9P9gDlZ8xmxjEtLRpQ2cvD9TKdeg3kS6VC3juGnr5eXoEQ367FYkfmHnu/+MTLEusNgAe+fx3E2x34V5OJsTqIMcemMUXtxjkkAS579YOxyRh8b4teIJHXF78iQOf60HWpqDAYBxl2VrrPGFRKVc0Bgw05706EjrA3qvK1SgaRtGeDipRVAtUiRlefjNjhe1MjQAzW1LW4JgzmJLt32QURlGkBELF1KGmLpobP0Wn71Juwgfu0TzNdq+I0vaBZyrXXeCR7Ecbiq3AMhllZSuADxLFmFG1qBQUwnoFa4vB9hhY6iU7Gtfawudv+SsX0K3ybfEmRAebee2tO7l02DiprEJquLlkfFhXA1ClqtntVJujhV0L/FhpU01rjOI4kkFBHbfy0165oFv1AnfWugdns5q1HbymurIwdGYyh8wqZrTt2Zmklb5qhVt3OgzJU1dVO6UAjkSQgshfIzPBW90k1183sxu7VVjQsThP6D7Dh5PFxlVD00f+DsARt8O6TEsLGRk+3i0D8lK3g893WbHSLF73BTj5wJTkAXgoJ4E8OlR+YksqkyrcW98Jy6G5FA+hDnU4kKjmMLNJ0DP9nD0D4WI/qcgzq4+1MjPkyM6hRuLQwwUBNGXXPZNzA7fCC4/G3ShzP7gxAn4GMHD4JgLnnhJ5PomZo3iS7tqyBDhiH7MMYoCWYR8DfDP9B7sPizCOMTxtjlRNFpa5bZqt4UdzttpQK3QaLzFhULVwbpM/pRvk3BhnRv9iCe5Eb8vRVrqgsSFS/NK4M3CHGvcaW+MLfTOrrP90bv/6BJfSn9D6QvrbJeqANVkbCJx7FPpdT/LCQpC1vTa70R05dLgyPnH+gR15CAprYunXIfD0XleNjp+ONAxKbGR93gHUU+xPCDJ/jkk8To8hPEngWcbhkP585j4wINU6NFyN+UvYnLHuTammnvG+QjYhkxP5Dc3Y40xonlrj57Iabt21UI5Rp7Bu8KdMxu8820OdeknVXDTb/R21J70zR9T4smXV0+GVgk2sz6r/yAuhXanNKGzTevJgbdEqJGoJq8mzc7kWwEvm9OxGuE5KSJ0oQVvLn9bL1fMOCaLzabyhwJ18KwgW8BE4++dLoCk9dw5VsMdce9QqwYDvVHAl7UPQl0uXBMF+B4rUo1+f6HR0bkpMWANukI930+HVmwiQ0ZvKz6UBRe6vrKEnLuIQ4Ap+5t92ZuJIr4Q3pWJcoUyIjLyMNLeWAXsDkxgfjaLfP22/saSoHdncIow6DSU7PwtKoho4iXn3FMDuwa3KIx98hz7whpu7+YFaHipYZHkwUeDLx3ZOw3kyhwIJV+JfhVbx0XXSRvr/0BRfgJ2gpnR60EoEUeHVvSZi/MRdA3OE68fmGB2KOmJPE68gS04/nUMfJijPNv3cyU1g/eLNOaf+9uXOO4CDvsBwAOLsO99QEC4aS2YXbJvw4cDh/YTL3EKe+CWzfXsVpAPtJP6nQ3ktiAFdzW3VUnNhI5pGu9OAigFstzFV8BTvOUDEoxQOUR/JL2xswaCZcSohPSawtnUfu5BVhQXcUjxprrQ3R+gECvDncPwHtriyULXgk+LZkrkkew6+wvdcNYfBpreq8z17Ngui/+F5wrsdeslBtus3872F8/oLxgZgzncwNBUJYJkf5VPYFm6kPMNHkZ927lWI/hWdVemWVxeBV1QKi8sTErg/WV1jsmL0b4/3rT8VG4XfERzuxLWOQid51dy70rIjE9GKv7I8FDnHH2bbt8chLvUXp/ofhinFylqUfnXJPYHz+gMi0eopuhPxzyVDHx0cY6QQNCE7giXOvrSPKlYuQ7bayo2UXJ3J/iwhumtcPIRvGFJLY2CvMMgYerqQEPprKcaOdNUsiR2BKlTjI3HmMJKKvsbyKUvREvhRlTsUUJoB6i+/W0IBe2mMmsDYkiox1cjeXPSpncoUdSlVVdukeDzDD+RXbeBvdsuMe1Ocpkju10akAvA+DxayZVdc5Y+BEjzrh/09LEoQZzUWKtk0BU5OYjvX5e5N6zK1QRJWnQgI0RlCcOzcL4Jjh2QrBW/v8Sv7cmLK98VYTlAfzHEDVXXKIf6KV9N3KXXsqDiWJRST0H5UESsanO+H5tOX+MBxS5r4hH0RXyYPBs6io3uIDWG7gdL/bE7F8uAKYUw8SPjqdBCVdQrIDMzOg1xnNzUrb2GPqEXSJ7PjaNp1+LBqnm/F+SsqcuR6WuhSlk/Tpq5Ad80+ASIngIQM+0HV5qn/STrE7YqFjauM21UllKHjb90XptRGxwGOe1KvUSUFDc/cOauYRktr4ux/GuEV827zZpiVUVyNvqAGNef2uS0Zqi50VXVI793jjZtGpDjfL8OT6cvnFVt87d/3wqEjymsyqiM5nIqE9a0ux3sfF3v+Xt3aIPRiOB+O0v59lkKhy/zPZix+RWD/ERGMfIMe6Crm2ZPKghLAj4swxyHMANC/Ej73HcMoGE+BptyihRix8Pzn7FiL+XhaCD/iSHi52ZF49lOnzNvLeuwI5j8JbY1POEaWzPaFxpsuSzJors5o9BqQnwt5ZPVVZNCQGdVG7ghu/F/4c6D4FmJJaRWKw3V/NaoqNDTWM30ADmggSsJMEk6y45kbeOC9Zrr6tABUF5xOOYUIds9HswEcXQ3RjZDRVc6/svVhh1LcIur1ts1fvBQzpzrmcpyUBuNOH6FesjK5YwsqAngfyx0NOqfm1AtIxY39AGxfAWPo4gdtxv5qc5ytN5MNzsbfDMFh+/zoG8JdqFYfxDncAI18Ezy/UhXaTpUUUW0OHFfyxqliklS47cg5SqHsqUKrLYupcNxCYaIeBn5j8p88ABruoo1+i4ZBZynvG7J49NGYz1hbjMe90Ul+aklsoaB13BZ8efPzJvRfew/TYSa02+n63a5WC3sovDXlrueBPvpHQ20iec9r0Foss/UqROFTBML7YELQrBI1sUDJFvHZZb5F8Jas3Q4ogLvlaGGMBXkNV6HrhaLU9WhnHSjp/jo25brNzGYxy4OhkW+8JHqzUtQx4GpXSXEd//+z0dbde0qRvZK+n6D2VqLlYS+iBx61X29OA8w0MWkzUL+CcyKCSAjj4pqU0r42Ke1HQIKsEoURVI6n49RFkCZigKOsEXGLRySNkJAwbbLPPodeRyuCNQeaqaYZvKbcy4f83k7D0CfiDoeFxae+I9JVnRosPlcUa0Lg9z2tkNvthdPOG6G2+vNfa+ZzTU8HKYBAiCr3TUf/3I4XUrnj1BYpNivykm+baBHA8t5cwgYAsja0LE8w3Ft2fxM8/QYGD0IWdc/D1YRV8KveKK/BMH9ITSs5KpKHf4yiH3Z+0Qrhx00LvpRtIrmnC0GKK0Hy0DxdxdGmgNKT9bKTXotbiuW+ufLOsdEC3ovhmtfH9mseL5hdrMjCBgw2aj2gyPaZ+pY3RLkNRXCPtE8vK3ZlASsgNtYUJ2WbnKijt0NNV0TmMKySO5hjEVDGro+/Lkl2y1P17OhAQP3VoKqisLAxQp27uUJ4c8fDZ952I5PiUQ3FkcTceIWSx8+d+vdw6YXs4PVIT0LblmryhAf5YQBUcmcNROfXCldcQ5ZpXPYN192AX4VJKXv7PLWBj6S2D2XApUIU7wTTb9e9oWBRgl3Da0aPxuVE8C41op0fCVEcqip5siRn1ZrLI88kToBCA3O1EKPhzoRtqUvg/WdHcit0RpXxJt4BecuYoMOix99qKaWepMIuYW1qNT7H2SEcfCwQfIggYLgPGpUAudzOPlAwlBr2ywfBAGymWVt49iybTQJRWu8aiiJ2i4mf6eSjcDX4bA8PhTPobWDEnBIE2eNaOD9kGODW54odOoLrKKJB+bunT/15XAKv+JsXu8d26YnY4zBauFd56HxxMLoGtomGP3yU2k9X40xh46jjmI2uNk1/byHhlVN1iSx4K+gk/rgDIpBjQI4uZ5D7mV6loeKzaVFGFG3hy0pRykCfA295cTS+iIbSGywdCdRuxrawO37KaFYuaTtFOD7WbY3yDqrKWuyIyhMKUsxuyrgpJuyEBtGZoNc+XSFp0T0qd9ImPE70j699th7HCxD/7Krl7Gq9ntpwz/1VCDi+XE6CeEZw3HJNNhVTi3aOzb5CAAARPSVxhAj2gPajk2UHcnGizP15AmGSXHk1lUw49xopFshUuzVUcLRn1hMpxvkDryXluN+gii07ye4dSoZzYHDe8HaiKohIshB/LbG6uQRK9rqQXvl9Ywe+htbwx2Q8yq+mJvyhNYXyFzqkzlyfkVjj1/Aqh/EU2lszYCxxxpyJ2zJtFscRMCQyxX1U4P9uWsOKP+UrO3J1EGiGI8E4aemswTjqJuwR7MpehApZp/IaHBIgoNbUx5F7xApqEwNuMppRHS8wEU1qArtf21W/mMKbOUc+6yiLZwrvnk5U2hrEXt5mvwMIWTqJMlfQ2jsLPH81M06BhviZELgIIEyq/usDWhsCwVFRT881+JV/E0jY+WEu5gv2hmOPYqF/H6I7SaXkU/aVvnlACSF/4ilVKbo/DqA+FirweHdw7ZD9gkwfBMwv5+1MfcYXS0W1DykkpMp1ycWpVNAb27pvLLpZGZnlp7GFAXgyUtMXZZNJt9hq+ikdf3C/2Ir+ZVCkvW56Tz4beiZWFS2BL3gA2rD6VKx4/KzRuhKTC0Ur9oWZb7da0aEnk+1hce8/Ai7030nW1XEoDm/mVHg2Nzw8DV1vPeEmYrzc4kQ/N6L0Ek7HMwMhTA6D1Gz7k4okO1Z1AiAou2f8OCvDFAgwpeEMjENJoS4X4yaOciCgrUn5k8NPQ7XcGuRGVSO47H9kS4WzM2xUIsQ55hO4VYr/xcFtsTTePogDdBPtJgFAHbEd8WNwt3SxwIO81UM1TskvF7R5ZiUzSs3RMhHKLoaVgFOiml9lLgVdbFzDqStpR1Rai0R1vR75tYYRsFKrmlP7kbMiBIJRPeieCiCcnSgGvpt1TUBVtiWutk5Dh36HdjiKF5Anx7X6g7XZ2pwCOd9gJ/HEncRfydPt274tMer9/9HBWVpyhO+fB3zWfFRs+C/FruOD5U7ygncVszMKtnXjbcLotqI5ojy+N+XDEdOzIHeUDARzbKxJKc1TcqWWK6onFUlr8BrV0rnoKayeelz8UJq8fgF3f66lC8t5DuVoPsfqM1VQ5I6Qe1ow+p/ni6CbtRHXCmSJp4vRPKRQFeHc+zLVnss9iXhe42nW1c7I+6GVQYk+CfQ0m3dRzyXtFd2z7wFjSpQpMo4dahNT+EaXiMQKk6LaVAIRL4pp2W7xxTmOQz5/tW6nc7EDyhKkBjhA2f7xUM76QDcZcli1ow3A9X0e//Q6/QDkEAqzhtOnaOJ9F30M5fGvYpGfR4tPY/ApxENOrEyNcPQ3XgMeQHNyC+g/P00H5OKXQHhgl2lqoFO0XdsSEj9LPQXqb/pp7x3Y17sCXXAxT2gPI69XXO5bdNcPB2fas/gtjQBSm4MaA2pSp4cec1WaN0jlHoNk0ka08uGFPB2Vpd4qPSIQErkx2NhjIGwGgG/AVIVa5nscJyVj2QmdmifpwMpfgF1bX4Hq9oEuhOXJ0EDOVwPc0b26IFon6v3uCfPeCuT4TP4gP+GaE0A0LEOEG1wUMJVnrLugqmBApieEreMi7+ri3XHaPelM3B3p1fJb2qSZpDS2tRb8F5EPYBoLr1MFB3n4OAsvMaIFRMIU5R0+Da5/VFqVShwTlzvy+bLH//yDv07tB7a7ZYbokc1C96FnpBWWa2E8/Y6kLf1SapFM8We/l2yVoS4nYHkdW/VtVtmIC8F0bC+s+BIIgCyLF87kHTes/6DCOVnLFdeeazM5hOxLEJdrjCHh+XdcCUohTHapdUah2+bOJEiYKmm0/Y62YskjhG/14jEaCNSzLHiImOJNjuue5HxaJ+ddvTybdY7qz0v7ITgI+kMmRcFRuSKVLLcM8dGlhzVHtokUnrzD05fBKlCff127gsO+mnz9TVks8aUeIeGbyAcsIlXi2stsIdais22IT6BBPsodfQlrD8dwrZApEQlrsd6rlmmnE/POtYfYCHXVnN5IFHdrV5zcbmwMDpFcamF8n453ekyOZ/gyCxGRE/syyJ+q8bbp6XsYnyvKZAcEz/tJS+tz4gEsNEPgy9lItPJ09kbqI9CAS3bgmDCtj+Mb1TtKOMDywOgLrt0ewtOyD4EExUrm8fNPcGCqGHR2+14gNE0mFCLa3AhvYehdGGX2KSfKlUM4cSf4kyAxUcp0E8MOACORMog375hNcUuucSem4bmzFYSwf6LfSPRjv0trYI6eLC0VihlHa/lAsZl1MgZzuAfAZvMg6nopxR/WRaeAsePt348DH9vnPE66RNrVCu+I9hP1LW9dcqaIXKQREFMD5IHKgRqrzRKn5n3YvJ3N7K/0gNlizkgn5CnMzbajavDQj3dgxdEa936eC3dfunjcxrV7cAN5mfrmYgW789TH/wqsw3Ydt+Qcyv3M1uudfHVTQeJlocUnlCgDXe3iQ6mEcqstZhzfAzhQwsAfV7XrM5cPMl4gSheW5porB39OZaVrYMPZy6QA0MJ/bmpFnXP0NM6Os0cGulZ4lNye7KaOwKBGG2hm8F9VVAgQ8dtREmIO5fq/0F4ur0qeOHmuAskXUaDimfXKJVzS3Iynxx94qEDmykyZwlyeNE5lEwSd2+b/LMrz1cd26tk4v+AJahNNE5uBH+YCNbQl2JuS4yxh9x3upoR4l8IMZTDYEdP4hxFPkSw0OyBGhJDeyyijNKUnO84TcgJxOyAo9qU/U+60mPrxRY9Zy6ZiD1h2LFmuY2TIeZVk3UhPTWNpcsphvFaS2p5IfY/J1TXn6qCWqElRo/aPLTeCpVL2sf4rn3kpj60voLz0/d6QHOhEgyk7kJr5wqhtwC+cwiFsJUsYZEtxtL7azHvWnPeBkI72h/blIU5VAEDlqiv1UBsA77x83olCgpU4bi2gLstexNP8vHYwdLT0eRO5gOS83/fKUaYW4A4Bh6pJbYwfS01dGKlwnY73XeB6utQoqMrMarJ9h8NZDDALI1Ts8QWV6n3j+CraMP6l1P84OjtseonNhmYGpLXPAfosI4RO4XCD/yBFpivmxLdBTvPIL7QUrmljl+YSRYRrS5PFy+LKXfymRgdHHYn0qny4ir/amHtZrMH9bdaXpsQ4geT1W3FgfApl80bUqlVz7PkO6Em1lsd/6ucmNPge/MjlSofqfYP38mWQEBrnz79U2YpWynJQsfNZcqLmPcTc2DXCNhnJa1iYyB9Ap2DCwZFiO+7eF/CNYZD5mGLDVW1Dz47/yCJA/nLdz7/KdgTACJR6xBfllatIvKD1FcApr3PwnBlGdoEn8n+59LPK7pRCvMWuS4LV0v3hS1/ykh9CQSDnw/I+9DuyAKfa2NvfRy9z4q+NAE4/j4tBjhI/YBCpk/f6abfjEKKnz7zyXf/x7GlOBcaad8EF0hYrK6SXnBpttEOv9XlTGThYuXBDZPNr2vUqZkiKh9y0CKV0gs2g4Rf/D39qXdnbzac5/Cd/rXN3u+fiV5dh9yy/F8GyRKqk8n4f+rw67CWYTiMuwsJzW6TjtVbcww54EKdVGiDl7XqTMJuOCMcI93gaWr5fKiur1KNGm6cvORRzen/oBhVGipsVIcSJCU5JUS0HRV0Z6dOxSyYzaq8sQZX6lGhNkZJYN7zGCXFQldLmQVV72dPAm140+fEVdgUDss9/9jNf6q/ejm7ntYtSJHq7lGnQCNdvLPztCCfSw+eYF8r3u0AArZW2LB8fE0z7K3UemcaaAHKfXemSib0Vn+B6a+FCa/XZZDzjMul7gCTyt4giKp+prTk79wEdlY7krur4j61hWduiT/WtJJr8TbHhFVYdkLkxVY5HBbn1AyG8cJYH9Ck4K/ucKG4b2TcZCxfd1L/MLgcBIUBLaUlO61plATr5WQ0lakd6LTaoJlR4L6cQSB56J0fq5VawzvckJKc+FNA9Thd27U80GYHCyl75k3NB1zTifUnMWLNTEmCwpapXAEOsJ+9QQb8VzVLOAzjOXdF7oW0acNl1t4fzETL5MbKO/KZdfexTHWvj4Tfyu7t3l8S5PEKYEVY/Q1/SY7eoD9XbN/n5PVuOG61J2LWFhN4YRxxSHKH6Qm3m77I6jvgjh+F2em/5Q/x5Hfs0yKlpaz27uYqEfKBbk2bRIzDjXodAX+KFLwr6MCXDn9EyNSmFJUZ6kbdjFarSBQWSQiQbYo3j8n/d99/dmunEHUfdEe489kuXzBif+1vp20WYpTYP82JUW5L3FuKYUEktGzPjkRvDXlrV8dDVS6J6J0YgnbIxB5HK8Sxa3KJvDoC0X2YYOiPyO46iJvvBKnmezgH4E6OGgFs1uxZ3Uxrp890F0UFoUU2qK+bEfQhZN0yV2aKqcSdK1cMgnzcKk7L8SO25wsbp3TcqgtSG2oZ34zoEC3IfcnK9subgd/nCWqV1r1NRcTlKg9mvLICNVKuQcy9CHsWRdjje/9jQkNOaYBNz8G6Uxqus6N+AdiobcHltzdLw/xqAYJmVLnXoN4gTLqe8cLpul0dpc6irYFBH9CwMcZ99BL7YyXPTXaRasQHnigjTriwB0Zck3i6xe1fCaXOYfWpbsKxFuoeb0Xg==
Variant 4
DifficultyLevel
727
Question
Bilbo was designing a new thatched roof for his cottage using 6 identical isosceles triangles, as shown in the diagram below.
How many degrees is the angle marked y?
Worked Solution
Angles at centre of circle
|
= 6360 |
= 60° |
Since triangles are isosceles,
|
|
180 |
= 60 + 2y |
2y |
= 120 |
y |
= 60° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Bilbo was designing a new thatched roof for his cottage using 6 identical isosceles triangles, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-E4-NC30-SA_v1.svg 180 indent vpad
How many degrees is the angle marked $\large y$?
|
workedSolution | sm_nogap Angles at centre of circle
>>||
|-|
|= $\dfrac{360}{6}$|
|= 60$\degree$|
sm_nogap Since triangles are isosceles,
|||
|-:|-|
|180|= 60 + 2$\large y$|
|2$\large y$|= 120|
|$\large y$|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 60 | |
U2FsdGVkX1+/C2nrR/P4Vny52Iith3vXCdg1R+AV6Kg+kkDf4n5P85gr1URczcsLHF7qkV5zhKxYGleYWgCQratBNigI9dgL6Wu+f+wkFIgheK4lsoffqrG0OPZhjA57678EXzr4oiVAuwtTRP/t334bCTsPGFTOmUwZ1/JuPwhM9zMDc9w7G+S0oMFY8lWSLI5m1/U9ODIN6gpPuBN8Znt1ZNOV1kUdsG1Ic8ETu5PuFyF0WQCZt+HzzmocP32W1t5TC9AOxeD3AZErpRqlEIERo0U7rcIoD2Na21NTJP5VFtWCeO0/Kj8WV5j4dVeZvdaNfkDKiLL3WBJfJFPTcNfNGACn86q3MhPAy8JfQvOajSKLN4V76esQn/5CF9UUv6rB/aNai6SWhJhQHJAB1f/yRtYDBHWwwUk2ggsHAX9cauRmgMP5xAx91dI95HJ4WuCLNSs5xQG8dyWkh1NT8h2ch1zwvI8Bx/6rAMiYWRs/NYOduoYRaANXsZ1zxLxzdvEsrmyskd0hfLp+sJsnhbcMrb06449DN/iMUdmCRnf3NUPf88emO43EUVaD1aWUsWgDZy77ly/3VS853oQ87OCvfdeHST4dANwctPnDk6P9oCB4BK69bFaqHR0uLLXbWG3AmyflOkjVLYXJU8RiiHKDuhuWzaZbT5UJpqEBKOTi6axrSdWPQxWahss7ztHEeb1SCgMtZJGDZ1sFYP/AD5i8j+1lO1t6fjyvrf8cQDqWhhUaALAvjfQrzriHpmoa61uJ8JuUcOHcVFl3O/0qcLK6n/nVb8cwFe/ytbQoV/TBOGxiEGNzU7g9957Jy2lqrjZXOPfqHPSEOr/oV6IqKdA9de+k1BknH8oee9dtkkvhLI/dAWYgku0guArfKZkHeiGR6OwgKKjGCD8Xw+Y81/+YMJL3J3GCBrKUaxoL+rIk7MO/CGipAx306IVplsbNgjPB5tcaqLBksV2PzEErhLVPeIF8BohkC09vxjoMDqZG2Nup3xt/2TH4a8+YKfZSlqF2ruFUcVS8glDmbkvsm/ZjXUCu/49wok1n6vRpQGIawo26rm0sI/yPhx84n8VNWi2Ax4beBbK26PEqmxxVoOFL99zISiwd3rKwMws/UJH78tyHnMBwjS3zYsPDuwJpUzSD86KADplLAGvt2fJYOpFIB8ZJOiHmFLMWp4e7WxZahwVzNME3gj6j0vOgwWcNfV1R51L24+l3eLR+MyJ+7k5iCvd1jySwQKBdAMY4O5SRA9aspPffgBguj7r0krvKAqRZd+OvNVaKxpuI8T9E0L/T6CIKJPY+EwuZxeYcvzRTIiqJQhSIUVzpSQYo6PyQVhE4MVK+TtSBy7zopNwniecKRbI12Yv0TsYFtT0vrggiFtejmkcLtUHBv4Bazd8gbufXZWnShyqQDuhiviBXsfnnoYns+JafmZUqd62Qp46X0s/hoM3MZQPkQ16XEbiA5TbRZ9TNos8qZluV2pl+lN2a4qyepf4ek5FZjCTgnIS/dxkZdSEAbZy3gHQZbXlaK6bBhKqTZ5zitxrXLeG+iF/UkSiZQAlhetnLP9nGLKfa0ykQsM3Oe7AvmC5Qlj5wOlhg7eEPXalvI94HTc8/AqJd4zOF8PHBN3d9jdpV9g6o1eIU5n7uNq4C45/ojmy3ohPOUref6yKaDJa69jElQvHMmie2/67CgSEoj8lQPQgtehENyzW6caTAu3MlAHuxf9mz0TgVTTdhN6kQMDgyg1cx8Pqz0XunlLckJVrzI2AIvSc8PLfCKJ7Ri9M6oPqyraGG3KMZOtlVVTL3o5EhvOfWb0VjvJHuFlSz8teO5u8KmePQ5RKUCn0ptPTmn0DNdR6gMB/ycofQPICIttM4MF0jDHC2y0eDNAj0galxi/L93yHi8ur5tr5YsEI2oIGlxtJwPyzsZBbpdITbUkiC/ejgGyXptZNrRNyYmGNLjAy0XV7l4q5Qsmx6HaoxHBTMfwKj32cg1ZEzwTQL8M0ZBI0+2VXcBJuwZ5ocbNs4BUtg9+c5t2BZPpw4JvkYVM/FrLXHe7t6o61dD9+wBAd0KzgJnYT2H6oFzPhyU9J0/f7q8EgZLbAgl06s9uxCoUOcwKm4XVc77mdNQT4NZdK4fNhsBFsXXYtaO/x23jAomcnGqcreAm5hWG684mK1MfnZkixf+0wEt5OwtHPn6zbBKNG5qLvqZqf0VcDGPFvZcxQbO2Uw3L9Etuc/slDw4ZQqr9W8AE3zEicNZGTiN+3H1ynynIMf67vGVUIVzPnsEi1M1PDBTT/ch0pmJ2t8tvhldMLXBcmvMogDYGbrPgGtA/4yJTX0XbRJeUg/ARnE5R2/8Yfvtqq6CLUSnZfbjrCdRCfi5x9B3ZEykT7otCl1ZIIusAqFtDysYAeEeVFng8Rnyoz4mmvliznRqQTkFEQy5YBQ+x64q8HjwPDSIRpOMKeIn4gPSHZofupTqVpIUK3+c2F3xu1pPBcscUVrfYN0w01028lHDRr9bFkmFEVkOUHj8ygW93wOGrfA9Kge3rLwpQrZ4QyRuDsietKlrCG7yioQudZF9JCRLuczsrLyLE27KEX2FCzJe1qINhRO9KWSaab4gtymcL6WppJap+m7/X6Nho8hTYk4l2qARs9SJLMhtbcvdiLkLH/umAKO0auZLZH5cR96WajF621fnCyemKahcwr9kjdbJrvJVcz23/SmtQrrMZ2pINbbo1L5w0Jay+3yguEp3jaR8LRPaC5XvCzO9DsKc25TEvlkTu1eCRjUtAP4+TF2F3GG8jD6BcD0/rTbOLrGW9x9JULLWNIf/wHoT795TNij+BBc4J9rhfMB/KXZt2zB5Nymr1pn6Hz2wnjGVzVULsCw/z3XL1NIJ2s7fnOuZbUYS8varMZmD18N/sLbvg+XRcr2Beib1moauW2vcZVEHfDMLOCoF7Y7a3Rf1Jp3qeadpTHLMkQkMQw5BK7JZO2E/FBr5V5BjuEPecZoI8y0IG1t49Z/yY0Wp9GYbOhNWMxUrGsDlZtNtKYm4PSlXiX/7Xfe0q6yky0T28ZpShrOIuNkdTv5IGBEVy/Cnv6yZNaTLOVrFb10jXLPk7r7H2WKx32iYfSlLoP3iXA5U/P+MIaRRedSoIeNwFQVmp3Na1NFizy8MZwEzVDtRlU11QYUCWHoHgpzbymAUSj89hiCPV5UB6TsyzkmFWFvB8a0DY4ceCY5/jtZUpxPJ18vqZJ5B6q3zODRV9xgf7k5MLIDLLi/1OAEo2wm0o9P7BYRuYI8ACMq7CzcdNtYw1VtQWsnBfBv1FpXSUMa4297MIxXZideAUl2QsFv8XSGNX23nic+UnhVdOo/rLob5HLCWc0h7IuFAuiXnLhCLrHyR5nchz0R1xzjmFPQC9zQ4V4k7zcmn8//vFghgMKdrDk8KDlJEhlhpW3kcjPVIV7q2a+1Oc8I8uPu1tv7CwhljWWjh/FVLIFrZ/QpdkuyJIvWxO2dV98a6x70Gt9RhiYtMw5lkHQLPy7VaUsiCyP8KJD80cyjQ9sAwkkhXqmm5FhNq8RMY9Lbc3uyLZ3DFqgb5FeJ7YSoY5v+wS1c9ap+DmMEI/CPZv5j5Iw570bO0pkmo1k9PQykFB1TyEoq0rMqQ6Yg6FRyRL/dTFzmrRMkLJvPz2ki8OLlen3MM+MjbC5UWfl5XBYXaRmklHNsPfdnOAnHSCEmnfXcJzFLzxGZijy+u1/QsJnpxCj1a66UcV2U35psyogUz/jNdSOCRVzBxoRhxAdT6CQ7+oftmWdQnrGqoEQ6+HxUs4inMczzG/ehuGA5uBXOUnqPtoxxgWKxMMeuV5Xe/uwIEXpDF3+GFqJmVDXWO3Voy70baov4CGW6QTiuW0SOaIOU2gIXBT9NXBSA/0zYaQhXlOfjHYVMlfSWiTUJNNPvHmO8aeCShNmGTdLLD5K9MjD67lAd3sQPKyh/eef0NM1SvQOS8hJAwvdzw3k27r66lTkfKgsM0PeBmKTbLaBMyiHsv2ekQHNmFyihp9EwunA73y1BMcEBGWcy7rSh17oH3b6cVi+of76ZBs0nkPvnXLhLKf0xKJUa7G9q1uB/ffAWL3sY/kewItcT+5hi5zHjRckAo0T97dMe+azlEj5S0bhOjOZfGhK6Z4Yx2Ddm7YmSmXYi/3tfIBWtXY7lxsw9xCu6ill/qjO7fQYpZSafVoGB7IYpI4PBr7ODBgI6tdBfnr7mtEMnPx/UoGVwWORt5zWx1NnFGysoY7Tn8lNhyp/NAZ0ZPhgqnQEXArmqjXLU1G+jCUbYVtj8fCMiraqU/pK8maJ9w8qO9WOdlOiQKrvtl/Ofy5hZAqcX4kJ/liBoe0f37bxJi+JI9qH+HK7Ih7nytUS2iqGIPYyWaFBaXRi8MmYv8/AOc4eq7FshIWAup2IrJ6QFP1i22Pa2eIPlzQ7JAm9HHJechl5LMo5Y1IBx7XvMAIWy/rdZkv3nOQxS+jQ/2LcaiOgCKi4iIR/hzeZ72JJodQqgaiOfTDyNkKUpa0E5yj4xElkGR1bMS9/quLi9rLkyeSBi9S39h5ZFUspO3kUtl4do3bhuPTEf4dbfhSVXRn7Urm8YrMq/1JXKV+uUuC92cDzH9HszDlIyja7yLHnCihaEbEScPxgOLkmykMWUWbTuaaj7qU7I4ig2XPXyWZAT+NQuFlvyr30FwLhjhIe60/LnNCFQlEuQmsq15sMpUOkZM8O/YPYqoxcXvG9kzLKSKBUFzZ+YrfJ6Xu4shJbK9DUNAXE1ZBDrPugkulPSKg7Pn5/62yTGFbIx1CZjWNGdVE9jPMfwR8mcXN8g0CaB7Rb91s3lmmE+T7beay9mBFIhSB3TZyIcSt7hY8uDgGOR4XthPvIfdQHUzfAXqAmRBuGJ0CU+FG5unH5qNCWdslc2JB4MbPd2Zz/F5I5vtWShFnJHWjXQIaKMJjkN1bCsmb2tqw9feMcJLa/Kj3CBBiqdINGjRO4putxrh0bodiPoWZvsx3H6dR+0nhb94eBKKBClh8Oi5/viv6lJQ3GnucmO8OZ3WFPeANI3S/tO6FyDx51CcXvRajlTT+3tWX0Zq70GwMADD6PjYWQ6x6Pmew+O4FkJwAHU5VEc0Q/cEIMlVjeTQusiSS11yE/zfTekzUJektxLlIIUL4RPRPKyiG6SRdzJVUTzbOFt9VSuQVpKqGXTTXLD+WUw42zvZ/B2QzsYNc2WPelNH2YM445/2SLGIBeJExV0zUq+KA1SuZmydLWLuuEP0l6GOGM7V6hfgcVfyRvm1RfWHRZAIlnSEGVXK5F4MFjIYEyL+vll4GCKriYmgZ0m3QoxUvdptjS7ozu9D8T4LBag+QZtXNyvhE6safHBtvcL38uqV4u8dQxNgVrRba7kKQ2545iBQYrxucvJt7bq3mEWRwLt13TIyLOmFqAwsWloEDwsdkCVuN86A+fqP0JWH3B0SFxbuUW1JsdfEDYPAzUxvi0Wm8lGB9q3X8ViJLS+skCD5m1en/tEmb6aBqiKW10DtNEJuqLatuL8wBQfcboorOdIs6nxIMx8kGC5FbEozZ7NrR76qeyTwkjt1QbWRtReXUnEujLQLEI9+QbQMx7kZEfVr/h4/3FONF6x5GGPMZq0J+yyiYI1vemrFHMSTiv/xrW0wZX7+omitkWIFsa6iBfL2vzjWoyEv/k/h7V1uNCIyfycKAsDOY2MCj9Ahp7MuDG4H16r5uT1yjGcfltC+Huqdnm6Nqt9hIxgSfj0cZhkogPfDA/XnNUssqKk6pbRTY+qIbL85LT/Z7j/ziBz/uY7zsVgIzQLg/2PA6bWTLClM5VE39c/kNvCfBXV5xt75KWcgEco858Y521qBYctwUGT1/y4dl7h3jWm6dU7Nezks8XzQ1s9oU1mrQoCNUOv1reC5PnYRWHh4thPIVfcRIqKJiJTJWsikSADEWakrWkB/1ROVTJYYCi02hxf3/ZxWDONfytjLEZuu94oSUgpVtkaHCOr61uU5Wt9r6TotMtPJ3ceZatliRhaJkAjM6D2L7VxdKw3h88bd1FZIbu5yICbgrwgf99dP9ZbFp4RGdE7id1aeAkahfZcOldYkniitrgejiBPQhKScz3ZzyfTrhxM9jWFhqyYHWa0HHS7sprSt/48VSuRoLOg0XVLWx6NhVqOkgIWxAKoA3mnULhhmHXOmjl6jNzX5WTUSC0KYfx2/Nt3nTh/Mk/QqATKw4eJI3XbWoJRV7YxmWr7D1GgQ/vpNRm7SqYSAEKa+Py5hefvJdLCOMx6VBPnbkgkI4ZN+VYHnhLxKGT2xSPCzedGDOtU1tXXA8qvm+IID5Cv+Cw8X4oFnD3TKXK+bDUrcwkhFVXqwvQ/JDYpJBuljU0jdamuC/OZ7IEA0EzCTxEBg7D6JlpQVjwfriRD60KOdjQxzTcP8BhB0gWhmhkMay1WX62IGrEJVBfrwAMI2RfkMKK1mMX/L5GTY0AHKbInK3BQDed83wyU/r98o38Po+tX2uScXFMahiIAaN5qApDwI4ORz4ZY1ZJA0ymtlmwAJRGBDCyJYsj6GVhIohq+ZE74q5gzO8VKIEfRiw5jFJ1aqIJ51DaMZlbJwlXrrbFV9K12c95DC660bXUfg/L3EuSt9+SNmYR1GuAHV+viA9iIlCfVBpK6VH6IZUfpm6FXppO2hmkXeN0x1TitFzNNq/OIelghxzYheIXHEUAIpAc5pqrxp+Y1AN3ZxqdxTBa5ykjUiwwlMD1wqZ79eS8QDMQs5hboMm+YLFIDMVwrMcMDmJfKf4/FW2ClWHf8MELXLmWmOcV60aqKOugjI3oSGmBESOufRowdP7djAuHfmk3TY6hNvKIomfpWuWPx33uCKvRy1r6zEY9CH6zuSS5g1y8xn6Z7YTdBPga5q4o+4HQgrZvGGv2TmWz2eDJss/NvnKs+tYFebXWoqMztyEKH7sf4yrvcAIAjFNQVjmWCwEeKTOSkOY0QbvnPW2ehSsvjV7IzYpQfNCtihBzA5oYusxf5qmHjq5cE73WUpg4pi6SR0PFKwZenLMnT2GMo4balW7zVsF4LzSI8K0skdYUthVA7rnFsvUk7Qq+6NP072zL8NYJH/RD/Gh4ASs4k3Y99Yfe++ssuAMnt8iwq5BSIKpxdRFEzdyn9AiRFNRsRwUki3YG8MZYPqrW9NDW1asuKIO2HCJXWEEwifQ7rCk9zpXWdsSjhNYgyJctBgLMHD6y8VVoJiMrFbFJ8bDAvX5pv5JZ61BiSau1YhJgaC8jEM364W6HJibtmmG195ucxkenVh2+2Q/yf76E4ds7/+Y5ZwYGxQ2s0AIQu5LvOhXT6CEPEBwb9aQMXd3as6sSV6n6XUipMuE08hReQ2atVgoSizw6mVJKkIQvMegjYU0u6TfeI1JLixH7UNWYoHMr4RSdcg/LjQ+G4q0coKUWC2QrkR/6Ops7dTblZeuOZny36ZtY9P69w/ZyrdvUrVPrlXMdZU8EVobKl3tt1YCr4IDveMrz4koYd9n9nyIdU9kFGbqQubd7cVV4X8IrweMrNBggpOcKaU2co+PBDLJrD08hE9UoSVZ7mJzZsrfSRhgV6/teBli7Fsm7x7nuMu6CRQRRyYRirIcWTkzkW4v9zXa7kZbunTHs8M6BDisTzIccDLseG9K8qefaETd5zXYM8eVTTHLDXBPuaz5XCNSRbhrhBqQSABdR75Dpqhs9emrYlR65zO6CSNS3xruUFYHiXEyKCncBNo2X8HH0z7bJAp61rbT8D2PV5lGAF5XL7I3/XkKI9JUReJSmzpOqo70tbC732Nyx0NyMMeKkhMrh/mZnPmVqY6ySi4ahqQ09ftCN0PZWDdtLzIXx6RWnbj4GAJ3b/r66hBXZ6LX999Z/MIi158PKGOZmBaYr6qUjQalJxtm0rN2CyG/kkNC0PcvRr8pnDg6BvIB2GREkAYAwOwYuG9H1yd68qhnl6cPOgxvXldkyBQAgNAmiSGZ1fzbrspsNRHmXxN3oTTgGQZ55GvkXuACUD2TKEXmbCCKA8IXJb6mjLzO6NVlJb6vYdzTSohrqtvLcnrOAhG3MEubyONdNHQ31k8dq8si628frHkjoYsJdX8QydIyw3kpu5La5thxMSZcF4uHcaYLx13+/LCR14U9L8NJrz7/QHoMuOGFKrprBr6tSM/HvayMaasHKd7vMKe2iz99Rc7fzeZskYfzUOhK53dWfrCxyR21e0c1ZhcUaBC4MhOYDQUbPWaIKYn8pn8VdJotS5KUFW0k2GONOzHMscDJDJroM6tEzdo3xpVk18bpXMOgwqIuQq1H6NyrRuAj91nSwefCM0v7bEvt5/xd7ICuWHxsnmbA3qJtYyd7N3REmt4Qd2+xsYJIH4dHggFuRt1tX3HuPjYK2eky3H2yNG5yziInpj2/lG8XR+o/pTLZmyYaXN3HOhZTcYIUEqiVZmxvmSterTwR/X4Z8GrPbScktt3KLW//xnPR6U/yZm65bplVS9Lh9aC1ht0RlfnESIDmkT6/ptSsi5ZommCVNd1K2F68oqjoQvCiVc8xvUQ5yIgaA9t7x4qx35151ZwunBbrUROmLcgCL6/11XwLLlbGQtTXebtfWa9XxATuBgeV1xmqTlJiQ55dvyCkmu2cR34Hejs/CtVMBP10cXCIeImsneHbUK0e98wFk659yCCs/e6/RPVPexol5NRnnWg7XfQ2bcLbRnznLjSKG36I9oabRinEdPZrxp0P6KjaC5lRXi0X2t6K6n5mz3hUtlwao2seu5Od4c2Z88rB/oGXMJf4XGO/GP+yHlsMmd8vkKlA7xMZB+OeGeT9g9Nx/7wSSUIrjFMiYAfQ3uTClqI1Ko6l1LZ73o3navkrNq5jA/U4Y6z+gaNC0p16VAPpQSEKma/EZf6WMdTzlRd7F46HF4oEj/26bpnVNh2tj5U+H7EmrjUgWRkjd7KX3eX/j5/7TaZnngihd47IQBsfoJYJMLPeZ3gBpOZW4fI/+t6FQ51bADLaU=
Variant 5
DifficultyLevel
728
Question
Walt was designing a ferris wheel for his theme park using 12 identical isosceles triangles, as shown in the diagram below.
How many degrees is the angle marked w?
Worked Solution
Angles at centre of circle
|
= 12360 |
= 30° |
Since triangles are isosceles,
|
|
180 |
= 30 + 2w |
2w |
= 150 |
w |
= 75° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
Walt was designing a ferris wheel for his theme park using 12 identical isosceles triangles, as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-E4-NC30-SA_v5.svg 260 indent vpad
How many degrees is the angle marked $\large w$?
|
workedSolution | sm_nogap Angles at centre of circle
>>||
|-|
|= $\dfrac{360}{12}$|
|= 30$\degree$|
sm_nogap Since triangles are isosceles,
|||
|-:|-|
|180|= 30 + 2$\large w$|
|2$\large w$|= 150|
|$\large w$|= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 75 | |