20214
Question
Olivia earned $17.24 per hour working at a pizza store.
This week she worked for 841 hours.
She used the money she earned this week to buy concert tickets for herself and her friends.
Each concert ticket cost $14.15.
What is the maximum number of concert tickets Olivia can buy?
Worked Solution
|
|
Money earned |
= 841 × 17.24 |
|
= $142.23 |
|
|
Maximum tickets |
= 14.15142.23 |
|
= 10.05… |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/tYDZB0dbyODOKWyD63fm4ZTZvz4xd4VY0Gzou9xvoVEhgkCG2Up5WJsTe6MqzthvjSBbs52vopyPqXgwPmFfDkBqUD//GnaYrkmiPZ4ZxB66AZOy3Ee7UODBzwTnUPcK16yGGZwdKRp6PT6XZllasrkP3IKN3Wr3rF71Umi9tVTU9kUaDrv8uIw2SoIJY9AoUJYXFKsC+me9crl8XiMduE4grVzWh1ud3MKISMtxqZnQVg2S8+fuNR85d5+VlGl1frC1FUQgR076qtJXYJhjgym7qW87ZDl7w9hnASBmw0EMKy/KQB2085DmGeNjChI5t4O6BtCDYFS2N4gqyP5n6KGz4elV0kXG8p+gKIe+fmPWeMcMFL0/1DqIa1m+n13tSdM5SLoLpfnQwtlbgM/bWROOPrMtm6z/AmJGM2gfL/bBzyHIVCBlG34iHkD92bve7yb7lVe5b81508sTkmhlJ1Uk9gVAS7Y1LIiarYJr6fZYkmqucIUnNj3wtev7AhvP831JS9nMyqEsr2ituGqrM3HygR1NqZLNLh9XGqs8CV07p9BBuCxRTPKaKJh5N5RwbG3oOwWtakIVxRtOmNgkgPkTGUjMxAozz/ga5fY1LaZiePPRQmTOl2G4L61hVgRJZs+GmNEQbbdhzkJQjRjFi3X3HzYX09QcMST3lM/HhldT15e+iYV8V6CuPoT/ZMsVVGffuHE7ZcyCPHlSu0oGvvJHPKPwyjVWOtsRjzV3sUD0XO5zjUoQV+5wHbXyBuJ5m6x8o9PYuASj+54NnU//af/6brHHIEYAMVQvrBpP14bTbiJ3p0OFwhfVk5Uczs2yAcB7J04xeeV/H3Ll0NRHPYJhzi48XBX2l0lKXykCdJMbD0+seWOHzxr95UvQc/GBuJiNNh2gK/QZ3c/Kmuf6zXRVeDum36ZNZipNP/fu5HHyNnYSf2r8rgG+hqXiixWFO6OAbpXdgjpPlCconsA7X5W1CkQvfpKiG8h51J2n9rYB71RM+YT4im58GNA8F04trhJSoKJsm1Nxc0HEk0WNVhb5tOoCqRa4KUrCgsk+N7gQkgsisX/qZtETOVclZKDlz0a3c4/71mNXfl3oNn9DETH0+Fz9HlY+gRawopbT2skNlVUcTrbj53gnq3DS7jAsIjm9X9jzkAq+ZE6OsyytN3Ak9EYNW2jJAmEJAXjAHmpupG9x3knNXJc4oA052ExuE5kGfrGEnxL0Hg7zHoBE9Xy1HmSl2NvLg7CqRBmNZc48yG1e+aQT30mUYnilbqIhcO8a3GbzxEYPUdQimxTH8NuVAHIveTpgZgT1tDj1YVg+1cX53MIoZaxINrg5pw7i+mcEc12T5yVUv0b5PpV/fMZl/Rjo1W/DF6WC6lbDqcmcuCybvHA6V6godzprrwclshZF9V4BdKPncLVh3oialWUuiQm6Cj/6+J7EcR6HHp7PuAvpuOJyxYsU8mL4rySrCwMf3lGddUVrcSCtsKoFvQWplHqCrGcLTC3eTleoVVTrvAqMZtWiKNMEbyrkhOHPbWUXoH/VLOQKcN+DYjeVIpyuGiVBedWrZBmaVMn02XrmAXsd0x7Z2kDVTzHqhV58YD938FPGauvUsqWj0tkJi1lpIZnpjIaRs5GSkDdsK9jK5Nyy7hEkTDg/8hPXYS7sMr1W6GuJxaSDgYtEMHXyxY+kghkj3lhkWBuQxgjWx7vmFwUFCXlpoi7SBvwLU5xoli958XklJkC1GszgQKhjH27EmyTRz5KyTzjSMEDgxN0Gv9exg+GS1oVNn2L8OA5gm443CUlve4f0fISlGtCzpVLiakW2In4/OlhWxBiO+jjpHCppHT78ijF6aW1IpFjlzvm9/2cT2oyUViFBTJymuwLcmRtsOKmLIei3uq+5pnbScyz1z1dhRf8RP0w+uly6KA9iUOmH019A9xY/Z3a/J04IY7hM+3SiPja97SVR02t/cQd9KWIkqC8qCOO4+L6SivFL9W7Mtr2/6UJ52WcadHHptGPpojJBxSfwUfvqVQEYZZhFTo46Zagb7p4HkuVoikE45R5ZQF9EEbWA3gW3PLFgoxsMK1U5wSuwiC1D2q7zyBLyLBDbU+cA7uujs7yvagUiI/A8M8pg8PRgmi7A+/8usRw/VCVnmOKzUMfHOcv8gcJdo5WnvnLdVXQ0HOQeM+n+W3Ixmd7WzAm/4QzALnGBKK/ozHMywr7ogLiWhWu2vG4AaTivGxyC2u1zaRtr8ysp1SBQG1B//8f8XQ70yhSwqQwQOeb2gvb7quYQ+nn56uolbhFDvgKzU5a/DdvSpAL6SCFk7EI8rsUq8Vy8EXE3mcSXgqXRmx/hZY4nyQnBTq31jlit+Ofgnziuf4cNil5K2fi56NDcliTntcqtwuaHRK+p4LBqMab6rr6pIiQDQrF5pi3IIjPcnftRvEcTKXBLZi8i85+Bm+MP4Lo3a1YR8w7WCkpCMZL9SPI9l8ci2Bm3bYyxnKoErUkqJpVo2JB1d+4bkdNLf+iT/7pwRtLOs6VHs0gc0yNE924qLc264dKLPxvjGC4RFpbk3JyKzd53EYhDqu5LssUY0BhpF91OhcP+ONLpZ1+AZAqEUWtjzlWBjXRblHDahdB1/1PUwWtd6jShGKqxEu6B8WPQum3JfXhdnFbZ7DRiyy+y6/cqzjQSugkeT7w8vv57hN7L68t6EwF1GaQsk8qQg/NSyV4FnwUTZgZNir4rn1rVPbOUWHEsUEQzuyb1rkFfkE76GEp801o2Y6lGffuEGQ9GOx7FapYJj15EqKvO7Z+wmsdzXglIgK7IhKI3M5ibQU39LkJvFHCjcdwa9FnlM0SAezofh3l+nQ3RtpvQUNHcFxKvhgpgij7Ld5VskdzWOwxJilS96ALxduZKYhlEaEGeu/0Qs6gARs2nOq6cOTBZFwdpSOlFgbMZhIKSU43MPEnS19JmfhFun/h+StN9uG1HNfRdJDfAWT2tYuanIwfW0R+lWW7yEDRvvJBnokpkQkgI9jZTyLGhzSn9W3VrT48hTfM9XgqL5ku3jRwDDwPcDKjbKjrUWsB8p608gOyD6F77HMbI1UvwQ0u/gC8gpS4awtDaPWikqYFwKLlPkNNBZUHBAjn+pA9veB1FD7/E5i7q45OeuHr4JIqvSgMG5gB2TI3/xBiAGiTotpldxJVEonn5hi60cb5yxoe+na+g4hzageFk5lbs5DU35lXOcL0ITAOX1IW2KHVJRI0Yn1caPSgzHRj/is3jL+XfWvUzLgC43/RsUWn0K6txvNMHRD1E1HZMl+xQFqssQZh/eXwsEh1DBDHEiLk/CbLJzRO+UX2xdp7ECQ06UOedu3DNu0Groa0z1yi01GFrX2xd2H6iNjqR6NDDZPzilb1eDFfYgjaELAdxb8Z4F2MCgYUgVzK4oHY1KHIsuvZ82/grjpdn3AEOPTObzJySqLlc7zcLx7zFNEH/XMN20GbLVudNxF8vHhht6SLt/+77mMWgrEEt+18sdpUx0pEMEbEuUiYABBFpbtdW7/uiATkoK2EG5vH3bH6sOlUztjrdgoc1Z4s5GzX1JmQsrW8YquCwkjNBQf5aKqcHMiCZ1bFCvKs8B6klBkugcEYwckYn21Iv8sE3vsPOnep53yLrC5BGYHVGRh0Xi+5wTr7BlCBcZ7WhNN54JXqB8LysjYgND3N8ro1bfGga8OaVzxaBbfUu6/6ds55BWu4iTU9hiqiGnzGUyzZaQnHawayEQcwTUsyz6XAo8+yhY2EN8FV1TeDl9lhD9VU+04vvH+h1V1jdx0uxWw43ldfXWA5huyUeNu/tyEtkhJE3B55rze+SFamV+koZq2UPyKAZUVo35HaU3J88ALQyz9aExSsvd9goqX6MdNR8GL0SW4AlpOUKCSXKOyL9btTE2K5WkZFRm1ucZoRufF2MR0Dn6M9yGGFiON34DlA+4MkRqM+iz12m+A8VCbD745dy4cdYCwXG2zfhxarDH1R8qkqHOiYagghvTiE2AEs/21vYxOxRkZNmcdrcYxvuNNS1Bpn+6hznf91LymmDHSEWdAosRRWsqk7uAtMJ1EpUAAYDWh+9uZWO9dAXdUCs2h0ZfTS378AGdpkgNblJXIkHnlE8jsHknipbOEwVsy7wnJFbMVplc082tEEWWSWhf4s+q4SFeY1cq95YZSCabAGLlvSLkIe+2waMYwxvELmFfvGBIzty6xfmDJjRKICoZXh/dVzjJu2y/FtbYGvvBgalKcCIVme9O3VufpB79TSAjMLLii5bqIOSnQHzkzk+b76JubESZLbkde9Z9JboAIJQEKhx4NFTf659gG46UsD3HSLjYCPjX9DulktzdSlF7P+zcZa07OCN44ouFzQyJUXgj4JTXTXXCbEwYz7vYAzuuKQgv/bWM8xZ+UVwXuiulsjiHtvQxegpx9FeVa4lDQvvV+2NuFOKn/WonRSjb7tPc4g/bLCBNXS5V4hBmeOJpKLPD4NJtkfIkPw3A87g68ne49xNuJsfb9vVvi8BCnBTT4gDUoYTrjUBuZU75MP7jWapzBP7KdI70+v9Vv2YPPCpeLNibfFwDIz0yZNam4IKC6qUsHohx1gvTsvflrcVRTfxjhJq/uA5YTdXctsyceSSWBTyE7wdBBc6M6Qu/TRAAfMiJAfSTsjUpI3Dc7vAAMEE1byEWWY55H0ri9L1zVWA183+8LLcvY3PVMJVMIWtK2OtDVCJkbqAYm8gVOZKg/yIgxHdbW6zsewXONG7Wr8OyDeoyq5+hzIVWq82GB4WBBkg79M+phnV0731ABENZE116jmVLUmJBGZ2aiM62ctf/5z+eXAA4qXX9jxKVUrmNxb0mBNgF5Z2MGU8PdYP7extIXYhWwG94xbKKNgfps7y3E6HXi8yT20F1Su/2EtZP3Wyt3kKKLvTxPOl8Bxhg6/RlSX87C/dXve0Yycz9FEsfIgJZM4gZv6q8+Dn03TX73DxE5f+PuxNhNewS9WVR/ZihJeV1ufSUDFSJozeph4vzAbweXy7wOR2UhQr5RxEMNWAdz6+1/EAwvk/q7T6ST0ibapF9t4Te7XtnqSG2YYuzwC7u9X22pdHU8JFArYrrrarYdUDyPo5kh6b6P//2g79nC9j5c/SUxmQid7l8qI1EhHW5Vb19UXUGLg2vTZ8D6Pms14zYHwrz6zHTmTiVu6PkSM9eesb5Kt6OlnfCiWC+zIDJsyZoNj1pAuwwlXq7VfLYGlMQUJrycTBwbbnU3VbcqXbl6kwu7hQKJKjTmNlO/Ly/Kt+bhieeH/lEWtGb6+wN2NuTNvWaohfdCd+LxF+/YYnFqsBI+yZyDwmOqe0vzTN81Mk/qWLotF2UaXGrhc8zwEocJ8i9Cxtm1oqvT24jpfDsYmv0juAXac0mDWpKP5NVsKBnQuvOf9PUmD6sXps2Sot3a4RyziQYtMBOwfYjqglBQ2CZSbvaVVSbHkaXqATwIQklwK5Hf2jqZtBNTWnQYI75KaJog05rOobBpUEZ2KG6+OSJQFhpCWRcrbumPce6//nkgI60Ist3I1XnWkt8KqyDBYuqUkpT/to9DWDD5Xolz4hsjWNjkkOhoDlYIf+PHFaWAXqu3EUzefndYG20nztNAHpmaicnJoccrmLKXlUA0sdItP9yCYlWmg0aBfjaJJRGq0VV2FQyAsGggcVlZ2HIoiTGecDeNXW2Apk4JeJksB3+lquSs4RX0anJjEc1W+ggNVZ0VXaoZQdulJow1DWctJPbXfJk2u+eC3QXDcW5pe/TZ9MmebDzpWZv+HYBg2z/Ok/GikxPABQuPeQPqzrXMdjBfalXDDxTbA5P1QtUEq22M7mNO/kah6i+bUzC12RlOrEVN0ds2Ji+1ZXuhYHgd8zc0IcATOfIEo9pdSYAlcTclwCKHm7nSPEDecEB4PS4OEwE9bWaHhFFl9peQZuFfH0Kv1S6231LYdBPvIprQDGTbD5uPrKuUgc9v7CO1b1s0rAHYrMmlaoOhK6VhQ2dDp1IVDIyfy4vhNHE52CEWnXyl+CMeWv6eduWQhhgVlwlTzxSq/GaM/jK2gkNUQZsFSKE08X0dY7wAfBZFZnYaMwABL7WGoQ62lJrGBifAz5vVh1u7fAASvM92wLIHt4EYmuxMfVdpHmommjqwYfWN5HUlQR9WSliel0BUVvbr23ri4wkgTyUYcVUg40yVWvUZ4QuC3wauF/eYUDkOjwYh8QO/BklUzwtD+JaxxFxeFFnToYSNTZKCwvCesNHeeHdqBARxKo7VPFGlkpRjVc+fBuo11K8xRWfcRs1TAjsIkh068OW6gAE8e/G9oYN9dc2BPNm5vBh5vWM32uEVVAkh0nK/0ChmTON8XrjMP5VxF58SAXD6D9ZGQaAl5HsOLSfTjqZ7Jllp4P5FtQHAvP89WDLnAI36hCGEqm5Hx1OOk2H/8uTghCjrAX94Yq9rVz2euTBcKGwpg7xTAvB2falgR/+Tbzd667uHFsbj0hHXcIA5+hhKqTDhwCJVmQ4nlUB4LvlXmqDHkyVHno0Y78ZZok3e8yrxRCCCgSSy2q0DZlB1ffUyzO0XiDN6yVFeDVRLHQgJMF86OgJAZPGeO/FdHfDMhdoqQzaRWWEh4jwL3UPG5p6orPtcBZSxe3FtS15heMWDT6eMz46BazKmQ06qYt7rNdjTwVZGyUdM22TaIDbHGj2Ay91N6gcnKnGXjNxNFJPfrCLsN/B5DpVV72DLm7rAyalQ2ldYzE9DoONEObJZCqk2QNKMAQc+02JplbgqP7W12RRu3L7lHQQRZPgTT6T7MJIuth92Kp5VvMXudowd1+47cGAYyPJ9W/pCTOyovPJng20UNL6MBG5qy0Asw0fmZe/JFxB2piYAfVAk7/ZSay/voyWb5xc/xq7qpwZ423gK2wJmxXV0XbSVAzbm/PuxiLi8qv+VPVEkjUehgPDAQDCFsRMw2IJ1Ppn0C5toOLx7xpPzGp/7qRGkFLd17ZsIQSFFXIDXc+lUQpEjDIj2lURdtGS6NQt9EJ/csEa83/LokBc0iiBo5fqHFzddKiyRiLd4cg21+qk3+Zgc7VQMFdKJ/IoAd+dLpO7XOGs28PoVe2BKmzpl9VjSHrx//a4f15Y/Z02Lubp1Y+C9Gh+eIl2V3AlQBtYF19nB6F+W42kEYsQlZJenmr8tU3m4/IfsjcNWEM6YLmCyUrqbO1GRy09F+pm9X46D/o/GLldY/rjfhUMh9LWkPzi7LX1kpLfbY3jQERIQt7E6XMFx/qbOYCENI76uQbmiaz+jaBEcG0GfcRKSDze3VCsgyv/TAPtjTihoKZqCZ+Bp2A3fXSTM1NJHBqZTD2EiIAuxTOXwyo5lw9U63cUe/itDPGnOL/vUXPbEozxDWslarZE55XghTWSrwx+CAwaSI+C06sMd4b7Q4TTyEcmoxuY/FvsxYtOWyYEAyV//u5BOKfiNsNV+KWBpFlKrIEP/UOqmnCZgH7na/s05RN/BgyHTEh6grdt5CiibO3xUkOBepYuL7HrI7wxlRHPekhPXwayVNj8Cz8wudvNjboW6lsv46mMlN8ndGo718X41IhUZ35NT/GkzXjhctCg6nEl7487b450AB6maT6iZ0D5iZZ2rY/fTEwgfeTgPtWGR+wIiv2OhCuiQfNnHqzwOChNYG2rX3EYsKYjosdZzXa+hV6RdRMKR6sIpRBXusKASA1LDDOoBtz0nW1F9Am8zQS9/TMCkyHTf+SdnD1KhgzDuetlLD1400pdG83izJbuc7qE5bUg3CIYhOazTqKASfJ9UHxnR7cJzosGNT3ph7BMXwBnUgzdrZ6A5fz3q/0/r4Wkob18Zq3iqKCSOAhOQHn1qEEab85mwNrJy/sLhO8qa/SlQRe4wv5Ejp0/dXy0vZTeY2ASwRtkDMA=
Variant 0
DifficultyLevel
560
Question
Olivia earned $17.24 per hour working at a pizza store.
This week she worked for 841 hours.
She used the money she earned this week to buy concert tickets for herself and her friends.
Each concert ticket cost $14.15.
What is the maximum number of concert tickets Olivia can buy?
Worked Solution
|
|
Money earned |
= 841 × 17.24 |
|
= $142.23 |
|
|
Maximum tickets |
= 14.15142.23 |
|
= 10.05… |
|
= 10 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers