20172
Question
Which fraction has the same value as 352?
Worked Solution
|
|
352 |
= 515+52 |
|
= {{{correctAnswer}}} |
U2FsdGVkX18NYGWShThFO2zWl+YNW03/h77Yz8BwTSRmtXlLZJXE/VubL2xXzQDSaUPnftHfLpUfw3JCVpSPErxHjuig2p6fjuhGQ4TN+ONgK33fdGU2NOsFcM2/t5pl+g6Mm26DTboUATXpKI1wuTL0vD8URLzM4yF2RHr8nVWAlECTd1sP5nlv+KBWPSakOFETEM9snJ/TidKiomJ5Fr6Q2G5VuPy33vQT19CwQvIxyvwQ/rRegqwLjRppstp2WzMlOo6uFE0GxXCc56kx6RDcE1n2Ras6ppDokYAlUSJirLzHT97opNoGbvUFUILD5ci3lxIJGM8fsW7mq9sC+ozmrmif+zQDOrkmGFqlXqLjqcCSAmhan1W7nA6HNgWxxqSp2kmSwcBEKEaY4Gv4XwPnpmB1zsppCf8LZHvr1HawHOF1ZnZLYw7tFut3e7JsyvU9v+aqUltGV2lg3KSSpQq6AQe1VME3Mfsa+GI4FeH5ZmhE3dPtBwLHZXLVHMFrOJ3h/FhXehHp0xTHcSDlz24ydGJuE5jSwmPYXNYpa6Qh7i3F9ZbUwV3m4uheDDCVk3/5HSnLaNp8RZ8Ld+GGxbmwIWvMsXmqC8qyeryfKvotazVXcTrzo6eE2F8dAqJuoO5BzXQnfqxfwjFunQTIBYTV2qrmgY1QnbtsVD4y66jQvic29ozl0z9pOs4ifQ8NtjM5ii0Zt6kNB7Jfzj2FW0j4q/UCYn8kix++blZTkfyiAlMdrIDDMPJyU061klqQRkUXiHuebn6sGk/kOwUceQFZiok1TBGlUnLDEjQtvgByA5zcIzvtKFlqg8ZrV/oteywSxlnVGeZMWuMiqVLw2ZZRuu4pHvXf/m50w+wJO3asaYK7HJVbBmCr43EA6A4mfswIxdNN5W1a/2L93eQ/Bv6rYJyHLWhY2fjFErSAZYxcXr6Fj2SvrrV2xesbI5nRTnYILXz7x84srYre0HK3BdPzovJPSXhNY/5Pe3bUYr7+U2LE++dbhOWckxQnLVpAlPq+rZGPPx4B5P/Ypkohabd/RUkB1mhOXkYcfGIkpmCKIeqXOv6p+JEk40i5nPBSG5+jIT1j8u8L6tEiCzCQMPAsPVOlLVpTCXENVAwXNLSdsgNhyxhCxz6UgPt6wMcoUZB0+ZE1PWQ3ZrRvLo67NKJMp7wnQZiepmmQZp+PhfhtF+bSrcNpkUFPcRa+P+7i9Jai2qiUQ3DTx3iIQ6wXSsgApv1IRGpHs+reWPxDgzBABrQNye6DnIhxd/w/YgmVZgKEGaW2p0NAmJdLV2EJ0d0JqkWbs+gpQEltvBKSqKTBg0/cmApkgNvE7Iak2Rwt4pYpSx+tJOP7v/k6wk+9WNL+tLIBcqIGB9LcBJ4aRIN0JU0/j06PUm/uspCpS5qDIPDd1xt7PmC7hOQSQLFECWp1asF0LDUfkQ/iUccfCoyKZcd55ibgDDVIjCBQnH7q2VpvLHySWHD3vk2OHcPyFZPLRwWsoR76iIGAUQaDMJJ0aoG6e9e+3a5sEb8N2GJ7lziydmI+ql+RaKZyR2f7jV/BSs+veyYozws+hF1LLE7Tl6nVTKaOH2DChsCKPaYvoWQpCLsvUy/8KTR1osCirG9+DcH6GzLHxwjThBKaVEzspEP/tmgaclvksGukCIcVznzpjvD0SYVazYKh5ah0gwqa9x04RHBVEr0uYiy3rtrBw23TAIglstM42LmEvm78fwB4qPT+nLxHh1MhACXnpwrFV2x45EOX8RWllUIZpEKeuk04OsVoj0C+ze0rdiLZk0VF360Q7TY5WZK7IsdBSXlPu2/SC6pt2X0EVvUDFx/yiW//0wux2Odw3RsqZW3cOYir0J7drgz0z5I3DMNe24z1DRylsNoQ+tDtaNauQJ4s/Np0wzZWLHs3BstHnhAFlFzc4hQ8DyiUeTK438DppEZc3jdPsPsylwVkD8aFEdDBllN4UnBUs4cnqZ3t4kJntVx4mNjOSQ7Fyy0E55BZY/kLp9dG9ex+EORrp0V7pL1l2kmaht8ap333zSfEKiaVL8HshVun2V8bmBVsl+7x4jlTyBepLTSej0ENq0kYJdX2uS/So6YO5Z7RrWU6+AtOuOlFAWTj2Spam6AsEijxdrT4rBOaa2HIu1qsqiG+v/bjxlmlRYIaD8mK/WpGzYarJu5aZuS8+Z9SqwAyd8RP0zrCeJPPK/RN7x/u6fAfH4HzWC7ykQKTIMk/Y/fJwllhsWNt+Da7Wx2uCA8VI5nWLB/jN3W2PmP/Gtrll8Nq9F62K27DD92FO4o/fZRKH7/esGnpJYj8P9ZKYWgSTJGsIrWxeJcvChWgUQGBqSAjJRpuW7nZ7S+gLxHm56GP/INaIabJmQ+DIrUvXZl91Vlv2FIPK/2H9BiMnuAJSuh83p9BV1wG3sqdag7sZsTAacls1yrGjwgvZSwrZ0FRt8iTGt3zRZF8n5LvvFlU93fy8Dh0iaALW4I6+ysQaCUl6odXOa6suh7thw6GBDxa54iS3dfrW1Bnh2fUU715103BfXrln85vVnZLyRqutfTmhNB6mvldMaYdlefR+K6buwk7jVIg7UxNed3O4U97dF+xamSnEPo80hgpSwO9VInWOlbPlyfQZshbaVEADIp6Vz0Fg0iuyd6FdWBpvEIAfg1Ew0jnjHv0GXy0ZJX8x8ITvaV6UszJKQAqCQdPW05UfiqyHTOlye4aoxhBH/ELFz2fwW6Fwq5rgcwlt5rBy+iZP6sgem2mTyooeRr16hauXBK1aSR/Lu7UAc7aA7FpZa3yPPTZMCl5VSqxCjcw0A9twr//BVJ0758JXSXFC6hTSxXTeRmHR1g3BtuNVxnPBoT5LpXXHl8RnkryD2to+kVqVdVNlGgi2hE2P1iQaTEj0PH2OQocU4jn+zAoxG4v4LW0Lz2AXR1AIMkMtfsYFx3QsBhtXVVzgzDK8dQ2/qtoc04ifpBSu+uy+nS5L4llFNF/BMi7P7F2L++4aupFxfLyLm2QDMWlzpH/KHioJgoH7OTShnytG+Fzl/ACh/WI3BfAxmLuWG9sqqXG1teegRUeoiji095CiIRTAEORmKbPi4aD5ZvBuflBSWXdYjAu+K6fyBBANV/upfCaaKRZGLNE3dLTT0O7AlCUE1vQp28QMrUb6sA83alcDU9dRKE/xlP514tmBIj1gjJfqHSUe0fY8w+ttPHNtB+XUfH995gudNdTrK4LpGmik1g/+cIUqinp47CsPSmAre3Pk+mbl/7M80ufbBGL4rCpCZLflwWyaUTOGi78bq8hyA312m2dd0lFygVve3uBEol9+mGsI/KhRMN/c95OwJmv5Nn7tbyfI8GQmBLWBiIdYtBtiivWnzug7LHJ7oAWo5lyY41XJm1/jtEB1djqAEUYKxAfiKgLTZycAP+XuGQHvfBeGdDXIsWDOh3LcrblUyoXN4K8FhPREN/joAL1TaW9ZrsQwLm/tog6hU6hdVEXuTxSLbQh+mUo0DMhbGXdJ3H8avSsKbVjQ8yVX110SGUWRn6xHTSUQstLcwdYOvyha+yD/SbUitJzM1Hl7MZyLb1FcsoHM+BgUBjc0Gl3WInZXVAQXyx3DM4BQVUfTmtChK39jHS/yU9hWtFKNRiSHbKwDzAUJKezKa565AL8uNuMpBpoibO63flVKUAwyjZJJ8582yB07zGPbXGiQt4rDKy+BE1RDFo+1HNhmV4lsiBPUXcpRx21b7aVq00Ee9ZeNYJKOKjXNLXEqtJPXPLfLiBXYHQxlJjIaGI4XPCAef/82DiBbonfTU2scP4tn7BdruV41sWKyB5q5M70Lllf3RHlzpv9Ed0JMiBa/w88ufYwIIKpJkJOxaVBtnrmLBaHjlBlBjfWOzo/cZhxJ98n/l2G4PVoUBMhyyeuh+j6jTZpmuu3kFP9GPRKEES0Al8DKtMioE8X4bf04GWQwAVpz0acoMGjBml+5SJR8Yz0NK+n36RGq8RKuL/O14Zf/L1NQ9YMTgt7JOzJhnvKQ2rfFcSguB7Ds8gdGuHhcDgTQt/K32JgMdYdE7x3ugh6l28RUuUMSqE2FwnpYzYp7TY0/M84DzjdZ+MSVvYzUiGUjW22U1Iq7G7YsrDAG2WbjbDAiyBy0EbY8GOdi+hla/9pOGmdX08elYPMRgIjSBsUX5hLZ+Uc5SzVaPt/8JXvP0Zu7QqpZAnI6km1POVOO72gOy1zZGwiG8m+Td8B/RNf+L4Xw8O+n5kGjmbtECRKxMwAxU/1wtTHt3+cZoEA7ugHmUTNX2AmenaAhFUlK6CCCSm5/Kjx5vs7gBIFV6I2eyOFWuPEJ7y58MCWpJr3ZjK7LcbKNwJYxsA17RO+JyluASs2pvwuZL3y+ID3WjQuaQw1OiwIa711EH/nVb6U4aczF88D9iBm+6x8oTwvFe3ZpKDAKuD4Y+0Chu5odrPxHR8gpw8kG2YD3AZo7ZBEnAxFk6PNIIACd0xzMDRXwphaDDA4qa0I0EIxfuE5x6uAPaQyLC41qhndcUOisfuxubZKlnzQgIpzADEWH8j124Svfd9O/gzpi9+ajv+fJ6p1toPuAI3gBO862U0z5qvEyHy364779u0cJMv+frO9M4zF5Amm1RZEJe8N8OdEZuZSDJIiixGT6w0+5lsrLEz2cNcxkPD29Lfg97TZapOpix0gRjl5OSREbkJnIacofun01nCc+slK/HMXlyNvB1kzy8HbvhMz8uXCGnMZ/MQW2ymDczywtk03Ny5t/AvkvJKzcl6qPaFW8WLmFlrzcld9jnX5kq+BjgO6I43f2YDBkhFnO2C5mHoCgeVZ4CHAXGZogvixv1Hbb9CWiinKIrMJqW9cHW6IgZYvkCXt74O569HRegC6hroaT27JsFOlxdGj9iwdsfUsgO25uPLUHtu/ufjwU8E4KNQwEB7O250IjExPFqAd+ohHEHGtvemukurRvsMDIgvtUF5dNVsJuxgLw2dWd7NopUYfn95dTBLH6dpOpCFrPnPTNh2i1DLVxnlfy9jn7t53QSHmfxMajdaeQdZQ+Sx0jyo4Tf6BDAruXJjEIbmLPJFQ1iWDJwHjvzBf0uVURHAp3lB2pC9s5CN8F3EB0oNszzbsbx03sE6XkWbrNtDS71h89na7v/ZTH/lms3IxRc5/L4OvHlusWArrG13yVotVGuvZ6If4/2eOqd1k2/eax4jHOOtgQhQl1Ez4zP+PigGOYPXgK2I2z/eumvToA4t0f811nq5VDaga61v9dvPfc1xxLQPHSFTG1HnRxRyqqJUa/DYn+qD4IR9avQeLZM+/EqDmslV+mlJCSP50DyHoQGfohcELhXNwDd19BXA+y3/OYkEEX9/Z7S8mfIsVccQmTg+xzq9zJJcf8fGxKEpNmG3GqQxjm1vlmxT8UrNN+CIiQ0Ah4K9hH0z7v288xYpejNNKlTGouQc2k3cBcdASqIbIiPiwELkt4HXveKv/xFG1qXLv8PayI0hYDj7F3V3IEkI6TaFoblFeXGecF90SNRMSa+vtqDt7zmegFjGpi4CEI93e+UHQv6Kn2I+Ft3KosF3s9XNsNdXQ2wJHmcUgcJ2Jf5n23onMBz2S2nitV44JRS+jy8lNtuKeQG+muZK1lWci4BCNzicml3gn8O/ydE5ckgPxbskpSsf2ZXhlyhNA23d+RUd4g2qLoReOEnhK0vYEj3qyKpGG1D3nURGGRNJP/QTnA7baggGt0bGk9xGqaUi9MK9iCMM3x96L4VZSRXauqRfN3pLrtdc+VVyWi1hixzH79kSTR7M1AbyOElolICnL7Ccf/RQ/Tk5IheMtMeYGl0RfKeOQ0OIKq4scyCkIsxfKz87T52LGyXrD6Vo0LHVBcH+zewx4Ud6wzN8/xUZima/HJk/mpzSQfaVB/CJGxoLk5qmnSEBFCuwphjQsC4hhbW1QBYst5lWjSShQaB/Kw6kLBGXCuuXiPw9vzpK6LFKnUQzXliPJN1WQBgzsYjcpvexB/wN/l5vOKtSvJg47JxvG02UFAEv0KKKyx0F6VU7lqCWCuu+WOAEliv3Sec3DU/4nuzoF2294ynaKk4MDxyrSiTMKZT0cOLdR/0Q3iRdP0z1fjloiw1+CXS2VVfrTse5FeEZBDM8fWYNxIyzGabbf+TAwTCaoukpvP9D7qWFtkRrnbbj55oFkqa09YkYrTUvzvviYZEwzwHvN366zYXWFniOIlKgQdsFPofH4r/5qbK3UYqTvAVqLENNe0TF4vxuCZSNf7JoVLoPhDdqosdXJGkRCFvEF41Wkp53d+PLpT202g4ht4o5anRcH1VXblPu3eBo1PukeNAOFF/CQbGN9NiNH8DkZfCVA7UTTPshX97827eex4WKlKYszHTggGO237sOcPtt4qxioyPFsV9wf+3StfErdlEPh6WEibRhuLdb84l/N1cl7Gb535Pm44iIkU4fC/Pc7DVQo1s6HEu4XAXum8fSreHl1qZAN5sQm+kYkFiygfP8lO6VFDK5OkXJawJgYnDEj09mnecalUJyFzt5Lv99dk+zH7Zy7JkeYRX0OJqrcZstMn+cYNNUlWrqf9xN4WkUklN1tp52LebdZ51tVmf0dV5U+vckbJrEv/Cf7R+1ulI1QoSo1w0FlrhAUPU65PODbH056IU9skqMN5JXSe+Bi+NIDu8CPC6OVIB86HxjZxkyS7SwKpTZaH0Cx6srWSYGlEa0LzUtdD6MUbxSNuNtFfKl7u6q5YutjRuE1k/0l8+7ddU6fXomeLm+KNomq8AHqJfOh7La6dnsVEWaNMVWn/fs7OnpJdG4gHkQgVEJVT5BZD+kEJ/Axz/un0eYBUZIQeceUdbU8NOn2EDaNpceLwIYEq5XmzGsXz/hIH1FgPSmbIDTo4xeSEeWeIJWQuwQFce4n8f+7EFb8lSUjqF8M59//5M/iiMwkPixxnVdt1jD9yCyQ5lk2nyC46GnuXqPcxlis8pPT+R9O10GlA7nSLHlDsKkIyFqiQnPCfRoBqZOFHk+8FHTSO+Z8AR5n32tF9mcK5wHj81ViMkimlu4RbL4c40rUeYIUk7467VfqUL1518MurmwmoTu6ClbtANueNA1lfHtgzLMv9lWW9C7X5a2L+WOwtXYJMcyj7fXSWPLXhxNHwRcVchQ4wRYugVytmcKOamaj/q94qGU+3ZJ0m9TMQCqZ44Iq9wsdoscXsznIh11X/Y7MbGQtA6FPx4W5qDv1CoFO+Hq4kcdqiK7eJLZObvkBlX/0yMy01lCQhhlWQIikTx+dCsaiPjH63Zw/drsfdoqJmEaDELDBD0+uQbzgVanehCekNv7nKJh65kbKlSkxbfrF8r8fjDwM4eW2SJtT87S1t8T+HjSI6BwjCnaACwAh/Hgg0UMkSKOpeuE3Pw3qVqf707tZSIRjWUW6JKFieEBiZbPOFFVEyqPZjVvWP8jrKDJ9FLaGjAw6efyptVxWzKKLZFkneGfOGHVmXpnqzTt2jGCes5CrB6BbcVUgGySl2vtW/Amhs1xkVVpTI7RK1DQQuNG8uPLamlw+uHpuf+8R9tqT7pIrnvNBAhpIr2iSwJMRkyVAIVGIsnCsiHqM8a7wxG0/SABRfawB+dzcZBsd7+PKl1JOSOqoaSMhkZtx1LlEI+BDmcevO3CTxDEv/5MHy0z833UvpzZBdls1YW00LSQVbcaQlI/JLRmhNluF6Npx3qhyZHUqR6LXVIhYU5/3EaQHIAgvxhkMphXLwOyt5vMsSLpZGSuG9Nwei6LiuS8S8NopYlO0zw2wruFxy8Aev8mWhMTi7sAn7MuCgbKgSYInnSS4sj3bfV2Nybq/XQL1WiCEJUDNbbYPPIZaIj2OQ8LVCDtdm4DNqf2g1Rxe2k5SJyiO2fWReBQURhVdiVJ8Dnt8Qs0UF+LU4K636Yob5SQcGQ/wn3okjrVhQ6wxdzFqMK2LT8+owwiGO8hNtp5g6R4Hx2CFHe/3z0MsO/2wYeDai9Nr47aZgu16zeaZk1BbQQl3CaLFaQTqjVjdKDLzxZQQ5MZga8LNu7btvAJYxF8WmExIHELVBGhgs2jwIu7w3d/xDpHB1Bq4ZBh+GfDMSYdOto4d4wXtdViBr6Qr2D0wza1iHzjxaJBvKb4CQhhO+ZXA5k3naulyOFsNyb5mgkIUBlS6fIKL/G6BiaygTpCA1OytZbhhvkCl5/HvGP/5RzmtBVDTMGMFzcxQSoPgquQBYPmj6ikmq/PMHH3QFMXaPcvE0t+w7uHcN1DDqpAJEoXRVl0mdh44dY6KWu9fWl6Ry308Wu7X4rXZ65ELFGGrYD+8HFjD7DqQ1JSUSYgckdaQtoi/VnVdksltVHDVouglngUi6MajU5CkYkrEY2tDFEFepUUEGXm8lQlesWAeSZk4Yhyi4iM2vWK82eGVnVe+ULHL2goKaNQ59WLoOnR66mGe9SDjAUzSUfde8duJ+ODZTmvJb0rRRYmBaLlhXdRBRwNfMyJz6cmde69UMMVZiu6lQyiSA+fpVvi+B/SV2MjRzGCQFc28rGybBYiEsr+/d7S8PXrKOHnQDE3bXc7Krv6sgBz2n1od8iZKB+Zd11xI/n9/Rbqa9z9RORcQrEg0C8LSlhyFZBXb/h3RSoofUv+X7e01QubCR+kmtxMdoMGSkVuo5n2rOkD9FxbccQV58DHmt74gFUyr+AvcPVmVY6CVkSfl2slw+ZLXFPd0+P4Q0ZxNpIH4y2PhcOdHIhUwWH98ec1fl2LqHt1oFckrZodbgI71/59rvKTj1zYNE9EQH9JXSyzVkiOGvf+i9+v+FSP9oQeI/84jUiwmNUDU17Z/Si/1UjH++kbadmS8z4bWj/oEvJ5aiU10vj3aFWtG88D+5kjGELkXWCZvQOWTtDsvdgmbY2Hs0LYzDonkkIkylDD6tN5bmqigRwuyQ/+G0VCwTowQOZybLbcXXBdlPRbav+CMunSrtV1actNK9E9l2MBfyKSd50lgS8pycEmg3DIVQCQSWNnmwX0Pk/MrFqn9vj3Wlp+WV3tpXpiAzvG+P59IOIXhPav6Fx0Lj+fOmBMCYlEpXy4EyiHQ3M3pbqJhXoTDqF5i6+fpRWKqUSf1bo19E9fof4ds1BtnDPHk/5IRJgp5LPKeX99w76Rpz67gqTYjNTDDXNyaaThLH0PvY85thMLoK134giZLOiDrrdVNbgOPrzV6dpSWpKNQVRDnxrhTqJHwBGj9QjHfFWI7wCpAKRI623Zz0lXlRShivhdI+lT7EYz8AypGhjcLiyvt35BLeAxglXclPJB8mcuPPA8qJrClje5h4lyvLE9eNMH/FJzfLhMaugfXDfKA5eRysCbYca4a66/IHr16hDHpDgy6tfRFO0NyIqCUyR8GKQXnj0XuyWvGsEUNBgwDwA3239J1V1w8b1QbgFZKl4NJrncwt4YvFPoG4aMSL7+jPdVbvNZv1BnT/PYO8zBwjQaLLHh0xHeJlxwSKIJXiCc8jqIXzPYK99qec18Zu+xbzUGy5MtO28XzxyYTNNiw8S2ctSNZFiKc2L+OwZpYhVCpg24sOAPn53BN2tWiogzES+yBJpQyD3xUyBvAGtMxnzhiy3shn0j76TQZCIAMiQgQ4ZJVPEvRMN3iVcpTHDuub691ZO4Rk2n0JzCxvfdqvq2o1BUHS67JZQ4M0Y+jwO6rYyxpbzUf8u40p9h387MV0ACg4ur/7tyANXLqI2D6my1Yp31l92L3E/eRlZIHdUD0sJgd1VcRbYyW+EpVXrdU0XPGSb8hG9/cbG+l91wOqdjNjMApoNjLeSRO43bqPKrJQDDNigY4bK73Deg3CTgnyJgzq6R7Az2UTKTUnxkX3yjY2Arqcok6bcAsuVWtVJ5tPORKu/rL12l7R7w0fM73O630sq7KDriyOBYux4zaiUojKOp39y9jjv72gdACgMVDrI/6cs+UtdrccWGCXmidQg9s0fLfooux5R0h+C+XRig/Lbg5AhfPWDi/i7Oz+ufBAlAbmrugOfVs/6TwRwxiOAzvGJZWSmM9FZFysPzjpz+pMmTn7CjDUdGCVkPDiolrOnIIxVxVB5LrJ/wOg5LoPb7KnmNW3El8mTdHg2yFzwfLOezHqay/TMZ4Igc/VumA/A+pOmWHaVF0rMJ2RVFjf7ae3ELADqjh2gVjgfAARYeeLYuS0NFiIagBGoW6uZVNvOS8TfOcH4Qd5qozVmvxpE8XTHQ1FZgwHdBWMFPjrHDHqiT6NPfAh/kgO1qwxU0UZZWlsF6DCncJ7M18h2AVZ8uysOB2XrtqiGJJjpzc/5bbfF4RgqB60ICmftwoBKJjYxCmGDuoy/hLX/THutybPFVioQGUyM4U5BfqjHpYh48BEIEhqxcSCULjTZG0pkh1FDNGi+VQ2DT0WY/iZXUnyP6VEtPIoIxJK7zKBMYXN4z49/19+mTimMlMbjUMjlEywJjv+b1vUiRApTPxRU0KhoawrbS+VuUTi7xe0sZdwXZ9C8AXlRTAa2iyYgKswnHx7iuBFQ/Ds4fbbWwWBkfrcBKvnX54WBw42sJB2rsaRQGqEMFPa1aBCNcwGZHQYDeg7HwrBtER8YovlW9ZirORpV/d/JDoByr+dej32ApaQ23pyq83zwkEGvFqX9gyMZFFSFhEr7bIhD885WTiNAV85pV1tC4X0dVQk0nXgk4BfSrKvQbpZYg6BR9tofGe0CTpKzYatHhhTBnnkOoDFMZBvdCvR1el0TQpjJ19Ps1ZokxF5w1qK7x0uLj5u8GpVkEdwa57VbNLk1T1MCsq4uluH0HhTZXcHu/Y4PCXYuRTlQmceMzGxh/JYV/7scWi3deLgDKR6a25SCY9oClaE1rTFU43N3Yo6r+o4HvuQaeH1GpOfm9TG/5fORuGQ8CbqI+LiGQLqCJkeKzdbb3Tvtcyu6lWgtAIgrqultDOkOYmBrzLPT+lWdLsy/OaIGyDyKCCLt09RKf6ZSNvzX+ADof84c1QG24Pt/odrg5R2TQIFF9WRKHDcIjqMZN9tR9otXBjATGEnb2D+MrSBEpr7lwyeY9S++FmJmCrnP1jAyyisM76w6tpiIi8V0x9IS3BQ8sWruCy0n8lh1XpNOUgjEcjZYjHLUCK6eEa1q5K8anx70j3rqJL/CLb6JCivhggeKnM9RFdUaPP8JuTG5Xczq80ne2ey6n0ljVQkcxTq658ccDnpa28+7JF6k5geebEWFDsE8uJeVBMTNSSUVZX1NTdGg4TXWqVIEqeZUFxkQEFCT7deGbfDH6K+e/ONPooDUe1ddCgdZ98pmgfTuwXCxkV/NuvNj1/Wor8bYwy+V5n0dJmVZWFiCaJQy6oaj2PUC7gNy+pA27xUwil1Exrnjqsyjy9bjxOJ+TCtZewlhRjauVFObbyfiILF7Zu/ueHTtb6wfaZwofndPh5d5xAnZEQqZsfmDtPHxPO4ciGuj7F75rfmxpecYMVzAUQ72fwbSrW6fbTkduUEYyxpEIYQ7oEwcD87KUCuGTqatfu/psC1BqVwIQBTBGfnacSeiwvZlIJ412NnYfAnKghSUea+RJXxp3fERWUhSjsLpFBEXi0K+Q62g9fZeQJ/ekXqwcbmUb76O9ykopZCRZSNFpjbD8vWhhXomaXV1PBlrfdRA8evCx7PxcOys/pvIFp1rVmsCzTUMOzmeGrFRWAZ7cF/GR3CMUpSjv6n5N7a+dd5JEBmeQ86FMgMsEU6PwPT5DAqrgdJnhBIjgC9xUbmnaEBYoOPNISNWV3HVGFsxiLSPZn3mkfQxRENnp9Jo9DBrkuYk0dC50KR+0VrfUX+lfs2A9c7/92KqLoRwXVpCb1yViCgrmWeuLwlNqrMf5Qs1Iujx7u7n03SFipmX/7O2yJDg3poXvzEqrdpgevZ4x8xnRoMpU2sw7RGkhUerozszegz9wqJFDFhfhWN7MuH4XV5huoqcmfXk843kp4zYI/1y7wN8Ni92ii9G8RF7S68pzAZZeBFtYRVOhiX11q5wwuzP6Ov0NQaQ0IbHLmgeBXPYUiKZG90bQfwpe0hsPeTfHd6hWtqrsD+0p2HR+v8le2tkZKbX0YL5nsaLxn7/mulrbwoClOJ02grpNq3vvlCJukfZRR+vSRQdgfbB2TKbvML1yWA+zEcxV/O+hVEvhygIhPAeW4qYlA2NqZbcpRk4ykl7QVPF1sypc2Kxa7VzCoVvQ7JO9l8mhFg1sHaojm2qhCqxWTrZjMoXRGMZpIqeuU2yKzMuCWtisERy+5iXF+IenXPos2UvBjs4ssRAcFqO6Eoz6N8QSVaKhIDUPOoJ3K9mcjqqPKtFjux1Nrgj1DWhxCCLYMQScJtCTC3NOQmc7clAsnQPTJSj9iN8V9mdFHFyYQHxuH1tobl1ixVC6KgIjwQFf6xO1fPICULRyXPv6CBg2JsAC1sTl+JXBfxecOLaM0b1Lfs3dPbHdlnR/Ncp0KLWscEW41z1DnzpVPC5PpeEnWxMZXrEXjSQUW2NKPuKLYdk39zZSi8nGOtv8kluJnOueXo+r+/pFKNT9fU5TrPRN/oc6LTVICI6sN7hcYdATmyWBHwS4unoGIpilj72gY/Qj3Wa8PmKhlXycMhz7Av1CXSWeJiu+dLOxgUMCH6y/ikn/pJKVJyvJsEdsGwiB7odht8jG4NDQM9RN0qCOYKAEDDz60BjAfWLRfbpXJ9K+DJm/FrsfZ9a2mzOjk2OvLslkUwnSKw8NwH8ueoNuZ7aUHZEo+pYBV4PbaraOVaZ3qCBkMWxkWrOz7E8zr9BQmNATNxt/F+0ZXDWPZ7/2LGr8OG+o6R7cV4CKqfvdok3KnfFxaN0Bar3r0cmbJb5rVJcQ9mO4meHO2JYgDqXxPg0QfuvbJNFIKJQk3kBh5+jrtfrgaC2jksLPS30u8iWpotzI8WKiS2hVFDITWrvOhw0P5Dj55LZ75hNaRaHM4UDgTU6/AyPFrbHwC6Hy/dY8fah885DGYxnR07fAu+ebH6oYs+up+EJRENYcB0qIShrKWxblY8T2ahDeibYRENsfZdFLF33+9vxFx9T8V3jipeoElPeCQ8/IaK1tp6/MIuDDkpmByE9kWAibtY8gPDKEoCGSsl88mKfsaEFq7wkUwO+bLy05PYvTjZUco7mbntz5N7JOSd4ZKXSx7fcgvnHzCfgkMlvRDbKYa23D9i/s0IeoBa8l33GCN2n2R23kQT1ac2GJFp1+FSaprkDARASDdyDYqps+nTeOJHtdTDDnhq8EEhN0D82qc+OCPraqIBzzD6+6qI0eRyr/LFLPahg+csL5nGdA0UgVR8ZvwITJ/qSxCIw308nUPKwOjuJQ2zQdtME0aAGqNGhgPvDYIPRv93g/tYllZ1WBMi5jtKSnBB/Q8Em575ksxzVlwXySY+qwfeNUxV3whzw3UK8vVHMH9UutH7cHyiQg81lZ0s52ts3IILeNr1IeOnHiWHegGcO3P3SaQAC771ruopvex+crTnVs16rL/EYjwVoQPL0i+w38nkmDEpkcjzaYj98Klu23UKk/YiJupzrVP66t7NdCZI7YdZ39x3H8zPpPEahxgrZt139WEoLYFfC51rdMJFZ3CnjZW0dQ9YCmd+cwy9fzF9Brwy++hbqAR9DPhZ7AW3nuW9Ib+4r1Ni7GoMQdHms9hrzwb68NneecyiV/TIfsuR170tB+VQo5yJBsaVwBywmDUyTnOrprRVDcLPsT4kfFG90vc/0DN2MC+wPBz4BmAiZJQA4itGubgG7i5mCjEgduNDhMEjhfNaQ3b49lC7Sl3xps6x3PpjNyo6zNUfgENe68Denq4bYpmMrIw/ju2FdzdHRrRFuHTu6TsIHjWOiHyP/Fa+ZQAEwv5n1Nzv09x1eYI9YhbPiw2MAT0M3sEYgLqNaSElNrkBZNRFx5RlhTE3OtWCOJkc9mX87aNtzmwGHptzgEbFh0Z0OxZd9oELMNfYlp5dsclwROi/hqnCdyyl+kRH+b9MycW0PSKzqfTh8xRdYIyMtDE12oOx1Z0qN7Zo4gw/jCF9DCglSJyKem5t9cR3spfnTwojONLAkNNjIpir692JDVmVQx5u1+bQGPht4K3kZDUemuYU+rcq37D53v9pJ8B6rZYWulcHenBfbDq/hPY+uV8UdD0lXkqg6Ix5zIY5lIrA7JCHsOBkpkN5EDhHEsNhQ+qY8HiH5wB/XK8Y+pcXUup48oz01BhdUOUfhPr+SMMJ2Ux02avB7M3vxGZ0vjYdrR+A7aAkyAq38pQvyFAF1iHSSRFZPL4XCM+qRDLmrxdXfyYGgKpgkfhqDXh3kW5rWH/NVcNuCWYvEo3o0hQPhgYOapO++6lxrRw+pnvzvHNxgQeogL2l2I0+5uKNR/UyiAbkmQ9YnfxPERvnL3rAdCKdvEP7kSa5EujoI0Dt0VoX3n6wnthyzjW7ze9tyhA+qAZMryE4PcP99e046QTQyJlYQmNLT/ADI72xJ55xpDaZk0cQrUaMuqHsZGnsXmTJWykK2D16pzXHaDrSCyWT/xcDKsIA72XUlhIEpGj2NWOp69Td/MHnEf92cQu+T/BEbf38MhEpbQtPUMZcI7+ymarvohffYAy9GFzQu9Ef95+s96R3d968GzS2fB2g4pbybrs2iNGZZhSeQrV/XY0lSU87Z7sN4pCVaWiGgPyanRmJKlpzisQzt1h21GLWII9qfYGGEw42QYWl9uNFDO7QYpdvLLF74B/Hdtl2CbQT1OzUdyr6ky+6K/bqTUr7ue6FEQumJOEgPSO5VAEca7Z4G41OFMTIMqczbzJM8jG57jt5z1UnSnTda8pdIZ7lErq1fA2gH3Zf0sg2vnCvWkpM4OL6YHnGLBcS+fHwFWLhlKJNCgRP57t72gVeQ8D6S2bwQCjP32Wg/cdztn1Hv0QkDMw4NanX8Nr1rw109J4CnKQ27pTp3y8hmvGysnnfttZ7f1gR/3unBqg+Ku+Wb7kCJCUOAOkCTP2Bgg+i+6o2/dHoxaEbA8dLVSgQFVs6l5HxgeyibwoOTjhfaGDFxIgEN1R0Bk2IRMFYL1WAGkUla+jYoDGaUkP0HFlKXx+sZF41MnuWPyiMK3h0R1f0ByR4CwonSInRzbwbzTh0QCCjSX6/cHwe4SE0Sv7jApN065v4hWxeNoSXP1UiBGFv4rvmsuWCdzOSbYsxdDxDI2470/WZ2+Rxd3Fge0L3dTQM7JrTSLm+Se3szUMaq8qnF9Lq6/gfiO52Zu5GBq7mV+SI1a7PaV/6e9rbnYiTn62sKLVgeqJBPsEI0/nq4xZjRO54t7s0D51wYXT4fBN5gUaUv4YRYQCVEkkAUYvkk+q9w8hdZ/n2zA7n8LbRtoIaYdbbnrRhFCwH4bGzovCWtVqHYb54etyLPmL2bgeJhAOSvKQ/P9f6G/4q0GNdiQBgEF3PkkDNG4Cfge2j2SfYbClBhuh2udUY1ODEah6UC8DuMiRm3a/xE2IFoJXV19Wt64yjDJAA7E2yh6kTNsFv/QKHNLrRJLfW37DJPywJdy3h+qMrjbuU/Shjqd8EEyA7pcZaV3/mHXsB6NSmROu3pAiKh7zzveZ9SQFhK8a4PA3GywGNDye/kTcgv12IAscyZhlghycpYC7hmK0CoM8QSC54rgIc7Urvtg0CsNeDjT0OEb3dbCDuMVnGpeNe23dBZGrttgdbBSvPhflJVGKPHlBzuTB7glC/WZbmotPA9b+6R2oVpa/jkiGMWqNggAEjaF/+jx+ztAooSu3bojwbarYeolzwPcbSlkHtydAu0O2DGWBWHHNBTfMU+GNxs893YuBTp/yp553fwoYztFrGwHKkohfhrGvUXu5hUkqLIPpHpnplxoq9oDgqzeFbvldk9/E4cHHd2fnOe01mr5gJUb3MkmIdVIjmMQ2FRgb1hg17aTzYUpaTLp69VuZv5vMMCsEa4Oo/h/N6+wt9lM0CihXtjGFXJsifTfG725mOPPG4ghhAYR/Ma4aWr4ldhPp4ItI6RA63Xey+EByWl+iwFjgG22/GEOfT9QaLBomr2t1kOT3BvbqHHYBN//sjd1YL6+Rz3hWC0Wz8/BBrLqF0wEyBL63/e3Evb0SFQWLPL5xjMxksa5EHV2t+/3YxXyLi2p7R4UhdeLoZ3752yeYK9txjvqI5mIcclizXsDr4sLHtu6lLp8pM5oxZ+qfDxQmrM1EtjhHNFFFskZlPOcwzL0w9vclWXh6DGyZ05kCnJ3kOOBPChqlCsIqVuuh5FsCkVgb6Cr2PuGdgUiqhpSGS3d7wZQ6bNmdAc27pCoS8WDHUP1rn8aJsi9gb85spsNTpxosIjs/wTNMA5kahPQm0ZY0X64/ogAvlq2Tgrk8EpmnNUR3JcYq1MARtInO/lPOaqe5xEdoz3ZCFq94NQha6daPVcoZIu6cQpNlJ0XxuvJP9D2Plgf8BIFpxZ1VHT/TcmX35EJTJKEjWd4bCQR+b6RQPoGrp1Zbu/iDtLRWUIJLw9fLcKStqm9nB9MSLp2gyvVp+uyrIWi6YILgANVtKvscY1O0GDW4aGMWekoGrz0DEwybNCaMdmX7uzw8FeMXXLfeOAKvY2+GEJ+aL2aLLgoBvqMl3EtPspgAnhqtfsFJ6yjjqvVzEhiG6vYmX8vLRNmSWr3Qx6gHE11D6NduNSt2+jtsBviHt563W97+4hYkSm/rrt5ZbZZs4igbkcU4x10ESZl0m/TT6UpkCf19tH7Vp1Z0txxHcL8nJpzW41EKKaeHaX1OrbwEnnGBY6dY5yzeMdGq8+ZyUWesQdRTJZOkvxbZBTUdsNMnp9SVKSO0lHU9/5OmsFgdyXp+ntY35DaXVYo5GCkATYYIEaN+mFlq/0LWnF9CSQmLMS46fXc8Pm3Zc0wze3YNsQi0reuoGheHGDRplUNYr6MFtnEDrPNVepDWrdZ66SeZaYy+2ui+czTy3+EAkweBHk/54VbOsOOIv3C2nDZjtqmW9EvF7emdwC0UeE4kqGhlYNtCP18kpHo4tqFXmsH9sNkv8yD6yQLQWL8BZf03Fhe/BXmgnHniUpXPWcugRlHjx4GJc3ME1RCuXd5M2yfvwPGULFnbHiFsVQXKcFAWWaanwP9AuEpoHtip/yK/otIdHxsf89cgkM3PrbzILjhmbEYwS6vpVLNm5mItNXu5iEQJtALPIw0RRZ2I0Y/G4+hRlGHYLYNX8lmoS+j2cnGcxyRWGYz/capDsk7MZyZ278kVqF5AQguKdUrz2uo8hMzKkTHFkZwO0v8BDv5lUwqMrgy8vPE9VqEEEDEFTH+LDunKKThvX2spaESGlDN0zuqUHqj3KLiSxzecN7ESzh3cvQYjVzb1gJLZiBTYtaSDazFeKaWKHixW/z9eZP+1CA2pfJPPxN+9CYGUVzZS1zPMgtIh+sOas1QvJglA9lKlFASJ1qDhMiNqOawnFyvFecrSziSaO6giLcKyGi2C4q6zddp6Shq4ne0PPuVfPm41kqJPg+8gTzkBTcOZdelyVurSq39CfFV6+wzgxcy5kVCXqShtGzPvS5VGLF5isP6GTnsLNvNkcHULUv/Zh+H2TpQzvizKtSt6VnJLuwDI6zfd+vZ7Fdvmkmjn+t0r8FAdt7UrB5fqQ8M2k+Q2f4sTsE+pRSXcrm7Tdbv6OiuTXw+/LGwUUiu9QGDWMXgSxgh2xlNk+tDoWlGk/WRqHnpMVWr187rWM+K9yKNV16dM1gtDrKE6Bjb/cxs8KP3ktMe3PP9ig1FGWCJm6l8//OOnVd9moGqYfuLtGwT4nE9eIekg7S9UFxpd8gm4NCz6k8u9bic6HYpnOvl+0xSjYqWL857IERV1AxRhvouBMkg5/pQwjyKkbhf905rSpLynVDF5hVL0Us1Nzgm5zfx2RdoQdGUKuXJU6IZvZeHlp+XBcBtGuBIQflDTwsDyuv4qHLUBYDJR/o4=
Variant 0
DifficultyLevel
581
Question
Which fraction has the same value as 352?
Worked Solution
|
|
352 |
= 515+52 |
|
= 517 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers