Number, NAPX-F3-CA14
Question
What number is added to 321 to equal 441?
Worked Solution
441−321 = {{{correctAnswer}}}
U2FsdGVkX18c4oQ6YeRRqhZ4mAE1+Vuu/y0Va91mKZfjgJb7qZmeGFERJ93csMp81El99Ed/cSuZse5E8fHr83yHG1r4cY61aTY02MiEqCtSJg4ewQ/QbjvZmkercBTJtfnNFfPNdQRXKVvu2KYlTZcip1CmeagaMTnsPEO+Nyu+as6f2W3oELPEaP5d3hCvFNRaAlX0lFjr5cI3IJn4GvUF9peun1y0FVf9iWGDTUGF07Rg+Ec9j8Deu3HSwdMEjvZjuWG0ZEXNwxPQ0CD9TF0j6oWs/s06yGCkXgzyZQY7gB7vwSzv6vGpeY2qbZCAqezy3YWy0eDg5uLZYQ79rVpryxOjiNrfg53kVCvG5sGRJkLD6xYuuwReiyx4+ODXfLVZKvQaRwoE1DFZX1/zb4TpfmMdMDweStFdwa5F4ImuPbTB7qbV7MLzLPXAA440jSb8ZBDs4R9pBkBeeZflmEViJ+e4BCTqdxS0B69UZXJBFFhmlN8cobenWBE1esX+qWqle0TcOgleD8f0XqrAboRLsKTYT7aZAqQiO+i2Wo2W/HX+EOdN1CNzQ0wcKLoonBi1UnGjWcoevDEpby4fotrSAqQ3tbTOu8WvZpRnsO6B7D1f9ZE3QA7l9l/3jvrbFnRui1FYsmQUzCONFFbKUSgURbo8N4WKeuviDgUjJg1X6lu2vw6GB/L29V1N2UOefbgrWVXKj4RUTicL3An8gRw2qwbZ6fFmcNl4HA21hDvw0KeXgcGcOawRpAgMtbkeV4ZRW6ktngQZdW6ElBtbRxjFlKUBdXt+ACVHa2N0uaACznLPBNnz1FsO53F37EIK+B3FKKbfxlyNjlgFmMtsjsYlZ7IUeAr724kDYMNF70DeHo7C6xZIPbZ1SGcKlSHM9PEI6zLkjvxELx6uv+i9gM+vHSRSUXGtnSqc9xT07YuFbOJm7rP1/hVIZQQcI/4zpHoqWiuCkdIOqVuV/d+9HbXERdlrfGZPmcJ9LjV5LgouHyZ+e0R631M32MayynxKHeM2dFXLeYWm4yPTX2Guo+Bad3Qpl9hJ8dcuVkvDAZddipXnDaCPBaP+ifbYEoMiB3vCXbAe/iFu0MdaLLrMQiTrLjeNdB8K2zdSTdbe13TxCAXk63ClxN2LEU8Pb29fmU0oYAhc1IVh42DJVcviFsVLJYfPLMxPGiSH20sN6W63mQooN7I4SEwcyIRyYGeHQjU0gQ8cJr6FDK9yaE6m8Xqf48S39TEyTy5kyINheNtY8/fqbBGHAuI2753f/kaUJZGcOG8NlbSfH73j172a5EwKvNIq7cCK2oe8GwQFqecLbpXblEq1rDtepJjJv2hgFEQFC1aFq5Wu4RX3rSTJk2dQMgZEKvHQWPdwae5AxmLZQTt0JtP+AQ/cUfvqtdGLyUp2DlBGIgtQuu/FednAGuSCUkNvAvC8TAvDS4ik6A+4Uh2quieLXGuVNem6euUfSdp7M7jYYXYSk5DX03HTqBSt/uuKJJwrtbwtCfK2yJxUcV3p2pNFjiPl+PHVjqMx/PjZlODYEaR8TMPfRMKrkfmgWCI0SWLB234i92ouy8zUoW2IVdqQNsusi4jHBWSmSlpyK6BzU18R7O3uA2NA4r6iK773LZBx+hN6mfB9dJnLckql+vh75wSjlHFG/GdqGY+lsFEHkRfXw+hp0gLU5RTzelmKI5WU8yVUl/jGOGw5TveGptsl8g9+79KQY72Qvy0GKeQve5gLqPNlIzj6nZpMPsK6e7WWiAJNOlWtgVkiZqDxipzU9fe6vC/gkAiuAmAIBa3SMYsfqIrMFUcLh3pyx4ZKourlvcXWgC254k9s5YKqQ1zNk/sy3rgx/lbu3uBymSGNWS5RclZrGv15daU6suavVbaNSDHqvnO4v5j+hrLB1TlFcX38A06YrF5/nmxbHRsSc8cRnMiV4vKluf4upaf9fXLi/N1Z5I6zPknfVjeoEwIIJ+LMCIxsMJ7AhmLLbwMYT0HVmtqktHCcIvhbJK9ZtXSO2HXflHRdRdQt4ltmKkJWMPj8sfvnBJWNGrfeZY39d7buavBAkOpXts7YhtS+Ah2IiMY8WEEgIVtue0tt4Nux1XknAlufJVHeoq7FhqNQV8euULwK8hhe1VF5zFXj5dlEqICeKXhn7vrMnILVlAAmKt5PemAS5Hv286fZ9UiNq8EFuX8Wf191jHuVGYK/1EYWVbmMG28SP6/1oxRnF5K9vnZs4iGwYzVble4HeVS1ZxsrWh9aaBdF76eSf8L3jc8M3Q5PzulFQ9ydLnKfcei/JME7p6VJG9jo1LX1JAQYBaeIVztwoNVHJxgBtlwlOC7qpuJjGF/aefEKEN/vUcIzvRUJLGoXmxHEAwSKibVbwiobbl3sR+WedQ9PlcU9+73oGf04OYfUzzSku/y83TeisMOS1wNDxbmwaAosELcclR+z/auyUmg5qrHSE01Wk4Yi83HeAdP+0Agzy9iZMJSY3mUxepLrAMlAnq+9g+1m+VHUSKlQ3W4OPV57uSU/mApjgBUONTei+2CxjirB8LX+ZJjoRx5wcxtM3ukjQMpVDi3jxqJGO4RMKQ4Ln+OwGf/tJaVJvEOLItjPA9Jy5xfgEf46vb4db3fY6swYbFmXCjyIv0czoIlpcOSmOaxxU6Wf/5Kr6yw75vYDzklhHSDVd6K/0+U2pVL6/ihnDmjJeHyiGG0xPl5Omr/pOWYxMGD5Yt5JnoQiJNcbOlQbB9H0FpQnjCqoOmUXMp4alh0jznBcQFycgDf9m0+7mO+5pAqgEliS2x8iqoZ72wcjRAwfpmPPRAAwfBQJEuC/n8oeeoaS1tJ/xPHOdJRUNzgzHJ1rkaaDsUc9eU9EKQVCUxANgsL65HLwWWHop1Q7Ve/NFjtXr5OoeylcO9lsx85gSqVi7WqP3iE8fJT2SqXarSNkwOJJOIgTRuiKSbSxJmDaA/Hf03B3GatkFyG0/hh+RiSmvjgJVe/3uQoHuLevcAQEf6Jxq6g4VPBFcQdEDBTFtM5dujXJ3KyBg37ieRdbsWcJD8cX+WnkPn8jhTqg7dGT+lWre4RYiLM/MZu9QUet7lYB72dfyKMziLeUSngkh7wnNoqbRbhV4Oxw8Q4xyZVvq6oTYAs2AhMrYSJ6bhWG8KYGBHmmcWzTM+WxZbCk9F1ah23tsk9XvdsfnMiHiNA5+PQZkomEYyWwkl4EMFEdNM5xdkVdasqCAJHj9uCj3WLWcD4rmsUErFOlUWV4AC1rStWRurfBxDkATXgxON3uHM7nNYgMoKDuC2v5UQSQTQvQnif5gv2FKWj/IEY6/K5nvRNIpmo5Dd0PdFS2sMiixgIu7yDz9VvrFkmP5boe8Uc2S28o2jDEL/XhPlxKLE+o+G9LAAwx8lpQ7ATCWVYQaUfVwKvhCFqZ9gF8NlU4sT9FSIX3ePli4QMHBirsd6teoNFJReUhDZOYe56DV9PIXHh1mMjuvICzGKxG5wTLdD1pzKbCbeVdk//nw1f/jJOXv+VsLGYKB9s4S7D0MGCSohx/6Ew63UwtyDJgWPPF4aRfx+2/P4puHHy6sx8RoBESCjL+NlT2usdJNcTwRcgEfJ58NhSy3Qw1/1coU4ZzoYB1WrIi6RPv2qfT6u2fYn8zahISknM61nOPvoEhjSr4Yb3MooJp7wz5LMQ+qWiBLgx1EnXDhkSyaJJ+uwOhl8r1T9v1+Kg2Ydlrko1Cjmx0YTBvI/Gstjz4Gt3Z8c8DhYgBi1wIInpjCLp9+vNImdrzrobFY5VPUUPOiAPVhJMO9uYX5uDO/cOISWCq7reGaH4jR3GN4r5id7xTQlmdy3iTcn02SMIk/hNQctGJ13WNpqV4bLLsHW8TP8pBZk9suIwgkEEX6CK44i/yK2h5idefRQPEvmY1t96EXLLk4s/DXcYEHEtY7x0qjRvR1IDVfKdwL9E7yRhoLXwwPikJIv1/HxkuiQ3hb6+uBUoj8PxqY2rFUlpUv4nBcwONL+WjVEVP2dfDfV1eZwtAvDtlWwJbdVmDkE9hMUVFBQre71AmQJFD1zJbZWJb5pUO4NPmjbxLVJFBHQ1Rup3ZwGiCvErgUII4vi3MhF1AT4g2drH98SHD5wr4OiFrISBT9lGpVgh49UTnwI9A1qrIR2zNyx9IGkYM9NtwSAIZaOY86YLwhGrUGakCsQGOEXMhGNnlRjF8UFLwekQY1j3zoMM8X9hUNKVM5HHHlCVj+sjcVLbRPzdUlsf48VuHbgKA+yDhdy6tCWdPODL2HicJEvc3cUN7fnuo/TM2fkb/0kVmrkfpXg+JJjH8+nsKs7RrEscqwuf3MNXb7iZ6CIZmRI6nuXhCPK+k909xpbzmVmmONV2uENFYoUfRNtNV0wUW0TLoIuOXKrK+aeL8shfssntGjSNWLU1UtZ+sJq5kkgYgqpRXSvC2ScoPZAaqpfy+k7rx0LobNvk+AnwWt9xCw8gFA5RoCp7A+9tKvwjh8EVNFmKIT53a8a8bWaoFQiOjOcK0ThkiOo+sE72bre/IjTqyF3l4jvMBTbenorLfQYLW3/cdtBSQB9KmmHRwoN4dDacvNMY1EWH2CM2f7KiG8a0+ygPQ4wJFWpdMpw4dFtsidhWS5Z9fGHvsh8rPISJjyyFtC+vM1zSWK6VTunvFeynPlLl3ZZU3+NyBui5E3K+hMWg5z4FKRjVXMr/Apr40WFYJRlcd/vqvOEWfDkr1hIprc/UgvJxEgNuVICtnA1IMksAXoSbZUmB0HvTvAkOf/vXFpSM7Ag5NZF5MVl0igfhy210LpG27kXTXR4ftrb8ncPYMuahczVGo4FZvyFyeSlMExGZVEfHbcj7jApP885a4GVuHSaKG4Qy+u1sf5YrPNfjqO3eK5QsMM+7fwvRIVnXZZEUsuUjAiVVUXHTMV/RFQJ+6MmZVv80hyStJ2p5DQ4GxufJ+u1Bu57AxYQJDegofLSOrhUfw/xnpnRfu/H57+dTuaUG2bEu3p1twFBavioL6qS3TU+zUf2J5W3lmdGfPatDqvNhsNd8FspIiL9YS+XosveG+EQbyEsgpFFIrmzqn033FFyRwpOnPGLeh1E9imxGn9k32Hjeb59hvY/UuD2LucJyRYvxBBCqjzlDpjebqpcQe4nrictMMDex07DBEDGsDQfPnb5dUfB8pJKc+Y8O1mv9YQn9YEFlsP3D7zpy5FdeDXrlhQ/2a09N7DD/1k1sZn0JIjQLaCpW3ZUoW5wd5cgfnK12v57WMwUV1TPFEtq9Z3+E/BrhOZiXB7xUv8o0yHKeL/qgeyWMedJB/gvPAS2Wh0v7oizK9rqOFPADnb4p5YIQBGMPTDkknSeEiLl1tYaDv/KEHOLSOwyzBCxjN3ISDSmwYUwLQr2Z8FRAHcbTkh5lwjWCE+Vedf2RDhT4+Wu4WgHuuZKw2RRtQ6mq46UuLpf1+HLxZjF0LWxoHpB0wbYLDvn5ZNxonAqDiciY/rDCQDCyPuk3qhaOgQ5jq7N/K0epxiApxujSbH4wXwUROyb3fWy5WHr/NWTylWuFxtvWvzR3F4s3JL3KnC4djoijUl8ulYn4YU3e1vmWM/k4GrJ0WXHEkb3ftIOBVqGLvYUNXjsamOn20YsNEaAm/4YRasVMKu/CVKDyNulNlN8w7c7t05XAakuGz1Nm1o8SKZiCEiL/4vWucYaZFlmaNQ8p7w43YITVVSGetVDsIjLv5/7yxSfK/q11LXRFOsWGwHfYkZYqN09rCKaoQx0du6Lh0mFmpjifTDlCvNXkJZnYVjy6tmiv5QBvUGahG+41uLJhINpfz9DqMZrcjYhTC72IlpaynUAGjDrKa3BBHva7SX1+iSwmUOok4TkVWfDq2Wb/x6zdG7buW4AhtT1fyvl0j6v7WEj2im4FK5YQJUXt4+/bksbhWmvvyQyuMum4kKCcr9t4DW3It/eVmr1Y5xcH/XlouXYmNvvNBEhwLJHGo7AwPzc0IeoMt3xNmYk28/Amfo/xGw3r/xJvrC5eutyUBqXDKn9hrmCYKi3peDIu6qtfRVlc94ZWhuF3biKwZByDRrPH0YWnVoN7iZ9jpllBjt9cuZ6sTXZaizCTpKyGUFQke6D+SurxlpxzwTL4DgLisITluwTE+fm5zDGs7yw9SNa1KGO++4Y7a1f9/SRkEcKMa1fz7uF+ZS23R/0b8ZzsfI3ojkddZ6VKGo/r7NI4v+dw83abaB2ax78abzICL64TnnwfP8i/2VWdoZTtDtkw3hX9UtxXgZPq5opXhP7/UHv8PSWb1wuCT/4TQdBjh0E1ObC/WlLMrJ3AuvbTtsW3elqNF64YzdISVR6hdlz6UMxVlzNvL/ABBH15r16Lo7w/M2GonOxuDvP7fQs2JUON2ZpriWXamPQ6Y/Xwu4HGS/JN6uX8jnseaPJA9D46MJBHNvWSXWMMOncGG2QU4FaEtGsxiqTexGvVAV9LyHeZOPQp5xFd/5W+zF3g4brgOj03mio1LXsi5HAzqucySttWv0NQ/Gef6D46N9Szjfp8sJEBmBT5FYMjNDXbMT5V5F+bgwo8uT78KMgfqfNyJhRsMci/Ca0p0pT5cqOeS5e0r2BVsi2L57sLCGlYrq3TIlT255yn9X9Xe7yuKQdKfkbM0SA3ZlD4g+gr//3GD2Xqa8b5n2CxOCu0yUKqTDaYZUBq03wgrryGg87xWbTXYRPbKBOu9awUebUZmkRnrwkOX7KipTt121m/WpvcU6R19hjBEM3tfBREDQ2HcbUHcTq9yqo2/ZqGYRKp8hGYZW5HC2OFeOAIfLS/mWibuxsilUqAswfDCVqMb1J5oPQO2RuBcH+09C98cpnr99acVrGEONHRpEJ5UROou8QoB2Fm7zaDlZDWNUrm1Vw/AoPCiLrGyztmrgL94mR5pKbJKM/GejpPzIEIuOFtHQLoxh4shnC0r5yI7euuZIUMdsk71qhcQjilJzxbzuoaxYKLLajfkKyhiG5mVs0C6vPds+Jx/h3omhn3sFCUmqBAh+j2iFCpjR8Dkvb6SVAhcjGQiCfSGWI7DpJSh3TcKkabxvItK1VfWEYrRtJ4/0pFY1y6LpLIbBLDJ+yF0k0s4VclHB6rvoIXyQ0hhPi/brFLiCjtIg1lh8B8h7VpTxRAaAqef+cS5FM2w78q4XHSjuGzf4aeVDtyygcKyBqKrQLgb6l2/cK8Jm6yd8U7aqH3rd7vPQMGRHK/NLbLkpQhu/rp5yhDjioBsVwsIcdsCyniiT0+/CAvhL3TZMYomxOk+RmjzFZWkA2SUWFNUF119vvAPfyZoOWDcdmqrovDdu0rKBW22bX/fzpBr6PsOKExH6eJ8oUCH9RzJQRxckLgovHvfnGEwA7YkWkfjIvvdtkZti+L4YD0CYBsbVNiQQBRvAiS6LryaAsk64Xzh4LRbCV/CdTq7TqsYMD1DTeca9JeYAWIKL4LvTPIN74MQbgkdrVvLlwBCLQYucEFxXhh1KYmC4oN2VXKg9adUfmYhJE3bY2pbTXrvFmqGbedcO2OGEzlaAFV/+kIQ5ANGXy9Eakek71bBbFD7kvfjUijFYinBKBSfKUEGQ6RNeXalZaPlidldj94jDnD/jsDBUhk0seDZWdd7g7VCUioeLrtJ3sODA2UsGG/6Vyp3aMwcaR0Gv9PYMMOGHLXQGHKF2PAjNSX/LTsqcUhqbqa2zM8e1AahoFa7H51xw6Imi2WwxexNBvElhiUUhGyxQMxYApd1I+ZDhqJDf0ziaaV/Ef2bHh6nm1D5uGR+Ncs/5F8r5GyxOe+CyG5fqFPnY2qAVkFCewelUmzBVLQc/a2AUxLnJhbrOUpmX1AWGd+nvJxxMTmOh5dyhK8TDS699bDkx/JAgWkOoFJNZiWs8GIW0L2EbHMzjsUuMWBaXa6O+AmSH5KwicJ+bEubwB/Hfpi3rQgnMdJiFDeu9MBut6WWn7ZSSSmrMeFIxYXTCVr0HZOJ5kvFBPTMJmIudy6S/JlKzzt/XjteLZqqhUN1yemARIRyQo64/gzOP9g2fLMZs6w5tQrxAV/pmdW5ZyJ/+2s1UNU3YSZqUuqj/0rZeuHUXvpEDmvsc15xOYg6QYOBUfNAcb+qSOg9zb0owH9Ygx5b1sNOxbCfz9OIVkNcPAD+upys/ISAvGiZHMPoygDak8n1+nqyF+ZcDfnYmU49K3CqpPhAVEvY/5kiquRM3RsRov3/1AMPMnGQzuRUWWx9piOfZGlDOLnsqBExNNHLCFkho8thD8oCDL79NrqyZwjRrRqGDZuogAMRjp99svkwFg9VnJCJoDN9YZBfvkqcdgkA5nybSiH+5ORoiiF4ngDKnM2wn5ZSQRXvDn2aTS82QyBWMGP5hdXf0EbX04Wxima0kmXeDbS10HUDINEUQpXlLmzT/BoS1zWv1co0LlEtEy0KMqfQ9nPCLzr9o76jSjCmaA9PXwz+594xjoFHHXfQNhlDaBqaoPG4VGsIDwrrBgxeHdcUnSfc3MojBttUQHANtKuELfgvEubDupv2tsIwGsPBy8EFJgPHoV2N8P4SjleUY7FYbP0iYGFHGj74s5Py2Jc+7L6OUddUF8/54UfCJNs+9jdNV2Pc5U3iERkbjVLDeB3HoOGTHpo9MydRu83euhgOZyEnApMs+R35KJC2dP+RHhdxpa3Cd/5qjbB+KhxZiLudmrzn6aGvIlpPbDy5G3wPV1slFnD2Me89pPO9vBphtXkoOy8EEFC11zM0aK3ptdI2B+2zQmWSLOvv8PO8E+IHa818qRoLrC9c2DeZ5PCEP2CtAKnZFeRX2+clFPYE9ARu8Ga6/Kq0PUAhHN2YsjoeKiIdgGlTlxNT6EK8KgaLRBeH8Iy1EDPVcFC8mKlgLub3xiNl4VEHMsi8b5bMmM67B+Y0H/aT29pK2LeHsXPKOtupl/UamaRgglGU72wO5G8DICoPbDoNu6f3UY74XteYzztExI4/eYcK8vb4tLER2RM9GW5n12UvwdKGIl9rLr9UG383i1UcjkPwadQb+tZvAdCMrfNJLGhZlVVmfrlMl0Coey4o6ltur6lH5jttF/33akvS2b4MNsgzskHjPQILiCrGhvmdUlsaKgdmb3zHGthN1zOrtgA6ovDSCRDnHSuWHDoL5YWCMvKExfik/D7h02N6zd+cYfh9vw016f31D5ClCiAje5EL4E+YsdrXtedd0Q12x0/boNhp6BNn7m9UVrFbHmcjgLHT8W0gzz8PPZ0/UnjkrLogEPT4aB4fD1qVIJFtOob2wCjv8303JE2nu4S3IrMLA7KRnU5jPuFx32FjLAPSE0r1wMM5t2Q8Dawr4194Vfp2v1+0dQmVwlwhubBVJq7OTQ71mz4bvn8pnRuFmzo8z/GBs2z2VwRdsznJbz1rFicUSylBR337SwPFbOzbtkxU+bLvBIGiy3tWJZSA2ZPX/o2WCRm8HwFW+yMnIvZvJYuMbaJlNmEZrO7KSzbQZyEzVh3w84tznXF9hmsC9I4ChISZPVtJJ03bAcew8Ym/nfMhQj7F9lO0dEQhCEfmrcppi6FD9bAf/8nGhjHy4YjmOr0q9QPjroO6P4nfy8KfqRkBm3jt7ZulzPdotOupMUBMWedcTtvKRempcfaalb3Pye8x4e59V+3Xvr1Z+8md87sE5VTuV8SBAuRPfRc8HBIVUUbFYiI9PRmg+thegL4ca7ksGJm44d2XhNv5+1trcdGvKgAXA2XhD2vm8bxYiHpcIeEFX7VewU+h96K46RKFZnx7fq465uH/vD3NVC8fZNKAbwVSZsmb5g/cLOaXFD7FMvDbAjJZQ9rdLks7lr1/hqvM1GIphxBY2Me9UJBHCo6QUb+hcvy8TmA1xIihmuB76v21pgHFzxlnVgC97oyUWSQXjsLnqPfWs5GYNi+hYzQRRAFndMEPwNjr7hXv2yvh+JgKXU9gb4x3GGea1NpjZ/aD/78Zwa/e5giMRY5Bf9HzJgvBlpOlhExVwnJcs5KIt+ZKnu7wtOLK1dOMqKUyXOMtUN9HNDJKgXJwZVDOt2PmpNE53+m8ArhErfBPnoy4lcf+Z7B2td2YdWxagQxGLa8dWhzf7yjX1KmHLWygL35wJOKbSiw8n1Dla7lzNCRvqVQJg3jpSsNtKHVU4rpK5Y6+CYq/UAnzhdCrFT+6cFwXP4yCAfqfy6N3lkomEHb+pvmhEH+zjeP1cq2LM8LDd7dVhZZjgG7Uja5V5XKtjzsPfkry78mMV/k70D0t/o0/VyzL24p4d6kJ5OEYI0ljztwfbPjsVTFqU1FAvC0ebJit+v9AHDaroUyFRu6NF42sSDGzEahQq125ilkqp8s7UgMv8pkh6e/Tn46ZD5j6OVs0zfRzV5s9vHUHUxwPd8HKueLNjB8C4IiYAFYCw79BzV69zUrINTDEPYbs/QozF+H7xxbHqzUtc7Kygt89pDBc4RJJQWNUW6yEvUv0RlvU1w+XB9+tXlUxCyXPicTXMvOAAv6o5mAzbBGLZDxXjHT+0GmWUIOo4BwayFRYJLjsOUMRcXsb15oagHcu4r1CIQCioiTIZ5usqj+RN2e4MyRo6P9HC/czXiMHFx2pTuqK71UfoWuT8ddRIXzznKJKglVims7rCwqzrLNoU1Lq3gr/CLyGsXOPS0bLV8uVk04oHGjj8wgDVsLl/q6wwJ5s8VrPCJ8g2DQz6hPekKvaRH8I59mu9gg0ZCQMrmGtVtYoHvhnHgMKApN38+ACJ785mpFhLUAloScLZ9j+AJz6Qs+p71yVEItbhXQy3tTVe5NnpFQxRo43QehKhLC37VJ0cpPOuGYip8fIvfE1V3SF3NwCJMGdEv+PabfnRe/q7Muv9f4L9iJSewhf3GcSEuCTdDbCzrYFq18RwfKYfH87lwpNrBp9pBubBhReawGoNGeEoYBbmezdq31luoYi6K/LDfAev2j9l8DOlRw4KHJgC2HO0TuGh3ug4YuaOtH45JpZ1BeDxRK3Q/gCl9ZtB9s9RDABQ63ZpCIZdrUzLMYW1j2auVEiHLuIdLkEnOCGzWqoG6xcOTVkR34rZ/6KRLQgpJZ08nP/DR+0pE9HI5uNfCzSF/r2KlQkL0SGq2iCffhc8jWUSfWzffceff6ZwLNBRx0l7PT477t37zimphAuS2Nx2i/akOafVkwRCq9zUpDQbtWb0OP5syVSmnQvG5gdAkOmSoN4rsW0No/9UY1lrQqJDnt7mJfHk0pQtzgxgLYjmHAYn3aX+Q+3jpNgF5BAXutGLuf9obP6/msHRKwXJtT3uc0+QTNIlItFXvG4Wycm+T+W60vz1s+NwFHyzlg9QXpYf9wR2cLyLQw6uw7mhxJ6ka6HRPzqP1id24P6TkoH/dpCX5DOlYUj/yWMvi5L3xRjNEoU0r19LliPdfAj0suQyUSRuqfjGjzmKopJcJipNhGtcRShP8le8WDCoE16v4nWIBh+kpnqu4diZuOi/pfxMOMBFltM48V0mmyXkCEGa9/kqKxmaffr9x2Iqshed69VVSpYAtuu8AV+LATahOlcdztc3SpIyes6aaQteytKzvZmwHUwm8CWHyBHCNID0eGnZbeIAzx47QqdBl+Xt0SyGKeaUDUZTS9oGBO10Heo9RG2rd8MWnzR7d41qcbXjsM9coU0diYtryTLG6i4aYCWbbTVO9W2tFrGK9+g1XzJPZxnH1yeXe18P8XYpzw/Y3pTjqcagMsh3kB6bCB3rsIRGKFrJFskpQL0NENZ72T9QiCoigljyI49aHtCnizIya/VYYraiGwMdoUA+28gH7QgXGapUeDXpVEnV6azWQ20YVO98h9tkza/9Uy4damHakeqNNg0wN1OfIxscOqvPspjr7ivPMUmCI2iQ2rYXFyqUdex0El3wOIlPYe9lzneqXVP4hP+wsR7PcRdiyAWoCAvfvPrwcp44Hny9AArjhLRgrBmlBgGUxkY5JVLjXjRXcugWXYgGCP+8yuLxWkLTeEv7RL49ba1Kua7M0lTglUobqvZPz2l82Z6XwzgmWiZQ/rDYqu3uTpxVpqXkOwPaODUiVXbqEoTUz7qilmroi8WgavAxtC0uDtxLaIT8f14I2q9nBP3ZDOYRyJL6cb7P5+7Iu1fvUd92/BGyJe+DumHbptYrXrfapAB9KvczYHsL2YmPUUslj3eCxnOiYnSJpo83IkIkIDc+P/mbJVhU0dcphnyigd24RYuOHgQzAh1br+y+9iNVka3t30XUmT3te/kS8zRAys49F2HDH2wsymuh5+dRaJyO5IEvSmxE+OfaEMyGpX+YULRGKDQTtKj77+kFzwHVpIPc2oixpsZzkEZs4ezp3EPAc5tWcqLdddEcBr7t0QQWrpuMmWRp9QywKdB8lZPma/0YaWceCk1WwCvSx5IOtXhV14ryBawrjmpEY462tlitv23MVyRI0bEXSgdkSYGcIryCCLHtg8qqrZwzQZuSUWrpzp7oCkhsul90OmAnQIH+439DYrBPKy99bfCDFyrCXFF0FAcqzLZYJRBjZQ/rz7KK6LoOznNNXw97U9rc3snhaXMOiESk11+/4AezCmw1++KlH4svGyvu9jKgRlgsi1bowIkbaAFFa7dGBLxIX2FtDbKGgPNbNa1OyAmZ05n975hqmmo4sGyHtm4/yknn1pT6irIMusZYxWNKGhPNq/gLVKkY/Gkmfl/zH++9ib6FB5+qKTuW8fRqktR2g4s2QtVpNoxLkd/49R6x9TfsZSGR0WOqoxxcipXlepTNUwdY/Y41qxdXYyx7L9gvMEZKdfhBhMfCA29pm2wrYsUma8BqcrWjlCwVbBFp742TjM1SB241D6OAolkaAWzHAhhmHUnR5j8Doq4BIPw5ZwUXowGQuJRifwQVXj4SarNte9teaRO0DGRJEpBXcywqwTCShLYEDw8uSJT6rDz9exalB8EmHO7yyBDh4Yma0EeDcllw50cRgBLXLSPrHH2ArGKgWHkAYm8K5AykFao0oh5pSdwrD+ZSIx211MAItfU87SyHl30GMxF3KOepP8X/YIH4yWEDKLIl/vXZ+EnY9s2tD3Jr9kARA4oskoUVPvZq0VzgjaRz0oTyFK3xzSA40dEXX+rnlHb2+FRh3Y+KbE5N0G8uXKL4RJaQcrI6mKjjS4Qa2uS4srqXBtos7YIgLkgZRizZ8095WvmHj2kgbqSpXkcodSQuDMYL3Pa5yPRHi5gtF4fZtTODl/MoCcD6fqdYHnjn6XXcT1fBXHBZar41YTkTIOXSoUhaagehVwBspvzOUwmNWmrjfaPkKmBsk8cAx0btSRmASKY1+l8ZFNH3JEMF69P6ad67FtM8pNgYZJmurnrJWw+i7ANZezaSmtXz8iY7MVmNsrStN2Hh9q+sy489VEHiP886l3hcpoQfLyTD9j+C9U+3KXxN9JTjMjOXidY+Jm9ZIvULJY3mighri80ymWG1i/kGvGF5MvBG4Q/8YSq8gAZChO1BIK46eO2da2Ah8Cf14E+3Oytcn1snjXo83n6BG9EjSPOzhvemdCxY2jxLh3JW3jzAkx7ZbAQEn/05dQPLWvoIiVjhEQqcNncuyP9Hf4Rj62ixlf9+T2EkASllcV8roPI7Bf+ZWttx0RQfTEgmOCVG4MKbAEyEXLy2jnztYRrZmK75aQSbBiCdMlpZ/rXfUUGhqba3ASOxn0vq8te4qix8LRNV8Ij9ONOSptlvqCTP0yj3zkIn0N37XpCyTXxFBlIv+OPmRBXfFvSq+oGPV2zg/dQsyG6bEjMwu7VmQibY/Z9V6PazsowNOnyL+xpnBrttWr6K8XDSH1EFWBI2hPGqqKNx7/rdxSkl9Iyf3E51co1B0eYbn9Ix/MAQXWLkHEKK9qbxIV8liXTQdOcgwrU1KzKl3IJDcTHHfw5xxWCXwdxTabipw5Co2UCLP0mc+1rqrPJEukOPbXtaraN0vs+2wROKDHowDA19364Xn4Mo7iG5rILA5lQumvE9VB6IqHqS1ymmWQyyI1fvAOBN73jh+cl4EVlXk7hWPUr+S4TaFgKmyWcCFDMOk3YxxTM5SPbEh7U7/R1K55k9NzmdJQBjmSl6nPHdOVL5haW8M2A+AlP+KXPjdhy5Frrz+m0Pw88Qlm4lfkqAuT4VBiQ5i/IJbcsRLyjgfT8kIFJDjk/HHgVwDZw483huJoV5AaDcnifn8w0lVzUg9u3pzHI9RUn3A1lFTpELMTwf0p0EnDKn7O9Y64ZPWkEKvAEjmCo+lIDJh00n/WcBuRyblS2KQ7/4gTz+BVFg7uE1f51HjX7kIpUaMlF6u5FQsjs1kWOozcazMJoGCWtshQYfuOhIWlk5mU86zGpklz7YE6EkaDttf7MI7uKshZjrBjRq3ZgJll8HRVinQ8ECWmVkoD/+VD3yFa16geclFhCuZUZjxX08FG4J7v8Lw5+dbjSWcE4qWA67a9DOzJMIg8PuRQ6nppPkhp0JQikdd3pU+dVedYKz1XgfCDMBJ3NmYyDFDnoLSXT5aJjL8oGqRSy7EBbmWnOkc2wZmxwt1h45lrKd1eB8VreS7WGv5lqhCo7ATFo6l4f0NY7AQxh+G8bRkcRRtXB3zgG3C/EIx85+gYvM6R63L6RFLpiEdoGwRm4tkFhLE7WKQ3+nldQR51Ubg3IVtH0BU2cHSkedC7o8/6jrhsWim9+R7YxiSKokhKfjWO9bOzIZxgxQeTqW1UVYE+WSzI+H1iPJCxwdDMBOcosH42IrId8SEZpLd3T4+KjStXA/ve1Bx3seKYSWmIcNWhRMvd3wZrn3Bg0wLH+axCcDr33N8nCKc87VuhnIU7K51qEqJhlpOI5pCnkh55gAO8sVMzHYPQYdt3EBVbHquYVWDAsUGCtSdfpn/dFB/irpTgoZCFe/2PjSxPPTDKic4a7lEzJvlgcS2rdjv1Dikhac/MZo2x1/HM75m2luK1+mR3gbrgdbVIV0awxOchgtFnBHswh1zAPMmidluV7k6QBU3wTv+srhmUvI7TTVqJoEk4c2fTtrDuFcZVKzBP5WvcUcU8V6Ar4/7asKQrO3knJi7ouYckCiVtTOXmUL9Lgdx/Gdv5OIhu6Ma1/YLT/9p5pAClRfa1VgYQWK20nboyT9Mfdcm80goObKeXa3y0lF1x77bcrN66De16VZhkcFmdz8VKVG47mPgIGteDLuM2l3MKTAHWUryk/A+JZaxDQIJjhnPIOf1Aev4Y45QLYSeezn0caWZ2+cytV/98KHDmBtntnydX09vk/JtRpFivTtVnHeDHoNmx312v2EoI6Yut8lK865hiLhM5DpK7wndbD3lsFvkhtzA5lJ1Zx0llrgq5onV8+OB66jcNFX2DUWNt6ZZsxReAK0M2+q3FWfuoLor2QGxT77ZZwh+mn47HFGjZrhP40JkPzqavMKpHW+vqFWBikG6KQ3dMXdT13yX/rc+O7ZKZzNQ0LSKx2mtXbdTuUN+6f/SkiHnc/rGDCyJ9DuwwVhaXxjp4uK7htVvFldbPRJn4cprGngfN9l/QtKfMvsmORPP3ctaRdJNYzbgvHjA5ge9cJ5SGqGSwbbqFoU8mG4o3lHPJKvD16KxtorMPULA8kS+ObFAOr2TRGcVWsonnNWVWY1xuACLGA2ddkvPSg6JFrrgfmHABhF0UzYd7n19mRWV34sBkFT0dyLZwDYWd/fs4CJge7EPXxwAV1GjFClOux7mFJwBqTCW94EWPMrm90y9dEoRTe2r8Ap+Frl1/Fyzgs/TxaH+2vu1k/jonQwFcwLkGx0MlVK34YXbVpDnFNYv/k5W85sM7no7ZOp0yAM6kvegsp2laKjhmTHTRkUXmCQcG2GQgwMLnl8Ocz2sSQhXjvi8rPwEaAyUhODoIsTo4AiVfbAMT5AKgb8pn35YiF8VreBpczYvD97tEQG03B/15hon5B8CdPys1pV0Q/5ebERqyHxYXbC8o=
Variant 0
DifficultyLevel
560
Question
What number is added to 321 to equal 441?
Worked Solution
441−321 = 43
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers