Measurement, NAPX-I4-CA30 SA
U2FsdGVkX18nNjYxv04gqVINAF2uXMLZ6ONA3bAVnuhavJ2xaWWpOnvNrPx71m4ileTilvwxvkveKQfbdtRke4SMAdtoxquEVaOd0tsbcZ9+3BvFks3VhsA/ohlln5sXwoEurTV7k+UDF6aXFkf2br50+l2AJH5FoOyl7RpRKbYVZRTE3w0fSKlaXG2yV+TOZ2f82/evBU2OT/Ob7t+8Yhaxfb+Ttk/W3WMyb62yezxZkudpv8VmI0CeYFbQeNmMoRkCHIiGy4g6fMf+uEtQqqSdrh1QXhUR5UP4LkIY0y1ZS5WSqsELO1n/1o2uUUawfixLdd81Nwhl3KknJRD3qnCa74xrGKjNlsvoFkt+feQ6Vb5Rusf2/fWkFKYIkF1WAwZ7/RQ8+681UxrtKnrrDq97fMszeX/W/wKADfy3KphzwCGBQAE9oOdbGt+NcnTeE8DmCdKpOgRy+FuGypu6FTl/1cp6Nk0ZYGnsEO+k+c/72vEHQwoFtsFORgy47tWHe5egl37+merKVzBmeSEXe5OJXKU4a464dtDlsCGsSvhRLqS9a17HK3hmUIYE++mv9TuHpLOWQuAXLW2usMtYpYdBj0TLSGwB4H07Lbc4BqwM4jYXb4n6sxw16L+7yz4bwiYEmdOePyGOnH73t7znsiKc0jydAJiL5qnpg5tsIOK/iucd4bmOvrooN5857+mTowAatCSb6sBQuXo5nwEGMGG7v1SrXQXUHXESnfMn0FSOmYF1Dcuvxc8VN+mmsE/w3VtPlQaJS4vit3LZej6gmqntSuoERwRkRiDYKjMRtCdrvgy75LccjdmmCW5crs5eNOpBWJwr+GCFE2Y4b0CAfytFcQeQcBDsPf77n0bfVPyjl2Lv5h9VG07WtdoTvQ6W2+O0BiJZWuhKZelR2y+jwD+P8dsawXmHPkDU/R550D4gKinyzJjwLxpZ0bfcxq/oS9GQmjvNUYEM98iSkh2UXBjCvldp5L9HNUzj3JOvCJDN99RdGtN+16qNgs0vhEyTM2I9trbCktgXIZSab+4T22uFTOcg3ZDtIhBA25MZVnbsSepNuKP+QO1O6CpWNWq2s/QhhKkQquFKgNpbQ5AujXOirVTVpe5RUpqOe6Gg3MNRGWGZi72lav3Q5mCgiUeEjoVYigO86HFSHODnvhwjW1rM92a8UCDhKlaoCvHDpDR+WR4VvRcnzfTj87QTbUkH9WxpSVrU49+y3co3UEE4zHjb5OY1HHkrj/rLrD+cYM4rayWakxZ6dN7x8TaMIMR/fbFJrJ7YbuNQGnBjk6/mV1CTcxm2qaDbGDl7gf3Lcgi4+25Ijxl6l7EmUgqcRSAbL/5Z3eNS0acN8lZDfQaYCV0cKKeMrBnW0FVhGp1dP/kBG/sUMAD97KAJ0KCkz7X23JTFnAY1b8hfx4SztZg0TRcAy7n16i1DHlielFQ3ley/tPVDTWhAoJfw3gfphQl7TNFqN8irNvBr6WErIaCzcbVJmFtv5NpC34Px1PA1zd9wDgspUGznoQ/VDpy7HucO5AVBxtfYyxJXwYS1iIFt7qLh56qe+yj/2LQJqivLH5RHI6lj7h+1Tdj85rhmILIeHesNwTOAXBrFKCU9iPRqdJ/IdHP/6MxgArdA2LD+iEqHctsOCQ+HVbVhoEikbbJwAthfdELJAjDiYSPVVGV1L2hhzKfic4Jm3krIc5sRAeJmcvy4RuIOWjXOJBmA1ulIMvU01/pk38uXtg7OZjW6BVfgHDeqBjpFxFvY5rGEA7UZFnybTuAC/70yfYGs2Y0uY7tP9Dip/c42GP/vrAJhWCiOnJtcgD9KGwuzApmyn10Ymq3n/YKjxZAhZZPx+WfraGe1JV65FU4TpN7m8OKtO9e5U90FXACIlstjeluZTz9x4AS/VDUoPKTm6YjfFf4tLWXVatpn4fVLberWFqI7GQH/7T6Mq6KEtQrQ1ar+RlwsgeRQGBQusxYMUOJYV71vc0WB+TCGMfj9nIb8AOmFr8YdsmK/uyqx451eeqYTQ0HrLXGlyBYaQjG2lFLo+3Xhu0y/EUqBeeApYpnnAy/hUTASKIvgIFWZuWN3zqi1ZihpGBOCOWVEChItzLxiPc+7vG8N5CkBrgT7z7sKxy3oDlLeW3KPQ0Q/7+BWfVzbygZk2a98vBWHG1/DsTxBnv41uDcHSdoRvVdxLiDrP2Jp4qDalAaUnjD3Lmu9q71NZX81qtHLYIjXBVkoTBT003NaMLbty5paxdMapTyF54j5pOXP4FnilZFPymo3yTHq3XPpMPGvPBLe0HzoRaVkmsJiOEGG7Qm7nGgLJzW0E7IkY0D3TQHCANDaQvMSIXfPIRlqTd6js2AD/QevrBTMHU8FZtC2T7VE9wrPjdj4qAz6cesOE+YXPAlBvGap28RyY7mDDMg8OraTmSuqZRZzJBLvshBshr5FtIYtNfXckCQcHiWpKLG+xvLYoXsMTMuCMLCTerM2bGsKz0akRWigLOdOHO0b+jfOypeuQGWJXcYf3INR2/J8FkaQJxIdkI1TB5ygTxdybyMIwJGvdQi5b3j7WKKSpm1xMLGKfCv21pi8R4Me3C9XBAL2LdI6hIfqUk0o2JR3kM8aVwB1UnOMRp3FIZlnoIHE6cxhiYilq6XgpS/f4eeVGGT0XdbJsHeSOpojBekK2W3qK9qTJn/NxD8Hf5D0hRnROSp/CzUetI7cMEGYyTj0Q8ZvtS7PcVzGtkqMk9SC0T2DOG7BNBXlEjCA7chGkGMw4vIGHEaZL+hbbG8UO80i1nNhrLuK5AeOfVxx2G70qQSz8QrTTcV9LO5Jxwq9ycu+9PRUf+CiOYHSFNsuMgB2FJz+pQHAUNCpWR44T+I1HV/QOJ2rJVvQg8wygqgk9UEY6P/FwEJktth4keOUypnbHX8K5WaRiWrweOFOBzrx1mJiKXYz8dyHi7wMDBHCk2o+1RJ0DtuXVuqU80dj2BkTYCJmM1D2DpL7x0sAOLRVIqtGUdoHO10DQAGuLe+eoIUS1KOX2DWFE/XvrfVFCwWCzT2vm8RPtsmOSIHVwij91xBL6mn76HL4hsuk8ZVDZmSEpBaMXTsQ7JUuSakavFht99gVC5wIaLq8zzetOHEjRpuduIOIdEa6nvIA5JGdMBHgRzFld4KrvHVM/KZgDQ3F52olQEOYQoT1e9SEllZHw9FS2rYLZlshyta+j5gPNr1pIQEtIr+EsgJv5AHIn1EscU8+tQITjTkqObAzAXAiWmSpZiiK9X1+9fkj8qwyRlfc0oCcSg7SDLKSWZwaUoOBdA0K/JK7j5dxyVG57RpfmQYKMSHLVP/zAdth87hwCx3g2jAtczcrSxIXaA1T411VIp7m7Ho/qXyGwUgJ2pmKbJv6RdRLC4Qy3327ZJiiHCiPeYIYeLjomQYI4AVCSDOZg9qClik9E3Ns8pfTsEkmaWi7jYVp97L87/q+B6gz0q0+6fMvRvCxJH3omAoXx7ACliivaWvj9VCq2rPvAq74LjjeNYUkogR7VSerEiFpsBmp3TWkNJIeQfbL9zkEMdrLipoXYfmsff8FJ3VDqh2bqqMSxh0QbX4ynfVQL447NDSOGcLwBdQ+xEol13/otWeVU1Qyg2kjc6cvugntMOXOEZKhfYAOI1GSaBn//VRnrnIPhIEsfZYj2H/XmqEzmyjkHRuuB1/k80nZz5CshR1L78DtclYBSJYfeHRYqMuGNu3DwzcHkQPrbkCRBzFuk6DqyNl1HnBjOLne6joA36miqh6U5aS7YVZB1kPUeruhDt0KzsC3Gp0K8HD5tneP841y2CwHu+kU+/Z2j3SYD/M00VxjY84WWHX6RJV15OJhW6cxSJZrJ0VM+QJtHv/UZWsDOqRV8q9ngGSEfzXBfrPZBgm9nmZ82/NCgygJJ5jJz/kjMiVa8MQwXdXVsh2y9sYPh/vlWGkB22VYZSogtFMLm9iwGCI0me2hD0+1BCk/Q23OS6jp1pmKXPhUdIOVwcEbBQ65dFjVaQeYbSVz5fzM2woKYGScc0jJ3t6kFzSJ04Bc4o8rSFqpHn/ef85n3hZaRRWW9fbhFdwihR1AkBlXToVszmkoA9hcbX2LUFdo6iUkbg+GVoC3iNsuKduJI0hbjz31glsICuKsD8pnqC6bNkwEizSHvvjXg0xpWxFrqjak5vQSd2tbuGpkWi5JHFh5a2eG7V9CRmK2tFaoKw5PoYzfxd3xNeVmyou3fr+mmhEefOgMwrdi1za/YLw3Yx4vfzolqfbMifpFhB3Kee+20bUIp8LxGPrUCQLVdiCg+KZ6ezfbAmC8M0t9Q6iAs4qGwuFEaWcgMUikbLKnqPZpadDeSWXeIPQx5phcwEy5nLgcHOArMRIKDWhMoJ7sae9LcamUYpiu6oSY8hCXEUtea3UuW+4N4Tm2PCCbQEwDmxEGfTaIScBnB7tYq2Wq38e5Tp7sSkMyNGZQdM4gJEodmQe91TtVqtspGuodXc72Dy8TuPi4ffciYxhC0L8wVWPLttG1qyNvpt/QXwvJjPGlZbCh+CgcHxwcHNNuwjkZKhdyE34smu2u0PK5MuVBWk14Q3c6caZvqkTfB2N33UBOsaQUnYCGbBFwil+du4A83sFKpuwcOf6nCJjXrSl3jvH5hdDGv84swx6AnlI/PcT1q4o9rGNMbMAToMShhvJSP/J1KtbEw0Sg/febb30uYq8q2HhoQzdu4yT7medCk/fZZ+LfOxDJATaefERDzs8sjAeL0nXJUUBaf8kwR8r9NzAhEaRczTeB0LS42Uf50erK7LeKKNMuUur0FjjaiYn7fluOQBzlA4S6SNAuTqDhL/nIILwPYFWs8iyKG+Vdw8l6u537AkAYtx/8wHEYEp4HxAnrrYLiOvyBy6vVlU8UggOraoQC9mXPMuyXFmuAZfZQ5zUP4j/qfNYEZ4/NiQAuMrg4jdZRpvzQlcVeDj86pTLi7fQmyxjNL/tw0quToTWCtcl7Pw/W8azJ9YGRAClobUpENZ9/hDLXfqUIrIijzQO2fzIMb3YAAnZKsI6/CkGeAO3gg+2DtajlVSoJIO2CdYh7BL3eZlAftdJNvRtUt7+RRspXLG58xsNc3g8GZJxZVaxQxYENAFEqeT+MmMFm6kpmWrphY20IHv4D1Zt9wzyHDj5CovP0P2/4ZDa3kldFge86WKopEuD+Fr8lBdzq6ue/8sKr3Ux9lS4El/8Tv00BqTIyrs5mPdRGVJ66bNpKN3ujBGyWrFu6L8nxQgALb33PUm0xGss2WU/lDNJgyhsZV54PKxrOd4AOLW1dZAun2N7uR1+RbXVjYx3kOButEzhuNk6QA5GHmgRs1xUYopwy47Wruj9srSteD4QH6C+JbWQXfhTaMVyeYb31//RdwkuezRU0C8I6QUZsQIwqVAhDkolAkS/ImHuOHI4LrSg5ONoInAlZWEm1ZkA8XxVgAG1MQBkv6iYZzIrwQujBWyG2Wy9ByNzUj1nP202nfTPuARv32OK0FBRC+jw6Xsr0K2PFGWmKFwYDVV85ZQnAG3JcyD8ucd0JC1UjfwlnArYKlRQdKXAJi1LoStHVei8XE/e2upPn8agUxW6kkyn54XHXJVqy96SS6hCKL+n/SgdM1uoDZUBnVFOfSx6zALMtzl0O9/8s6hmTYyVixWhSoDyXAHuIiaCm4cT4aH1e4EJrBGhjiVDxNDvtYW+BXfb+mtgUS1GUQb8qSJQqY/4Jcpkxyk1dCMdjVzuSWvgdk83SnA+naO7OY1F1QAdAG3nkibQxRnKjphXXVa3t/BmfGSHBAK2m/bUlfLk70NMeb80+MEeqmPpclwdS2b4ORZ2B/aMCvwAWZuX28tBHZ9zkDTjI8vlg1fcsbVHMM23WjFbF1yjLh/BwLwaksnTrEqnRkrkvs0EkLK2u3GKpEjfm+RcUuLvwWco8MWb/8ey0Psf4yMVys5tOj7EVUAtEGSJEQSv2Mwv3CMDax880kwizVt0V7bWGJVdXZlDITaEjdms6Kyt8w8oMYrqZGDXsDO/J2dx0EW3mXIj57cpvjkcIQrGUVN3gmkhFwjv+DeD7DQXw7j98EY0tFL9UY9UOYqJUwUySem0qlZHN/PsasOYlKa6K1OU8sy8EPu2t8a6es+a0QkvyimGLEoCjBXPuHWTBd8PiV1Gi3YRyd3HIldxtJ450VIIqOEofparBg0kXOUuXoNg2OcYXPPUSvUzqCCm98gig+CxFlBhA3G506DhGTfDGJkfj8bi7NApU2IhqPYGRepLM6ryyRk7LEiWObqLuXCW+qWaP3sCfsVP3vPoYBzb2rK1f5m8ALNCHrLbFOS5TTLep9MLMLa/4JvUeMby2GQS+SY6kjrwRFcxs4Dug62goOkVjG01kZi1RckrgXTdaiVoaseRnmcdfIqOrcJ/tXQxnshj9oVn3NibZvjajNlEYSc0a+M3dBWHciIXQk/wJh1KJ2pofr1xe+9/KEBLaFSCgG/WM8DSpvV1P6xtlDWcKeb9vBwniaof7tnx6H3XJvHmFDFW4vckCal1XYpwRXKfVZIB3hZqTu3trvIXt9VPVyzYh32vJjuoKUjqw8Ebx1Dp8QcfIWl5yyTkrTKrHl1qM8WcptAabZmu4JTEnHOkPnUHt5Seyh/kxuQ8+P9oEwn8aO8urtvXQxkEQgSAlv7GEvRTCA5JSRhmaWy/5TfnpthCo946NvIrid3lkSJ16b/YIazMU18l3v3q1oAWXIfB9KE4zWyzU/xq42JrwOB3cSzNVWrXUiQ+MBc9j0zoFCqXsTgH34C0/bpAmrcEyynCDvKG2Y8iQLpBXcXM+gJGR3gxN+JU90HKvNX482vrPgWpA3naJJQ9c/rWJJ6R6YBcwW52+fc1Ol0wSkdwWUgy7xj1rDjuDq8382AN4s3A1gmibTt/vykn6aODlVqRXaSs00/6b4WGE1zt1tzTa/A7XCS2Oc+I1d0DyTB0c8CXQsI/3vS1hAu5AjVpKyhJGUsPbWuUkO4oS9tnyb9P7/eckdXBHkDZyXPQSyU1eZbtiu+qcmmqPvxuSf/YnHIsdhv5G0iwz7aFTab8aCswnbTK4AjRKjfbAv8x5bQ6suln2578z7Jyc/uGuE0kJQQ/8YOkQ4RMXLryXxWvV7wZBXmRJEUd13xZVPZV+c2EZibriXqeyDI9ViIz/W8qncybO89GmhNSF5tOsxkeMzqh7T2HQsvERDUU4YOZ+tMestzUGjfeum1Y31o9xOg1wtjElGfjPWu0ytNHi8UpBfOW+zbGoH6LC4gSnb2Wh4SzRWv/gV0poWPB+sVEKFbpe2Nzc8l+PbFWLRaCru6SAYKehHMf1pC1FdyYgn9O/5FhzTixJfAuL/vR4V5mAlNwfQ9WmP7DVkh8vkYDPZlVzD32KX3Uv+AFehPwUviYxFCgmYhqGVV4DvQpLipClExsXh0ccEgDoIp0nJQB7UyTM4b7vfC6uNpPcxueM3joyVRRSDjdaa5aOr37jEzHbj1BzTxc9LVUrpjzCwiretxwHaJPYqdNTEzBdC2AeSodI5GQP/0CMyKpfqVfzNZPoBOaWnj6tXHdSdfIhL2dGb06fhxgFPMFeArNlqTW9Vw+b0F9G/iiVfIlv3l44oh409IM6zQwaN2n9CRgyKyiG30s8iyGMalikC6kPnbfR2dBsr0x/iYtIQU17CH/BRLdt7k6cJv+fCJqd18R6ihqorZs3HInDvTorn+jpsatdD9p5Mr/nV2PXy91NcLPefh5WhKxGKouqCsLyBJe7JPOeDtB67MpqEyOpdm1Cm2mcU2P24pz4RAPLQkv4lCJgzxM1SnMXZMtIL8gAS/C59WTcpzuWji1nD3k7MS358q7wEuBchdBH3dLqAKuEB19Ae1E459jrDpEgZkoEI6NzPX+3TQ0A1XkG/bDCLM6gtKH5qd1A6m1BHQ9hF50v7EB8MtAnow+zy8vgl1Vn4HZoIiNjilHmTTuFbCBZukSrAjiqLpyETkgrqAFkXjm2QijWkq65weRXJt85YI8yN7VXQrNkCQ0raGTFYtwWZP7Rtbxux2pT040C8vA8kCD6JMUFZCH5dVlH61o8PJ9k9FrkugLz/7j3hkJ243vAtAOCWleyp9ZGrDe3crXv+mDiBdPHMbas61IsY5F8SjZZ00PqOk4I1rayshjQi3bjhZvcef+E5/7+MuQysreD0ow9IsnOiTxQv7M1N3MCbM76UUVCnecr2eKgyzfkSJiTYNVsyiqEaLz8C1TubQdJLny/YD+b9qMTnFv1PEB1Tk+yZSrdIlRDf2GuArriWgVeKcLp5ptOavxCPE4hlvTF5RmWXGe4O4mF7bXQdKN5crLeDGF73EW7mWXz3PalztSNNL18B9NJR7aLMfcLmjYRp5Pi5ZyjFWVxexb21lwm5wVDpbetqbfLWCq4at+oAXifFqzcd59+k77xOgMVuEDAnQUzR/MW8Wwy+eCwc7AXii29Q+8x3t6wedDyFXrXVjRDVkui/p760ueSVF86LfK1TUNot8xC3khqiy/tbXVI3KZe6ZcVB/DEGav50jwVmBaOAOFXPMMqdropdGvT/M7wcKeqqCkO3oMfTDW8XZSdmXKc8hM1urm/24kxFIsEpvwMjOxccQVeFSfsulhRbwLuM73U3Cs8YrACQUIUVF/9MqS3GjMn691EF2ovoQPeMbilDf5hddeR7AdcqaRtCA9RMoSjX8thHg5QfEXAf1K660Yg/OLvNo9CJrx/95IUNyfQj3TiJmJVNcEu2DU8LT+ToQW6Kd3TrPB3d4LGeSF2uCGcmZRWLXxkf+9x9xwYEMHD77/6Z9h14+dcFoeEXQZqPlBjE6Q0eBjV//rabDsCsF5misJ+E3JpSLM4Cy3ybrDrDeMGQrJu26vPe1+/YQnxJieC8jix/FpiJcyriwg7ROBB1N5nhhblLH7S3O3ZMoAZpeydb8jrOCpjfXbxn4Azg4aDatx53DUACHqKNcPIrnVS1TXsbPSA4SycPcopunwhpDREQebbfoSi1H5DvP7bIpPyrhDjtFF8716L5UiQ+HAdrvWb/MvmvhAhuC/F7Adtt8FqXuggF00NUgAs3yY5eJfiI0y1Al0cc9sYwsmrClnyekRu4NcbzJvhXJG/7mYn3bgG7YemzsQK0WUh1FT3qIjS8pIPcNN0m3/u/eDOsPxY8WuKmb5PP1j8MYaOCMti1PFjQnJrBrMYoCe7MXGbHV2OOPr0aH+O/tqiU958l4Yd6kKtwka3jSnH2A5zbRbIiAmU54SgF8UGLCJOR3FdJWi5XX5JRYdyF+NzJWIEKFoTjGJam7VtXXCjj9V91iHUqxaaWNtMeDaGCJav/UKnNG3uFYBo4MbJcehG2539tYZex1HCc30SIacQnNBSmV9LXMwQnk8HcjNWa6TyiDibW0uT+KI0qnrRAmGXE0NdcIXAOP6NV/AnBjko5A2oM46+j4TnBJLZwvmsSAEIGjr1+C5+yi93YvN47rP5UuT6oSTrKVtajlf6UpjnSMeXFrUkp0AE8p+1Iw88nN+uaRUTYyftnEDOi6vN5JzrrsgWf/rBTeNhUb5zoWkGZNf9Aok3FtoJZpy/eP9pFQtIofHqMZTBiQTvkVio3QVa39mVFRzyxUsEwooWlW0PI6zPm8f4mEGJ4YjnY6xAMBCFuQ2fXWXjoDGR6LrtkyCQPKFT5VsGboSeSlv7uW6SS66e6L4VEdQDIx/ZIXT8K6xC60nWuzb9lO0lB8/tb1eVvbANYh574iylUQRrt8/XKoxLZGs9jbiq/arcWfYPHQXn5oyG+FGddHaJLU38cD21piRHxotq5fV1eLtTMFrCxtBueLbGMDzouMbeb/pdeUPRFBWeUx/RwRlMXzzSl8LdV57vHCWxA40u2+Q4RW0yFKDDnWKqpEnZarnn8DuQzmaNW0ah6CMMjlYnlZgm75VqzXXyYh8ZlelSqXcPLXjOy355UQYmsApwEITyyBb07gdcYiUmjqJlutKVyR3dN14KTH1t0QHIo2mHiSu9gqGT1JzN5DxMhwOE43KjuCxlda2Lt7sUtePN+nAk/86N8VDrW50Bl4gdjmRZQ+uq7h72iZhjIkJtLE80nchIfVRiFFRSYHZrMWou5XJMiNLpl8KWe5zlJlz5NNGFUJEK4YbFY128+VSA69DohGHJaVhSRrYpXW/feAf7it7bL+O89eBH1OUTcYLjP1GWoFGZY+7xTAy6y3BDu1+kLGsp6LT4R88osqDpBKl9cYlZrDxpPKkFFdFb5Tvs/b1aTxnDRUCMSeRpXTvYGAxPCMl0U6xLQQCOw5Bz8T76oBpwq/zNOeUl8LGU/y8SH+7GLbpjWYPeH2AYD46lGwWAN6UW8jcpU+6oQlAFq/bI7suD789jQz8bEdwdnLK8lUQVV6kNC1pGz0X+o31F8WUcUM4ldkCkYWQHzX868Qn33BjsvL0qPtM4OLnJiVlIFfyrffM1KbRKQrs/wGLJlFrOWRQVDapkpNs39mxdhtpbJE0opLucgRSYR2t+QaXDVUkPesSL9hgbr5GRz4YGygZAIcgzsojtiQdu0q6kK+tHc7F1DLiN3eggTSlTyXLWFEe8Sohjg7kxv0NE7lxcAwuqgNB4QO0nJQnjY4/EaO6Cnwi8E9MCsZPGElL2RMGPbqdYDDOEMTR62RDuPxVzf4TkdSDiXtXsO8rEYx8hibh4pYXfJ3+6YibZq48YO/5Af8OYXOF4mH8Ox9JnfEhZtlRsTA+UG4Dv4I3FAjMy1Bzy8wP56TNOhreXS9rUy5zVPYrXBmVsLn0TPc1eQvgZ7ojsuNqyNoLlK+AoLVy5cXF1bxZrQVS9qkkApsvJr6mI5nAse0WcNmgSdwHHR2s5jOG1gExxwEB4tIoZ3cQ1D4haK3szl3Yle01K1e4yW5D9uGURWTuKR7fVhmGub76b5EIdaSn2iB1Sgf74Fzb9fHTT8nCZdgMpm4eEoWr9lVsr4qcIoa8sEjlX+lt2BEubrmv+6m/A959vQVstIUgUFZN/Tjb1Ccjsx32NAOB1G8578SHBoUTifwhjUkEhdv0perGQjd2PatPDD36OJvSgbJ4GPdaVP2yxJEt1gWv9GfmCJFirCbU9u0gWJMWPZxAdU2uBTcHOwZn3ma8TEPfwp763Jj1VjDp8RxiZ6mYX+QMXXVMBHZ6IKGJPSRAwQ7ToK1SSqATRqUkvMMuxXdFHjVkXrhd9UlRl2XlFIqMMdthufox8eBqmNCzizTB9gLR9e2HqDAQVq9A25wtOYg6ljuIZ79GaM/j905opkmqXCdc4oaiXsqQKYTgFDThLpmZiG9iHO8fgEWBw9LyhM6dM7XKjl9ThdJjxBTXlZZBOrieXMMaD/8rPOfaUEvWsarA0z0gM52javrqXfMsdMjBqG95oK0IgtCcGHlmaK95cxYq2SSEpFr5PPYk7EmpWd522TvvQYp1HHmTYj0Gklx63G992WbXUC5w/dUzD8jkMoq9V36vuRwOJZKlNWDnhQTWnXcVMmHtEWseotl8lr90f6vfWZNFgtYtLXWiBZTuQD5/JYNElvPH3rNu3EBI7cmtt7MtGq0HHb30KA7zP+nQNGHWBAQbKtTnE9hIRgEEkyrhgFFaaYOh/gE/Ws5FQ3amZVjbCdVTTZVkZM3CQTrg2Y3ZpzckTO96g8VfQPZEMHs3uGhmm30Agu47s8BLWtc9/PRCzJhsGH6zHlEPEUbM5rfXvR+yI8/Etuq33hpXjkYJB0wS6oYXNj2x3J6wFknNH9IdTqIJIm9k/xDWCR/yaop2E/A67i3kH2VHV4XW/4f9nQUyRJ7mEVv8nzI+MnGRFggyDfS9b+8B4LJyfpClNFOmBGHaSa0ogsCL8XGNSr+nnnVUe0o+K89cz94ErggJuXAHJnOgW3YmedM5gMpZs8cJcuXf+wv6L4KCFvJvyEdWSCMJ9eQuaUFWpa3FQARkrPWQ1AKupS6BExEToOvNOiHQVXtSsoXfeOQnVYeGbt2AfQIOBqm+9nL07XSp+GUlw5KRaExpds/tpwETI7+nZ4AFR4/UDfJ75DskTMcgzQhS9vqFKx1xvAUHLBTpL9lJaFoQjC7sj1AMjBJ1uxp1MGfY8Z61RuoWnoFqSkJ1UaXnT7s9uS1jitgsoZ+iATHq2/fBYwbSLh6xlcDpMMFbVo5mdzJUQZBY5YaCwh/u5TwwwPcOX1onjaf+vL9CYfh1gVkyGgzJk8bhYHRA/jkTiNg7DRMaWdLEoX9ihW3fEqahajfNmb+6PBvxiVOv3soqMQZFdbwANDIn5xi3eukzAYJktpGpeJeMfTCRRAR+APimTkrcI/SE1KBEPS/9dvMs+3b6oZdu8rHY/1aa55+bVf+LBUoWvpiMw9YqXKurR6BKk0ZZccHMDQDfm744MsrUHclan+TJe+8+V+6n7QzhaQCWKJVOyFiRhN3TtJ5Jb0VDc1NDAWEfZyOyxWYaRGcbW7My1qKSFppQo4H5rKmxJPgHIiotjasXLB4E9+pVqJCuXwfATUSsA50uftXGkDRNZMhDtvjaWm1nb+OK3g5WOm6qjpQUvU/n9QxPxFTAZSSPPch62juBMTMlxK/+rFTZ+CFS6TJAK1Lup5IrEcSCd9a4wI0MQC1zut4bZbIyjqvHppaQgHKFMv8qfdLp7cOABnfWSxSLv845jNxRg9MeYUs77bexv8jJd51JJFu3kcCtCJSTu1qWUsHlRFbig+etcXIomwqZ+4/z8o9kZjaO8Z4v3ECzl0rrN+JSl4rdYHiafI7xYCz2SYaC5NJLS5ovIrl+d6K9oUMtn25CiM72+4LWkNRuXk4hM3P6M2DF8r1cqloM3g9nSYEqxio+rfD0G0L4Q4YNCVLhZTL98IQVLbsyLLJ3bI2Za/frYJ7hApLXzjoydlV5xGod4GevL9bTrM+FqLOSi8GUOs0UYClcQYojPe5VKP+TMqZDxMyElpjXpAZPNyF9T4R0bsdMSiNdmyNGJGK6JXXYbkHV+1mxtbQM78eHsChqDJv8VyeraWLGfN87qF6LgURZ3FtdXZVFFuaCULP5Xyq9E/aF26Aeb43l3KSVRIcdcFuZ1eT+luZo/u45CUC45dPt3jomtfMh+qa9xOgJGVn8EuXsJIHsuhUmXILLVfYa8/IDQEVc3nemINWImQWf4BUkIm2WKQVJniEPSRz4cQ7UYJZk/xX1rmDNNKWA4sh7L6FsSj1bT9qvViO/8mTkLcA//qq+lqS2iY620kXqEAG/mFte7l+XvQq/8Ggt/eaNJk+sCMNeV+hL8aZmMeMxORy3s4YMYtQyMxvsj3s6cgnb4vxNFQuGPXjAqUJ0NdH2dAF/4JCOY7d2wFbQtHptTKadxvk33A9jmsjUCSAypWZIozwqwOf3m/VxBzoupCjhI5JOMPLtFhd+x4Bf83BXdXn6ExtUJsbU51cvduOrL1QQDXjckfaCM5TLelszUlab5qAXfdZkgcDegdaGhdTpBqad4ehmAUONO68CXve8aomQCipQ/aUcElu6+NJQc4zwzhNNcKqp7ndGNGVdoNQ25Bsg/xTPKN35WP/kXUUb3vQ/AivIOCgkGIjA9iuBWONMDqQgOU/vdKBX/WbbgzjSL2IE0OCIQK5eJ9rhAcTvM5iHCElc2zhOb0X41yXB71uumLmVx/MJNaygC7s7j0VjXH0Z1Hif/f9Em0ZhTFm62S9lTfKg=
Variant 0
DifficultyLevel
740
Question
A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
Each smaller triangular prism is 78 cm³ in size.
What is the maximum number of smaller triangular prisms that can fit inside the box?
Worked Solution
The dimensions of the smaller triangular prism fit.
Find the smaller triangular prism's width (w):
|
|
A×w |
= 78 |
21×8.8×12×w |
= 78 |
w |
= 52.878 |
|
= 1.477... cm |
∴ Maximum triangular prisms that fit
|
= 1.477...40 |
= 27.07... |
= 27 triangular prisms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA30.svg 370 indent vpad
Each smaller triangular prism is 78 cm³ in size.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA301.svg 260 indent vpad
What is the maximum number of smaller triangular prisms that can fit inside the box?
|
workedSolution | The dimensions of the smaller triangular prism fit.
Find the smaller triangular prism's width ($\large w$):
|||
|-:|-|
|$A \times \large w$|= 78|
|$\dfrac{1}{2} \times 8.8 \times 12 \times \large w$|= 78|
|$\large w$|= $\dfrac{78}{52.8}$|
||= 1.477... cm|
sm_nogap $\therefore$ Maximum triangular prisms that fit
>>||
|-|
|= $\dfrac{40}{1.477...}$|
|= 27.07...|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 27 | |
U2FsdGVkX18evJn+ydGE26IZGaKKrBJN/ZHG4/clK30AlKVm08oYuy3aGk/its8TwoVPlLiQESkyVCUDS1Gpo9v4XKd7lw6w9iaPMCZd53T3bAcon3GWHToj0nBi6ggBxoGtZ8Z/L3txfFzc72hkiJe5h6S6KCjFvKUuSDOmyLXLLnlKUyf0N95zMVk9whqRuzdEwiGozOwGd/htjqvqDxxsbQjP454QmvUqalYTgOVqhZexmntTnhqt0LsImpNM13967sL2cIkSgXbyNTVzV4pbuA9rfI9oXcnQ4FzUqrsBhT9ucYCOlTMy4bWoJ2I1L6cztFL/m9+3ci3WpRS00z7QXsYP+rXcM6rfeywfYvfdYi8U62ftuB7wa6qXOc3P9p5N7J4LuUKdNjG9gWLUeepwvY1N6tmYGuU32yxv7ilblQhHlPeI4bSOPnwcaFzyz8hDsPdsau6gKjBzFZXFarBp5E4JGJ2bttq+j+1mioIIPTbX7icKxoKOMzI0awzUSawEqa9idgWfOIAQgjbsf7oqH0nK4ZjKTlsGZUuZVfwQBv34z+Z509J5pH4CgZ2OMeFlWH0JRNMBbUGwUCXLLPIHIfA/aQW1rTCVkeZdFfxxtyLUz9LJIKZvtD+xUeL5PsCHF4KotSqeXmUxV8tsHH5PhC7f/4mQfWxDIr8MxeSAxl9qLo5uIDfwz8VI/Efy7G6bKwLkzPKdIjgBpJLrNkbJuJXOcOwwQ6djBJBo3cLCgws+I1BRo7yfWtisNUip/S/A7KO2Dxf7gNtXFsMOXER6yFziRfoWuvXJNV26+X20/MtJOPX1Yo/yqhvH2otVwR8X45BzLUymNyv6zpEl8YVRKxXY5fwbv9ru+dfpf0t4NYpPQ7RvD/rgJXBWyobEW/fe2JgtrWJv/sCHOmrGGK62tXsju7IX9Tx2oF8I0uvmAYuG8w/lAc+t5IWb+RxmReY4fEhylrQn1fpaai4PPM1Yb0SuYn0+QgM5mrsei6aXpy9KxY6qZAi5ZV0vZeLxcW6JxxUb+2PkQFtnka8vU1xj2UntazoaN7gPt39nhpbvcFb8EwTSS8F7Pg9n7yNVj2MDVeND7iQ4U6aoitSkDwBenrIFEw99l4zOCEQceUoDX/TXesu1SzsAA0e5UIXaHx5CPT30prRXrgOokS0yP9m0CLzgcrIPChmy8L7xjLZveeBqzuM1rJvtDass1CKHqOfHphDYzIe0UwcpnC3xMLRmRp3P48f8dOJgcNebWeKxLiFb28Y8K+ehaBHpL4g2s9CaPWPnWmAFYyrqqzKGG8GSp5QcOinis1K+6p1wSd5uS4iAypl5vUclsFCIYSOm+OndtP7EMMpDOiuYD6Gpnq9LXrYUZjj3w5cpb5m34QCY96c2aiqyar+ZkS9AqG3/efBSYx/r+bJB9bkn401frSU+GgNI//Ca3ICTrIOVQKeJ4z6I446p5x4kx2IUR5z76I8+SIuzIOjuihHjQKYO4FLVeZ3szEvHzhM9h6LDQCih9imHNryKCXO9vz1CUu4Et7Lgm3zBmMyb7DJQuwjk0UDgxyLX8xoc+si9DLvNu0diGXA4ziwRBQ2jOcRKifcjLAi1+vjmIkan+z/xlAIQmLcEWurVRM0Pp7xy8SBbuI78ioBV999/bcddoaRUMhMRsNqcr+QkSwByJKuPdjnWpvVXhS223EqQDPGBRBeS3260JpNvP3TlLT3f+Dwwz1Io8nIbUm1FXHd2k7VypMVTUg3zRzeX+F3IYP1XAE4lz3ZGT4awc1KuCXlarC3aX9o+ZldYUpJGY6QHUrI2UX2PBQVoZYwJ8f0F0A49HEyMCAhSysDqNTx/NvRA2zaqZkSYO2Apf5jQ2HZ1ZNuWJp1ReFDd0uX7uWk9rsEDMXzPR1/sm9aI6e/POzb4tfx49JVZyrf/8t7qg5UOlVzWJWnHOImeL0ePk0bC/JN1c/m+ozj0MYkElYPHxjKUeptXh5Fb8u7JrPScxExYzN1s4GvB6aDbwaO3iSS4lOuHZnuBa2pIRYc4IihL9gHRn+uEJtgG98/nBJqMfKS8HCHdyO00+SktOSyVim9AwdEeAeK2EFszGPvAS/7zS9KKhiydT9GAhfvWWm5IIKO+uqAC/D5MThDIgUHXZKatjYefcWAITfk8U1fYYFxgXcyrvxGY8FPpQ/ChSYuPVc43+thORKylm7qMWZyEt3ko++/39zijsN18N8Y5JqTafMZWBenkxQIW6W8+641PgEWLnZ2lABv31hL2v/oEaS1+WO3NRs0gjo7cWymjh5Awlu5++ExtuofP1BqXTcEabXDB5cIEUvsTfw06S1trLXINDiYEvgyd5Nj+eMICoFcOpcQmPwjSd/0RZTMF5fCTuc2BTjDoz3V14ty/sszI9HGwZNR3ACUzxyKqt1XClLnWC7WvKxMCmsteMNw7eskE/pdmE6p08j1jVAx6McUi9dROUqJMPypBJmtmDOVJiFud7zrD1W372kc8ED2Qx0P1WxfEN1S8Fxmbr8jHM3f3snFUi69NHMGbzJRiI8epFGe5mOY5CEIoEGpq7k62pXa277wPbgmu0wApkZ39B60U81614GvOm4h7JLsxbcTsnOB3LBo8cNFbkcufIo5g903C8a4CWqCMI8zMUh0nMe5t1MFiceYUcQE8zTJjUbYGFsy5xiEtLjYD0Tw5H7hP4afTlCeiIHm+vcj6rBiaQJ4MdeV8pdrVXw2BDIgGq0hraJOmD2Ed+vI3wYN9nOidrrVrMhSESA2GU7RWxHAXkyJk9psAvL2F5evnB7aP/d6D/L9V/hw5OIxzTicM/mGuPUz34EXiRMRU+ULs0VnohfzZh011Xrs3+tVA/Up9a9MLnSYSNv89+oT8wpMoBEiSd8AOutKqM3lWivFTyYXbU/FleO/JLWRQ+5p1h2AAKRnJgoVLdG3N+IgLULCs6AY6IE6nIB+aZjAM5MJwPryJiumHQVFC7ED1Abr7Y9HIlTYaLH8CGQxToDVe7fk8S54E3yF5r3E6bzXKXAZ05qg+rKaC5O/BVktvR9pyQEYpSa3nIzQAdrjgmTm74chI5nrM5RpeOyucVpxO6GkGEE45I3uuRasGWj84vkRboed7clDCZIQv2mbqKmDPk4RdlSk7d7lIwOy5fmY2jXHVm890a10O1r2Ujx7A+ZmrTXMjCi8F6IPnDg9OIP4wQu76jCys7irtfhchsjDTm0tjBcXfMyEETbLLbdfpJKOe3fMAx7s7j7yR92dAzfdCcwsvGv+uOJPiomR00qteKUP0G1F0MsIdHHklQnvUQtJU3XaSRnOoW9vnLUa8q9/RnrxJ4wjBUneWY4/Uj2wqhF4bE3d3+g0NBms8v65XEN2hrs0ggZlNiqs9lDtx3kl17KHLSO9NA4blpyhlpQUHOz4DNU+dcnYquJLiq/71a9dBhL5LzdxsP57ql9bPFTK77VNzR5XvZK2B38CGbxppRPmNmQzmW7QSGplfLHrXuUTTdDvTgWr+RYgAop+/8bBeNobLk+VR0uStUwRHj6+lNwecwdBRmaUOz/E37eL0ntKkBFNOjtaCfzmiPwcbLEf3qV4COfv9gSEYxTApBL1PhyQWtWQ5y8qfn4qkwU4TyWMBoelWGMfauxhLntx4D5ww8ZxlTUQM0biLIW1q83jiVY1TvK1u9g1NgoMU5rqWzldoV9irQP1bQhzFhSCWq8FhZBf0uErvMA9ryLo/uP7CEn7nwxU48FKBWI/gQqJNGi2Bk2pb6UnSmVAHEcorpMBME59PL+iFuyXoHOL1k7gL95ta/NOCqQziTGYXNHW2O+OZEPISFVdnGyplqrUrGQ7b6tAFDGWlJV/zQdKvjguSIvngONf3gpgmmzrfjQ7933lUYMW1Dr5gzvkv8KwEXZF+INfAWErqM7U//kGE8vAN3TOqp6MTN5E095bWEL0Vo4dd/CrE9u3cfqmHksnmctxZA9wJP29+qKt5EnArgxiBE2iQnSyrTQuOm+Nx2ZhhgqshuW+x+VgJJjvyrCvuCLD92L74F41JEIl9XhRj9sVplt2TYQcxGUoyyr54N76oRzK2l5ANLmYPnjWKYOxTfkCXVPhWqm/SgcwGaOVC/BBkY0YhQ05XZWM8h0lU7WRAJBFq/23fw3ycs8xaHfppT4eL8U5bQqpK4elVO/Mxk0rG+YF0IJF+5AmOYSptZgsg6SOOC81BvckarhvI7MiBJV2iRjIllRRmVRSFGC+Abu3KgSuERPMxgPSQuRKbtR7ZkV39CUEqKQgbFyaj8qbPnammlqcXpjORX3mNJhBwP3+n9DOrivP/crLX8GmFRhiqDKAMufQr1BuHQhPZhPnKNm4lFJah/IrEpBtMnOxz6rG+S2d6j6Vr3BD6aZegufbYP6O/ZPYXS8QaNLD1eOfcwgDiAJNmNX2Ujj4s5of1UcNc0ew8lSh/6z8wGON3lVKDSezgsscqodYW9/h4LIrmd75eqTSRUEF0j+ulUGN6zEnvUmUmNH14Vm+teU5qHNJw668uxreL0Nf7sCxsTLAts0Zhun293Oi3152MG8NeLww5o1BcTeDXCDLTMxrN3SDZrhJH3dRoAH8zp+OiA24R2/HGLzrijQ+qPLlRGsxs48vZVC2SXS9O1mqtn1/8cwJHCH9HpNLrcRCLygcD60SNnLvFVs6LTPMxeCQinMhX/a6i+fTe70OhLea3AFJaZc4O8QeJna0cw78BrhZ7QLop2Ixm3PaVVjIUSdzSGWsJwoHCwNNZgx8C6+q1kgao26QqtsL0dyY/3qDX7MbTq0XyfvOClqET6PmHzIJxwFVLZqmqFKx9ZYaOJBXQLTWBiKjUZt61XSYPLYTp7Wb54cT25FekA2XfTTw+PTXKIQaVpKdRdSMjRXO8bBkvlYsCrgoh5k2XKMT180NrCAa3oZTy85jpIDaZ1zRCaM+21AR9feVpd4WpJCObZOiqffIlsQeZRGNB6CWzVehfmn5BBCKyCV4sGGO351D/Bqqlr4+zt518iwP9oxmd1qDaoVTRx30aFYSL42VMK9x+K1vAHv6BSrr6MNZ7i/zNZ74SbPrBGovAyV8Fo7oNqkHQZB9qWHxV7SWh1zh9TTGB+PgD6L8QrtQSzFvpuU2snyrETpUtYWvab4UwC+cZZdqfkcb4gEWqwqZ4WAe9jSIMRRqzYQXZFTRP5aZLp1b5kaePG5YCTe/HSxyOxTUVWuBEnuUf9TGPNpxJ6kw1JD3MJtr6TeeD/Ly9NfDYpgkxSJ4q3P714ro5q96oJ3YnzA8j2Om83dAprSnxRm6C9UGzfnWHii9DncdLXWRBHLmDd/Aph3B+nq1j849m3Z82ebdlPOja0ooo4jqAU9qYZ1yz/ZLRT64G+U/0iKoZD+iOJn+MGck2R4INgevyHKRxtPcSkA/oAmyZmFP88XpS0ewbd9atfIfC9YzEukTskoRebPcibWsVWW5f0+yxWMBt4P/rrqfnowKd3Lv/TCzkdNyzUPrFWVbLSw/evnVZeelhWnEYOZYmpnDjR1pPcEaFYWJd8fpPjcgvMDYMPAfC9pQZAXnaQFAOT1K3ApZhojwDUYPyfosa4P2LASJLvrvMs3QyPJHjW0tdhwTCgK2LcdGAf+MG3LR6lso6cxb3xSJrwvygEoPsF/BNZxT7RD1EkCVdwGJN1dD3iiHd6sbjBXyqzIb1KJmzLUsUtlnMNpiGGxbYrqO1Aw0nugj133du9FXoUEFnSVEw3XShKe8EGnRJI7FSuPu6ENpqex/xb4YawAbgY5JV0ZUZcEuuLLncRLEwkcVXynp+SrnoyCj+yIbLzD6+ihvqz19G76pfgFzu3IuN105nyk9fnC3vnWyajJmmoiHpwU53NVCd+paRVvubiLf29FRoRtmjr1ghEIBNTeDU4f7DSCYmm92r+4v1WNqX89KtO/wD4wWXA00tBdBPH0STfVHyUyBpPwoL0VmQTwrbSviU7VK5GUFVMIazkfWqJeEi7hPY5w1uLcMwpJb/QwcRAqH2+ZAgvvYrSUyEBkF3wsaXN7ke8U0iQShcOC1TIgSuxFxVbDBsL8s6oNsrLgL/fbIfs5fEVoOKTtXf9/cW/I9r4UazSd+ym5+hYelz462fannZcVSVIqVgq6ppZi4aTF49TsF3dht1XZZ/F2q5Qaq3b0t0wsznvTG5v3WJ/wy3P8uEPUwPDZfuyyEbHudQn19FFffO2tjUoV8Jd9R4+CXeBr0N9RS+oopiEc3qSeautAQAhicARyaQyWOIa6x+HAZ3ahIIOpGv/rG93xY8rOKg5tqESk7TiBEPsVDvZ7bgWUx7MPu1BFCLKpEP2+flO+cg8h8f9g9yHz2cNs+SzpTNS1Co2PP9bbQekxq1XYMOhnA8HVVl8+SOwWPAhpyWh53/Dr7j+8FbNgj/Jf0TgFOeRIJrdk1bK3AcpLlUVlpnaEuA+gXeCxS0B0sxilXHqh+4EIR1OL7yryDnVdvbFlicqLDeUgwGhF95Ck6MgUGYL15kThMjkqSfh+jCegZybs1Tz6UvUgpf6yyFwYm4Ud6ArsbXQm/6jHTUw0/D5op7ujUclV14knpM7ncfeGKfRFVkRuFqVhtIaCBYE1PAajogaRxoseZ2tHsvPdCTDkMe5Hwjeek6cptu3K7CItue+qEfpZ1uy9fEiAkUW+Ov54rovV3qAThGP4165pFXIv5lwtdlNoR4gAmow9nPPN0WFbBJ6i31IIh9SoD4N3l9OC5PweKkjn9UK26iOsmjqAN2i8HiqZYU36AWGsJhPgyq//FDr1rUFcEvMqqC6AWvQX/evkFEnAz0LfuzxEnrHs4Gww6bcqAALdp3dGQ1Y6Ql25ws7iIreQA/RSifeHbWlfRMa4OGA82xwFkt8vOHjn2Dm1iQTCrhCftLUH7/XQMhxkKikzvsFSXA819cLdDvgZbA8d4r/XjrJg8UkL8FEcRgn4fGiTYvxx0U8rTn0q8oS03kcy4YMLftF1yzKcOjxQwUCJKQIjvzuXQN/ZPEd4ocVwBPzHl+Kzno4//jezmvGq9KLtoQNMDcpShdJtwGUXGq/FzcNXMzdPUhQPR13/VS4iFWkCHLx7XGDJdfGeXafAdlfl+j2nVJ3aUBmoUXaVYoLAfjZ9rqMTP1T60Jko5NSuCyjG1dMskt95q8bZLwlA8PRTVuOyK0WBTvgwSVcGuk9kW+DEizxhY+WmBfTltejXj6Vf2tYR57XPJVgR4T6WBEJ6evcDa6soql00EEASgMOl+MIKXti7yKVjfSThBSIvVMV5MILVHppE4Vjb7MOif+xxLwIXNGD0aKVG2EagUBbPboQ5kc3LGRgZdKpdn5Rq4jmgMGlt2sc7aJe1RB0WP9sACFTKTpZwd5mttEh3Zty88hcKAjQKJZIaQX9feBOr/kAyTZ1ElGe3el8TH/scjyubpue/Li4XxlHsXV/qk9WMb/itvN+0Mr/uCp3DfwfVpEkgbr9/MEvVXGzZ0PgmoZ/vBHompv3mfJHrvTnez0O/gIT2gKkJIJzr4qD3M3QWvK5Ig/1hUMtHLAbUJjsApJqEnBNdGLcjT0Vj9PL6ZPofL61gcHpWsL6od/gZmdyQlh335pOnTdDotQLvsVaAlm+XexF+vcybTPPjXZr31iu/NIQUjCzwpYYH9fwSPw69XMc38FEirvo+hX9DOcmUp7PjMtZj5vj6Lbvqh8Qvn84QoF7IEB2RV+S2JaSMIYlVPZHochoSI1uM8GZbixh9c9D+V43dUlXaRRalI8sxNKh0+z6/i/Gd6vAm+zDZHGbuD7GfwfT7lLKp/RUh0tML3H7YXAuHMfP/uFpDjc7CuTs5AMdIm8p14tU9deB/wzyt2XVPLxpO7Yb2Y8Dp96nm8JbOyUeyphH0AjSUin2+JEQzM3TbXqDnoJRa0aOSIFz2R+OdCcxdAK+HxDRX+5XvtJqYkLVW52BWPLO6ox9UCb5nCrm+qBx4X9xEl7NBBrcrDPSjxi6j3XhQwKhJFr0DSaU39fSbZnNJF08Fozhb6qze/+TP1YyPRTkCWZySMZnfSLgMUqCm/yl8ZIlVlAal5JZxhKp/uaAtMPtvYs1VrwEyDUAEnQC8aN5HLfmPi27z07sDcSG/mM5ilTXei8dEXUkI3aNi6fEJtR/+mVIsVU8XG3D1jzln+ggi6KyTAyTYigUxVM2q6LJkRCTY8ZSqiIhxPJxB+yUyVnSsNu96+WeQGjLahCRlLC0moEMEUDjSqH7kr84qtUqWYjY2BxZy2V310JbJEAcIXkYapT4KolWu0V1ejBFtlhtGD7FhPHCedOhQdqmGibKuAjRB1FV+3dxk0r6gMCuxqjrZLCpzCU072Tt4opMZMOrmHKP70E5bOb/+NFRIIfE+6hK+RQ8acMNCZytRpMuyrhk/A/pLJvr6P35OXxjvpUkzoepvKX/99y9XEVwrXPMGr8JTvqMGKOQ6O7Fsc84xsb4sgIkQ5Rii3gUQlJrJH3kIBRFqhrDSPuyprHDaMJMJ6vFG+5x11Zz0bSHht5Ayk8/5bisxCP5H+9XWXURqsxsvb6WltU5x5llSgKkDmAy+hXNni2T1teThmQg7T4cSWHkGGoLwHTsRFWUAnFlzlqoWh4mJBK2Fugh6QcveoP/F+s8sGAI5lfViPopIgzd8obl13CO2G2yEsdYs17x2frlUIUqiGfIzd0T1i7pcPtnUF57wCz/X3BW1SyXrBIZmC6qpWS8Nh78n/QhYtRUqZ1BtKmuU3Znm1TmqNP9YzfLkOEeffg0Sl4pVWFQ2vkh4YiryWA9qqmpzwIcux6n0ovYQlD0QmjbyDw+xVIv/8WccQQVfQdvgrTPRc4UIDR6B/f60YrZ3DfQROxCUd3XFA5RJ5jGxFeyD24jNEcqgmzIfYW2jEzGdPrhhHC0DU3rLj4olDqRCdoDRjbO0CVKuDongBCM7ttfA55GGpxloI+XkLYwzRW/YAK/Xy6zgAkgblkds26eFis35Ur5IjGfrSyH6C+cG9r5eK2LudGXa6jIASv8PG0hpq7Q/UBzIfi5jyD7k1KTMX1/TnR3lF7Ng94weR6PEn9xPd+LCD7z+EuqBIOWGCenOn4uC0H1y4YGG8B2WVS2/k3j90m+M7g7RlU7kXuMaJxjhBlrP53u3bEuy8wDITwad/vNa54bYZ0thh+0U1fhOQurDXvKHeMzJqHmJu9dx4PtefRsQaqV+8pkY12TS33DxOJUv3hnMd5td248TneqiWtg+CdxH6CoOfKW83vqoAIdGykGZi/9ukPc/brdXeo2fXk8ups+QRUORrl0chSIIxzn9wLz9sk7Xz816stLV2SSUTfUkZoYgQKY+9rP0xGM0j8306Z/+pmx/uA8AioqyzJQYmSjKV2CDTiXS5xWHMfebDmjh/+cfwxQAorrkDajThRFccdyB7aKa9+yLRFc5q2BJ4IvP13cgIwHiK9DzQoU30xkJH/kazhINM/oHaIUrQW/xVqcDYjl3LFji//bsokJnTx+uizEH+r5Po/M3+wtnl5jRFXca8tUvJOMLDD1UhxIj3FOCX2ha18Av3CTSAqUxgG3FUm9QwdLWr6r6EoGRdjlZ8iEljpBhfrv0JcaBYtWyhEHD9aBDew/aDp0+viH6yE9HDDZ3l+rBRRbCF0a+D0r2FF0sTatD9worOJq5rV9ramsDN8nJhY9MAcdjlL5PsFC+gC1U89uvOziUTzBLtV3nWjLO0savwWRUu3LphNAzckS3MlWkiBVdJQRMnIZHK1sfqlsvSeCv51ARYovtqU6B1kNIFfXoT+LDWsnxWW10vZgNIRZQybCYHR87JPZRghxk0f5CyhHHhabvQMx1stJYD6IHGsIJXEtKYopLUH4l1vIeZnHAJHPfWdAKcQ/XoVYEx3BRE+CwxC8gG7ItlUbht7i1pBtSqQEkczqG0GsZPLkOSVMaXYdKmSsnDgoXaZTswk6QgfvlWDk9Kb+n3RoLwVLNuj+oiSgYZoY9+VdziWaF67T1/EiiDTN5gx+v6GBVPLld+OPDnuYPNvgEMcFKf20/j2U7mRvF1en1TGPhLdrapyjWz9zs93mmd93Efs0lA6NAJHtjml39Aim3HTKsb2BHLt9HzjCV/Ygbbg7ZjXtbkRGkTSpw45cESU27xjxyYKzIp4yjWeNGrA0cvCNjFc07N8kQlZmpxJ1mZ/NevBq//mplXcXB4w9GMEevp8/O49GnoztLwzAvQTpEtAnb9O9hwea7xwP0DE+4ir/kHcWSWqu0y8EzNHg1xWOat/S1+zk2leCelUV+Up5ESVm64wPMKfrPjB4rKUUCCjdouQbRcILiIEya+I+A+AHwBm5GHKEtSiumVs/tc4vVWR/2tJq2+Olm5/6jDkMaBEETyRMuH9NWGd/NW6Filiedj69owgNRnCN+AJkC4gtB6ZrmTq1KwR6YYt+o2q2XWYRRJPB1TOf6d32sv/P/IAtcCTuPLmX+q1TvufpmAR74JL46KNaaxKeG9BPaWhjlYH158Pn9wgizX0x3Nr+z7vzR5luJwo6JW/bmAue1muSifVksSo1wYdFmaaHUGsvImZ18033m0FH/A0+NnLpV/xDR3A5j7+zEVw+sOd/g9yDKtAzbg5a/IPX4Kch+OowD8+X5dqSIB4EXJeBjLor9G8KvEn+QySzKNH1uNk1fsTUXotryn5aHjl+gbdN8F7kqCYshp4o2maePdJkSMu0/zB3uBGUusqB6+lU4eCO/emLdA6JTw0QzSsKP1lMHm9+5nfSpi1dRkXZKXF+VBuGfms8bQSQJTWiArkwfqfWbx3mTNDxop7I+8P2rwIujD9jBLEKeEMcFh4Ri5fXZPFKtaFBo5tsWckOs79q4JxI78MrIKXLzEOZqBlfmoEDvR43BvQVqy63umpseK0sTrFm6xFVz2CComXYeEIVoupydXzEutNPGepYMXY25YWWnNtozHVptqDqsdtbPXyAMGII0JsSo5bVOXArBSFAvkcn+3rrzWak1nB37mGynnqipU+CTAzdZA4HMTvUhuknKDQZAaT5mWKJpCK3D3b/RWsnVTAO2FqBlMZqT3T3XrGghQMl0fGIFY7Iwq6Ojwrs29CCEPgmSOLvbUWq6NtvFIR6FK0wa73/ZNLreh6qtxSux8Zh/eutIHUpa54FzUm3j7Ezadg1RDw6i9HzJ4l1XHsGSjDbd4ElctdfQ4bykrcnVy74CGdwUBbhGaaolZAO7mgnyBvZzI3GPtTe8TY8RsoVSTjDF1okupuqQV62mzqxWf1jmGg0frLErwlBn+N4A6q2Ud//8bALCKMsMQ74OoKMEG/4IhhH8DLz+0vY7lYVwNWlxDj+XUKj+aCPylyyQrZH8iMgyd2qKv9cgfVwth8QGCUK2VhUzvcpmV+w3mZIIXJo7HHOw1VbN0Wk8nO4pchi0tInr3QaUx+knyUBNPYqObFDVOFlg+BqgPiwJyGvouDUSu9GQ/DtFB2FbnnOof/kTP2G8AC2Ne+yRfyi71m8nveIyw+7s2sQv6JWziHDyJoGMpZphpgb812LQZ0SdubRXBct4swEYxJdTqCm99DgHP/uz1UNRENhU8MpvcOeU4wIYkhE0CUikXAY3nF0n5x0MgRxUouPCx3PVTIA1lFdhZyS1hbC+0iJHqbL3kbanO9/LjsHiGscGaRXphdxbdNqSGemkPKLOQ/lDG4ioO2mJeYfXQnsrbkf76khP56WEJCKJK/TOpz5G+yFAy5dgcY8/ZKp/qTVD/J8VNLNvvCMS6ZG2HAwcouqTebjQ4H4YGRB1Ow52Rvb0d5WcRW6srMix1hP34920YUWEwqSiPaHSilWsCa1lDZr/KCAC1B+eLWZanj2FlhCuo0W69nEdBOOKNTuV4v1bhrDIdM5kv8O/ChTr+BBZvfR+uEdKQ9o7dMjt7um0/qIf5WZ7sFkyYym8CvFhh8L0qoAK7IeEjc1BmEHsxZN5Y1q3bLHDpFRRbj2Bcj+wmj1qnIQq2t1N7tJsCi6dvB6lFVGpGuU/WmiiLVLomrf0TrRx6qokZNqEMJpRoqYf37JHMnIgGO3o/++5UTuNAc6mL5NyKmG5LwDXPRKjVjuctCXfouCZgPF9TBHFiXd26BPVJsolHisV3YvDjjgKMLEU+2AsPa5zjDFWKiZqxgXJimbmDh0grnFXZOpXNtA/BNDKMHwNf22WXiwlC62h+gICUMSmmXdNx5Rxb0NPgJXQ3VCz+ywzNCoeO1f5psYlQLL3xRXRbkrVD0FBlJwp35qnOuC52rJtfcrqyFVRnbjW6iGQkazdH17VbCJNA5MsFYs1+yL3hS4Zu3un++XcB8HlAr32wIAjChdX/C5ocd8w/xNatISG91vKmHRCdWFP+6wPj2N+G3wNzSoQ7ti0ixNwFjZCF7EVnH/86ie+FsVp0Q0zOi0pBcueetXXQDt8/durbuCO2i1VuOFbhmLO8c73QhYHXPxn8WiIVwkT9bpOsINcmPESjbPuRdoiX8kNVJDagvP48+eduL/CbdtKlSReZmeyqKaiCnTuX2hPLvToWVM06q2bJQNWLkqaxmRuy1wvvA+SMVAF0XTTRHhaHa4WyszhjtGk/yiOg6gfMqHj8G9UtfctyUU2q3I/NIJ6U5pqRcBtVYZhfmzFM6hWMOT0XwlBTdHL2EI4NDDMMaYClYRc8+NMjhZQ1A8Ofz7eEwiidTcKoU1YXU2ZwFmbZT6MRyKtKMEHhrsJODYBHPLoRTBGII9kbFtv0AKXdY6vhGbb0MwaTtb4eM2+WJ+zZ+n8/kR1cCqicGKDun/RjkptSw0ULJQeplZYI1Eep7EITZHT9fU/TwQdxlwoAy7Wlndxng2nZhA0Zg2SP1qvYsUkEgqQeIuSU4eNWPb5dbUt0VwRNYp2gqve75YgyU+vZwHkZS53xM0fzb4ZyN/VmctP5CULPilWmIIym3h0BWF879VPEFEghXqNXq7fJUBv5KR5uEfFJEobqFJ/5PjMFGXUc4W4mC7eRchkCeP+i2FP5fkNP8ZV8yRh3VElGi32+DCHu8eMrH5N3QP3XYQaI5MAfYASH9gXdmYjYfGKcBDAMzexHtPSVTMKHjMJ5aUr5kwlzc2CI4thn2Prv7my4sD9bmnuJclpPxNcwTSoScp4ZW8sClrj9gadCLwlotCs7PlESeSHB19Wv8XQZxEeQzg1/izfFxi68nVYENQt056zBTyAzVt7PK37GZkuCk2nIgO9bRnDpl9VtO0R0XmJ3Lc8N9D9TNlByFYmwbj1GpcoDXkKUZAYR+KhDUavIotoh5GQaZGLvcSjMyD+nUSStdjba3Gae/LejQSwN+J2bGLXHq+oyzv5XJtjFc8N61g74zlq1EmqUYNcYdnAIYMExc7wVhMq6JIADT07V1blKYIvmghoy5DG4Ik8YTDabIAuWRL7Yd6ccJO2KZeeNXKUlWGJZ3m1NQwCoafpZLLGYTXs1VI/p7AKbfnw//4/96J6m/DFzBWLGDsoPEFVo2DJyjKayxWyHFXS8rGe7O7peVhHB1yjAz3db9EP3Hiwh/i3gRmaZoSYApqFhxg6y+BbCmNx4/DBV3kR+VeEKOaUB5PaVTEnCvLLiI2o/wWKP2L2/rM3akJFyJM4THqra/CIGjQITEd3Wtgw6c5eGTHiLLVsPIQeINTmWQxuw1mCKz4eyfZvRQmTfQKHxDHZvkYYyQivqOh5Vad3e08ZZVoKGjtH+4YzcnqhHzvxJLcaIKjpY5pqcnL+5gNzqo0V7IITGZMMhBG5WIaNVML1LlOoSN+eleiQjhsgcicaSwcUrZlA3wdx4JY8J8QzvWxW7/IZ9fzSDtlpE=
Variant 1
DifficultyLevel
738
Question
A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
Each smaller triangular prism is 95 cm³ in size.
What is the maximum number of smaller triangular prisms that can fit inside the box?
Worked Solution
The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width (w):
|
|
A×w |
= 95 |
21×9.8×15×w |
= 95 |
w |
= 73.595 |
|
= 1.292... cm |
∴ Maximum triangular prisms that fit
|
= 1.2925...60 |
= 46.42... |
= 46 triangular prisms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_0_a.svg 500 indent vpad
Each smaller triangular prism is 95 cm³ in size.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_0_b.svg 320 indent vpad
What is the maximum number of smaller triangular prisms that can fit inside the box?
|
workedSolution | The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width ($\large w$):
|||
|-:|-|
|$A \times \large w$|= 95|
|$\dfrac{1}{2} \times 9.8 \times 15 \times \large w$|= 95|
|$\large w$|= $\dfrac{95}{73.5}$|
||= 1.292... cm|
sm_nogap $\therefore$ Maximum triangular prisms that fit
>>||
|-|
|= $\dfrac{60}{1.2925...}$|
|= 46.42...|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 46 | |
U2FsdGVkX18/FKFMW8Y0ky9KRu177Tc3SYroZvd1qyVCtff1Rf2tzezoG306Aomavzav3INgdaefZu+1nrw9L3mdP7yBQcYKKar/A7VjU4x2o4p5suh7o8y/Js0DBNENgxRzt68WriMzitjZgYfnG40btBY1zLts3dY9hZZGHNrbAp7jX4zas+6A5AGvpX+EY/83Ao+NZmzQD3oV1AYI+KM8Uu9pxKsI4ZZOHMbwfkMiRwpYMX8y0wi7vL0OWDUfQWO4Uw3m4rmVCRxR4DmcKVibIpirsVsnXRRIhsHj+1tOcE2N4WiUwRDzMwdrgNzQ/y3RC3cBb0prCUrO+DvIL0zNEsOMhqfGbBtiA5Cs0eUgRWfA4Zs9wyjQrPzTot4ID98uWsW/xqpTljR6aEdosdGiyemFnGXl6hr0/DuManv1iv3JZ1sJ7IXSSHf8hJD1Mqu24//NPJxMnRcyQT/JOkggdwQb7e09uHiwkRTiKcu6V43rVU5h2MiCFH327kqYLl3Kq8ifTyZcCiLhW7hUsTcVB0nOgzEoLcsFSebEqCrCcOUNahs5rJfK/QMSKwj8tGZ2MXJOprb4mh1dnm0TUlj4T+Rk7BeFXkYN1XKTn68ZyVAhEV5q1hx0l+HeFZ2OrplAGxMavl2xqz7GD64SjxD9sFpq4vZZo/mLjV4YQGivyA5JhiExDmj9WXWYTjBojQlAGk8a3yEjA1lvoqCB72a/Qahnpg5s35mxn4L2aY5VHhubnQmHwe4HYoAZI0wTG4eluYJrDLsssGBm/0ssaZv+pAyO79s7sKKSapOoMVavyEMZHNmYVQMDtSstKxpTJsfK7kWJeGIsnAYIEakJarVjEC4Sx1fWdk91IFx3GykMjEsS2zk6qYqsiVfIxaJj4XVqWeJ0AuxTPJsGJdjT+uwlP2h/+TnUWHwbzdnTwKPfe/yII4eJZHlW1x/Px7kbAV7TNcqk+nmvvTi4tlrENXtDVmJ1dfaptttxB2vov3ZKpUJBLSOPP7qWCqs4fIpQnrf1QHaf4AeH06h1pcXkeAtxExj15dThoxn2Qr/96exeCa3Meybnw77+yy7n95/6/Ec4n6WSxRH5+tICD2AK7j9Sh70Y0bnwog+vfMIauO4uicY/54q+9X+JWfc/7Njyy1ERzfy67Xfx9cPFEHyQlh1LkpmGgIasiQUIPiqMDNqlXqetErnTE2YVh1xpAKo8xqzsl8scG7kzGiimVDO6rHDeEvUw982tY0vZd7KA0agEYDzT9tz6Nhcd2fxJD1jlJFddMpJyDnVpHPdiY3eeClbAlx2p6EaiHeQ3uU68t1TXRQUznIkFKGR+mS13Qcz4u6CExgaE7CnPi7b/wv/5dBE44AYaHqqrssumV8YgYHAvqWel+4/WTk1s1NmK11wJqutLeft/tSwdvfv3jXd8JJuH8Pgdru83L+tkPxeweE3LE2hNPBXcSk0/ezsai2Q0WsK5z51tjU6zn1XOKAiKuTbMBIWPIdz20zZAzQhhdqFSnleihKUaeO8mr9QiitnCioYkx8eidKSO4Yt1stja4z6teYKD3SFyAzE53QkSFyN2sCqKa720gZwd3zLeyF2TGir/6/s2rCfKRbrP9VwktlThZ+pJo4l736Q5lrk3L2x3k+PKD2ggzrzeibLzShqmQW/JO0wNEZ+A8YoG7zF63u5LUpk1Um5cSUDzI6z/2DGhWae3Ym/5T1zS0qWFKY7ZW97pOv5u49/kUKgdDN/i+PjBlKJJG2ejtVy2qWN2I+J0fgFw2746W9NBKa64Mz8cyoCyJrFUT/8utpgpwXIh9K/anhNunAq5+q0gCFTeyBNWMX9df7sjaZ0z1+5szXTI2DiOjuYMee+/myXW01+/tIM7O5mcYPeTVghlugMzqJG5g/vIHXlO/NIavjwp7ri9qlpm1KZkGnEhMnhJyqmPk4K22XMnm02k4+/ZpA8JrBp2TbAmVSbPm6XbRYQkKI0imJOdUAwbWVOTQ+PHS/TBVaz7EKYi76HSKqB+4cvDfH+Q6cRXCR6+1VfFrX76ZR8du1X031zbwl+1F3lN2XILKsp0hFpuvfXQ/xu8x0qoUrnT9AB984CgTSLiYiuENOefwuenK+E6xXFIWo/DJvOPuDu9qzwvbD5QZZd+puhU3i7Dt9ifvzewPz0j3AfmhrnuAqBIzVSgBmxJZA3Yr93OFRwDlBNReq3JlRAmAHmdYyjl8P6M8OK5UpIwUfllvTuu0wlzuK30lvAm+yZ4He6efn6406BYGQse5/Xpm977b+AxgcDMi24m9Lt3JNPmX+2AmaPpUS3wmszjQ4njSIdutTNDGg4HwfMqgXS7fHbiQd5wKTxW2py2zA/Lvvt4v5aFSchqhuhtN9SN/Ye2I9xPRNdzGN8ayf24LjRQ9e1DG8RoR7C2mF8MLVNiaNVRpZQFMEKpUNIKdod5zL0M9tCWuw36JWtjaQOTqyFqb0D/6aatkfVX/AE6mK7dr/2tzVnU/qyddJh5o2OBY3Ws7nMv8d7WdkJXqbv/L8Hzk6RVPtsEOMr0hT3DOC+lCn/pF5/baB/2dUzffsh6Xbw6KFZmrV7+P/mxIB3X8CGIMPxPDeC/VlUx74Ee0THDZ4STuW7YRc2VzTLZ7ZFcDzOsfpa1vllRMQQxJBoDp4Gmw7n3sQjPphJwKAsmU0ck7VBr3v30NQa9/XCvcAZDMMtZwovf32SiHylIVOAE84q+/f/r9+U5Aizp7PZO30U/rin/AG+jpg4UZH9I6uqN7E/z0W3/+9nYqZdPxHh6pm4dGhw1XxpuLSYflQ95FtPKUeF2H8fnbQ76qqpPkA7LpiGRwQmjdyNYrUSsru+0KtUZDvaRQpgT/oXLP6nq0mIVuRY1pqZs9KkcDOHCNwnW0E1RQ79KJ5Kt0InCBzBQ5KuRB+OBu3oz4+KbvDiIV/CmDNUz2IqMBFjvgyTslCHPca9ewxVQ7lyuD6+SHIoLAGL9FgXgzDqRBUYrCc29uNFzeDjfU+4OLDWIIr8RDjEH5MMQorn6U/IbJFLshCpnimU5iQU3wdL4XhXVwncj8ESVcfG2GDCiP9a4fKJP9vWOBr+RzyvBhj8/NxvSTlTr6gLfFSdAVVKnjGaxA69DzG3JxTC3FqQmlXx2Xl2gghS8ChQa61r5lNCf96hTtd6O1eu7hBIHQLBT8lXnYv+dyeNcUkGztDdpBs4R/dZjDgJIrE7bM2sC4T/bFyceMvDcTV0pph9Kd1ZOqRtjtL4C0SYBNQmvgujUZkidfnLYGOdGkWhIgX/jKJKJQYoIv1Ll31nTFgrfU2Lr7PdGYYWhIkldzNwmGP+/gYKMG1oHtTXzR9Lc9Ig7nYhPu91TzFhx7shSrS7RWLOPLMmTIw8InTBAKOuaNdukvNcIsGIPtsAve4Q/dE6I12FWqSL59MgGzLITO9JFbZU142eUN0MDkSRz3k6e/eDkK7d+OD/UJPufNAfDYRT16UPp9TQc62HYfXcN4hnVq6dbluDQerXyw2oWSXhj6HSPPbtWpPIWqvsTti2UodTSpqwAJSqcjmGU4pVKWpOamYykQaboVj87AztIgycLsMl5BYLbjPRL/DvN8hJgEITIyf2HNlhpbr3jxgujkw+BDW/IVQTTzjBA40dERLn+vGclZ/nrxx1iEfOCfDbK3MeT0DM4MmuurXaFmg6PMenQqImWm5GmNCbcCi5N4ul7Zvia2AnEGm6tPcS2YzlAuX/u2PVLLXmHoThp7CSY0oCwqIH/MgflXmbQPN5Z0YeWCUtcSM5kTnhbVi5lKvc4qkdHlp2Q3F07lim7B6DNI7tfd7pYdfmDI8EvCJ0e7fvpK/MXXFitM6iZT5XV/MBPEDGgpBMUQXr9UqoJrR+GnYZEAVJ1HpTDmYfBFLRaxqkMttcKG/06dEuzhlQyD7oQ7c/vaS3gT2lD9Sr/ssbNPl5kWsNP4u/reyT6/sl7CADr334NRE15zKmfYsXQGb69ehEPHh4x+4wJXZy8etWuycL3a48xUO8r9oXeeMAKbIQ1TRAVmIev/SYkc7jMNiop6B/XeVCYvQHbmyhgwnddD8VpJ3VVuEfjg+ljkBjsL+Mzgz+43wckxMQkwYUkY8X9SEgzlDtem7FZerfYKWzuvpY+ylV6eu+bfa+8q53QU0WQdiNo2neX5BbGgzVmpzmSLCCuX3ULtANNlirVgG8IIBkzxPLhGFk4UgQ2nuwcUBmLp3PJrpBvPetjmDt0I4EzqaU18oGzDzVLBwre/rlPhWiYRK0uj18wu4lpwjqKPm4XDmh3+pFlJVkzIgnOdApPZSmmxpPq+M6fvMkGwpojY2e9OHDvtz2lL2K7dC3tJ39QOwg21PNkPCU4ObqhqjKY8/0t3TeAdY8WLK9M5GbaDRMrmZDVv0cYhzWO6/PvpftW+k7CtEy+eMXlfxZ5HRPKAnKkBEaxuRQQ+VV1/grizXwGMANPAMii4kQdOMgBQwwng472+IJfLqUVbkpyxQKFWztEX7eR7wwlpCJXGQ7OF/zQLNF/unqGoVCVKYIKOzPTW/Hvg+FMBMBo7uFf36WOmu1GvrU5FWWRBjAmpUWOahkKxUQK3KL2TcWA5S/9dmjV0jqSPApu4jp+soaEeqbb4OGHzTQuiLzzHksrK562RMVa2WujTMDEg4UDgRjqdzjCjYZj7/Oj6p2TjBBOvlxITx8YWzUVpTYes/8h2oc2gSL9ZdrWOEG/Hdd0Uxiq0FrV2IM2onSQ8Ny5G5se66tvImQK+I/6GI52E5GrNLKBOGr/K6zAmthvr7sx1GBC2ByExyOvkgS5UWyqzDjRgf+I9mCZ8l/JPqv8UhJ8qHs9e4KQOTIURJ1jgIePps82UUD1aNqY6Xd8gOmaBtbMnyWFLfvKEMUSq7NzdvqxvehHyrQx6QNNFx5rCntePLbwbiBxU1Sb6CUtl1bd7d2BVvZdViJRYOATfUwySRQapYQvEDwUkvmq2DoAvf87NQ2B2C6JalHjuySBCx1zG5+uUgjioRm+AIc7ypPfWzzBiADxwyNMzM8CY75WwRKG8sjJjaOLtzXgDpvTrgPaN1pIGYNMSoRXIGocsYz4j1DeGSl9Z3gJ5UxKwYoqxEylQkPgAeBpnIy/ME7PoNDOCA71DGqmI55hSUQF3MSHHmhytRqAya1omsvDAc8tLAp135cGR2pOCPkyV1RxlxPI/osBqx5iNnPJgI/UTxx4BFerkbQbK19mJyMNiz6TwdMubIVzeGLvtvNbO3h8xCl01Tp/uoqbkw6A13/IOLsKDsTNjTYa7s/ZbIHXLCrX8LD0aqDv+lmQlrCkF/XcWkqrbMrR/QCqmtkO5NQqUBe3Ydr8HDImIU2bVY0vBxriFILk7SgoGrZzDObruDHpRVx6iVYmFSNQgTBYuJxW1fnvLZRoX60wRtT1/lTIM+MFTRs/mIuncHmAwEcy5W/BwB37EtlzlroiyoEaoSsBG5KBUFoz0m02rXopRJSoCDBm0rAofb5gI+YrMztpRBLvPpbauOD2Lbx+vnDXbNm5LSBjocoesl2G+rdJnU0r+HeKeUhxi3lWuRuDSTtg9N5fD8HPVojSx36HfBp6Qh1lzNHqU29F3Kj+tWoAVdyNQFRmBO5hdRlOT2+ZMJ+SpfgLcfZf18uyzbxtxgaf9pgBJ3LMyj4aY2z2X76OOf6FCnD7ZDOuc4k/rLX9szVhm5nVgqaXEz+J6lB3w8H6+GvUuHDOOM/Br7MrAVOU05c/J/20ytUSH4Tnmeyj28xebWoShC3tOgEvJ6MB0lJ8xKiTy60+tht2G4Wiyz3jZJKiN4a4ZjyyC7QPaIwk71twablWyX4QvsXNEzBNuhlQxr76/nrVXbyxgUPlc9PRPsvJzPSCP6oDAkKz6I6ttpFecvr3KWWybhG+5uUg74S1csneRuSOF36AZoBG3F+4yB9Xyd+B3+mEBV17CFeBGOFt/q3VT33elKPoCtvXR9SQZYw5GVVlFvUYik0+4sOJUV79Cgd2nFwWBQ8CXZY9uBOsRsHDr1xwrT0mUAt1oLeaLP6Rx+N9j/QyMgVAXVCsM1tcq+lLk3BCunPYmAG+X84fm+4B2yMt7lLc4q4RBYWYMZ4Q0cioP70EhK/pu1G1tuxx9c9cZ83lM3TEZywz93rSuQ8SsUitpCkZIGbIaGTl6AXFWY78M3gZW8UgqsU+lIQuLb2J8s/5MU47P+Bl/MDvpMyXoUyB/MSW1v1UBNEonxHAUNZgKXKH2pQfafMJJwu+nWlBBdkrPw1tyRih2QlIDrship1s06kvsTI85MCW8MTTuXInCSYuuZavbMGUL+3z1U14XP4veod6XcBtmNmj/DTnViaxsZHSEDQnzkc5d7KzceVOlBxeZqDYqZQWBUrHMn0eJKLwuE3fjckpdOl391+XE32O0w4S0lZ8wCyNRj1tlOO3FBYaIkCsG1zOXO4xsWnlk9wRUN6qmjFSRVMlB06AG0AUPxal3J3ptPmQXHiRX6nR69MNRI7nKFqLpaSzzDaMy5b2mIRNjPLga7Ruwpw9jxTY16XpFtY2nh0xwJoikS4kY4ui9hg9fZDL1PdfFoTsgfQAzxb7KagkvTB7ZZxAuL+PueZY6LapV/h2HNOV8f6jNfVw7efpqs5ggKKLsaslAh4biq8iwepAw40t0icq/jpYKE4zoPWpsV3kv/Nao5LLbyYseq5Kt0IZvfSDTzEKpNYcp/JmzJE9dCiFfkC3Z/JlBO/4vh6hTyfVp8ySFUagiVKW1kd++Ow5DXHBtreEfKCEEOQ8hOBo/6i/J9o02nx7ekmJL0MFRTZYtRiIlSjfZDEddd0CzlCqnw72gpva/1qNhmJHBE+xuyamovMHw8zaFSufMI/g5NyyLV4Al0cElufPlwhuQq16jnQecz/+g+/iVEtdOJEY4DMQ/K8C1jl28qUQXQu9gUr/xHumVDuMredenkCsSDPtA3XeUhLs/r3WXPgZlNZb9qWSXULs4bUQWVCkWEDOE3Z/ZOTisZTUxmzEH6IuvOGdbErbgPZNGa3Yj92ARmlWJs6KwhbTo1z1oh3VDfZwRvuUwFnbuUkPYc9WgHKvrBiTDxGSa2yOewsfs2pHYRGdndta8n6uB7bqDvXHF2RnHL7Anbnzj4b9h/8f+L1azP+hvz24BejFLz8mTTY7ufmdF1nnWKCCw2dSArK7BNWMjNlIOHjsKHHnOPruLD+pg9TiGl+vXe73L99WPa+I2iBqKlJAhJVU2Xfp5ShNt/3cCSjb2tlsM6H6w9lkPBxZbrOgREtv3qvljktJoJNpdskJk3iGIeFi8vXAE5ZAOC/SIVYkW7AEpZb24HIksW7IHKYRt40h7u+MlNxkTeLzbEI43O2UifKLDIbuzcSj4kE0ZoewcWe07aSe32Wxd7jf/nm4afFIzQFVy+QHz5w5ZzOR/DnVYjxKnQ3eYaK9HDac8AaHEAo6Lw1eT3VcTuzkXMu5PNYdvchcuDW9K/5dnUJLUO//O6spTehd2MCy+ux7APhg0alUqX38GOY0t/VMi1SEXaTrxxLmjWPmNlGCme9h/tvsa5l7BV0V8j9eIIZKukF0S7u4358nSngtj64MxBvjeuzCe0q0D0aZ7VHdmxo3qfZDgpKxEUvPNV1SPVWV4W5fzwKBLjNdwFDzuhmKSq4rtUJpNuBNhMxrnyn1rg0/jg5+WqhY8ERcsM4Lgt7Z0RjUT15c/ECNqfmoAFnc2CudY4NpsgVsqFE5x9Va2vckPXb4H8UikqbUIEFrk9lDqsnMAG3hBqgpt+dU+3YBREMO/SxlHLtj5Sahr12pR85ElkunyUaOJiIV3ky6bwXEO86By4JCZwbJNIvrB5J+2NJGxl5+1aTmNw58rZFcJYnvnJ6PtKy1o1thf0wpk0HBq+EcrAVmL+0B4Psrm8DLgRsALDjQLiQ7UcMeOKvpucw5vrIBFixYfrPxq6ADjkpp6n5bOJBx9OcZaGfp8UJ1WC+HVwVmLnlNV0kePlKtK0zjzjRv/80WDhE2iKyeGU7NsAmurhvQJAIfOUSPwtbLi6+kqHUY/0AVzT8Ux6FB6u2gZuZpMgCzvpnVYEkn9z1In4KaYapN8kgIA30dqfTIXjfU5Jz8HirGq4AgSQN3GdlIpMlqJsZI+r20WLDjaLWC8Bvu0PWjqkrHgLgegCMHURFggLnkZXDy9YTCrE+zKTpIAphY9N4TNb+pw3eqqMYYkfi2DtG4+vuRaTZhV/USQ+aV5lmkVAuZ8dQy45dzKogg/IfqpgMvvaC6Bu/55ig5/3S0tb/FtayMEbvTtgerE1QPQk+npA6OfW48AZ4pn9DTNN4ZHG42CQ33GZMUsqN/2klT/d9WQSpFDH28/O3JqkeNWXSzfexwIGTXzg21/e8X2iTAcxAPl3EcgPCzZuIs5+MLmDSUqBQJzJXzMbKXGRGug0QD9JrpIFp2wG/p1/jLX83yaiyIZ/e2lwlSBimiN4FyxSpIZAo6QVK/WKi7yrZjbDPQ1GbvEkJrc8kfaza8xWfYWVL62pbMG9tpVM4vd0DDwUKAmh1a5q/I+1EoTN5YfdHAe13jUfm7+jXbmzQ9K7rUKCSCvqdkDWs3gl+fWAQ1EvfN6OSZOGPW9zCcSHcDZEFt7zG2iF7vHwGp3IRoQYkSuKHpMTZzGXPPE3ObKxrjukkcX+jGxwIcZlHvpDEJXLfDB+QotX7sATmDvnivW/ys3AsmH03I3f4htIIu5dCFy1vXer3M4Gyi404UD8hOJr0RbFQ+s4xomdYIAR0EalSmj9BqGDUirZIH2m1T9KPJJjHiES1pc+OXQupCcfoRq5SbyXluDDYjdv1ILWtukzU/21BiesycbZrII9KL1usSwPUnTFMOsY4Ysj1E/lIOpDxkQQz8TZRqOupbTuUnDqqSnFT+enm+BPySU5ojzAs/87Snl9lKlGM8984irAOCaQo7LsTMJEMLR0OoJN6Y//3sDFtoKCixpjKRrepvpl9F+dFAqAlUd7C79r5r8d8Xx3mBHhXdq+iEPO5uNo97M+FPVz9y6ghhv0sMEBTn0/GYAsa6LkaR5t07cZDPRfAmej58CWbMg6/HAgB1fNdWY8GqB6THM5EtCsTfqWv5oPhf2At16qMBbBOQn68t6TAtMRJGG53Ff6mw0QzZy45N0UGLoMEB6RwuchKGxTqVF7RaFTA/w0p+z9zKfqRtaeioSqarsNht2BWStq8hNmf1oOnt/OxccZrwXItoWBAbxPGtXQCmxr+R8vZhyls7WSCB0n8t2gEOv9y9/etGfPoc3pN50QLWcXPcLaf16qLfzKt1dHIhgbYyTeeHtFP+Nk9yacm0aWjejGWyLixQbR8Rp4fLxOs7b7qhjtzz/VbuGw+tVvV+lJhsqbY6opydulDqZ4tQwQpHqUosbYaaiHcvAAWhAxE8vlFr+zvChrIVomS4HwgFA7Kjw3yg5HWvbM12mnIoVoT/nhFavepjsn8mkFweu+o6yo1Ct9sjN+yXHKM3eS64EQIjqOPZBnSWpu6rdYVtF4430KG1EhOln9ou8mA68E8nEv5JB+0uzpp9FVhB74NynLvVwSU9yM79dnOmSmzpZ+6j8hv3HJrKDgLAudC6b245uoXL4lxO+aoWhX248YBBCmMQnJ9RrDtPxn0BxZ1/5HEzUMuxGdtRgsusNXb8Jqov4SBZ3U6zv+dK2w+9GCrm57LmtfhfZ40SSKvFA1tgZioyNdQVodInlK1IVTJ/4JZUMBbpZzPDz8ojHo0FYt5xCnxZ+NzAVQYbJs5y28ZmCp3ahOkpuuokqU1vFnudxqqz2aBAWyGMV2k7Vx7v0ozZJ04mxHJx9HX8W/thfK7GlAHQO15XORysA/Dyi8ikMPWjKoErAsNNKw93JXPEn9Q/sy8HSDCs9zycUbRaUfKfTaK2qeRCfrzhFj0SqxJkDpiGKRU/FSBBpilF65Upuh03G171cSoG2D/Wxi9VR1zlL+FHjAsXDlnjCya4KnCPiV0Gp/EThbWBBU1bYMrAKTc1VjfXqj4CSYFj9yBJDnmuFmIaTf7MTTkcJ323+0pgg2bgK3ltBe7+1/XPspnCwciPgJpCY+XJUZyQwdBCZ6METZ7vvjgrS+qymMZM2tdLxSrsmFTYT+A8E+68aUGBtGmDVcqXQMJT2zkTTi9I7DT1humQFrgLA5fEyoGFzNsE2woSwZUd59rJAw6pkA5/q/EAE73lRshSQrjLIRQJ5NrddzWDCWs7jsyhIJp/qFkD9Qjp0kEEzDVC+ptoANH5LW1XM0Qk0jt6lvlVGK0Hnde+ow1hKNnKxwUQVcAG57r/IMQ6gdPX44Bw/3NSgXXRNJBbtbf0w5uWFKBb/iAcWGn1tu0P+RushRA3Orv57ePVl/MSU8bJHzSo6zqES80Z/XSKh0hugQeJd3HCAcS54cMpubU4EdHp+NkxuAW+pIdN7IrGbb4t8CjGVvXxqHYXGceYvOmvIf1HxFwzcG2L6gVNEqXFEVOrpLQT4ocAsNpsn/asFt7R21pOnw+79XuwuhQmY0MwkgJ1s9qRvIiIRE2KHvGbtId2hH9GssK4YG9A6vNpa6zf+JT02HwhkOgO4FwMJQwCBNnlKsbPGGDZAMHtC4NQfmcoMTctDIQMeHwO79FRIvVChG7nm9gfC1XqYzqZLxXZfa2cEmCD7+48pswumbEdWp/STAQtQ7BAJ8y3dnPBGzPneISqKQ9OI0XR6xk2h1nm9wdb56xpLzvsDIJeRrkD6V3JWgJp8t2ZDhr61C1ldJiopcxnad7gy1iwMKd8LerlJMyzwErR+sP1XYh1LS0NQxk/bDQMBTPkqBue8AoLf61Q1aZyvT9n8ApGWWNkZTtFARE4uPHnPuBexVpPbetOk9jGaopb4j6wWTFM5jRf9Y8KCKp9Z5xIlyqAlgjpSPGp8HjR9vJAoYs9ed0szSStM+/Q35pvcGwplmQddIZKT//vb1/CrMDVJQsVSoZFagxau99HsfElgfnOi+3wdFa1G57ef7OTlzrMct+wpd9jxsHsjZU/7jfq29h50LuaqWcrEC/Ro5ebERWw452A2KX387uEFuAU++pXS1/N0sTnWWqOTlN7z1oeYY/QiKb8YxXtg1kdhH+UdNNA9u4Awh28PglCHc1xIEcz90omh3dEkFGzJYvaz78cVEgAk6uWP1H2dSGoETbBRr9rVoKiD/lS0hp4LYOOkF8Ly+Ex6RV6cLDzmsGtTeoI34LDGatHSmetCAdTf3I4vA5lS/dnyw35b5mdkDIuZAj3opg5O0oNlGhGzqbZsjS09i4qbkXPI/ADTMFGPj6MJzyB3oERoZCvMtn/dic2PYIMcHMyaMaLXCdp91HC8E4s3CJ0Y3n5yBOPNWIqiUrxLLCuPscVQpmW9WxQAXkax7VtEN+cvrdcqhDyWP6IvgeQB9xhYk4tWJ3EezGheIzEt5m0SkKwP9VFvWOd4UI485+AAhgxUUjhfreFh1b4na1whJbopibznrz7NeLEcGI1+zym5KH/VUrwmuf16tcNfFP2bOWYrZtmbWwdA6lBrZePNqAjPCxhCrX7OGBLqUqHWwrVwjz4YfcHI8LPA2MuzfvKXYmbxsCNi7Y+1I5pl03W6utuHIAied/WJXLRO60/GmvEQKRkC3Q5fnS0q/WKXqqDdaZDWpu2cnedWXL5Wamkg8J1sq+NSrEeS/NaxeTmcc2E/5rmRb7AMQFOqufl+FWYeDz52TgbbBiFzteCO0dVn0jlRHfAIpWIBisU5vQSzn98rXd4ipW4ZKi7196J3o9VlPMjftZOZqBqtbpA9PlDxsJ+h9HdKPOHyl5PlNlRLXc5xPZM6SMOcgCfBTszh8pQGMj8jlUEhg/l/Xi+phpHCUq7tpURi+CrwVjCr8dyCuGYY2BmIaZEhiZubeEXMUtSP4SHCKAYqpzfnqshK8BOq0PwhPemK/7N7v3XtDOq5P0j+SRszS615UK3QR54L2dfq0qBSOJAaAIPEk8QjgsA0T7JHKNbLNcI5A+4EjrWtlIjQhfWRBu/8qyXEbPmBjo6vYtzo/yLR3O6X+jtwsLR4/EhfJli/WNSpzSOuYXAQGOsjs7KGN8bQ8zS1NAAdrxCBDriKQG1Cv24MvlXrGa0GL1B9vPAYuN9mgTcXJiY5cg9Y6DIEvSKXNFeARuVqdpPB1WR3WxrVSeSr9rW7c9XXAmt9422X2vHWHvk+mfaAFkSfm9aLNrxjuuGe0SQxtu2hY1jBqjWMZf/kk/Ejhp4R7gdSJwL+5FRuCK26GPMGNtZXIRAQH7QaOSfOmG5KBGj957T2nxeN4iNpJRbEdEeY01lbO+ui/zmR8rsLzH1BBJQKdhdKEqacEFcq1mx/NpjAzKK6i99d95LRfcCobnME24k8pt1W8o8CdvH8H8s4eByDbn2Pw0+g95HNVnB5n9W5ObGP4lANKAYP47KL/zuqhP7jnu0W+YjMZQ5yMI1Gjaly+6FHPwzNpPnOIxjCjB85daLt+ZVsik3rCuU2atmFqoazNe+dIEcCBvGDsMzIuFi3e1cZ6tS+J2x59o4y1YwdgFovQfjHj+kDh7JFsPmqpXisiZGInhtyoaHA7vraVYKId0v2cloqaXCCtU8kEaTVuU2nmusIT81py6p81ddAqysibty8XsfUTpRLVwqJkqDeByF9bpF8SH9PBVIYWPce2BNQeHVKdq8eL+6KONx3DYH7/dIzIewoFhfTfVHsoLeGMtaGdfpbJEAftwyDBhoICI6Shxrtng09gFtrpm9u65rE452QfMkzQNIW8dQfHEV9aDYD8FnU7o4RTSuBC8wr5c/kD/zniTCS476Z8JJbgWJhlCOCD15K6UyR42jnoN2PpYkYXJfDuYObp6rKNK3fDyr4Lj/wrTv3pp4YxBaUFBsjV9NJBgnTC58kemLFSR1jgnfaT5NKpoHd7TJoWtqFE6qEZovqoKXeBYfWobw25JZPI8M7wOsvTJBRHPefuQK4AGW4IcbHaLO83ohYJHVjbqBckwPJqHYlGMYPv74nrxAu9ff3L2vuJozKHbwMu7+shfqTPL+8VCw8waxhmSiG1BfN2hjyyDM8olldOCo6bgNxJdbcTidAjjDe79kI2U2wfl2mPoSGF+lCBHmDL2CjuMkXhhz7+P+dXtwVLA6Kza3Ilosfm3OGwfnbb0y59HiJOQtLxX9eCj60S+xV5vyhX9S1pBr7RR38Sir98yYgODvOF//yn/XgEgPBlkTPnGcHJIteXKvOB5RO0Jsy/2dn/U4ooorYpMRl96IpNAR2d3LzXfK7+vO8Yld20/J6qVqm/2++FLb9lWW2APySDPGj5+I/Qtwcp/YTF+A4T7kpG/jnkafunMCCAFCqneFFmvAZHG1gW45yeFq+nAyXatCJlRk1JGVaXv/3pEaK/C3T1+dDGXQZWYOols1jWip8eeAzWZ7+Z/EM9RVmx8siu2Xhp2LWXLuFVZFZMC7fNBeMJuCp4OoMj3b0AaILBRuly94TmXCnwUGPEpTRYKAcYcq53rx88X0NY5kxqMqULJklE+Smy6MxcYF/RXGMiQKx8VVL9H8MAaffQjGnzuw0fJupzxFLwkMj6VT0QRqR56RBn2cBYAhM0lwHtoV9ySLtQ1RRJ5tlwivRw8KGx6kTuFSUE3asBXGRYRdiMcwu8761gEJza7IOawinNN7qxjsACCJgTPtaDILlNeDjjE3CJhCpq2E4IK3e1ObG+C6ROeK2bz6K9+yzWF5o9fNxT0pvDLbFfgpDQjxtJug/AL/RGZq0Ux9
Variant 2
DifficultyLevel
736
Question
A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
Each smaller triangular prism is 80 cm³ in size.
What is the maximum number of smaller triangular prisms that can fit inside the box?
Worked Solution
The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width (w):
|
|
A×w |
= 80 |
21×6.2×8×w |
= 80 |
w |
= 24.880 |
|
= 3.225... cm |
∴ Maximum triangular prisms that fit
|
= 3.2258...60 |
= 18.6 |
= 18 triangular prisms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_2_a-2.svg 480 indent vpad
Each smaller triangular prism is 80 cm³ in size.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_2_b.svg 300 indent vpad
What is the maximum number of smaller triangular prisms that can fit inside the box?
|
workedSolution | The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width ($\large w$):
|||
|-:|-|
|$A \times \large w$|= 80|
|$\dfrac{1}{2} \times 6.2 \times 8 \times \large w$|= 80|
|$\large w$|= $\dfrac{80}{24.8}$|
||= 3.225... cm|
sm_nogap $\therefore$ Maximum triangular prisms that fit
>>||
|-|
|= $\dfrac{60}{3.2258...}$|
|= 18.6|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 18 | |
U2FsdGVkX1+8LSMxxL7wnStAXFhtg2eZcQd4QJW4RhPTt9EIXYG9iHtKoKHC36Xf3gWPPEbCm2JqZLDuqKED19gGPzUMotwpIxflUKR6DYbRXe40bfawDunyNGv7bzhcNoRv19Faq1ljSGP3qEC1Q6WdHVBgA9ETgLmHp6DBa87To3f0sps7+N+zncp84pFJGbPSKckZcH/Yxw+AbvLqm3vZnaYPoDyfXsD7BAm8M3qktu4EStGDepRDKmFZri3Yo3cLDFlIhFCOmsVQ3l6Z1ila+TknBOlHpBQXu2w0DJDPnFb+IrVbWERpQaNi0Mq0fBc01Dp9uWh8oX1r9bElVsCfIMl22OhtRbe/8FpE9jEHp/gpSKWdTez1YMxRH7BBVZO1yeXKXELjgLy3qR3Bhcax4gZ2DfIFkOSx+cv7MjeQmSmonjWN1HyFsqrQOm+wc0Dzzor46Gl5NOKPsRyOt76EhNH4ISN2ZagRKguZLKN9jT7BYiv6BJJNedHxalDoHdQ3yorJ4V2PnC3wQFlOzIevGvUjXQX9GVSMM/3XznQacfypwquNshEOkLOQDjqbuioaoYL4S7YzwFFp2lY0VNJ+PoBCTlpLMNIHbP+GN5rzfAvf83dTL0geB8ZLLX18IAfxUnMIu4ySIjNVNkJGgwkY43ir58p1Skw11WC2jDvLbpqi1u+BIXNqKMZv3Qdm1VskQGEuhuMUDXuyt/AiDza2pC93y3icuAwj2D6F0rOqdCzQeeyfICTkTY69Bad467TofxWc4Fn3erkdIhWfYyvjRm1ssgyIylajau9N4HSYRN6WGcrjHWdti/s9XMSPuydb0Qit8CAB8QrJtaoLF3B/BWcXjxzcAGFssOemWuC1pHkV46riRSAOV0U2+dBSByTOKCzjdjoGguAORJ88reGuC0Q5Ff7yMY/FZmkT9yMjWmPcM4WjLXRxPDz261FYc1kzPFiBW/fH7n66ymImG1GSrN7Hr4q7isWbg9dEE5xhQ2DQssQ+G4N1IWUW0fLPh2EGCKGxrvP8TebBPjbyxWwWxkrdiC3NfliFqWhtwcRE0VigqGk9pLjb/QL3z35wNYEpLvPp251VolwneTKzTjoGgvddX7Dge8XW2iALODBebLHrhhBZWQep/n22rP4Pu2Bqi40bXnZo5MZaym6ea6LsDgS+D3TtJ6XZfcdhJVJeUf6GOeY/cgPnRIz663/WpuIYpi4GuNxy2wIYmCBQy7qI85Bxnz1Bk2t67nmOQHgCSHAe71bxWCke1KJMwy4aWF1HERthXwvx70Jm63JtLSP8f3FVSJ/pxqCEpjYScFEKcsWFrMfDt62yrtAmnYd450GDkyQTxyTGA2LoAiD00MLwOj89lUNyVT56WnhA08LMquQC5rmh1PbGX2atukGm4GvF+6+Qg7rqgxjeIJOG5qYiPjvqtdPi1l27Y+H+CVuZ1FSd68MuvP9ucZtxjc4Wbvwc8nN0UMar03D/w84c8rxEzPfmQfILtxt1Y9GRLp/hL+GajnnIdsW7NAORLG+X5rj0jzipp0wt2k6Jmw1WuNghP4+N5Bpn1rJvSajkDBEkcMi3f9/5GVidhP2E7w9fbls0vzgFYoCKr934F+Yh0IhBGqZQM0QnCZUB9SaAezUDmHeZA57jSdlCcug01k+Ckjtg1NsJjP/vQaLHn0Uij/U1EZLpxICzeHy6G9ZMYsWUl7aR5Q4XrSdOLEkgtGWKN6wrd0AnOPvIHtt6u+kaYvEJuM+70k2y8ftpEDjP+P2bh3v128cV5nvXr3VXLYyIO5sd+08Vojj94whZobkOAgWn+76Hv/uE2qNKc9DN6mc2ES6AVwOmYK25HF3YQdGuf6Oh1Dz8rDZa7fq4WHEAxWuCdFiDZNocMJP3c3hcxMwvfXCSoUZgLVKgVStVtr8OaFu6Q/vvF7fQHLGq0cSJZaggRwJnC3pF3Egbl6nReeIL6LoyI7BJ2PFX6npc6NGksCj1mS5bkHvRt+YYyhMDA6u+vDTnTsR+kW9LNSOrLROXHYlzuhTHnfgHgZ/3N6vHPE6zrvNsa7/5d6OAQNsW8VE+rr0UvZSZXOv/8dMe/uJaskB29/C4jU1OtIkmQf5gUu2QdWyshGNejL2XlnwKwbDuFTrqPZoSI2ku9cCdZ2GnBf6rYKFEhf9s8DV5IDpNJdhhjz8kIuLxVp9t/sayOasRCsLG+83wBFdaVMkVepe/7wwbMrIXq/kE6Bkee/piljW+udsfNyEHiVMflC8y9aMt3ZXcSmWZ9hopS2MGrCZv4L3qh0YjpV3QXJH+LHuLc9O+AadZa/dIuaHCZVvBdFNWMXXmOlwrd7QhCkcmOgniGhrhBDuMk0t/07AuaTlupVU88wscy0JEgGECMSJgFWUZ6Q1wzg0DIMRaEKwZ9ZsAiD3i+R8ICmUELbAJu4NlcFlDU1SJaEWm6LLlPp0U1nUQSbL+0xp8VnbxhO3cQmOWI2R1bduyfDjUNGUr+F6PnDT0SSPDjx+UqbLAj4M378ljjbuy2FexnledURu4lH5rReRWpnVc6zrEXwlnHu+joBSgqSdPNb51YqL91AuZ+mdeQiw9aqoCiR6JxL8gpbe2UZuAuR8RYmSw0JkGun8PmetCMch+D4jAz2Vzu4/PuiJOIuBBMVLOcICzHBGzmg+KShN34BbQmwyEpZdAJFn89gSakJ9ZvPF4dD4uKYhHU+KA3ntGyhiFidDDWIObkfcydKrDepe4HNkCTwyQpieqc5jf3Nq0dK31mSTBWZRVqaBTwhF0DR16eRnK6UE4KMPT+3XFlsKongX/FaYPNtkB+7Ik8Ee9W2GswBsBCwqh9DOp9gVQxi7ZChb8lFW1YBksQcExepeDRAJKAHT14HQBwid0TunIg9Bh77X2Hy36WW3TOCuoqfOeMKnLbOczRBIyDxByDgkiJOfym3CwUjGn/8z1lYh0Dnfo383snIKtw2Qir8A3JLvqXvhReLTqR+Igff+dYudCxtQg961ZfNk6EkJtGjTqQMaHF0UOizC6U5Ua3KmLUyzzPgtrgQHPUuvyukEsWc0CMaG8nEfPYBz4nLsAYY5Qq90mZw+5CW2F5DvHNQ7GE1vcHnnyOYmpWVuVxNnrzuDJ6f1yDUWmLrHTkW8UYVb1OFX+rWKD3RNWl06zwbM9sNEiu7QMrOS9hXNZHGQP3KFdprpa4SwMNXVNDTSQ0B16JX97E2Gd2LpvgoM1eVyDWL8JiiQvar1R+dgwU2qEz8AC2CfwmhWV/Zh78NLmmq9fy9RX/TxEBOyblUSvg/OM7ywDUBM9yJ0Ogk3+zF1Uhh4PJcTrqW0UO/+BqQMpZ1fTl9UsbLgbW02ddQ8DK+tTFBpJJdal0R4e7jbZlCrZilmvBy5/LziODDHnNSeD8oeuBhY7x4FRGlUw6Ob2sADHToAAtH36Z2cBebhQJ74T1xPR1XIQTiLaFXQEHsbe/QzI+ZzeaayAnPzG/AB4Zh5mWpPXWSHDVKRf5AGqVI+giFdCV7anrRhs4xr7a0F3DIfnoXHB8FBKs4uEcsID+DO+OqtGn/zL1e9qgI2ywC+JPrgVw2dCmpPT4ZjWCzWchx4ObtGk7QdpQWCjElQu1ARAzuNYuZKZLiwPLhTEUTvCVfFwohynAfD2jhd/snMQckOOYjp6eT3LQKgDHLj+2jeN1QnQubUDYHKkd8/9yMgcal20R09IUBOEFL0nYc4e6Y/yNAsI32zDNAk4KL1TXrZgnYupytgYrS7z2RDq9J//eAPKVzOE+Z5g2O6c/YRkh1f7yzooJhkOd/6I1NxmZl+b4AXz7PgBPMkpBMsXJZMq/i5XHvkhgl65VeO+XV5OJJa7CSljuPy/qxWMAvGf3r4kfl546gcse0GCR5xPSjPZ0Kcc/wRSAe2avF6t1UuUfykQPM5aCoPPPgReb0AaaqQC6HiibyiCIJ407FlxKsHnNURWUg9fCRLVXUuHYYxKxt7WtJkSuVp+dZtXvsL7gQzN/MmhCy9hs9JXPhKzwr2ksNQK3C9XpaaVil2AOM+xwlnYr5TNmGAKTE8ObtBrLnqzq/09tDZMTW0cPEcDz3Y2DOsAsUL47DeAhJuLn3P5nDvEDdXP+52TN26bqmLglu7H0reeukufk0Jz58lNAXTcuaxQzN8nl0ymf6fdNPO6k9mzMnZesAd/uUUfTv6vFMmLMBG/yidDyw7RQBzev4DP8oXi7eMt50M15dhKsLzHAVao5y8pxRWUNbu3c/CgpyooWvdRSKPHxSgHM01n+Gt590iCyvUUkEBxr7vw3B47+l4Pxnj4C1nGWNKK8/iGy/TtI+wYjJGdo84xA75hzAeLb9mNR870vqE04aijcnaglwocHQcO3HCcnHcIJm1VAcWOq7TwG6uoNmLE4ECSJTz+PbM+EPMqx1Uwr0K9u44fMfY8tOx9XMqH1e1KFxZXY52URTsg7TF0Szl4/temHTcetBiwg1GeM9QZZw0IhozM7hLN9RuhvSeT2l5p0Apv4QihPSOgDtzUh0k8/qMgVLfHtjAOBL8Q3uy2B+JBZ3EVfye3U6/2qpWnZqvs3wBdui35qJDev2wrMVv5KJpt7Pmp1I0+8G9k55JU4zHblK3vvWkpTjj2PcNkzoeMVziPIiaAFhOErriPcTGVbl+4L4uLSxXCj/68TGqN31RXBXGr/Og7t3+JKWOGsGNwOpE/1V+lDgkLhjkzyP6LHrDhyh7VcUFs0nvuQ/yVIHUKOKgJMMO0Bb+2Hv7yLGQ8IZ00hohOtICMcjYOX3OisD+SP9Xwp1t3P9bKiegcXjseZIOaXHlJOWzFB1jI8JKZrdYZWW0FgcedyhFVclq8tse2/yFD7uV7ExOcWayVwi23bNOpPZQQZWW6+9/Ni163TMUsHaJJ0XsN2/nvvLVeYe0kr5IwfKdLWpAYcXlyZ1Cc5JqR4sbhBQU5wALoPBtaLKnbjOzBmniudtwxNStxNEW2YGEJORQE5ExRGhdT8OE0nFY6ZJBmhokMzuR4Wditqu/crCLSY0GBtyXJa28UVxDaJ6fqTckRB+w7qTzd9ApbYFm3Zgw+ZeeoHyGK272rVt9ISruFgqPfvgHgwcf6eqJmvrz31rJYc7cRJ9fVdOC15yReBO1LLFTOAwWZ4/Pp7A6A0Qd0iwzNaXceDb9tdi00D3ACUL8F4eEYpeElcFtA6QbmsT4upMF+zxYaq0f9JDnJqt1KP1qArfjgaS1SQ/5bgPZxa6/tueM3Ndg8s4OrOwHyaQhHVXQVSJWH8GUie2GsLKjahLbLUnZFhQpguDyUMXuyZYY9tJpiN/DffpxrzHIyfDb6qXkyHPpUDj7wcR1BW29iSDCQq+nENDfoIseyVW9PYPmCaQ4Mic0jBpPGBRMFinNDJpuDNJ+DSjleO55EJpeU9rrYmQh6hiaWOCfXSYyoFxFHbaM8faMfu6eevpuZmZ1KcA3HsD0JxzIB7ahgrrU8tKKXTEURxomFn5G7RQ0KLU+bHa0Fg81Vm96sQLzqIUNndTJFkaUROdVcXBWFKacSE39KINDa7eoIqSD83MMhoSmPjjOGMowHYSsbbgJ53JCIuDRwhejdpfIbbWIiqISku/ZZFU6g5ZNgFjamvO1AK6zNWZXBM8P844uSRvfd/vq1s0jUbFzlCJGlG0swa0wUfzhi+F7sktq+PqBbLBRAXpIePRcNq6BFRUr5boWjGBmoID99T7p08ae1h588VSPxGbi/Uarz1Rea9VBmPauHj4U2kifbJUryxpMffG4tWc+2DB4bOV0IXJC9M5hbuN4TE08JB4JzLwGnRvgLQ7ZwOh7qm2EYPUsTnSpu4DmYT77bDG9KUaX4LPo6JHuciGtUN3Boupbv4iuV2ImSXg0TYPM7BGuGax2QrUu/GWYr8ms4O6S17hJ31pnqua/7ng1keMMkFigUeTBGs5qT1Axnlz9Uvbk3Jh0iAaWnONuNppuyNzEOJEWGYLOXV+MwLKoF/txwfmXvMH+9IzBQAUQOFrX4tvyAB9peU6f8d22zfw9ZXcwNk3xZygb48L4WEfOXYI/+BqFzKkKI2rJbo92KkPXjHb0jmaO4OT0DcQaeQ9dfC8t8ztTCAtlxNmttsotYR9mLACJWdLQKLfXkI4lXIhqHlxHXmaJpVxYZbzdU+i8atqD5Mp2GS+s+ex0/RofUh9HNi1b2Dwk5WNA6VG1GBDzPCzJcVd92nr8+VXWvSSNz9+IdcD/bUJpz58GTrwTXpsrdX1xMiv04XKn/ORe3qlw35Z60MU/XwDTobRgr0T17XRyaDeip/8wrli4qzO+mPiGkzHr+kQ44Bt/vCQJbTUvEUXTgV8/GsLssyv81iQ9Q/qWV00P07kVqdzWsPRYNQ3lvpQfh31kXXGWmQRf3rDZxmkVkWGg89pnv9cFnpE+kzqc4mR+VsszZeO8MqTIs4McE6urDuZtT/XjfG1+rbQAFdUQKZM3yWRNk7hh5uN9eqrybLmgR3MfdoKZXThbuuofhz63gTsKaNQhjmOPz4wQa+6jeDG4BTUhFiPifJwc120/vleoqY2L6rkWpOK5y1rK8xVaMGsWS42uW8WFVLXgR3TIyU0kizyYkO6pswKAxj6e8yNBtT8kSjxPQQE5SAu2AQcBjluV3fDI3cbHlXaPPDd6KlUaGprC6Ga0tEOOJel8AbJ9Z4i+GQH6gmYYWVwzLCAS+QJVeJeuO0zq7+ubnxyJgJ0Kk9himzaFxNiWRm31l48N2IeDyWNP5jRRdmKbzQ916Ec8Dsm2K/BvHTgGpzAWbWli3rvNJ1XYYRoesvptW9Z0BGwoxOUGkoVUnWJtECOY0LsLMGFCyoZ4DJF7er5nanCr7pfX9/Fc99JwN8uiU1u1ClcKxYONeuG/hN1/Vi2p9zf3csDrkP53AmJ/rnrlUEOsi9Q1MUuy+8VIWCI/lEzORD0drxknShwjXsdx4lE/7jcNLy3sWx67BLDhlKj6X+sr+MjUmq/IfXOAltz3dhRqu8TlZUHRRHJ+91vm084Dyn+IQnobUUAVl5VtjT5X4P72Wlr9g0ES0jC5gase2jEzp6lEtfIy/rlbxC7utPiv2CzS4rQCn4MqE5+dzWZbcMZC/AZCh9o7tUY7kGRw/Go/DFK0yV3rjCydYnrCd+NsLvhn4x4seOHO0YpPOBXMUnJDidysOsNB/sYwGh+6xVAZw4MdWr2AdiylpIker5btQxPW6LS9sRNVEVfz+7fQHjUqqaPBY1qYIcY2/gdwlLXOyvIPOmX4C+VAFfmcLsqutQ1f0z4vYijIrhHWGMS/CNBrKAH9YGxqv6IBU3J9roMwNX2GjhL7uKxvxs1qT5MlQOAsfAsWx1OaQFQTF8ZylPTUWnuoJlHPyXK3Ycivn59ckigBttrqJ8918BG3PhIzT5aqZ1qF29J3KQInCbQMuiJZMn4aFs5LYyf2xRZbtfWvdeEw8Rc1RpeYToS2cm3E7G23IrjbXwWxRiwK6j7Ko3iscrmdiWly7tTHUzmpn0D6twIacgogp3jftArXzeHtkms4wBhPJqAZuiWOKaFlc2tl6jmOv2JL/TANarhiQH8sfvnG6OUrzrlWgqayutuQ5KSMqf6Fx1jF0T7QvjPZb0O/sANm74Sx7adEkcQ7HcNlYyPZfFSKYyAq6Cibfn3KE0y+lzqOCb7+GZy8DsHaQ0W6ZBm0hM7qUiUlFrtk/sXFssCG2HZRPE9mLP6m2u6ciBF4NZSe9b8HzWTwS9zytvvhwn9p+xWBWMRgmxMSz3PB5Uda0UHgEobg+Rv1lhR/iZWdwnv5I2nL8V5sEdC+cY076V0lACgWGEQb8kx+QIdggK4ufr47GCegV0QvxGjYf+CrGtDMjSEapaXqDgYmQnKaPVbxkV6t/IaMIqSHSYaHec5ucgePvpVBqBaJ6Lfb36aX6vBVlesVnuWl3euPOepAYXJTq1bIpc7pBCKe+6gapBFrozim0gJLm08ERYOY+G9G58PFJmTdFQhU7Gc+s5bUtjBrtV6ZHTcSe0xQK96jOYdWey9/PalCCOWV32rTp7uBU3F8cLEB7i/W81EH/sUnuz2P67JSVTYIeOPV4dQlA5vwgsIktFDfheyOsKWZiDaTCJSpUQWEsDnMB0i4Cx3hf0WVsXJZyBkW6jnF1ehCY5kQKE7TywBI11FMeeTTukuOxujAOJuptqWHeReOgXozk8pz44KaIg27ktGVOloXJaB1MGgJoOpDuY1WxgF+lRSy0NyH1rRVCd+EX/MFmgbYv3MhrlRZYhfJFCeoiDiiI0h0xLbHWcOCVsE5w+zjo/LQpx8bJm7VB/T657piymEZOorn2g5stpe5fYnx6LpK8G5PY5OstxtdHYFHue7o8rtLNOPgc/kwy7/VgN/lzMYmnF9LaF5PLOvKq4AbZUdZs/tnKqt8tErhVYmVHEHhr5jli4eghvpXSI0XUH4zw45JedyAI+/4iyOlXpUjUTMBh8hnfFDwtH25glnqOUfgqfkTbR5j0f/eepA2tqqmZSC0lFE3wlLIOUes0OmfAZk/0KWhN6bu2hyIwH3ittj+tdmg3260TuEAo18hIsL7YkwcUnF/z0oso7JDwAki66KvptL5j8uDayVW/H06FFLFeCaurJLOy6aUgzlxxGeTn2f62PfxQvAiDzYGTA8L96aMDkBWUnJylRklU8w0lpQHnvV1J5J389P+DUZUFlFf16QEZx8G1itsMa+YAEVg/ctCBvXeJRcoUiEuk7bRGYclTPE64hn4nBTcqrT/Z7JqvEazxk/oE+KPghIlFZUuTDCjY0rsVmwnrqlshuyqGVejyV1jFWs5J4cuAmvnmygA/xv5N6h92gvPhQ7aYZprXMg7cEkEFh/yHipS7K/ObP+8rbpqGmMa7kiLdn2b6aVh9q+AwWwBMoTfQAVU9GgrcLF+BmkdGYiKyOyPkohoUTaV0BD2ZlzuTFV3rqFz3oeyFAAkjtbJWO14Po/KvM189rztGMe6HeQPB4Kx8l67EejE/ORcxEZPKCmCMxm0r4X5mesmVkCH2oxnTIR4L5O4FtoPwEF7GJ8h7t1L1qvz1qQhttGo3BEj7+bif1i6wX7AN3CZMc7XL8LXLiV/CISq5p35uMEM1Qerax9ZYmOkL4rdsgNBtC+Iqb0a7eD6IQA5z3c/pHwISLb55KRfsQhb+ahz2eDx5Z4BGXpTD6osZgvd+n/+wZTpcf1TILILCYPbQC7sAPdhSc/Zy5W5nXqAN7fvN+F3U3Hk+fzi0Udl53yU6cpOsWpPawQzog15T0LAZYT6bvwX3zIgemjacXidelNllDOttSNlP9geA0Pm6qg+eqKO0nFIUa3KAxsDXIVUJgPULbVb/72+Jg83ya7AwmVWHwABuSJxRoquO1O0qY9rpy39zMxgg8DGiEbbF5i0FKH2xMmVvCP9dJYELblg3CToXqNCVDLnW9uYIoFo62JIL94i7MSyips1wGXw+z4XMfq1VN7UED7+VM3qv0mhKtal22NGor1s5dZzJrph0/otGScofYFvKW10tVkQ6IGoZQ4YefAfQDK5FEWcR01HexOzb8DGI90yxcZhYOEoipLEHZlj8F4ONQmCnSerI7TnJuTOajQPMB5aGjH3a8HpZzQiLP6XU6pbB+VMLxbSRYOxsYj0jop79KrClSlRta++b0aEnmag7zLr7ZDfI0b6JUiW7BV22yd3sNuHm2XvFv11x5M9uBPYFp6dZfg251aG0mzjOCp3Yt+HyEUeiJB677ZydO7QzdiKdKhxblT9vRwp4OYZYwrEV0sjRK4gfKMeVV6HEufRLKT9L9aCnbMTuVSV5OyMqvoXzXsDDoE1keawwYk+5eoX2n4YskbwxWiUGQaI5OLjp0/mfyvFMPkMZltDT5eHQybh3BxpOHR3KiGEsJlpeu9cMACp7oUeOpG1yNsI3RphGuIBCSzO8xpQcJRT3VKxqRT94nWNT+RpRZr5jenHmTzh3a51pxhyFEfHjIo7/nBEBSW0gkdK/DZ4DySNFlLYk12bIiv7b5un7PEJYudwnVTa22gFJX5pIiHW9l2ttSuVlisNHHJrr12uMDKICu5Q63cln9ooGIZzJfmUe56SfZm/JphBWJsEqZWMRjtMnW5AUC7CMCE3qYKLwj1DxtNsDITdwG9oXiMtLo0QZ1YpRPuWQIRi5CFBy3POMu//4pkB27yZQ8XCLZSFdVQnRBabL1JIH0ZwGNKkexElBsMQxPpxKPNxbbRNHLygTRTLBlakjt0odpEATbDpcYnHge1W6shXKqAXYxYQ3NagZ+6cJ3mHSv84Qw1GYpiNYqQQHfXnHhtUYOdm7j15m2zkwUR4YlcvdU1EmEr6ZYpUhZXFBEwFdhE79mxMNNTgvd1cV4GkPOnvviOazwgj3I8ifOoP/sPw8lK21cfq8fQvy/AG9hOLccCJq1p+qQzupNPt+kcTL6eHHbZ/HqNo9qyvTDQdvqXYMXceiwGiBD9R6Gg2y+1qWIscaZ4LWWQ7M6SNRMms6Sd7AOrQahXa4cuPT6My708CsRw1BP1hqhED6+I0sxmc2ttgKpqaXivp7kiJniqkQ1fwIgoR8cm9sdn6BDUz2DD6XwrMEttF3AUFAI1R7TTk/vEGC7Cxvy8Xz1duWxyK/oa/x6RfihxXHiR4xow7pvl5E7fNG1g2FSrzskxxNXCVGjPBot3RdAAye2H99QHzN7nBaHccec/fKma4EZabGXPDXgHxXIe4KnN+pX8VIhXZkHuUVoqng+QulMmJOJE1M7pCCuXKN9XueYoBYbTYSR61dwDBdeZmgLOsNayyqFXRnWZIyV2T0Q1SdHPYyXz0TiabtVq9TdMSz5TxtwIz2wZwoQIBX4/GbqwZeX9tOgGmAS7FWvonzTzaAU86QO0Kvyp1A8OikJz/Q3pPkT43PWdNlktMlERMVy4Dk8r2apjhLsQlzTWSX53/zHJN4LJGwbjBjeJUaCG0hoQ4DUlf52eIhjjL/xXgBallQYq8TmchAHulBRuWhAXG/2KLlxE11q0/aA+HX5LSTWfDoaE3191aXlY8jUA6RKz9F6ofnp9GNZSXbt3YlClUkjWo2MChUqI+Feyo0eX+/uoy51/3/1zjEntoW1myAm0xHUXDWIUpMSANpp2a0J7fIffGRZ90Fjx4PKfJbk9UjQWZaWP6sQ05r1TvHKUma7itVdVfPWaQQlSOhuOQJy6xKD+km1/Be+l387hcOWeaIo6vS3m82ArM8yUwEp1YXDue50+J7PyMXGpmzLzuCISu5KCduBfUW3Z1J1RUeiokvMgvJlWwsM+L0yrqtbMOAh/CYkKL8/rP1CjEg5o7xv5S3tAZLCZp7Rbvvlgiosx5z45T2WI3NuOHvrMZwUcfygQVqpWmAxl8nuiRVXl9QD2BJ2xpTBc90lP2SGREVRwMiy6BkHZKgLlfMpRZFK9fSmh8E4OfCfbJIEabA/S6hq6r3kC+GPie4XrF5FhiGI1WQy2DyLHcjoQ52AHENX3pDPM3HwQgZHkeYpHmznMGjXId9nqseSK8ZGDAFBKOheN/WZEl+einkdA6AgBSu4I04NrKeIRGKxjSGaLPBkKnQnYxtk3SgyT0tOFGBKBuvhBjiGeKgEwB5iM7qnJUzKmPbU+5rVyibVHqBg0ipOjDG1gq9WiwmMCLGbYZKlYk06r6QE6qZhmtlX4AZeWShHwDxyMnPY/Jw2Df/i8AJag6Xd0axYdlB1qwFM+oH5Ya/ViB8N/NdZRjCbCSmAmmyQJEc7CHjmyfuxzRtXtaRCQq7+EUNuWLcIdLANx3DiBSyyi7Ld4Ts18hWqlUIWt2lHdYOs5HC92rmFaqgWgS3vSWtCwWDv4oOAPcST2e+0aPyXvcJlc8HP1AA/6Hk+3jj9g4K1pVQTj6SjejNllJTthbHFNGDxv3GBErFOI6rOLFnuizSW/enCtH56R8U5IzjeiRlvUiAhFgqSruRY2bCbe8n2H4VDFpQfOyO04TwLsJQtz823lpA7CSnmmL48SBFoNmvWxWq7+RfVyycD1uOa0JCyd+fsE82KQEwJ5aq61GVVLBzZ6vOhO+IQh/8iQW1XwB2/knC/GlqlAU9oN0EDfdX8PBXP0Q63b6YSaKs7G3INNTesm05vt6mISivVLi5Ueua5n9ELiqcGNmYxXxy924KU7TLPqPmZo3pmW0PXcIFWOFY3CGYyjW4j3MWVO9VoV5ctRYG5Nnq1H9UQlqO5yHUl8dAG/brgU5zUNHHpfOLabPv/ylD23pHJbDSBgkX7UcvvxeYD/1KfM2fXzEXaAV5Sp8ar6e5+A8mhK/d4Ii+h4sN10PnQmxRAWj8/4XqGtDyRNmGvOGZN+vjln6RkTnDa+Ch5yI6mQ6PNWZXaehoQh6K/ku5f7jeooUT0Ndk1efzR4SEWMc8WbdO+VAYmdG9UYwUh13UEs1LDvb7VNhBGIlN6AqwpNrox/cTpAbG+huVnuJcCisML8EjC1klc5BK/li4SlFTU7dLC+krzhvww/HwQN40hcmiqi5bJ9x8KkC/7HULoQDktnlFsMP2ENHsUMuFx6Lqi1H71/3BnfHRwFqGWDMapM7QWHcY9WZY92sWFW0GwM96hvv4ONiILspX3C1I63VrKnBb1nwz0DmF04WP/wPuRIOrjLG+wlstIQ/b/4q+O9o13TeQj3eJCGr6SQH8PXNaWXBWy+q8xzQYeqGG1mtWV4TYjhP3q3Wfe7UwOZ/30fp+32C+fJLv8sWn+4D6Cq+e8vSjYrCkWt1OTmbIIDn7tEa+A9PxoJIpjjt7+ojxoW/5WkMZiDU9jEy/8EvxY2SYDp9eBigdQE0V0k0nUJm1YwhZAPaVQVO4KzRvDfTsXyAIljVz3ZbAPPRaehfdA3BosDOenDVI+fZUON0toiDQMIbVyCkD3Tx194FyAGt17OkGgR7Fc+AEc+J1Ax8mvZs2Q8Indybf1cJkORvvkCIL1f8ufqwq55YNbuvQAZH9C3xByRAoWYf8tLTyMlJyCtHK3SoeTehOPL0z2fCYH3393Su/AbQs9fM/kFRulf7Ppn+fwANOgcMrn9dQqWACoBvpao7hUEvNTVjvS1H7qptKHvHJGF6S8B4O+b8YR5zw52DyWnNj3P92IwYo+08LPqij6LhniLbHJtCdHgU5Q+H/+oxp4IrcpReMe8LdYJqZL8gsXdCPz+HXMUxURQN9mXNbaPYJ7yBu2i0tjBI89FsG2P+1mbm3RcvoqpN7nMQ1LW0MxK6/TlHNiRSiYJCVU5kRFedxKlQml6luQ86g65OVhbaJeMOQitAK8aN4WkvVuzKfezSpXz6uJ9a663xbEig4F/lM37oz4KJgtsnED7DnWtpAHvH0S8cN+2ADn428w962CQgoSjx0EkNccX2PNB09G/GHKrgEWoFuN0nkW6UPKNoRk74eufSe5HNUvKpmo+Sj2VMFWIGeDD09LSEaN1/dW6Tkbc6YqvsOTsQHpMZdv4ARTfxYyZog9ABqlUQpHy/dBv30z/EzjuJMyQU/mWurJwNFpbQeSm0VI+8eLA5PVej2YFQ93f1iwG8evQIsemderWyZRU8yKpKxJcroesPfM0VmTJqZHVoC6YEjr1OkbV9vpIWlMt4RqBVOF80Crwonwya8LzaZZWM95cUYizXx2sZ3qbsmC2I0DNtibFIR3tH4X+bcUAoTXN8x+jcZ+q/qguTpoJ6gGjSmo/mUP0GSpPRx
Variant 3
DifficultyLevel
734
Question
A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
Each smaller triangular prism is 200 cm³ in size.
What is the maximum number of smaller triangular prisms that can fit inside the box?
Worked Solution
The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width (w):
|
|
A×w |
= 200 |
21×18×11×w |
= 200 |
w |
= 99200 |
|
= 2.02... cm |
∴ Maximum triangular prisms that fit
|
= 2.02...100 |
= 49.5... |
= 49 triangular prisms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_3_c.svg 480 indent vpad
Each smaller triangular prism is 200 cm³ in size.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_3_b.svg 300 indent vpad
What is the maximum number of smaller triangular prisms that can fit inside the box?
|
workedSolution | The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width ($\large w$):
|||
|-:|-|
|$A \times \large w$|= 200|
|$\dfrac{1}{2} \times 18 \times 11 \times \large w$|= 200|
|$\large w$|= $\dfrac{200}{99}$|
||= 2.02... cm|
sm_nogap $\therefore$ Maximum triangular prisms that fit
>>||
|-|
|= $\dfrac{100}{2.02...}$|
|= 49.5...|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 49 | |
U2FsdGVkX1/qsiGNu5tzQtgPhrS8HA1AyTxNTERPh22RxLdx6qIxraSozfteehijVV+nDfAC71Di/fOiX+0JobVufBiyGhRpRlaqVr1CP6xC5JHKwnN2LuXCWjhmyS1kAwad+ASHA5odtwJMbiVoOd2jHwEXGXqU0TfvE7UoGoQSbTch4vKdbtcX0UFAShQw3IQBq4KXPy0joQx3V0wypmUhskN9EDNnc7juz1W3XYYuGfX6h+IauV0yt3phVGPI0b9u47ibCwSMkLsa36GXDtTEppa2RGyh6UP4kYk2VMCPBNzAP6VsMJV3aR6bWinX5Ms5T8j3ahlUr1NRv1zrpwH/oLsLrtzJJG7eBWwt8wK8XW7hrhfinpdGDa+k0KxM9J+f7axJPg38UDSpR5rC3TjQwyVNV8GkyeqkLpiflx5WhpYiXQENtcF/zG5dLGQYgn86dgNcBIdTvoPtfVHEwPQF6LazfLqo3Ku0szBy8JBANMXFRKegOqRfkht1vwHHus1y10hkKbNvxrekUU+S334BM/rVJ2YWce3ZKcxuksgdBnn5vWZpG3Eq9X5TPfJJLXdITsTL2iQccv9B2MbvappQvZVlt9pHU2wBDbynju2qiVu4ahrH+O9thAMSbXBB3RBw3KbA8Tlmj8LHg66tgIwX/l7cHVV41YE5IDcXX2yA27EAeSr7pqh0o71Q1lL5LtYFk6OjIaRSTwUhcsyjfFI7KU8Y6mRqKN115Z3Rfa3BYZFD5Cn1+4YWZS8cI590NePj3D5kPvt0WzHeb+OhebfTABt+84MnRIYpduComvLh7vfKM7J90SCTakwGEqAG/NPVaXtEwjPjSlOn+e/GG+fTTd3+Mixpm5CxSdXPjsr4Yn4YIMvdG/n6pW3kiAQaf1fAqi11Z2T3Fw2ChbuOb0Gm20xWK2ozfgus68naFc2ggxR8X4XZBlD+eSakd7cSTPzV4puQkmDEn+qURpAPoinY2ey+1N1hR9nGq6InK+5/2FEafh9ZBdwWq5T15KcmyL7ckXvnNyN+/QRdEYZ1dRF/DLGnEFTqso2ZmJ5GDY8Zm3YsMzB1tB0iqkxNyLqi6l+39DpGH5plOPxyDtQqXOHvLbc1ix9n9XMaafVFa4WSQ/MuRHSoLrk8++StJk9TVCLXePs2o+1iyuUuHmYlws7GRROHUuXkF6kliluiL+HlrkDkt++QN9rM+w3El6ETAp1nrvOBRwc7e+YYiRWfzNqUo7Lt/w0+lt3J6N39s4F//h37aTXrQrmqWvIghaadXNC4XpNdcCTsPCjCquJKFI4bvV46gxJ6lXtrIuIIVLBJLnGiJTvluuBOu2m2CNwMwfDRXDcKOc9o5CFUEdwgaPaeN0/i3hSXStjM8b71OIZpt2mCXdSKREBCWhFmxw3l3aBak92coFQjnbeMW581SHifojQQ+SthDuEkeuFHniWdw/O3S2yV+bwELa9RGBpUCPqYZFD0NZWD5HaDbUfjnvU5zbg09gINwOki7YpVmXdfFZd8HIro6zUKBUbPT1DPE8J91/3rPm9TgZdwtaQQrVZGOVNmQ/96A8xvm3IWFMziBPwfvTwdyrNfG4DMIYsSmL/3/q/JcVRdkeElwu+5IhkLS/3hJxpJa9NCAJJd+wx7VPa++867r/E/iM+pZEJ3OQYL518VE1wo/2jnnMbJCkwU49an3+M9YgwfnmYhf8NydXDphgfnfkeruc3Lm2V085YcXMzR2wD8RhtyByPtASRUlwRsdmL8IYhqiagXykElJdldfIzLA8Kof2FBrKwKgvvn/ztir9vGA7CRx1ISZ/7oWD1T7jXmBe8TxsfBv6OjfzLjgQL+JJ0BiuD8EDbpj47RZkG/BQPZUuNrLAI6nfWFqm/Cm0BSg8emELoYaEqFcmVWpTI/FidKARTP3jGeeBEJRogjBCrlKtHXd/SFzOvxifsNCR/+WsFvbjqyYHkiOGqSiORSfJhh5p4Eul8nP8ROf1ftwbCkj0Iy0M/6gMC5/Cfruba6JzHWpMyQQa1Eqrfv7W4CnK3N4ILd9QAhFDjx+Kd1tWcZ7SyN8yZeVWDuDj33OIFFAPpFj1ffIRpFy+oFNw0eDGIdICJBUmXWUUbj0dhWTpmRAmSPO/rCb1at8axE0D8RPO8uv5LS+Pvy7G0C6J5KwxVSpvqXDJeKyQtq383Qlj49UwXCJK188j3+ZP1eZ2H+wm4vsUnrZoWwQD4GR2DPtAutdWpOhhfHCztE4fqJsNb47KzdOzAEoST5uq4yrsyOSQ1mZwW4fkX2Wmz8ZKOr9+TiwV8OngzEhNo4MIyvuQfI9UEqiEjDxisXnSFukEI1nh9dEsUrg9o3U2tijntTzxuDbE2xvnCqmdbUFC3cW89B9HlLEb7rm/VQRae1rWM04tzLA3k6pZcMQYx2dyuzeqeCxYNcmSx27ysPzS29Cvusx8Q6W1/KMn3HNLd+GaYtl1yKc7bXJlGUhr+siBZeXyLyrYr4TlL9cWlU6anxSG1jpdJbsFe/0HSnialt0fvd7LsRg9uw3xN6RWzJr92VeWPpEEGVpbtYIIf0gtCvlHbN8RdKTkQj6eAuxEfHh3yYuGiBAPs7D1Ok9PFa+jTo8Od2I8NwaumbdY5izVCxA9qN8x3JWgAMPHxRXpZdRzJ/gJ8MbyH6TtoIg5A9vyZViX2D6YfQ0pQ0R8tL5eGJakXuzAbxzowlJvIurL6RfyTeYMGy7iUY+nBXgmFmkM1Xge1MUM7Wjnsv179y8BsTGYNp3IBP+GNYhXYLK3jgdgpd6zHHX5I4znJ50SjhwP9k6WAwSBMwDmb86HLEfcO/WM9eQ3MXWBzZ93Qn8Ot6rb06JzwNZqVXNVI5V0ozD+DtZXgYhYi6zpp91c2ZV3yXjfumPaoboRr2zkr/HJkxzHFii0n30CNKbyr1kq+jgvUD5vun32BBP+dvohZHvwk2OIxPKezq+rLkLyc77GVnSk0t0s6zR6himby8eZ/RhiVzLuC5Q9PYnO+sVK8XSk7A/yme+3+QWd+HsEQe+G1OmHa+IdSjueMquhilh3RktJgD2ZXtJhvithHlnUdhKLXzgsJ9SJwqDFw1RQEZm9Ah6davy/oIzYtxciOYwxazbwW4+fE//0l5hzuPhTcuhuF6Kj7KhLQMG+eAOYGrH1m2Fh1iLWbzkfGDjTLFgZGR5+F6t9Vw2QfRamG8qhhl2awMqxIjh3VX0uBw3nJsshVF6lpoyXukUwSiSlp8QZRmTXbxwnUZngDbxtMnPsG8N5OsyZ0tkSPEoFGBFMyE4BsqN4GYJkGuX7xcih+ujjzltLvYPvZEjzgqyohtNd4sNUhxR1sUTJroog2CZdYmERjfot0K3xJ7jivvr00Ig9VHXxdPinQmbVrq1LzS83fVKUZcWCxR8wClI9/YiLu1nXZeFdGkxOKN/xjHzRI4ICNh3PQrarpsW6aBWihiCey5v1kKUFhz7qs40jm6qM7D0BTLWBPTZpWUxaMAa4TIfRD1v4TmDd7CsxNdt8/lGGnMWKXvFXIlU2Nk96krwS2LfJopC6XSJd/ThJpHOUBQUQBbGox8c/1B6LMuvFbSDenMHbetVhXb9Yxw3gVnaQNjJLSgC6qg3D9Z8luzGxWKYQa7/0LG78dYG7BU5cLrsI/jdUFLsXo89IneHtoI2q2gP6SJzdAQtY6zu0NOgD302SUlwIVrs4Dh3Q/ykwqVaCq1rlgQ+A/1SsIgvyoXl4PsMZbZd6S4PDuoFllDPdIsMjHsABNtS/gUDYZo3NhcsLN1oefwTD3s3cAUS+tcOFPk/a8aUxxAd6rWpX5/BJofRcLMcHFsYaVkkNWndh6R4kwq+l8MSWGBlp/gSUxVUJKsAwcoEtF7dqNiVNola3lZfLwP8AgacTLd7KGkiyRpF+EO7oq+XFoZRXUMQn2uNhlQplSnfU56TBa7T3KzN+nd/t7PmIPITPgB6fZ8N1KRBYlX4bjFb9nAdMNEF8pF8EbF/wohuAuhepyAEkpbpupKuiGGT1r9/5jWKgn72hjnknHMiVF8ALVRJq61y0DCOqtA4Fi1D3HoosXIcERPY6NKNBz9rpbnAS3PSH9lRhaRC4fsKHdMpBJuCh9mn5OHl6xt1zFZt9q0kqaIKAEr7vL9Oz19su8uAnqkIyxSzhlM36EvbF6KlG9wwzR+jdBCy9GNHVjqwPwede7KOyBZewdkCkJaq48os4G8SvENe4PZmh0G4xykTUs4JYdLy8kbxaz8t0/QJVG9A4h618QaI5urPUARBBZS09ilLwdMVeaY6JJ+bbEfMIW2ZDU2X0cBhtDS4ECSSGBg0thba9lM+HAVNPJ89fENV5e9h4ESdb7D3IDAtcSKGym+m7kOyTFKN5P9XjrD9RdtfC6+lMK0NMTlpQeFB99XGxR8Mn/H/CmK+xwIYiI+v+MuHGFIROXee3GS2/Lx9SiudAYogPtOEIuAOWG01ivsttOTeQFw98DzE2YeUokdkpKfm5nPL5BLYXood2vlzrJLmHCiBJeMvU8EGzHYct3XJKmgdO1WMooJl+nZg0JTcl1jlVKLJYymBudFiEmv5lWBv0pyJ22YeOk6NkI4bRdYuaYLn/uECcl0GffpNaYW6sNKbRnojQqkJJD314KIwPkX2NQ5sok+rSJFr9/GvmhVhGqKoWzMJpYaPmsOOXQNSwi1Dj6z+foeHMY4+O6gUXrxuHhedSsbSpEqT0FgGZTmqJMSN3ZKBIyzEipy0hGcMJON92a7818TFwB0bLfhSpt+JjKy0ErYvBZRyqGnJ7GHS9Y9a7pon/1UJBap6gBVNctfCWyT5vowyBmDupLu6vZY/LNgV/VGp7w2UEVO7w6SEgh7nQQOmbunDBTFkQxMl31JunbIkFE5DZU2M3C7fgkodFpgk/n9qkE8xhm5Q9uR2TOEZk3DyCN+8JoSDjg95qZvC95KNqiOlsnnojAxnuV9XG4EhCTl6zhUBlb8exPp+7x7Ml8Ni9DxN5jk5ynLQupmS8p9WTR8aFwX7FTm9Y6orYBr7m4Au9b40BMTtwThvx2IOGWC3DuP+EYYB8ffDLtSz0viD93pd+Vv/jY2+gV7bCekxNzxZozxAW/12wEItlx1oKhG08uOr7jhoVNwd2hlkCxEpoQMQj6QQKk9H4IMULjqcmkEdPX7U9awfSmcw7wkCKFX/6N+BOkQZV5dIIiVKY+ljI1Kgo8heKI/JwE9Tb2zjipWMUFvzED7DIZ1gO3lvirM62etNLbDfCXYurso2FWWurbXOMRPNMkoIHzKThlYXgzzWkDdu/spDk9TSb+Ln0fixsk3sEcpGDm9bRx0FSVAiakuzBl2E183Okd9Zr/N7rWTAz89bFKJ68H8X5RQhHOR+J8eR32hB16dpv8CbUgumz3/2Xq4h7VI0+0c0yyXTMXZuI9Rx6VQSyVwTMj7WXv7S9DbqNYW2sOgk7SfRBT8Z77Osynkk+jO/vsuZZqbummqQ5GR5gxOpggWGKij2QMPOldLVM/C1L/yrn2w8O0QXYwduknb0iNrdOjaIwuRPy+xQ/MG8Ff8gcHYlZWghOqtNCF8uTnRyobAdz6gBXiw2OocsreebavKwqHF7VlwIvjz408AaZGP/YDFV9X1LJxR1NUDraMkuayXGdY2YFB+pKtHdZuM0G7e0xb/Q3ey467eXmmpJa2oeIZuIeoCPH+l1MjA88HHzHeB5l6VY1/8tQBNz8mCdWu1GXpIfg8okR6BT5nGa61T8Ps2fhYAooWQ7uMCHDqjVvB23u7s4zKVT+bMxyUAYRud5KNoZqDd7fwQHD45hMk9xE4RiSzF81hLnJcmzhBP7gew+xQZeuSwJZAbSW1MTDQFOL1hj2/NbqeSdhp9brc46phjYnyqL4SARizGd/Wlj/7Lw9U1G8FGeEVxDh2e3aE8IwPbPBLmHix5u/ejrIVnKk4iWZLDqny1C0MWnWElAAe8r5JqrGeay5uxAPalmjvAMFgEMHcf5DMFJQnftrh1ve9ltDDy+rlFYM6oKKMAgAsVaNJpfez3+M6Y3GLuO8Pn9VxdrfLnDGfVThSQ0i4FpqYQdOJbe8FOlxymz99lZ5100cR+nsn6uqbIkMKaS+7Wvt27rP28NbcFA+sJDhm6Z3Wm3bf56OtIyqxtr/pQYZFoPksmyuEJsSY485r70pJkUcR3JsDXqWblLRDWeDtDXXLbVUQumQq2yaOilNO5FoO3bPuftD/Ag9+efb9CSF9zk6Kh9hYs2L+Urzj+5kTiBt6yAmfORLxvHbNeh6AEOyF0qmH3zHGKABKBg6piOt349BH1D3rSIxswbp2P6EWVoOyp+v2PeNr4V4cmYP8i999O82enExbID271fj9AFeFlwwSmJWMlHR7xbClyeHscE1gQBCFXQcdcyfD0Grlik/fXVH44TcBKi98yPfGGHgqERP4iZgWrdreV/HfBdpMvB+h+3bGU5BnatyUixvLz/14tn1J++rl1X8uNDPqCokLXtdbUAj4CnaOXJ+kBwPablRr4WClgmCIqILz/xiacIIc9ED0G9Hm7OpeY3w+OveOigExTuvRcdVwGazYax5kOtkbWx1cfymjxgTSzcxX3Hp/BnPefWBjXwH69VaqTIvRwLQeW3QG7TR4Lez4iD+mO5fU45EjulF/8xZzW3kfuMDEXeAlKeMy2Ha0ZcXHDo2bfnIoebWU5z3ERHTPp2mLpQWW25g4buHVYKrXYspX9fFe89EUf1O+utqkobpdoDfv1Pwebl/u1yWy0P1sYw2Nuoj3cKmSdGy2x82Qix3vb7jQ7h7DfZYfTTGsfP8ZEdiQ+Y8qINCXE5sWRNtlnYHISkL7Fet4Gg361h3tJtt6DApA1hl3aaibTS2VygSWS9Baph/EIvpICu1DiGSelBPs4d+v+/J3YeNn8PwTNLKlbgGqx7/c1jGVEXg0xWGQkeS8GSijjHUYMah3eUhAUwgng83qNpXuJdAX0HEGgGei+G4isYlfKwrprunrWAaImkU3FtsjiUOyqhjoQXJno/9wohF5V+4wcDUL0HAcUtZ5ia66qXKFsMgm36TCewcrHRIFoxjWam2oxVSBCxkFbqUa5xOkSGGMufQWIOfuDYFygSU21cGKkOCEkzWbXUrVgiqhJpQLoBK3qHM2TuHhqxsBgpKrfTvq3wvt2YApWIKVQaVGifguDrcxNOBBOh7FwgXn7LYISrrejUvgwbaguxPVSEKPmSr9OvoKO5n9LqE7zZz0rxR0jgmC6HlAcB8GKOLBegFMkMDGkmaD54xYAhX8i4Sf0Ym2Q/ucbBhWKbVoDbwt5UXr11YuZGJSUySxYyljyZbZd/NfTOjWcduNFvemxyj0x3yFbcFzc406iTjAxQDGj/uPvEyqyD8eeRzoO6YSjHvKdUHMFIYZDTJ5f1YW/E6fiR4vQ5T6kD+sjzjdd6M8CZV/k3bVqqO7q1A+gC31vtxhrNaGLIDsMtPHM/DlB6PzRCRf2+LLzQHk97X9f8RvvPerhTJb1gbpZvvpx4hfAqCyp9b3V+3jQ7dkU5N1kSHlMP7Fq2CXvB7ORhlXYktDidTSWqnKavpD4tfn1BzKfnHy3zEEsv9ijkwhsljnfqQEaIIeual0iGPMk6CBIwct4AzzlZdrCkFI7yKTYaTPtenIdCbEipNaO68f3XK0S9g6FLRugydsKHXGh+2gxxoDMhAb6JLbmBsPWFxyD1RT3GnnG//tnp53aa25pL7RgWJ8BPjsDgyJtRRcF7O4NBJQxH1olr9g5hQzNUcMk62XlzWMRDB9/eSdTiegYPAVI+ibLtQ6HO7JgrRKVz+WKNjYNo4oY2MDstu9j2bdmGKP8bn6S6Dy6nsFuTjDOQ2tV748qoipll5O5LHbf40hJO7uuoC78wQfW4T5U6udc6sfb1oiErCFtVV2E54qir2wdvaM8KbtylgZf4155IvCCv8kOX/mimBMei3M6KfQMQvAZ6bt6lFPpTJgpq54iMcgDQ4UijX2QU9B6i8GHcIAnJI57+4KlPon679Mzeu6n1gm1v52gOHsuo+VEz3kBn7w+ovM7yCJu/8cGI5v9HM5pfZJvUux0A3+x8g9r8/sh/3hldp7qpFNmGid2aotspA/5eqa/owOnl4E8yRYwuhB/UWDOZhOCN0ORQVp5adsiMOw8vkUC6/HU10BTZEgBUTXVgyBm0uLmMmeyRPKE95rSEZq39Z+/xlzTgK008OfrvI+cSJYuFE7LM5/OY010zrrrcDzLStQP8Vl+hVgAl4YltQkNIktzeOieZx/9I8AgqZ5/GMPwUEVC547CbqBDE8QiPVSxf7rFaOsEgqokywpv173Ro1ZnLhUW/aKSoe2SBX9K9PoTU+7kW/qtOesKpaHgJDOPI0fQ/mr+Fb0NRvhuZr6/LWOoQUbVihVSCprOS9C8CiYMPJnMOce71+utGl3ewd4y2KfcClG3PE8KvUM1KF9kSGxQI32OdtG6wxb7pCkGuAZcjmrXz51FeLhbe4G297g8PubkYYWuNZufvc7J2MIcJfj3m3TkbercplrVIiefLelDAMIOPtJgGjmuUbsU0R3arc0Gba5h7FZGNBXaGNok1a1G6Thk2XyIn+mcGqwCo1Cv1LVYGGXW95juCK4HVcpR2m087hOqplu+S/96uG3Fhi0ksYOAqB+Z2TCrsOdTeGiT1ZIrxXo6gNRvDl9+2RmT2T9vtRKNGOLZut1FDWuo7d6m1hkELTYhYQtONobUh+y0/R913QlmWed3KydsRcxfeuSnoIP0CIXANX8BU0SjYHVt1BA3x92YaXDiLQkPQl+cYovj7qwpqPQ3xM3GYDCC42NcM140U82wkAKpmzBvEWa08Lu01+4OwUXK85+JdK0PLVk8kOBsPY88ViVKSSu4+mpVII/exDHCrTXVAbczYw4zace5IpNEzaF5diQkiEulWilqYO0aL40X/3C6R7gJGIdQAzizI3/2fpaUBOXfBVgl0+5i8y5so0OGTZVOSlGXZJmXeRBHmICV4G4xY37l6l5vcQt7r7cAwHIfAqwfim1zGUVa+H1/O9L/6WfjVB+rNFcilSfFBGss8CtUvEHsJ+XL+Lg2dFvuuJxGHevWnjuAVee1dUjWEEHlwf/8O4EoWwM1/OmbYWguzp/F62X66QpcfyLiY0xeZ4acx2onTQS1DJwOkKfViAef95Y+rfgudQYCrK1+HmLGCEKxUOrx4MaeZ8wBjk8kA6IPs7Sr6kAWt0NDi5MFe2e8G73dBk1rEBzT5Y2rPaxlMmqxNreJaDP2yEdJnwYeiY49bdfQ/1wHXzsmFFycwPkA7cIAjZU2Oyor5m8uyAFXeUXHgaCSgPqEuu7/Gd1x1hgv6yTu3gdeqANcJm9h+oWdb0Zzs91F1mKTt3DK7+y5sArEKno4hoUkoVu+N73ap9RE2+bms9M0O9LKPTzl//pZAsn9dRsjAo6lKmDMC1YHBBakpGzc2E6HJI9PdgAJub6mpRc7d3uSp9+tTQjKwtc7ksccq1MwsUboIpkOpniqSBPQN1n2mszBnHZ2hIcx0ndM8WFxgJtk48kMhtwq6ZWbzjj5zEYOMPLSPpcW6L+DgSetUoHNbhTo15MxSRKPptb+whbMPSibHbV2utbTVcnl7bVuXuKPRZWUcqHgED/04F+hRSydqUN/pZ3qgPjd4sujkqk6gf1BPuEHHifHJWqZ5LHvcp3WOCwY6nKjSXB05i+CQZ+wZrdQnv9fycXLLRpDKOnbGjjOlYJUpNOhgGPyjqxkwDpsm39brGwLKxFTI6OL+RKrw/6/YVldx/HBEy1HcvwwUw4CGTeH8u9QfI7SclZBk+70MiWcHre85hC0z9HIhUzDG1qol+8VOsYO0vBreOGg75rfIRVQ0hzkFi90pB5TcxiDgNSsvFkVo42UMW518iqYYpxObhrkGMJyE4LPGPm+/p9ee4TNYYqZVriwK7rpO21lwWmiXLPA/mALn/HkSQ/NoH7v4bz6TgSkTu+VITf8zPi/qkynt3D+0uimIwvAZ5GTNrgxWDZ+fQtBxlbQE5eThDdhfZyHN7ZnB+8ZKC1oPerMpZSmqDW8djh/FHT97FNqRsWDSUGE7JDjQq3J9huRwQXvJrXTzi5GMXuvdj8S56H6BIG3LuIVxaRergnHHzhvm/dV2scyaXIrzZ1JpA51jBFxqxtyatJh3Bx7M0xx31tRKUaWkmyoJzokWNbbj31XpMrqsfq2njnK1Xr12N7D3JMdIqDfx1xHKgFt/FLCdFUT8D1qKrPLUGC0JmjgOGjaVckBsMvBcymOakyeZjX9E+/D+pX5NnM+Wx/mV9bL4o6O5UbXJE9j0kHwfucBpVpwWcBl2nTrk0PXPbCYDrVnpWklEYdWVC6QQtxTeCmZwa9MuBxTFwzWml30QpR6INjkAR2bRnEPY8BJzQTJJyjyUoqTcLC68CWbo/WQUO9Jo1HS1V3ld23XPHxo2of5vIWcP8La7t7yzJqZjbPkEyycE0M+hJiilq0+4yM8ISpulIjoblcfT1C/DHEKg7RsrZ5ifR75p78suKb8PGNoaOgnI3S1Xsy4sygDCSaCwOMHG4fj+9lkNCb9skmJmrkwfboXvJplD3XKkye3A9ZmeAlbyormoSYii8fKnhcF6NWK80E5wMXpKn/mq5gVuiFAsu4I/KoBPdOfP/x/nR2CXXYQf10ShA5E91h4XaGoE+MhYYu6+RlB0QYIXAzKRBytJL1QrET82XQY7htmUVGpsnIQqhArBnWhCtXu3f/R7y2IMigSuvWH+g+IVTM3xd7NeTE92QaK1U6hgWP1QkGN/PSkTtSbAeilQF0QduEfd0hziHVtskzBVSIZUjqZdYfupqvHk/PfTad1p9DciqyolvUggk0Bxi0lMu5AcOEm8l2zVSQXL+/mNW6KjJ3GrM3Gvku9Wu9N/azqy5d4QIxXbynBvMVjigjnU8PRXdPAfwIff+A04O16b5Um57vu+c6pEv8haPkJfxxRB0gk5j6UbOHqwgt8ILRi3jhbxWHFJHseUwyCmCPKy3ezkZFMM+XOHe8furxDJY0rxPH7+67XjCazLu5D2+rIMO0FlPg/MZFnokMgJdoz3G0fE8R3G/4UMnBUYRLwrRQrDrFswpCvy3sgyiXCz5zY/B8F31RXOF50SDyy2YfLyYVc04wx0qpPGddwDtKF3IiyplrJAkt7+HCU49nhdfBn+EzqrfZe9/aEaCy0tZuF1WtSrVtERp5/Js+n4DjMLp4WNrdo3vDR188nFQi1kn9A1w25EkUdOJ5jVfdXIqRHn7E/9z5PcG7nIr1VF3zJAphEqOWvEh+ASgyXwu3C8cgQOZhwB3fqDagi1QBPvwSVd5uV5BYIZaG/qnNZH6jLhqZCtyZGTvcJaPrnD97pmYLTR8nbJPh0mIgmobn/zHSVmBzBF3eROVGUvF7Ax3gvgOKxHvabwO3lIc6oedhXv7VBWfRwFf7+gZZq3XYl0gVgGiZ8dg6mgr0T8ifTeBY2jnmVgp4ri/XIZTUEcAKxoKUbe9CIHn8yjBHdhL3VRcWv1T49HGANBM4oG8nRT082HkVB5HBnLTKgUb1I8GqYiTmJFem8CG9vor3BmpO+BSYHYhQr4+5+xAAL56YamZLWr/1joGK8PWy0gDMO0BBoYFRZ/P1eHK89TQfWacuScPVG31yWadfEecSGmc2tBhCU5W7fwG5Lmn4hGiC+77WU9iuVKD6FeEXmxvWafb2Dl/+qsCkkQK6Fee/moXCwioopVeFB7IYZvINrb5HxRCgDjCA+HQzN2IzMWLOnfesGFAcRNjVV7d9YOkFvvkMOSX3Rr9dS5BOI/It9zIBtcrMRTNDRTfMKmk+tdUxhJnOdybaaUGbtCRxAjLr3gItdzHMKFJwqkz1o7Ym4P8cAq2u3EcR7x6oqq6guWuOTWuFcOLYG3QJf5/9xCiryDUToUzi45ZDaLGW94QjoIWFIhgXvsxF2mfLpUSchLvRESlsWTZEM20PSigEDnmzO5G2IU2x0BtSF5z+isMpCqMAv9pevovkqY2AX5+iCF2hlGkV5l5YBU/237eYN2jaaGCK/0d5H7mdBzwqHWvXLSXE/6m4ipxrAa8Qyr4j3fsI9AF/VWR9GySdasg9IBHsZ/x4jjWuyymM1dTalt6bJNxhYm1eGOA2qcP1e9Rf+AFBVUJIcv5f3YC2wyZ0kql0KJ5wQpe4m0Qjy6FRVn7e/YEZvIioKwuuGOhlZedVYOHCd/swnzGhF3At0wv8hNpDV5fDaktGXjFWn4mpNnwnFoiGT6Iu6mTMLrSyBivEWfLKkq/Gz/E0YBtg1umCZr2l9B8xcqljGAyYSsXoLEAX3Tz2BrGiNJxyLSc7/Bz7IblVuSDalj0yUitGoMFrp0eW8hBey60OfJrVwWwtjyUlZB9C/96Rs3+kbNOJL3uv5h0bkI1/HaxU/eOc3OUm6qlumLtklaZsKbgYM5YIgY6+noRaoEyPnXhzDMyp6mgETB5Gii1ZXka++gSgdAV0ZPtHpiwTjhfApEDxgGyNsv5GBqy+ca09Nfhmwh+Z6PE6jeywdymitUBX/KXDxTc0l9vHZdjZx9OqskR0uVrPzAzfVDg2hYii7XUvOw46oHiJ+Dps6TV7gfQP3INrcMaNHwmMWy6bg6D/13nILpGOgrA7MM0+w4bVvEE8RqF+qa0yP2H6cfe3fz6CnNAwxWkyhC2T+u2DvjF3Ouq78lAOkNMXtiR6hW7o3IkF/bcNQ1z9fUeEiFB82wn89EOkq7IIu5amwPTRBt8hwq5NA4MMwZT2MSQIkFCwmnt4kadXJQ58KPNtdS+A36EJEXcL5mZNr2nIHs4O2tBsyBwFtlzvQfu8vOacwFniP26qQIbxL+rWyFG7igxt1H4vZ/yTshZnZSBw4yciEl+uKWjFu1CzdDSOhqtm0iJvoeWGDtfAAo/R5/tox2S6107EKYb5TXFIa9yUmy5Eync/hQswdZF2sHl2Zb69dq5kSWeRtgsCRea7dPxz4TNplS3kp48KcsRZ81csOftlDN2s8alFNPjmASEj5Ieel/HLcL/XZ4cEhpcrZIBeSBoeZtQHJWL3tg4GvU7Z/s4RgEa6jLyvjqoYFDPMZLlayDClI3DogXhucuGPMiFvlaeq0PMJahFxbk2QkLf5OxNoT5nHllLH/2wqVT3rR+GE3es4YQnPDSBRllXzMzWuaR+ybJp/mHK6YbC+p+EnQFX7LXohT9miFfvArTqfeQSSiBp50X3diwGApLYAAZzlVrH3Srx8UJRUYAaugUNzCJBsk5PDBLgONOlojUNsuOJ1IdxXfkkO3brThiUIFVE+2KbYwWU1g6twXavDU/j1k+ICLrhLFIsNkDGBY+rjBxPgk11q98Co2tAA4I5C+q19hhugNMKGCqDfjp1O0RuY5jgQiMha/dtUJx1CNRBW7A7s+JHuD7R2TSVLWkTuflvLYPKb9wCz31t8lVjKhjuJOP7kIZUW+/ylKwpnu+RpT1UBoCF9YzdqdMhb5f+jDtx+XM5XEGgrTK0FkYT3jEU0+kNZiwEZGuLeblfPFXJsjWss1VhcE/GbdmSSkV7BV8lX4rjNL4I6S7Tkh02jKW9lc0prfeCcS47Fy3o+ILDJu4TQuDrudXbkjPL9EQDuIbHXCvzvcwjyl0DEnqAiLgGTfD82rn8xxo/dl774zmh7GTv0W22qL30+XaNEP1fL/OOitTyCHikaNUPd+2+khfdeKSyn6RAn0GCGjUjmtwKCuFf5+S613zng5MUCnRE7pWjigmxTcaIaxzQgTk5gmvpihc61Z8Y6EVNiV7SE=
Variant 4
DifficultyLevel
732
Question
A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
Each smaller triangular prism is 330 cm³ in size.
What is the maximum number of smaller triangular prisms that can fit inside the box?
Worked Solution
The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width (w):
|
|
A×w |
= 330 |
21×10.8×12×w |
= 330 |
w |
= 64.8330 |
|
= 5.09... cm |
∴ Maximum triangular prisms that fit
|
= 5.09...50 |
= 9.8181... |
= 9 triangular prisms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_4_c.svg 480 indent vpad
Each smaller triangular prism is 330 cm³ in size.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_4_b.svg 300 indent vpad
What is the maximum number of smaller triangular prisms that can fit inside the box?
|
workedSolution | The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width ($\large w$):
|||
|-:|-|
|$A \times \large w$|= 330|
|$\dfrac{1}{2} \times 10.8 \times 12 \times \large w$|= 330|
|$\large w$|= $\dfrac{330}{64.8}$|
||= 5.09... cm|
sm_nogap $\therefore$ Maximum triangular prisms that fit
>>||
|-|
|= $\dfrac{50}{5.09...}$|
|= 9.8181...|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |
U2FsdGVkX1/aOVBEP6hqUg9Y+6HB9gXcPI5TTPa4qTzwZlZ1e301j17tNVdKomogXzdLb6kYfa6v0GiFf1ttErGaQlTt/Wwv6UwM+nQQR38hzqj1k/IasGxCKYTHan6+kgjjyckaelCZxcxLiYaL6xGtuIsUg8OnRD/12atBCUQiBt+bQrVbqRR/YNUg9j95QPVAfs5pXn00C/vu8sVIXv1pd7lkwL70BPWlZwc6oc3BndXDUlmzFC+Edk+ubWbs7/BwnBAP8tIoZtqmiQu1/l/9nT7LVe3mW8MhHN8dviaURrhCm8bfNzpV+iEHLTe4uxxa3YpFFD3ThqvMY/XQymvnYvblCs8yIW+UsVqowo2sjM4tkpsRuTEk3c3Vx7Mz8xxaD7PAMzGuo95oplmYObTMUSj/jmA1NseDgrl9dGoB+VhPmZWGDFfq+VYQYxNt0fAw/hMSiwQR8CrpzVgpO5BEObcRVdNXGAQlIonmQ//1pFgKUOe2BEx1AYMNcNsOVAlUoIUg9z4uMEfY1AxFQmKKqiQRO+hUglVZmhRmeQrJwV1FZr0kbXOdieHPy2Zo1Bc47Hsjqvimai1jlnvdlpLYWiq57Ys3aoRSud/JRGinsam+xt62Lpwejo4RTpWcYbWzu2fb4rTMRq0ozq5IvaOLO9z4TbIcT3/IoE7UPnIdtFqUN+eAA0FNjeLAdskydjQHhO0yh6zTVqSIFjZGfCqCgqPx17XgcdHoFXkYwRrf25CG2AcoztbiWquRFT0bBiU5uzqlPl2aaYJTtQsu+j2h2FfIT4XuaxWnsLvu9YkOtN0P9KuSJdnORhGXTx50zcsqxqNKGGf3DRQ2T0opKroJDJU8ZVuaDqngqopCYm2ZUt1onAFU8OsZUbYxwyAKSJXV+u8hPSBdZuQzNwZQDqVcJJ9zA/ludH4HOo/RgHnjqWXaG+3+oddbRmBZLXJe0dzPZGkz7wtaSg/XFwzoXoAKCS3l/02t4S2nbJITHdeD2SC5bpa/asyuG3qx4QtLTrqOSGw/dRaUw5XksLWws+6qbuUkkJajH1nFU8iVPa0Fcxi+nAi6uFGy7aWoa4oy9CrNIuXs/th0Q+hIWsXx/XVxfUCsit+0t05qqQDjM4WswWPHtpydjHL/ap56K8acftiDWFFrQ9VmtbUAqAsp6iuMqg7VTh3pQ9dbE4p+RM9BdvS0n5zgezZY9Z6mYNKE1tSbO7EadrxhENw915+m3bBkHUcvlFGyUX2z0g1x2p/9ZdLdSgpvEEYKOz2bWqkF1TKPy/xNSymh+eohSpkAtrCoyNaHC3HQ0Jh0U6eVHso58PbMMDhyEKl9ILd9TyXYz1bGyP4zy8YDVj2f4+VxQmkt6t7gVHnr3ZHV+lm0OG0LP6PfXOmJFzk4w+HnKxQDi0PZ4zRa4bCPOIxtagfcDDuJ7YrZBoEeg482bHZjteDr5uet6X1HIaEs+lg5sLg9tfz3r9IEZJEplLtv64p0yIebFx9Mf9fNHswq3oD4xxI4a+s9+wUZL7AVP3wVWmH4EO3UJdlcmK/+DPnO7zqXeyX+8KT+jrdlTAuVtZXiz6YmnlzpKnncATIHM2Ko3zt3p+9szSZw1C7nfQVvHgXFfvNEsm37aQtUh2DB24LIKX3IEQtyaT0rSTjghhnRSEF2BrgBfY4PNyKd6iUGAQHTCXTHHlVEJo4EgLQmp9+mu7SBvPHYUuBSdilHvCRHUh7vQznI6qHD9ozTjG4NFY1fWm7pZWW5ruHy/jcsg6tgOidR+L4ihHwkjg7EVs+QelANYUvc3hb2OJRkn+dbb53WnwRYp4zMyWcC7bwheYgMf81nFn1lU697feREj0KqxreScF6Q88222I7V/NZ5k13agAeN5ykVI08mSIiM6xq/zb+4+4ydvUu5Mb2TlP9a8FhcAcNKZiTx4yZMmBLwWarB7+FP3S2VmmFMM3aAomcwTeLqS90XNz7Eo6qcd0/l9BMnF+1DZAzZt3d/E19WxZtUGzA9NOWxcM27QloXuVwMsKbg/DAfDL4mMxHAHgTu6BiN1UJr4+CZHJHQxXHgJ30SBn2tKu2aV8RkJuPcJ+IU3jQQgbmFyvkJJ+AYrrcn8ExB26IS+zhFlkMHpsY6j3whAXFSXh+3FBq3WoGej451NhZmZys8LJcRynhlaSRVfuzHVT7jko6CW8vjst5G/NYuBU24QS6kyr4fTXr9+2PIZbK9JBJ2TTh7WUzjl8VQyI5nD14oeWIC13frBNIxkRLTi/I/rAYgoK/+jcnQfxTyOMv+glCuPiJ40yakOwKhwGkRJzUAUfpCQVrkCo3rJNDk/gAFCbgmp5GabfAk3ewVbVmojTcZHTarrlrPN1HRbqgQ7Vnz4CD8h1vo1LdnpsfJQXLjI8x1cLArYfI51SKAArKoaiEQ8BCLkqOf3cn0IGddqNrvluZjiVCEGSwLJYaq++zR6OvYFFsn2FNIWNDc21NYkCm0a7FW4Qm73jIiInmq0PsryS5Sufccqsc1bv/bSS7I58THTKTT2Z426qWiZ/mgEj6hKRZLd+NkbsuWGzGqq93jysnT0zlRX/CMqXb4wEASWb5IQKLgg0ZV8dQvYjU5erKe6jciTKlXlojYD3u66vB6I4D4F7KeCGlPDX86AmGgnUO0tcLe53RK9keIRK0lC8ZiFy3OKZ7B0MAQZytQal07S4ZujUfb9J5ch3xFCDI0ieM++Yp5DeHcuhwsyna5XSlFUCWcQJyMWV+NjBGFoFcHlkvfwx7zaaZSIZL4upjxHhrxJGynPKWblt1uzopL2afZka3+12Wb8ReuEHtcstHnCL4BypCQwGjmPgv7w35rLzNNb4JkQy5XbQTAMPwR0PlmbTWtJi3HIfl+MAFc0xzRC0N0HRW8PlOwyUeCQnUEeaKsvlhtOSwfxqJJ/ekFKkKjIsDaJKnQJTW+9Mk0fup2LUK5r8wi9ycDNm+K8/5SytS4/xJDfYBqdspG5eJxaFxJjCVwyvDaBgtZS35inz4l2NWbueaDuA+V4S9GEa6+fLxpTJKhfvIPrhQ5Km/nbqEfkWDeR6H9jHsbV/0nlITjyAGm+q5IxR3hXQ/heA87LRRde+8QzWcMbHMDc08CKO695eDO0pwzUj/lZ6x8kVv2Nl/yV0JavIoGiAoxbaXwa0UuLV6QxnwMbyh52TUuQzNxWfly1fgijjP+ciKDrcgWTqN4PWYgfgBZgOtG5aAnWKNFbDyefwerleB2gHOMTzc8+4/57QToBwe4pS+kjhQtVoh+DuAJUUtHTxivqVi7bfaN7UTszyxmequXnfo0nWm1qdSWXSPOy69QcwTiBLmftNWcxqlBWaWXlYlUuC/YwnMz8T8TC0WYRCA4RtS41WdPgK8CueI6O7lhlkkMnX0n1Cq6Xo8gJ0kw4azKgyv1iA62K+YsnQ8VqDknI7buOf59ALieOM5Zbsins6g64MJLle2Bp2zOx4bCbnPoxGJkhxYrlcklJfhAGKBsnFZZOOW7QQI8lq9tyhs1+WkBg7YkmXfLxaCIvGSppBYEcNYAjLO3nOgGzdY17drO6iG8B3IdeZ8t/G0TuE6nECmQXB6SkHzkVYxYB9nE0jT5oPe/n8bB3cyuFF/glUdRQkkWo800bvebiKpru1eWYPD18RWAQ5zM9/wRANeTUeAIqvbhSHJvTmFbittHhPqmZaGl7C7lAtXy62XHtHOJEvB381Awa3r0FYE8AXaQ/JLWdW86ZaET9wfrRsmIE+0Kpbq3WEoziYI/dUwZMG8u4Ixx0V0fTE87hWouNhFVA+AXfkaLMI+wj2D/lGmeVOPq7WgigdU3CkMfPNh4rVrjTJD/FjR5ySA9LP3Ha+sUPGuBeTLg+r7t9PJ3HIQQTP5G/DX0J5y6QM/B7s6HHwrG3Iu1zuUDeTrJ3IhLuopbad9oA7l7tVXv74M8P3jsea54PxCHzfMTATT6SDf93PnarVDq963wGsOsM4uexOcM0wOAtfGyb3oGbxj9QHv8AzzpZMGlLdvZBd9VZKi0pUcJ7qRMOWWJ27nskuXz73yZRigYmwadlOJ4xWCeHDnEHF8/BaJh9BKCRE0rn6QwaIaSwSmZQGydKqF1gjJsfdFQKRpMEh7vvxbotavS0CBxmEhTf5nDH+j0Dx0Af+RRIB+T49cmg9ygMesoAbBUpR6eyBw213fNQZs8cJMCW/TPxfRJ9RQxucR870wABQdYQ+N2ccw36vuXS6eUB9tc6/ULdtT/kuptdrJKf2rJ/f0SzaIi20nVbsGyoehnpF1KG/+29ozxSUZ2Sm+aYPKXXJrQpvjtntVhBdqQgpnACsKBVIO23K63grzL9YbZ0ZmRJNxg0dJdzsWitRI7ROJ3Lxry0cMI7anJY56Mx7HpQXzrpmVqi73ynNEdDN/R6ZLWLgvDKGl+nz8eLZ7pVYGcS3/f/66kO+k/iHNCwOf78ZLNThOa9AFXQRadv63YtLimzEwGafMHtA2LqtCCBlflI9nHUJxpzy8CQYmsNLdLhPcrsly4FUBGBtxNfAVLpGPFQCKgegdhgRENqxR+Lctrak7EYXjo4grrlZFg8c64OejboXsbROSsQXmicTYJeBheeMNvOOpS59qyYyj2cGlEdf1La71H1S7lc2SssRwYQVKJ3bQdMBj6SfuP0vvbVXLzqCMavbZ8IfEJzuJk+S8/oWMlKL2xxbV1exReUGVxfz/mQITniGIzxcuGkP3hjecLk7xBmKogsrUf5Ptm5DYDW/kmeKx3Pz1T/ifv7ATzeZITYolguT8AdcvVnEpDaQxmO9J19svgtNRfLriwKEkjwUA1wtAdQg45bSAVdk+1kkzx1pK3+x7kDttJrELuPcXWxs8pP3umDcvzaXD8TjKQGiwBBXmeX/mXPTvpbZdbg/MAEPIftw9EjJr2hMnz48RbkCXa8XW/k7TXC7qLdyPVa/0oOrPn9UeJbt+ETi6CcZWF81sJqe1o7Vfih66blAz0jepc7+Fub7N3S0V3GCZcs+0knAJrKxBD+08csbAocG1AI0DEh/CvJHX8MdijGtl6tjVuid/M15hbMV+NAdyJ+JpZQNDIm1jNyAYJk44aaF6kqCrPufmtThNSJqHRtuTqVXRq+vU6ELrVJeQo3W7u4CYcobjLbxASCz5JwK/v+c/xSrPLlSzCrlR+aWFb4Oax8ZRUpl2yw5+pQN7iLzf19lJSivfuRKZe0G0MnVuwveH6HdzF9ihrwK7IYQcmB1iJWkKTR4eouGt/1MAFj0cZXhorzQkO54Ved1inIZHvzldaL7RTqUr1P9um8rL6kfzJTFKI97IDaEuCjDPTjlib8RXpg2+SYvzx7YHmGq01zk5cbnOiseQ7eGA80fIvpXhZDYKcZk8IcIC1ujpMuSiZKt57CJPC78wpWJq3UZnk7ewFb7JT5VP0a9AGWFfebtX2w1AM/wiEK11bBZ1b2QwwmJ6a7ZNbKMQhreUlsvzbdiU4OiQuViMJC+MwLeXWQOpIBNGamjrQmNTZXfpiA4onmQXhRHAkGVmlfqfHVaTVMBocaliYaFao90Vubq3qRemzr8gX91po2uUIwl6KaSEZV+QrHlhMj+pb2NqMAc8k6ReOStI6c7DED9gx2s1Xms858Gi5Mpja0EgQIOr3mSZ8p4rfWy063K7OVXqjqnr1ymOxO4Nzv8EF/zbmK0esR/7mkFtRYxtvsd7aog960e2EOZSrrU7dgE0BJq9b/LrPeDhiR0XlA9VH+djGbkhpcvMUBsA/hF/6OBIlJdB9nPOQQRqpIVVGOgZV26GNNuVDu/OniexY+RtWUBxmxkphmzE+QrPf/QqJ83ze4WctUH/OEWF1jQLbJGzWl7zwdGjhgNa4r1w6bi5YtouxIst0zEfdz4OygY9SbPGRo6Nfbe7mGILMFcunvhGu5t9gYf8aKYdDM+znJvhE9G7Z1sEsAIkcHlF+Hf/WKDBPZ0HEAs0kI/hFZ03P6TkHa9JO/M2daGzr7mRGjLE5z9mmXMpn8otP5+KwNmJtQvElvv3gItQvfI8ekH5nUkLfIKQ+grTYdvhQIRnB3nc3CkOxdi+uQQ6h7LXiUnxf4NCneHqQBulATxN4BsYH5JxKRGhybu7hBr0fzzz5vsk6K+HP8By1VKeu41++lSpMoCIFe5lnb9oaOlwOKhcK0pjy0M/P8Eg5cNU6EYl4YE50wXLdqPdR+Gu1o76VDIdkotulM8WSXkAWrZJRCpRz7yVcvz442rwoJvz0iz2X0WpSpGyZSihLngWpyYG+X2Sjt4z4LE2lt2kPSY2JdwS4+H1lGxz9QzuoWmOoLfFnl9pwwWPTlu27tuj2jNFFc+DgYkUIkmxMFA7LdzeqeLDZGQdRQK3Urd4Q1kzh1JqENBrmVDttC6mTmt8OVPCQKQIKbx817Y+/+YU8OvtOFDy1kQnwxblBqggWATITQDgydXsjNFM/hADGMALi2nBuOkAMxqJBpIj12pdjKcWYX2SRhhhZDKyemOHLYdeHrcmuF1wMd90nyZUTIsAOJKIVsKIhfUgjpOi+vAeYdJ7AQqIeaSLGGz7qnhcgS6lbg2zKqIw6J6ZOLh7vmXXrb9V+8F/+QaZOg29EZ/iufp9/yGH+V9tOpmcsprmBdX5FcEWQ2J8CsJSe3YplWlWDVwKhJZmggW8pS38HREbvNPVT16Bdp41BGyelNsLWldaLeZbrJgIW+yx46F8T5/mDfT/T9A4v6iFuRuNbRz/JDOi9kL/0m7gH1knLNcSJ8Fkzp9KtHKT4+C/OGtkh8s+LxzFj/I83Ark/2KLM+l82Rir01b9GxN/dNKuXuiNvTtElpWGa9DhHNXjRqlSJ7wP7EmtJtwNJydwGmWG77ORJdo7Er90gzK4mJF3nji3AHeuiD7eBe7Zp3mf1M8Gkv0Bg6aO0w1T8cnRjx28Ga74gqGP4SwPTBUbj5tfBesLyoO3lYcbUoe1+DnFycTQUyR4CwbVpWTQ1g1YuiZRd2cSzVIPd+gaY0Pxk+afLZr3J0N50uuZXfbVCo6Cy4I42Gv5zkHN8/e3WlUezMJJ5/GCNPRIS7DPtxiGUW4eSDR20cv0RntCtqRpfmPzv5JVVu4nrDFtCWvHDyBwbGnGodjHfGvt4rrHHVB99b/s/vnkQhD5S+AkQ7u60D/SG+rD1d1rQDTwE3AQ+9YgLoO8rJVWiW/9ITchUnfgliVRZRBvwW5lG8lq+RYDMCU3ax1+KtIJjuHvloQRMdmu+whJcwrSRrhpzJtdgSrzlVSoDATWG3hH5rIhZY3u/o9dhSfiMhAjorfC0vW8UyAUj5irnG0A5Oiwz7KAR4Y/lziHGOsf/4PpRdM+8ilNfOmy2AQrgUI97xBtmUv32zP9DK6BGodPv2ii1cURUG+bM+WtrzOMddZx/eEkMvsa3wMOaj/DtJSgEMzu+33H/u+Memr3V9F1DAGWi1ghJUZAlVGjuRp50l3tRykC4vNnqsMPmxFz3DmCebRvXcsvWK0DKmUFDYtCKYkMtC084RHodGUyma52cwkEMxI96PiyQjzoOVk/7B5xmvK82OJwFi/Z/4s3IIdijCPy7wOSYhoNKkXGY2NTXQjbMDwThvWQpsGmg5fqGnnRLfHjBR0aV8+JvSuXuMnHvpuvRqydw+adDZnnM8YAPM9XUB/HWTSqMedc6F06hlqScY0ofwcoPttt9SyMFtznAHwv4U4KfF1SmSE1NlNcfAdIP/Ze4HAlZgrSXAi5mjxZ/8K5UNV36w0IxE7vCrE1qSu4nQyDNcY+hydXgLFvu+8FQ36Mf5Q1Eo9bGfiJZcGozuyRlqy56niFze9Q91aHmUzukJuR10MWcY72ltodDB4QLaqfOUmdY6fo5XzdvzN+musGUUGQTYauoqToFIbs2N+iUDrekZVRv5FVw92hLAbpWGXoV7XWER11l8cVu9hH2wLM3NXDyxy4vDDMoUyOP8JNDPVUiokpL/o4I5mGlzvv1mklwTuc9nTc462B6r87tphLEi1hHMYte2hVx6kFfzbOkgw+BgzUA40MbQ/xBGsniQfknJtu92RF4njDwgcVJBRP3Fr9jzZ1Gd2ps4eFrs3lBfmAj4gW5aMIAhvjOUmSlErz5KoHQb2E1J8CLqg5cstgtkdoqLq9LWxW6/OQKErKdAD4kR4kvSwwsHTPMebbX6sLjLrYM/3pc7RxkCJTfUA5wJrUnXgODNyIqsT9Tw/TZt4iX41JkxsqxthUy3bm9a4EdfaAnLTLjh68Gip7E62FapaqKxBgkyMrDx7DbQfJnH40r+ezTdLY0fuhkeoIFcoIGwx8ysGOMtkXsqKTyQBvrqMJxekV4/onbIsKqY7Ela+RJ1d49fts4hbdbhTej9W2CBg9jPIlpfvgwAsC5J26ueMKAPicqrit0wruVpIH6iG7w7cl5GJvQzbyrjHpsECfbKsNr44tfM/XW/3DWK9JhbUhXawVJtJ8m/WsSzDNsVZqCdLtRoXjcdcy+69V3j+wZ20tgAjE8m5hyao+iY37i3X39iiQalt46hzs06PsGsL2rbhNzZJE9Ccv9bKW2VtdUZFZndEhIcT2xmbisqb/eHct7ZkxVSFRhml2JfHFClTzvrPyJzp9vbmZSeNMJO+1nSrLF7btF9VdNtZ7TSvchhEXFO6IfJZWTILw6rdp8LfLk3QNrFNV66AIMAO0EEuOKOtMPPYcilJDM8Q0gGgwJtbD4AMb1v6Zz26diyWZN1OLpIW+cxAk2GT/gBGry6g1DPZopfrEd+8R6qyOuEwNdubhlGJdqdnqjqTkjtsbpJ35dKGHAG6jOrdQl11/lDTOIaun0pgFJGzqSZNduCBxljrCXJz5sZiFZJgAUa9J+9HRjg2U4P8hKj3vznVPxecl4hklY8K5PYBfrc7ci2Fa6iwwso+kDFz9uXfPWJzz8y1fo253Ztrbe7GUKpvPkMAo76Trt8uGAkq3/WYSdAkhgXJVngklr53vVdKzF/H9Qmou8lvcUDh8Z1v+7QcLWeI8CRtgyJXjAC6z8qh5Tdc3iwg8QqrsEdOMUgmYAaIvLbqvQY/45xYv+64NjUZSZ8AvYtAndCfZ526CkAhZoFcy5w+wiGBIW0UpG0QQdqAEbFYtkVEHPdrN9ykx93EsuzgZvHbFJt+uY7P7QAGNS/2AFKcco5Op+Kyezt1uQ92Bl273Aqtr+c9toakFnR/s4xXh+mg19Hv/01EEg9ngMixp+czq+hhISJ1CFzX8UH3zomiIGHrnJ8kbs87CnNcAXZHO4HBm5kNCwMWIW1smJwMd0OMNnWooL/l2l464hcIsM+tV1GH9ITyAZIKXsgasXtKbSKlRba2xzDsS/3JA25TKeqZMsYdwNVW6ECerhrv8tc0rGPw1ZIE//YQ8uJ++9ZSf3WD6ZPWbO0M8TZX+TPU+fNrwxbFF79Ej6yrUxZiTxcGi/gVnWz4hmGYOMu9SEmtJOY+9voH4wTnb41rlCDzqkWnunahx6rZuP3+z2VyofWM8KMFPZsHVg4ibkuI2Hi2lWcUNtSX7oybSANm8osikq6R+/ooA55RNqGZzQZVIy8g4HV2DkvPwVAVhtwulkicVXC+/JnD/lobBGfwVq8p8Vzb7omJF3sfKmLN6pVQY1F3qywEtbunbW81DUM12VAdTmDhHOinM+MgcnLLK46i32XIyxpblkrC3OyS1VT06MdJnWXpG5DdmiZg6omGJSd7pDs4T0Ng+szdbPeZCgurBIbSEww5BsXAI5tuYf45gTNYiKgDT3MRS6A0g/rWk4iYikn12nKiAfVjpo6c9nbn2ONm2H1zeJcB0liauARp00vLe2nXjcsCEVJSqfYlDVraaaT6GfXz3d/6MezbSkyI2z9sFWnNjNOfGFNMdVlyxDzfIJfdgS6Mq/C5INJ4BLUeZmAB5lnFt8/nh+hInD5Knj0HuFdsxkArJTiBSG9e7EVgtR+TI82hJuMscWB1yChEbmJd4QAEJVxDh1THGfgUrHLzqL2dj0v91+sYT+4/pLDTjlBFe3FfyzC0vofEV+uhG+hW/zsJfcfkc90Wu5ergX5mey0cXkjMx4+zTp8HjMn40UlMZcDxAdazjCo80BXJlnxMIOLiuWLewVaFdfdTgg21J6+xF0/V1p/KiLLGmqPiGWtwx7dnr5/hbVnIlWnYdluCnhYn3zWYYKzmPN8QN/WWuPPD9JHEcr7p0S17bFcSJWQAtD1m0DtqhfY105H7FERbyyQc2YuP1ofEfeGYkdIjOX5xu8ou/cfE1h44Ir4t5knIlADz7ZXyqk65KgW/Rm7X7yQPLqc/RlakJzFeOxMTG/gQ2k9je2gJ75ir7n3gbTex/9GGWbIwcI9SBrJiZutnikEyblCxuUUBm7kIHlZIbttovsh2YI+71C4BoP+rQoIfJNIJ1TAO4eJwCw0NYrf06BVeo5RdTVo+0d7iJl1E4x/OCc4q1uNbQwL+cI5ZOQozq6qiNZu32NRT+Qy4fykw6feShdxz5H+U+YEHsID4ZpV7kWq4dCoFxGqKdY7AonM61F9Oq6slqu5ndkK2AsFeudvM84EIvjjw97gTO1T/wEQEqZAESGyjVmhljZAaVkW7+O5fQNQ+uMS+TM8g01qwZCiGmQfysiSKWotNNCTDENnXDGRyHOVAzKDtNcaUo15614aSOyFh9OGOY0rl15VQ/8vxHGjkVGSJhEJt6p7IS0QLEBdUxzYSGfyTZ7kvEaTzGMuIBxnAbH3SR1Ch2sTCPD80LTVsUBfEcguQyc1fhCL4xthmhVLXqdpWty1Va/G/7TK/6wWyaT/MJXSQrPFcxTqAbsdfiogY3ZSBzwoNXAWDJiejoNSdQwdwQh55UH9npOWAsh0NugH/wnjZhnChO+pUACnKzFLYpabtSGO68E9gIu9A0jaK2k5EWYRLLjQodABl3eLv24wdehPY2r84At0SMW6Nn4/zbtZnVH5O6sWkfzHZC5+0v4q5AYYz5mCMEpzwBTNaTMPNbhVNGhzmkASyeiVw2IWMa400jXAXtz0PpBoWolu/ITTez2EVRwg9s68KLkZpZ3bRpOAvgNZZ7k1Z2HrpeNApqYAhyPZLxFpeQEVIIJQWhK1qtOCxyP4/q40P98yeZ/8PQF56piuw/ZKeN2yd5tsIFrAGA1LfzIbBNxpNL3kIjeEWTn/7jiPznLNX4w4z5Ue1bH4U+Llwj1GBdx6IkfDEELLitTsQafUj1eqmSGeHy0D08V5ksTG6fa6OpOhkQyZrxfcKAZiWO8TcHb+lnQ/hiiGaQsh2hWEwEn8vSsB9cTcCReuFdFv1BiPv0OWOVKEKSCMX5TQoHCn4JpXTie7GFv/4XkxayTFjgMMCUvwo7ftNfEVr5c5kanqTi0/4zqcebI3IgUqP06LL4Cjocle5NJ8VjPLiE0ytR4yUOCh9nKVNubY5DDaHmC+T47oVEMP/MAAySj+KYm9pH9LWdhj5KViT3JBUMCzGFsvI66usQe9u5zAQAbVmN0u0lVeAefRK+ccHm0bXYTG7MuEdDjz3yVJZdJmYT20d5cnG13npcFfd2/1A8glxN9jbdyO6Gq03WymYaksovVA28IMEigamg5GvaGqwM62rXUWVx3fh+Dd8BXeAHnAQsJoT7GjYkp31o2ZaGa8K4GuuaVRCZGG7rdGAdhH4c3CmJ1nkO8/T2rWUDjz77oEhwUzuIZJbozKTfFsNkB9uTx6Md2W56sprUurQfv0eRMcBe4YNe1C6wuy3bd1pZby2bpFVICStml0xxeTZ5w0Do8NpmenP8wAuqu2hwOGenxWKzN8Cm6sXMBYEntja/5G9/kyW2TsWSNxxMq6oucEFavVChKgm9zuVfpv3G0vE5ZcxsYht5z0lbbA44zNKAxV40rSjrF3tWe39Hpcgg2ChAOfgG/LEq8jVbV/E4KVFfzAv3lGqjLhc+JZJAVBcsWQxJ7nJNTMMJXQvHCvC7bUhfQwEhuOFXeiMKe2P58MaJhy3d/78YewPSoM4b/z4AEIDhLFsXVRPJRMDKhRA0VI+Dwmc4+yhuyebsmqZPqdXpaEkxgwbrp0DnO+CeddPzM0otUm0GfUrar9ZIPQ0EisyWOcDrIDluwDCEjCK6EQQeXmrs2snqQ9r0WIrhkr9zXWdXRzcSHNbr8gj4ujSOM1XerrKQm7VvxOpdt8Z/QYeTcjTSL1fiyLCSmd2L2gmk04m12FNTGx/zryjBTSr8/V55ERUqwbBiQdYqwOl3vJlMd0XLBJvzvuqigLZXEW4cNgQyhwUga3G5TEgi2OyuWeKFEWQ2GgdtIxibgT0AQgtuNXTf2s/Zzt6jMBRNlfcxVedpgl/qb2RWFCLVXcCYCNCsHhnVQtIs0MOrRt8BG23kyonlA+Rd+SOK/ss1grq/dZHMeDO4OPcn+O3NwHzi6dPw1HhVp+RwaknaTEcP2oBXdO8WyWRhaG5dZs/ok0jZTkCyg/Bdr359axjFHmGHfSGD4gNgX1/BA71Q68mAJ3X7sX1r7dX0Exov+lY1YOJpxS7/ZU0GnqllTZhygpiKFuvA6u5PA4qisBqYYr7YLcorSf5LQvjkolEr/rHMxXZzvUX/Zr8HTwpTIWZkb/1rXA+yftB+djzIENjJ7b194Lt+fUQqO3AS/SPRyRrBvOCH6jB3w3hy8vNWxxkW/+OwsglUMc1CPuU+jUCU13Qagq7ZeVMWjAFvmyBDfjGF98SE9860IVFQ3aysEzCq9e1rwn91I56RaLmrygDVYHiRUB+mRxxEiAHb76t8fSUHVZ4n6xUwLyEvBbu8TJZX3d5Rkb3TPz7ktGCoC2MGhezQIq1EewzEZ4tVW0JZE/Pt70SR6Nnl2qvInulMJtfd+GEjfYOVjmoQKRpmtQhJP+KjAieuMh4gBOdAVbsvwKpkmxbbiGR9BB5KG7qw8/IkonYFBLZkoYCbEG+I5bibllbu3kiqT7zT/o3gpz5DqfF4tM1v6trBo/shgrML0J4Oqo75thVeKxnjZQhrhX5qam1UidhP8OqQ+TWjFlszOXELjqFL8MeUIPslZxiP1shNBYd6x24DtrWr149fXVo3CeKRqeXTC+t6eWe04xpJ0aTDLZ7UIWvBjX4Hxd767HK9hBASODwhqxTblmipnW9C2FnfWfAxgzaEne6tfi7zln+7XMq8QvKeeUye3s6cKzgrUGeVpmSCUU465g6jp/C6bvKvRSBEHVcGK2Pu28DRmdTxqmSXCbH6YMvVVgUyegg8KSHhOEYlOKWGYfoyWRBePfszXHy0zQmk12YtS8NuV5873YvqoeEKLwdRmYZmaRMlBSvbPABLZURw/5wzUZEr5dOf/xCjin40w0eHo5wbH89mFa6t+SszlAcNiD8OK6UPq5+g1xG/wwCRcdT6x7ssnKX2Ly73Aw39PNDzph2lnrTQpdZfdalY/9MkL3I0M6uNNlW89cpH2H/7Zz+mkM4i4UOBUwyHevXMwMszfs5plgS0Rsp5dE6UruEEGrI7Ii0xtQSbFmJP+UYbn8X7IM7BSSBBE6X2/
Variant 5
DifficultyLevel
730
Question
A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
Each smaller triangular prism is 660 cm³ in size.
What is the maximum number of smaller triangular prisms that can fit inside the box?
Worked Solution
The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width (w):
|
|
A×w |
= 660 |
21×15×20×w |
= 660 |
w |
= 150660 |
|
= 4.4 cm |
∴ Maximum triangular prisms that fit
|
= 4.480 |
= 18.1818... |
= 18 triangular prisms |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A box in the shape of a triangular prism is used to store smaller triangular prism pieces as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_5_a.svg 480 indent vpad
Each smaller triangular prism is 660 cm³ in size.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-–-NAPX-I4-CA30-SA_5_b.svg 300 indent vpad
What is the maximum number of smaller triangular prisms that can fit inside the box?
|
workedSolution | The dimensions of the smaller triangular prism fit into the larger one.
Find the smaller triangular prism's width ($\large w$):
|||
|-:|-|
|$A \times \large w$|= 660|
|$\dfrac{1}{2} \times 15 \times 20 \times \large w$|= 660|
|$\large w$|= $\dfrac{660}{150}$|
||= 4.4 cm|
sm_nogap $\therefore$ Maximum triangular prisms that fit
>>||
|-|
|= $\dfrac{80}{4.4}$|
|= 18.1818...|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 18 | |