Question
Polly, Roger and Milly are splitting up two identical chocolate bars.
Polly takes 41 of the first chocolate bar and 83 of the second bar.
Roger takes 21 of the first chocolate bar and 41 of the second bar.
What fraction of each bar did Milly get?
Worked Solution
1st bar: 1−(41+21)=41
2nd bar: 1−(83+41)=83
∴ {{{correctAnswer}}}
U2FsdGVkX198TimSflkfjB6tODlnxN9tMwFn8i6ektyohfPDoLKHkHafUnhhID5ZWc0QKno73I8T//8LmaFs31jxosXhGXVPeqI0LL3pTorEg3FsZ69MmHqJdZzwpMhXb3M+zLvNMvf6b4mYUhc/t2MqKP/KWfRaLf7Jwk033dDEhliXKrjg/PVDsJJb0TKqCqEd0OrSiMAie28xBZJxtkH699QWuRfR3meSUH8D7Q5eweJoidm278wRnvsWis1rLw107GtlQYGYIUW3tmfPIlZllh24vAr1xVjTw3FqAr5QeO22ihzoB4GPdYddTX9ISFPuN3wEiOf00vSI07NHlezBJuOyyhkygVdEfA0/x/bYlZ4Ug7BFxOh4CCWLnKwVYvKLFscomEwSrM7TNTo2gj39AAxZRt5CfB0OT6/l1uLKMSvjXlZHKMm+yORDIsxSFlvzIZ3fkmkXi97ivjFsRovpw9IwxZLbtAGo+kof95Wo8ynBtIS32pIXczip1CfnKAiocNp9iv6EmMwwSGyDh8KEZsnbVqVC+8PVGO4gi0lIZM1QxeB6Ra9/WLGZgWVZGNHhBmN5PpPDsuCZjMLzTml1H/03PP/Q2eDfBveFpVwjiuZsEHxPdlKw1wYy0pOzh9fyVhnv0EGCsC3DZGFbA9MuGoVK5HPrsnSEPg1oO2Jdou8Jg8D+jplMMVS8jS2WsOZUkjczNMLjACFI1YHi0t1cExFb4s4GfIifCwx2esmN5sIqmvjeILTOdjATtm/I9QfZi2JrIvwEcxSgP8ENn+FY4SDj5/dIwtODrtrhJtzr//GlX6mCmAARqyNkLJSCh7D6bmV09FZE6QVu0b95yr9a/yd70aWskmmsdDo7qUQlUWsal5ikBjCHPXJ3gKhBHK4logkACEaKR2TmlG3HieWyoG/RaH6RD2O/BddQNSMzbMuNQ3oq1r789+BiVxmZTleSPat5JV2U23mf6vE77puPSlVRFFXHrJcwWyKyVLlFpgkFZr6FVIUEuursZBMTMWCmhvJtCpzJ9HnSob4IohRZO+3ogQJK+OiPR17GmmMInnWkMMoXN+DnKO9BX49Oav5l6dZ54BK1nXwa7orzL1D/s4g79Bw6DFcwukZzqyvzzCb7dk35dMUnBcurmrnR7klrwIO7jXZD1dLqj/dk2awQ5dsSfoLNvel4X3djI2QQmsYeAtAlQpEllpJpMnjLL1ZbNmBF1b4+svdu7qKrSUu1KXXKchEacZnctxYBTE4pA5IEp2s8lmCvaKLTwSRwY8PL+mfMaKl+byTqeyM0k1ettXcalOCWWeht23uc+L2QIVmRQ56Li3Q9l+Q71cn3bqfiwYyVcsDDTZv+JF/6Z3hXPeIXTYQ/dX7wT4rE5C+9ZmtZUgPKernG/+JWADD153o1Bef2Sk5DRnWMOjRWoOlOqThwPahJtM8bkQZfNhBDD5eXAyO4jhQ3ZzhESD4dfPvdsZw4chirBI3bEPbdLA+kCkJYPGL33PTY0vBwE9vcAl1M/FgY4nEUrQ25XAFeNXPo4zCZngue5aI3z2FUsRY9ZipsKnlbFbL6WIQVYsIvAlufTblcKldcpyS44PCnJKh3MWnl3hctzRySaxcr0osiHT7h6vOt127gtNrgD3cB45TNiv2zeX4oWFrIWQuPMWkuPAOAE5FtFMxRHbJuc/azQ0AUgVqCh03MGpcrjK9w+8NgPQeWE7mW/FUnadDGXsimmgTDJ0mojLj2TS3vtrPSK4waLLPnNfALoVAmk8AEzTf28oxrGo1j1Tyw+Zrt9u8EiuuNJ0mvHkdidh0VO6p4uOJ36bS6VRF1HgRkHNwwAT34YJi1auMXclMfhjMKgTVk/1VCgf+KeSRTQ8oTbQWsKCWRO42Te3XW0NBKGK4ELaHZOwbJLSoz2lPWqw9xj/qaNdqd8RKxWZfVtQZ17QEYi5yJVmGYRMa+csQu6pkfyWtVvjGqtIpVRmzJZFwZ4eG4Qanc8g5i757wDPj43Uy+QqMhRFBD/ExkP9jkjAIje6QgcG70nl5u6z2eKrG1esrHney4W74dNzFcSYWgsmYRPelvkX034Un2nhXqbfoGyJDr30KNfDZ9r5qBIgp3ZR9yYA+cQFFl4kWOmPcb5cLC5ukWFjNC03MHCogRCRcmDVdTQEjoNiguiQdxxdB3H3FczaHL+b0WF7KL5nzHStKvZ1iuTjpdEWY9dtQevgmk1V8YeBASJVkKS1SUbAq0UB/BVGiGKfogCGKqlYsCoET848wSfpCdGwKLEiPqNvxZeARtWVoeOXXVEgKxpus+vYEWU/D9axz/cLB7s2DITgWb3cR7g/ZrOe1BwSDZ/6VlA9anH97LCun6bHwhq1a0pfJxUHPOgBQnxRL4qaq2HzUwBfmX2JE3J1sGrY2Nd/GZMTpuFRgxgBo6wirtifMXz7fyq7mVkAZOjkdsk8rIVEFpHe51FU7WDMGgTwhgieGYY7XK9J/xt5oV5zTeWUbHq42M8ooY2ZadIXmFWNPKJ2G5N3qM6Wc+O/CNKxjW+HqQJMdFYsbnT5jKIScnPdYE6lpyKPElxfYLriWoGoW1hPWiNY/GtNsjLevAIA3oE351cn2lg6k084IUsAkbD0IU03JuGQ5FRRNAYLELswrRMpcxnBMARiYgpYJXEclR+gbg1S9stvj8QWo9vEn3B/HGXXkKfGz9Uuj/lwmlqIT6bWGh2n3uw5dnhyzK1otfzFAht9et2cyUxHGFvhIP1XfX1GQ5ExUa64ypRmn2jlTPpCjDRZShg1I6+awzymPdATFJFErObubOzzHDjBpQ2s4yKBkxmzJQSDUdoQsZrtYfhZmPZ3S5wAMBA5EMv5rh4pf41xyjdFtOTMUpnv3DuyngBxzENyzDNxrejlZUxL4V0AVUEjdzmVf3up/Fono/p2jWi9I9kCL5VQPUHJaPQHWMOYc9y3Rmu7WQaxyjg1ssWD68dOSXF0GNzAeRKUmB9TG+HW+EpL6xi1NQ/WKNQP+PpdQwunW4PNFVB9Wr8yc3s1PhxwLC8OB0HawC2tktxRr8y9p81G72YumUxbijIaY8xFQPbEYPRNm+8PqAHVYRuK+gfVlMW73eQ5jk2i5Kd/jmr0DU453fSTtIJssWwIHVYvLQIEijRxaBJPQ9q9qizT/HdB0AH3cw1lvz2hVTUz7WQqrzl3BtfM7dyG4LJqQaGEz4GzdAL7VFkfBy1Jpoe+rtAG8iDdxLNSlq6guiqAIzElUE6kFcwZguze1SZEqoQCsvGeGOz+Pwi13PSPAEW88Pxq0xT2buz3lzQ9p03jn5dm1ghRP9a7wgHUMlAvWXwEZUdRmXzGn6ekUbQtnndUP+er705hEe/PJv1j9KTBE37wi7oLOdvb+wJrLKsNLMGaGjGhrxvQBJaYEJYz5p8cAg2ykR19VcN8+2ef+kgbsC6X7DyHhLvSHVG5bZQ9PrQcn0RbYjTe2wnV62Fd9SRRfA21DuxUUXFPKKXaHzXdjawtIeflZDT/XyBW+KrQv6ysQiKFrgFEMNvJ0ndKZ79JJUs0MLrgy4L3zl7R2PAum/YBB0vrFRP9G58HUxwewV6WoGIGBLS0Nwa4SmHkJBubbFpjwx0crc179SwmnWa5Nlj9X/dUQ0f4pqrJNmrXs9PDSu14dhnkQTx+BvnuSDLGCMZuzrMlrQiYq0OcDNRPjG6kmbl8VEb5a3QsNWkHGOhduZdtwziJR5lu7azREeyDSOUr34qeD2f/MXImxo1NdaJbDPj5hwJ1GZErTWa1Mf5HZxUYQ5/8JZKsy2odlHP+pc3qZKmcd1BiI/E7AwZxCsh6CK1RikPkZsTEp3YSh0JN4ZykTJzGs/JTjhOZ4o90qyDQaE96GbDj2XoEtXbhFipwaWdwIWOm7T/+XA5X7QR/z54dD5A0GhjFnoPuf2tnnTBxJGX/uNiPeBkSY7ca6gKPoZSY0YeIOjZu2zJFTjwW9UPmFecqtWlvFK4c+pr9h3vj7VEia6192s0juiXycwxpmgjbgyVHBi/UW9H7NiyhHAmxZ/rFfIbm3LQUrWCfVOswzi2NbOCoXJKjDpwJGONUX/rIesZw8ca3Dmz0D4JmcRHrdeHdT5nZ+Zjhmzbkn+/wYS/m5Y4utXc9NKAmDqI3CqwRX6kFNp8QpUNtX/snrnq3L2M4EWqwxfiEv30GVgKzpq03zGOpQ//C7O1SCofTy8qVmh2IUvkLQUjaO9Ra2Zuza9HeC0pbFXYhq5GoyCS7a8AGytXXsR1loIKVDaK7b2PLi6BHfwTYYTtCVlYXxRuweL/Nwvsdq+9JvMTSyGKZ7/EHmTFcwFteKELSZxBJfqMDvGectqmCtCkUnLdiPb8WNdGZgVd7iy5NI7fl4YQp2bJonrLi/3TetWrd9aSm9xFjX1nd/Cl1Lb1N7U+Mpxapz9XsjoYnz202czGZmjj369ICsQ7nfq27AgFTwFr4mlIZiX5kDmasf37EyheTKkjyfflLCEfetiZfQQ6aV0OZPzmTX3FmiG0r/Pp37EBmdC7K6YcOMwdtcWmRvgsHc9F9qFa1/WT+TOCaGbF8SdvsahmMY8GD+ZCLmvm1BouUR5FTsN6Sd5Arz7F3wA5uap78CzCWNGbXpY6iDQ/Faaws44zwNGAq1ENgvnP5bZz7/Po4YYWBEDdTuf0V7NYpvpPFkHCD/WyLvBSH0XarYvilbRcsiEvGCfn73KYp8OG7n6gjrm/edIuf35i6LKkx1s21fKmEZHT1C+QGlwQf/wUUszzyT9aiNWy3/tLbaRzHtq6ty8yAq7xZEvfd+tPzh53Y/fs0ohp2ie+MP9VkjF+dK5oVHnp5h6IylMmWziJWDV9KLb9g+h0K/A5hTwDTx+u/tN0RXJJJ2/YPZppi5uoCkD+4klNA0Ko5xzQNMnAM7wo3CC2PIfvHk9RUVKjz71LebDD/FUcdszBjEJ6PoRuDgtE38jNJX3IAhp7ITzWr6QZEDkjlp2rJP7MrHCFM78n6gwGv7wekOwWSqKCZpIVk5Rd4w4eZyObMCWc6WitVVoXs9V38FM7wN/eO4dFPgNEKQ+CdAt4HDsKEy8CKiugcaFF0ArEXHGzRTzsSfK2nR9qMDlCFX1vCNeDtPoCT1hGu5aH/7E7fXksB2RZj0TWmN6Bm+yw7cT2SmoBBu7m0gi680ixGvlCTCSkj8wRY46BdWNhF8b79n/lRpcKSfkWW6FZzui9wzG6mPEZlJKTReFIwfCuTLWMSJ62ZUgoA+V+/OdipqpoPouw8PsimkhbLtKZxgIWoJ4oouA4IA1K8/wmE7kD0LZVPkUTd+5GirX1iovf4T0agBDJmP5qvaxbfZmbDa4/HfV3fmcJndPKwkN3yaou9Bubq3v64vTcIqZIK9KO1hW/NUalR/+JAjzIzuHoDgIsoP9YNI1jXRp128ng/nCzLcl4Pl4H3fwtlLf3ffwzdCT8ZFQS/KXQ3DzcVl7W/ZCOa9hB3dBeA6qb2/vbQt9lRhwYI1h/qUhA3Pk6kT7Y/nAZeYz4/3d1mT1TAXDBUKO5s4dLkw1HDPxG64XwKI94GfbjukwCN12YPRHkdvVq3wf3RWCF9dpeCaUh286JgKmtbddJoDSPkgqi6rWUuY38veH9sK9Ddok4iOfe0ZQg75CqsTX9+u2Ha/noRFFSqQ4wcuS7Wfn+O/IZ3A+tcTtoTTw3hDlGcNe1wxpvMy6V2y5Mz0JcHCLLiMPTalBXuguVGWTfXiIU013HuVZrQttMB1r9jmwwKJ3fEka4Om2mn/EyfKiaCMH8/0bUcruE5+P/ZOhfBwtEw2kFE+voGf5GQgNycr8wZITaWIWFYqT+/5Cg+WSYCU4XCPq6/k7Hj/4ret60szOKSyyu0qoAcpZ56bdvC+aHUutadH6ZIZAf3zPJgtfQ8doAEkmu+GTehz36HV8ZvdmFGyY/Ac1gPlsKme4C3rT3mOYsG11xjdkC2DsgegcwvFZJrg2ftA4VBk1DQtSd2C9atbN27FJGDxcb0JmAr7KmQOEXBJ4MZL1UVX/+kmA5quPxH5VYoYvVrT+HtQa2ACuqHmlVKBJefRZzlb5UGfJtAlX561y7a8ZONex+nrDc2VJyk8COe0U88GEAGx1I4XUdsNkzGJ4TPKn2h/HATPk3vBnz8eDrdw9C6JCnmb1FgMOBVgXLmwBS2H+8hzimRT8r3TZrQAVlt/7KvyNF4GJTqLXADBTzpE+8wemNa/c3KEqrVb6Y973OgkHpIJk543T4UFMT+6DyzdKAhqrAfywmnoeWqu6Bzk6b26MtQcwkLmOZJ06V/pGuD5IrDj+eGsOXZ1Kqid9zEPT1TlXFokjv7uvJVknsC1RMW6+kundOORzCcOe8z8ZuPNp9lK2+jpzTTO3HHS4saSe8Fh2UZMXYZDTjAr65kAfvXxa43/+YJSC/92wnbLy2BiyoIwJJtTYJQWi8Jed1ESnLc3QspqpPp2RgGABobGVovYLUmddx47AlczF0zrdym/u8CMh/6nMIDvgyfYMGnNa93aRvLgBS0jmTjoQKTOvcZ/tuB/hn08SHHoFeQyiEmXS4fPP6R2HJh3nEPjDguCMYPhIyYV3M9MraadLEsAZZs6LVIyMD743iOpp1JQ3ire9GlhkUOt1vCBPnypzfeWWlHYLMKSfvqGg0mc69sPtM0qSah5GusMv8altg+Yzp5N3xVqfIdnQ5yyJvpzuNmOL8iRl2vWGjo/0mlNHhOswglgHNZLXZ3SVoN/PzKNPUKAUT9mA+yqvVNnoTaLw/45PtxlBw1WjbR2SYXXlDJShlLYxq4ArQNRt8TNGeEGedVL0TOdtuVwx58FvJ9UBDolpPDZl/ocJtDrAMweTw7O/34BunY7i0KutZkEyAWGjUujPJmWixvrcNj49uE71yRsLbEnvmJe0qVjX0eKPXx59Y4dZtzJRqP8GlHrtpDLupKEL2+idRcAFTGTGE3wrLh6xOSeVeaZhOlCVNAMTNQIk+KT46BbDfyQi9H9LTA9li0445z1nGDJuAeZPQ8PQBEwD20geTyf76B2+SFHhZiMBf5JPQ5yrLCBHTYQXpoixZW14x+1SaD/095kjw6nYxNE5b25hBvwBPUv4tZu9W3mZJRQmFVYQ7k7iR2ZOS4VfnCy0+jvj5LT04j+5JbU6tzrMguSXbBX+o5pIQxYCt9M5PnXUwG/7XJrD3YrnfSoso/AfdltuWEvaPHQb4wns85PmMkIffMU0SXBht/EpERYNTo/M0CJJ9Px9z7N8odvRiKDW+LDjRqjOlwwHK+7PMd3pmDiNPR2/3L4rJsP/rDjWZ3eEfpFkG5gIJPeyBtUSZ4B73ycd1W6ISACXD5E3KhAaMREd4a4dWokJ+C8W1jztWtcPzxFfVfz5ewHT9G2TY/a5OsD8NroKej1FdKlZg6fguND+4VRTUBpbtJTd5Rgs8CUVGIF6tScd6Vofu9G+qYJBlDUcI7nMGFNGFO30CAOth/8vV8vNqSn+fnGVXUuObPRY4ADjjrbfmaPK8+ot4l0g1HPqTGG6Tpe8aYlzlYMtKXZgixXndPE3Vn/+luUV0nK+/NiKD6jTd1FftYCK3dySxNvapzVbyx0QjKFvTgmVEdEAOcJt+CweWivfhBoAPajklmCLb+miuIthZUyGCi23uGW1eS5uNew15qhJBpdrNPrGFlC5sw4fg85rmZHPxi8lAr3uzkB4/rbSBylzPPVE76JEPK1X2ENKt6zGKdS42fusmuk2sh4N2jrDcz50BtL/zWV7C5UD+tln5DCD6b6FbBQhq8mOtxWXAfkIDkKGP6Y+RH0ahFbO+ct9Y0DOQ50rXojP7DK0w2ymhafrrm5ZzWjXcmtY6Me5gFbuIEYe9xiblyQy5wnpl9uPBykGTbIPtvt1k3QJmb4CNNrStQMpvS5G/OblJ6XGWFbK6Fuozb+VDzx/kItRpO+02eFBlahZX/sSd5Kb6QgGyt3jktuUjPh/W2OuWqrsesb5c2umgI6KU9HXZTRjj0YV75F+joUAPAJk0aKunZO0552S5MrEGKNEB4HvDv08LxC2Ng02jjohBnet/G06kh23Hp2c/Jzhi2LDbsDRSTzuSAOugdbBNpGSlL7urqkJyDz1GtOpnhRDRtUjHVBr3sWtmLmgUqpSxDmmERjmrKyZskytneo2Mw/rUreQXnEqNh0ihSrUAyo037ZWlhM5mNCceobcCBOAeHqeKox7E48Udr4LrGyye9nvLIck6YYadP5iQzUFrjzU7j4oZDsrOH7btPQj0ziFuFgAGkHkLHl2UMvQ1LN8WcR4KaC2+f5zrOrFMAFKyMQ7rsAzmem7jtfMrRGhROiRyBptjyrc3vKZ72w4cAwwj36D6UjUCoqP8mECVAUl3Fp/QQH6zOIaehPlj3Sf1y400v18rvjPzx4OFqQzg0gtRLpN+i8fJkBpG3EH3ZdNtq5INxTQVZwtFSuviKd4mDqXYCCaLslzEOiDUWK/jcWFK017zNatuNrtdODdwtQjjn7AGDLlDgkNH4RWRAvrA4MMbOkhZcYsb237JzhSXG+VvE7NAjvnTJnYw4QL/5bxZYDTbyZbxqZWXPnFuIYzIvTS4ovXexoi/Qzy7tCJQnCHnj7LuebfzSskjpGTZn2z90sGxLcpiAOziOM8SKPvFfDp/z1c9x0tC1MGasGQsvUCXCNSaPJNVPxLQ3cXTMKLxaG01humC71m6wJjyguRdCcQQdl6yWfm+btZG60SPraTTQqib+LuyvDf3YaMLsrYUiMCrFhtZojDPllsb2H+RCL2xR5qVEvpa6T8hKw+wQD1A6PQAktfydRCzGz2BikboD/41Xs2MQzDyuNcFe7Q++TudxOJAUGdHdL8uWtc43P9qSVRQZqQgpX2/UI6MxZeNBoN1TG1LDnTC7EuCPlC3D6cHDvpJd8Yo41c5O6LuI6rS/WLPIlm2PmKYgGqrTIfpJ66HOoFEx9UvUygydxVA7DW17RW3OLCVaHneswM4TcpwNZd3AJ0xAFJ77KaND/bqo7JiSlXCRXb2t5/CMs6e9Qgf5qxBnaESjV8VisF6rc65NsRD4NCD+y9XertQ3czEm5taoXSG3Vyo/dsuEp/MpJ+9eYeI3lz+3K+sQe7tyUJuLXmPw5UEK+mFxI/c6pFFK6B7iIzxGJa01hp80nio1hV/vxFsBqqt/5qb6ptHz2eOf9sydGV8wEEI5oGOMDTs4poz3/WdojmXpmtsJbXTIMH1eScyrRbcfTAPhZ2SVJVFphwX4acLexVKJX2cjTyAVHygA0W6SR5vp0f+0f8qtqUtI87jlEaKRfWQOLqFGCQY/VgzCeslpnf2dU5IE2GYk2bttHUsws7HCUkuMkyCYXDNRiqc9ayqGCs3mtZTuTQU3ZG+suAlFNAu5JPVgqaIC7fWWp3A6rNtYp4YBIKz6wRiib1whP7ZT1Qzh5reWTLUJm08ntbUtMMf1rOnFP7g1BOz8rjX2cKyD6w7YcrAKY4DZLQcfCDYjzlcDawRxPruBKfCSJTD09YLuLBtbapzUrfj0EvXi8KqFZNvZXm2w7WCIDlhOSc72SfnHUHGe3dSNAK0J2PgNGYS8Z4+3X2AoLhXqogEstt8/zOMUoajUaSNlTj2CDx+p6cUi/jhp4lL2AeKBLwtU0CUpmZADiBiU77rV4nA+DWkCa9DKpvn4SfkIaempjKewdjTD76Ps4nPAcHa6gSCe2HCW4ipxBW/UpUyVxDBpH3b1KWtqc2ORWwFBn7ZWYuagHBM2WlO/uw5lPGYt6l8DY4QVGJCHPufhFcNKMdpAN113fkxW89LVGYh579lZBXKNa/NEkmfTy0K0l8DsU8LPPugA9UL+lby/GMrfeQAJzuyolLEpBLehhvjDGTrSEn809sljHo5VPOZ4w4rA5YrgV0rQqBPwD0ibxQ/LXNXPCaXWhtSQWffZGh3P/4SevGJ5AxYStcsKB/9Lb5l3TDwvF44UnXbfbOX3Y66GQ59jzhsfxqVc2PlQ5/kPbk9Moso/9fBwnQKlI0EEeNGhtpBqe81CPVtT5ZaY0dcRArHJ3x4JC7AOI8kRX741K4yK3XWMiCh680vTMaJ6Xv5Lv1rPicemcdECo467rRA31zokDhUm6EpIAjGYc9fLY6PUvDqor/B0CizLLv1mBJvYFbLCnFwuZ5Ti7mx4PTv+/vx03+sZSkOpY2u24zt1UaAdF4qZyq5V0786GIGRl22wkS4N+icnWwPoNTF2SQP3YLMWIgthZakEj3E85OdFy7bHwEbAhZ5w4HvTUD6a439iXEE1TTH8rjDBmPE+hCDFMBaDMI44UyTNWUsti/Mp7S6vxL54K+LVGjy1oYVqJYdwiPg3Tl/yYGJYGH+QQkuO9TcnS+r5dYC0iAiwGLTQuSERzs1sADABPHtrpWy6kScpqNPgCIKH7tArfVcuUkhdnOPrfny2tiByg7vlo4JJRQaZP7A/66T1mTRc+Mfd0OwJSv1wR1HWwKqbMULNvtBtPKSy6FvPPyzU3F0jkqWGGC6l6z+3009rTu7V4N2H/QotbQBSAIlAY84FRASg9GyjDyTKk8RA1PJadEQgKWGKoVpCxIUQleBzl30PccAHC2YYccQgEXxnrjgHleUujgQAvxyb0ZXvVWwHHeRfGnkD2LsGN5wpWkLzu9awJaqZPLJ1Gj2Wtgyh28y827rl3Kl5/9/jhG9ZdprH16IcXYYkO9ORkaKVPs8Oh9QAjiAkgcgkVvI2p9OHp9ABzhsFToRhwi2tnE3hTWXHrVb0b2nRTMqFSTUCGKH1O8yb4rcbfFE+RUElZjx1xyDgm35yKkQZ81JcT2+cD08F+RJzZsJf++R9/Qjw1i7PigxUcMrno0GCdLJlQOXPLYNOm5yYOiuAN2xtaQ4UReqDtnbTKShfCGN79uKCkJXr3/WhL3JhiL4Vlw8rKp6Ptg+RzC7Q8AHp84QwNpua3oTahAOWsEKBPzybZz8SrtMWy8DuU0ZRZDye+iheNte5Gnms9KfmGMMKp9CCI1xkJ/oYEZ+q6CMTDAwakxcv3zcB61whqDxKTD69v47bt72nbAtiEMmoFz9jywo31jL+FenGysVaVLcdY5cg01xANqgGwhuDotmOKBwqF0jNqUMJPxmeqPiN2YNwBJhIavgipMNxb0QChyE0Zwssil+OMq98jnzYJY4bIJrPmWiD02ikHC9uPif8DAq4a1nI41TLg4bEeSFWh/CNm8k/076RTBgODoQbSwkJZjHwbs8bo3OQxIUfHRhksgfoTnhIPfV9cauvZXJtbyC/i3qVuF+nYM+j6oSmg8NwL0sUnodGXQ8BvBSAG7wn1G6UmK3MypopsN1NjVEZ7BtjowAnOzZTQ+rWszimHpcSSldGMzarltJomhfoFx/n8Ksv+OTIFGR4eswGvl27XcBIjHaEdQGyaKxZIda9FBy4rlaDvN9icXg2l7y7wvQY5Yra5k9wN7Bl7Qtexv4UU4jLs2gcyNWyEEegoT+DrXV/9XOtHG2iGneaewGb/p629R6ghA0+/xghJJF2bm80upzmKvyt4JBKei6YxyBF9UB9h6meijWutWUliE7zwsaDs//UabWtVhhBR6WTyo0Eur4E5yQpU8ohskdQpw5m4rhUrgMo8iA9M7NmiejDyakBKfuLo/B0OUefsSGqd2eTP0DodupNQ32A0Cd+B2X1swyvDpI3a2GvmtmhqtACw5CrQqgStp9G3sAvswchc2Jx06DC6pEOLcvY3wtsmOkaBdDiNUoWL4dpKAC6dKJNsvJIzrXf+fUlqAy3oFPDZSiaaQOy3beZ9HgdD1PuBxG7/5m/f42YyAY0WRYv21EvOY8Yo31U96k4I0TDaS5n/Iuukojkx5H56/iQ78hmt+NHTCLLH6de8B+8kTMFDmMQxtDKQ2ep3nVm8TNfh36MIDQqLl9hLofBog6i/rVZioWqul8bldFTyH3sVrmH7QPPHPFZWnCZ1UXI0hjHfDnP/TpB9fq41NEJTRD9IHoNpOiy708KqmrEhElGTvAGV5lzS3M4gftLkw3y6bDnpUET0ij4leYTkvjQjbTb6TmpciIvHyAzbO6LN3PExnNhLh1u2q9sV7/QC0zmdAHo2xjRthb9sbKdFM8XtdQm2CA+pMXamebwcLfV1cfPGjMQSvFmr3TgWpW+Bwk1A9Hihk0a1ZT4MEOKo57BxMVUbx/HGP30gRxDbzZd2z35Kuf9z67Ypv5w6Rmjus0+JUfjCPtmKwnLfO4dxzdEwq346/kco0KpDiKLrn9YerQ7wTOv7zgweCfTvbWNQJ/s8ffKk4aFSG6eElc9gBrvz/vBIAo3EzfGuegnhYfV/0jiawJGFEr5DqA//Zyx6YCGCMCJtZHL/tx9B5L2IvK3dOit204pHf5EtCYji7yQg462Ap8Z7B511WQJNRTzTDw6qYI0j6qTrbX3DRW6e0Gvfc/vPJ7dQnwYqIxu4G1SSOAWnoG2+TdfZ2ruyIGqPENxPK4YsPkxUeeBTelNpEQJSW0WWfotqJtveUvOCM74Gc4t+aooPrJoyUZ1+yR5XKf1TXJijOzsf1C8S+FCpUUk8YKggBfyiGChSzKcmlKrbhNCY78mbzRjET5I9mIyYjW29zhE6moPqFXuc692tRtohg+YMCpYy4S0SJ1JgT5Je3u2RpzR+ANTfsRXH0BWGkjlZRFD+DoxyR857KGVNzJuZkbS7Ng7J/wdWozFalYPOjWafkEiC58Ji9V8VTFOYq/Es0OWpSfyLvUG+mGhvac4EoNgV7bu1lNZK8Or0iNOZuLGkIcJMh/9sSEdHsiJ+ugDi0goREM7E1KrFKrHvk8jsD8FN5vv3sFDtHPXAfS5nFOZ0XtUc00E3ZUHOOz/9k9kFw8MRcsuonld+o0AfQF/04mDyztOrP2GkvRfoeFXtefCsn+SOdpFS9awlqRJR8s6EvYiT9h1pmT3oQNcwYHqWz+R9ev9hTYR6fCFdJpWwv28Jvuw8zPouVkPI7Ydu8bsLObA+cosKH8ux7uJzVp4GZAyYqx3b5R/2hA/lJwkjyR4Wq5SllP8tBIGMeXhl7mDaBjgtLWas9T+QdmD/ifunm+uc8FGUT7B+xEMaCpcJFrkdQw5K9y/ZkcRdARS3JQ5ldTVDusfEK2BeRVwWc6GOv9YNkEcZO9pkjZvVpykj6R+KTWs8ZqMbcT4W6S3iFsuob8DJOdYU2BQ5j0S7jgK/DzNAuP0a+WoJmJ8nq3D1hvNJfXFcUQDRK7GMWFmElNnF3zYLaJGjdkrI+fsuL4NiOpalaOSqKRUXOjyF+O3rUn0qcROTIIxNQy9eji0wZ+l40jT9Z0kE++4WHou9+lKHoZASvBeSI7xg+MGzYv512AYxZ/0YS4Vm3grYAlyMaSAJVUyNpFH3Qk6WEkyM1/ikIVpWnaklO3SJKJR2YyKlmytpdrMfSguJB4C3v0UN3Pem8mSLPBwj/VKVVbVUoK1BZpOsePss+9b9o2fvsjlv1R8hT4Fy4kvjWJtpIERJqD07gONnQKHfmJMhXqLSREBzz5Zet4L5nGJgc187yCZwdzqnYRvsOHypPc3uWuTEX/h/91RBMNe2mSi3nCtTlocLEKskdcbkWRv2bw7nNlAgbGE6MrBG1YyisTQ26QCuRT9OzoBFeTIfaOywS5Hn1R+vipdmD+3pdaCs5YU00/c4jd8YVgOFnVAwu0cZ2O4x5NQIkLZKlhDjQGZKqOK7Jp0jMTW0WRMYh+dK32pRQiO44fWlesL3UACBJ5f6SYRHQ0oCB0/DHD6VCYwHXTtmWsFL6T3Fd3S6GxCQV8JCEc2JJRYJ8PZx1Z+IMV9OE55zdBszq/oHnT9FCwNCZefxR/Tr9zS7IVamgu3GNjgTeaY1l147vO2O859lEBiNpnUVNZ7oHsGnxbBGQkYMer6qmyqkoMJjwHI8O56DNxDBS7QmEMbzPpLAcJ1LG27ulP4vQQ/msEJEFQSUMV03rkYTgarZlEW8FAdFPT0IZgjw2IFsPZDm3dTKfB7Ez02/1cv9vBAyDN5Az3vITZ9HaBxdiVQ6MHbG15//lKIe8Y5X2Kxij3B4MHdOcTyim8p4kgVDMy6+c+4lNpcCp3D8FXDaLw6V4uVY64RbFsXMFQzLqEYm7EZ2mZGyh1BjY00DzmnAUTC/ctvUY9sIURcf2AnVemGutygPzG4TZqEmg9KZ4RNiDEGP01uxIfBioI+qlkzsQdS84wQWz+IIQ6BDfuN87AxSbyq1rF7K+Xk7++d3+HnMl8/BSZuHRUZIK3Yc2KUtsm77bNAu+rg2C/s6ypJ9Tw1PnBq8bjQ1/em/OUv//ryS6oeOPxktTFwTl/HM+tr+4vPqLvVRBrwmgdLAcrLcB+ABVCXi4bdmPkw029J2lE5lDU8m6/JsKwFpmNog5nA4Y7bptSy7Q9PnHdVR7tQM/iTdIOyuA33QdUKyWAofnajtGlFwcJ4pRcqzZOgLC1QshRb2tNmJSt0FZ8hiyJXEN/O/TOkljfUoKzEpOjQGktEgFwJpGwDEA24T8WnjojrT8o99GlzA1pIWoEyE/qi263yucM34iTEVlIb64jqgrIbIfkkpiIfXUzQaxXP2OVt28vCb4/3vIwoMnzGcSb5yDo+0H6t0zPk2jPRmymhbNoBqVczvyoy1QAh/JznPRmeChqhhuKb/AYg1icsAPx6JoMkNx8GJA1kCNg5h6RenCnw3q05JfbT/EHCCHtLp12+1xCgTu7xlhqGt9OZeDaLXwnQxiuBz65jkkK1dgjI4E0ih0W3djJPEYPHOFG01YTNCcJ+gpWNX6onn4p9CGQ3PSKa2czXJRReQg26jwqBHTrS1oWem7vp/cGTni3ln+cI5DMcpBHCYZHbjFggPJ/mDPgTP6n2/GGRtvK7mOuNfhNJsT31eV+6oPdUoC5c8JqJ365EY5EyLewLLZOm8dQHnwS8/qU7ocu7rJltY5xzvH0YpX6OC9THRSJDkNc2qsJ1E6pc87Ie+OGy5t0Zy68zuPdZejA3l86ae7N/sDIWmzGG563EiNrFar/jAPffbvPvIeC72iuksMnQpqODeQTmg67VxifqihoXhx9ikBewpu1UkI+Y+ogvZWYhxskoPkL3fxAdHwdK2Wt8S4x8nPlQsrnNNutrmYa463M+G95YfX+yKoE3KMWPu4/okOtA5zXrbbvpsOZu+gdVQKLnVaFMR4b9GiT5sS2JKgexKL8XAN7kmgYQFRS3e9MuBGwTFLnxG0QsrIHvLEMADntC7cipas4sRjl3JSSz8eTJ5omyRp37ZCe9Z2+fxrmNyw6gLe9hOBJSGc38HSDeuUKR364pWTrCCk5RMM3INes54WACABhY2ywK4uOaACjUsqDHeLIl40gP+qiWmx8yQfILacAVt9HtgiuT4V5oyZ4XpmW6dXjmQpor+FTISKzZiCiQ+aTQ4V0IOW52YnxTT1ZejJP7k68OIDlOd7R0I3nQdNDhxGkjJRJF9twusLWZvADM56gj4rM+A6qEljM+Rwv7znlGxeSRGTQXuVUPCxRFqqXEQZncdcENJaMktvMuYN4Recz/18JHbblsVlXzayX/gECLDh3Hghr/4vCdtvSQw5WOc4ybBG/LuFECzFf7lZSDhpFL/TUMS7gvgKkSd/+AiP/O1VLFniaLfJlJIfUhq4zHPiKqFggpHJsGmGBVJrC50Na16gE2bjy1z8QH13wcdoUSJ2B2cU6vtpxmJr9AUM6q5Z7YPOUTjbFhov/ssE0Kiez8P/8mPvXYeink1tKIbpX0q3ONkuxGjr3GsE6mooVEFM/WVmFNyfzYmw4BHU9PI4PYR84PQ1vP8D2ZSTUgUcol4znYEanFANyYFuA1kBMwpgI/OJ+ysEGwJw8g3z10p2ntLIcbQeb0+Z9HGhvXbl/eaSSkz094/bIgq2Ee6oeCBwsGi5Bf9ueRQ4c7a5xvPY0Umnmc/AknFFQKN8zw6IEqZ+ImRrNiJzcQRSLtA6bszMoHJAYJCDObITDPuN9PYYU31LlvEhC8zNjhSQAxscR9v9zPR/2ZZYfbHgw51vibzH2VX3PJV0ZHCZhBVyBGffaXf8DbydJuUiMNS0lvjAVLbdq55mvJXbWBJTK53808cwXUZyhYm7sUNCOJPkbZn2FYz5Sb568OfebZm4x3ppdWrjGcUUbk3ZNH8RDWmtn0+w2nChoyIC6dfSH2O8IVNvR5ScEQ+Zf0diNbzkpi+GEmUPY3Yr2uPDxgRG6xvKJ6J7ftkM/7xB1wroIpchzHzifDB7e7kDuTE3b2cHIcxuwvz1RHfFbeXL0jYolmwQ9P9q1l+TN+8J8U9MZro4XGM3OeKAMb3STUHpPv48r+7o9fBiC/9Skx+BKv2ydmsSkpN0Tu+wwIaUc+HoK9epndB91UGMb247yVc1lWGsxhnUPgBzPx1bm2A2IAW5iyJQ/4U3Yv9uglZoGQ7TFXPbTgt/YAcfGAyQRxGRXY+MEEYWBvpsbUzUfeISrVXCo0f9JJ9N7zKp6WL4LmJmpJlquzfyqoLec7tFK8aDeRg9/X1Mn0uIA3NeVF1I3YxVgxkQPkIiF5wxCaMN6iKt8us8OzDaT9kD5+GxwH4EcdSa/Tg98vFUgO59o+xTn9DoBvV6LFdIwNUsrXwIMmYTXvZhMR84/J3rDJIsUyGREXO6Z+Wf2dL0In1ldXQqvSx5QP/r/6FGdw7r1V7yhjMZBp3KC+LLowKQV4h5zQN/0MZXd87LALatvkO1qcKef16Ul0tcPAknf34JLYHZRonb3f7Ocht4tE+XHTZQZvIADtgKMqd10e0WyfqPBWkTNTf0SIFl58LJweMfiRfhVREwJNx5lW5pTD+r9JUGRbfCs0QcB8/S6po+I6uuMM6G38F52RWsqD8TtxktKa8oPJ2f/kogOsN8ed6WbFxMbuv39fs3QerT1xvux0URevGS6otb092+nODbk7kopWOyIEYkx5axc/4/A8NdA65XVkZXnFvIIL9gpion+Ott3Yvp2dJ44yhifCfFpl6q+LUFzjm7Kwl/X4K4971EjNY0IZWzDl4aXMYlmdXq3KMF8Gwe5UXGuZC6S7YIQXfNnyiO7Bq4viwehkIyWJBTX45QETC+cTbBCyC4Airw/Kspoq7dNAuFRUTmON0Wv3ienclRIa/5NUYPjljaTGc8JkiqMnTYcY0rPDfNei8QUHsk1A701PK7ksM/LUm/2mnsKkiqzQ0KP3mue0m0esDRpKFoSZJfRaOIh2HF2uU/XPwePkEXuLY4B9N7ewsLSqipcVlgcSlG0TmKm2gg8xvjbvwF1bZk3EGrhohUen0QixdodZAMCLTpLtb1bFZgpwH/zse8WZ2tnQqQcSQ9epqoWVSE0VC48jE56smbwemK/PeldJmf2p/erJzVIPq6bvxtjPSgILM7h8bQ4/ETirbQUyLB0pqRdgrgjiWpH0FWmt+Npyt9HyibudHxhbRcdDjQWKhLRuONbRMyOPZApSF5eI8xDJnfaExa/kSgP2WSwuYp9iiqG0+4t6C1dpZc6R1rz0Hquj8IcoXaxE9KbVl/Kvh6N+5IA5B4V/8aISjz0yTAnalKKT1PH2F1qDjaQka7TRq5i5fPcfAkDlWWvBg7hiJIFjYEvV5kUjSue9k/SMcX1v0odS1//I4Wr21hkuiXq7FVqJt6gq855omdPtn0xsqeK4G69GrU50RJwxFqLmsvBSHm7vhbfBk3XNeveSzWIqbdfSRI9PXuJih26Tc24Vg0pMcDjhNM692qzFLdb2e5qAIXBD6QMSaE2wZwJjWBnYWaoANb+CRmXH5eQct2D7LBHX02J7ek7bB9ldKwMCwxT99QJwlI1o5jurs9H+U+jZIvvq8hH8gWOGlD4uhaRVi4URLSJ0YYnSU/ZhN4KSS50PvxhDLxD9aLNXMw/FTtjW+9Z/dfBOLqnGydiHIwzt33DIKvIioCZ00BFL1biFr9sOSimK9aI4HRiHe5uZTQ8/3Tlmt57dsdprMdVOCDREV93nClnTFlXEkEgbox9qiy+OleDsnJAmdyOxsx2ygULHEamAGsClDRt4kHyyN+Ezvz/9ZHAVj6aDnfpKLj1DqOKlS5MA3depiVEBeSnf2pRJWeD5rK6+e5UKy0nCSETH7OQJUxirN6uIFkW98Rv6ajzbD9jc7XB1yrAwj/iR7y8E27OG71v/8RIYFKHvK5WHTMHsXy2bLr40axuVroZO33tfKzXam47iAOkcfD7+DeY+Ni8S9n8GyDf2w5kTeVbDsz3pjrtNVnpjgwFURVrJ2bOJq0Xlb83fLYw3fXJmvJyRzinl3lhv3U+ZKZHZEnr5E2KjywFA3fVB9k+GQbDYenVEWzJMtaWsF/8elSeX6TAqsgQe39IywQybqoMtLB6ma6wwsetY1QsfwckflGbP+KGqnE1b88l8jeESga9Flb3wo0i9Vo433yk9u6lPlqM6I6rRFoYGEcqkFZRZ23xvltPjmRXvrRKWn7DtlGJXwmojH0xIx5qH0NVT9ECAkvURmF4UgJkg+85UI9j9kptcKpPGKO8b45fadZDxZUNS1SiGux1BW1RfiPIEmOHkNDceo5zgB6RGCntheJK4G3I940ZsSDNEoQS6qyX4VWU60IuIq9AoqM/rzJ3Emd4lJ2yJCQhAdYfMRdeRcEFcm5ZlSIRe0LErT+zu02SkMUmnyXgVbDb9F+8YVrBgNkik2Ds8rglcj8bXapVQCFNcSXngT5F5GUs5pyDcKDg5p8j+elS62zlEyYitx0y9+nBlUxU3y86arUwOr3ViuE8AjEdR7beE6QyRCWCFkI7YTXYq/6/UVx9w2ADNR11DtN328wY14ZV5n+uVQq6aaBUyx/+ULwg5Ug/GB+6r3d6jjGuH2ACbXzoDihTaS9hjqZ8PwiorEBTT7eoPlcMKT6A1+jB4BRXB2VO2dI375GkqwE3R/w8mTXEq6l5TehfgdoFvXIM7KVQRk7Vc6HIUrIOR0THqx4hzbCXOwyxyHabOgzXZl3LHJp0E0AeSBKB4R0gBRl2MYp17ZLdG/N4hpKmTQ/kDFjzvgSlHarM8xErvf/7soAo4/dFRlRQ9jsysWhLq9/30A7OpAt2eioWp7Zs3C5bhLDcwoYWgS+Wk3U3nyGIFkDkUDCI6byLH97wqqCaca6sLIlv3ZvXLpn0lTlBEfQOhsBtz8NEOBvpIRoeorxD8lIXjxfwG4FoTPmTQ3nyZFJi2B9fdbgsaBglTE1R5qHycYlrF6AE1UVZ7jdufSq/2BatRk+rDF4hQ+KgSMJ3uhNrlFZ4N0wub7OaPx/eBByPaIQTPAPVX1zixulmywno982EPbJyWnClcvrO5y2ikU2uDoPwoKFa2fsxs3rdbSNuuAIPLZiZYk+hXHRzsIYQIJhGNlUQhpdZwrhAFzhYXb3DBwRZXPueBl/C5uH9qQPko/kVEWnJSCtJA9ygmq3A13H/R93vtp2JlK+dixR/Ay+e3+3u+xYNBk5Cm2pYCQNwGwyE4xk+jL23rDih28RSDSUdwFExeij5LAAO0SPE6rMIAo44yFEbY26lNdzSYcUktAzx/Il5C0C/mC774xCMaH59SX1nXL0QvWRK7g/8HUF31V+R92ZZB6AebI/yKHMFQj7rDCHrMPH0hBJZgz3K8/2rjCjceSqSjzoIVd8iBb/M17txqpikr7n2O+qvGoBHhZn3CJaYrbg3LxFTF/+gJm7vin9zMJEmuG2NiYDORkrayq5HKByc6jeAwFAlT4OXGrQK9AtEfT2uJz7gzKLAuQM26fTlW29T507Wc+8ecObkbQkwg3IsB0D9ip1Iq1V+9Ko5xOlxvGSbrsKEGhrRV6uRDPmo6xIW571FZXES5j3MWHQJ9DJH3oVZytT9cknH11NTj1BS+ZmjxCp+OgtwVBdN6hUQPopqaG6dhQT42bHEGnmd4qzDMNvkAS/pgkyqazp6a97lfLtKz2tGhDrxn4YFT3djHQcRuBrxj/zjH569ieJMZZ4V7mWhVOMKYNTpU8J4SZJosqU7C654gavNoYtSF88qoiOV5crc5ejT1EnG1Ya2TJbViubeFF/Y01w2f1MqeDGdrZ5P9aLBdcGjsapzu7olzqpvFl9EQnTU4gEgqUTiISKE1k3ybhJlewHASvg+kMtpOgtx7BZP484qH42m9IXKu/w9WuRoJ3vM4Z/b8A/KvVnpOZZQS10xnLozQdbZ6HgG5c/S7JvFXHfEee/raWqJpMb4KxlmbnykFjGmgaLhafFh8kLnDBvYin1Cd33GQfUW3oMxu5aItCLnGKGobWhkzMQDelL9l8Vg7GJqplcEyHWJCTOYzySXvv34Jem+cqcT7dLkUB2pOYLAUCjYTUA2RbvIQgZwYlsOx7uXFByzWW6Qp5L1q1LCY9lAAzkFgDuiAcG5tVOwBcYbG9brC5cwyQ+8k3YTLwTKa+93enBYLRMpCQMxHCNdmNioNgBJFK/xsfqrdQQauc9qZuBdTtBFvEZO2MkXCctll/fG3e5QCgj4b4stwApoGzQ2AtcJFHB7Mu9T+dXBSzEc4YlsHHq/qGpHN+4+DqjOB3GkUfamCSF9xF0YbCNLHssoZa3kkLkhBmA9kSnjoQPd1sMUhe/PHix/vThheeCjvBOX3nuTy42W0FcG5tBqvotghmpWDaUKnHC0otzQ9PK17cBortGCE0SsHl1RW5pPsu4t2G/H6I3U8mYzo//aXd61EgpaY8oxszjR7ALVL4QOus0kVC5m5eIhuIJ8NLVBJVI1s5XC35rykrOkNY5cPTOvv8RSI/1VlwvEgVyTkGKsTJtIT3nbcsSfAZTZsITlJq4WzqqLtDphzj/a/qqNIQDhvDSoEqGoaOLNua0HadiBivf3HgSr0t90XI7GRkqhK+8bH3l1QQMH5JlNQss+XmCte4C50ivy7mUoXSty7NInBdhEx2MLVHDtEloPnryv3XmoD9EqvC8kwDId6fZ+xOUUESNJJPZUL7weHK2XdpsFwA6ahBupKE2RIBpzEPLnacLJ8X9MvtdXHEauXwFLJd6ROBQdZDR656UBM7+GXHVQ3zkEYSmI0kGDFiIVpqltahJRZLZoyDoTuHsZMczLk06mzgE5ps3PaBmbqMVH57ESbNDtGXOtOY0Rv0kVKiTDWHS74WA7EbZtOStVt3UzDPwloQFUUGiowgq0i9pN/kUSQVbuc4n8thJTemmuQmBu0ozwdiqr6qH+NG1te7gfPsmUO0fhlcNfeX/wZrFKGPFibkzjBeUcW3NWzTr14cpLmC6P209xdUvqkf51fGYuCfIS+M95MBUEshimLdzJ0maAfDmIV/Cw0ashE5T540w+B8KkuOSgRPq6gipVWD5Ei/Xs32/4ye11EJ+CTEROQ8wy8fcNNxtCegFeatqtsjRWWHp3TqtUcqNvsiA/lyguRUzHiCi5i4fpbQIqzhPwz1ODui3fBp6zlCSzv4KJWvcobJgzzN8IrgiwKZA21YzTMkjgIHaxWIANPi4Fukq0UC1dlSsaAqmQBFu+YiONV2LiWRBhhdSD0OngmKbgcNiwZuISAxS8hMLOQpWBozCkXgl4CtMUgKpooocYSC95h+T1uOnqKkagedpxLqFhZbj0VAs4Q2CTXknG8caTKIjug37F+IIoKOsl+9eJgnm5BTUis693uvEiizW+GOWNwjg3E3tNLI4H9bwRrV59LH6Z7T9RzBa1hs4JfiAe1UiNWHaPHW4f1dx9ChA3MJ18gN/WuB96dfe+e3L64Dt9DRxWhx4vGEBdfKKYh56gHEaUxF4Z9seVIFLMut8pMYl5L7Jnvno5l4C4dKJGj34c6s/93GIYzEFj/f8GwAKTC2ZY0l8wW5c7ZQTKn2qVKnOrWte/sPIGqouGi4r6xIS+kG7AV+D0N7lmCjZDrxo2uAUDfp0cHdPEpFPqW7W9+PJLcAT88ZTrMomsToO/IJGjGx1VPWGk2FX6/lC4H+6DX5VeT8t5is0F2EGBSu3ikPqNzsnAIAHqFGD6nRmy8wIvz9HTzOX7Wvn8OMx5Nl5KpyTbdUlJGtuMrQpCXS4pA+pVeGG0wUhT4LETz5enLrsMyjI6fE3tsRQC/wPXk9r3LM5K9UxA3QY6C4lXPQ4fS+PhUEhjg8gTOSGwlu244IqE4LmsvAK7z+C9luwJ0QiWja9ZBhgLiwuivV3SjoyBqm005W9IZ9XqOMv7/54wa4Rp4/IV4LWpe0JDmSBx1RlFMjMrBCke9mFuPVbuyK6XtF36N2778iRAdeeutMoHx/Qr4rFtRDkltemlpl+fQA1niknx4n1axLTOq6Q+fXVSotPjqHZSciy3bLg/hj57H96ZzmF+ulEDpyXYvq33S4ks3i55/76a2JFHVYfOqiYnjjqblk6HuR9L5qa6lvk9T0F3erWLhdu+HgaG6eE824XW5YKN7CGj/52M3+FtsurJ0NOqw8TJAjq7nP+xA1N7MEr3a/A/bw8/7aFjcy9zn6qBRGQqGSMA0B7glfhLUGnONg+czkTxVq0IaoJ4FGoTp02lgg0FEQl/TkpesIEz9t926GtCZhgqSUmCgb/+93TE7GDjMt1fbjK9buUkV7B1fl3ddJ0y65v6DbUoCJZy6nfel5NEWube1wvBOflkRvH7oj2NRXfTexKrF0E/2OfxeafiUplXkqW5q1iKR/pbJPkM20NNo8+SWDSVZBUi9f1gmXCtm1wFoHpEOSbdwdyeL48M93085Y19MfMZEBx0dF7e/C3U1UNNJaQTRtJhuw3e78z/rbpRkdOl3XtzixG6vngEjrZe7Z6HwDXvcIKFSi6wMIpgxde4Zlvi2KnASkFbErwqmoQ+uzGmdb5l4nSY0NjahozTOjdD3a2RxI3LlS06Q2KpI1J0eFbnTdoIsMX1WWH2aNnwTNaeDwZEvZD6zbj750Fx4dElNPFfOR34HTIfZD/wD3+5mxdYIv81dSBHKKnn2Uq+fptzBkpy0qLQ/Fx3PCw2JXn3pD7MDjHKjMxoQ60AOTwleRmKmIrYUo2JDdKkGWlprzZcDvqnNPxphQl/iOup0LGRRGdLiphbuv47XcBclVZS4ML3wIcfLMrd7da/EyX+qChq2g2y/8INPZbOvCjR/2zb39ibeikDFHlD7lqb4L1Li7XF5ufeypHjLC+UDqGF0d6EPi7S+mZfzUbUETmRk2GP4LPCnk8NsrGwwPLYgFJErNjxVN0g2AUpRQ4Ku4QcjHHq6bQzmySLEE5EDrrE1x2a7COu7f4QByBeWrLBcCAupgAnDiweXydPxLa9Hp82RwNDu/WxZpm0HOOchRum3fFpD/EsXDxFvp7P6yrMoxNps9+KvC7MaxH9B+G6mqYlaPmHRtas5wLsNfzGnR7GFyr7HtBaFfll0qSeI//hm0e06T0E4AXF/cO3rMs77MS3+t8MiZJrW5ufYYE5LpPfbn6QUIHBYdfFEZ7VoO8SzYoz+dZjp94zTus3rKOblnhpzNY5LDa3jdZiTrqZDAPkhQ25Y5ayX5MRxAWR3I0eKN7G7PL51JYVc6pMYyYOcZa0pcENCgrW9Hs1mRAZ1yO84/Cv4PkYmUe6jOjaMpoRTvsqUNEtdaFntC9ja/42WDNGeKWIup3Xl67EeE/OlmVdM0xlhyBaKdExWozRSNtKNG0of+yY/Pczf3TmFtjs7/vorZWMfw4WysA20S3OQO75O13tAcrs1ZmdrCtvMI8IOUgjzaNI127H/JO5/Un/xBNjhBVg16wOvnI2QRq+6x0hE7Veqj+C9e2Ki+wcFNQ56+wJlGjXABVcI7gexKX87cwGGuLUS3w9shLC9+MpxpldPkbjR04/iM3HwYEyyNMfQsAEKnRDRqyJAj+fXqaOfVboxYI8h9mBl4DQCAOPqbFsbl2DfilKEDWBlivf08B2UuX5C+PbUH0LubQpqxvtUxVgA7gcMfuWZ1vbs0qqtwH5rLjkjR9Ic+iQPeuE6qVz8+Uj3ob3tiJ7nlJbGstz5Ybjcp77sNQXtXDbo4bUxniyClX8EFixJA+TyipG9K/7/aSgpbQKUL3MqhkAiyEPvq/SaYet+otAx0PPD9dxpTSPHQwrIlJENjaKJLpQ1Bla8OhGXWrdB7JHs2u+YfsDemquae+E6oLvA2kBd8+3T1VpJ2nF0eiHsXzEr5sS/Ij1bn9FanPYbcHH+XOV8H1s+d7EEqho/y+kz9rN8pDneZgxsVJNrd8f/gmQDTxR3P+Qj4A19L3hQg/vznEXBIJEzwOfeklYhoUAAgaTZ6KqNgZMVnI9loG2qVGA69eRQTTbRQqUziMCT8steqJVhw48ORJ4HMjjda+a9IimBQqNpJdbb1VIyMgGJP00p5sZvxXakOKCGLkuhmgEHagByLrfUjxwDPpt8zm2YPr+IIqNGlqsRnWDOmJn8Xf+32DrWuCsV8SUZn3acE/Gs8ybU7lJyButXmZaRFhdNA9FXVJGeMhGNNuLgX1FhqXe0WBXWTtOZe3g19dBXrCD2T+mG+9qDVfQLIPsQRi1FlMMuDsJ/wYiFWGVm4Tpdm002phw2SbZFP+WX7eMcx/t7cSagaNVo/ufQENwlxnPJk/NizHVnGDJ+WhmgUfWg9DHlqZlDbOU1BKvAQe3hsr4+CdXifkMy5AvhuOdym8E8r8FyS5/y65SpY9NZy3LhjUCfV4CekOY+FyCGrJIMFBs6vv0IUToLAGHtoHLRaY4Py9qi15rQykVxvv3o3FEmTj31Unz6QICVAUd6fbcyrUBoZLBDnz+G6RUhj37OGMMNN1Z/24nOFy7ZfW+uZ8H3WUPaOU8hc6CUUqQoXPGYWqmX64weUukRkCdK6zkuQq26CbaZyleoJx81eA/tnDoHtakdtH6aVYzb4IO1OSMR//Tbj+C4ejqTjVdKHmr8JbjPUIMUEgmht++gKdTuyEZthebfbC8u953zI3xQSFPZ82v3rlSE7+BuUqTTMg90j0C7e5QkA6qBB/rMQk1Tv/SBScbc9XEJcUgRvV5tDmTXs2pem2dgvCti6m7vpfLGCjNz1SwrMFsf+XNa6RUqdBR5oaLq/GCOu1H4XQ1BllbYfCfEthPA18Dg+vakQ1ZX28e78zgMkL+or3PxGuWhhQVZ9KRdZAcRK42267nK+KAFe5P6eJ7jPYvcpJmpkXnXTZWi/9pwu9WHYJG1R078L5guC3NQMUTGIOq+NX6XtimkNgq0H9C+gkCOWMUe9gbFUdTWki63LzvacVwsr8WaAPCL5Nw7QKEAbE1Qk1Y+IjPV2464NaR0oFOGISNUW9MQl/+nGyag5QPQeUiD/j2elErbGR7EjCddYwQnWu+H0b53mLv4H/CVfYNs+4YruoPvTB/w72cE5mdu+r9Afa41zrOI/nxG3rdO9PC8IMvNATJFCDz6HF/kT0VLzN4VsVyh/JwyZwOl20DCKJnZIaFHzMIApH37uQJb4WaS6GRsJQcRG+fsaUrJB2UhTfs0Gg0PeZTqK5VZrrjYIv7akT3BV/OanRgPzXK8Kan/14xfMrxfdrEQlfHF6UZitPeW4nFpTLESKYV1g/JzJYi+A2jD7VnN2sBJ85ymnyanuaMXFVny/HEgBXmx9wOTqsJd4+s3SCbTI7/FY6LDeDJpDHciZvxpUxFsd117PUbclw3ozNyXvpbdUTmxHRW18Rgzjf3QmM/qfZ281WUB7nm4Co6ttUrfr1pJOQdUC2ODOi+ROpFAm3zjA4QbzPnG/Hm4Gu4v3b6h7MYVeWoz+DDS49cr1tEMY+VL9diYsFQAqJL/naLQj4iGccEOjMY2Qj8X/0IJcLUKMjwTpR7jV2O7zdKbNScTHv/0juuCYrD2lVvpWspz/8RN1Qp1TyXC2xaMQdkqs/Z0Ia/8ttvEjiuWr8OnnjS0joRPa/NWqU+FnjpPMuS4nIl4sNLcQ8Me1F2Yq8kbgXqwPR5S5rX7zXP46AMLwkQ6UF4lOgaqmXtVG0xbPThSAv0iL4n8HMCR2xiH6gBERyHrkSWjLp4dfnnfngdkYcxCsQYNN6MBpaTMxjw7Kpp8J3YKtVmnkKuND3Ml4G+KDuArqNpjpECjWI9S/ppfsTqMMmbzeTRKYYsK1hJg2v6Qra7QUjLjEJSABbp/aUIQWD68yoTd79AiM3f01uAGnOxbyry2sb0MIW+QTKHeAE4EdqEI8aw3hoBruvgDvqhNY9QHpthcFJw4S1AMPiBrNbRIcbq9OLzq8WUwbsXLfqzV+dneTnOhchJfPHf0w9hg7yplXRuG2h6Or6qKClAgbJS49DLge8fb2c3TSde/vqC//KlK3PFxsfdBLp2FMyyj2Z+RI3h3lNDfHZ2vxlbcZD2w01Cy9Z47Fi8q+WPYNcMZ+A+amWEeMz4lv9qp7M7lqH8QCCnUypDriuoYqjB3j0fIlGZOc1ffWV1nXzECSqyKse+N6Uz17S9nbgH/lLaPTHbh1uThmJKOCZO28Ef+xisWdSQilxa1unA9OTjRobPmZrTawdtljAPlo0J7A4/TNpU6sA83JlBPmFRa262jl47n32KAOl52uc4xH5VxfwBjALkAjGPw3rtn6VcxoYVEK/XZ31FxVtyM6eYmg6QINQSNpdAqOY/ChmE8SkPs6sGr5xsjDHvNKcE6at7jxy9I202P3DWQHXFbWJzZrYBbLBqPp1pdsmDQDREw0TfW8mu+9oIIe2nyviFGN2pPG7GcMTjqxmLjf44dhylI5UCsdPVPqHKNdgOllnBCGFOmBi1k20DzoD8yYlgr/KHGHP5hvYfBrdsDGoibHJ7xwRKatmkVr6XMerqDs3QCLAtRWHANZLw9LxeyIHzxtvLGJTheXYWRTeKIB5+xd3m7ZqqE0rkYHWjjrwqmEYQwqE9qvhK+pyAzMg6HTCZLA+lihIqVjf2aAPt3LcsZjn/4Yi58QWLaq1jvoxof0ljbjZ1NdvSA0wlG9blP8T2Oqk609gMChfLQ4miXwTihukMJVG2sjhmWquJWyi4FbOOu8FvtEFNKdU7VdEPfxAg4Vm0nv3CQ9dEmzAefApsvNoFohNyWQudJV+jWG7HXNsCEvc2MsW+n4tgejrkfIERSp7VBjhitZO3jeo9XfCD0m56NoOipKBbiGCqiHbsEW6aHsSEHjIjyWxvlYqDtrepWsBuRkazCeIVC4wOtBfSXZJnNCV6/jIGshpXn84MJa41HzEc8iKXnqVvFz/+O8d9FOsvx8db//YOq78VcOFCXpo90g0H3yTZyN0MOCu4kVs5q8yJzXTn+6Of1ALWSD+8fylsfFHsR/FQQfAdqL9GQU/lcxpQo8xdZvtUuIWjnoXiRXGuYkodd0hL0f7cHAyGqf3J7Vt7V9ATl8zCbEkDHF6efdpla1i9JsZxTKtSk0/54JWCDgUSl24JENQeAbUkSQzYNLT4ryFi1AOay9/ZgduTeowuEh+ZQnax+z038wlSZfgOdw4C4KQgNjvsS+XKWYEbR8abQ3m93XuCIvzDvQRNkr3IUfSPQAPBwrbeH5Dmp8wAPY7wAfJQtGhbRGuT76zTFq1GOlvA+AmmJQA/4RNKodGNpIv0vSkLsz4dWZ9rJkwnmQQNn56wY3XAAhiEyhEBM+V7hNwUOeVlR+sFV1Q5FYxk5vYzWkf1QFUOcbn5aiYbmAne6peu77inZbHFa+PT8kwpUk5AQi8JGd7bSV5a0qHoYRNhABl0zBHdFN9NfqKxGY3Qf/w41tME2Q6FO6493GkncR+vuRw/p/AqzqDU2RQbe990jJqPXaYvLPNXkGNcgfYIe+y7eci4T0vUsZg80ATI1gVJes7FDvl+LkNCpnNfTOKwS8zew1IR4YPUyviSYuYWZ6OZ8qiXhulYErQeKl3bDSUXPPuFylfF0V+YyBWuD1BmHlVrdk8tUPPJaTsJWaESVeYenxF5SV0saMuk5+u0HLhuNghCMrhtbEv19AquUEW8lAeedFuMhdahdGlhrU73UZ0XIq9d0WvRDz+5ThH6v0Ni5FdrzbKlMB4GbnO8Dt+IEWu7mAYhRKHQhQ2JfmkQ+o4Z5M6hWUg3D7lTZrC9GIogtLTz5gNQXU7K+d3ipBGwbOa1fZd1j5e2icwsg7KH3Lq99ZnWb4IDpDnGnXPkzlRo02DqSc80+ER3CD/KHi71HBAnp2bMFKprCBTDyBQPBF1NDxtdycP1i5mYYltUC0NalH6ixg2KxxOpvSpMALyecBJHotmsVu7g/iDqNVvUTL9IjzY50fxXlfBg99q39T4r+cayvY6yRf75rSZUqmFPELGKkZ4lUBeMtcYGg7E4Fv2Szum+EodStrQfix6FaLJjPJGcNfmXc3uDD6OKMYZSxNY368fr/sJCjyhhTxVPiE6teJh6xLQTcsowhUwfdVm7Pn6dJR9Gu+INX2MAPCxyExGWKUoiyvHVJZnRW3cXGIpnBG+Itbs0qmKB/8Mdcfyl3BBfn3Lpo72wCGaYAIVItRU9GdYsb8cxyXb8INRCBakHraAsCi5/fFM0DRqhJnbqKQrOILprhBpPBy2TVEqxcCjp3QoDWt8JABXSMYhc7J/9ky9JFxH/SOxd5W7ZQrVzgCttIf9fPydp4X9wYSWuaOWvb/E5Ha1vyhVG/aSN16X+he7xiGc4jZCu/S4J/lP9LI27DscwjKNMnLW/QiSxxYbXSj02H2P7U86mTsu041tAec5S3P+MN1d/lkVcO8vAQHGkJhlJ8x5hRLBVrf5xSBa9OhVpdhAN2rQ9PmhyXhGX2aS2HoPv6duwchPEWPItAgugUu8N3FrNrIeEdNti0JWVnePsyHRbpihqiyspZlWiLzQB8iW2jp98BT/9EVJUmm96ND4YDbyllOtRNcXH9LzbXy09D5DYYfqUvacJKRmGi2u3oamtJIAMc23+7F5ZbxJeo1KC2PlW57kffdDyw7EKNmUL3Uvws7PMcjVfTg71wJAfwsPMSVL1iHcQ1qO5yDexw4xw9YK+kj1A8NSE/suYBo2R3uKL8iAg28P2IESCq4+4EHLdRbxHJf/ECjlpWjTzgvFdyrhDv4Ifi7gWaltb7CioJImrIU1LlVJAGM9IVC2njQp/qlAkmINx2QU6Ezs35wqmvoHE2e5GZEnyXSazdR+33neXitxlx7C8C2gMhA+msATi5lBWXtm4m0HOXcTlX+lGudGm7cqWv0UO0VCqtc0yvoxCA9PId15Fg5EAe/9vzV2f3ATf6gR6qyr70p7+dPuDl27Sd8ObZvi4LfUiBiwP81vd9bdi5tyWZ58XUvml5UdWYYxx3gGgqfwIyW62Ygx46W38a7J203iNIM6jk23dGkEF1GsAgPH/ShlkpDuzI6ZwpIu+cdYO1QafoTSkyNDjPwlxN0KsLX2SbYSELA/3+uIMbSxUd/S32wojeSodtAXUDIctVAK8fg06jciqUHor2m/8QFIhqTYj3Ks63HTtDpbfwvsoaZj8Q4m9AE7kgCRHdARu6ro8pvAsqXqz/PdJmBJl3DLPhP266k5OLWTJTlyQQyO3L62KBOP8QywmoRnV0Ovx9oLlUVmSmllv+RkLNiJEbTJujKZQczRuZr4YOOS1hES1cih648Fcy6OmROS0ulxPj3aTWtFPYRyUHCvC6Efb2ChgVT5+ra6Wt69CM6ZNFjgS810WhuNkrUSQ8MYj8DF4EXgMUwWJxflOfADcQAil0KyNFYnoohSjagalqw/aKYhevcGHRPg5QryeVNHR7qfjLC0yDNHDQvJDBYruJvQCSsvsaVHyvwo8llgc3lQc6aEJA9V+bk6DvYMKIpb/ISj6xmrEeDSoXZJgZdBKgt+R/WHiS+869LYshdNXUuiXEhs9x7MRB2tardheJxY8E4y0lSbKgNnG14AcbnwyBbtnA9YauepQ1QZ/7VlC9NHzsy6M0k2a54um+5GM/JBhhzHESThVph4HvIq8Kjpz4oyo/LNlZRyEw2JKXDeS22s+FtK0nn66ki84TO3++KzNkmiAMEj8hSQHiqM2f3It7nGTrEc+4ziaPI4vBdAeJfDwD8TD2Gs+EsY0RsSc2fbNuaD094rVHrvYHg725NMi5OjLMb1+7qxD+/fRatm4fyuGLZrxzWpxjm5HHroDkmwRSrxxDaWBwCtyF/ptaunKBTehMB+bmhMEpA0QiE9pJRtCaXe2DFQRv8AAyRkwTGCCTNY80BrGBRM9VU9xEl18AAuI+n7cK3B5WU7qfOiOyZhJyjJYhs2Vdw5eu8akj69Lk2mXx7vhhDZvcZqbs+3OS0GhiNy9y1eMttPJ2IxudoOJXqqGsQgqFlLpAWbEn+fEzxlJLF2JwFFpPTQLny6ZvffdsQMdbBDH193su+d2dTmtnPEKFpiA1HaoYR40BvLhkHbVOsescJG186u3u+aEJlWyx4KRSEv3BRP3r7Q049mJ0vpHeYphWNqAUosepvBiVIJMYitEUV1jwqH0H6IQq5+LLtgXXZaXvPgFKLVG8c96f9VbpCMcwMYCunwu0aZamnDbrCFWiZW23biXxEYsSZJ4YODeENee8NReKL1fVAjlyTP6MSaktqNT+NbhmqvbJ4ii8YjaGOhWBV2a1kH6w30x/cobDLPuwpZnp5Uhpu4bRxxGsk0A9A2oJe+BQGrnVuoUIM6LLyhBefeRGgtyh94mSvXUQp79l400EQp5T3Usa7prGDn5YFk2KkB2tDTRt8kt3xdcIVGP75Ma7SObD4qLOm4psPx5JFJWpq6t551TzoSEBI+V1MRIm9X1txaEz1HBlZABJRLa1L1rzW+PPOXMu/SjwdaDqemNoCrg1X9HP86vyHhfOX+N04DV/jYU0GjNqO6QTtyAeqZreMH+Rv9Y8AHde436ZOCBNPjhTM+uRCzRzShglsg4lQBBrMqKCpqXXOjzeNnfOBYBLcPv5Ovn07uwx0DmKbnxNE4wUOUMatqbl0B/jn2e0+JOePYkDj5z5trSmr82cFiMLOwDRosNaGl5NYBZndoqQP4xgWB6CkJbaxD8ken1Fe+Xx3MeuvDL+vUJzkenJ6spzL68P70NnScn4v75WIR027lxFpwmY/S3YCdkpou6R8Jbsm1Tds3n2FnPJmyZa81lIz3Ml8OzcI36/BKYO0fBOTPC5uvS8p4FKs5IJq6UnlLHd28DJBYNybdfc9lf8P+ZhiDRPVSaCnn+gHMOQ76mjut1ytCQPtqxd2TpFz+dcqCdJ1/B7fUbpmLP47JQLK5GpiJNE+Mqst6QjgTrxZRMzPahYdDxaDcxgEHLurSmPPJPZxqMMHLpMVQd0mPugVJt8KsouzsfIJT1CzTg628sFBplG0P3L4IFPe/vrYAfErG/mjR564HIc1TmHLLtzd+AzBbp8BzJkca07HLgd4Q4cgahy3fNL2LfvQwXcceW/cbjb1LZQmO/V39Q9+FXNcrFB015VcWIdp5JCLuhoCFZI6XPPtZsZz9wTO6ms8hI7jJ8V8aaPeUOBUhnpVvLMtMvXk6SyZwE9rNt+YiLpiBmbyWNMjlKUVB7yiz06JLpsdAvBMvK0mNurD1sTx82ry5vwZ9Vfv5zyIzLyQ3WtgnMzXGIar9hsqcJtHwhm/XskLXTXzmvnwSi84iLBI7I9X9B6TMp0p52lvMaKo1f2Tr+9mBGe+DFu0+SpDuwtITHrmnODv9/boo1ZuVIkiNjQ1tYElHN52I/1h6NWP2HmHl0O/1ff0UISZIbL7u36auU9+Hnk4BwWI/nq0Vxy+104/kzUPa0p/WT/ynwFi4r2kXrau1RBMcfPUgT4BVZ3VeW40/F3GVd2tzZC8G1jmPkvbIsA8UfjuhcOvrofEcaBbAQKQagu0Qt88kT5dQOEpGZ/ycu05eoWqz+B6llzdQ9CgS3vYXW+ohrWMUmn3Xq7gFIwUHidoHs4VrR67W923zmFgRBSTcHSIyUgq3+BmZwrHs9L/lPwdKthwjdELhwZdut2/Fuh61iBB7lbNrmNe40eZpVl94Xqe6oebTpzhDAkmAV0RAOvTpWXom3pch92whZreHGSMzXxALiU+50dFaqu6rpcVXaQ37U0yZqi+nsC96lWonORjktYhXYrgU313VV4pXsCtq9pGgxRNdGsyllAgSlJjChlF2mE2FB7D3jOxYQLi2+XiMkb+c1YmiSVkf/T33RX0kzXUKtck447wfaukcU78n1/fqOsJTOtXFvERiLCxFE8bxktAaY0QCEtwuGeizvJxI346hwNMPbGkHmimCi8F0Q7uCTIRgGC+sxarNJ1G+ZvOIZ/OGdUpsDdMJuqtqiUQNxG4QENSB5A4Yo03t9EmY5PXxhUxrDMp+Q0VE8g4oK+mn8N9p4/kwogO1N5pQYadiQggJFbiCVvncN6iaqY4XTLiYquY/UE7i7sO4JFmjVC2oCnHdYV0TDmHayVC1poPFCfX5jL+BTL+mnJ+IL5zS56tPdswr46fBWrzVFgi0sq9qlGFcwTRyVmnGwoSSHgGyBp9p1qyEH2V7cYsldlcjoAyPYRTFM6XSrxY/3Vop9fyw8qSQx2czZoR9jGUkGLoZAt+NIEtLLfwr9YQnng2T4Z8KhVQBf60/cXXtFKsmWpL/TbHluUYwhllQCHmLQ34bzGNNu/T/Y6wbOMZtK/Qw3SA6oNAr6gFH6RdzEk1TTUq9AtrVwpm4Odgr5KHZdP2U238ZJ/XAiVhImSQu3gFRm/WWfyK+2ilmKQls5WnwNNLT7zmtD/zMydW/cBnhZMv/Y53kFjYec5ptRQMzwQhwSuJi8TFlsXpN3NYuRWTRXiIN6em5tZDAcmb3ZJy2+I3r2md9/tUIKuwwJMu1IKonMkfYpTRkK/S+rxDfbGs4vP4ecLUFK4YbTEy+afoqNRqCGt6UQYr70q3cMLj7I3LJtSz5MFqaEhLdUkBk0adfQAGpWFdu8zbay4ceTSEr4pI0gD/GGMlMDm328XD3EzJm/KgcL+HBbS5l+60dGgWRthcoiOqe81XWPpsiEV3b/+EteUEzuDNSxEzwCl3AzfJTq3OYgqtXMjSsJz9Hwex+tp7dk8p+uSD5Ce4mS4w8iC1J+V2Q1RMEIJp9F2MtrgKFn6w/u57y7lcXofByLGYoCEQfNL93rpOLlbtP9a3gKjrz7/a93FExrIlFWDH062Os09GxKjHwy6epfArG2948J6nQsJqwSvYpR/ONRenHGWQdVE7vrqkxyLCkgT9/sv5gH/8eGH5oy0WZcfpzIVNP9PrEdGS6VZpV+ThWKYtD1c1JMuumhWskEOS6dMSYMluj8yl7BHfqBq84X7nmRL/kw63hVqM8d49k3b/33oYBpNCkb5BU+CuD9mSYM0D+CNBk6WkpbCBJXNHH9dxJn03ho6hAafumApRcL4IGpZ4zGNHmSHCJCHszNVHLokU92ENLiIGfkh3o3ul0IqoahkL5jwwfqHg0C8WzoIrQFNWFsyZsL+E8OfmDiVVc9BTgBEWSTv4P1xgWw3/ZqX1uGCphjr2lK9xIzojlDznN/q/G90hNgkqlWCe4fNBhRok8ciHl+/py9U8bc+67x+ndzA5Can0bV9G35nfEXrx8GfvHDG/uUMSb97B6tM9sOBVhnb82CsDFll9YkXcPRdI1RKPouZPfXPlRqSvvhiq4LPWp6o7fR7K+jO7XbhJkN41bprlbJ6/CXZS8Thni8UnDrfX/M0BdgKSyMU4bffPP7UCP+1Bz/B27xOAtl4hmG+ayS5oITU1euBIbdgZTqLIcvnWq9in/LMreA61F0N3+VD2gLInxp+sDkStxIGBkSQZYKPjQ7aTrtlp1mANkoHDVlKlbACkrHYxrsN2OYmoao88/d8wZRJ+Dtda+vXrZNdMks72ZiB/M84AMsijA8FloHWn+E512ukKBoo8IhcjzbPccw9yexP1IWLvgsmhVTGc/3crBjDlZDxsYUvJOCTx8vQNh56efcXysRuLuFcHeJGzDBbcv63BIpF+Oar9IvvQNX/glZTvg65XyRuRbzid3LuLV4ylfKVfoLiqPxrEoPL6+fjsb8ZR/ZEfpu7ybzIubVICbmN4NUSrzxry7PyGNkO2cMHTRbLBusnphK74Spfd1I7PE+Rar8s6MJqrcUnUnqR5Zx5AUruPwiVt6i/QlIm+zgh8sAW5th1cSt99eQ3RF+K5gjr+Xpidno7KpVwOCpqmi2pZH6XijEQhVk51qAezyDqKJKORo1dyAVnKS5yYFQviwg+zLJGRXEc2GwSgB5xFkOInig2ApmI3hizOl9smADaqumqM0XabaLWqG6vzxlL89jWIPH5ep1ZcV+rb7nWH1KWV8Kyi3gycAZPcAW6p6/L3/DokfXbR9aKhZY6qXpy5Sm4FDyTNenAQUVe/vo1lVJyqMiAIrgfwuuOYgU4+XImVcYNlhcAKXgzjiNTkBpiwiiFRcfbM90KhhiKaVQMUk2IanOQ50XAd9aGiYmgqOz/LJJnR8xnnH/DY1rLK4J7wUj291Xnhe3jH1JBZTMwbiOQJfhODN6LvdjkIA9srs6y6FcXhaMvB6mvz+0MgZgm+AXerjcAseLX2kffahJRrkog9pqS3P0CTAURjIMfQ+MpADAKu27V5odwySscfvHNjvDtrgpBCpbXp0A7S8MWAemLilb1ddB9tLLDjmwGosQwGyOFz2+fnNv+y19/Wvmq4Fk1lvNk/UZ9hRGkhZuM2xpAT3m5RBvGLC24QMY+tIZqlID6tf0l2yvU+iErZghXZz2xTMdqavRU+QVSTeoXcbLLjkJNOrdzGLQGMZtmoho3g1PX25bKCaSdu8QY4gBOngr/cUViyQaKN9++UlVolD3Lp9xFqVLFm98yF31+u8x76Vsu1++tDBrFMLNeoRJXPMMK5Ggl64we1Qq/2uH/qysLZ/klHGsR/1H/jztdqLBSONe+bPemUOsHv/+WrNCp1ZM3vT5sE1c9vxGfZPVzDUVc0WHRzvd+OJ0X4UKmb4+OHFBoEn1rFmnP9reprmlXMvxmP3LNm3po88XNIn5+iRCkT2C6MoQyfQKAJL+hBkqeFdNSRbDIC2nTBVVMSuwGf4aOkHTMBv4X8HJNLJnNgEzl9GTC4kRYarOgeNUdNxbclQMvMiVTMQhrskddZ1EDuSVQc/vGQ72x5YafkL7qKPcGrPz0uJLSGKPJjP78ez4u77bAsq6Ya3q7vYPDmIpUrbSJxTkkyYcRgeTGAxsabesMGgVkx+1oqHW9VINcwQmuhJjwwY6/HegOqsUyFfhwuo5bdwHHoRTfip+Ru9aMMuTiN7PjB4RdigJAorQsJhPns1b/q0qVKiO2+6PHLDTB5fFMbYeSQrlVEz77r1CoYO2QEyCEnL9D/g0Lr7AxLbEsLSK96MD7iVkWWse+kPFbPW7aIoTKTXMR9G/Jc05bYW0ud0aaarl2fc2r4Zum0kUef5WPc91mbbaUEq6kwpYxuwfe8lalWIsLRxu0B/okDdYgWrWaClaWJYRjjIz2bxyQ5/migjOBEGKv0Vi/x47r85eMweyyUixO+G+Eo48/aDLJ14qMlOUtovV21Ua09+NdAFc4Q1EFA5OMNzUPEXrGogfw+FS1f5kjCTsFwAa3HelmDCT0DdgcMQIJ53ANvOQ0rN7Ti8uJKmmVtWoEGpfqA3hdupJ1BDA1jd2/1yg0FlSsFbZE5w1NOQOugXWZdzsIMIPpNWM+IR8ZcKSknapVSFNQScrJKA/zw7N8VbyDkHYJ1qKLYzYJCgQyIoBLo5fhvA6O7b/iWKk5oyW0zCpcVs3TdLlv9PzYlmCwGRv9UfbiFP9C4ccINyacHWAjPZ9l4SijrHlL4K7CWA9FLZcBBQkXipw7juyZPbpeI/Xds1TCKnKSVyPb/JjUzU7/qYVjButoaF7zXiu0U5abhb7FuW1puOyjgL5QMSF6oSf12wOM3Pz2NAnWYwpO1qrUuzTOqBBin2u4ce/8ROwNSJGN+W/Gz7mLBziugvTrphp91Lf9j4YEyVF/Os7TBjt7VotiVE8yWoPGtHJRVy02H5tr93hz3SSUhSC6WOG9RjFzfUkHm71xuhFe6cCWtZnG+yTZq+AFPrkEJgSO3DamBOe486VF3vBSqbKXPLPW+4Hl9/45M+UvdPNH2vPIs1Gb30i/woLRd4/C7xf1t94lhKgvhdxUeqw83xnDyHDy3f+KhnFupM/tAhV6G2rkyMGn53rjOtSetPC4tArdwXebgY4JIHfDYhLw2Lg5+UCuODzblrRjjBf81Z9SBlw0kpNzaDlkekR5A61Wu2kfye9udkJd1nt+bINf6dlre3PruaNx37PSj47S0mQvGgVqTIrBtoHDQNOzI8cU25YcvJoLXXum9C2kWJ8rnVSaAuk81NFtlJFvdZlq9d9tAXt/liCzhrMMgAqDr0BjR8ujQ4Nh6bKj5goZlDkD2DhsTniK7XZ0wHHhL2V6pyImIHb+gRfeoWceRMowXOkp88xoG9uVzk/IshajUWgOAJHWugbfs5kzDjb8iRfOLj0r0i8UZuiN5+qRe9ordsKfsr6+UHAD+Zy1SXhNKYiciXlXP+flv+6SrbTZfOtC2X1fAHBtPc1tsqERL9KxP3GGCeBq7SK4x0b26B6hxOKsDNCi6tDyuqbddLwZZTywPI2a4mgtdaYR9CVZwJHlYvixZbcljkRkLU56miXLRVeWvn7MoyIHTN87PJaWfmArT6xwJjb8hpHOBHTcq8qHbUlBPlvKqrvmpvuFRRDyDPh6pIhtiVLZaG+eA2xQcBVCN1b41YdtIEZy0g+0NOsyAdbHlYAdzwUGRL6LiLrPdoeBeO1q9DU2Y7Colz3ZNlsymzdpdl8f45hS8xRiF+QrJneeKQ54ShEF+fgcKqQeSE6KPZdE9ED82vTU0hTor2C1mkMeSw74dKzwO6K8IvANrfal928/OdWF31uvPZtdH3WiDpsFaCUsE4zSjXNOSTjzHfbZ/p6NU5I6QHMLLR8N3DdwPzRAg64KfDQGgYIIOvbnBTBP8ZA+jANuIE4KFNrf9ZnQ+q0s1y4K69x0TQZK4D6/miQRlp1HOGiNMhLVTM16r8cXWcCMDKKKyUzykpKNQuCGQKDwRDnVljN8xwclVJtzTR3WXCABTKoholgqJH4Jj5wFTi6K4pORp8d2WHt0X4Z4WE1zdkNS8/WkQcQD2sv3zJRUG2iisl+zOlsNPNejjJr8bTlULxvgfGyjOXZ1uA15Q11M5A5xGMxl/LDu2BocKXK8ns5k2hPjzD4b357HvEMBWr2vabhP5aDKLTAAv+tg0rCTyhxeoD6xSY3jjNkRYMXFOvMdWD8I1xN2kiNlAzOurFnazjaQAJyQXDStzo7vwQwkACLwK+Tv0gofi6trniyPi038yxapNN8N+9GPOwdv92dq8i5UX7PEKUBZxKmtqK0yj5WW9psU61CncBs8o7jz+jUHu9erMBDKrwT7mGc2gy2VxQcbof1bv3vILmNb20ppLTAYDtjh07ffLincXtrvDsoL+8OlNB1Pm3ipvwxCMZN9zeD290Cbc9k3kDoD7IwWx0vCBQ1VTZYqC+fyzgqoIeyPQOnW/NkySI3VjXRaKhiM5X+sCLYfHw++qGkuYirKZ2LeydOD0agYfRaUGNniQBTZvs9X/iIKWZQyXJOwdMJUBRF792F7oypqbEdVNQGTsyTQCPyUGi8MYmH2yAxbqN6SmMDDR8ogg3fp5lW7irwR4Z35hQV0h+gP+BDptehyx20mjmgk9mmosuLQ/mMrctK8BbGFQoVgpYjmONDtG1Ix7ntdxr/eu72ey5i0aYp1G7iFi3w05S7/s0UYpzW6M+rIFVl4pRlicxrOLN8Yu13OTjJqQSG3dUwywHPJL+5W/6CJtkuw3o3HO5SijEeYq/neOgaIDQ/RyEPXRxwRkUdLh00ub7lRiB4c+W5DINVDfnQ40soDyGMGj2g7mFrr/yk4AVbsnajq3ZKpmw67cRp4W54EZZV4HVT2qzgT2fEc1NqZ1BzKhN6QQ5krmbUg+az7Gr5Bh/VGWQ89xb8QjLe3HiQl9Uz+j1+sqPApsWOVNt/thc0o1YQZ4AVFvBXeUJxNSL9cqK9tz1hftLCPlHcViAUlKOiVw9YN5qxH0Jbf5Fk2KnSmbWf1pePQ6MT2Nb4swr1yp1rhFPv7+aC6JU
Variant 0
DifficultyLevel
617
Question
Polly, Roger and Milly are splitting up two identical chocolate bars.
Polly takes 41 of the first chocolate bar and 83 of the second bar.
Roger takes 21 of the first chocolate bar and 41 of the second bar.
What fraction of each bar did Milly get?
Worked Solution
1st bar: 1−(41+21)=41
2nd bar: 1−(83+41)=83
∴ Milly got 41 of the first bar and 83 of the second bar.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | Milly got $\dfrac{1}{4}$ of the first bar and $\dfrac{3}{8}$ of the second bar. |
Answers
Is Correct? | Answer |
x | Milly got 41 of each chocolate bar. |
x | Milly got 81 of the first bar and 41 of the second bar. |
✓ | Milly got 41 of the first bar and 83 of the second bar. |
x | Milly got 81 of the first bar and 83 of the second bar. |