Number, NAP_70028
U2FsdGVkX1/wTcuCahp8HPsIkkCdc2E0gX2+IE28A4vPLEkNbq8EK9jQdLNp+B/KD1j+79VBXoxW4BL1h4XLUAcrNF8GrXgm+Eev/k/5Ktfj8dm8jiXfjelHymJLgntCpcfKc56Q8qqOEa7kCWK6tQqa4UMnBBvUijNNu907veWadg+kc97gzfeQS3qCqRnLdTtFCQXXymr6W/2CmqtPC1t0mKa6apRdT/Io/ThDUzxGRNgJTRJXbUaKGnQy66ZwVOnYg0JUQPY9O/dI4PNNwXM+O0Rj/heCXXyUadhiEip6wHbHiRNaJM1QYzfWrLr++z3aWy1TbP3qEDJa5Ct0G8aEulfWSogHRzbSmaJbeWGUJcimyFlAhfNezA+XTLjFfdluGMeOyI2tYBsylN2Yd/k1s23PT+wRBMSqa8XSqhjWaujOYFx3Tpb6e49J5Ayb4p8ZwMRnAKdC1nY60mSx2uVYbabWkCVOT9xUHExKBN/8VYPbaM6qcrazhZp7c2HVGSbutRN4wx4P2gDJboxC3R3b60qKzNUetgp6ujmUeqZjg+NdSlM+d/qMDTov3gqve3e7qSDCOa/GHVJT+dL65SOgxX79TJdpLfRA3cCc78s/lYWNy+p0kzxo4f5U/s9NqtgyK8WBuOZ/4dM6lMchh2OUCoQf4zNxYZLEGJl5jpqmOkl5+zDLm2OrFAWBYt9xj66iFqJwcHmNuSLg8qmGYmhDZ1d8xX2UIkOxhXyauP05a9g4cKkcSas+elSplBOSLr3pi0LnKIKrqv5qUwEHcK0MQqdd0Eyq8P+h6xAChDLraU9MAtnPw0RpCTnHXGJYe2Fu0tBGJQ/Q3oraL0snrH23WYC2fvWfGkrF93l2HgynCTNhj6xNHcaLaP6eXJa+5N1L6SdRl1VzW2hVCaMk3+IxfXPghrrh6uhwj0jtruB8t6hNe7vv9c9Fvkr1jN5+e/Im0UnKZjLa3Jgs5MFzUivrK0aVVe1/8GF4a3Hyskg1dKKgOGFygU8iqiBDw41/aCiGhRxxytEf+P8F0NGAfXEa1TQXMXedBV1KbKrICGuYUyzkgBKCYhpipYllrV0f/1PimiQfwecMf/ISJ+kegRyPVql6HbH7eq1U0SEajrZ0luttUOKx/VITrWTMxaJ6Zp/AWsADMd1q8gDvjNagWFlqevjFWXeZbbLQWlJjEHMdpKTddzFaRcjfjcZcXBtrPii6wJi95tAXHqg4fj6fNuL1NgSY+Mhq1LJ27oIPmXjBQUy18BkuWyVKdt2zfVSHlNLJwbDlld/FKGNz44iX0gScaaT/glljXTbsK5NiGcQw3YbJSB+I0ej23kKFb2fAlCEkmgxIrVE0REIznC00hUZ8avEPqnYW5M9H04CpuLZgER5DOWPPGUPSfRAOUNzMUahb11qtdWpQnjQmqDGjlPLvTOoHcEh1Bnoo9vPqsXs7wL7deZvkRDcEVP5JW7H0g+QgOMmdOxD23Z+GaeaUi/rejsxDtF0UHtroSBMWL72za7VrTM8uZNo1iSS/h87n9dE/TiPYKGcbaZlf/PFxyIX2b6t9Nrmw/iNrRBwMitSGQKmomNRFEVjQFWRZfXB9Holwyf09VQdmjEj9r/Q0voR3G6dh1ILTKOirWnFHIFns2FuUapxfHi14rhmENiSsKdLJgfl/myLR/lbyIHQzFnquaHIVs8EBpk0T2AHi6ZC12aMYVsGHaajChVh9rXA9h+6TXQXApYHUk9Fswjsio4mxdX6E11mOlHCYkf9YPSBD5La40uYu+P28qKDQH/jbiqcHAM9vytNibEICjIMUarXHQEEBspgA2PAM59Pp4beqN1pmpKqO265zuvTYoCzm5rWx66f9Jh0uG0JYSceKTJLeNhPvQqrw1qKKE6gVWuCmy+eCO+5ayinyLUe63YyJ5B7LbFxWboacTK3uudXUltlXvTw1PjBxxEl6DaAeetZdditsUJMHfR6ftyAQNVZVC6M8YkZRFty0Pb9t88bG96zNrotps1pHjWqE0yVR5bBa2uzIfuYUcJqRMtBZL8sOi0cUQXbKeI45RRF3ePFFy0wiKFOuCgKd/3tUrIuanjmP2Bx0bsWjEMYt0jemhKfMZ0dyHjfExx/rrZkXL82R6rTWca0dLWtbw6VVclkoFLOhTtusjIt2QeETujF12vaMr4fr3tYjAfxnz37uoPOZ9rKbOWKXXFwy0KSIU/Xw5Fz1EvIGiIY3Wx3IGKEM8aYe+jh/GCpl9vxOcaTGpPvokwA2ALdAMY/eBeayc2ekEvqS/O5ly4V7HITWeia+YfSSNEUtkEfSowtFMnW1iSzf0kREy4ihm7aP3zOzttUbj+qikkGLymoSq6Tnu6wWh7a+5jQGH/BwILcOL39Ts3IDN36C9KMYShLEuw/b2i72zWMmU5j0MRKMbgxByk4PMDn5rwlJE+b0Sqe4AlTTOoXOa46Ulo4vltYh8Dj0eH42s0DVAoGF8c75K2ZreCUJm8WOYgS7/IgfdijikrIiLMFsvT2TzX0IP2dVZAERuRaAooKTbV7d4pURXCv0D7a2oe5ktHZTo2VvPEPopJ4xJlK1Y2MOWvgBpIF9iJeIizXDWzUrkURSz4kBDLPS5NFxAk2xaZ1GjU2H7xMpnYKTVnAEDDwmLn8vN7L3AtjX+UxV4SUQscbVISMOqa3neqahRHDMcore9d3R4O2jMS5ac5Q0EGgDMjZkKl20eTqWoAHVrfzJhtuuZU73lgAIa5aV4BxI4m374I3wzDBPmzZOnI80fd7JIDsC1tCliCDuCZZ/aGgLT7kf/VzM7i1eNq5AJGxmGKN3yBKSwaijWIUJbbjUT+tDW/QhDhtOgsv5Dro01qjOb75bCb+aUCLL4HoUfk4N6MZPF8S97DV9vT+mBZc4f2W/Z+e18ULQHc2DNsEizi5ziY2ZywjQGePdHAsmTJNavdclgnj8lnhjLh8ZMXX5oVVbq9y1bQXPGb4w9bPov+yHcuA7wfV7r32+9Y6Mgn6kRNOF4jOKNIGH/ldQLfU4kmKxKrB3mhjoqJ+RGPfz37l/CgTFwmsmgdZRENl2/MfLFqprmZLzBhVFnV04i5PisLmZ8l24myLVs1Z7qNjjhE3jUuUC8sL8beFUiCaWdZAeavMbDBuRpovldgVj8PJSmqgA+7vr/EaYGRFwW6aek+mdmqwK/kyC1UImzBfm38NPSu/iK5taIO0Mgvo+MnRF514YjvZpnLLAE1quQEZXNsuKPNcpuIsuWRZUnFRilTF1BmrNDkALQJyYxk6tlNlJn3hJUBWRW1/Ru/XvNKWRh+KnAoJDn/HIrf+enkkXmJSfv4M/D74vz6SGbu4+se67MevKad36kbKp1Mea+d38E7Ump6ULxjfRhTkaW1dnpwDesSVz4YaA57aidM+qP1CmARiqOi6n8zHjYw8oJEVzt2EJfoSF32YIWibiMM24iP57ZVpM9kCEEvGJvObYZH2vahKJ6B+v4zDOdmIf+H7ifEShmcnKzTmB4EowOLF9ul8GIQxx5Kgcrq0CyFlBd/qVZ0pLYH3xGnYGeGjno8Zxv3Bz9qHvNW2jP8aJUdMIRadSpOp8c9lY7BaiTd1EsneCK4Cq8XSZxPPTvWMAF7CmL7kq6TtgCOjn/e4ijqnYlJg9034RB7N159EAWiAZP4Ctl4AeCCLgdf9TtMvb9BHugMY4w8fhkdDhVDo6PXDAntz5KPhDX/RzFFY33cEg1UgV1A92wfNyQJiwwQGu0se0vj4pZOSRjpshTyg42spgRfyeCwtU/AMtcmTlf5jeNFJmCE9O9h9gJmP8vbR/cgrEwXijG9hJtABXYEZfTpEibXIUKG9gXIVbCLwEQDAXgLr1FZAjwF4z/PTuSYjut1RskOJqxQBAg3UDCEItjvc8TbhsEVkk0UQxOxBPwe14aUvAHUiKwSbp7GPAj/vMd2zXs8dYDMgU2PiEEj8Eh8EdUZz+whI4VcMjvNdVf++/av4NBgs5qHWUTL22BHP3lepIo3pSPyFpuVGeDLcBSd/1Gtg7mGoxHapNvZmYgZbCVEvEoXXBJKbR/jG6Nx1njCGIgsMjREvOn0tnbzL8jaIo8g9jbyka/9Cx3gBxjgV68rSFQmSXPxyRScRIa3Hl8lkNn32tpbN8PgzB2fvb7O7acxf35bxwbjWDH/CUiIZpuxwC0ScUQ9yQQ4FJonnedCDIQwR8A9Rts9MsnHUOcgVO9CouYeI8tCtxNE5Wgd903VaNFhqSdvdeDTl+08UL3V/4E9TEuvLXO7/8IdFdPLAoXYTWrXBP/CsO6xJcAfmEcPCK9fL61oPO6mTraBjgzBjXDRzgQrtTJTc63w/PB5nJt9/b4c/abH+827ihWLV7Zfl0vxgNbE5eQdNIFL3vbpzUj2kS2F5GGhCrVL6qQ92wkv6yY+p+GweAjFNSSznkhM0jGpOEon7g/mMZgQvG3TDdXlV3XjPib9flHpGhu3oYm2z6nWmoCU97WD4It8SmcvKu0HaUTdkU9lezd1u5gcBPFdYU1eDmxMrUs4x11uDFwiIPHkA2mlpZ5ZCYj1UQaR2mO3BdXqbn9fbeZonDZ3eupiNZIiz1EVIhBxlaQP82CSJ99VX+o1X/pTvung+v7WJEWYrCtDsl/20EhLlrk0ssxquAa0xV/4n9JJjD2yFscdhOz052adBeyLtKfAVusY8EHyA+/bYsweFbzs++HY/5crFit1m12yHIEDwWTSJobxid7koLBj6FgwoOVk1c3Qb0VYGrLxuUwRM6yEwPcvL+flsYA16VAi6luEN2HFRnyzwC/MBhKK5sEYebqOI5lBIaXGCEMLFfHJF0D0wV9+RRQWtEhd4FTt0sGvfbT0cvOxFR2v0gzxHVZ0ip3PwBk42D9deHoPxy0LkkIlFYcjXxz1ChyEO23s16LiHu1fqAejFVEhXvA+usHiilAhyXR8TlZV24ojd9ORTgBSHbKTO+4bs9Oem8LYtR9nBDC7QvNXkAEUfhbstzZ58+p6V5Ph2umbbOoL/YieqkmM9BphZr0coNcFlF/cCPccZcdD+ZLlfZr1tQhLL35cY7/0MlW6y77xYVIBDPsj46bZYY4u7xAy4xJAq4etSvaG3KjxcGkVLhFFzdomXh58/QR2gpWngTcyzNN8YwjGO6tKb0l4eMAEcM2Hau1PR1zXExRJPzkLkNHV3VTYHgp/1CWOfl2TvvsWM0e0uIaRJ5f14V/lK4ubc0VkJJCane5XwS93GN61iEyhgJ1fyPvZrdprX9GV1ywbg+14HF87sFBPjOxfTSDy9NrBJkMCJkz8JOtsFS4JKB9F1kmo2mGjU9jcvLmsya64D5xMjFmo5DE3/mlcxOT1SUPg3dkCmBUjIafzvgd98Aax3ZWiEpGkdrS55F8mzo1DajQvpP/MNdHi1Kw1lTFwZU1tEJdVoKLxNP1yyNze+jlI+24iJHkIK1Yd1wfqcIGuBGdF/WWeKUardGpYzr0L6NNCu8CqWx+WL573tjLAa05Ha+o3qtupBezFs/d8+e4h5p6tPidMo5JfUd+MXMiftPb77eMxFede2CpdI+HFi1hKwQshnHMPJl0DBM5AU9SHGzXczMP9kyI6aTlYWk//XAUJmz9+JSi2xS/rJoqi2yyIuqw5yR9MQBpBNVAYnKt20jUuqpFnYV8Y5biqLebJdqgBZArNyJ7dLpMQbWwM3vUWrAw8CR/y3ZkbIJ47J+tNj2zjByLA3U56Du9Fw/QO+i42M46pGRJ3wGN0ZWgG83OOyIxuDEx2p+zZ2qrTc8UvJNwpQL1gOBEwEiU45pDKkRH1ATyPh6dKxj639LMtgQetvN05iizJkE5exnwDz4bWD3QTZO9UNh2G9gkiwhQv+Yeg/Uu9oSp2jGO3UFPhMbGyi5Jdh0L7uc3Eg9GBrD6dJS8797/wKgPKKA2chC2IEdDfNPjUdGs0h3oLYyGQMUp3FSVCuSBtZJwMK+IMoY5AxNA0kToPVKsQ2nfuiI0fNJd3jo3xp6YGPrj7lBdD0FFyvdspxy0PskB9kpXoZGdqA0KTASkRZeR0L0FOBrSVq1LGXrq/++4NOR1GIJ7ARNOfHP2sFrHl3ekSKuWo/aGpPIDWT3EtrTeyeVHcbM3uXMprwYUeTiCPb0gaopbVaq4VSWlucAvf7UvbsvLTJ/XjSarmu3+oXsfkXaog/Q+bTPyUDe5puG0VQKuJIesG0h+/BlsSCKuri51K/BsXfJ9XyaLi8IFd/9/pWa6MWo7iMq/m71tQOq8wz2eAXCxm9sh0YMboastOO8ngHHTz3ssMSO43m4DyIvtHhlhgOHPC6D23HzwjY+0KTVqf1+b03q8eWIAhkaGpLLjc1r/GF8w6ybqEbj+T1tX0oHwolfBGXep+xugQMke8kdlG3LVXbtyim14uDtKFu00PrDrBptTATwRGgKLqaCiEZWMtHVUnLOaYLJ9FN9zLrWygHR/n5OghX7gT4G0CO3Tnf0FHbeRTAqw5k5jxNVoRVnKHj7gc6lzbe7uq/yMwTpHscM3mCBFy0/RW7guWrbR6w0Yy0LWpsr5u3tV4Zd2qz63igimneQ+pMqUoy+PwN9cDUldzGJn6FuHiSgdFP6CZ/jAUPjjHafTral3xA5A+J94QPqjEopoZMySkpqp5+gq473EDfokxhwbMRO2Wn9/VFXqLhU7LWyEYrDIDYIpIByr77Gy8O70yl7okVAQZI+fsZr4OGRgDIaZRMS3S0CfTnxS6QcXAFhTBLD8HoFQOlQl1S2xYtv5jbhnkbiHqHM58YZ36cAM9p5n4hJjo+uClYx5T7sUraCezMtnvycm8tv1aOSrG/Y9viRtdmYFYj8uTzeySiLa0VmGhB60GfTEpLSMLz9aqd0KiRi6YkrOyp3Gr9xdQpYahBCGjUqm61RqABSn24l1mGpHAcJvAnD+SxBCF4dwKz/djEHwniG0rjZMw/9YJPGjBxT5UIpms5b30O9IEPPXoNCGkCFL6HPTrTDyGpaJPHWhXJ2kxQlCtG7IZfczvM/xTXVczcWMXzhOoytFY7VxdfSww/RU+jbXzZ0ZeVdNVD6zbS8xk+9jB4ORiw+7OcdHdac8lsdIVaOuV2jlYkKWxx4dpCjAdha6fIYeQ6xkmc9zzpbxgbekSfusZhGBrzOMKt2CT+hRHKV1enzVkDJTDK6yAqjgZeLqXpRTLraef1RU8DCLugmj1Jbu8GRFGQa3Q+nIXnyHU4+fy/plWanpOs5WpKplg0zW3pWtywuCczq7rplA/Iz0M7jKqgVlXGO1QTT1Cvzo1ungUH1ZZ1ILVQC/P2xVEjmbvRV+PFDVIRacWsTTVKqykZdubIbGEsnGOjhKwRFF9qXeJ94rNgYm6rJ4mhR1ri94SrBmWOEI9kT+vUWjpeTd9pQchqi5tgqZ8GoGQUlJIfJal359NTPadJJb2kNjeI20qPgzB+wbJfrKEL7yEcAtp2+ucs4X+RUdVAEnuUm2h7N0166Uy57y0RJhlArcrn+6krrmM09AedFWbAc/3uYPu+pwzJi4R87XrMeiUnX/mz1od/pX542HLTdSYUQqkQlU3PxrkmXpHmHk7NvUlShKHUfkBMiIRUXVlKvRxRCk1XqLOJMkUVks5vDC2BGHdbQtFjuCcmXe4Sqh37Kl7A5aL/DHRaHV4agHOl0KR28xH2TkzkUPcTqlxlUFzuDvLMRlfg/m2PePgrES9KYWv1lnrHkE7uhJ2NgzEdRIHya4tmYzzklGEyPpw/KNgQZk2/IDnWjLhhDd9r9x8GkwKtI89Mc4WDh+QdOsYQqPv72hms99ocHhxwZIF5fz/8R/2V3BvlspKioJLIq2P/xDT0UYz6Epo06+lszMrmcrdLs5iBxOos7hZwG2UIhEmF3xpRY96K3OotxWHQ2olAOOWJgsSda9RBz/kpeXOP1U8OF45lXWfGToBL07mmMuyy4/qqvXhfEyqJ8pr/NIb1aXIrGvWBzOSGYKKJMqVZO3SaS1vOiBcjQ2CZipQRs4Fz7rgzzoyNeMMlRZkBprCgH0PXHQiPvydL8gvrWSRn1C5UzJbJ/XL3nk2aOOCrRFAzdu7nwNitZLFNYmzdhK+ccBW48S4Ec8AvkMb5L3b3UgLsd1VsKruXUzxISa3Luz3IeER7ANCB+Wowr8xLXKY7jsD3o9vvGjwrAIYBF40fZRFQ5IYmxLwmJtxpMaelY2cFwyx2fkHb0SMWv/ASyH4qc1JZtw+cwsCPpHkIrO3W07c0QADR8OWvde0ewzLznp6OT2/3511RNn0dmWquLvcdEJB0mWNIo/Bo2fKp3fhtCWx02NB1Q+MUKLUIMAd7SKM0nmXOemkzXGk/mYeiFppwMu+E41gHrFfnTakn12DSU4ubb8Yb8XsFek+KxGmjetTQrct+ZKe304mSWWsB5aEqrlPkPQK1TNpmeTajeU3VLD5Me2uMrTJiSqlrTEnrzrnFCIzsUwfMgr7tKpbggDEdIIif9Ie5N9ftkSRs23tCRY2ktDvXbCJ53sYAztZcX7QAa8nZkYUxeTHI4vfAa/C1+7XIaPE8aD8H/GJAS+AkX8nPE4Ch9tbgp/3GJXWUkUytwlGnR60evNvZXS5deQqdML4L7VKJhtSIEuU/H7nypdAdVC6Yr50FdCev2ho4/4vGyCQoWC7Bh4LGgqN4lxrt3hUM18nK1pD28/ErL/19kosDRFCVg9OV9UmYH+J/Gek3yslwCE5Sw8rnYBtJfM27h0uACtnZaAxtutjh1CHLaS2aISvPpIkZ5XVCKzAN2MIIerxS3DvPLPcJSDDYPJTErLqSw0C01Mww4lvZ7dh44MP6lcdkAg5wsrhGWk3eo1UJb0SXS76C8OIZymM18Zq8DUW2+xVMVIW2JuBkFEB8isP0rmLuDWOkDoTq4ORmrOCM3xaK1eirU3HhNh9pL5hm3sXSSnZikjApWsIhF5x33f4RWhvLHQ+rCOZHHelElS0GdWNcw6pKfUu7sDJ336nf5n8caFoJNL4k4jrd0co0PTdHD6YgPFdhGpidNRL9Rjx4JbrdJj8hVrm8lRh2apqoIaUA6x8dDbIUgI5P+Jnq47+rzQsoatX459yqBOdTMQ7p/XSxFVtkTawo9f22/lWYWbXibbjDyz/tZGvpQfQzQUS5Q8FMVmeNSyV62m2Et25i9TvW2wNmfpa4TGeKGFxT1jUfSyskevkkqQhjPnnw6E2+yznqaWELekp1qcIv1VJWSmURBgJZgKqlwJ9QjPZnDcgGX+xiljqMS7vB34SezqJfjzSeDQDxcnLUuH2BUJaSgPTUEAUOxHJLLY3+zbPzF+IIpEqfWxsCdEuItUgTnAS5RTsX3mWzvdNOaxUKlXr9Rg/ddJHg73m9jgXPUiA9Va0HTnAZlrg4bC6cVNNwcYyNcfhQvDNWqnngbCU0mtg/JgNDHwE5ImgicAf40PnyOrr+V4gWeKpskY0v4TSmFdbLCWCcbHzsd0QLyvppTIU4PgMavVvVR6TXMPxRVYs/CtR/CbGdR/FbK0isXKhnSzT4nz1PdSpn1lVYvdN7QdNIwMo0oelCldFyw9JhLLvPCiSrKQwUodmRjx4IbnQVjrfJ/OhQ9Xaj//A+YaxD3g2zb+1R5Td/bpwwMDYGb85b3Y2kT0QnOuVQtbTjSeMI+vyci+VlFpo4Emz285U3wEq46+ayjSx/R0RCHq0GfuHCQkhiPREu1qpdpP7HJmucNGqAkyhWVExvoByEcWEYPy6VxR3sp7VTyM6JeND8JHxJfKZ90MdOkWIwOK/Ezs8tZ+WnMW7yLJDERjeb3bmnhi2cTZxX1gwoY6WBfxXstdLC4SjGkkeakyh0L0t/Bz6xmlwKQYZMtkLEY55C1WzntiNqhGYMN0zs3lolak65ex5ivrT8qpnrrbLRWqEOu6LgS4pVFMXxhfb1ILxi84STsa8imdnmGJReGDL89wnT/+o13dExO93kOmDiW/bjRyd3y5zQA4rJi1q3WI+6xlRu+U9poNFLj+YtSuZuoWqG58dYHH6FXpBJaHAqwdQpxVwJwYHdD2GjqWvfjM3RMErpgxbSJPbVNeQ3zxEeex8H5/ZEwmZgzYAuXs1LFRwCG0Vlfm/xzrv0L0D62jAOFPdOxBo1TtzTXRcm4NOSU44WZPtO5nXt4NRgwahVhTUMcgT6e0vPe+UPFXCnn5IxQo+Lq5x5QerrNrj7h4ou9zaE75nZ2Oi6waB58wtX54GPQklGqjP3IsIHPhg2Ih3kqePQTL/u8eGxAf/v+iOgkxNdjnD7r07hpNm+OX3oAxKMETiYHT1mgW97FSsOfD95vHosoWClHXOiPdGoQ+9xwsIznFRsyq2nBy66dR3dIpM9OfnHeHise18Rqz8W80ZPtrJRnwcb0aY6GWYKQ/DkIZz5Kd5N4HSMjugOP9kIFH+XfZ8ObRY1fOfuk8YPjcDbPxKBSp+5L0aVcTBWjmNB+cvnyRb+7z0vUq8t6iqJNdXuAhHAKpYMgP2Thl+ZgyinXgHoFGMIv0QzkCbwqSAM5OzH02I7z+7XK7FstO1HXvD1HRYaWsVJ2rYee5jfQ/Kbx8jrcFTC++LW6WaVqmq3Wd1Iu2YRbirF9Cf+F3CqcXdy0o/BhOa9JAY3CG8DxW7VdPQUh9Jb5YMayXgrWX+O/5VmYZGXB1Vn1y5IL+sJQLZDUrTNYYglqPbEODhjou+IjbrmjbsVop7OZZa7mjbu3s+5PPR6Ee7uqdD15YHTIPyPo/YcgO0cBdtu0jJjgui6En9kn2yDsp0LHUDvBXdrC+ljJcqHXD5L76MsSFgUzJeVTAkCmNcNyhoqGSrL3wt4dG4Bu8kyW2IkOL2nCWQFQf1FH1CSw/0SAnmEEdWWCGUNaRE8oUQo1eaPo/wLJrqm3xDRoancj+N0JXOENymyf6PLKPGp2r9ee5ebGF10Ii76rEzBfIzU9v2xkYmdMgH5Fbzkhto1N3HXx1aALlHm1saZFesvxWdqbBKAT9+DMdTRURJKrLqU88VgBLbTXYch4JWgIBsb5nkO0suapkKWhn0PwvMQMmzwi1Aj+HzLxOH+WfVk1fj9PLXHDY/iUMKFLq83yL5Tm4ZMPZQTV7r9kZWKIvurogI4CNY+s8bbT9/phRxehIWGx3xpB+M6F28LOP9PHPc2gKCH4ZLGaINhRORlyjmJ76CEUXOZD8IVvOaR0KYmoX1QHf0zY0WpfRiWF18fqsd/VG8aKJTZZYfZhbsm3QeZ/v15qeFCL+Bt7Hb8Kms6qnWVBOQDfjv/hoYseEk4QcfXeE9SdJplDUG9srbOgGBUdR51PkoBTUTWcZsRPyxImPO+bIXtJG8tD7XeufOOh0I4ukzZ5a9JC4tL9zb2peykv6AO7Wwnovpf7XaE1sMPzCFl5dlVjo8xo306r/hcioM9pY6DI/5149fj5VG2BW8JKzGpDmRZZYMJ9ssMGnEZS/aKPukZUoNCzx9sHFRDUp5MzGfxVn6wxp+jEYIk/PtR8btloQV8PXemt5R1SCNQFvMCd+COuULl9YFDMyPp4E2MZjKkpLQqZsK7jkBs3bc1DJXfiFTQithHwLdA0pvnweLfE6zzbWEx2/s+aF8pZXjNHvy/S97GYms0sAQnee0DuVHVqDKcBWLfpHBFpK2rEej98zZCLc1uK2/j/NwP9kiW4j8GJ5uNcdMSu11ffg4QyU3GzCAHbzykCmuPL5QVBKKp+K1ww8RB7hg10M+fBd22owS0PCupnYOs47MAxJMb/2UoEvEevOYbN7rHm3bXJIwsEOqKuc4xTiekKnG4TH3bakFGkDlg3Hc7KmOrk7yASbKyQICq0BPO+Lmm+C97YCwEZqIrbGTR4xgDCwHl9Awl7xrV8ZH36TEb681tb9XD9J2qnhCVrg/vFK7sXtBjM3OknWzn4tmdNRaXBUWEC8mZ/C2bfwIq5IB/1XoAfwQVCKlAa4UfMw8FzB854mGPArmxJO2DAecqt0OcfBpOtgUJ/iq5C3oxVG2u9xPbDNRUvRqgr2WJlSqHGk1m94D8qKUHp4SDqiH45ozoiuniYOzcidJx0B1YsiW6PJ8i0AWgIGrNa6t5kPISq+qT4CbKz5hWCC3cCMPdANKl75Y4aOV9UQb9H6gQRZnxxwDDuuwUJyfr5XS8DSYEco80Blcffw6kB5C/pMef12kh3Hlv4I0b2al308wGfEHUyqxfWK3UuMigPWvqvm/tpLF6vTxuSse5D9+HiDoRMy2fgMx+jLHA/pDG/feT7cYSNwtqvb+FlozL9RlyoXDYkOTwZLvH5w/WBDsw9vaC1YrqWVYLb4dA8uZrFrbRdoweVnPqzGQwSynMcmdcUC+/NEGpMP5qqabp/3Ewc49vhn7MBg3ZP4OFsZAcDiIuUI+q36115KFpYf2pOtVeZILdn1zlWhX1EyxOnMVWSkLwYUDf46VIYv1Us0r9UA4jQzUBIV5spG2qLZXTspG5K1X9hV3mJ3yioWsBkdjF3Ncs2VzV0sSWVrR5nz5nQBo31t0L/f701Kn6EbPUD9wTuioCxOdFNNjf1sDH6xf9BtLsTYPhPiwKHABo6LhISNVtYitQjijhOIWggP8glMSzlAwg+7w4khN9awUdBpENE9ePdrQ/qLSx4Od8324P/vt4GULKSAKjIrNnsJhH4m7V8CkG3SeNDiLiwCM6e5oLDRBwVT1eNy5dVR46u5NfUQtm+XWN4jaGtZFt44ZgxmouUEiQtRkcIjf5/3VsGbzIK1FdX2dX2SffQz71zfrquet8dMJ5KpN44EcOAQsjSksAsCVs2mguFaJg+YgxiccZnO8d3y+6MvG5xcupPxQPQzDnrROaEtkngn8QbbEt3DeKO9cLYGKEzQjgNMszrUiBJqC/htGhS7mE53hV3yDMQmdxSghFVaag0adEZ5iIXe1qPnqzwxiJfAvZ4bBRTROxQFmU0ChS1burJziKAA31CjdtPFXDXI/c7osaB+klBx1aLrJug3TA4iZxaznaveXyE5hkDj2KCbwVD6ToU1XBee3XV4rIAD1Pkgzjl34tKXVFDPLOCJmPV7da/9ma3OxJCrVykF322l+jm/SBM9B/xGPqk1wFtCNQTBVGk/PVCh7a42xf33VmR20VwFJe/vXAqv6QIcisMArfYspNANPsYajMwGukfNi1Cb7igaimdDvgJL5pYG6Gn6IcSPetlB4LxHyJCE8zp4t/r+aH5vez0Xh7lZ+W770GbHaha7/C9GESIirj3LssiURz6HYmiCynW7o/jkBPE4vY0t6EJeXIfQZdsU1XYc25+hXyZqf6/v3bJBCCad+X9r2196SGTtimHh9NZMdxJsDbzmFPu8Pv5kaQ7/AEz3mA0EzCGmKfOkwAdF+Yibn5pJLchGArJ08BAmOsbDJ7FyxJsg7Ugp4sP7I8h7GhOdwmYsLz3wps2MUJ9Svidl/r0dCU+eRdjrcLx5TD23PqT+mvIzfWuWpVGWnwaF/UMxg7X7JSpvS/Ew5cvBMLgJlngc9utq63SfanarwK7B2LkQ/C+Qkhl5u31zJvYHb2rEeHXyK3XHeivokVpCZB2osUNSnft3K5hyq/jFpZQ3yUqMmYq0TARiKndvuk2tAKJ1cVq4zK30CVU9NFvvr1bGE8FuIOyAuaF4e9ARAGm41odP2wGdO6GDdWiC3hmQLNEaTRZv3xObF2pN4irOAUd/VEOxPXDS3q0+81TpKluKvNnjt5O2YqNsuZwjJeKnTg2lTdcBgvwE+PyDXobaSI9JinY4A2N/JCB4/dKfSIgp1+ulDcyHCypAcSEjhA2nfiODGh9WOciGC4BrLCnRbImWDnhHV87fyFL1wxpib2E29d3kvsbSI/gWHLK23DF3IfswIU+KLHdGDVfxm4w20PdhV0+Qx2v6AXZTH6d3LgtrtjvHJmEPGdS7xBBcnILCHr9Ddz6pTTu3yP7LeieWQ0y5P/LplDg1ZT7IucBJcMKXTQ6AaWTxud7IVm+HpRZiY3wWGZX+uK8tVgC+JEJ8DhjVm9VU0Z9qv45CaSsnxfejBxd2IQiyVuhyKJtub+4ZRKF1ylSqSpnbjnnI/PniediO7V2YmWYc4DFLh7Zb9g+ixZkFAkzCBg2Hq3X9cmncfMlIUcY95Uy2UMaej4MveFF6Z9EcrhtlruH3Yl4Xf5ZmzJJvSLjZi9nXA+1gXnhcZK0xnas2eOWRPHulhTy9V+uvNPD8waDFNrTJPh6AhQ/vfsE6y0R2zs6ev+SnOZA73TZLoxd1cc9m9HhOWg2wSeSJoT3bqQSHo1vliHYR6DjM/2LUefl1v56mbIs42yoh7kwuEfYRrClmp4fvBN4yX+lWo75gm2M8cja5NPk9UrPIJ9TpS0hUVTGpjnJTeYKH3ZFy4M5JxyZ62yM+aNUU977bmBFY6ee1667HHba0oE9DnMEKBnSW3Q1i/fPdBIqZPhQdgIfiSVbYdMvFUhkuX4XZJ2bU9qdTmz+Fa4rdMlMHUAtOnJvrRg8Z+MWZcBk1qipPJKw+hFBjtiBne3ueB2xr+bxcGv+cw3qxulp11TeCc1xA59ri6Shukzc1ic7CMjjY6O5Jntcsd01geA0WPwgG2nZbPNGkzceJb2d1869/VyRGk9+ikzf/gZP3R2lm0/xHElWRkmcwpUjNCDZvVNGDKqaJ6BqtrzoyDCjBY0Y32QZfGTunE989giY9G5udM/Xl3xpgTMuFBL/K4let0GzdKzPoSD1CWc7S+kQapyLCjEAak1tsykYx6Ti9ms25scIXTeWClqmppEds34FqBZ8TBqEfzskYY5A3KChZGyUIG3QbVFvo3PWGR9caks4E4nMWGrV7sBQPu9ATKI/fSMN5NF0ej3VI6e2vbJ09xw/G/UD3gnr3NJ9ArTrIfe1+mp7xgdVpDAZaFecwMZnrQwc1JTwYZFNLPidPs3OZD1/U5YVD5LsheSzE13Uar5FC1bGCJk1sfQ7GHfio9V7NeI9U9iF6XV5wL/oiQLhLJFqOx3Y5ZfaK9tmsrmvgPacakVzRIBeE9TM8MdDZeKLdrE9AxIH3wHnQUG1hZKgJhubM7oh465p8n5OLQLuoFhkzoklZgkFfuRIWyBUHxtirnAWS9fQ4hXdGJpWn/lmscNvaVqUp064LHVxhixet1TjT53EqNGhvc+ocQtz0/s3rKUfSwpZ9IyQIjxlD34KUANKZ8kNOv1kIHu6YPgJEkcBdENI6XXDzwFQk+coXjMdXZ2zjDlZpetBDP+m+B4Hg7XkK6od3BljPrqwQxcVwofqjEA0VGoCFcE6YHzu3AQtBiDZSO2/cy5DnRt0AQcUq6GZ/KRx0K9SKra4uRltWh8bi84VCZ7ADQTyaFyUnZC5JKO1n2NOBjTTR95gfp1lEH/pGuOXGfrjYPNsTy9coxJYClRo0mlfDmUKGXvyCmHAhkTfg9khPqCKKM/P8SpkJQ6SzrdrvMIhckPYuHn/lgT62msd23umD4/AmeTnOzcNRZkU5vxA/tkXFzopgia0Sa5LTV0S+IcxsUiTVsG70g/W+eNj8FuH68ORQno6aZjKTqLO+8ES3gHSOyYUVxM18oLXU7y+eberZX0isoA/uMtQVxpvya5xApd3/cH2RKDCP7l7o07gaJH13OUZp6dAA/M5uPSj//SaOPT5jJp90L4vTFc9h9fZc31YJBMvCr3VTvyB5qU3PbWqn+h1V/FoyVDRDM65TV9R3rGzSpjhNlVKZFOoe8/Q9ilYs5k3OLPgOq0G20o27M7OkVi9xUdgozg0exUirHDl4eGZIKPawTh26SKItyytFRFYntA0lGjighA7mQpM3WK/RhASXKiamuKvm9hkMfR8S4HukWKrZlEoM+JybbTsN2XXPYfms4QNYJ9TDLALIz4wDTpYP/OoGgdbyE3qTIFuQolecHuwB0fBrY+IY9eOpYBJ0AWaZejxaCbEWsD9SQ2Jw5xMjuyEvG5PZNUVb4nN8Z/EdKiCRSr+fb2eGxlSeF++Clh0fBAtQ+jZV4RhOv1sIgAoYFsYDKRjGroTerpPGxY9QqZElhiAEFM3N/Ts+DCmbOyOBwJ+G+yxA5O0hu+CVuJAnlAxcxDgNc9+Q02L1e/G7N/nUyc+9+5tsbgwCk5+ieO/JDyPgcpkue5tocv8lOwg2aib0v4Hoi/E5dkfQ6FgZB1VZTkYHtMzTA==
Variant 0
DifficultyLevel
406
Question
Only one of the following number sentences is equal to 6.
Which one is it?
Worked Solution
|
|
8−(8+8)÷8 |
= 8−16÷8 |
|
= 8 - 2 (order of operations) |
|
= 6 |
∴ Answer is 8−(8+8)÷8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Only one of the following number sentences is equal to 6.
Which one is it?
|
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $8 - 16 \div 8$|
||= 8 - 2 (order of operations)|
||= 6|
$\therefore$ Answer is {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 8+(8+8)÷8 |
✓ | 8−(8+8)÷8 |
x | (8×8+8)÷8 |
x | (8×8−8)÷8 |
U2FsdGVkX190yCTeeeRR0Q2J9TnyYjmTb/kjQj3sWWzqwoeexOIXwDc80W3y/Ebrn9+DRU+PUH1aL9GxvcyjKaJEfNsd0IxxsgGscPgNizBb607oFJ6+UsL98DC0FB4LXZ/46NRRLm2Ca+oHylyFMweCy1oMn9+RlFP+mlfbGjxwiHc99PARwywikPE3eQm86OKyJ5PEPVma1nxceZ2h9Swhx7QWryq+VRbE7FVYIPFpsE9J8+2zvhcYLKVjl07meU4uvN3fKG/PWqK1nA0Puo4sYq22V3zyfkobw9HBV+mwtlOFBoGIzlc+3iqGZXg9lngMLvE0ycsjoHyt93auvBpl18tN+Y8PLCaRen0vjKSu19dIgRyUSBetdDKUpL2vFGwKuwB6ps6hb/eSH7hPIzIdEJqNYnTsER9st5p3FwZa5l5agdOwBdxyqMsFvQkVUA5tjqjbluFoQYQjZPAuyMwDMXq++8ImjhfeVKyLCKRzS2P/e0HQGSJ8AGdF2pPi56PrmtsDiip4gidOhiWLaHGU7JEZWFujDabwrvW4zYVYGxhHUZKl2WIOhsItDELwu1/PuC/HMI9HBNJXdEgWHji4F433f5kETu/wiVZVPvTIJ0Gx+cTu4VrJ5x1LEsM4zlGPgENZGLrRhc+YdCnKT0BmLVrtzzEHB016vZF+Fa+pZjo+Y6PAB7K9HUfcrvNFCl/Vwy/l5D+2V5gPxV5ibFBGDhaJkK8uq/QTa7NXGmaNPu7dHnzX/Cp0ML+wfsXrpqVmN24tropxgWsN46Dw7+AcAWvx2iIR+pP52qVNb03Q3UZAyW2Tqnv1q790INhoUQ82CmAnPKCwjkebraaSREzon3tQd5/cniNceER9DhCQFSfUmff6Cg3KuiZLJR6lmp/2YBFYtzprB1ieOrYyBWO8b//3BS5CQWsFpHN5pmrYUanNUmbQIW8q4F5cb8jO3GnEU5Rf7EN7NoR4IzieWq/R9IiPFGzW/eEWQvJ1+bJFeH/XzBQRRZbrdNWlWG8yDxpMSzWwqgkG4Hz8tYpHy/fJF5qKWGA+fUtYKJXDCMjlsg+KYzFgQHTVLJYWKhdpZLrUCzFNfqK4FP2ftz+TZP+x8M8sjMxMtSc3FjQAUyN3gesk4wg2nW/vbRAQhVs/kMn6pXsMftbjui9kw3NqxgEXuJJQ7L0Ry+cRvwRy1xb1ife7Uq9ZUETeK0BAw6JH/xGAoJlaI84dlLuyYSdJW2BupXdkg4r8JWyw2l5jjmVNUroxqrBS0VujfUbaRE4sDUyvaLzbs1BFdSl3NZn4WbtU9ZV4i1D+qkqy1K5Y/Q706iQ3S/PkV+RSel4RTxP5T5Yg26fXL9njdA7tG9BONpjHlrZnE1gXVCcqQpYuW6sZsu+uJ78YWFq7k4l+r4BXwQiYbay+x/ZYLsJNpVBGQ3v5ggy9FXQTNJW5W4B04huwPttxE7szichMZ/Pyq4tsKlkS/UT8jVRPLpw4TZuPsFLUeudxhqdR05nVzYbcGmPMLXyj24Es/Db3J0l6JxrbvzqqC4bRb9XxlZ81iEh9HNE/SXRcecrGQlzKpD0WgdU8NhqCs5E5HBV8AHQ4P2RzGzkLOUoUARHEQAwTBt9aK4WqjMLLAJPoqE7ccD9Cj1na8/asxsLJNUEA5uJb1ucD14ROiVxGMtUDFs5fbZWup9OOtFxmKQAyp/TRe37W/OOkxz9LyyD5XbW6e9Bh+0/ER4khrLTIlGGaAFT8sdlm7HW+dXUwbrrxZEjb2rOZ14eHRcQ8lRvk6asL5Pl164jhHlL+Cn3ywMTP+4s9DPRfftsWTK+FWLotxtBVstpGBZkneW/KnuoPnco0Razdrr1xz8tIWSM29SieOft8i8PtNRGTcRtilff3TfJc+Ocro65VJZFV87yrfHOSclCak4C7oqsrr4Dy6IiowxqjXrLC0bbzvpc9C5hl6CBaD2U/reWX46Cg1UJEuopgcbu+Ljo8ZrYq8GUh/+gxKr72PF3WvqfrsHYxcQy/3m8FU4gfsCUjHVFulISNcmLlitAchN1G8f9+aB6ierszaeQGe1jSuuSDNkEYFEFofYcWPuCsmlJxSO1hzhL44+Ke/WnCuIdpXydqgbEo7mfImeGL2WAlWaQa4MVYlzOo9uqun5YAY6j0tRBWPiBiYaxZ3NA85swPxGGKNLwNlGtb/z3fM1rfFHUtk+ZejfevXRcBGsx0WuBRHc9DikJngdJh6KZt64Gz/fVZahsda68UiV2ifmc9rZ1TItEeNcDO5vgopBNxMUfeHrBA/9W3VNOX9gLE3Cxu/61Izkm13UdlNb025Xd8v5EX/mL6DMlTcTWmKrIczQGa1ukGaxy/LMkhhAEsBETK/2yDX6I+d/x9i1NzXuEB9cAEN7w56SuROl6eDKTJzKZj8wZtGYm1bESdmEQ+qfStLNZaoGNGIo9Q4VjHpbZc/rT/KQiv52BpNcjhyHBlARxQ6XU/dm5O5Cdr3530fYdR7iQVu4QW3fKdH2epi4jxWZBPCdPWRwOF4Rv/DzbeiEcfC7zT0CzwG1+wkfYuSKgXjiVQm+3VVNqSzj6pjdTfTp0LacGpCR6Y+wr45GD09kaX9B8pKNJ0cR4dDo1U5LWgkqt351AyCpXiAGD6rQLDtbU9TVr/srGD4vR5HXwcB0KImOnOuMrOnrYDNRJTJDV57ckNEh+2CXkub3nSv4glJNsSIoJLY+n6VjbHjWF7MKbdSk/gj/8s5wsCbUL5eL7WYA8zRp1A9FEZW44wvNE8A4M/rcwbR8fnLq11aTek7Mo2GPRbf0mend56QldJ7GcY15S6tpU3BSbT1wfvK8VUCtVHnmGuI0TaAODAeRoEN4W3GA7szv6e3UdMEXbWqMoV8ujd7OvKZ4HsXnQLPNyIGm2aIdJ4soM/396bmdyBGMMO9BfEBtCRry1X8ElBL40aheHPlbOCyIxOY+ynF3HzEsPmNG5dolxR1qa9hhLnIOIJnH5uKTMZGjTgnQ6Q6TSXSoS1bnJdHkjAhEtOqH4O2e90o5/fXWaDJPRmSvDdBMYDkdrGsWeKZsQhIsup75HBWPbtsPl/lbKzHtvcirNU2JmdvaX4s+OlT4pNqm7WuNilwi/86W5Iw8xiziZSM/0FL3GzkRrktbxBAZEmFFKRP+r8LCYbmb40fVMwLnW3utoc6hVVTHFrO28xMqq1FOv7mF8cvaG2c67+OVzOsG2y0I4+RHuoUyIc5LPokXc/o4u/Ah9De430tAhz0NQZxSO55ouWGLWThYcdwuwfTuGYvGnDvBHFjaK8fN7nIb/4AEhi+OiigQKpbZGiLsrVS383zLSPGRPdc3iZx3ZUf/MEk9xK/mECpiB2K/bHUMpdwKdOITC0aSBpE0//8Dzt1ZvTQ+dxsRvJ0PQaCbmWXfvzVjfH6MBqKZTG2dt11zt6Ol29FvR6/cx/Zzvod5t9z8j/qPs5AIEe9LuQj+qfvOG2AT8JSvron8iHb7riXKQO9NbKNC5ei/gkuuEw6oDDNfFKK6bWcJQTmvXWvZPHPQTdlgGjzUakJtCDXDJ0l/eA1qhtu9TcWehJb3jrQuVKyO5bRAQsM0z1TD3FMiTjq3s+OXwmVdsCWIkuuXwdxBa/6wBhHRSdJgBf3ze5CmrumOO0cNmnFKHnOEI23Kre0JFeYQFq7zGhcAQwxqOjL7K2oa5fTI+zqTWUPTu2I28PzGJwhkbU7jOXx/K5eg7BAF3aCYYNu8LsD+uD4Ek2+mRarh/bP3nhfHQwdqoMuyiGKTflXNgS95KuQNpOS0KNg4H3JCK6XBS8I9gASD+cAfzlzlD0Vk9gawYeH8qu0IJ16AjKLA9GuQLUhLEXUSSEMz9feF6kw3OV2VHNjHFdMTZ2LwhWpbwtOhwpdgeZshQm4lfCVXy3fHpW4jq/0IYagnNUJEsfMGrQwBKetZEyN+T7qpjrjC4HCOI7k00VvQbVOQ4lNUhlCqZaI+kY7obcdRNueIGGKGP9ihuIrcudYuP222LJxpCFq1aEu1ubPs2rrbtdlh3DWXlEtAW57ZQYv2H6Z2wrmgnj0OS/NxXTBEEKm0He6CqCpQBJw7LKe8XLe3lczaW1FkRgDO5hxMt3eb5Ti7RdDjlApqxQ1M+/i8yrv1V/yOZb203xyMIwq2wx+6jhzjYpFNt8Mi/lkRY+7iOpA/5m+KNOg6yUIvdDdz5rEBv5T5mx6O5jzjYSN0H4V+U3YiWIPO2Y7+DwnGkWPBErQ9qg6mWk8mqtQnh8eqDjIL6LoePQoBS3mVJPnwp5N+GGlBjULQQ6beXzSS6Bm/KS2YhNtiBCw/Wy3/L068Iy/rO3oY8s5k5x3856d+8mKhs7L+mMFeayBjjE1/u2Fp6TxSbQoq66+3zfJXOlbp6ZR1uF+sUvA/1PY6UCbU7Gxp5p8NSrv/Qj9QCP7wXEmwQEnagy5ghawTpsLsGV+zDJcX6djRLkCE9W4553SirUW08/FE1zDlXMRXLc1Th0qVyTxU2ma3D9S/t3ewquOaiK4r7cFzMcDPDjKsFspEkzpzeXvTtQ4jbLPEb0PAxU1H+v0L5DCXWo+qA4hKD4j4ld5MGlWcXwIKY9hIQSr/PkabrAUsJt2dZrcgzD8ptd2T9+AW0rF1234hTNHlczpPrYsu+YlydJ3mwVPrsc7kzEuB8u/fsUxJWU9VFbleHAkhObgZ0uIIC00URl1Tl4UqpJiXznSCm5bbUTEXpW+6T4B3WmtEFf471cypyYmbpAVJcSj3eh5iUdwOVBOAxKEKcucTIAjNxMuKGNaXxHdYWnH4vCk5nPmB/29xGvYSksWeFDpSDF1vCjUNwHpHT9Srl7QbKdepkl+9gG120OIA7Md2/so/MZ8uCNeWux6LmVUdphtrnhYDfOmofdqy5rNeFlWbk/vaqjZiDJGEKpGA0UkD8xoLH9qziPimSiSryobGPfEsuPLhNYKyZ6mDnnNRsGfmWx9hOTAqhWhm0Bue1y+LQ/X50COcJnmdDHI+H9PpNzvegSY20x7LdiORnxSTPv9ECgjwvVAr7zBo8t16eXpD7jz0qoX0Ul09g/UwmwPwO5M1h2Ke4m2JyS/MdGfGJ5mZiENpqSGAgiD5wfQrSBmh+WwASfNAuGW73Zuxwux29JozqHIH7RGAu9SiSnfDppXGOf37JCcCgB7pXhvBf/Lxie7mfQ2yuR+omx9QHzIHzn8vURN+fUp8ktweWlWL96j0QCsaqOwCo9ma/rMtn7jxts2HX4f4pYDPnSAzXXqqq/4jhSiM+GUU22d8fu9oc4X7FaQZ7Q5SCR3TJ/TjFSBxSZKVlMeYQWc41nr04NNp08qn7tGDmscf+B9wDCrR56xgYWdeHYyNA7esjdn+mRq66oj+DUJ5LFtz7ZK0fGg1eblhLh8ZUiCOjdFNw7tp3llolx4LkGt6WA3AOZF9kyWjR7wEv4SUTzznMaqa4Iig6MyBZz3MjzrlL4DmXAnNdxlJ/0TXFiClw5yd73y251dMArpTxLkOwBKLZlLeAEbhg+niR0hjb6NF3ad+zGGzle7WEc5kz19P8hsBgNyWN0oRtG2I2YzE6Twy1ezzpZJ+JJnmu97M4YXwzHe9EjzhkqzZtv8fKa09lBSwqk1CWHqBPQci4x8dJ5n0sQbgykg6+gPLHE8bEbCx7lVF4LqT+KZo5KZAnnbpQl8YfLVikeMuq6JqduHWwBetcard4yCmKY/u9k+bYE7F9+OE+/scnR5bOWsnuT+/2bauOwVlJB4jBcB8Z2ic2LbrQmxM/VF6TSh9hlTBF96I9xNPIv1ff1st+LUTk73Rn3nXFQ0WAzs1ZYNBOm6bSYG8xnMrZn/kNsPznmR9TqdwWNojVhTHHYXXRib2SGJ9+gsFa5/D9EdeV1AP2rAhBAH65C3xFG+qse2tXedRQ0wepbmRYiSzkNt5kPmQodp/yOI8KGPldBhzLw7v7H+JOZrI1gqfSU07xt3Mf06UIRwGtrZafmBMRTKwhNHWItYcFMjMBm25nj4YIrpQyOm58QAaheLuWnDNSiKb6U4zWrVK34m/E5ZNEUgnhLfqClhWhNCiiBo81G61Vjt6BsyF9UoAzOE7//xS6iqFENFc15UlSk5nMqVl8lJv/cZozOX3jMbFj6hSIJ4RJy1RbFFkaOUOiCHPJvLAyL4hPQ2SOZW4WNJfyJZ+IGOGWV31JepbDoyFIXxYZuFvdb+lE68LUGlAYb5hHCfOSQ4bSl0Ww4/OhvbpWyRlnG9QwPvJkmsgqsPwMZSr5nfkWfAH2XQseN9l2tCXyJCIkdXYIczsGdPDUS0/z7D6pKLeAPRSOsmoV9AHm4geaxnIYTuyreo5xPhBeCAj/uvvsq3L7MCQZ7kEkVSb3NU6XZRGQFpTGxC9QixmcELGWDdmXubJTBNX+8VGPjiP7/bQnSWoKT0aZyxVrlgd2m3/AfL4pOVDgTWtOaGfC7aQWeFMmInG3oKdOhUm+HW6yfPt1Rfd3Q9eydWjCQJVauvwKpf09GZhXXdFTaxDmyERhEsVw4iPA1ko2RNfOwavnE0ZPt9J+b8yUItEtSeTH81IJexL+XhmOiF02ZU0Yx2Ng5DPfgf+tPzC9rJSIOWQR+jA6KXMqAb6EhlUPA7n83QgMgqkVVMF9UKd3tR3rueSt5Pz48HOU1gsCpyhFAHmMb9v1K8FvVz0LharIiWMDr2jsIRC0f6FNgndl5T15pOXFmiq693Bmyh/Z9HRObCqY7evs25VV1JnC1MHJBAiP1MGLQLNHQTUtd9DxLQbFfGtTTfucfDRqlHf2zjrVrlJ3Dx+BTPgapflqATD2qd2bvQuFj5DRxNkgLRSM06b1sai5ZGz13jd69kjzAmaiOSTnT5rSjVbYI+YsZsc4yLctsEEMIRBhspyncn7QV8MRdIsoKLSrYWg/BoGYKzV3Jt+GFMrlnbsuZzDZmtTNID1HZPTL+CgLTA8JRm1QI4c5VNWdfssbQG3VXFm3rxVtv074l0p5PwqLHU0IyELlL4rnhKjSdY1r8jFuSnPTkVxXhcKyCg5gbCHxxgc+doRaCaWAo+NmkzQAqliG+3zFCkmxiV6FcnfVDjGi9p9lty0DyphhLSRWxtYWZhINgkEkIoz46viZ1w3VneD9MIS21bKlG1arW0P67nIdzpq7JG82zZ5B24MrBZ1rilrzu9w6BaOnZP5cSE5wRy7HHGim3N/YVMW9ov9B31bkFEeIk5vZacC/LyO0SfiRdPJx+1IxXIVAYk7BTQcaxTus4NtB3jDlvQAqUnIgSuykmhkYyzheKthWzqNsBhSzKNYlaxSgpsB0AJH8955JlTWEZKEZHv6l1FLrpM826VGfUI/96D+XQBYTv0ABtLAJ9DbnSpv8b7NQVVWjP/Mm5spgKrXybSbilFs4diMSHLkGItqf6AwJdeG9gLKy8VFoLBqGkZ6ddMCXdtk8TX2u54oaEHjiWcLsz+KuQkEUxc+o/t8DYijBOaCMtjugRap5Qu2iLi+vQ9dSkZs0ODKugHKN9VXhpbLfziqnM9CIvf1gPg7kxcbrKyhCZ/eZMlZPTCNqalMnFpNyh2PatP7ItQqcR4z7sZLRV6yCVEbayBDemi5j9h0lQJLuZu4/2CGk9riU6JCzIOpb29YaPwlsVIXkcy8fK+6PUK0L7jm3EuSmQaRIYdg1cQ4zg8Uk/9dI7kWkaEMK2I65d5/o7oesXwUCpJ9A3lElQpSY9ALIcxqkVlYVpz7gZKgH4qej+/x+SrH/xWGxzMog7bEPbEGHoaRtKLw4KGGqtPrDq//HomhDmAPDqctdoiuZeaqAPzYHyPY0zjIh3lmSoh2NL4y3LNojoDs6Ls795MtZcIehYo9Q7H7KgJ7qrmOmtd5THXPFqm8w2yrRPVu6jk2LvgCgPVItS6oKSSQK2S0Z/vgjFlRKXbZ908jTbsKTW9uaypoybEj3PA239XBcNY+tWiD7WdldYsuOG1ML1uWX09Mmi1d1Cm5eOLKHQq024RCcNrQ9HqC5/ejAiB5Sq1DCCW2+SClzprUo2w9mpshiMXMiJCGzDjO8gKXPx5KaAB7nzSBfWc+kt4s/Eoer0NLgr2NNOd0pMcJaLpMhkHNhXKB8z3Ck8rocn3T7kM1SEGj9sUvlJE3qtpe5I+7McXr4t/MKjzxqR0hnsj+keHeKe4vY7unvo6srJh2iTMKSOaCBEWLrnvhd4h1LaepvWACriDjRhDL6P2mY97VpFNijww0f861TKi2MDcpcbkR7i2/LMxedNkFt/kuQnyeNsk9nm+h6eEKxBvgWaza24p6S8ypbj1oWCe2yfmevH1i0MwdUwX27VOId2T7HnAItXV8163N54FVbf9qJR9SVuCktmlCFedE9VdfAA75POkbKDrC5J+5nCTEYuS+1kme7+n3i2AjKMHIdrUWdd03C0h7dT0Y5wjOyGMyBt5qUCrH5v2MU7ZtsPnIOxftoMMDwqBLUWO7Yy0yr8znRY6mS/7oVn8s4aRyhEQo5zRd0K4nEMLx/JSoMlY+7uADHKc1CtQvBN+KsV9HI9P0znX4MWINnBhdeAxnazmfhrSAutL84/lcLH6F4nWMMNwb7s8vbx7CL4TwOzeDYfV2JzVtxi0o5EfzWooAGavZlJ1NuAM7uKqN3WTT/iV6B5t+IJPKY2Bv/DXqZ3zDMP/ep6GggAgsepKYFYL/JR865rc9FHN8tKD4Ft1tRdwzMzpeJBCOdmdZ7NJJIaffHPDa4VvQphLcPitDde/i7Xs9It6HBDismQOHW5lFAykKhCpQjG6F4LYMK5+7CkDcOplqpOGZjFM4YJ3NC5GgfFD2e8Qqzcq381Zn2ByZa3sS94XfV3Y7u0lOyd1ujeKhPHE4qtHfEk736EElCA/X5+EKrS+yXfCmr4usp2eOJ4Z0NZnXiEyIPtyVbJI1ClTZjWqlGvI2NXt0DFtzTRaJ8APdawG1P/9pL82fI5n/87gKhhlPvXxw08XV9qwSfndrG0ggWt2lwM3GM1+V2TcTUAnlYKz2rQqO9ts0GSwykcbxbfWtijl9OTFhq/8UqIWKIAQMvKdJG7i+ZY0SDFD95iyimgXogecZlyL0gQINeMPfQSzDyJpoWqbFQ47FXZ2jjRDUJyCWM/sMqUmpyZDCvnAz6rsxl6qVXpPBBnZdIEH+3YrJEdFesa7b5D8SXfn210UVI9R2LTiZhQPAPEH76kfxvpmYkneX/9RhePrNKelg8rD0P48DJNbyKocEu1gipZmF01727O5djpEBhrIWBdNl1us4ENHzfwBF33yaa/+etrDH/2PD50wjoHamLIvnwbiP71XqiPYdrTSsx+1ICfWBFmAcpYfhtXNAVEU94zHideLVsfKfkfbRBmBMMxz/ml/dfCTZNu1qsVL6rrC27Orbn3jBORCWVvaz5T1KaaAPHhxe/Pc/sQVId/gR7rRHmkXxRHcTX2FPL0R9q6U6N8j5EJehpFHYQ3f15ze1OBsCAh6aVSdpmlunejVkuS1NOUN3yl6kygISLFxmbXArSenSAukJq3ookYKfBKWtKpSrgM4veU/ey7kwWuCxq/rrqlaWSdM3+NhXrtvIMvRM7tzsEwREQ5NyP/7PZTO/4sj71k1I5QdvB3LTI9YdO0K42GvWqZeJgWc6602oWTsomCEv9F4bZnrsSvhEVyn8A2TsZYPBKuHcUygk7xNok/gonzcLYtQd+1C/LKEICdqEwlQBEW7HL4fL1qHu44fbcAIOmM1xH+dHwAXLM7n2AqpsXK1t6VIxVlqKPhAXqLjse3Ydnurg4jMetm7fOXSUFVdSxSLojp95/PVTJxyLb5GVU3GBr3BC6CyIZ4Os3AMQbRkJrjAV2UECWzuDH5X5i9oHGahE6xQMHUmbz1F2dQoI3rZqkHYlP/8vN/VHeKxeN59BJgDiX3uSwO9+fq4Yf1/ZNRop5A0Wtz8l27wFwZmiF8NYCrfMaSo4SXzYAOGUGq3WUNiZ1XXaUB9l19QslJ6X9nOHQAN3wQ0sPz8PlP6y6YhTp3JukmIppmh2naH0ByWYyMn0FX77WPjHUS/SDydOMCa/LVmfJmCtNSuppMj8CDbzJLNy+qqI7pm9D3BIm/IFNyWXZQM1XtchUYCr9qBb0yCCU9rm/dq8p3fxkw9dgFAdEnMvb4jj8NoppY5fF2KJbXmyxT1hKi5dJzIXmlvcQy8FkBVYxG5PEdSm91QwZIh+yceRX95urt20ff7TiuCm/6ao908u+jaMAeSLgpG8/Kdlp4qLvimX4Mqa5sa/b/9l/LM6AwWRtJ4HOjCtxuD52G1+qbSLvJWLNciX1OdOb19P1zXonxmc4r883pv0z03Mk8TqUQkcqoG8cgyFsRM/K9CVqlhMpMSChmr2H+Xl9RaspXwdvufrJOmb4UQTm1fKPKcuVei5MfhPLX5taNLulVEDH50b2ZPL+cdwa6iCTHGeAGXrjYmUwwUaslp0HPT7lhEo6Yi38T05QZzk0tDXIt3vZYEeW/4zWNLZiYAQp7tg+n1iLWR05CUrEgre2/+cRdiCv640QZ4LMaiXwH5jz3L9PEwLx9FbBs7liO5L0W+HHyQBJ1gJP9RqYbi4yJYf2QFkg4/3l9bGj2mxQhTtk+jBnrAN/QcvbQfVU/Z1MbGzaYOYqfF3L/I/6ucua8cE5rmK50Oh7Pwvhi1cj6EHixNdcyfw4BBJM157p2b+J7UE7vZp10qcOI7Eia88jqH4zxXzrDwoGdwLVQDRCNB1DUopMEriHjXu/fZLgGj9bUX7ldEcJ1Ne0DZ3H+TWWITM+4cV85JcBTLRkm8UBPW+NM35bRlZ6ewrvytCNQ8V/pg7tZn6lzoe+QCTPxqRc8AUcyVtKwo3L4oNYIGSJq9jAsIOPje0jXXdFkbNVqvpurUmEYYx2IVEg6u3TXgqDnIw3WBBanbsJGB8+x5TIcTW+n5HFaQfgTzOHvETTB5MCjtNnd8nASBlBQyzUQZBwJrduPLEALjzOdEn9/+Eu8Anm+e51syF+qiswcSl7PYkePAz1HBaRuyO/Qk1SO6oSw9t578AEAvZvy5qRZibvlsZa3vJxgNna9Gl3JubztDJc6WMQxDK0XswWSruBzS3TbK/iZGjokX/Wcor5UxfegiYUfUmgAJtD9fNkV4yVwp5DaV+mE9dRWndRdjYpSpS0HeNrD9qMo47poJDk8vWTlnBJyKunjkKnSKqgcrDXY0S6/UIMnOFKi/v3EL584oW7Ks+ioFPbEppmv5p5zuHT6+4KBkjzWnd6CBozczgPaCu9AcH/Pw/EQLOBvi3xsxwC44GarDt/rWksnk2dHUe1tewARBcpU2S1Fl4t8nn1sSNOEEkDsAVs0I1pWy6R9eMuk+2yUPtKhFNDsRb2xzVl0GO51yFA/johBVqfDXZWJK1R5u9h4iuVEHKZ+848QkBLdft3OdcH7IoYTEFScQ2DN9a/PJdp/7G3IJsDo62aO4PApNtTO12V+DZVKhaMtvRXDqrjCCpXgnC0+jeDUp+3hvI8CDwjMZ/E5D14mMxW/UzEZMPnwXouLmWy/srl/c/bT2vbxiSPycX6+Ey/9Wzrk5g/G6E0QvGrw/hUG51zT2EdeiEUqFNvFuswasf6ofhz9H8iw+IYrsQjCgjoSR27wZE8rCp/ut+6a8JJeHQUwqryfe9nSdI0QuUESVYWpDsPM91PRE/4t2ThvKK13nfsTFFlhaFejg+p6EEhJXwy7NswzxJzY0AnuuJUEm4rUp3g+thnnHOEFA6YQGbK4UdNHeuqCGvvvqYWEV1Mt6OaB1/72o2zOI5xovKYLZvQHQ2wPruAqJv05MFMydacjO2QOnwa49uWYytZ+zljfKriIhzGQGW0JEqZh2fO/a/k6zTO8DJPIkWbQCJov6dnIEPWXyyF/hAkha9mquMjK3f4jNBK3fH69EOs5jZwyk3VgOXq2xyye20VzHrJZoiQY1B1RqcrmhmusI//vN0ujZy6G4kSLCX9gYxkQfnC4Alonm1BARDn+8GP/hnZjDyAt4xeNafV4AXmSHyC/wQ92KxEPZLMngk+9+XFeHkzjjFJdR7uWR5uTFAAUjS72ueZPgA44ZybFVFsmMMgW/R1FCA+DE0H+1zg/0UBMidfuHHOJjq5doQCLEfvtbuisKn72yv7RwZne7FdqXs3moE4ign0RsdG3z/e4lwQmygeMMCfCaSHIBJPIQBALeVE4VALrAKoAEuLo+X8CT2CqZHMp1AcsVJQTDH2pumHmDBRqq+sMoro3Ql4C3JgiwbFO0i/ZASLwveDTFXhc2fbNi3DYK95lRVOz/8CVOLJxgxCX4CjoAFaU7YpwKlRca9dlbEhGPF74l89RLKWQOiBNuUUsPQ2hAjJZWMVJirpNG47r5/kupdF+yYZQeinkx6q3yH1uBfSBLdVNTVifWatKDXjTrGpA2I5sumSrcnUAlJ/elrAkcFZbUumXzwkMoJMlEpUDro7DlvjCqyqxLOGDP6N22LavuQQnpTsaQ+VsOq53vE5kEvVYacuveZTWsuRgVG4XpETGqkp9ipplxaGvNIOS9T01CaQ5BHwFqhUtgs1/qxOcboDPynTzgvbtvrR57dZ1SUfQlPnkT8SJQRBzCallCX7eo+4XLbrgJdG17jlPni10R02cxO7lQrlclAcmNoaBIvti3mSSployxAwKJTWxxuhW6jQND8m/CaGmHFnpQM6/iqSJLnVPThzuwek7mYMKYor0YxqumRfsbM9LajbMa+8eE7i9thXynP23khoFSKC7Md5yWamDdFjrQhKZbwOrB4EUkGPZIiHy/CJzBqHd0fNBXXF2XyTyPUjF6Bc+71VfA834cgsKrvj0eRJpTagmp04IObTbLiVEiyzRnltr06u81UUxJAwKViUEN+yPpqfP3polX2COEn2L58kRnVAlyTy4UCVczzEqJRQf/UPcj8IfzbkOla91/oesiDS5sHr866kM1Fxy9g6AVpj333ejYAM6we4+ci45HsDgKyVaoRu6gJtQvW9GVEP2N6bkwrlO5UQ+G6Tt1aK/dCSPLyR9DdCB8poTEzNnw/fD6mWmuLp9T1m3ACTbd4h84YhAdyOcgugm3oRfOd7lHR7iJ5m8LHrlvnI/11ERBQj3mCg6fz3JWKUMZBszmfPFhAdsrv00umMm8biOwW34dNwBzhcmXfVPjoWtkIMU2Zelhj6nvPpHbdnbmk6hb2xIIL15BbRvVR2lfCkVexwFLQwYWD4Gw5FD8puQLl/lPgDCRQWlPS2voVoG5hZjD09kLqOoNqXOIMuRWJxQ0GnyPC27fW+jn3i/ua4wzhUxdoGsmzz7tMu1rLnGfMr+c5SDeSYq4eobizEo0EMmChhBBaZlt9DZEreglWybfN+AvJOI6bbFmHA42nGqN9xPkD71og+4sGrDG5w+AkTEgNugXHyTmnivl6TDdWvFQMC5t/O1PGRCJZONLk+3Temvs7sz9EV2qe1RfhitSm27Vku7X3n+g0nQvGHmDh1Vc1WuAnTOUcJgrqlqzKYIZMU4X82sLd4wD/+UhtUSq91uX88jT/4+aABmeoEo5eC/MWqs3yUT+1eeT0lrugoPzNo5nS8k+DE2OBaWLur6pN+AlBresrBwov1mkSvlB3gHbgQZUYAezmsrqzW6gOFPuXenGktm/f7nRdoqpKstuH1H4OewzIdyXmxTYC9fKK3fl1VWz6fOS2kpcZDVaadQEEhQQH8my1REMV7HE9Fg+kB1fwT0cUHxAc2d7+Zc6KwVTTZUazaoYsBbtE+U6Oo4ToBNA+bvM39XQvig0QmIWkJ5oNqqlhR4tNvZnkPNdMn9PdbOdTV5Q0JdClEd5HTGsvwtMdvRg29Ln0hRSZ03OZ/ncTIDp9goctkQ5tC8d0E15WT2vHGVXIZwQWr4QEu+4fzGza5J8WYh530cLDA0UCCvvYvhwhXVhyShYAeGCoh5mtTNwLDnCTWcjNGYZCt6jQofJQfexfvLna+BJq1ZcWK2nxe/v9qj2qq9IwivIsv+NJ2YDFkLdO2IYnxOYnrYmwA0jFN5GS88tsD/0ShcZdHeDxFb0mbSL3ej38VBVIerH1fPjhZxtPudc76S1JVrzF9foCJnoj5szenCmJkkFoG3bxy3hOkn67HNBqGiKzpuGnjINoe0o4q22fNTrIXuvqlbEOfOrJ/9oKQqXhYi7f8qbLXoP5QTCGRV5OaFEKE8uEXsR1TI++WTga5ZCkFH50TyE/+hETFjTkoyrAlctKDRlcNPVCnda8j33wAvHKfd8kJtiZxRBjl2KHEavvrOmF1I+st6jISXXqfyN/TUjQy5tMTj8shS+q9AwVrHpPZ0+Bjt4W8PgsbF7MQ/1q5p6rGijX3H307mozukbmNdhHvOi5Hxkzg7y9Oot8wIk3aKuGMS5W+PXmJqHfxao0H9C/rIvn6w4OoaN++Duwec2yNmBiijsGQvtzW/cNRy7Za5PghneNm7hV9ry88aUQ5j+wgqhA8y9uawJV6N59gOTnhuYxPsmvEwdQ2j1ptkUJBK6Y/+NeahSFM88a6xyIqtRyH3EQOovFq6LbrYMmiHe3oz5DkLPwVvxdN3hzDxqFR0PUSIvnNayqtzXQL788mYeYKbqyg9Qy2zjhsXiBEi0KbnUiM9pVrmzm3FUK+FhfRxhnduHn2xH1jSwYkM0RLjBlKU1CQbkqWnZJ9uTF5FHPckvnP9cx695UXukXEtGTzrl+1JrEqHIjqOD0CTLhuWcNh4RwtnKtetGrQ58s0MKP8+1ccRNdwSl/99hReVYk6hiRWPQM2hY5Fzo6qSfZvgOR1Wb7GhfuiQrpdtP52YdJS63MFvITLFdROZodtbJZIj8QQKUhnnRw8T9rvS+BVfMNhdQL/MpIfULyqdS5QNd1cv7ZK4NO14CGuUn2TDJeYZgbI1hykjVpZ0WKoDwIyW25ehrfvGXhG+OJ0it/OBhF8SSpFkU437ZvFSC5V9nSS4d1XY8YQVh9KRQvQxJEg8SUZNJeand/ra37wdnXcJSDNrqW6hYxmordZVUVtXJxbtHs6Wh4vEjevXXdm4jOy84Vpa2Lxv1BX/QrzphhEmrOSrpa8kCLjA7eBZqCfIHUNFSNaPpfWTN3EiCxX+mYxQaozhTORD4wQuW1j7HMSEJBPHFhltaPwFDrJ+3kJo48U76l9Vre/ZIYEuVtXgU/sPEjiVihfBNiF2Bcj6oaN9RxMcQwvvtjh32hnYZpoX+mhXRaiKj9p1LUpeXH37h0b8jA+Ky9EXnEjFOXj0uktgyO+D5aqiK71H239xwwRPlYBVCivMOBxJ556of79LIsqB9ObVQyQzD2JjpSR6WaRXA2UrvPajrnu4iJdWp09rx5UhGBuM4k51oUw6UqRo5W8kCYgOqdhFSfRTQkBmJ2S8U8o9T4tYJIMQirRszZUAJzq793bArRNuYOc0wtFdD0oBJLPHhisytpeEGH7f3OQhSoB5BIjaE547gKPLpTx4AoF4xKUoLXEhEgiXZW/U0M+hBAngS0AQSZHjOJTgOT2xw4Vn2aVE3OHFORXI3GKA2hlKRIBcnSCmnRT0He63uxXANQJr2ZHQDkeXca5aDyETPA+iS5Lxzk4fT3vl3OCltiPsIwTYRdrp6yUsMRbsRhR2clld1wYftoEZXLa22JCw70NxZtkYSM0o/pW0c/8DYQvnedxpCyfymuT6Ip+1A8J2dlADQ9T/nVQ3gSlG73c0L7eJNVcL908EXm0xpk/wJ/SLrGlIMsaaiPwZOJ4T0Id3tBUC2HQOl4Lgqmw83EZHrPjPWsYqG2RpHsRHPfBVQhUvYhVjwtiP9D9uOKb4iQskSVuuf1hsDp3D4z6KWjOMWxslfOi8LmEjXdcChwqBlxwJAq2yo+LlRKnR1xiKA5rAU5/AaX4Kk6gqdeyRC2viDIfSYGxyTZOMuJM/ueYpEU5OiFogynOiWFauJjZanV/EKhYviVzxtHtuqMRxRg5fi96nEwctyxebKB+JKOvxHJQ3w77VSqHD4KxwnsRi/X9S4pMvl+Hisfjoc3SyIHx4IxfWkByWWB3javfIvg1mjquBY344MHFLuM4pXmCGSrEJ4unH2cx66Q3Fvb+GVqD8Lz4PdmVZnH126rNwz2td0OiphcHTGKVo+f5FvMXImq0K3TcWKk/j9ZPp/A==
Variant 1
DifficultyLevel
408
Question
Only one of the following number sentences is equal to 10.
Which one is it?
Worked Solution
|
|
8+(8+8)÷8 |
= 8+16÷8 |
|
= 8 + 2 (order of operations) |
|
= 10 |
∴ Answer is 8+(8+8)÷8
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Only one of the following number sentences is equal to 10.
Which one is it?
|
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $8 + 16 \div 8$|
||= 8 + 2 (order of operations)|
||= 10|
$\therefore$ Answer is {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | 8+(8+8)÷8 |
x | 8−(8+8)÷8 |
x | (8×8+8)÷8 |
x | (8×8−8)÷8 |
U2FsdGVkX19aDEHGhp7PXpscXxF6ff+lzR4QHRWUqGj4VOonuFR2k27LctGSeryilO4BNHUAajy1lxdoTegRu+d7Yc1Jp65TLXsIiIENOxBO7ALLccc/tHlibgXE7U3oJTnZ9H4nT47WzjJBavd72gqlYokeZ4Q2qJl4zgXXgFPqWehSrckKBafYEu4Mb+h0rtB1VnOQ8BxD9SkCe9SZ2nZDzGJ0aw9IP4RlIUgD0if/OgNRbJcD7qbG+SiF59oYo6WcgaezxikRJFGptLorAeCK19Zsufna0hqNRblRFFt0oAH7Y6+tqbqfJ4PKOCkhu2PnvLCLv6RJAQgsYw/JbSWsaLRcfkCnoZwgYGF4aDfSVUcYzvrDFmvwwq5hHq9II9HJio3wfJvN6xw5NVdnK5VTnkTMg+IoCr7DEEhL3k6OKvPgZObZwKoMkdzo/IJj8nO1dLjQ4svTN1Wv9iTe/PqKy0WXCPdShbGr7GVtjpC8igTlXyKOa5Ar+i4uFXzdlnDB2J+15wWIJ4YLiYDIS0+vUBkXbTR3ipIIg+1hqMSPpD67ewJd+2rflIyZsiZhptFhGTFzNP97Tum2Pd9+zQv4a2EPsk6WpMrPuZTanki63bzMHlUiC4dl/caPgkSHTw+IPqB1Z/Jpb40nQZrzwSyWhlMc99nUXnkB/WM+23iaiLeflPRyuDKNJmwFQwA5fBheDHZml0cI9k/SLVPxcVuH85dZTIN1FVz3W3hfqdh6pSdeSCkn4SKyStAbH6h0Rmt5RqycRC6edZ1jp4y16J6jytAt53qR2jwCa4pDijxQRb29+vU0YVGsFPpOIcVQPMqoEKhpHMP3dIMFzhWQkpykZpn15b2xbYWAOiMcY6A4lzlsShMlndKDKrfIoUOQY994ftQF425jsRGmoEkTbk+paU3/+A4oEpL5vyeyigmmjyOyxcRxSlvdol1WJt1N9oJ+A29+/TD31ya8gXBUay6ct95XbP8NHug6WG1gQznX8YLJul0RsSLgaV5S/zlVtRmQTKFwKp1XczAnVPQMABI0PuU263mW1OWO3nktYwdQIfGPnpk+BceBcfYuRgGk/nM/DiwPHo1sFGectKGUlB4RTngNJs4p9tmUTUyi4JfHFqKuNskroQpavL/ys7T5QbUqDtItwT/DNVIqEZKu7AJg4YrDcbCZecuNCPSZR95i+faE+5ZbO+sXmyjCe49p6xC74Xa7/Ukg5XiK33QI9B6xBGUtqB9DtE+X2C0IG/l1I2HoBZvtgBEsz2I7M3f/bVRnQyvhkAtFrtes2PfSntyqlkLGuHF/AhrbaUNtqXUy/xof6mSOcq0KR4eS6rCn7e7eLgz2FZwoc9OmFkBW6AQ/428yRqjggxTfvuRmFHTX8cV2C2WMewxetmP56pSToSIlodLTHItZjPHYYZ8XhKfHQSDwotXlFsw3Yr+b4xWIDJ8OEOK4jaaJD1FFK2Hd7W0uil98LDoKw4C9PH0dT86E7TtvFbWDWg12B+7La4HlPWSg7Qa+pHq3ou7F5PX2f6kChQ/xEep5rBedKWcnhb5uyIJYZrfv92wGmtda4cui3PjndBTi2WTOLdzk6pqzoCxH6LJlFhbzrTMqV+AkOoBQrlu9KLsV6JJXriDQnPYUD/GIVOnxvFLeCrtSVmiJj+Q4H9BHMaea3dldivK0pMyhhIqINJtv8NLmk9zHX8yOnt+LfsAdTajS8AjuTPsDWEfxG1T8C4QJSLcZLdZidYE79mRDvo1wBPxnZf0vPhL+n0i3naTvCBzUWyy9+DD7OcFp4X1foseWJZO2EvaFiA2ohdsWx8upuikVw4ScbNiM8K8CwJzemExlujf7wduD+sIaVDw02jpRlWLLyEB4JNtIlgEwN7eUNnZwATqCToyN35KUjjCbUHqTOzgQLY6kMyPWJvck0MpeGnHmM2vUgznjwRs0N4hJib+Hy6M2thqM259L7cj3u4K2/VElTwaO3xkOLsz8uXCusbiXSh26hZ85ijfjz7PTixbxlhgyID21SVeaHproIsekrS+wnwmuaDPlxroy9Cg29A/E65N7mUpQY0wJpnX489FQ/wIOXzo1j0HvV27AxO6mgk7rKXtiP3xSm4Q0GQpaOZKg800G9UMsly3kg3DbivhZ84i5DQBDJTvFVFcP/KL48Z/dtewXy+9uReeZYrfo+f5l27xv3PmkhKQCJPDWBzyZY0PQSnzpQi3CKMk+SOofYpnCfNZkP8QJmjiEeO29ZQ/P30dTeOosBFfRM+26lhOnl2Tu6g7WyEdn57ums0Yo0X2Jw+vBJmh/rshoAw/DY13CQjshUwq2U/NkSvwCdRIjuc+qD5wiMWlN60qgmf/h23Xj+6EAEmm7B4JAqZVGDj6QEiVaugYjtqnapEupPQ1R2XGwRVIboDLSfI7gbX+5E5SztYo9/6wqMIIW4am4AAfmaB82qJIKzownn+zn+mfESNOnaJdVdeReRSh53Owwq0N+3tFxEQKeF0PlQTZhtwKiadISQ6R+9nWOCg21NbHG1kRJynnGu6phLRL7Hn75Mj9z2ZL7S+bTx0cqAbdZAot/+xojEvRd8m2QjQ04k4BtC46d/z4e8+oS4vdk0ndorY7rJHMVr7BcpZlixGBQYXGOSwZlHitanyuTCoKBTFbk8Dq/NHHcGOiUz5WD93NOKbMZAwtuBXgROgJwnzQVFpqj67jI4AMbImuie4DK+eYGAziEtm9Exn1+Tsj1HXAVeZ2XsESr2Q+lMlSZgfKZfarh82kxPjhjz+OT5ficdpgezyMjAjskgPvAn8B4siN47o9XLn6+dOvulMCVtNNw67oiEeCvy4Hi02a8u3vdH84QJ4k6AxCxYqnToDwCNcnCoZtP6FvURl9++IzmZeJMWCurk3uAQU95o7ZWm0Ev7mWtKrteVhiY5gqS1vikGtwWTV3c7W/Z63NGueJe6zwC2jQuVLfLJSAc4dPWkYkchE73BHbtE/wKvVLx8KVhletVp3eTTotA94MzNvOoZQExZ0nANNgN78oqzYA09mDIrhbxOHszI3WzMUyvxMBQMoY7Fy7iVVB23S64oDvffEuVT+dKEtEkcyFoyVegduxHaS7xAK1Bjvl7r1T0+4FFqhcR5fHx+bz35pvugrN3+A5ZpbxYX5kHSSL/rQIe8pNFgcQlRP5uK93+U6vI+AeqMv3mn+opShNzB42DTwjFIlPfsvs1DTNxmdXTPS1v15KmU7oLkk8HQ8NV3JeHwcKgHX8B8AhxkXw/ZHjEMtvjQ5N0KQZ2BitPjqhc1bbWorRLM1r/Q7vQ4clPv6G5xby0axE9w/dQryGhweU0NRo9X0c7x2sLznIyLKfbknvPGuberJLPiDTW6r4y5zyKkv/nsgRQwB7lfbipqr3XtktCNXWncifk1M8SIdnOvdNL35UNh4pRcH7NGaRDkuXYPT4GIiU3eqymJY8/rfs/ToZUlEsc/eFOLPJwhsUBe3gP9ASLn3WNAU28/Jexdanb3CZiCW40xASGqqWf0Q9VGWdmKEja/vQB1s5DKDhfX5KpY7B/RZ2RvJ3PIhvJBAX6dTgnxP6qyPQKmbuNo/26FL3Y6p8FG3Z5ccYbYRMLnK8XHBdL8kvr0/MG5P2njFkVXJ5sxP/yTkZXMeINghD4lwekJV/GzJlRfR7Vb4MgokpiEj2PnfapfzRF6Jgyp9fnCan3bvF8bYjM4/D5cip9sm0cor27mS3MiU3CTaEzn4rFIV2EPjvYgkP2ulacA/7UdfV+OPtCJyZTmKZfLqDg/IsA45YwZEdE8EiYUiWka8olSymFvNI4alTip/NH9SXovS6/yGfZYe04zPbzA5XVo8mDINeQwxrlL2c7SUhwSV9pU4ZJLQ/GD4cpHhg0fefawII7DImNrjirK2dSY2k1LvOV4QtQmz86X0/VBzDrO+jZT2Z+rYAk4RfAC/BTTutD7NLBFjAi/Mmj5BkIyRDHzNDqxRWghyEYr89lsy7oHeIooIbW3xhAYEus5h+sdCNhbKujD1wH71JHrdVV+WsD6BTpdR7rSYYGhNgde+3GAUPAiVeGJiFIVAw3Wl4vxsTmwU+UEM81/x11pARQqZTFM3AGXShOpWMpWwHBltJNGc2xjtU5yk2HluYsuFgNVSE9oEXvI+GJSoeQc53wdwEhdDwjvI1MxYfLzUZu2PXNMAzzLypDiAP3R2OFd1+m+Fw4nf01sAavewxvmILqjyErocmGd6iuWU3j09cUSs3uCxgHPcovtYxhUoO47eqoUkXQhJZdbCiAgwtmig+CLYa0KuVOr/mItipYcy81gycmsRl4VPd4xaMXcdTxQtE9M2f69ISPSS9XFRXDK1OtfWAM3S37kcWeB4bxGc4UgAs1iz8nlLjhpPzkqsm1A2D/ubz3QyOGEeD1usEtdeLBovY4+ijrcYCJPZS+Z3ymox2BEf6wNbPZcKy3LjjAM2VpXdD2oSdM+jxIDznwDbs47+E7huRIJakpOPQ34nO0fd3VW0E6T3AEB25EAOsTCE6l/qt5DEvSPqq+zV+6MSUWbCuzwzS8R4GJk0ETPfg7xlfc3jylY9dIMDPLZQEgxyH6bSVigCFlXZv10oOiwmUwjqVOVTlw7GcAf5eF8zKARhVEWrKEJ1gOixUefPDjI6m/D1hhu9Jr9g0PYWuO/34/axiqOpGjdalt3qAxhiQb64MEzxYFzMXPfCKNUJuaSENFmilf3OhnRLXwVF31orZsZdHfUeWporGMYCUQ3iuTFnBCYltZRmLQfFr1ptoE+NZ+f0/B8JOSAYHK5ua2pi5b7l5KR76iNFWqiHte4e030kGp88UuFA3liBo3RRpuuAE49vbsTSg6Q43ZnoEWPRtR1LGQcd4B6izTfOvbPa0XSVv/hXqIbkVXexAnsvWM3p7BAHJFIEzMYum8icLguNaYP6MR/WnNI1IZM6bxHWtcFD/fN6U8o5Ojph1nbaiJTmGIvD6Bf5fWaLAbuOzPWSjn7rwRhEUKboLS1fcASsg/TUEvUxBeZOpnLPLQFoLfEw+Ml1TmBYo0vNVf3+NTYstQ3izNtJJq56nKSFmJWmI5MhxhNFW7XJAS6jTKCACyaBcWQuDtZPjUqXPuFTIiNo0yFzH9k2m1cyz5MmHYiIDxh+0nIM/Rt6uto4NLnxyD9WXfC3RdxfxZ1e0Rj1ifTMRH0C6a2iIkzYbqIrQOWt+V0fvmjf+A2hO4bjZcdkStPhtl0+cMCVMQq5x68CIGyPp6bLKPXZeDZOI37PBai2E8uHcQNEii78Qkml4FIP+y4mssYWhTRiUSag7L7qA2h7CX3sEylz7xmQq8e5UwMJXomXS4Uf0gM89ojmu4FeWWtLT3TT0KDJC2/NDudcorRUYd8OYKKFv3VIUGrIUmTgFWcgM0TGGCfUPQq2HjLxIBKOyu+2Y3NgI3E25keoCXruMUkmNZLYP8Ld5aNU9MGwesE0STu7iEF8Qggvf8U6j0q3JMfO3YbfxDYqul+xSktVzZkxUgTz0WsWjFYahuuit+oaWykhNUnZGeCt0+lbPcERU3iHX5+R5YBBvFadLTwg4F+00cqK9I7YZYC4kQnArr49GmPMwXMnGm57mOAIJHd3DDy59Ywz5AUqeSOTw3PavV7MOc9sApOMidq5T2doplTR5oY/CHdROoDHgofoCcBC4fGr8I8FE3ahL1rO9NrCdwLKtiOGwcP4mOjBUfWDW1rlEc4vfYKcdkBxRetK0ChF9vhNm3mz4MPZkMV3CKVqnYV15apDLaznEuYSRv7lOjGhKCh2ugf5c0DwmL+YEUmY/HTyCcODdJfW/aLZabIgrg5AKWfN+xyKT4Zf1WtrVvFld0501m5AA7U0UZ78YcgzhU1a+lTdInVyut7ExYVAmQBDKpEhXxTDlGENOSKokZZsyXdKyThEL8ttQm7MyA0fK1CE6QOWi+9Ke19flatkuCTsjssNQM3uG0ZKDcrXOHeo+2OxwY8eKeYZUMyhPqYfVp3Mto9wS+x3jORDwk/IHLWS3he0aE+NubEnnzXjn8y97DlW3TicSpNlNVRyCNpDBwJsgJEu2ZVl//Y/zG3FlCWr7uPOiYzRSoD+hos8hQyFniEuJtx/SE7//0926kbwIxz4E7ByBdGHq7VdSSJYlnW7L2VfQWHtQTo6tgRXJwMbS8f+GDc4iA6rR+eCntCZou9JITVmGQwFCe+WK7gznDmu30yaTsNaGOeeXNu66qkCBC3q6yNpVpuJyeDzFDAo8fnkuthKD0NFiP0B/gN2dvEKoWnql5wWcT3wISTX1PiybFuJGLnPkdbk0DM7HOMz7TqszLUP4meQFsfmRC74mnPapcvgh03CMwK/Ss3J8z/ZLmIqKA0ZEmmzAd0PDMzl6xIME9wRd5lYJv3Lqvko9EiYHPwWN0MWXCS0MRp0GHtjbJgW5gk2qq4MME4JlvhrsUSKDNBhbuRIoS4URzzL+o3WRx4aNCfQ0uqUuoOvQtViaG/k2iDM79inokknCBI61mmQkZyJJf+TLgh/wvXNW3evZ2MHQKQ6RPidtFXWe4ftRHHGvWJxRse3KKSUTxFaiqt5d0x8DtmNL83AFKxaH0RXnrBqjCUte+gUZRRqjxE4p0F7fZxaiRRj3gp1sZ6UAsXIbfn1e8n9aoEJU1C91FHd5xwRUOf+mlqkmDq64Vgktx+lryfxR0U6dNC15bwiH+iY1Ijmv2j0b0qhHOJCxzqmZdvB0hNqIeclwBFuuSLA9xm6PPOC4ClFEj6EFmvrLCbyTT4wrhZ9ejrxbZNVUD1gbr9T3yqWgvGwJE/qysnIIV3mcSvPH4e5sCOBGbDzAQXNkXHC6nt8OMeMmoUOFHlxcIlpbPPESZoAnsboEYHk1iBPtdtXOnBLcP53aduVjrXhODBAYK9woOBz+6vJtghpgretlDZbJUH2I88Hz5TJ1DV1q8vcPlwIEZDU+XHmx7B/CQFNYscplS0250f1QhabESiK/NseCHWjFNvFQPBFXrmivCEM++tB0afatC4s5xn03errqZu7Ph1PzyDDNkM95sYiucPurVWSrYumd3yOuqIRpDf8WB+MRs//yTqRP3LO/d03coIP++blou0fyLa8z5Q6Q6AjitcQxMcDTjIoUAi6tPfbBZqHCwuTHl/PKYbuxcXY8EfYmFqjNR1jL4M9MpAh5frSBZCPUqwVX6q2YoOytQ5HqAJYB5N3rsWlFyHqWF6zT4lpYXkOoxChJIaPRmyBGMU24XNVI6dHFCwrcDXe/Gohzk8jOJlyPQSGEce1/tG0+0kS702y+alUrLB6XzJNlUmB3cZdnk5gOFBrPCpKfQd5I4BYeifbesLKtGgPgfIXKdpyDRbTSDmQpag5fZuSsZaURktl7CKpPph4CQ1n68KK2yzLv1Dogzkn0kYqmK7Usr3OFd+af/TkevtMvZAZl2kqGWtLVa4EOmkrtbqpcrM+XcvLDYryWDiCeH+/Qf/omXMA5FenrcexIy9QKTdkaA+kpCOWWAPKDeiQ6W86ctO16eBOF9SbxfBUdOyy29m0UAqv/z3eTefc0oQ4iadIXrskf36/RyljfJOGY9RhoKCaDPBfiobUMoRnXGrRrNWR/ykQQkX+iEZysZnxGrlCnE5QLG5fHlPx7VKzhS7D1XyYJ4nlwSvG7+3iuCltd9jm0pgj3ZxeSbPWX4sgvYjWJVn4AtTASABbaCQA+ZVd1hE+tUTuzeZc6VlYOkwVEr9P1nf0s/Z5lKLzyAdJWWBAg1XTGf91E0CPs9x0Y+ECrFUqM3MZxRIXDV86855Rp0G6fHkfWpPRulp57+GRkMXVKlIbnRKZ9zc50scS4GEX3mVFRN7pteJLCuo5CjqrMAqI1FyATFurTSd/0F7PRC7nig1UU4boeXdinMIjO6CHtATwtNeVHNKGlCCEAUmw2S0mPH2jRLq3QFtVTl5IcbGyHEuta7a3RK5P+cCCSG/1LUlOk7LoDS/4C23xojaUiH+/tXEbZLVw60Ha6D+jIE1ztmKuoQvIuvbZ5hWUdnepCIMGXfxrcN3pKd6Ft5/zGs7ASiof2ugQZIxPdED7sRabFFhBXXQTwLQadpUUOef1gnG/jB9irPME64ONsOVLtLoghPELwqpaz2Q0qjttiThDT9N48BSNsiELdN6Prta6dzBBCQly9UIahoaRLNNl+n7yE/Np1FbFjxQKOpBKVqVS1aO7ng/Dn0BWAa6Ov4oXNhbWB/5fFBpkGhz3tJ/ufwWQUOaZ3IdqK2I+VK1LUHJ2U2euPC4+5R/qDmOGjE2QQ25cnmQIP8YlK+Xs/ChUL9VLSex4eMI9BoKSjM3VHjywQDWoDSSZoTfIjtFQr4LdYI+SqnJvyqB8NQorYsTanlPPO7v/dRqABn0/3yJFrzS/Uk9Dnif3bz2Lf4NcLVU5x+fZAXCle9yVSaoCh0LwpsO5D8vNsr//vlzuaFi4xg0XLyMk9X2An2uUDP5ZX2D+DcKIApwYcbEn+w8ptguKj2jWbVCzNCuW8m632Zo/JgFNpx4OOc0kHqKgCHXfoDVuayc7o72lMbrk9G/hp/BDopuBV1DZJUyGLTO6m+3IapFWYrW3ywnIJfuCgUlslvaxlg4WKhemUz9aPwAVQqwv8TVwaYWFpxiapRRSGU/O++a8hBYYZt90QqM89IZ6jL17gMWwW6bke8tyrxR8cDiLfa7HRaPqJPIHdQc96wdMN07kpIge+hmp3kVGK0KFu4SrOrAuUoaqVC9HohdnGMBP7hWAqllJR6LNbtWDwr+FAHb9LwnLZoxFdWTfDi1dieeRPiTTP6/G/RQK/1gDXgFHgT3W9MoQn8NezP6L41twfzCgcmsdk90ZJ/Ir6xB4tYoulRAM7n59F4QP00WNVotiiAVKifGy+TDkV9ZYMjAgqqOUXMVXRFsPVMh72QTN9pcbgqnpTSiz4d61l/N6utj/ZCoE/syigNArPMqQTqQU27nRPAS6amxfR4iomSu9GtizVxLER+d7wkt8kwbXjzCJe3f9D/51v283f2H+fY6QH7nbCP/oKlLudAi7wfjMVggV5mqioLyFwAqoE4eSbrWPN/lJGB0x7RMfdmjVizA74ANC3YzzOmYzIPGNRE/yTfZP+v5k31dBdqJ6SB6cRqPwzwqp6LqRpZ9xHwevGgxnLB/ohJMka5DiS9ny21T23a/rFY6yUYLUJv6Kp66+2VGcT+DEg7HK+NdvdSN6BYZP160Zry+67GrcEvZ+DdZoaicwecqs8rczQ7eSsdErAcfq8VClT2Aa4k730uP3kPsHcwsaZhCYw33jlVYPxCbycdR0uBC1JzaSqxwNq9jSCQJd5W7zsT9WbWWf0aVK+1SlgtquATbg9Mf4pUBLEhAXjj7wFltnCqWxJZbybgLa01kl+VIed0hxyYjdA0cFshSxexWoo1zqbJxGkluDoRtRoMn86EFGNexJrrwoltuGC53oHF3e/VrJokBMscOP0ValPHvmkdLB03dDn4kuhw10FplYWtHNZQmpX3tOpSeH8afHRUpBjpxMs78BwKxn/gkkdTEKSMXey/U8hI28coF2lRGPFE07Tazum3OzaJ8K+Fs4/GmAPf21bG28YilfQXHS1i+hTwqdUW2U7LC4CN09DSdiuJYsrL4UhVaE0ad48quKE19hiWysqY/x79i7YOErqQAFGJO+I0Derk14MNhBwWlRi2yAeLmUl4ugqByhhW830cVrTJ+fGhjt9mTJAYLVG1MUUTfSgrrNKOAbGnKzxS5GS8m4ke+XYtoAmGWN8wCLw0osrePSvmGC6KuDk1O/D3FrRrcn9zloJSKYwIDoPnVBril1L10sORYJ5SFSJE7A3TqW47pBD3wTw69OUwlJWUCRYV6CpnufK8MDXmBU0uCiI/N1182+PUoY3kujug/tryOcqBRPS96b6im4ikJtWjHGabV4iB0loV36Iu8ogyFvrJ5qtr7Pbg001SMOavb7XrH1iOcMaNsCFoZhMxRb7nd0er41gk38CGMYYiCeKcarjoWgPvF2LF4H+7WcYwVFzyKA7ruXmf9FRUis+lng7pYZCwc0mRvcpF5he46BEjbVMWbw/b74nYDaWe3JxJWX6kUcRtBGVCXMncPGimNK1Xbcc7JYQhMDbeht4iOJmAxTZwutmY82ciWL/cl4cEEFKjzvNek3XrIo3v/tua5feIYhGk+w2yeIUSkSJu4AI9zH7VHhKCEiR5dLPzYkvy/ZDGSvNutPHE4bGpTHgVKh8kTM6pGOZOGHQZASf7mN8wlligMcvJrkVCqjdLVYkwmsKGigaqZkQA3C7fxsBINX3wXsTUv9teQCS/3paRLQAlqPYBNS4yuSlCWeNfbfpFm6uQT1d3/JUctP1omAguySYurUa7hfhWZ5jbx+mpuPHuI0kbZxF3XXlFdNm3moGyZAwlOLikjR+1hyW/YKbm2AHLS/SH2p/bD7AATA2kwhMCKt7vS1MCHAw1f8ziOSAV9HicflpEf1v6+bukJHvSB3KQdJ2GTtT7SAW3uOSjuaGc5AnqKDgcJ3W3P9rd8lWMde4FlpfrXZcpRodCIDPtgrzPVn+enyyLvtOruwKJiRpTrrQ9d+Aoi/17iSJALLyQMMa1ue3uMrrBCLhttxNaPg+/lfReSu/5IUlDlDM5sSU/HtJCSCXKyxho1OYC03Fx+uIZo10wXHTjuIZ9GHq5xWRrzxFC+WXiXqqmS/RVoa30V7dKSGVwfSb56D5yyXOe2Nuy6r0D2ET0hfymlZP1EZusEpoyYC7NztPS0DmrPOxVkAHMrS9y5AqnSjy4IvCSjKOhaSWueqZTSSZT2D4CvVn0f9SIt1X38GpXmxibZ2zZElFVIih6eawWAy6Qw1vz/J7S61sbXmVMGV6CyUaNZ5uJNckpVgBKvCMqDuYXuvplvJ3fouTCBnlLiLEAPrzP++vrnEmYMV0q3ai0ucu2SIKLx7UJc5aNiaMwcIIoUwElSFCrrVwYNj1cEmrdIFiQgnxkwofT5m3U1bPY/PsSuGAKkSmhmPg6TL69I2gIQP9vYzov58gBIb7+eHpB7Z/C65rAe+5peIXqPX6+h8aRtj9xHtYeO0IUhlAS6K0R01zut/eS4uY3q3ImiMiinquQmsd/oapNRY96jxDZ0VNpehjZHPZBlTbjnCyONhyLmNlbOh/WdpZOipfEt9pnWdcbgjcVSdElYZyCtfx6GtcvwT5kKvrUVG15RGSLgM3GT0/gXlqTbdyCjHC/gxSKQhvIjn4bPJ54UrsuCmJe4P4ymVEHzDQ/+/CB5Xy26foWEudQo8WYwW1F3235yiJ4Z9GBuLtLL0mrn8T5QqlUE0MyFrYvbWdKRHPcFJD8hc4+d2P4cT8rz7OrQ6/E6T7CfL9piXW85nsRoiwVczbSKe8w6I/QyGlu8pr54tdNh0+ZopSDlg7QXSNn+UCTba6ecH3LcEtLnYTyOa/b48mSYjbdY++nwGhwNzZzSddOkFCTN2Cp02b1lBvdU9Cl1DXrl+JkMRKok70kA+B1eplvE1vjYQm/tUhfPE7ahCW7bHoR9Hb9grBiaSwA+XyVjZYYNf4eYsqK42Ftbu9vU+46pitLkDuACeB98KvxgKS9UTECxyVynU5lgxsy5GyeBHKxRD5nermBzHonU66VtwBLcV3GCEjrwJseWluerqVEsDxtCyNX/UOS5dAvDfBxylAKqpnTZ0XWTD08CNUKtyJKxrv3n0ekxNjGeU3T6OE7EfZMdfnFnzYS/un+2U/K3sH3R8F4S7Y48WrDzZve0CZV5G1rdBVhigGKow7/4ONfjUanmcifcASjivswk/U2c1CQzrxLDE8rGnf9fuOn7yPFccWJEFJG8FZJ4KvulTr2TR0ntz91LLeY+w32UoNhSe31VfTV/HHuVqz8iX3qZS7k6/boYkb+hQ/TD5o7ffJcF1M9574uZb7z1ywogMFWeHF9L3bwNxXlRVxkfpvftMe0bLd7c+nM0OsXxGPdE+mslP7QL3RfkeWH5bLyZhs5Jy8TO5s0nuIHbbuDRCMcSx1kjni9WSJ7K4375zbHtyaG8/ONVrFv8uBP0rMLnksjq3KiFXu6Jp0fBJRSAPkF1YFYMWO7++VK0dH2BCVCxsPp3g5vL9XlBBsDgCH43aJsMIZF5yXTrDikLb6lIwYN3iiEQq3lr/Cwm0GlhORoe8cDSGsfu2Qo3rKWQ2LZ+Uu6ycxKvaZ1tio6xA7Y9zx00DWyY/6LtpCHa9Nb+eIac6G7DVJ/SLIUzz4QkmB9DFx+Ix53LtY2maJnSKWV/gJ3jFAezo9zw/lYupG27RJJbcOTWg8wJmeBvUUkcmxkiZzrxE7rqYwZlHjm3wtNOVed/KR3fN7JyHELSr13FAsmA7UVv0GHtkmmVaG2l3DgBJQsE0Xv7a1JmH3g8cpPhJvUOqglbhsCesdOiMJzb90nyLF0SSbUJ+r4lpWwhAj9QKghsM1V8u+pXcof9fJFLEKSgZ1QQNiDXNjr7COZvWMMXFSsKHGKmsmSHBboO1XjVv9PssjlAppi7LPCK0Y/JPKJqgqxLRfwzyLhuJTLFCnfSQHIr42TFR7ComIqY+hXm3jmwVDVj6VvNrggGCpk3hJFk/iNIRmQifMq2GF9jf1lHJCU8jnxnX54hRu7ex2hY3X799brJAjhWDA1ObyQh9RiWxq/Xn5IuuiAqI1zzlb7ZggyWrrLpgGL/if4SCuZ7j+8kbiftV95e0FPLMHhUFZY8dv5YLYDMM+h0hqg3AIM6wV7HlfWS3aQEE2f7vGI7sMpCJeY8cGKsVc0A5qMt8kO85brp7AGxQ58zgn+tcRvCudm5cbiX73l3LDDKAzpR1aZIeXD04Fg9/8JcmoVzBk/qxD9KfoPdmtOhzv9mkx2lL8eQEnpBfzZXpXysyoMjLXRvMuanj3rOFeS0GE8OcnBENSpoKVqs1OI/eC9KY9aidcDQRpIqZukjxxtyj2N5v644HSjDR/eaD573JXA0eVTMAbg0R2AZADPZ3TwnWl/4/G9TSrQYjt7jTejGGTbPClTgoudOC8vHATB0/CbrWu4JzP6lQPUYwE698lGra6HT3pYO0uzJ0xQ9Uk5uSZXJ6vBGPh/u1FKljSUDISV5mYuYeakTORgoHI3craQejeZJ73O/WTZw/825mVf2In2j67n1LcKYrlI6aOWfNOnNY3ffk2ozmx5BJjLP9e3Iw4VNLAiX5OqFo8uA+Otv0AQfsdHDguhe7e6fTY9XXe0ZrIFpqz5QT9afjnv2TD5Vgtpg4HobVOQTt6We89QFmOfNVRRy+VJgS9so085PTqMVx/wM6IJazQ6ivx3vgwNUXQEm/TrsVp8pnD6VN2eBGBJkun2o2+Zmi5c5EU+upW1smKzGdrQsXZNBFeCUskNg6GCU5LAJlhAkC3ut6r/FqVpw9SvMeKBlXHE1k+19OY2W5rReO2thKR7vdw9IWUZ/q2S8skgFDr8xex5RAxpoQoNgI41WgETRf1qnC64v9qpz+tWfMZ4pYWzpet9e2HCUHgnJHZa7/HjMxaNwcJfutHuFne12lFNVlypcpnKpTe9OK4EjCrOuTJQqCuYWDMP/55/gbuCaTOiB7FMer7NLCtBHGp1K1AbkQJ0Vx4RGB75dSCOqjW+5EyqtUNgpCzkP3BJgNn9mYwaNxOG2wbhqBGDE0hy3Cpe7+b1Vekv0FxwHT14lZWARTrV8gDTLtRJR1qdbRdbPIRFdpKrL5oTfls3VXK9zQiE7sucLy30kEnNM+5VeBi4O/GEEgxvMNoTqXLodSjQRbrSqP/3/8d0qLtLnz1rXZejAc6N5el1XiJGG7kpUFw2cPfnhRWHLCCAS5OMmo2OLfY/AGRm71oXS3ptURLfZGBSRoMichYvn5gVHQpyCRALm9dIOHo8hdStGPeP88LbUJ8L4N+tyoiFeilOO5YzQfGSToNmWfv+3dI11Hmpdk7GwImQlwr/1EeFKDFSMnYiXtq/xKGVPIfm4c/QCfySA57yZravkoblJxZNU8tz43IN1eKWxq61ia/jtjeEF3hNYwI5ujPpSNdeQ6Xfp1UoiIx6eJz52s43U9ypyKN0corEbVivs5/ZEYoem04teLsA8C9YdVPBUpjVfrAm1wQjPIhk2tjDe6ue71jviFrpjtFYEcrgJkoRysgL+oqAsCW7ot3vT5POluzyOF7o1i0alDVbk65gEdd5bTSpp+50Mvh73XAs6CgrWIRTKp5QoH36Ry403YkZjH/OTEpnNT2plnRj1CR6tK6HLs4bOzqMRCyVNEuz13PxO3t6ONHVgVWUfPfxXlddgmrO4BhBE+2UZsdUanlk2YxZzl+2iRfuiP07E+BbhzN2R089nSIxmRXq79sSFwXN32ZZGJyhOIrv56Phoq9oz1OI/khdt37wab59BbZMG4dGMeEWr58Av5GjcHHu294W/anosdzanE1ApubOp3cOxHybCO1OGgki37Tzska75irUqw1y+GfOu/xRd1XPaK1CtJ8CiT3w5mrri6GlsqcAzFlWHQZxyuN3s9Jae4nDrjcAWZJ1+SkqrNeCgA+iNRMbc50urEELAD4HieWF2fESqFSYm1uT09k56UhPDw/BnNhl+Pi3Zu4ySFjwK2FKnxYmRXFfqkBgLApFcmdkkd/KJuEXaJS6pltsS8eNbs631pIzotm+fuETxy67yxdRkG+zjoB5poBy9xXWyDUSaQFlESPltWrvEMjKTB0ey90e1VEPfGXiBFgx42Ar15t+LldFJXyDNKNDTngL2fQHVsd6beYVZ20b3cIuUazMbNtf8/raGeNz7CPj4Y+te+a0IwO4zgfFF1ababZj1VSN1ravIFdVwuzs5dwCrJaSHrJpTgV+1Mv8fZyWIoSAgvUkpLMMKDw5Ye/5UL8ZhBbdk6PooHYtfAZwEOlpXxeb24pzvrOhLrpJhIlLc8pdTIUeUIa7ijpROSsi4fLLMOj2HqNxk/cBKV0DLWUDzsTafEgcNT+Q8I40ZLZEOan1QHlDk3Ig3fjNQ5ekmhR2+ZiIgSakudDk2GyEQ/8b8AuVcq7FpGw8svzC7WsH0c9LOuCpQ4T+STE0edoZYXqa6BzGVTKg6waihFqU3TVppbip8Hku8OgqOYDEtXHXeVm5CUA/CayyL1jJWGj/Qh/1eoPQ00QJ2g5J+Fgb6e7hYTAi0BGfqg4d3eIK44a2+MUH3H8CvciBtBA3wBb8NcY1cpVJEp++dPU3BPZyE76jU3lDIUzmkfCU8bPpej8ojvtq7WxsV3JSjgIkPMxUDNDx8L0NDpj1W6PK6pWULP7sQSCeOhAUMvedCL1BAVRwGaK7exgsOH/AbndtbpSOfVg/eZPM6e+fI12ohN2Q87kdzcFFTcX5DaQk7LklQ4qb5X9u50WONOaEaO0wo1WIurAIMkH+uGR+FhBTVEB1PX7r1Xag/dv0bpisW6BwYAebjsqo5xma1KNNNlLRd9XP+v/yOkocxPLeuYLdpojCUwzLMWxtt/1bNFfSoeMSGeIS1PB87htDwhYCxdZVPVqMSZ8FEChBeNCgdnfr4OjNSXBtPYIe8KweNv8BhElZXrhEgKPmPDreEX529MErgU3IRG2TR51ZSx9uNK/o4+z1jPtuvDdXoofd/SNhsVS08nsip+p2H7v4S/RsltgJvGvh7FmsnH0oBB+3zuB7QXB59B5pkHOZmU3l5MXeqI1rvD+bEa+yeFHPB/1gKvDkAFoYRiZ1Tde1YRCwdY6rdL0PADp+I4fm6AYBrjk6rrtdcHy59rW1t+sGQuBuM2xpn/0ki/T/DyKeQQvD6cBp+rTzr8BZiTdZp4+jsQRfjL6omN8RiM4P3Ags+pOSgZJi3nrvOzOgQz6cKxirxyDC6XMi+7BdzNG7+EoPyRhAj25c6AuTtlq1arkMJcwyQD6ZvdFXveokr8n/m9puFJM81eVK7+jHYsGsFVJah75xqDUE52miMqKNYs+mXudgKO+ubOxbbvIdPgavrJdJL22P8SeY4xzsyW+RuzkC3LiC3BDcoTggfHDUXdEE7N98xsHDVqJ9QPEne6bED19YRftrWYVAKNtztnPeBCEoNpDh16IseZz0bLQz969JdbgbXc/fqBu/U7ciB7ayboLRj0uQx3gH8b/XsgMueshD
Variant 2
DifficultyLevel
410
Question
Only one of the following number sentences is equal to 8.
Which one is it?
Worked Solution
|
|
6+(6+6)÷6 |
= 6+12÷6 |
|
= 6 + 2 (order of operations) |
|
= 8 |
∴ Answer is 6+(6+6)÷6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Only one of the following number sentences is equal to 8.
Which one is it?
|
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $6 + 12 \div 6$|
||= 6 + 2 (order of operations)|
||= 8|
$\therefore$ Answer is {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | (6×6+6)÷6 |
x | 6−(6+6)÷6 |
x | (6×6−6)÷6 |
✓ | 6+(6+6)÷6 |
U2FsdGVkX1/lj5KB22G7fB7kOWPfhg0ABUMyVr9RV+YonFBf/Cpq8r1TetsXLcxumpKCSCn3DKdSlB9sv8FjphoD2d/5oPUwsAUBOD6lOTjoV51rB5vUqq8a1IElPmn7KHufRkJgrV+0ISRK4DKdZ6R5EuiffvYVp0bXG1ED5dpGuXxnXH0KunIIzdaOAqzgRCLx8OvCxvO4lMcv4hyH2KLhz7tlxb3bx6lQ7The1cJdQeTyjMyVuWxVaPIj4ZjutPvWjZdZTrtE5VcTbej1nTzFaUc+BxXpwO0O+fAMqSJQrxPg3VyVtEOSANrjYDmsT9AmiOwXDokzPaxwVILbuuCnjwPOsHHleNayKRohYb53G05C06MBiIEAzgORlKOHoXpg4MD7LeP2N5iqYVSlD/icR241woa7VOMLiKpWzdfbNwEvcaeHGBXzNAXd9VURga45/WlsBaAFO2inodXLsYBG0hK2dpfqSBYYUefvv/5LOqUGyG8pvtRaaE8+J1E/3CccXrZKASyL6/PH3dtTlhmhdz90Rg2X1gGp6ncFsMsCnljWQv/hp+cHf73uOh4YoxnDelrq0VJ3u15emz+OB2AOf3TTmwPvypUFnz5lmG3QT+4lKtfOlmlSB4L/m96oS06pa1fdbGjLumYQ6EbvxprRaMXVAB/unlaf8MuU9eud68d3On0gHmpwHQtd4Gmns/iVCdfbXbw9xQc2wmWRIVkRwB9GrBAUnkfO+rLresw6+HMq/mTYzHme3af4cjC/VvRKp8hyEaFHcMKUfy8hUJsca//9+BfefzS748+h5jY16+aFYE4w6MyvyUrvpWPdzr8esMuAPaqh6FwquEj8qPqrlyQbAYvBpC/fVr/ln74i1dRConxinON2eqBlLjim+5Bp2XH5treP5b6M1or1kPDmgteMc4lQAXuqisVOYYT1R5VYb9IG3fiq2ltYaIfuCHHpPqS+NqFskLpkNgWjgIwuQvYrvd6sTeS3NweWaj0B63QvzeAb+79evbH1LEQw3hXsDbDLceXpV0RzChGStrWOXOHdXQjWkmjzU3HT7Cid/dKOq9qQPlBkGCUgU+smnxh8w8OcDP0RyyLMKvj7Czp8sMTV5RmYf0lf1od/wnEf6k/4d2Bfc3we/GxGXtUtygcgsBmJ1U0XdqwMpTVDW9ksA93Ga0Wz6UumpvFbiTGXRV0rPn4+fQqatKJw0FrX0Y6+i9+sV2Cr4+iXJtLc0Kl3zOspVJYFBVe7meHKx7TLNoWZ4Fw+/720E6s9sNnP7472HuwOmrCYO2yD34Wa/Utf7oAiERXqVk3ePnhILCx1nm2DWsMrcxZnXuzSgAkujFT3V/lPWLliNKE5zJIst63rH8P19f/Uf2fHSSONaxyOKIe/77EMRX9+vriRy5SIZHJnuZFgS3DP6a4bfp7rKZa/+IyEF6F6fqJEoLmly1VUeOgE+OzEFGKiENmXvDbiHguhHRZ+I0iy1fSTTmbZFsU/M4cXVNZ4wfh3/UPElNryGLRxeM/X2VFZjtsM6cRGHrt/2rZAvXPINiD3vFSM/lW3QHQ/Rny2FoGouB1m7E/cvjlGbQjUsnx8b8Bum3NY4r3Y/wamNSweNyxGJTJ2i/Da2AlhrVOiMP1zrGk9jZRTSTTYKL/S4canJTy9bdGCHUhxstlJM/iR/7aQ4mrV4RNJskn3eVPgiHja/5TLGlpgb6IBRlEWLlnmA+rZmnAKjxR3D/eHUtHvWqZCJGrMOa+BuRzFXebh2H9GWZgRZShyYFYjGklgL5x1DWWUHaii1wGSC1BcdWpQaB2kXm95FrFoW8Nc+g0WesVMRxRtT7GegStjWYjmRLdasu9Pv3Cidohcpif15XrQgfOE0JSXpwEcMQx3rBhecnva/Tocwy/p5WtZPqz7jaGYqXCF8DsND0JOZOihNwbsf1oepfKiWabXv/JN1jdUwRbgG9w8Aoi7TJrghbylQzsWz9vretncGmUmcH4tP9478yrxeNXHqpZtKhH4DTd6PyjNp5M/XBf7uALZzN3NkF8+P213Ud33VCRpCfuaElNocgytofyx0xZfWOyKuJzCPpwUls1fYEpg0Grg43xo1Spyi9BBs+1Gih4DDO21LQaiQdntPWlfbTGKra2tIAxFmh4XOJCckk0HQ5HuCtNG0TlGBpMJpXpjuNWFC3vxFHA9Q89vuUTQfbJBCZ7SNOz3VRwHjbR/MVL0eMTpvjAXP+1pcRPKPM9OkFbynu7DgJL69cQ01XjYYXT8iDCsmfBfglU6NuOkO/y2YoCXyQm4rtlSQOQkpPEnLhK2J2EPPePJst2V4G9yqGgo/BlI+4YBLOCmIfzCqcaDy4Hs2vMJ+0gnUgIxGpJ9+U8/kCO+stAX0IjEAj2zzHkChzDiIzeGf3SBoiTBBYklHePirILvxcfh4AbxTILRMo9Fn18l2lvZ5FrAW2Guec7MFQ/KejMWMqcVr/wNWK9E+IUY0gOBy3hldCOFX8XOt5iDOQvlv+2Cqg8h8JGwrW76JlH9BhkH7ep7QPGwimcB0L54wmXuCavZsK7zOwJaEomQjQB2O5fo05oa5g3UAX7KXCEMBBSCarfa42VKtVAPtSi/QxmIhKgDLFoDYkHv5V/ukQ5Bbv8LMY+++W2nsszeVSS/4cdEpK7WxneazV3+gX24ftTTfY5CtOuMfiYhZb0+itIjB69/cmjuNMnGNzsMknEGuesyg8qSzcdAmi4Ufie0QbxrIptcgc3oaVSM+y5vVeIYbE6BGWHwsyKCif2g5ylcFo35vE4Pc+UEOJu6GAlw/Z8N3zedCqsrlaUto0Uds7EyKZRlmPEVyeLXXmDlduAZed21EJFHhp/aYcqwto+6fNO/+ZE3msCV8M+fgmS5dTVtmOgGmmvOaS5mYBmEJsaoVRDG4vS2BznEB9YJQnAkKS89jR2xch+TEqXOCgt7/5KMvbbGRacTTs1nRuIWJztVOu+ngERU7b2Zl+w4iOzItzBQU2FVUUqWMgbN1A8TugO70KOw0Ar29rLkWv+o6O/+38HNnNIZwh+LwsfDQ7qPZGpFXcH3j/X4N48+6uBDL9kYwGceoocRlrtR0bsJMhileM0wkKjqvdC41b+7OuHp4v6NVnyI+l532SmIEmM2Oo6JAUW1+aoRqIxp+hqy7ThS7FGo/JCrv5GOSuyolfT74c3VLfyzpt3gH6XOBjbHKXDxerrEeSoy7f8Q5CMuheO2ZVJBA5PtKw/BXuZJOE+Wx3gs6s1hQfjTpOKbLViI88L7US5mSLKdoEZHK82N075iVEwnMQKSxkWzYadl8BlUDb+jBvRZv87Oj72iG4LJD+tDbNFrctHPfjyazbn2JYTdM135RdniijHpcDnudZQoh8oYIK5AgcTGk2DXh+7AtawMCIPuzc5E9Uwu4rXZvkNrdFSbnB9rWFFDXReIphX+27g6nfqnfnckPvvWCE7dX236tqlojlDtIEpaBSDWsh8mC5AAadYKuSDg2OhFXRVcni8N2lLedS4/I338F3887G11Ye9K+vuRZX7BRBMSxEx/6/0q8xuJGjJM5kxx8qDTjNTYHd978GSO/3yKtwinZwXWSbOM5IcJh6sSzAwGKhga/eu04O4DSiMT3a+LhXj0rxG/GDpPCjvEa1LyVuQhtbjpaJJPYaqWg0OO+ua5R52ZIoD4MMR5g8DzdU267dtFt+3ol47bQAnyd/vcIOtHBx3HvA5Kj7lYUGd96YTtovGWn8mKUu0Q/ZWS8ITcuDA9x1vb33klg8bQDiVL5oqIKx0CeID6AHZoQBVm3uEckGmHzj16cavOT6kXhHVDR4UfGXWdmI7tyu+nIhDhDPtTZCoM3hLiZnqkQbc5s9BhcbEuzZWOc6VmsVKrNdWXNA08ODhZG9kNZyAcsg4lvBYqOD9ts6zb+xvtiVg1jJRreNbjkfVBynOdJ1KbkyLpMqNkIGvalJ6OtjbpHBQD0qPgMmte4Lrh/8B8FFgVgdQyy1/mgJlE7ytAYSBsHNOTU7as/rJ3IG5Bmv/c/bgjbQg2EC8qSLogcAecl3CSfI8Lr26eYIseg2RiySayWTB0K49bnehVuU/e2KXeEtiZpi+J/kIJpeCtIuMiLQyC+EKSlOUrE55vwelXblX5tTNT+I/+OM8DTdqJiowcQ7KpFoGKkpc/Hw0F6zZYz3Q1/32tab+kfLU71WcMQd78f5X2E681z2x5/xNhFXQLsumI5Kw4EE+7u//5FrSkE0M6fvY9sgqp3n9NsBobq26nrbysd1/uTxTBbYU3jdpiAvSGiw2GK+maraXKqUOLe6Xjl4LsXEO5N0TqtYhMl3GDHAvIemQnkDk+tu96V5E/M8DW5HTblCJnzssukEvZcz/DhWBs1V/t23F1i9MdSpmzmwEkp/jfhx2HbJ31vi8mJzuTQZI/qEJAmPMiVeT/lUvqU4SxNFPnGZxblqb9Mf9EE1iA3Nj9Jnt/GYMEzSBBPDxBe4OKMdXvJ1XQTiJqDxPIEtVOBBey3QFmSfZcbKFat6/SFF01d3lLUfGzMg0VZNvFkaJzFmqKroMRskmrehFv9VOZ5eGvMoWvCzDW6PRpB+oHyGAwkS/ia8LjFUaPGeKHFipDScOSOvI0p/eeggRMqXaPJhPS0tRLJg3SgXLyrzu+1KqUCWinfbWxC8W2a7FppJC8cF4aoOGyBY8vQ3v8sXNWz53Nj/Wk5UMJzyNkcmkTTlcFteit+4oOTfMqVgGJNZvxoXrP5UMqbDj1dmG5i3welCAG5QHGvsLmwxQIRav3tDDfqavVZap16vNnbg5IU0PQ/ee7CZA3TB1qcwj4q5ZwbYPLsZ196OzmZpm/G+yO0JqE1mrToHebn06zada83DG2NfFIuX17jbvBEFhEWkPm0pIrtonGvC7ZD/lMLtjbzJMbFRvHidmlQGLBhjPNgNtf3k/Cg5nb2/zuu0u/PhQq6ELjOH7OzPChRWhELOyghPgW6TPT4i8kxVLbbtYYcFh9jJdhZLT3Ns/7wfGyG+OOhR5YCxjBfB58/teQ3d54CyifI75EV5uCD34nEpWKDD1nuvoI0CFzPuVhLjP3j5scjI09yTdjy2c1vH4MJPEYjZHwZnFDAh9bisfSMz21ghN8VwzSfMxiH0Le/qJWyRBPdHzR3laZMh5hn6kIgg8wZjoZur8P2lr8fcVvJoSIn/091lJRxaGtdAjgLvR9IEfs/H2orxG/crmexEVmUyXKWuW4UoODWUqg869wYqdnEwl/xPPAmTl7ybbrM3O7E1hr7VE/HHN/4OzJru69ZohcyC6oxgb7S2rhKotQ8kh9Cq+3KqDTLBF3iBym6RBaqmZzQWnHC89U1TV+8f7QLSQ8V9B8AP76sfMvVT/gBYbNJnf/vUN2n6lIB6jkdKHkZ47/D+hMZwcKO4BNL67ysj0riCU+M01cOMCVTUAdN474Ckg00G1g710uo4UZSc5V4uC1UOSw9P1LSxFPAIojkOJNvKbMjciUxaYDmzCU9l5zU5bKTzPwoKJInBFlysRkDrC98dEs1jsbK5ITwxurRQaG+5iPDBfwcdqNWn3egvtrUpw11fyL2ypiygh6V7abjvmK2OpG9q0OOqoqfzOat8NoupgrcGa9EBYfy77iTVmM1AYNdMKHJAMkVahLdvz1U0ZlOGjqw+58IxcU46NvGxMJ8gQDQHK5SnnYlZFfyLZ3RJWPVD9Qs0mmELb6zc6S0say5AS2Cw46u+/eP9XO4t3tLeLccok3N2szdJEMcOtmMkYJPLqRqM+6mXhE0WlP3IUawtgVb/MI5uimmKa+lkv/I4gLyVUSVv45wzMIJExOb/0i79Nja41J1XxEslxQ2faGK76Ee6puGqbryHhLOZcqtnE7WIPBoj4HAYDfblASSL/xJkJjjlLTDlaGiP1LDjrbkRbZ678YN6KioHi3aiH5p0vSetB1Cv4z6fwooEOKo3+GWI1oliKntj+4vdh8F2i8zYwUWijWwVq6DaHlFdR+oGNI3nZ86Jq7A0oC5+pj0g1/4JBfHpfzyN7mTUKZDiPd8vbQMTm1bCLLwfFSRqmghAsn0oP3htWqsWwA6NZvQ/L1kzc1Tk58GobDns3FQRUdqnBtwl4GfG1j0/q4ExcS3CPq68D1ADAkHMrvlRpntxgRdh69vvASpvJtw3UIuhtu0SiEY7c66Up9Ls8aZMu6OWn/WitM7zmdyrC5OyvQDCsx61emgxNc8U1rRWMLXEX+Zr0o4NUwJDaQUeAktoSZtr4pbQTeBFLymc2soveqb1FPfJwYYL4FVIOU0oN5zsBqQ7Ie++TemKUqT65CkHUh48QAf7+ReME0xbzpioDnawSof159xrJnNvxwHKiCmiDqwVv1MX6P5qaTdl8NZ4BhjHC1CVQOqe8nMQp9vBd0s4v2fLXQQHMQL7TVjaMLoao/myY8k7+xSWWKiierPRegJzagxwABq8OlW/Wptm2c7LcRR8v97p8WMdm/fzZdf3CyyOBRuzDRDOsdr+s8oeUxjCACi5DdBmvWYZm2L9+AkfXm4YkQn7oDj9eMUrTKyk4zTuz7SVmV6UxzhVcSTtPZxbUnbDfnhsVWwXh55XyU9dGUpSyzvK2wytsE79abXDsCzkmBnqnAV4EphHHFW2qoTv8ksK3pUIbN++NVldHCN9iFeWrpodBGHfa6Jz5rEqlOcI5RjCVBBx7iPyXcidk3vZ2QZMW2OjHrk20t25MWiWV4McOs/2X5w4L0aqG/sAVN737n2Pi3/voxaJ4oaddzHlV9maDNMW1Vqh7lf8eAPLb4S5EeplDyJU+74PeQCQuBPZjqtL33E4hqPhx8AVUzBWCDD9uI5DzVEvGM4b1JzwZiR+e2nx0NPKxFf85Z9egNtJMEEQzpexx1cHzlA5PoRzdkRJNKzdtzXBADRlcVpdsMxXfF43lp7pUIkwIQPuj8jnP+gZfHXpuxw2SBv+trfWvjf/2oKTKV/KEo+9mlEdGl5YZyCmK4xPmAxuiDhS+E7FvG7laM9QU2MLeUIkGsYSKQ2UnSZ5Hf7F5oK0f1G+YRB9L2Blp35Dt+XpNivB5hkNvJPciwRYbCreorRZOfSNDvyneh5C08dssdYtWcYjEd5pOqEVRcF/L92xo9GQ9AT8rmszGHjbkM6lFaPzheCpA2LSzjwm/qb39M6SkCRPv+vOCAmdjtOfa3KasQsRR3iLzQO/fkENu56QHSV3HrkhJRrI3XYn5NGA1UEoDAMEOVDwSzwhfS8jcnhEJ0+anfSFY31yZ9Mw9qYibM+YNki3f8/Kf3ehfdpzE0/R7X39K4gA3N07IwFJSAoledUqm1v6IHZ2nDyON4PDRQujJnvWTtM93dn9coUXL8Fjk0Sq8U1dngjdZzus0u1EKGTJbsVW5Uzcb3f5oy8hic2gPdl9orPxfrUNUiiplqSGU9BlvxoVqsodR9pwZerSzMnJKTcg0751nZtX6i4jbcW48caCi4zKjTo954qyJvy1RQGitoHMFbodDqKUd1qCqSz6uTfMy0LTG7iEghg+Q5LydIxeEMi/VzUO42Qenwj92r1o0FfW0B5UfLU6TI9Tz3+YRwQxa/HWemZ7+zN/5S52S0j2Gmnek4at+STdgOa7BW2vurkuvMbHSljdZKg+axKwhidvLeBZgRjxiDkEwDzwjeAWmGJzfcAdF8n8722cZvKQjkrEZ0zpXv5xNAM5d2BRRK98IcsH+T6brVdXlB5MkW5zS4GAqVY6LmFf1I5jgiVHHw96PgMMr5NrzvsKOujteVqyn8tQWUyX1BK1XHEdUmaK/6dE0lKyinr59WW1VUKSNh4a3kaeHW+qSR7qZNQzsOJEmQBB03aWX1j9zXobfA3h07R+UX2KdYUimO+fiNSldeJBEoCsFG76Nv+pH2zZLdYlAV/280iVKmgoNy7vgyZMnu2fO5Y7P6A9dj6PNNY8v1pqGCNueHCMbeRSzP1i0S4sr4kCsxZo8at11JwOa2E2Bnjfu9zqf2Mc3Nlr+35Nm+mTEI3aGRrkA0YdZctiU6CjTsbCtAm3IVclX76Va0UwcD5JCM7Ix0TSkmYY948N/ODxQjx+anbp5zSv5cvlSNHMJDX5mWCqucEUAjzW4V831NV5SZNzeG6RZCOg49jPYCyNOlUagLdi3knW0l/lo3LCWWoF5F/FXt355JFTGyVIhpr2OOK7UgWFaXogIvTe7z2NF7xbTqW5jQz6KeW2RS89xWP9x+54drRfDxt55rDOxiEvWzroqqeX59Q0d6SxynBJP1N4j0KKjw6riznJUBu8inKXvEt61kZK4xdozXQnRvkfhoGuOJGsGdKz1/Db2C7iBc9MK46aTITnC3BT0pCDhc+4tCsmT4+PohLDOcLENFn2OPiQ0o23jYHyU1Ah+8sk6ViifNy1KEDv8yGeB25L1+sumoaLvDBRE0oVE/2ywABvBjgDnlz6BpstVYgF4nUYHaYBQZTkZegOgLmhvcgkw00ko/Ld62MzPikql1LppgeCAGmvqR+xo2LZXBazJxCZsYETMwHGZMZCOvJ0gpr+tOtqt5KJ+xxoXBP8TNlVq1InDGd/IIt8yu5yn9jTWV+GSzkV0xQgLaWwA9ECfu25dZdO7PYjfXv3l89Zqbd5v5DZnj+OurSncW0Sxy1arpezWJotY5aFLnVf9sAvWma5Ia2g3bU/dm5WtV6vraXlahobhv5XjoESep4NwAqsvK9jDe1OzylZ5yai3px47pW4kfslEkDVrzq4bOma0LvAGx7tw6W3q6x6/KU3RFj5XZ0v/dLvWSc7Ng130wpEZu2UwZhx5TLpLUruNIqKzoSj0KC4KRUgpAaoJTB/P7Wn2UIBSN4ceTd/nIFIbUGFcLY49NgBCT8NoOGVSZb/9UGVKTlPAxBFgRWbavZkQP2K/Fr5ohnD1YEeDp2Ec2M05YrrA+UMl3tziEFeVnzMmuXPMUHJtzzvWqROmKOKhFszRljz9SBvNf/yK/o5dlhd1TVbINd2M1KbnQlad1bvQqhqwb1H+pTd/0YpfWBsJWlZr4pH7MFUDpKp2Cz8IO4ONBEaOVfdVTtARcXoKTo+U87wWGuWPNOEtKoDIETbMEyDVhymJqrg6KXnbzb9pT+dWobzmSgoRSX7kRZOoFF33u1F1yehTn0kmksKFcKoVm/5UOKl7o/GK9PBgRlnSSSKe4aSSvsAqEJJ2438LYX5pHpzz6on43CK9mf9wggBVXwtk8mjrneR+fWITS+TL4u9+S67p9adzzHBF3qeOkESRMGyAZjWY5rRgyulX4wzYUleoJDeJxys/ZRteI5mgcvpZo2fueMpN6NCSHiW6HbdMgWKQPiyqQIzmvUQpwLbbA0kEqgMmTpSdHDSuhoktfGjtQIgiBNFkNeyIb5hecOtYy/plgZycLzaLUlA4vmND3XKy+Awv2b7LwX9YjjcEfD4FhV0Be9NFIc02l3m16IIJsD01k38Mk9acsnTad53vR2PYj/bLT0J1eG/rPQgv2wALhlTVPZwDjJkdvoH3UDBwIWXVL9F2yOPm+cncDK8V8Q/FtGShV8MHc6AIqdb0qUURh2gckl8B9NgKQm8fO/0ez3X6r1Y4vgov8FpQUTtG0mNLl3jVqciwgNUtFNcxr28yOMLMRGM0H6XdqkGQhG8n0UHh35GJ6yPiJdc0lWBn7SjKmIHgq+KA0pyp0NnbdGWNVqAFj3WyOAck5eTszAtmw0x5Z/1+ZXgjqYqAQudY4poHqbK4NGJfK0/dikM8OAWQfCOQSA9sTb3k97Mz1wOdr6NKt9T8XLUHO/96Uh+tZ2rKf4a9Jw1ZKd54BUg8HPannRIqiMsMnUKFlgY2LSBf/1pqv2GAEWMm0UaE/NQag6LIXMP6z7elBmjNCs//PNn3v+pA+tNTtqOoFJmJ/omGD26TWGkg/ZQ39qX3PqTRVbqycnxZ/yjptsw1ox5o3O5P4TiNyzBccDwqEYI91E69ltcF1jQgeZTjECwPckBUPhebNJPOG1hiklD5kEIVkvtl4BOzfR4JbrsQsc58KnWmj/ajzKjQoLdJnkinWrN902XQbV2QnSTQDCStLJVBT3xln0h2Mc2SgsMfYBEPIKzXa013WojW7gKkJBn9bBfcPLIMJujA2LG9N/V0FdvA2l9Re17wkOIl89C/CL0Jc8/SXumv/EjmwQ2bnITvPtnhXmg3/T2HC8le7oJp910XTL1sIzH+AOVwSKKQC9ncC0vEaRYJPBIepFouV7fthTIz5Wm3IWuXNeO4wy94/cjQwFnpUPBcmzDSw6r0fVNjBGPnwvI4BxdlsYXIBPqhb728fVr3HrVfptiafIkATaGv4JDhqZySiSYuTxk3Kf0dSCQKMJcqu/9b4/UT2tahrIslapui9WI409zGCs3L+YI3eK4K5Gm7WegiTp4z/LVfh3owtc6B7kpHqSHRJ4w3IFxZSXaTbhHOa6wNc6vPfFZboLaqRBUQDeiI+klf1muW1wOeUnIE7sC//dOha2hIYBQEfYDD/dRvvAvpDj9rWmflJiWgjgpkeeYc14GJ0F41B57nxB3y6pSb4kE1ghENUmw6l6KtKN4NgFDxeEg/8jufkj4g/5uXe/H9rCficpF4IJYIXQ/WsRofopZOmejW0SFKKHo31veZy86oN9PN6L/zlUqtDlW4KOyA/eHD7J86SKUMPIlug1QgQUW06lQCBzcN7Fw18ByE3DoVRhJyEUoHxwnX9DXCzzycaP8vJq6qyqLW920m9etOyhGZkfOkIW5ZWI48OD7GEZdMrwjQqmCkQyCHrgy9VVJ+bb7EWM2ceQ0EoRfF2CV7jUXw8HZHIea6mAGu8RPbXdNqW8RnFh4cgBVGKE74nMiCOQk1tN3wtM0gH4sG+6Bsd/RPj+Z/TLIqvUooemQuQztzAyJHjBTw0uyajBLzABSKGaHUkwqTLmaD7uqAqORHTqF6a/GnYo1EjIaSSN9tXTocIl/R0i/vKxuJAms7S3dyL7vPQtu779enqdlK5ScFpwZi8XtG4xxR0/MvrjOoeynKCfgqtvhpFu1xSV1cHqldDtjI/c6VkjiKXntmhaOr0rNdalOmR44NXaIhbdMZUOgoNa9i5jF/yGbjb2ruv4+J99+/PkRJyGQBqSw1ibrqJlaGMHvVA91Yc1CPooWh8X+Jj2TxlBRz5ZZNXdXDWbVmq5GI3hoq1BY6Zxtj9+9ObzIOHZMxlP6rnRAGWu4ZhSnqS2BcApsiNp9bu7fNbOFnmncAvKlHqe4WKG6p5JChwQy8KaRpQnkpl7tSKFBYsSqiVQ2gKXsl/wX4slcjC6jTqH6Wp8N+w2R182g93WiBqxLd5bXbjiGNUxQPandPgRC954F4UWntGLADVxbxxXFtaVDxVLaGfu5TbBbuo/E5vGjTxFZ9T5RkzE/ZmFm0Xd0ZD5AE0cQauCH0zpG5TGGyCoYiZ8znBm+caFSlPnvLdCkxr81jny92puFMY3UKY1qm0UboLyWMICrVmbQWnnBxOH/KJjMQovreERJY6s8BM3cpXkpUcYXYSObx/f9IaBFzbCLX9s0KRbbayS14+lR868bMfDEKnFfKdpElCgKL61c5eqT0ehYr7mpCt+J4AXXJQ8NukOPgRa0GhJq12W2znmIQ6ey2BQwIN3IoXhxbylmyb+ojM9LbTqshHXRp7jTI9ffgkUuIL61cLBWKmUdSPQD3iY06MZXIFZNcFEK6uRiyoVOeNvYBaHYJVkKzMjE8l8nzIN4tpYFjOJ+N/xLVad6iDwDwEC6RFEFsctva58HMYeR5pz7oLLCfS8gzvYly9ve6/sXEveL88TN0++/2/4aW77Z7esnLYjSTAA4jJA6Uzj54aP+ajOgtC76WdLdNk0D4KoAppNGlZH94fpcUHixihO1x33nFroPvLw9UdM6qi6mdfZ4UVVqS66swzaI03DhiJTmm49ttkeEPPz5oAtVmVOp4N+cahJrdZMpgUwztfsna6UzYDDeyT8PFHnRvKdMowHJL4g+Me5nG8aJq843o70lFkQin7MFFtlry9MU685MmpbkcLIe6cIwQM6KF1rb9NwMIZO4Pvp5F6uYaZ/o9p96KqQUQtjWTb3xvBKQJWD4k6ZXzgRni/CqYAb7grr4uvxGCOLpf5lNqpU/KSnLP2ZQrmGKjZ8fa5rXF0djWbe4duNSGZzHn9WRlDgqM0lBC4lWMyvcWLgcJRiY3TmZ/ZrVNbo8bnoYa6/pBZYt6Vq6rCJnN0B9EtevycMG9uFwmsw5SAU2TdiNiFq5pgj2ConRNxeYnY5pYjgCjgrjlftv55tcnIEAQXX/0QZd/CWBINcrq63vlTh32W91yxlb/A3nGB726zAb73vRhmZ2luAL2+KnnyOxfyHuwyR5jdaVqgo8Hdug7pl65i7gMPPGbbaLWUX2BrsSHcjsU1d+XmaLlOw5zN0UBKSRXPp5OxTlP7UF1OKZDu4FHhXmPPKYJBG01sAu08IHLqmxHZFSCwlaPXv+Lm0y5/DzPtE3uExNTy9N/hmhVttNCoeec6nZtzldcT2pOep4TGfcwsrh/W1LP5+Ev32+hIaEV5Om84OLJhvWgSq1FYuCf/obZoJTuT5DfbMW8hqnqpQ/mkJyIbV3zjiqKujTAaB3vu7tWAuNTOejE8InjgUO/qxNduCfhhxJ1dCuvp4qr9drTmxtP3sT50zGEg5G0qGvx7wTOzkjDV94GXudfwvqy0TFF4ncDKWZTigmJgq7ge81MzpT4YrvcHmND3Pd/2NUIUUpre4rUBquTOgyYosj1l9o0DJkr4Qmc7Ai6IgsfyAHfQQiVqh5LYOoXldadoCuGp4GLNUdSsrIWOxRdJovubEEMU9EsC2xf/Vf8g5dAzbChWVHozUy5NSxqX9bnarfYaKj8gsgO9F7jTewsE2ONEjhargT6CR0FAfatarxaaPn1Mr/DUeVXfTaSPiw1FaOQn8E2ZUPE0cE/Dx1EFYGhvOYHDDfeDMp4DGYfTwzd0sWd6yp0a2+APlZAhR05tvtRQeK79v93F0wo5yjDm8VrwYipzbTX9yw0/S8ayafZmDCFgm/wilpuvwkDB8uFDbHt8b1nO+pfxJ5+Qbukk1VJ+xA2nUCcJH996nHkqDbNbOdiHwapkwbV+DrxxrmKlw2rNEYqXi90yA/PmVvKriMOA15DxTYF+9+SOCSYNwqWPMbMGgCqIECJyV3CCPFqXawii/g3OkxfuLqjBhml9bCXiiWeRzVY7Av/HxsbGjajyJbyyAilq6chOwUe/09UpEHyVcFxLBCaHedvKP83xchokQ4LStKR1F2b9jNUzOvBHsWMCjaVk834NAVZzIt2hUTiayJ8VSYbbyLtDXEXwlhpofq0AfIRKP6QyY5RZ/PVQh0kyRgLDsT8htRW+NCPplLnMl67UKoIP7ZbcJNyNi/MMH7uJzdUEgOV9oxPUsXiIgO5y872L2skGXliGBfIYeIZnIHCCYuBnYkeCTmAGe1Tu6v7LPKxKq2p7AxCA7ttB1Jy8mCuL5RI6zH8OsqXcltsvYzSCabUNoLGxxSq961xlAgbrFNhW7I49549qPlw6B7mrZIlzZ5QSceObgZ6zd8x4Z1ZSguHXUjd4ZAxEj8b5r0pbMzJip7G/L5QpmLy+7R6hSvGq1XTmWP+5zqXDihRNrHWmkz+c6S+Pw+ivFjsTqyAHgZwk2Z8tlOzlIPNg200kTR65q9WxFfZfHH69WhOZFKGthG0SQD0MADMxQynS/P7BzjsMPR5wrYIO1z4MsyFoQZAIkTQr6hUaSd9Hel1evtaZL7CmgHzj783RnZgYSrYoQaUTWTNI7XafF13V3Rj2fRtQ2liJJnre8rY+SYSfPtabaXatDxOeNB7+cbBr65PNposurFw8J+XQDm+E0z8062lj4cbB5PfQKBHzkPc6G2Xm7diqVd9wrNbfiU7lgT2REzthQf2LKSmRwQrHSqN1FytuemLar41VKnm28r3pCnefiB1QjVg6kPHHCx7R+xCtGGsgThVdkqrMHgI7zcn79UQUBlRg8u5VPstpJAPdKVcDKZaNjMZKtTqEi7AcZdGP02zKMU+SPBjIpJ5uTfVvxQkPV0UrRbeZF6wC8z0Rpp6CydtKR1ImMOoImkfz222xI6kjX9uEs8gIcwMNmjd2n/UZerD5CpeGvuNmc9w6g7s6XANuCojHy6HpY/1LuOHXy+w66RwQR1Ov6+eHdKtjbDC/nuv6a1T19Vi4xbETihIhh40jL9Qd0nWxpGiqAFl21e8TKyzDXm14xM4lBY+uEQtePlT0WRrjydMvpSr5eGcETMiOM8v1iNYErZAKLUVjaFprmgdFDLzdjcgoJznocXxJiez64Sjs4pBj2cwo/1ekuC1WNs2FdWVKvs7exiglouNifd/UlvhkiYAqKBZbFjYk/CmD7NeTJuLN2G+apFdDfxJ1UJkVMpGdQb4JIhm6xIZSSttqX+x4C/3dWOGo1qC+/O+j0mLbCHDOcHh2hNEoXpQ1kUs6mRNV+k7pdNIbm9l69GQyEV0kCN7x/4eBBn56f11+WZMTkaSW1S9L+VfK5e1vuMEGlorGUbxHQW2jJ9uATeyFQZhovlzEa4DZo1IbP5bj/VuJXJyIePkj8qkMNh70f0az++dcJ9gqOin1ROEZfCKKp8HFE1sPuHK+avvWrkY+/CE0Qh5IBLCffJpddHFSO0fGp4rWkk9ylNWfMOXrff9QF/ckwJJ7w9UhF6C0XzQv+y7My82G2AQ+fP1OnZXPa5GBEoGKJt12OXj7ei+LjfsF2EMIug3ZPkAZcR1x1+FtaYUyIVT8aRKsbm+AlTgFzeKphErCSTdUuSUtMtdsx48kmL/Dn+m6rtFtIJvf20mG5lezy0jaFl7ggkJDcZn2F1CBj3P1cY5A4hphbOXPDX+oWiZ3BbqBUCgI3FSVtd5/Cr3RykCcKl0LAXVQ1XfC69g9Sxj5ootiKdUZfaYEsoRg+2pwsK+a8WRWP2yfUtPuSlKMQBo9gwCj+7TZFKN3HmXWTe9pq17oCMatw3M6qCeD8cnzr2mieBdaTddOt6IwYjfHmQxQ4Tx9UYH+so3Nml4c3/SbawKVfoipuV2Tn/trQllaQv3wSzkbw3nWJB6vnXKTWHeENkjHwVSb68XAhLgSs+a5CUVyx9Fu32535eqXwIlU8KBG6RcXEymAB35VVmzff8c6fTO+UqIeNyssnYnoZ6hIIbzjipoN5T6JMCze04wzpR3gwaBTWayKR109+r8+/LCbB4Eaczswx26BRmMIy3bZW/1jju6mltRFpEuWhUBkoXqt7edH2kE2OiMeQljOPOKwnrcSbh71w6ZOSi0m/XuFkc8UltoB/8b6j1xekg+8DWkv9YL43po2wX3azyetsx+RLyqWThB9c5ppLOT26f8dXIU9xSqkby2NMix42sgAq6CN2tlx+vVM6potjaMJjWAKNTgQd+TGBTSYkTio1Ku9KzNORCluOi3WKr7XtbWdAJt3NM2xBkzT5dgllDBBnZaBkmjT9xiGx8inj4PzoHGyXpGQZImP0vruWekrzDTUb/VVsG+dEX6JiEU6WiSbQcY4PrtZ/83r2eiXxDdAJZOhmipYxlOi9tXtEwIc27YErcPwLc6cLv8Gr9O/3qgnhtLZe1m8VBR2Fl/6t5tskhkyQndOIbl75d7CiE9y+W+9w6Dk4rdyj65VUIRbg+zsUZeHMj+y7VPfGSUgb36qEj+1SkA3XvyTMlmgMvzi9mlXbx2ar/qg4YTFkA+78QYu1vX7phP94iiBgg+VkPNAGeLYz6xQNsaD6sHCL4h5O3T5Jfz71KvDTdlguQQigmgJBbqGnowlH9oGI7UP5ImWC6LnUoF/wzwyKE+vdsB+Xm7b+1UUCppz4W0FJiV6mDgvyX0Gywt2I6IYLipsIKHRxzfufmHkZR7p1A+UKQ0LZR9cILruWLIVPOt6ewtaYhE6g5ar5eoFq2XY9dZFe4u2GnD7nEQARe8LjpLpTDpYRXcidRFxiQLQNtNj1IBvKpL5xESoj0K+k1Jfjx+do6KGHA52vHwKLOr3c1+RVJNmvyRYnOfR6u3zl9q2M6RBKusEYjivU/FHuDND+OlQ39sbJOfTry8TKyHGou7Yum0sTZ4uY5/ptFhO40lavnJN0Yk2QlDVSHLvIs0ae1t3W//YXA==
Variant 3
DifficultyLevel
412
Question
Only one of the following number sentences is equal to 4.
Which one is it?
Worked Solution
|
|
6−(6+6)÷6 |
= 6−12÷6 |
|
= 6 - 2 (order of operations) |
|
= 4 |
∴ Answer is 6−(6+6)÷6
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Only one of the following number sentences is equal to 4.
Which one is it?
|
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $6 - 12 \div 6$|
||= 6 - 2 (order of operations)|
||= 4|
$\therefore$ Answer is {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 6+(6+6)÷6 |
x | (6×6+6)÷6 |
✓ | 6−(6+6)÷6 |
x | (6×6−6)÷6 |
U2FsdGVkX1+3NkDcNqTb6mKkw5EjhSwR+iyPn6vKlyS8Y6rMNtvQRitv2OzfwFFkNvspVnB5ujLVLO85G6KvDoXT8dAAw2xTbjXWD0J8RWB5dYrlz2qlOgk97yeekYOIsChgrzoL0ci+ur7zRYTTctATV1yIiEPmNlK92s8RF30xj9aFciVJ7mLL5eMu0RCRG9fBHKc5yZvfQkFXv+hJwQv+afJMNQVN3rAMoMSA1egKVwMBNuIWMmAPngvOy7ldOKLqD1j7pCu7L7+oN42E3tbD77MeAayL/S+qRycnFa7IBTfDwF0AMxe5y7hzP3M9+ep40EgSyAOkyVzxyyLAS9vc7MBKNPlzAp8owjJ3up+e2aykmzg+thF9yekH8A8TUqpkH9vS11LA7grYaCVlHrixdHMGRDVtmAYFUMTZEwaF1ElTzkxhuLLSiGSYX7e+djG+5tVG/nclDqTpHzCsMrhWPVHCI+Ul2UWtpKHDtjy6p8MzXqMYEUGDPSpRYtBsF99kVDI0xy2SQLtTlDxFbSIBJXh1YCtKAq8rB/3tVa5eieCpc+vbKXezHtID8LxhipvdZNnegqOz2skPer44e8WrbzmXXg2Y0DcCLVy/CeYgzsWAYNciE0RA/sOA0LbohA3G45QXaF3wIFIddU4P/8DT6Ez0ojPpUAarPnLqV/KwykqznYaJqvEuYhKVyKCjxSu3E/EANNvhd0d5Yt0UpupXGREqG0cP19hJmM8mT87XoDLx9gF84GFSUwgWoYV1bDAfmxCqW873xnIe1muw+d+PLzRez+L3YvHVUN8eudXl5lQ3kEiFkiWJs+BtkahJY01xwRv2LHcnR+cuVl0eU9ztjaZ3BpIJnKD7aCAa6u4EZEURl30x20wqUYerDEM0ELyucM0VRE7i418nI6Ay11Rw/8j7p2Je88rYwPsxrxZdDkSvjQ1MqocRQktHx+xe1OFWya0bs2iJr1cqP4hlyo1X/ejtNEaYT7yrw6+lFyMc0vejR9PY642RhMimMiIz7TWW0AJpJuT8lkaXx4OSNHJS0XuokonarSfd0z6t919k5jajbzMf5L8P/HMxjw/rXSNFJR6HqpQw1R5aOKd7mLBVnkEwBqwCGNb4bflmvlgR0QbFHtHclMgb3yHGhfhGiAWKXHX82BA9ZjY3drdHG4CAGGnCUq4l+qYIUAwYX2GljZ7L4BAoaGI1P3M6cJrzeXUFcG5WRUKSSESKdsPaUuJD/3zb7LMuuX7wajCLOPRJq27fStJcT5ATJffeHrjda7KA1oN4DLa39YO1Q6KkbgrbyCacnUcowQ/MYLBZtCrQ8Ojkbrg7bZlrKaxD2p/5LNNRfRxO8SJ97MvVj6Y8V8TBXiflCOAsQbuUe5EiglFrwjq26UULwXT/RqJQVyYnm6vTfBRuFackFZ+fhNdLmM3dYErXqKkQNxfqbqXWW57bSf3k+5ltg2heFXJsPMFUStaGmdwoNE2lXJUNqedKpu5JjbMZuvf/ZDKLYyRUxWt4kvagH609uWP6JqATpaPC667RoCUn20vD9b3isoCUOb0BtebLhjGLM2/1QFWuFyPFsE7ooyoEPnuUJyR6wsINo0rO0FOTybQAzxwuHu4n9IPtwDZDUlNc97PJYLugrNQhoFEUmANyAe+ZY/7EW0mhgrjyAMexfRaoJcdS3E22mWJ9oPFDRUs9IcTurVNhM1OlVqS12HGqexzAytA0NrM00531Wiqzm+ULApE5NSjdn8mMXLPSRrTyZwVWgldMM9Kfjo+0sdpSioWJUBhk4AMuInsPHi1HY6eeJ+bnhH1wpfaXH1UMxhM/5EcwnvWRYhQNlhL4cpAvSEK2Sk1RTTP0mfRhMiM8adIuveMQvDZcDxwBxQAKRQjjoSKvnvADYyi0Z8+clo5IU9+VFmlWSicYsqKpx5jOZcl4Izhh20l5aWwIP3Cfsxhbf8RoNgfmwPX4yJr8u6RnJsaDAObDKsLvCCNnSh72ofC9f2AF+9bW/qSjizElZY0bWdg7dhhfg82sQlYwXTZhly3d8/yuX9wsxfeVUQGw8c5xHNPqsSlSSLsvaTKLX7epQO3E5F0qRC9UoTEGT2Fyzeg23RTb2PaeYqhPlUrqft6dLIhy6QtthcDVkflE8rJrwE0N0hT4sq+X8J9JMzaripJoPYllvPh+yQK9YY24E1NboFrLD8UPGVmloqAEnrI1tPMQblv/jhtKjB9BVrOwhZhOiyHFa6qSioyENagUN+iNbeFVOKDua8YzbEn6YhXkiXi13bylOAyNRFCdPvLN10sWapumT19WH6WaMYMIR2UAFdNPGGIYAYl62C1rbLtGaj9Bw1NnaGsdQWGghnY6M3YUq+rTR24qGTbEw8inOyxvL4l/l/QqwLLmh86HnkWSzXRx/Qjj6MiA54lawTsJ65gtPWRK63+ASlY89I42Ew3yf0U0ePTGuhEzx4zADMzl9LPFAxEoQXqDhzd0iY+jcyPiQRebIAt6/EQsNJ/WVtv5D8PDINW2sj2QeI8eag8SAQwnTUq7MlzNKFpezeeuZUtkwwTIo/CH1LDV/ImjJ9DwSvcAQTbbzqrDn5/vkHvgHWs6ACrvWnswDYCOBOd9vlcXvziwfS+Q6vN27aVOCfQm1+LMFUcjW3cXi04+S+Zb5nNOc2XypWpwzvjsZ0eZ3VuX0KUggLzl3OS7iU+oHAYoCt5LeqoO/YvQQCOpAlRdZSNr0k3takUnseCxlYOzmX7vWMoMe44VBtjOws/Sc63rbPBEa7NK1V8QkK5uRZ/ZnioCij0Sz4aCP1oKQhne218EkhSKFeRHkJpoOuL4PFmD9MxglclyrQXE81mSRmz2R2rRlTIO9ca//DlNkwG4uDpTmME0R4b/xgS7U9iJVG8GJuOU2q9aBCCSN4mr+i7nr0NBAGgG+20ZzcLYdlh7PhWCM4CMNUWW8IcfE1fufgA/TgjjNJGpKXDqT+pnCCr8bCKu9CLtT25SIGTDqM9MeDmP3i/KTesoHgFOBwD73D0OkRhQyZSTEcQETX1lGE35pbsrjXKfe/VZ7jGV65UwZ58esTloEnTCkGh13BXRAY9O/QGcpsLZ+2Xj93KXUPyOFKFLOFRYHthxrdh4iVHE/rgMIC/lnq3wgR58FT7flM2GTHreS37623JxtYVDM8y/xS5kWfX/2EeCUjjowGrHQj6/9qgrCzgtKo+JFuPJgeE3y8NhOJGW4ger0YNC+0qrH1rWnfgBzjDBYIz89x47k2xSnB9NETetu+nb99W9gn1gFnDlCLF+YTPB4nJOv0pQ/TEaMsbFpPw+jvfTNTP1CKEowdPabiHgf0uqK7vSasoEJm+3KgTabycKgTVT81+7qsNxXsglN8YoGmt4b+HRMiEdZn5rCv3yZxtWom0rpOaLhAh/btM0QkDp+I0wLvT0qbmHxYtdKzUuI/JomTzAGwHUQ5+f0m4IS7puKBXvcpTJAeZiaj2jJgYjskTXFkSrLCyb4WNa6cHqHLtPqWFmsB33BfxlMjaJiG9XSddRSzhaHLFY/FUbgcIE+D8n7YMcFSlkVhYusndLTB26uF6eluhxniZwyL5xa3caDWsU1ME+9RFSt938sKIWxgaJcgvFpUqeg+WKLUDNEcUh3FotWkq2DGitMIDt1IRgd+o0vJ4VitSucOVlpe6AE2cEXMc9uorUmxDktrhsAmtZ/WVFEOuHFn7hdXJzwPMLYiDlG8mSWvvzVaMk3hZUFfyFMTaIqTkFxk2kgTqlhZqPsxDf1VpwHX9PFlu3mxQm4pd6cABVCh3BsIZdaWQFy+oZCqkjAR2iivBJRlGCLL4UI4LlD53IMGXYIem0IQgD5+aEI2xXOWuQ3qfIoQwzrTLNKNxuVl6qwLFjOdemdzyplgk4iFlk04NvhBA5EKf8GRRzJ/JBzJwI2gROKzimi5JkZsN4Hpf8FOjgWxGh5BJ1/yZoy5z9dtWDnmTcNIHI1nfNEw746DzzGuIrLTMeqzOBbnCSfNyk/zXfeS+ABHloSZp52llqM0OjVPRPX9LF+JY57xuEEFGhEN9j43yNpnbjlKpoyRMSSAENVD7FzBDXz1SkX5yiAvZ9nxUBbgFrdsor7ZZZPUeDtJGUiJt0WTicbHYjjzLh5Ed5hbwqqaXlPWXBpUkH4CzP4vpz6r0mboSnpf1LmxdMdrmiUU7i4oiG2Sw8BuddFuehiMl5TUdn6ftCeWBYsiQt6L5ABeJPPyN8Ak9DuvX2hRv4YrqFl+qa6mo7UFu3SAXepKF1EsgM+US6JdBXGvGrCu+G2Zl0auYmAcLI523+jEL/HwzZ2MrokclQnBxja1M4O0zTokrk7RNBRPXQfWJ1Dc7z2wqY7h4IYwsu7QHYcvXuhdtyk/lFF3UL2ik6m7BItnXrCW5d3GAJkX1A+LnGF5uXZmpH/9IteiMi7gd3J8+KYvaxgZfHOYPbCviPRZTshA31OcLbNmFfxe+USHhIJaIBEuVMW0V/GSp24mnIRIi0RGxaBeEMnfeToSGRM1e+a/2AkJIYmns6XUN+clBw6KJs1pIxv4Zi5Ntjt8QkPOijwLWa8phLSx6AsZ/k2LdJSUGWq2BDn2eaFmJQeoO7ZqEdpWiq59wPG0CA+SjtRM9zYceOfr4+7Cr9XPZg4HnkC2z5XVvX4KC0MaVYde+5gB6H6GU9YBKWFeYgziUOJL0i1fPNFFg40tLFW3IaivrmJfsqjJlBKeyiOUY9wzO/PGWSP5IzBljyfT39JIHJHdC7uUURh20ODZ9VnNIdedkHsOodCoXDeQ231Ix+KCWpTbH7We+loSRyNZcIdoB602fxIBiYxwUoJU/nNBT0IpJMkWD7oNJ6k/LhDuNUtzhLpW/1XbmdOikjqxk7lRDS59brviJKtESupMntRuV+TWHkLamIKHh4dUYd8JZEjxotoQ7wBzWEBJxgpKwUIzVwgiUv6w+GRXKMFn2Yk4zh6zEELlsbwB7Jgt2SUedsbUooE4axQ4suf0pyCQkoDE1nPxefHJzC/W0r6/02fgp+c29zlluZEbIjWb3giL5kzfr3llM/39LFYopJNvi39mJIQkCahRAkWYDnPYR9fF/AZpoQ4GRnJ5idJjJkaRrbqym6qeP6o7JK1pVuF+KxlFwzXLuuSPdMioTHLXGXHX5fo4824QFCa74QID817JT77GrtCrR8hVR52wcaQu/Njck6Z2PWYoGHgv4ls/+63iKRzVAxbLv4DqJgT9XOv2GUPCzeXKoQzfj/nOYjU4xDAgiSLuhdJZFQysgSLn79G80wJW6/uY2CiEhyamhM6k4LKfoKPZa1cn7FW34PGbaUNM//Iq9Bb3LxuVFM1XemiFGnQHAzRLq2rx+sDViOgo7Kv1urwK6VKxNMktgRa0evgCgCe1iuF1IbQAUErrZ5cJiAal7LY5vWaDo0jlq+h+lHxF+WWtySpdf5WcaUVm7l6qCUhW/K2PdNUCOQHl4rbCFdlSrxc4mVG3+CaAsFJ89LK7nY0ZjWbfx0tL6tbFqxUZ/JjFBrVhhtBORK3qrGM/oM6S4h/4M3/0UbU6pCGfuUVxx9b3RUIpGJNGJpwiPUYhcIh9xyMxtA2H9yuJ0/1bw3kVrBSHcsON2gQQJjUwpMncm1Urk6+opnZFDW675LVIs+LWimVnn49zuuHeDA9/yMd3HNrQwqig138w8vi7YHEUGIhLp4p24Hfeilicbi+JIos2kbPS10TtN9PDEfPzfGc0lzVYFSZcjJMiDpQ/neAXmNaJTYj9B5H3+8OsTzJu+zN2+e2gicufboiotkRIIZjf4anp11XUfRTWLOvFNU7X+XM1r9kWkuUVWeRlYQkTl5f1zcIcPe8Zmh489nzoCDg5UzH/cVTZyJDQiGuOyOm0LX35XFzhpruNANNWzDZx2LIPu67m25/B+0STpxCVEqZ5ba8/iFl1aPZidn7lnbjIETCoFEffiyNGSL0HbLpDmi5s0pflEdKQ0Q1EJJ65ijye0iG0OdoicSjafD2q9R1AksDDxrDYntnpUCmz2XSOJa15zUbvLHHRNAeDzNs201ZcAHbwJXRl97PdD+Lz6VmadVDDX1S6FuqZdVvzMVjjMtxILveWu0FEMNwusjrMmWcnaOJNqu4RJ7y4e3pQgFa5K/XK9X7LP3V9osqhukzIxkWOGOeYgCCPjO4b/raM+wU9VPfUxsAfMXhiPZc4INnxCyhHDzvoXd6tbLDwTqJQtRDT+90mtEqByex6tkU3IYj4Cgkg5wmwvW8AcEEiPlXWmycBAJG10pAv7d+VkSuw0XNdwB1s89kpYV1WigstQB2jAQfx+X76G1yDeQfWV01NMCCoOIz3eZfmZxFy58WspPTTI/GhVFVrZ5HOmeiVqb0jJxDE0zrytkk5tGHVpFh/5QUwGm5N2ozq4OAKR56HmD7Wuv56d921FhvUtBu5noQURrR+mljNXz23JQCLIISCHjhyFvwsgJgLC9AbWtg3qu1IiW8Lc6lOjLvMG3CshkBimmE5EPUjv8iNgM/mPFniLpQkZLvonXJ0tYcAwqrbBLpFYpH/agyVcE45x9ciX1cWD4543qImapcX/a14576fNsk9Kowq9/HMWxCeNOxnP7B/fesrNTktPnEqvXok1Eef76L9tvuX5MkXZ/2PYsJk22r1yqI6MHKknhp58wvRRqnQoK47hFJ51KokVHUcarR49Sejce1O8OJnpJhTxDe8Anvj6c7fVD+WBe55EaptuCu/u6L1zzApyVhHQaOdlk5ZZSjIZE2HjnVDVOph9qWP0MCI74Zwi0qUTOzkylaruPeE+JvQttD2EA1ljZTzSVk9M4a39lW1g/uZwIpwESM2HB9QzwSLswRtwrXHdLy1hQQg9GDXf7ws31Gzurq39wV2QX7zG+pUewiXsxq2cvo9n2e6pIwKTUZ4CIy81Ov7Lcrhqsa7syCFeQvrQtxmGKRnZLrEgxjBftcMWMKl090uZFx5PI02vNc80T74NkKDLvs+rZa+VuBgHElU4ooBTSVKGnd9RvJwynGwxHsTJTKRy2KX3EUEMaeTT/OQtUt59MQa/jN7arF4KE4RDjUcXs0goFOaMynaj4DClivurwNyLKYz5GimcyfCB9MReQry1+mG1ZAquJYKQHUFRcxQd2V3aO+zY0EvJMNZcmOR5TuBmjoWIbfuVKXBMmnUiHDLnav1ysWrQZa8dYduJqaC075LEt47VZ+gywMHW86kJrM/8l7rQ6PGkZaPm59vBt5eJcypm7N6mptvdZw/s6qo5oojO2V0Kj+O8C63Ucjcm4vyqkuyeVv9IOJ4B/VRroJ9Awf019suMpb2O7oUhFwfJop0z+vixxFD6Hi1ilcht7h02m0+Qgd9nDlRpqTWD5VXXPLTkC7hKq9hIw4UwTmjJPAoUvuC+AlEidy5SjOQF8mXl6n9lQFNPh3nxhuj1hKpgPiTPQekraRZTy/GolMGTQREPKea3vT88z4cXSUwaxpBxIpywDAq5pCb7UNS/WY7WWy5WuivOCVo2sOdNDGIfYDGjT7oVdU+STL/dndKqrsSv9KmWaBfhp6+GfDWfSU9FTFToBDapKL7HNTzHPZaLFse9r2QSk0mmibiFtRWTd0wBR4IivPWjhEzky2yzQMBSvhDXMMe9rZlJUqsaxlUbwhyzOngjkjYQaZAVVTZuUEn2gXc3w9sH+mLMuIwZL9CjpwTEAT2qumq8ZA/o6yTRjx4chCJfAbUxg864ipHF/6QPdvE5WodggoduprRqBHVYzTgXxcSg/Xktbb5oNzZAhZW0AokrIQl1G4klo+U0ujt2+Ob5Pm9CAf4cPmynSFxMCXauw0PS3VgTOigdFZhQmxi+frFyWLpPCqC8RJxjTX0dPk7cQkJzaYYVvQPrLB9Mf1wgUUbYeTVwy8nfKp7mF5C+yMPwQNzYXQVk8t3RZIgYdo/ZaHBnO6eaOM79B9ejLM7fw8k+hGWjT6Op1BQONhq7kB6q4lYLN2zCc5itzX7X4ML9+evkSIKM+Yd3BltkMkdO1lJ9rAkkU2S0YwLuX3On6HcY9DZPE2YHrYKqqegW/NRQQjF7AYph3OrnwmEMjNGd/xjz10g83PjbkuHp01ShDr9LDV+upi5C2OYjvHztqKi4Oouq4s5fj0eLeCbAq8DBLUgKNko8/szEXRyT3SP5SUj1dXiUFyj1NJBo0SZu6uUAfO1KemCsIHSi5EUKHMkT5ZO75+gQoQjc1bKbh0KdT0htxg8bufxON1Bi8Wn+gwa5yXIjIWZLAVztFTgg7hCr9ELm//hzTwSnqNsVUz7u6+ln8JLBpqvaVmW/LUsCuKYAN9F3M9qoaLBvhaIOdsHMzxVah5H1nLLDbZ7OVH8MfjSGw7DJ9cIBcaEzKg9eMSkGsG1udSiqTdRy1ic7pVtkglTqEi5LtPtic79B1h//PwjovMdVxABdvBQu662lG2FAiDT7GKGVb2juaqEqD+nKwQ3NAvFU5vSkf+39e0ivWaxZbf0RRf21P9k4/N+NsgwwPmbyyUnMjtkhD2/chuJUu3dVIzaM4dRaiSH8Iw/xQ+Y6doA++V8GVSI4xFRlHGExbvZeQjKNmVevxFehNsJNtGs1eBs/JHNSiDigtKk5MweQQhAbYXMM1iJYe/sVizsyUUbH7FBvvKLLhzA653rkFkoeNj01TGHv69DdWKp3/5s9eMBA3/MksbmtkztyGUhr9M0Irkd6gCh8dJaosRgkOlol8K98CupBAp7O768XNwsUWQZRUruqVjkQcHXYAPnFkAbp+t0fGa8VkjJUNNOpnLqguUjmZgz42lhqPyYhqFhSChY3PEmGwYgwS4HzWPMDmmGPKqoK9q8WknrazUTaAN6zWfpe0z+IAdeY0WOrdlc0s2tQjNBurnWOp9stbEKzt5dJ7CW2B7n6YwsoSn0YQcc3UHrW8bjaZCQ42sWHGVgaPTHNrwglL8CxEl2AToHGRkrLMl9/8eEJBsjHvjBsbplayzEFrLDXj/ZpY6xMNPgZSox2ak0JMx+a9VMjy8Xu/eLbUwxXqsyy+p8bvCTm1/lMOeFgm52CKJdF+v8Jk+Yc3uLTNziKgu7AbLQ2uXGkUPZHzJtYmefVAWUdc6l/tNgaEgOaVptZSuAblBjBgcg6UbbKO4GrAUKqFCv2dBqPLhEQXRm+BJ5c/b2kUkb036E/vZnH3cW8craI5Ihjx+pz1tR8kZCsCyn2+U+0qEeikIswigV3euSfWPdgix2bVZVxAv049x35iEKAENM+upwPtESsq/pCxSUjTZbFC4TuqtwK6zVN4aNVRUf1i+qiDoicmwF5MHXqcfVQsnI59kY+At0gpMEkkVVWoRgLKlVpidM55M0qOeLdw9w+GpktSLVvVui2tO20RtOV5bfFsUXW/e47YzTXcVArl7OC4FwSOLTAUrCr5m5DiPPUs4qqzFoEA3QCy39ETzsTfIJ3Hdzn/Unq0G2wqsGkByWI6jDfiBfvQMwgbAhtIpUsW9jJL5eEwJfYsFnV+me12ixFExkKmnNXvCYDfIgblbiiLpbUMeB8TgUXhN3ejbbGgis49B0jsgZ6rakuHoWWxgEKlO3wUwkRa/2bsFc/tfXsJrGNOjzV0LYwLjLl3i6dqDdsjAO/iGTLScqS2cN5RVxs0mjoYRNFrmpPa+NTvBQC/aobtzk04T5ccollvDNmGHJQGBj4R3sHZx/2GVaPM0JwANcxSKQoSJMikbzSh+vC77epARmpZN3fM1YnJkfcqSpkKpLj1e7UWQN6Ie8Wy1hJQESTV181rgvHZpbMb9yiLT2YDORf/FRU3JhWcEtCKxyW3Aao5Ils79KKM0Yt+D/qAHIdmMlTxHY57vamdWsGDQCMOfIZptrS/IP5O5KUOmDQ93JK469PG1E+5LVpznqvPXsAVWgHRr/AD9wcE+8gMRze19tSWT3io7ZOflFoOwn5XHgmazweSwzkHe1rVZ9BcJd877hVMc6NbMF5RAc4kUXFEl9rAZkEGuLRMJVHV4svh67dBsiAsyTujxHulifv17Fa5Keh4lxKJxRcEe06U6c4w+4uB6fB1TfKo5EAPAWV61+GBpzCo8QW9lFbiQk1XgZ3U1ibofiaIpQsKmExmSJwRA09dCdTC75npdghcjKZZtRz7Q72qmAskC8W+p29S1hnARBXBhWMfflYxDR5WGAzGaFCqxC9+Xt2fjm4nz8wfj2l4I7QZvAMmQUKI2h9UwK2rLOI6cGuPG1iPqLWRsPMRjIpQ6hbMfIyZUH4+b737vMxZlfIC0hz4rwGFwboWUS8ajxVjpGDgibMnyUNs8n1I1OFaiHPpIYgcs3Dexvv/IQyBIoOq1dP69/t4soH0m03DQBYpn6GpBNlV76Rz59O/n2zkWVPBPQK3IT5FAxZAPWlrEuJElTXmUgZQdeqxjbUN1mHpqFQOY0gXGuuHdkKlfhyebTuf8e24csVc0tw35BQdZf3bwHJO9K/xl7zpTaAPddIz+xMk4FkzZ7YjpCV5lzqnoyVOQF60NkYr4vJbmgzyw0L5VGUG8U02I+zUqtlK3R8fQ7u/EcqmwK65Ts3pFjT6bTWzXPOzcdYCczVHEYXEPWBfITKBN9oOeefnZQGF0sgcnpf1L7CA/jYpA/EBaG0nKwlcs7tVYoiqfVbeMHlNZyrDk9X1HHdgQY+b2Nt1qIEFcSDE3YgB4BKz76+748AQa2FX8Fu/N+6t5f/6hywGc1x2tsF/5HdHHkCmP4DUKmgeA0zgxQjNkxD0/YkCdBYtEXUu/XevLEYCVBmuqNJeknE1FYQ1ksSOLu7DN9m7UAicOYNkup/KlhkqaLZyUFnXXY8TGL18+SzhzM1uFiUeimgUzEV+ID1c3Lu4BLvuJf6JiImorCLn56hzkQ8I2iDSeRmiL3Jo0yDhr2bAhlQjHdxskNbzkZZ7aCdK6QcNMr1a9NMoxzdki1qgPjiKyB5NWMUSvCtJ+S1TrQqkXcIt6GNmXNDup7918nhxWYfI3liSh1IhL/Ze9xWYhvZ7DDtkaHLCvvHXmzIrTpw5tkjx+Kif65UXmxBfI4CcEva7MjIh/OYVto8y/FXRPN1GW/B195m+JcWhEUkWESj/ns3OXShG+PTdGFWnDneKkvSzGCp9VlhPVg80S4dAF354FR3AHtWg7HApm33F4wOgI1JXxdpQnpxgpgDEoJSyzMXi55GScyQG9pGOhbdgxwHfL20XxjmcXTDd6vDoR1ea/1TloG+N5x9CeEHssvzOGI5xjaaT3kVkmLnSeneaMgaFIp5B2yLCOXtnqI3+x4ZJLv+lwTAfT8UV+/gTsyhVM2NTUwZs4a5+ckDWvW293Ch/PlZJfv/6aqHrWmPrIWZKV8iqJg8Ms0NK8LXJOGgd7h3DJ5UtyYaAj1RdvMyKTLSSLJXV0wUzTRHpq9Aq4qZqHbPvejvwtygEd/4JeQiJcE5wJQl1zvasDvrV3iuCmD34w1LnjpB7UORuvkkWE6ArLTLS2ya5rRMxE+s4pglKwe7jW+7mCKw77tE5ANf25kKEftMdava3canCLyGcOTwnjCBqTGLIm4lWdo3wFqryw3zetAhRkRo0hUjsNbCZWtDDkwNKnxBvPDrh/t+3GhVDo8b2/xgZnW4mCjEL53rXzruiv8DVgK2NdryB5H2S2B9xwB3Rnti3DzvomOrYseKg+6cYDXBgVtOHhCqf8BDe0Oi8DEH5bq6+O8mJ7l+JqUZw9dAwUW2VlghjjthCZE5ENkvD5FEAcBkm8R6yRGvZnhyUyMpyywQ6AuEr7hKzZaFHVjE5peuqUVojLbJUR6/KZd5CSjQLwvDPlzi1Bh7gd9ZJL1HNHiaD040xM9XOWorUQzOUV0nRkVgnZbR7fSOSbSXiu4o9fRuqp6EGcVCSvLmd0pU72834DSahDSfTylLIb1Xjv1jAQ4qyvuGPkzTt2yik0mwf2Gl2SuXtJsawmD1XDY95Bo4Qw+nVonolKbFl3SBJ0OQbZZoteZI7MbxOxdo9fgaQ65TKfMGfz96ByUwJNpyLN5UKo2Hg8VRTFp40zAfg88WJS0uO2gZvss214M9FexIe2bj+xrCM0IB9Wi+IAKzuQX9AIb/6X33EbR9VJkLu/c5ujh1APQIeXYPzJHW4+LMxH2ChESHL9pZzIMv9DJFpBu9fKatzG/tSFadSGpXiS0EcMq+WKLNX+WMfKpduRGMJHOCwFiYRCKgGHe2ZCE4VURR+AL2IXOKZuuDC7IOk8IKU87FED7dYaXaU9Cci66hli/DujJ3KsiPtU8yxHPzotyc3k7B5tEcOh+7O7BBqgAJ/7ybXGmKfGC3LEwa0VKPhsEAdPWFFl2Vc0cJdCdOtR3WUwlb+lPLS67BdLyCJBxv6nqUg9EQTjiBjRBwDl8iR9AamzX5or7NklAwjhgyAy1a/tMnzGaWr/uhyF1eKMB9abmQBPDvJs/+38rXstbkZpH+lNtwW2mMXFSTZg32/j3M/IzaUBs5c7ura0XKHfP7V/W8sgBUqlhMUQafEkuIhgU5gjuTG3WSeTCpJINaP9s7pOg6W4CNsgO/uiILDnbwCJvFJHwy0bK5QTjSHBIa8LrIUh6QmQsdeIcSI+Ul5IP/3yu40YSbfNd01+bnTq7oWIkCWBIsR0gMyZ8/RGBgt6MTiNreYf0fNYKpA4CLLUQFKFCqwxA6qXbH+W6Qhz5GvvdJqDBTsQn0I+8LHCjpO7UKFvUnJr8IcHNR+Lh7BZQ/IcObkamBSN5dSU9+K9Rc+JC1copoRBPGhDyMDWgkhQoUDal7c66GPyjAzNYujF2gOYMl+sHlppZ+2nlpj3gLMiG/ARrm/umPnyOA7BKBHWAhsK5vy2Q1nR4Y90zl1xF9lDBHfy7S12eDCQJ6Wds/UEqUtzDFVu5zItlXCMyzUNfvUR477QxCEF85MfA+/pMkic6QRJBUFuZ0winXO8/Z+AiGNIMQdSVOI/Cpdp53cZoU4Gfli94Ty60qC8PJ5Rwf+fx3GTskDJtduzkpRfVMradqbwYQRX7N0zDOwoYDhILEA0FENFigHeS+MI+Zg3QDp5gLZfjhU/rsbDxgMsoQq+Wo/OmjWdS5Yk7Wzmvi4NguupWIpBtbsNexXRrhmJyEZA2eNwszfPb8oDESiQPvzdghq05or9cYEzevZmlmu4uuEqp8umT5Ag+5+QAlvfKEH6Ivo8wjjQePtQPlAs0qIbRPhkyR3SvVaRQiuhiZPiSeqJHh7pi9B6YOyHZb28105P4i5LcHQig5kjw5GCv1EQasnlCNP9bQhsdVUUnNcSx7Q7oW8tm7gZHB28hA6/TsaOjrWahMnffxBKQcTsF5XQJH6U5iYf05e00oZiAZKo7+w1gvyk5drcrkc9ia+nq6ia2kBfw7sbTlOM2Zo5xfMwj32/uJ7gzgn+PhgNEDD5h1TNf36+6JWXJMBGZxdI4lRBblkPc7H978J9OG525fxWCkZTG+tQWHgvB8B0Pu6BV0GSm9pRQXwYauzbYlRr1vBwPKH8qHtPwZlbfRe7m3KTmRYf6myjzqcD0yaK806IGQrbugLuzJAm2IXtoQyeUQZ8cAJILFEMr7HtrIrcTy42+5S6SzEs5SLWMbBXV379ylmqqOJzq6dRppz2qBJQc82svIKGuJZh7btQwWc10s6q3IwqNmvZmqggO/Cuh279wqyS6ba2EXjf8jABmtsEHIW+vAQM5ZfiT4VDxNBpjm+grS9AaCf76grgi0q1cs+caRivT5QHZGtvZhZkXim2Kuf1Jj2xo/qj/8ROO/IKdC5e80HTEiIe1LRWUCbbU3gwPGh1hV5fpIPm81YgeTinejKmlvh42aJ5UYJUJh2vvfF62baKGCJ0aB/Mw/QMV3MpUbf5jutnhUQdeIgCvFEdFnXsszPTd835/QjWyAdYHgh7cPlQNVngU+Skcj/xS4Gt4TnLWYudyhSHYRWiQownKgcQFk8jUiwdvbDPWbFqAOM0g3KxjgFt81Bnblrudmapo7AKcBMJz3uQvBgIWPxJU46ckStwOQkgmxhHP/smKj+Z/vp7dS3hIwy+z6IV5+g6khyNQkuRNbMOIklrlNFdWDsOr/RYPi+yvAKf5W6M5oKd11j5lZYWjr9wlHunFnfQDGlJiB8hygd16H9lin3Yrymu3WI9SLIdcNgypfJGWP8+ZyHETaRUW6ozi9V5Y4Fs6BZpKUv9S4Sp/SDiz5uaIe2N4/ugfCTkAWqv3wAVuaJhx3SobfKtn4yficH+rj6Q2fozPGCstTKC3Nu1rSWszPlSusNAT7CFu4zexmuu1XuSadkSVIZgmybXvtadpVMn5IpmGToMsXYgAcetSEe+v2v5AzuH/NKD8oBOjiZMCPtwXTt/crwim6UdERCsCEUphElT0KYmud0mMaW2bKOzQxnlgdxNOHXw6MXchzUH+3drfnDtgGsYHqa8cpnIhTMcEeyW7jC3puUSG0H+xeRPbE/bXS0oLEGfS8k49nJLHI2ngZdX9lWUV9aHRLomy2cMzUjTKiBhpzJvtNP3bMN/guatoMAeKM1mbspN8mOVg73va6ZZ8Ekvg+Bhbtw6ZSkUeKnQMciwBITDoD5KK7S/ym5PdHD+fkU0LzIOOk2XTDeQtZen13CpdZwmKn0eikM2RIwSRLtC0RQXFe/dmagnGB2TRs6U5c9hL45p3+PQu0PqXZlhQOLF4QCQy5+ENgjBZQCFe5tQeMzbrImL0p8hkQ7Jg0h8NkaiIyV55iRcbsXVw4T1jwQ0k+Ky6ntg44pvPU7RkBGA6kLQiJqMw7lvcQdeXW6LYqdBKWnhG93zpwavjR26TWUspAU3zSdMrvsBsW6di1oKBVyDE3KJbkVo39i5S0RzF6SupfRufVgkJ/ApW5sJcAwRKH8op2EFr0nkLrtw8UZIms3lFuVaxzK+6mLiqpYKuLE5LEAtBeI/98VhsQ0qV+uoeK/dRR2ElsDXMCoRTh2tcB0aADhIcsOgkvxE3nOG0IbBZggW41eLK2JDFwQYD9gk0EF9puVscI2LC42DwPYvKSmxBqVQympBBDQHSDK6Qikc2+7yfsHEi79kK9K/px+EPeagLrngxdI5tYFfKs7s4akV9xBCxTDV7njOMpFupopjpoCOOFavobKfdf2mBkOSwgJuTNqunVzaZgjuiWACFrLdDausMIIOAC1XpGkn3kXCXFzHNppfkvyQh4wTlBNoar9533kpnkfFSaMOQJoSmzgelbpjNvqExjeWc13z8n78UnARPwwwnrbu5NmPVeL2nVKXIlQjimnHR7vfV76YIkPkbUJTZ3xUf8fhgIkwp7MzjdcVMT2ayXisbqndvm4/Qlti+O9h7QvfcD5oJ+gqjQn4Ujs5jcVpgg4iHzIIlMwa1LuObTVu9K96nqBCKYs89vDXZPkLt3qIuylrYvlDwRL6PuFNJrgFWlGOJpaDbkvjA83dyy04Us1LIdPlyZoQnE6oBeoPy5QCdK8pRBxfTYbtBaOQH6snEBJRTNuKASs9WmLF9R9x6/A5GKBRygX3OHjyAy5CdPLEBP4dYuhZb3GIw8eRzVh9IlFsDHdy2oG0uHvxe28XFos/Y+yUA9pWH2JNwz87vuWeN3FSFv0O94wZlobsUFpUf4K1ysj1euNRuqJSDvzclR3yJADpj8KDvO3rb4OSs9B0qGTWml2Qu0dM9HhtQTB+8QPMWZRkcPmYJfDsA7E1vxQL//fYt2Ehhz2MnnNBNtSAwJF9x3tD/z8o2j9zha9L9fthL6mYx82lLi3t0BIAk+aCwFwWjlygGUuPvEjdLfRagkf8n1kr/QugxONZOhALKvxh/w94cRS7d+vdtyPHgq0DoF/LZ61wLgfrPByD0EIu+/tJJ5dcEj9d/tYjw4SqRCbzz8b3jG/CPwfjxe0B3TKueWfhhDXgYdHDBgiAyHn/NX82AtnGlS2j8rqcWWSRCiJ29GYn8IwXRrsJS3AZFqjisKLUBu4q0Wt4h7ilj4UUCf3lRoPzZiIhDF2/m6KlaNT4VkIZT/2hVI4EQxT1oJXQJp5bE6rUjJnlBMbUEaCB+QOEHibZHfkWQSj9xh9BIhy+VzCldxBKRCimnHnq1r6eLQ62n9vwFG0WPP8ETcqtnmskceLngaL/2k06CdGmW3W+d/62v4zNsbRnsMjYjvYuUWQpIuedNL9NA4sWyXtxXSxWsH/yxV8RE49mPUGGrg9084WKFy06aNkOczLdA+PGiqncJyRXNCO71/eoQmoQHKVKhQXbkYAyyZfEsUWMavp4f2UhOlh5gBkzUC5ikACIytblzAbeF53lZOkeIGkEPPOpzum0VP5Yj9astqUb5fJnJ3v/Eh8eDiBKCgJvCv0N3b6x2QaXROsif+ZQb5VyJ5NRVeMo2slh2lajd2iyLW9pw/Jzrk2pWztPzA+wFPh2j4zz9OYnOnB1bYIv38nt1o97lMNCTRTUHTUKb7Z39XL1ENt/6bVnaxfkQlCXHSONjOUBzjNTFtVZdHEh236zjyLQLSjnp5xAA+AIr0Oe5/Zmzoz+XKlGD8orGsJwcBV0amLX34Y5vKb+XJI8bUdigT746znabcu3orXtssexm8b9erTer+VzIEdS4pE0OW47h5oXEioBQhyJwLk5Xkl6P/IIVLzDP6IJmmw4b/SCcf8kTieMtiHZnoRC9Gin1njd3r4+abqxfsQoPJXIsfyU1cFk4oD80Lbdt33Gt/YcZ023jOtEj9AciMASBlF+RJh8gp8w4/r7ijqnNw002MX0LK0v0loEd2r1lJJXI65hjXL9V6dQN27WxLa8WP6yO7A7EfkGuBOucMV8sO+GMHPQUjgC72gn6XA+VJvuKdCmeA9X55RfvwssADS7Lf7qzQ+qS6rMnEbQtVLw/jNeJCF9f5jyG1wxw+bqvbp2NDn1fJ1S6dcAF0eE3sWovWhFVmmeTgH9BJplOYx443Y6FJ68CHA9arWHoLbFQWxb7W29rMDQ//PKa9AWwFXQXF3jSZ0TrvXZG3I05nxxiO3soI1xFArbGibu0efo6DuADM23wiQCK6UhDohPvymFIV2CziOu/IBjebqfF+TIcT2trmNU3g6DOVUrFJoO1wtLrnnFmpu0OjJqwhn1uvM8tb/4VntwZBwscahmwIA5osPr9cWyWDuRI6Y1jYKotN+NIuRUHBeU2o5v6czb95Cp5aH5CEXEeS0kE714uMnb+4DKpwoWqIFTFEVTI9qV22YvQaS4GpreJZ92CD7cxlJhYdML24NWweRrORQVn9DWPAF1KeAys23tF/0/aBgMaDiUVOovAxGKhyHDMiSTeQD2Ff9M2ryC6a5Ex/R+gumctFkZ6A6+JCg7flxsNkUY/+g2HAzkNGXWAbkjsJ8NbMDTXHHT0M5spTvbDNzYUwNwn9/195GxegmqfiOCaQHqVn7KqRuh0S+442gVuGqgj+516NPDkLia+J+4hzCrULWT5CglohqenXbbBgyx7NjnK1sUrF+/nglKHL9VNYByDO2G8wgHYrvT0SevYH+Mzg9UlaCxhh/NtUukjLnaOJ5bAQP8oRTZa10+D65v3Lx5mKBI/EzPpHcJ06tFhDLZ/M5oPpczvPCuDxjc6KRIe8DhkNPkUH/y8J8zOfhDGQ9J3e0gq5Z6fTiWJ7BpZqQxvJep0uPc8vT8TlnuqptM23uRp1e6g7gPrDGEeOiHFXKJ9o1MLLvBCDrCghWAMXl3VEt71pbtxu+NVxFFWiR03rY+rUAaFFZPqmCgXSBy/3XAhwHjgsknZXyi4H1AFD7WMlfO2j1bjZCUGPyrlKS6lBJH/qJpDoso9PKD89E2mA1v9NIKyIRl1u0n5ESm9QfF+FBMPhyuZnZ6/gFEya7e5d3ttqb4lNzuIxL/JXvVuJd4NbFAX37+jGImJH/na71xlF2RDAFWwXOADL2ijKq9G1z4opJ1odRiqx/1y3+gvZ9XwXPrIXWVrsNZa+P4Ki/Nxfha0GmdFLOiQDSmJIdLEGSf+h9hvsZ9Ss03k4BBkiutxbQHvknREFjCLXr07QxH/ShC4ITZqU2DxVv/K++xeSik2ga7TwOXDaEJKVAF3mHBTTWk1LF4UlRuOnegWJabNngBolKpNIOVcdO11qk6+3CUzhSOZ6YZ2/yZXwP9Knu97EVqYFb13JaI4tFgYW9Kj/9UOpBnilODKiYgDPR5WEK/vS1b8kqEmLqZCJdwypqNdu30ZwcXYwHSPE7Z4aNH9vTgr2qpbvv4QIbYqbTUhDuuJWEZKsq7Uz53VI8KlM5ldEi2EnlNMDnJ4KAjzBqPwQXfbpehV6i0XCU11FEHVv8bR5ztDdZenlpEgd7zwBjpMzNlKKzzke1+y5atCh2UxSekau383x1Qpjj5mAI7SXqgUA1JW89lYFPmmrr/Eutc7SRmUMzcbyZeYypk5kAt7eq4nLE2xnZm+J079TXbkbsL5fpQ3MWCKnO7b1r/aM1+VUlAGLrr3WqHjGmNQchAVfbPLB/VyEtKT5KMMBZLPXxhn36AEhgrRBE4dRF9gje4iKldJabfxVS5PhoS3+vUwaXEUuPqeCWn4AZW/4RLkMGGuPVNwbvoSz61XUe5sIPyfRfGLfkELkt+qZ+8f7HzvFaFgSPzWdjSoeKkFke+ceDKAMNT2vFbdu6g+y0cjGQ1C/l
Variant 4
DifficultyLevel
414
Question
Only one of the following number sentences is equal to 10.
Which one is it?
Worked Solution
|
|
(11×11−11)÷11 |
= (121−11)÷11 |
|
= 110÷11 (order of operations) |
|
= 10 |
∴ Answer is (11×11−11)÷11
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Only one of the following number sentences is equal to 10.
Which one is it?
|
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= $(121 - 11) \div 11$|
||= $110 \div 11$ (order of operations)|
||= 10|
$\therefore$ Answer is {{{correctAnswer}}} |
correctAnswer | $(11 \times 11 - 11) \div 11$ |
Answers
Is Correct? | Answer |
✓ | (11×11−11)÷11 |
x | 11+(11+11)÷11 |
x | 11−(11+11)÷11 |
x | (11×11+11)÷11 |
U2FsdGVkX19c0J0Y3QD1nqeQ8nN3mRzV2AvCf0JI4uGp9XCJbXJCO8ykZ4Os+ILXCjHearC6FLVhJdhMLVDKf/3aXtXeUeEtkloMgeFs/x76n6ntbArP1Uref9aazKTA+vBQj3MitZD2KVKmQT79KJ1citJ95S5BL8MdNceidNuYMfg25T4jLM7kLIh5vTvdnZCLVPh2TUJHvEpGKOiU8sGFSwD7hMch/BT9/gxsCBgP1tbF8T/7OzzwNhNz+DWTRP5juBKzesigwLjlBPDZOKKeqT2urHJCLzPIi+c5Z5SOLHaTR58atpw0AO47lA9yhNjv40BdwNj/FmVVmbn57iFDlR4dv+4wt6nl1L6l+e5CqwVWzZm221EG4Ur9tfzquTELjzdJqPiGYvgTjckCSKjJ3ftN1RM1fG9p6aVShAJWQuCtrLcu8NYA4qbrVkrNHKmDX6Zg0lkTl8y+VOKHeiVozcsNcUepDda/kUwSL3CF1MT72FewUEC3zu9SCNkBKzo9HOU0b9Gns81FQNRc8mf3kI1Z+B3BsvsUm0M54Af80+04dIpt+EFAUL3v+GiK5RvfnZGtb11JAPmh+R0bbb5J9M8C3tcgNfsHq3dnYXeR/4CWHUdxiVTaCiPyhn7a4AoP0RdfW+b9EBDV4KfRFYyStliJZkdq1tnOnsTAnflN1/vCGn10MBAb7mU5PXC/t2/tch8C9mvFbJEsfwl9XBKafvt/7KXQOVl+jttPix0tjuJ4QtbfF7A2VayRQGWEgyu5gIU0F1fo8Z0PCCfDvIj5Cu6QLvblLxlvrKTj445NWdep0/gKBtmPVNYJDHHZHa7bkc4XtFYZrs/DwL3p+4JfKXWxOULRyJWFuTvDNPSHy7LQrXHTY+rgbhe7bryBe+XZHKXUfcJPz+msi2/vXckHANxGtX0VfLFr0sLVtv5mx4C+iev3vZ2YF2PN8qXZs29vy7e8bGvaIj0AOIJE+I52/UkaS6t5Evteuosv87QGqEjmCoW9Ly7Z9i+U7OPj8saVw6AunTOkCEFrW5kb/RDS0PS+jsb7GK64TrxQGu4j4y5xOJJsKfBS/e3HaaaSUdHldBQ11464sDDcF6CWamt5kvhJ9s+MowoifIxnfvFqPWeRdOgVudyBj+OSYm0WTE9HgKhGq+pmRTAElQbuhTrHdbwWkR7a0wo77mPU+ZpL4Y5q9GG77DLC2ZGejaGPYUINhE273zgiWt5PiAZlquvkEQwnHdJSMP9owKAbva6WyBKXKyh16BUO4y5MDw06nW+lR1snS7kfRbFti93s6Wb+eyQKvDhGT2IaeOe5sWH2lr743gSttn8AHEdKCypR22Oss4dnIOAHLshHBEFxF6A9QBGnMeCDWWxZZnT2BExCvros+nLsw7jg500O+2JbViAQfPpIY1SIM0xeo70o2SnzfL/hsEt7Wbw/G4whaOMr1pG0p01pAIb9gkX+iWW1AASYpNJbe3dAguqGMwIIIDaF5042Wg1c3GSN7QXScqSLm2BM7DSPUVy7A7gNxN5NOAjdS+NosdSrzLFVfC1D3KFD/BckC135GsUIFhUpE5bgFy0sPDshVK9dvQ505jo20aG95Bp0hZaV6w8yzyYm/zMhTn6fHMRmWjunyJ4PUtYzPvBEaHydJNQg08SN1nNt6VnFOdQsZkuW1YVcrSIFlvmtcx2BNIeHczWmGRv+BoB3UjZGUA3wxeD577ZgX0B2kZqKlP6yZl+GxampBpaR+H0ll+j4r5n2ONNgJuY4+gIEUbqzfgSHJkXbVx5q73dzmBcOhACdqRnRj77gTne7cvZ2txk2XtyM6oBe8UMbOpGAV1qdUMIkpL4xgOv7Xfeai5qOZihyCqXPXDuLlf4RbtIrJOgU1J7zCo7J8K/+CYTL25HKPuRmZUIikF69/zMxSM/ZD3EJYATMCYZmRwcfvRv5zUa2QMmcDTi1Y3sAyS+jFA2zuLcMy1dexDzrixFPU3tCzH2i0dSosSjNKeinenzdB+frO2jMS3TEDp1mf2T3G9gYIU+JIdepwUX+0UaZG5Ik7rWlPcgW/QYu+EIa1HVZtUJFeyx9GmluYLwg3bo78fHOsPCg1NUbEaSkAnyKza4lQymwRsgYas4iJFkPgp+QFxK5eFB6X0g/Ed7SR2AlOS9St+ydQWenpQqW76jevKFDpEoV+bFr+WRkdp748xy8G5TTK/fSwGLbARap6KEhQxwt5bP9J95DCY/jjyKcY9d1UQ3R8qhKrbJXOHiDPhWARxuzVFxN9LVZnyPGdW1E1ch+SF/uArYkyfVuAIJWi8eUcjGAKGf84CKNtraz50w94AHTZMYVa6+eYgkj/rNC5omXzDku0QJBeTfd5YsYKXkDpEXdCzuUt7W3Agbhg1pYCRyj5CHsAMDs+OSQ02mQ+jAeTgLXlDdQjbPUz02+fV8y0mNtYTlukachW4x7GeFwRtjD9oe7v7SXK8uTGtTM6121lLBwAFul1ioscO5mEaMQpVyMvuUDxNuiQQ6/0cvm2UaZQf7b7uAfGPttou7N9QdMiyvxX+drPwig6s3888qTwGchOm71gBaAXvfyp/6aL4WtTnu2Im25K9MKBmUk6U5iFfQoIM4+nmQaq6xfTk9S6LW0/jTUsJ/d6VRe6uNXpZtFcoxKkCBgpeqvbTRjhDZF77AhQ0sYuByMFFqeaX8EidLo8OWD+6+CjiT0cqZbFV6LuYskX7OjBCDyW0qfgOixcudQJDyIQwyeFVsQK6DFGo25X/uLrOhBWGFaaRrg3RFXWCAOFjUrs5BIJZlP5UT1LsRoINdZp2h19gQgxkeGRkK6btie435aumZqgSlF/awrn2aTDPRZYZySLjNld/acjUIQ330RuUqjXICSlBGQ5V0K0SZ5BhfTKyItKslehoQhlKrOW0+VtmX9ysQBIWWKoKItQWsfUKR9VTjfFQbpJHV+KJhWCHBP+pCPQaJGCyOFIXpL9yNiavvZBigtrYc0d48yQ659eGrGZoZ7Pa56CysF/Kde5w3J3dOsKTzw0v7J3tDNLv1huTZ/dwJNzKehmZZ5+dYZugnKXBvQuzyHvi/NrHSdrNSm3euwvFStyHTeAQqjl0/ofvUt1HUvDgIM4y820EZkutlvkbCqdcXCs/fIa+9bDech5vWbs4/u+pndVsm0vsNvGNwxlXHsZcrW0L0p3WIxtPz4m3ATli+FJxIVblLsFxYHI2wbeGL4CAUKgVxgJ8ekjllkRIFJd+gS2WZl/F21SVpfyowN15L0/hXE8DR5ZR1Hp63bB+fVECc+lq86Ya90n4EOv/sIcfYnAGHlCrlaPu4PZCT5vgYvgh3eJmKk1WTN6ie30Nnf8fhHKMl94UOgDAdg2yTztST/nLYbLwtmOrvVHxzRhHN+n3pGPkoWyptmxXwxrB3DOzR9qSJOySniynmzDeHGlQ4cBkB+AJq6X1SeoZo9qv6nIOqXfkYDT+voxn7xsjNvqnKJnXq1jcuixCQ3qgOhThFHdk1Nh+c3sDK9uWuyQKG6GblcopeThmrOIrv29q9Kg8z41LM+bg5ibefT5aMroCgo+ocCosWdBT+uNPpMP+kzmORoAqOkmkbFo1yLluSEvcIkK7S29Y3hgaykfq1bgwzxAYdpW64teOkuhu90EyFEx/J7X2yMTqf02CyQHl8GGae8mo+vNT7DtRqFvRrKnTOnQFFrXe+wPgJJLA6B5ylW0Li3BSG0aMBpJxRxFNFg25GHtl5Zkc0KibEFxu9kUbs3PhePvR3EG8dSDZHiAQip+u+3PKXyZMiIFBs8sp/lRSGCKwYOWI6jNtqXFXKnDqCfXEq12YJ01MzBLU+3zQOKdrm/fn7mQio9V1pl0p/A2Z9yRDqc1qkryaEy4+5cXgGm4r4vhYs3t08q947M8BSzejBuxasiTVYNEwsO4sp4qUqIGgtIRLEbcn5aeaQbqXuuE+DdSTPn7bWFAZXv5tOCTpk38sgrXVhFWWBvjI2BBHqtU5kP+pSsC3/QMpg4Io5lcA3a9bgoXat3k9/UUzEr/oWpHRUyONyPcCBsQN0g8tpm9r8IcSrQbGk9Vnv0zLSVN4e6L1aSoIEth2KMPOpHuXjWPlpub9b9wlUzdT7EMYAlUV6mgkDMlUgnKdOxLRW7u+dkf1nvE2kMyACsPW/ATEux32I8bExAIhDjOieYatxn+7+cadhISxtSeJj+NmgqqDpYEooCL+czOXRAZ6BdE2F6090kuBgsvWb2x1ee6c5T0C2yJ+ZJrPncc81bs7rSGAzD7qwmZsV+sIi8D5lEFOsN29v/BKw2PO/DQhZ09dHVKzKeOJ1bMciih9lXVwBiQiSXK6eZE7i3cZqDnKxYN17D0RiLwU+67/um+PSK+DIdkRNXl/JLVLB+GPAjQovUWvSb7rgIF10gM5sysICMoBspcFxmUYAsFHtF6N8GI6++ILNZVGdkCfIJtxxGrfFXAVwvDWu1fmkkjo1oLRSlHu1M2olTj0ALtfkTNegbnsdzL/hMaaBCMohDPe2Vk3KOyR/Z4KKziKf6myQKydPJPPDA0zDkmaUJDqAmTZfgRhHU477VbUMOvg89uGXpKp9YculNkrLcW+fycu7lCFcZk0osdT1uvHS4bLN8llY4PKCybFih+gz2YytxCzaC9XuOTwoEBgp0BzlKkElyF4Wav9lh4+6YRoT2/1HLUFrepNdNMW2rc5YM+ditq8KemDD50w9OMimnUobq3lMHm8az9W66M+PPJfNeD1RolLR9Yn08KUJAAQGjvnSiC0Kdj/PsKixmcN8wGkn+h3DvZbBaBds9zeDHrkvr6v8XhziNSPJevjGFYp9o2Rb+VfqourLXAyVaNrjGRnlbLDn5O1V4BRnZQ2aHUQ169W8NCKYPH7znbQQo9NSQtnYxHTEFVQllBanCCFYGc+0l7we/yD3QZQMnk/6rLAgjIxpHn8ll/9/hNDFoarxvZo5zwWMNBVVC6SMt+p/S16RjaLap4CA1pgtKycDMM0cxx7PQbzfmeh6pI2HPL+OtBnEXbxcf57w+lG25y1yxI+OByfGxPw4Ur0CB/uX7k7RaalX1Niww+y3mvxrRroi+CAyIkEHRkABdzZtUKA7aC3iGsJHUc4cKkmCqx4wMtpElLmAw1TlPawBuAc/JjPMW3vCIAzr3pqIu8PkRoOjayXpV09XPQJqgyElws3Mx8z1EOtupDyGatWuoRJnjVsbljiaUFgwTo587iszzUSIdwHTL0JpeC4OdYfySIoktwhMtj15i5IilmASg7wy+sqBRLWZmdd66x9bfENVhvvVWkJx/fSeHK6QBXmsqSN3DZErVnGhhW5/QsJ3Bol6KUg0WAAfy1P2u5bgwtafWRGW5+kKXTcn18G98O01Ee7H/H4cQtjam9fzvzwrgpwMSHSAFuwokOTyRj2tgsirW1RdpX4+VSofaPTuDU34Ry3th3watGalU6h+0ttENXwbYOjGSnDvJNq+BIdObqKOOFW7Bcbg0BbCIyFTza6razifrHUehuLb10pPrKzYQdtC9rY0rm+/swD/J/4epLdjmP9JKkskT9xLf4AaIgUhVCYhGhcD4N33kP17jI85nbhjOwcXc+Wfj/4eICIPHsRNbGDgA1pmHKl5AM4rjRxtrCiaHRhKVlveR6OV8ajnZ944cKg/Ue2thuZAVK+OaO82IERdQ0mjWGndJVj+hT7axQUSCy2VTzAVOJ4OdQjyZmckmrpFnI0Z2MnBujGxg1EloHzjKjQ1CLQhM+66DBjTuYhJQkzJ5S+aG/yBCPm2h9UMAohsQku+bLSJRrW5mDs+UZmAI+UmpN94BBxKZkSoDME2fjL56Y0qX2oT6fJb4aByAB5ltjR3mdj/k9O4IIQXWOjvSwAAXPfV/uOUYRI4wdENywB+FNUHnAS//ay6G5A9TVXVNTGWh9RsBPnLDrHl1EL9E/aq2aQejLdS+bayzstmTLteekRPD6wG091vnGZAdgpUatwbKUDDPGc6WSUXNKVv7URS/lja5FyrlH4cZKC+eciQW0jiDR+jo4fUiDcKUTtZNwx3dK+aurh8XonQJFdlI1mvbpJFnaVEe29YSYFXTD8KZRzm1Ea9NQJaG7swGnK0wBFiyKSSTIWhNPpTVuysPP+16rTvAHtDZpjPHEWeT73qUy7c278CSA+tl4CI+5g7VR9m37oqxAgUuXNNaJGs/HJirFIiI9N1CuE47pjwkBGuPr3z/1sla5A1Blmtg4gcjpnxXqu5g2fWVq7Ry0heEp+MPtKxQz8DCAK9nsbDJ/BKyFGGS8Qm++PqyJDiERd5g2sw3UNz/0KkhRgyXnjnBQoCpNyzlON1ETp5Nvw2jhBhed3Yz+/1bN+jl64Jk/Qd6KjhISAEisg2H/25UF06dBXi9Q8wL31aKdbh8nQrn6d6MP6O7/WTnci0G72XyUn41gPxWmwRnCc55l1R6aKBx8OAp5nsdctON76taqrf2ou7rQ/PDFnVvdczr89/Fyohe890HqtsmyzEM6VgZC+NRkzwpVRjfDufacF0iAYPfX6q89tcS23InEn+wmSbmDIf17/Rx8UpeCCredrv6/Cfi82W8bdBO7p/MzEdrwCnylP7ww3ofjhjXtydni7rjl17HsLFxfXaZVN3yCx8iCiA/E3hlfo5N7YjmgiB/YyYbPi620vMKTqOm3jXGxhdF/5ekjBT4cqhr7na7sSIRcnzrlbVtEeeH5u6va9TlrVJHt7QhYuWSIA+ZlhdSybN3kgWkje8EGg+wo3Kml/VLAU1eMk+mx1+YFCu38cP1v6TGcmwPo0ZwiBGVrywwAPbTgoVhxIxCttXDelFLnFuMONpyB03y6zK0hyw91XCyg4H5Ghc7YgkRIcEJUYSj/YKny32fj7suXB8qejT/fKYWWD12Jty2hI965HIDvyJRU5qFpaeHa6v/0RDnNbSpQS+2SrplqpPim90Fw9i0gFBJGbIM3cvTzPRpSa/bC/2ei5iI67cGZFJvRpx0dZW2wTcWH2U76opMVj6Y9dZ87E5dVcl6rsf8y33AP5wK8aJZiE2Eq7YP5HulNXk4KRyTckaHmmVkeDxoaev/drMFCX+Imjl6c4AINzGUudvD/6b2sjIUo3kM4cpXKsGNQOBpVxEXQsw+z1oe4OeJMRa1TUyY9ebbfA4gWRQT06fckCNsGgzUGNRSgJOdakteJ+fymu8GfipZDo0ZhC//ocNzMppOVlYz1Vn+Xnz815iTIRyUsoIjMeSlLBaJtySmuE5I5nBzr6fxBO03NpmYSHl/KMW8uUGxkbjs5XDZ8PaQE0GMUXMF8M6Rnh/SScYOQCKxrTmcasPgkW+muZZhn8jnRPbzcn1RmRhrHqxpbml2vRYuy8etlAV9PNuUX1GUUpj/TYxln3Q5ViJYFbsR7mqTs445vR98Zn37q9NNpLcoIHF+mjSCp8OaDWrHyBk+eAOXKuicPMDN3inruUyMuWeNGVEymLVPJn/LObpVNU77+NUwQUetIKdvXAMPLdI0UsTCFBuT45rtdiilXRGIWHzGn6/8OX4HjhLrivyjlMxDGyBXY1G4CPVQaweZNchycq1QJwBxvV0u1VagrPrNQ9Xfx8HCpMajGQCq+Ogi3u2DdArCp6IisPvybtpTgfQpl6Wh9EUmW+mp6U89n1Vx6lQ4jRxK4RvSFVkvoKz2FU13KtA6xuSVxqHhKWiDM0EY1rrgnMuVxVJfp1aD44jCK1fELYck56PsjQyzIiqOlVJGnF5T8IvK0OAyh1ZXoITo/ukSfJK/qw2c1P54G+fbRH7QdBoArwM84imJJzwxR11UL39YLcuVG0x5fe6KsisWFnobnZ72jgHSJWhMIrNPM0wAYjO4pISYpeEk8dDs9oOpkMmwXKLMzYXETG182wLghE5MXItXVj6VieH78egU169N67BLSv+NS1RgFzbTgFRjOupjWFN/kJuri1iHOQftGfPDe5uYDQv90YUZisvqdFpkB/2FvNcDPVej2p0AVkSFe9bKKfYuhaN1pJkYJ/hEAPZ017tScS18PdFXac61fXAJAm3tsOfAgyH5KhEkI1UgkTG8NGyDJPiQh7P9p4OE5ZyF3fcqItkQmSILiP94eoG/i/Xtuhk61oFug+FpoZQY6AEgfg/2SpX51lKaGSDvvbeeb94V8TfDXM1z4Z/E3yFmL/9zvxl/OM0CAZR2HM0704kfxeMirBDT5Vv0XIvY9yJ0RqQjFfOG/CuzxJNq/7rNrcADhnTFyVSdEsWCprMplM8PMi0CFPZm/EJajVx/LlgyCF0iGoOnTMz2o76XOA3wVyf43KmgE2dTfjp91L8sO9N1BTcjxgSaDOXDIwF/8O4OFHeA8mO1e4fZ2KVaSfGNBmQ+e0NxMDHvB0puE8VJNQg3ihfJy0tL3WI7PeY0jO9qUSFCNgu6LSag3CI3PTxQvGzzU1N6efb6gWc9gPRncbpAZauBy+26sCJqGtY+IjpUIOukoi7IRaRuWWrbsM70PhbcY3tLxqJhcCgJgvU85WEm+cn/ieUo+xrA2AWuXI7TEo1PADWy4Vad7Jyi41pzNyw367efyEgLN6JC38Wn5Esdpf8KWVsVq3mb/nJvlxq321tXJ4AanA1U9CDjpSWHAk6SGkVre19wqviB16dXbvWnP0bYVGgGbmlNc3eb97iuVCu6IJvijs9G8eVakf98AN2CrGYVx9AEDm5rTacXrhGFTbrm0zjXbByM3qc3AKMiZNqLFeGah71nAwFDM9w/yASKu3dS+JbUgRHp4pB0f+mIZWITT/Yg4FNgeUkD04XT+PC/9KW73EpBxwCNkT0pu3BEubWypykTUM3oDPxuWjAK5VD9FeLsVfEMjVIHtfyStUQ+WOuAXOlV3X1+mVzmr96Q5fyBTwPjK/yMGDK1cWB9SbKctIMKEE0pK111uGBwtGLcphGOMFTMJO3FQDx3OvyXtaNeUvIXF2oHueESmIEtt0W6FXvAI3Ic8kzRccsZ2qTMmEbT2cewlSXBoPIxSPlSt5jm36ce1jqo2SNoikl9IAWY88pwnm1eS0hE9q9b4ZRrN6k7VlpxEicgluSqEIjuDBtShSdHe2WelPoQRYE7li9n+dtdhgo/ionjlvnv8p7TXeVHLWN/4nSysMm9j3RHIw3irAaawr+JtfPmq71xO/UF4/r/AeRTiF4oynwt2W7F+6FRVbMZfh8VbK2EVvim8PfxApMteJ+p+cYozmbcfHGgPu3cB7w0tP4JwUHCAVCOJwBOWC9vAoI8GLh51h8/0t53Vey1zDIrSi9azBvcqqg3TNnEJJxiJ5M16KrEaUMPwLN/pNrY/9L7SveUG7ykg/dghq3FI3Ekyxzu5go8IE/NMA4D7wzSdfKV5x3NHB9OG5SdqgR+/wGRNmn2/MPkTH0zdTw1vPYSm7odtcnDQN4tMYqZo5lhFjd5EocEGbt41AMt4lYKRZtvlAEG0AaKvdAsO5NCafYk/JkTJW+tdjGFUwZNEtiMK+w0wGBtFRvrLcsXUBN6doa0VkiDbs4sfmDt3dbvP4hhFof8W2tSRAMlphOYWhTcWO+Ztf9MmMJTbA63K6uxDZZSEoDcWW09ntClDzYitspwPuyQ0DjHZxY9nWDLcdoOZAQf+/+mwwLIH9kBhJ5Bc/C7NJuTedrFBBecD8PL8ILl5sqw8BgXNoTb2cT8DoMaoL4kpogkNqqMub7J+TqpIy+LHJZY8F01K7WZP2G90bUMspQH+FZ7DsR482szifPaWZqMGccjCus+bBi8COYPP9qHFH3VYW2ptvmYKANUDxBIjmSaM4216uMZA2C0h+jKQpYSlTBa96a6PTzBoEsUEEN1n/zEKKfqsdIOSpLhsA/it3DId/BgB+RcaCFep3T7bPyw7UE0TCtihvXMN3DpRcIukGZstZk7cskxVsojQKEET35w66TP6J8pxIsZ5vWDEMYuaiNQIXEtoTfLKNyWqZ4HyxAWDdLWGr6vlkUAmjIBkTLuCQYE5wYUfFnKUL6Hgx7otjV3rkzKi8BB5JLuz+DmupgIcXEIqHEG95Y9KICsh+mGOC1IDcctUeiNv+LGwShNZi25hss9PJJP8bo2Ksxfa5u7QzQ+vb/Ixnp/PU6FZ7oyfYLHvk0SCpnNrIs4PuSrIojvXaowa49asdODG0iicdFvlQaKqVdEh1PD3msov7wf1n+f4jvcS8f8kIH9SeIHv6tA/kUE7B5/CxKwdIrlKOxrp7Ub5y5COgMPe3z3ApLvQ/D5yyFgrWKhAghAFptvJMW99S96CY2nMq4yfr8nh42FBM2AmJXJbkhQC5FfkrCLD61bFQbAIDOK75jZlJecOosn/OM1hzy1sG4KBolLtbrKkeIkawFH1mLjZNGQ/pCgBKkmX8yCM00Ow6DOct/ZFBpMGgpCswzO6jteKsgNz+GA06362qjbqUOnT+Bq11LG4Nma4zlEhzEkMdnKIgTvXLz8jGcEoxWejJXzF5Ta7O2DRHu0Hg5vAkZTr9CUATKZo/NK0CT4RM1RNtqCkbKH0V+87rOHbf8hzMk0jfJS9OCQZNkwhDBiuTINj6di0FXIWlYpq9zAQ3JpctIReCMT2HDnEjp2zrceKYGajZHgKRIBNS7RwXoJcNQSwQzce+bNnUM9iYxA5RPx8M9991EteeXRjxi/GSCU70iL8n1cdh+K6j+vNfRz7p64fNcGRrHJkJ7bDRGQJFOeMCD2KtpbwEQisVVtx8zDr0u8oZkHEC+Kf0wIb7ZXoAffl3dlNPOrqaYDMUGtYYf27/xfAAGs53cPeQVBsP7Z/dnx4EgOWJrwmZMLjqih4v0K7iH8luyZ8NmAQcVjiqutW2DHDl6FBZQCEsmARBKqHgkLYqk7jAiZSdta2LZrdFE7l8Uxmh9efHkjrz0duNVEeUkHxqIlXo1QYqSR9xQecox/ABSOjadwypkjQmpMLJIJUSfhvCjkfi5C1O6ya88OH6aHaJVXe4jeh7domxeuStjQmNwudgNjPsSoA55RMgiRc3I+43REcg7sT2xK6mnRjlet7aM0j6KUTb+tNIVhoxzRTIoTMeiIJFLmqvDgAQ8qFU3pqFzKv6i8cyPLvUA4RG3NdqJCpbX5cxDYfnfEf5PoejZ/lPSLLQFhk0jvyCZUnlLJ/HTBvAHF696B9pjf895IJ/O3AbTstuwXmf3lF4KAm/L7AfPBHRlAbevw/25CUYecXz9A6CtRz+A9Ec5kgS8XtSRWvntmJa2Bzg/LJXnwCWvNTrMQZHa3OosoSuP34M9b/glFea5PJUbEhuaeb1V/mmey1navtv4IpXZLpkaOQk0ZaZsKHOm+NdcBZhrUD0AzxZx3J9cfeOxKuQjgiXLCae4/VINEH2G/Uy8jV4u6yfmcUJqt38Zazo92YJIAdaufzUyO9/CKpi0YchCJWveFJEJHB1DVJewt3lrvPgB7h+/kz0O+/egdLgiB3PRKqqJOGsXCNAGg9AMroQXqmmyX2EKeABpv4qH4Rt9CIUhGBICKc7JBDqoIJ2oJ7pgfvPascicgOatoqkeRl4GrHHH5zDaMvlpQiWAtyfq/jHDnsx74mhBFvj4t4vrrju9dU0JFuzab6CzxiiIzlrguQ32RYM71+kf40Nk8rDeghpNspB5K1ch/f2W/7JUy3Rw4bPlMhqHJdzL4d5YtMfUbiSnsX9aqhlYJJfG7Q3wXSgHJ+Ot022apFmzs7K6rk8XCxwJUfsnOHjXK2P/kG73nz9aK/YLOm9ACGf6szmQfabd16oF10z78o99GWklt6kSIKeyU6A8qA7qP/9ICKjFQaihPAwUfeO8q5qYGhbKGZzh8QKgXkIRLHojgmYOhiImhb0NyeJV2Cf8pP0kmxySiCFBa8lrSavuN42ULsnw5ybu7keQvL2wm8a1bJisMUNARw6dzMvgbg4kZ3RSUycbP3cGKDy4JfQ6WMZWqsdy4d/MJx1mBciV+dBAH1Cyn0xwde0xHu/FlowJ0lgp0XBOodcUGj/fAzrNucVdSTnO5oXADJDrRMQm02aK4wdVbw773HaqIIrGsCSdY+YBQkQb0PtED3HtbvX4zxD6nvg3R2z18kHqqNHRobLXh5AEZMZ/u6PUCNhz7Df7Y9/h+CBcX/8n/84mnM6DyiVQTS6XxEd6lyAcFS/2+yQxXnEpLY7pS5t1oRsnlGxQ6P4zEy5rD4tArUZEXyFmRs+7bsh+yzccLl2gZpN+sIWyY1Bco1Dj3On/qVt5Y69/D5dEEnOZnGmH5+O2OtLDRcxuKnhZcRy0zL17s9hAhElEI3SR3PEHRux+bcM3r1T1koGLuhvKbm6LwwIp65IOdAxPkPf9saIpieaFJV9dhtp75vJFEWiLntj3RHgVA7GrhnW2Hjf5NCWta1HxSpokaciyFXK9k0eCkWHOSx2CZwASgkTW9CMP7GrQnwN6Ukuy+HcA2v+saQ0DUB9XBF0POwnAvDJANUWUoeG36qIKQH140At7WMtZRRJMSrJle764sVc50TDvj6nGgt3c4FOjKwZLhQlR9ws1aOFpwDAXTqOpTMGWr/nroZO9kYC1zXfYCZJ4sXA9bEdQxjf5E4ukq6qdtYJx5e/q0Nr2zhDEeo0Kw3jE95GhefclWrGypdqvMNbso6uJNeqcw/12Uyg6KLZyhplmPcY77rRsDG9ZR0JaarUeK/tpxYmLqMURyZvcDuHCpsaBqVXy8S0ruaqKXtAaQ3ius7gxxkry8HWTzem0k1W972KIrthyAmWZllClyKIwNGqLFSx7XW/eTRZajBm67q4kE+3FTX7ugDwA68C4ZzKrsghjBPlLwXd7wcfThn0TOEnAmDEMILVC/LaVAMkPYqbr8oeC93/osN05YozJ45iZOyEreER2Z6woRApNBRNmOms6t3jsQa58Bsm9knlfKV7r8oS6AhbDqsTFg9ibWDui/6Sq1JOvEG2jNjp6mSKB4BOlJMcimBXxSvfdsqblYx6NM4DvOqT3TicMkh8R22jb6jCK+LIJ2Y2Fd9eAP9SrK+A+x7BjwVt9GLv/wkkB1eXHJOUebUN2sPwRmz3xpukv9Pv9KOEAriYNVIPPp2DgyFD45Ruqt4qDm38oCOwFElo8qx7quux6dSF8xeEauSWG6rjtyj3Dxfqlwfx7YvsI8n9xw/DfmEmkvaeZUKWUcZfavcN4v+Sl21Mo70iEDUNVd/Yu66T8hNUO06RFR5lw1ILE0rIFeLBqJSHg+FN330W0ShZdpx8BdNRtkrFi4+wmI4mTLNwudJ+MVFTMj20thm6hiRXb7rRD9757PjU+XuczQx0my5PIRQBQXRRZR+E/oEH4eI9JIy5TZOwb7bWWHHnZICpZL2S1RW3iQ98ZDOTk5ltwWPgr9pwoY01t21dYJgmW8k88mg8uGn8mj2wBWcsvo0M6ODZ5i9aT7gRcmZlNZqf4s5ToWecoouBJTZVnzIB1bAUw/5jY2VmKZ9lvuMRCnUGvWjagXAXYN+859qLvGRrmnu2prtf5fgIelmd9CruZpuTcpqzxgYww8id5NHugLFVIxCITfhMa3lhaWFLyx30Tc16iU5HT/hQIb68Gq84LSRo4qb3nKcdg4dvuoK/25Dn2ncm8KMIjmXQbV2HRYtXR9pWuobuRUnNekzqz7J9vrLoY/I0aPcj7FuxqT1wj1YsmCMmjhAUHOG1QP34eNsyp8cBYLPAXIHfqxCmPUekT0Hc84uWCQgO7e9qqDJquIbzvyOK23BpOYyADSy2J+Kyyx4XgWTIwYRT509UZbTVtKyfe+D+GIVoAtEvW3Mic68z0hR5ush5t2V8+x2R08/kT37KOQqBtFgptuASS+VHg3hYlJ8Dj5u/mFD4OqS7PqTOIfE2m8t1sAhnUEjtV2KNuscJgjf7X/A77g4utXMNi6RDuNMgQI3U0i4MrsIPJ4/Fuex6XUPXDRHUmxfmvF1pTqaqPsSFY9sSo12YGJEChMquPBiB9gk8gZTHcc0mUBOr3kuAdbUAgJlM08lo0gDZWa3FpeOHQy6fq5NkS18/cz3ywTGZvyCa0EAHsCQnwAFumi3oy/0qjUvaYGeSRaYD5XvrhnSaFSSn7XxM/MRYN2JADXH3zzpwbLv5IxpYZR/VamZylhgWRc33pkVDMzWkUC3DQbU1wirSdT/eKRIIjdd+HxEpQ2WB1Xja/CEmrWxomhTofwU8bRvX8BfcFPmSUnPNPi0874XiXHV9WlOHJYHcyCsKLGyFd/gjS+BfnJ3f5lbipLIDMb4+h9sJfFoIOfRpdDwIjmELfSWOO6Phr5j2TNJJDflHBqkSlzsMDfgBuJB0+hO4DJ8HZddDPIBng8VetKIuH+ZbUDaeh4EInuuHbHvSwDwthxL8ls4nWWxLh7MDX83xdAaspoJaHtxGqnq2fllZcUouDvXd7MlxgqZ3uQHzKTNJT9megiDN8Wk+hFlJr+SYEp1Ga6LPF7G2W6POyf/it/grki+xowF5QEbjsn2AeHyux0jwm6+TDzXgFEednoyzOVFxlVjDE1J/T23zSSpZFOPRhd8HEBvxe6GxlCuG9uAkuw9XAjcQzN+GFPhZWTqhaDKipxuXpYTrbuI0aipfGJ8DtQoZtRC13we21jk7LDyGPLPLDRoF3LFrYIwysJMmCoTA7+bu/SLMNPcTOPFhJMTzuvDVFXUO/GxCOtnKpJgzDP8Mix3JGeSnDP8/4IZyMCyPzJj0BOX9ubAsxgtiwtBbzyTJmuT9/UgpEwTiazShnkfLVqcza7+dRaTxEHnCyvHiPO77UncBtCDYoIUmnQChF7YYYE4wq7B2iM/EpBN97dcWPhwQajySA9mPapaxp2JzmiqNlnQ94SeEv3WoDUIW87xVRz57T/70CFbfOUbA4YxVM9EvfrLoSKHfRH70qmJrCaYVsCIiBWl0UfKNanyC6kZWp4j2KTT5TOdxfqM7q4Ukyv+iDZQjph4Mi6G+mfg0vilzhMbPKCYhUIu5cEZmWNpy1CwvP4wfovi0FuZx2AFq47JyixoibXmY8se0IXfVC3Lu+d2Af/dv+i5/wHdUq7uXCYWcKzHSpiyVt7OR2GFjTlu9j/StvOvA/VoKFERScag84S3/P030lO1Zgdjs8Y/ODQ9oEholzuBA7Qxbq5zj7VtjiDSv+nTL9ZXpX+tRvK8DmpldlMNVrKVUL79O7kDrbqSg+79RlOCEk2VIEoLN8wFMrTJwFKCLoHf/SLzsNfe9QNXlJKPmiKrxssd3cxE7PuYfzw2F9vp1yCKMDOXpHp9Gmh1/piFk7Y5knJPRbKM2zmbkf/jxz6eFgvupHh/hUfZpENpncrVdWWn6jqeSWYraAQZD73Bvvz72gAcHYvWqNUz3pbyHCEftIQo+YoHePGw+0w6op59V+qsjy8kpr3hY+xWHEwVlW9E3yYxi5P/lzpZjl9dQwP9O10mE2hdowv6TPh70VACwPHslms9Z7NlxTNJLQQ+OO6ZnDOg4DDjwk7+8he1cCwb7RysaqwJUhEEshygVj6aUTGAMF0DN+dLUGbzKM3N6OvGT98JbHbwIcLAC0XvJJ23Wzm39HTTVHCvF5x5XYPNPVHOO5sPzMBgye4N9ga8mGUTNvzrK+6HWuxaTpFI3SwB079VePl32608bbT2Uy5EvO4shUOLBds+9h9s22TA4xkT3KAWqPVxmUE1Z292TANCKD/Gu31WwU7w+lJKnf3kiytqPtloI64SSt65VQH0Hl8mPQ3i48YJdL11399SUyBwnG2BB1DJEM7eYxxe32G3yTWc7jMXdAgFBZpUGuCaeR6UcjvkQ60xiU7oykUDY+dOzySLr00rkjUVJV3Q4tenoFsK3xfi60uMSixLjuWP2adz09claM0OCN0KRhpPCO+wLSYoJiWquSOdRyzAFdVtipYEY7i1/gXfCHO7MOXQ2r6eeLam7hxOFlirxTOkZPDjcbFlwqDO+eA56csV+PDEtIn0Fct+/R85h+faB4T8FcffcNeDopdGZFxeRK93q1DbIqK3EJb4fHSC0dfGK+e+9VGiPuW7Haoj5rzh4maNCvUlGlWb4mlour0sXSMsSpN9r846aWT7Kxs7/3ir9ezob45KjJlNLlAPkifbZjTa95TfxHVoXtwbIiCzXNagmSk5DUu1aa1Z6FwJH9C0u1K90gmPpkwDFYfhC+B5JiSF4nkuUFw79MnD1hmhPnm67XFWVolRCXE/evpNyquOH2s9DlJSrjO0MQwZVI8jpxcg51XDjnwMTZYOk8ZlCvCMwPFJramfhrlYpuo+z4NprqTusKJuUNMIsQAI4jqVHCwKd/dgIhpnO6WX7sSbHHPIY2eHzRRsDtrqDXCyn7LtzVm+z5HXmtHqy9o6vPMWMJByvf/D57NBTl9YVpHEarJ6U0AcPkZxfkQbd0qY9dpx8E3G+kyTmFYSzC8LpOUDNpp2GV/uzcMk5yDZKYPP4UICWFJFhOUFlx0Ufi9ke4GPYjSM4RbpoadPFPJfDvEAI7tywQQyA4h+r0t7xuJOXzyVysXzOnoJtx2uz49xLsgi6AbyE65uo1UdOPlk1QzGKoIKmzieEwXYAnm6hzBjjIs5g4nSWB4hRwZkDnowuut3dSlArGvxIWJ1+j2L1TJ84aupNWueDswrw/yr2zqSGdTaDvUhD8DSsDXSeApdK5WGPZVKMPQlMXpdXyRpsnHKSZFcRqw/soL7VOr0ClO1c7BYBn5SNy8g0Mh0OiODLK1AAxqNQ4Xd1YB6MToFgdmMXMm3hfyRmJBiWk6e4KolhtVJDUEqoBFhtFByYl1OT5yTQNcUDIYG7RBRj6EGKHp8Xt/pu/TNE4pbJMlWtsnW0+LF6OdHjXekGORn59QzUUnD/bYoOuVIuR6OJXIiaX62yUYxhzrwCle+rOlKg2Qb+potnsYcq/kETBy7TteNsTBaFrr/XQVqZmAu9sZDX4ouq7zh1k6SWr1Ln2BQbDa5FwJkRsjpNtdWYhf5FhoZCdDYRBtkVPPTstQyk57mg5ouC5Gk5kU/fhbOFa4WNJuW/m40L6PuMi//QpzRuABBveUZV0bH6LtG8UC6ZgQ0bKd3JmOlF81odtrHPKEUfwn+hI0vs0x8omRqTc0JZTf4SvXx4ce1jvBC8jwijG9rGhVQ/Urf2sEKY4L/fNZwXT3Refs5UfXxSjf04XvZ1wbONyN6GGXqDPSyVpYYFIcbYxk1hzoRT5wPwXhtspgTRyisVT2yy5PMbyb/2G1l6hgy0gELUo5Nb2cg29SE2a+cFk/J9xVefvOoePyWxGo3W6WN7LFY1xQMcX5hPKhUaVBa+z9wrw+5Hy/Wkr+cfpPqX3bFQNvQY5i3MFG77MMSqCU5qucig60E8f4+w/ITU3WO6h8qE4aogpj1uQ4i9jQ1IY+Q2mLzphbgYe7gpya7xZtKkojHSGW6WxAft67VwGKhyeBweM7GIABK0Ju6xHOpQCxz5TeVtEsg9Vx4zZUHGje8lOL3F0tCXi0T/M78UcaY+990Tyn1mKFJonZixKTiKZ9qoWTAw+pNAW1UsB3Mexs4aT/MA30BV6Bp5cvgJG8SucJSxjzB8LTtV2H5eJNQFoW5E6M2B2MnsoxnLp+WM7UqOLqBNpC7OJlX3GaLtCV8GAobWFggWsRYUb2be6lvwIFjFYvrCeCD8x09rbylaO9b6f11TAzmu+aTKuLgRt9GOomaUapjvUmHNJyIQ1S22cARGX2jyXAmTuwbcfcV7lbLLsrhNmk1SvsNEBdERVyZWbznC6yceN7ey/mOxTWjW9geysBbUHfvUUP3sNv3XK05PAhyNqWROkmmNjEci+nX/cD8tUP/H/55OkL2emXkWgjpQkkngY0phKrIJN6gtvLfN8jC+jD17WcPWRXlY/r1mKT0EEY5BV8UHAwh/bpPU/xGhgKBuPy0KlfwLuxu0OgxYcm0AZFx9Gz9U+UgD7+4c2Nr8+wgYiUxpT6igo6pFUf+XkdLjOBStdPDE4UpfrtKEUknCfo8acpGuVQoo64gzCQJ0SpF7mJ/CfwUvWmIOtn/M6vrSQHGlEVleryh603UPe8Gm8/XFvdVyZiWqnCM0nMBJH9WAlxfb3YEBFPjX6ZcD29tAS0HP1u390exM+mSJG0QywcbatA/cCx99QwuzUPFenHtQcXSdyo3kksy7yd3uq/Hnw4JceIsTu10oW1JiQorhBHGusvsSGnvj0iI8IwfRpKuHaCis37ie6xQcRriFlH3Di4a9MHdvokC1akiIBpXhcK9Re2/g6/Wa1U3fPUBsvDdAYHNQGVlUWyvTibfNg43UE1TQfboBdXkFgXlxZ9qooUbvuZ9Jvc7ZNwthjFoepI1hPqrLYHRsNjMpSgRHhhRCcZHVj5l/whZEZLOGFgk8QeqM+Q/DZOU/SE7jhmMWQ2AMKl5udoxtzp3K5wJ5tY6kiJT+Ask/n5pJEfr3bq71SLQgaaPIV8v2KlY6koBRi0FuO6FcUo7H+9DxhtC41HSTnJDlHDV09gVNd6+W3DpcqM22amT/IhR9S3N1FOSW4/rhyFMVqgA/dS9a3Wl/SfhkxjJ0aAjvtrvgzRQQ/jwWs=
Variant 5
DifficultyLevel
416
Question
Only one of the following number sentences is equal to 11.
Which one is it?
Worked Solution
|
|
(10×10+10)÷10 |
= (100+10)÷10 |
|
= 110÷10 (order of operations) |
|
= 11 |
∴ Answer is (10×10+10)÷10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Only one of the following number sentences is equal to 11.
Which one is it?
|
workedSolution |
|||
|-|-|
|{{{correctAnswer}}}|= ($100 + 10) \div 10$|
||= $110 \div 10$ (order of operations)|
||= 11|
$\therefore$ Answer is {{{correctAnswer}}} |
correctAnswer | $(10 \times 10 + 10) \div 10$ |
Answers
Is Correct? | Answer |
x | 10+(10+10)÷10 |
✓ | (10×10+10)÷10 |
x | 10−(10+10)÷10 |
x | (10×10−10)÷10 |