Statistics, NAP_70002
Question
180 people attended the opening of the new theme park. The chart below shows the number of people still in the park at different times.
What fraction of the people had gone home by 2 pm?
Worked Solution
Number of people who left park by 2 pm:
Fraction of people who had gone home by 2 pm:
|
= 18030 |
= {{{correctAnswer}}} |
U2FsdGVkX18BoVTbk8Az8eIfoefuiurlWlGltwt36ZoZ+e4ZMvEv3TJVQxeYWOkfQcgHlg514Luk2ZwJsm5wA96Tn+5vcwxf7OulXMXO34uWKnizf9Lrd/EV48W/dmzzrbtdibPBzkOHq1qiGbDZZcKbi7v0RFLoq0jXqXQ/ThNhYowsLacftxKy9qvadPYPg3Ue5R9QXXC5h6C5Cr9zF5RiLBOW7ORpNBhvEIudeVKqrHrIRG8nxyeyXlaT3gciFzMRA2R/5Tb8jVJ8cU1wIQDlXvxvTGL3DDMbSfFZH2lmHtGcM+Spaa8vD8CncLTwlRHRZoyWlErZXe5exmCW7rCf+s3nxMWXiWHDVXCoxZ1ndAob7StKmVwxOuB5DutPBoitoWYw0hqkdT2fkLWwF55ggfkAS07FfJgw2bQTpiq4INCPWIeI5NuPg83U77/Up7LRb6wcyfzuA2nveWDvlb3vFeJcRt3lgZyuUFn7EdmFDXAjVv/M5783Frzkg7704CZi3yTQqA4qBA8n7h+yPgvN1Mk1ZOWLMOf6rmVeCqGPP+oihqV077x4RTXxEVeXZ1nlYaDhFnQKcPyzoRedVtGjfxUpuFsDFlTMsKZ7t37/wCYvcxhbKlUzDanUVSynAu66+T0cFJl6WeYpXW4H/OmTvwKcnLvYSICzMqbMiwge3e9oZ8bi66LN2HzkfJSPu/w2A6RR1K8DMmT8iWbEOYd4z7Ewz1otw0RMsYJG+zxGj0ZqDetu3z5EIbfouyBmSmP/pP0aMpgCcMDDSxKleO46m7LANXcguHbnMipSQdMfBbSgLdUViSYZ6QOoM3MOdsNlyUHGAgZF+MsUtzsjdD24g+fPKZ8HTICdx+zZRnTxHHzvb7Vwp35g7GUpfDXsYOWM3FfM0rX8FDSQeVyzVKhIk4jcFvstCU9B4GjbBHjr503/9R6pFv0bcJzggYV4GVMrPnh2rZ92umpaNRMSeL4g31hbRj5M7hN+8IrPQ6R6vhVJGwcdMUoPmGnl0HhvGyR6VFBBwFCPAzdwtE/1ny6AoDUMwJfYbosf3GXNci5YZF1edT9LKEyXXwiqccgh7olQ4rjuc1nNhwBKcHgmvDxvgysXVrMggZw1HHDBwtVfBB3zKH5hkiwr422jlsm+S0CTwlA4ExzExXRg/lvsFOTnWEt3EZgRTMUDeA9N9DmZPpzPfBSAIaY9xRg09a7jy63uRL4IlsV76JDacJvpDQzFMH7zVp9lSaffXCUoiCd8t1004JHQaxNkIrn2EMBkXh8Fhzhdr+wxouoBI1oW3DTbju34GY9uFNj9wURyvs2QTkiY+x8DiF9THsWoKpQhRk87SuvRGJXz4ZXWClBlcI+gqVyvu2Be/EMlBFMSiJDMgkfdoGKHehN9Mch543zkEeldMS4MjYw48Nvcpw8vB2lTExg1LMwCiGUesNTAPBrb8GJsG7JR5TuseVyA+T1oP6Q2BoLzEtRij/P5AwIDarm/C2lDqLvPyXZTMNC54Epaw2exN/XDHJO7qwJPsCvS2w/SN0vphKbHa73g5r/nAYnU0oBWiVvRaeBOg7HqSmC1+nJzNI6/qz3V+Tg4+Ss5+ZrpTileTo9xafZ2DEalTKRFMp6EXDKk1W7avLhZSmpRolx7uSygNn5gzc9zZHMSrLcYJ0ge80PjBhk2N0QDT9RjPi52IvBbwV+INtdpIxpay2KkQfnlpxchs70PXCU1eq41y+39gdBIyi3tX4Mr5KFg1Y9AwsdGYg8OahqDbhbGVJjt9DsutGxr/Hv4vCF53COSrqC+ST6L5/ekYCzKcl4zSMPfxLmtwBAUpwL9zfhqz06yEDBjLDjBMH1KIdzP1gXEbe2tQxLLtWBpe1OOUefOYrASILg5AlVI39ZWbJF2bTbH9nsqrpto09PKKfZbN7NWVt3qGuG+P8WpXO5kDhfsg9yvylXMj4hlpoAS6VdCIa6KQmElB5EUEl4v7fVJ5dQC8r24tnbXrzXQtp2lv0YkDwCH++IdqxB3CGSyjHTDXt86bA+59Ghh13/ETuAKS9ETGcFoAraHANQ/M2RdJhGBPGSQiQThKLxiMWEJfvEVko0p3m3tsIp4xtdKARLR8JKYzvQy4O4DkNmucwGYMg7hXunqml84h5uThpEjGcQZV34eVv2XhWSRb6XT6PBXE+8QW6KjVctpfmBqB51MAx6jHkGip5mUaGSXF/r22XJ58G/htCK+rCq8M3qJY8A1D7s8oYSRdxpIbjTjgF9UhG2QdHIvjuDJmtSN/YqDIK37ZUsV9WVrN2aOkL6toyibTa6a3Wp5W851sOrSzNjer8IbbqPZFIfRk+1hAywWRPAHeZaFv1YjG41UtGbH6OLXUr7M0pb4AIuwAOMM+YZI4PaITVA52tSRscSFYlOMywpamRvhPyDGD3ohb7f8lOyb/T4raZBNwe4UkKB1h8y59r7rTx9edFlAVOnV4u1J+MnJTWITmiNR8bZWn0dRR4Wg+e6uRM7drHOJYvQEmAB7b6zcDEHJMZHkHbjEBpy7G/2FSM8YZ9XVdMMJZCxU9QDfrfkXvD06eV7Q4YyQK4q+7Qpq1NmFNvUS72BYwRlw9YHT57baUegLqeVPIWNu7sFrPy7+Spkih82hVCXnl1J7GTEppEVMZbylHG+HBJ1mmb0pGajKtUM7JbiV5eIkNm0SrTMF5RM5MTWi2pf6Hya726FxqIrVPTy76cv6nLY2lTVWfY+QgUwWBorLMcIo8pLxp9ShUCVJ5EuOzudQnMerdgw3JgyUPUnPgGVUwvWr+H0XhBJqcNY99rOvn9WcLyzWS3TYJkUvB0vqMwqwB0rzvVt0gqrW6J0gCXcPHcyPFQAdAt0jlYNlP0kuoJeD8m8VbTxdWo+6u+zN8s/yr8E3ghG1g50ZP8ygZcgbxe951rzKOEtc9K4Jbe6mHeeYKxLuczyo/5GigC+GnS4wMRIb8jE8z+BEO0gDVHpxL3YoGEhdDeP9FTvI65PqtrB9e92YdVBY8hkwzrtyLs0wnkrpz7uswU7z/dRg36A3I4BMWoBEf/z4A/lt5GBk3J5wqAAitPy5MBlG2umLdP6WOo1cd63MpcN64e9PIJBBkCasGcW3JqqWmt6nhRRaVZPqx3cxnHgj325nmtAPsdVRxd6wLTts3NZB+CNP0PF67f1PewPrXhITmj/fn5le8Bfn6JE5bwo587fX66j/Q0jBPmsPLjZvu4FyiYwN4/gBIPYRMIn9SGOyzIbxIj7oXCg1VodYUHoOUXJka2vW6dVwvqYNMmx1jSOrSKhMOOdECCZMvKmju7to1/UcNgUo+J8aA/hA3ghDWLmtvG1q1a10CqbBRSqqtsA5CXLBoVO0GBjcFB6ik2iXA0FATDXHu7/YAf9lvcuRAk025UGfT/LDM90OKxzyHpf9pOshfw76XSt52SwyQh6BE6ay80/5ImSazfzt+7Z9CYcVZm7QMgddmslOqkYWdRvekjYwPXmLcA2CwNkPMLVvgPHuDj4/qW4CDBzEK06IyT8V4tY0ohjikA2M0tFUdnLWRK92oBEWyAQP2oBychCViuYNpYdRqMJlWp+vXScM8ie2wHr39SQ6PaWpTM/PTyswepWtCDdUnUwOFOT4OXfyP9Kz+wPs5E0tiPrdNcGwYmrcy/S7vtxyYfMuX7xcw+JHXn/x4CipBwC3oYNXH1p1RNLKhu1sMvhMMTyLrO8lGD8xSjMmU4IsrJyIVAFqHduEGJQuvMBxSDkL6VFY0t3lxKbt4sFlu6bX6PrqNEqLxvi3Uc7DrXS24zxifesvNC0bXLYyu5oh67fRQSabCPyl1LX+GU/KuVoBGMqjAwV5lAw4bu6NCmYOH4XsCcnhpYzjz13eDj6nH9X3FEdZ1dM5lcFrJ+xF2dkT/U4736bDUjHUSip3WH5Xp8iX7x0JPt4//KUl1ccXyp6F3O/ngp48WKF6Qs53ilbt/qJ4CVP1sx9NZ7kVm1QSLvbELhWwSK2akaHLRWl6S0Xi68Efi/6j4QV8VzHBalzRa5uXWqE3VyoDfQ1Vs1S8W9Jypluxgtt7HFRpaPx8d5eFZwLS73JkTgy5HcCGXiEbq8l/Ui063u4hVRKhhnk23MfB+K4S6pJ8vkMYI9CAS8JE4gZLsmbifZGs58HpYqjfVMp0X5qxa0xQPWDd6mlqBGXoW0gTn6/r0MDwlHKzrln6xl1+jBf2VEeYUIvd3AePtJFLGYYrlgexrnpPAeSfJjDz7Q5xB8sloVW9bQ02+5HPqsDQcy0dqP4+jM263fLgubVHPil7FUk+2O+8vMeWULkUDVIOriylGnRuPzv6GrtLZ+XdTYRQ7DmEn4bO7puRFHORRYHEkC3FM/NVxHWgkW6JKWkwJ4dtve2M/PJViIFUhKAJhJIUSSRfweIK6RCRB7U+mPbPaFbllnPwaqwohv/LDvOEVOQHzgmRe16EzHujr3mliTUPYdhHmqCt0JUK1BrZmccAX8Q0uzi58R6Pl9f6V+29Hed8jy3gpLR+erWmhmClQP2clgwUaddhgkgVk/wYhyrk1KQdPODOc1X71i1u9qQwST8Sns0fAf9p8nHbtZIqtM3awWbyF80lf0VBp5yturiqdhlL/gTLSxBP5zDqA1kD1G5bVYlBWkzgpz4BDVrPUYON+AvVelwvy/y+1BIwNIqpb7cR3/a8jdFqDZUqjv0U6GonyvxnNu4iwsV6Y0EpWcv3N+29N/Vm1BHAXpFsGl6DyQcoLg1qNzEOWHosi7dwOq4jssMfUVe+tRXGs62KvTgWcOPhLbUSaiJmZ7qz1xBcF2YIMNwzMwuc9myGbo2N28eHUXT8ks3QP465BnMiBFxekVjyiKnhEKa9WEVs3DgQSnUB5k7isFTv+TrpapYq0NU43AD2bS2wSZy3FFoiFmIvbxjTnyWTXuEssnGeg8blyIY1vRc3Z02DYTxi67bWL5gGyJEaC9MfSZe6+qXKSAZFXk9E70AcBAxeJ+uf8lZc6//6DQm/In5a/+OJU113MEzCKK/BUWRmEuFP/sSkT2hPDnMuSLCqLCjbr0TFOrGJ7SDW+WNyyXy9G/q4ENiwXCh0008i+NofmZR1fyEsaAN1lPEW+cbihsVXOZQzPf5SkSF+wAR21eFr6F1amO/Vp7XGMHqGoajSsnUGqIeLnivcPeO++tU5fP0L3gC8qZajCwDdN/nrTIx7+ZZfITFVN9nLAT36Ccdt0zCocmVcKhC4ieIudvm9i4u//xvVcgNN7t7ankxB6JmBPgvYHdR2gHarSBL05VPYHH7QUZ+I5nRT7Ne3ixKgw4hbGaDaAIdwroe428fXkc4YNL5uJp2l2cpf//b0y0sB+gycNltH9Aj+n/fSQnPaCXAtUTaV2zD2wSHCU0YxZAZaR0OFQas++cn5ktLb17rsyJX/eOu0QYFVV3df6gAGmQu6MSYj9Ue0mA89J34GgEAf27Cbo1m47/32uE+AMHxH45jkVnUoXYbRLQSH1K5NMmdo58isQLaWvCNczjnYBlzdFS1t9OWzDkDEtRwmeWBqWWAT58SgWHxBulcE3E6/5hl+m5vZajDRIlL/DxKde2fDrYr1pv26Wd92ViedS6R5ovjzEF3NAqWilgUkq2SoBrp450FW2ihsFQUhGzaH4jtwLmcuiuk0WDPJH8UDCv5YByNPMB2s743zKwlhbuxz8jfxlunIxzQV/pBQHOSxB/oFTPMsMXQId8adw6MoMpNgwCd/Mg7usbfD2JZ3kWX8LuJbwLSpYgMzWGWIwrLn8f7i628QJFQQ43aksW/4h5I7iEk0LIrjcvnYfr+ghH+oD1V46e3P55ZPeBOaFGtox/QvHyqXiAQtM8E4+5nhA+WAlp3+ts6gy5WRpPN2GnguWYn5fsKYm9gaVy1g0JIvPG7B7KkS1SdZOw5Jw7LU/675tKr1A7o6e91o7dq5ZH0frTcSyEN/GzDk5z/t4EZNMY3p531W25TrbWkr/RLKX/FqrIm6bmSFnyIUdYTByg18YSzy0AxxFqkBK8mCaqdwo/Qarr2LKX5voeaLTbBE4+zviqjO3Z9SrHPThIS6VW6xuYJr6tuRqynEJi3SQkQjA1O3JLo+njQGXuDjMIKFHSrrw7X2sr3jtaaED7owUjStLQM6Nx+7OWY8RB2muGPKwwsCLj0E5KE4zbygNRkGFEOJYblpK4CAkCh9XjHRrtBnDLpoZggnXiHdzTzRMdqtQBcXnIb/q5v0hzR1v8JU4fwm9NJhmVzyudXZjppGL3+WmOl5AzH6BwRyz6IOjjSECHQjaZRfL0DybArUfsUlRUm0mCgIFZNPKCq1WqREw60Ia2ixvH5QZstwfPQPU/p1ezOft1xFkJWpGrttVbn1JCl5ctBrkzB7ItpuLmiF/bKBF5ZzUuqIEtKHsoFEAVntOJql05itlAccHoC9/vLXeNgYn2QKORpDbCCtl9Z0jSKqyuUsGb6HNm6J3mKdLs4PZgbGI8Mf2L3ildFSJOdTb8uqpqC2FQZ4irhm0svABrGoqNpWRfb4TpWVUtmekfyUv49xUCVCXV5jKCEFMTKBybtdE1sIodLoBjxP7IjMgkQtjyGcprYdGkfFY6otYfho+4OiBMGjVc98JWJn/h0lXYb98ZCwX84o0kLV/imq54LwL4HC8ii0U34NAfSYBWhLrpAbMG0UYwgaat5NujHyShZm701oi+TgLqI2Vhuf06tL97xN7P5+Ge+mDhG5AhbelSq5aSQgI0RPHuAD72guN9kShOg3y29V/aFgdQV4Z2p6i2MzIBr8InGtF0tOw4osp2vKRYGGslJ7fzCPApH2XjGoj24htMtgM3RLfnCcQHeBgjNepHCYK+UE3VUASEiNt0EFA63vLY0bywlGBJV6j0pkRxZ1Sh1du529Te+hoD1+k4UBSkOV2jXpZIj82vedKWJm30hWHkfAoQszeCLYkmyncI8/p2p/w4PcdW3PvpCA2Xp1HCZEjYyE2U2uze/byqRjiGbB4Bdkq9Q/AE7AdxSyYoQjF8cerjTgf/WzGHhmlbWBc7TQ/9H4zPZAe+x+D1TCpBVJxwNYmjf/1+bUgtGgw3wYrD+RsfV2YDLFetmpJUCvWsfoBt60E8bG3b3REPIKLfEyG91h4z9G3007IzaEey/ns3SehA+snOD1O6qL2gLPy/7F8jhKqGT0Cf6D519y6N1TDivlk+9hUxnmAZkncUo7bJQ3Tt6ewU5vxOKz+hjGkfMdFeV/eZuoqDy9pu3fL52tJln5X6K94xMdcX3+r8rMy1dXW9FjVBqREjvn553QAPhmwZiTNl0Gxrr7HVSAegODExsV1LniFPkpm9e+lLHnNFCaux12/H43h0448LxHeTPFc7laf0Ji+PIV5MGecGE4AuMebGLjRrZ5kFku/HYIQYo8OTOSzzopWdtZg+J22YLU8mWRfueWw3M34B9vIWG/d339Qo4jdwgLb89qYCfX5sV0uj4SzXlaJjoKpgNXwun1ZlDcmGeK6KjaecyUJz10Egp0YoVVEOz3tm+hJ9wBfDdQtEANtPdew5QCJQAhRwAhlURfkvDu/55vTch63d6X+trmvoJi+WxDtxcGknjcs+jyK8I16oDlc9ss8sumqiW6MEiYBa5It3BdI0jDVBhvNjaviyH43NgW8UuDmWWaLeQEuKcIc5BmxNf8tO+6jnlcO1Dottu76Dc6C54s1HVIhYV497UJDCV+IzZ9zPH0uz3NsaCJSkEFlsCMhEaAV7fvZRlR8OFeNhKxaztCdbgUZYIVKfrdr33APPNwru0WAn8sako+R/c0NuqKF2Xv59LSYV77H4WMpyOUpF1/iu8xtSaF6u2XCpJKlB420nEYS/n8T81hVGzop0mo0stt7FPwHyg7POOgSewnLK79u5uqogx4bSvOqRX4Xs1R1miVC5H3zsfwFkQj/hoTIZgSbU/7ZbWwxcAOD6YrZmoz96ou5XAfF3RgAC7e963fzKnvl+wZ+nKMkUFJxnbJp8pgbzQN0V6BlApk1yYlR8xROcMZTPIJpCnSNspu52tNEmQcPmE0FCkpfR0m/b18WTSBJwgM+Sgx+HZFwWfhKWabK4Nvd+ctnvN7KGrNijERROQhKu2KLMEUYwlWrXdUltjc5/cLzGhp9wAAPnkPhDXhxw4mD45vIemvSpppKNhtg2slAhdMsBVcG2SPvBWcBKmONPWcsb/G4ZZzXY3eTVQogZMxt6K3yjdGb2A1/uCQzPfi9LX0Aco1phjl46MvbQ1gRuL7+Gcek2knYKuK0XU+no98AqCZCP9zfdFURkZN8VL1R6LOSgnub+gvSv78zLqRGpz+VndN1bvP7jtwy8Ct0vS6C/527T8yGU9uNV67I+1KRhY4T283mHyd5tl9xY6v0FJCo4MHgHdH9MltK8VpF96hSMNCCPuG+MU2q3hj9MikBQQ7Un2KNblsvb9iWq+A0cZnxDJ+nxJkKOBBjALRSV3CnPCRvIyt5oGVT8CXUjjrhDJqlDBGt6Wp4POFzz7KSmhNxqhZcIcvQJOVB3GYWWDwXW92lywZbMqHkHS2EPPq/V5ftJd4SeU2gFdiIA9qpgTfSg9iWetvxepwC9sAoLnJMH0+71toSohbzDuJ4j+4n0bGZZvkET5I08Y2bAzGXsdqGoRT98rRMO6+x/IRBXpyMCrAn7A0LR3eMRp3dnEmtu7ou30EvkwanbbJzA9pmesCvioQYwzmMx498Ow7y0rvnaHUOzkoEg8sfnZ2puyh9mihrqT1WkxmQMCvSHsRPVw5QKL/Qjz/6R2qwmAuAGgsiMykbMyHOZWRei8BS1Bacw0/WLNQpzj+At/yUJZXuVuKSQiqiqhZrSUZG5WOB1JwFeG/VCKtLM4KP0OX8jnt1dhs566k/JuJqkRcQG+vu+GJQohz91aTB71iq7ufwBNcJV/0A0WhAUHPsXnbwiuVvlZvCtP4V2UHfXXwmnD8oEMFAAj5HpR/KveIX8XY6xVlnAIbfTBB88sqIhzuj8aXB2r3xAaqjoRVncxB3UKzVCsVy0n4IOLGaJOjbMBHPsPoH9evT9jogcgTWMSF7gFTKf9ilwhGNHN2/PjDtt+DqtZPPgyDQmnNf6rHboN8Yj15SXaWq5Q/tcbN5ADIUC97Uxg0+EJA7NhFQPmMx70V1ucbFoPNpamlbHkRy+e6HHsTEElk5vLZZESQcbPc8oerb7WlDFFy3uA1VGVoiyfr8t/bdAOUJG43cCTSXSM54DHD7xRH0M4TyIsRRAwZ/k9zvls0QxOC2r64CCZiyHFwjO0shrdj4TWsAeONcmmGD8SGDwyQlFXAdiXETKusrBUeAWY0IWBAm8rWbZRHLbgJxC3U8E7a72usw3dxu8fKNvHNSr2KqiSyRXJ9r3JzJZhA2p8iyg/34jGpOwIQTQ0IgJQDte3aTdpcOWit9kr/0V7vikhfHsApS9hrIUNVz+lDYvGckW/9WnEmqsVG+e3zMsbFsKzGCcJz+0bNNTlJ8Vxt+L/gqhUctwdCvdDNCloRTc/+Vo7PU3+S09o8HELJiWRUSbyUTNrRnQR2uS8c2nEYLnJrO+5VIs8uiavJcIisYMTohEE5YCZ9PChNxwqftnbU2cmrG9Z9yp7XwDdZJlbBNvm3ku5WwepqbBgoweGwpvHPij8Ed7yWqCNSMtzDFMz7avBnpQF24X1eExeymVYZ8uMzi2YWFnInVsfJCe8pmGUf4rr9TeW0OlQApIH3XgCJiUP7bPgOPVXi+NoS5yq86cD6dO+9/4jlZdvyDlBsqQbv44f0kyWDRKqxsKS2VhL2TA1SPABlW4H2OW/2ILKwTCCyMFrgsj2MPnrJmEFepa6HBPP63NE0UryyBg1nXPxQYuzYs3yhNDZ6JfppeafpRLM21m3B/bkPS3NrcyZhyEd7iuzRaLzOLb1ONECiy47ZIGFzQ9Ypdmcy89pEH384y1jXgkbH0O284dHDXPQvh/i7foWIcEk0T0UMBvDUgCv8WoEX1/47AinMJV+0wWY3Idpb+pphWc2XiK4O5G/7AH8GaBaJSJvjcx7oAuKwvnmMypjGnOendRwZ2g7hetLtyYgc2oCdifUg18GGJrkPttCNjTgrXGGDHADA1358jIvS6prdZ7Qi5aUwhTB9E+i0idM5CdznQiQEyzBF7e2rwXOlmmryS7rgOA+pJsA3+ap9/VCDyNBOsioTLjTCfEaZjPZPGLNChUmQz8B7DKaeyG3k9tJWU0DrQ+JRont6OE7CF2JMumyc97XH0FbFaWXmqkFibKYkFOQfD6hm9g9UsB8XEHbyYYEelytGk5mK0LUEeit6Xqo3KVyIT/xj83he1a1vRlEioFsHJbYLvVFXmTTSeCIKV72AMrU2LKAKQSTm/FPycuWolqHBoUYV2FQdjvyjfkExZUddKPrDcEm7JCAQMotHPa/EVOp6e3ATG/xSjqd3U5ISiBUFqOejNn+v/nTKKxVVJvrLLcKuYOKl7Y/nBNiLx7u6as79CgQJpGxAvyj/mz4MTp0UeeX+lasjGWf6Z/8FnD/psBz8wbyGGNvPykYGYPP8UnQJGlNaA4RFji026eWIvoIGXuHfAjtTApHMMfaW6/SfhUy0f6upMojEscoKtQloWx95djUexP7KYGRoVdK6V8hUE7/VxwDlqME3hWSxliMFL2x3lSp6Ar6hhYoGpnkQ+s9/CT/n5C+Iii8+mtpupwY3F8meZCUQuwyLwQKhz7Ys5dqNPudQ1vYBFcUfFjMATXiXx4+vbZrcduVvSEHntV9QKD1jqf2aKtq2p4WpQvcimDVx12EQUX9yJfzTkmKWhNnCgEi3JESBxoHaOTNqi/cN9/ce5OkxghJSkZU1WR/nyqIwWy6ORfCRJ58KGqg3H4Z9nJMh4/M3pAUn4Z0LAW+SFtbxZb72sDrtoZzpxoiZx5BPpdf2BKwUPBfoRHZrkaPyxhyiLDNfGTvaDftnkQbnycMQNFkg6GfI1HKZlyooSughTfZpsNV/8Txn4f3v7SlpLo1h7EfE68mL1R4GQtFYGtRFGnqnkceINRTVRlyyMuKoBeOwoXcu8CCwd9KBcPiQ9uYAlyp2X21CcJs3gRVijWVHXWMQswlsfN+fp3UFICtP6OyI/9rGhMh4GYz8BTcZvY/g9xBWWUr9MKTFSKaPkHEyR7TnzBqDstgBb95L0DdwzjFT0qBk/6zhnipR4v8AYeCVQcF1OYNPGi37uM2uqBUiRVlZJn4pSSsOdP/TtIEiGvZRA+6pJ89t0oR9R15EM4oGX4pGBKL94gPQbKLQym/ojQmfaHedHKWzG0bz0wbnEE3hi+A2eLe++RRdUBI/CROqFFCRtq60NjM1KEHg9U2MkCYIzV0n3P8zFZVt+6UoGFYiLRZazXNx0FspxdyHsk5pNlPTsuFEbkgaSPgBKax61O9x1XFA1l7ln6eQFvSDE89lX8KuYDiRGdg03J80nh2tte/Yk94+Bg/MpzhRDLGU3Il515qRkA9RWhMWoBMYDSSvLs+SkSzTJ7nbGRH1Ia0+O2wHPt3YQvHUFimFzDEhp1J/Yum7/2s/1uPmqm5yhFmZWKTv5koBvg/K2OMV7jdatg7Cm7R/9uGoN1TVF0163LijBu3/6ZJzqzRIt7BZmfMUcz4r3eXDaDCZWpbsQz0w4rM6HDknYEv9DK+Rc37EyFynSwKVXRKjCONueDxBDICQSoCxN8ICZUp1eAC8kzJrKJpUSLO9F+I/BZK2pz65UaZvD/LljxpYsR/ynusIbrnkFSSRmm4eQD+rUGsFJiH+ePNpLIIXDniqENAulpjWoL6DdWi9x6T6SehCxVNkN3kMi5wybrI9VMHNN6OtwEiIcu494l5WwYW2CGX1HWRd/oZ4Sa91bsrVfJuuKM+TkMvm99kkHhj9D1BhsTMUMsljO8ad8IYOML/AhQ1K7mAeozozp3T6kGAuOe5DRro3qhtc5L+z0Yjz4Yt3won1EsUh5xBSiWIK9YKzQxnRfCxLLHE8KmtPyuR/CEY3j723mEA7X1/A1WWnWZxrzlteDDO6z1VKdUXeIhKvmtNHa2D/NiBt6NCU7aZlywmErdn9s18y35ky92z0G+4C2N8/vMuso7skLkIqQ2FQpo+i+eav1fc5cDyBZj4mMqQKKV19WDUu/uWvcQ2xwMbpnb3Km11qUcKYWYRIqMRKXVDRn2fbHXvIwE9V00ytuI3NdVYP7MeKTQFk34o3a+NtN+kaqpVkR8cWfpTCKHiY3a+AggJ5VYMSsq3CYZaIu3Wj5XdxWggG0rJDAw0Ig2PIVZ2Lg44BBF/2nnY3YTmVVcEbVz8+7v0/X9kZWfu13j8e0fzP1MTTVdYCJfKLdY7lXnf6vyOOFrZJc9la4yfgEIPeph9PdtOnGT8UeV/8r5hx9WZt2M3L4aV8xaSSll9nSVVPvh69qk5+G/xFNB7YG9iEryDn7crM370v4J1c+UA+gzNDPWq3ilaSwO/1HHTyCBBNAOa6cd7LR9BbGftVRhp6WdBwMvipYH7XBbYfGjkrakCVuQxpCZmDXRdHEh5Vo4WWVSPrWyQMBTjIJqItl6Ba66b+1tD01UKI/ezTy/CVaVV/k898CrkdtIGVU7aA2VxoDVTRbOnKB7YDibxjBaAeQTSLERLtWHAQpmyNe2tTXsa7XDCnLF9bNKSABRgK/Xj9TaBK/+j2bO0yMpBycN/AjV+6PwkmSnzKeUsCwPl9Q2fpCnZ/LH3wwl7+3gZczzeTGwRy/om1MkB3lNYgTmHqqk+p6hEjCfToJqpLLNLXAkSa3JYRIqvGE3lCXdpE3/u3pPHBBjZQimk2eSucTRT6ac0CBpk/Smx5FqjVjzRU8PRhxH7tpgl7rmvdcUVVzOWNMijdZ7eFbd21KGP8VKAo8UXerRIF9HNUiIm5nTfLaCo+YDevTDi804eriz/3P/Ky4r2Gwa3Q07ZMxtbw0jbott2RKrYOxFbDRz9T9yZPZljJnbnJpBEtKkfkmG5D5hEQU4HtTVvvFDZT88RfokBQeeAKiSJeJgL7l2V+7YuxS/B9BJQgQmcmQBgvJEdc73uSybs++K8ep7OdZp6nN7lntEJWdYtalm0QV7jRAAzdVhlXWaxQy+QvDjIHpUOvbklxDfLnPHY7ZvqO7oer36v0EYd6lnNwF4r8YuoNy0AhSvPt+EqVQiY=
Variant 0
DifficultyLevel
541
Question
180 people attended the opening of the new theme park. The chart below shows the number of people still in the park at different times.
What fraction of the people had gone home by 2 pm?
Worked Solution
Number of people who left park by 2 pm:
Fraction of people who had gone home by 2 pm:
|
= 18030 |
= 61 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers