20051
Question
{{name}} is filling {{gender}} pool with water from {{gender}} rain tank.
Water flows from the rain tank into the pool at a rate of {{flow}} litres per minute.
After {{time}} minutes, the water tank has {{vol1}}L in it. How many litres of water were in the tank before it was used to fill the pool?
Worked Solution
Tank Volume (final) = {{vol1}}
Water flow out of tank=time×flow=vol2L
∴Original volume=vol1+vol2=correctAnswerL
U2FsdGVkX19z0H20Y05Qbbhdz3sgSJw2gd+ul8nAwTbAPHxhzZUHgAmWT3+RyOHuufEHrUmcsy3Z89Fgv06KizB88lY+cm7M2QCYSDb3g5KBYtzOQxx/WHnchqKG8m9gM0XCYwG3XMG2t5IhUtUZJ6ccwvDc/wIDr54oWF9uqCf2I6jcuGB49OMv12Ptx0/jEkHWK+GUmLgEhnpbC6Nw9pwkMeKGrVT1Y4DSNwTHlwUbP1TT5yNpZw7ftV2bYrLOqG2Wi28V55FeuYzZQYffXrC8XPSiNAA7VrGvcP68ApJ8zcMwpR2i4uIgywsmrE1jLg6tCCojWH5ERvAslqimPHsy66+TQF2hyC/ga7GhIsPHMtWVhYx6cpzDwlocjCDUHzu4IseO6g3ga6ODaj80E1S8sedOPtp4TDX/Isy8qQhv0S7n+IcM/QvBskBRmlbnt4Qg9hi3qBS7QiBooerxEE5YW5pmTlZ7Elx66SYwpawyx9V1ZcmwEtRxx0Q3wN52jaD7gfJprysK7vu8/tL9fS79AbtgkF6sDoturvpp4uwwCZzfTgitt+a2nHgM5/o29J6VwL4pn/Wuel77T0P8xr5Ol50zZ2DUXjM6PbZMRkqXwm5Cbpg2z4CtbJ8O4MgN8fbA2is5m/8IbuoMRbSi4zc9HcnuJ1Kzkb/mI6zhpRhUoTnhIjbgoQFMlNZ6ZeN04LVNkeYdQbfH7+QPI4w5fAS2Acuxela8oQoUfuEn4U98PPxTkqO/9f9lA/PbxlDSq6yQG6M5djJSx8/H+My8zL6RBNAVfNfxVmN02OixIxkgmrI0bHH4sonh2WrB5yBXrhclPUrITkV495FLPmZp1ap6aYZUdW7S+0Xn+1N2EepgAW5uKxYc80B2IO5ZqZOoXtCKRCkiOa9jec+Xk3GDmsC2nRXdHlrYL1dFKLzcdWi2gat7syvf2dN5tyj2L6Vv7j9yEFEbFIPQClZpm4Ym9CxQ85FUGOM3nr3IA0mc+ou6vZBN4az5TVlHOLA7zQ/UePQHIlsUqio2yILYXWlPb/O3GkawGgSwCB6/Kcqz3G9UAD6mRHXo/UeVVH1HXbS399KavDBZj1g+Vz+ZTMFbNPqKi2OLYpf+R4IImsRmJf7wrNT8AjE47sV84Aq/yNHBNhqt29QxtZSjEKY1tv3+Gl6tTQNPxjP7F5H1mZo7I2TTQZTDUiP/Jy4TKilCAMypQine1+2Ztc82kIt+zRxC2Ak3WzkS7wir8yZjXUr+DEdSj1vyuv0QfkGEKkltDCU4lDX8WPcf6Wi04ScvuQMV8fU4CQfYoELUQhrCA3awr2SQeYtGiRqYbBZZNhDrDOw7vPjzHQf8Xk1EHgP50QVU9idbPsZEOZTJBXFb+tKUgki2qpYwhTt46GHqCEW1rtMI1p2sYHA6g2Svb8wN/7ZTcZmCT560y0pdTnzSzsmJlxlnUORRDqVHo5oiD56A0KOnlwL94B2h8Q6N2H8Xe1NAmWM6v0k56iGU6xa3f9Q2yszC8l9CdAZ8NYidEK7oHSBYNqLiPCMa1iMmstODgngQUU9EtMW8bgaeVqgZ+AAjtEJW6emqiPvGANW24dm7yw9X+/m2IPibHNoI8WXmondgDrvIbyqQ7DAfwIgbNMUXzoqLaFBULxTAgNMbibyP5iToZLodJw0ebsCZtROJBylInyK5kP8cCjIOxnUzTcHx0LcDS/aOx66tbKi5NYWUyj8yX+6tgnx+OKDzoSrlLbwH92uiyMzRPSxelFuJB+DSd6AgLZiMNwRSOW0I1DYwbFOM6RnT70Fti5/sYnDHglxXB7hSBdR4/czwKlLIteNeXlWZ89N3VO8Ew2oMXfHtReljm+J8WD/DYZ66xXgoZmtq93BFMoFaqpCrpJcDBuG0eJOkqpqCFMh6SsGIcFurbfmZlzFQ9XEO+NvRSiHYD5nf7zidzrW2z9uTIjzfpH0u8+ylTC0xsODm3Ro3h2c8JEA+jH1sgNoRJmAJvhVgm1SkQVzsjyxx8zgI7w7p1selzpaAKsXEgR9Lbo938k5DNzXtlSJOs2NrbzlFiAVwQA7c72OL3QOyQwo3PLLrWrbls733j6riQOGquSveW1ff5fSWstw8Xptyb/Zva5pidxeCHhRoi/qRYtMLx9pPaDlAJL9B+TzveaNmvgiQhacAjpG+v8/ex4DBdX6qbn9U+ciStZUxiYqacBUU8RrBrAeNsyRz0yevTt1Ibag9qlsQVMWLrlw7+H7VjkvIEpSnv4wNNcaJZnDfZNTrrT5zVrCEO4SJoogWdkT20nlzFDCJu/KdqFMoiuViObRAL7R61KV/RpWr87dU6LYfWCwyXAr1kb3m/1t1oK5QknKyzQxWJ6YXomK5DmqEQzbyMTfZOtQk+BKO5A20TLpUwB+3UdVfPebDy5sQ2x7hAOY02xCkcIf/2+zM8ZhvVVGkhaeGd7LFSBmG2DxdjjnOJ8FjGB3kxotxQByQdtP8JAQq+UCnSOZkagsdXLJJqpe0GPfLKTPLN6nu+0PTkWUu2yf6lrUrvFSrBKIUfJr0LNDQA3Qo8+VtwYjszAZYo3JgclDKqX9uNEycCRbzEppVjPfCM2UNtWlZ7ERnS4LbZPPtvnWSKu38M+fX/zQr5eDKCFFZGzExb7z4q7zkveNNHuyMIlE3vxPgdAh/nJJrbSQe4/N6DRsVOWCPOUbBecZfUa61suL0NN8I6NayyAyr+nxk8j1S0dxOw1JAnuu7T5nniScEOYGxBnp1+3Hq9cum66EvKtSn4SSXJS7dpld02Zhl65auVXziLxKTUl8fNz7xWmYRN91tYjUEMO/CGrNGUSITrm+wSZ9Da4QzCPlkT07CbHyEaFBWnT9zf9l/ikDTuXTEoKnUjnYvIPuqlQLfrbe46jS1IuVfhZ0JAxdl6Q8DhF0w2xpYTOz/pgSbC1EEJbnZcdFtXX7p4hVjEGUyImVEzJoXMPHXlrkBZWh9PRtrE8o9zPtEMVv03x6pC/1R4hE4vwKq3i9+N/JRwFi6Gc+2F2f6ks0zmsNbj5zz79FqfZBNf4v5S+n3QgtsPuEFbUXWukQtEp9/vqp9dfkD7q1uMTv52biZYzC7NFli3p2FInSqCYGHTj1cNheqNmA0U4EkVWsIR+Z5KVrxS54yJ6WANrO139OgD9Q1j/Pc7fEnavoKKPKBcr/Ade6cCNvGd6hqej+6dGt6o5QcBS5k1NbUxpr3BPbieuTlkRPTXQeOitje3SyuXnDSYbZYgLSG2Z6F3XE8+4src0FB2dkOPKv5w86VjvIa1sFU60Q9iVXRXZBL6SQS4b4paaLghMD7LYramnx5PeywR3OwIq95yMsb8SGgRdaMTddP9dT69sHy/O8BuOX0QqRKh0GYS8HPgGyifRcKVJwkXRnsiXSDXMs6tvA6nsm7tbvzrrJleGetZpW7n5BK4cBUzYJ3zyO66U5dc1s0AqsmVzL1KJY1vw7G0j2acDY6dXdk15YhiQBmicYMXBfggmhXJMsx43nDUzpXg8Gds/O0ACcYhU1tmanFe5qx2SifXG4dpkBXNFBuakri9TDs8moHOjs+m2wkLBqUlYmn//wuUoqH8GhbcaTy6n2jPur5UfSHGZajoueConSyxNqnu1XIrYYMasMQmBvd01wO4QVyKpJ9dA8jePkujP6ytXrq+fgY9ETJmZhZui31ad0kOMLUHM26TlbvfoLnYB066M8vWqcE4YzZ0auuoiyj6m0N2umOxTqmOfAXH21Jek7YwhfgCTRV7RYabg0ebrfqyrs/5zyUPBIJnXGW+bx0EXmkaQ4cQKsLG0PAAV38aaUb976QS+3/ero05c7cLi35UOUy0IEbfV3zfhS+s5IdvlXDSxzqQQSpC+903HP3anXop7BUYFAwVnFEx+SIbqxFEFb2PLFBPm4QgXSJkO4xvQN8k/QyxWwEA0Jd4fItnzDVyx2jLsqzIvZ5cDFXMgoUCogs8yaY2SIOUWRt5iwH7D2v1HR6fAeEgoMMVQFlxjx9fgXVqM38srueI4plktAblxw2myNLDy6vd+dsiCUwUvVsx3M+yMHj6B2S/cZ5SgtzoAjg0bhr0sbu2YJKYqQC1GnHTouX3+hG1uZsAL76143iCQnZOv0JMAj/e1fOu8mE/hDFy+oAAOlK7vIP4inFf3UTaiFRTYv25xym9qRZlWFeF8K7fbpfGIkIkiwU4MeFp9YXBNrZ2iqty8xBr7E2B4AfwBXnK3KZvKnpUh04qFX/CNV1zlRvZdJosHs8BBDoSpv4UnySIeRssp2LwprHGOHIY2e78aSXLzgd5+MILAjZC3Tw/U3N7DkwQP3PgxTBpbqZc0nUnMz14/rem58+rh2N2Q4R5rwfuoi5NmOMSGusrS7m07srSjgqTH+4eKBZDzMxsf97eO20vvu39LASLNl3BA+qPbJiRbS7PdUCLdO1YhdFKq1eAdR+eJSGsQj1JCFSnsckyY3inOFniJ90dvKikyKikFpXOh+KTbCPvqYKO3pRfJr/DoqV2RBguqFtWEfyYk+MciMc2fZYjRG6L1XkUkQtR+3RLdf/KDepkpVmYQi1VJh9nk3hWa5BfEf9YDl4RydKojwkaO7r7L0+Dn1Tp0rQD9TyxYrFaFJIQo8PwsG1KMlK4Y/c0lK1SHTJUxyBE2P+mRAipoylsFq6hYf+1TW0aN+eOUxT7opHnsC3/Np+E/A1QgyGcFfPsMMQ3R0YCHeMKdr7D5miyLKmiaK9YI3GwpKpPywBcYcTSFm2S3/uyCQnxaCw7iHoFgK24d7NL51NoQG5RAbBG2RCGpd6kDDh+ERShGD5Ao8D5xXyVuIl7QYNrv1CkOi29EDrHIdc4tXc2PJroJioTTUWxOORGb6V7kZkDzMAD6bvDhisHR7CSoJBudAezfm8CFfGGwxyICVuOzOqdOC12DtodW1Uq9e0peWn1PIffS6ajQw5yFOao65d0Vw/uIqdtIxQtAmPm+RJQ4vnrA6wPekeI3lcZA0QXpIiTk0Sfmjm4e0KWEOg8ONCfmOYGiwpRXLEgrVv+p25CEtY2EWTQX5dGgTjXvtexDebfoNloC+8TfvrD0FmRDFh95wv93fFfJmgxoVcqzwQNYbOa27PSm/0cNE/8/Sko3JdIer0vdPxD0e+MKfz6qvHaZn7WBeZwFMmMwZWK5NuyWIgNcIXly241HZzWwkm84EAwS90YiLVE7lbal8YDsiMA86ykRf9wLAsAUaKBulXMJSVEFpEW9LtTepfKgTTGzIRDz5cK6LyxWphxBPFy4yF/6goIk24ZzgGbPDwZyIIiMRtE9rzY/NHA07b3t/ahdkq7EDX9lWH5u6Sfw9REa+ENCU5uPj2bGrE3tTceGCYtChD65A9VE9WefZjOHAB01DLxlqSvcGp+Pty8aIIq/K9RSJsU0MNFN+vqjSuE2H09Zp3a/zZmUpnK7X8PnL7raBbwWGn3413lkCrqZTNrLTgjc50xJGYbBUZEuiQ/Eq86JNTKMmN4ICIzv/qPidKqVJOYgxlWWC07itYvqmW+IePLwha+EZL4gYdD9+30px8aWN9huWoog3MTzv/DhVYzNOHchV1x3jZOSegSa0hCwRF2bhpadHXruzBUvZD2H57aP9i3z+sETBHCfZNvaPJwq/O1m9YdS9sk/i93HG/8TdyzXoOoqtgoqbNcHUr5jJXxgJowXmEVCH96BV6sujh/MzkdajBepAxuhtkxCmRdvwnz9K9KqY7SBZWJWIoGALyTMzGba0kWOnCiPAV7VZdMkNNEuHowRZaAoXP7Lhg7kDKHynQYeo7qACF7QuGf/UqW2TgcS/TcA44Z2YHFZCwRL9UECYlyzLOkXqt4gbao9lXlO4Hmg5O4e8GHIN4tSIyGQDAeuLQwGdtmL3mB/iqzBVBGQO8aJm53evhE9cXQztWOiK1a+nRP8idUS5wWRuAtbj1qk0Qqo5OPcBNvzPQ9Hfn63YV7jh6LcxYPBPGPsLCPkgXB0HSlAWdlo30rEkyYipO6Chy5ePMNxx5wsocyVx4esd4WmUbNZamSxjlOUcJufh0mN5hIYe8bypnwMxfLvVs+BHN2G6n0xo20Rv0vcIsf47AzGVRFDc0qCjuxGC6okZmYfEM4joZVPdYhBf+1hdbVUTbExdoW+h5/Q7SuiZom7sc4YFiQxdpCkDlLoCRC6lLHPlVKnD2xpyDZTLW5X0u+4eeI9CHcD2OF+k4imPG0eDRbb8jaHeeW0ucIj0Wadl/INEs5Ol0zP0rqSfHzSVZLhfSLrTGLMzsiHO7+NPjdtmIdfXu/jqMGE8D8m+IyO4+QdgQ9Jzxhue3AUhbIZBArCRUZbwXXXWCVQkSBZx7DM0DJZMp4kgmoWB7mL47EfHgW9QbjcBLhNTMby937st399GAfeZd+homfX/JViK/QgdoKg3WJ14Bxp8vyrWdOuZqcQmu0OREomsuVutDm9Ct5jR/+vUFoBpfID/pN8MchzoFbZQlzFDSeyLdbl9CXC8Gq5gBsQxyWX9A3Jse8H9TiPJgJipyggUxiNIUR4FmDnGnOtDCJOlQhqAMEtzcnz3T5s8aZ8Hhv3RbmEF5rOSIQMyz4oUQUFsKerUH3e9fE4lvg9AqW8CfJlHkutK7TqxvyYVr7c0Sgb6GAmlf4OpybXlOLJLoy7HKLUGdNtz+0ym9jGrf/o7QsfdqnPVQ8YcouXcAYE9PiAXipXj/Mg+iNSHgyGp2Hjq82tEKX8GYSnNz8VfF+g3kmU2HxTuoC4TeFtB9DHfM8ZG75i/7I6GRq95r3S2C0E2NdsSiJ1xXp6olLx6oFn2FFafcdGFxa7yAYKB4YTRaf6D2HpKgZH/DFzAAnne7kXUzlUbRgpaGmo8tqVbBoJBFLWaHT3eGmqfbjShEqozDR9Jf9taLUMh+FhZtoWVuzGJ7AeIYK/UafZrzbXmmVf126q6EFvM/+zyXUbr/42toxrgNLdmyYakxVtmB5g/JPvH3ysPsN15WqCxoE9GeY+1SNfSpKoyRNt5dmPznIELGD1b9Bj1jcJZokzD92n2GgOldBiWJ225HxfR37/6/LAS/hSZGzbsY1IWDQNabi9RyScOQpeb6QJz4X9L7ZiQCl1uD4EY+x3DtWUgCEVbEz7geKTRxU7Uh+mIKLaW7PfXEXVzWbylRslX53nUlOuG/Ih+rUXGeJf6BGU2+k0odH8ZudGlEJQa+3CYOMt4RDmLbw9LAxW02BZBzzpPdXwrf8CPKFyjTzMy9OkjMZp48OFvj2Ow6hAyd3jBtZuVr/mJyqDE1MTYHpZmJPBeKGeHVIWKwXLRPAe6MzyXmdgu+U5qLS1ZykMSX4iVm+1ev1osulq1g/YING8oXMpAH3fvtnMmCtpUIkbKprwskIBUeuV/mg1/WAHSY9+LVzjnd7nFZay4yH7R1I9hz3OtZTDwe5kKHBWeVuL18oPtcEWsbDTkFm+f63q7/Hk1hJ0H3xAqs8KyEeDR/OvRQo3YqKOj44jVtI6ek14rGcx7YwMXBzqXFYJLffRW81DBFn1Vs3rYHjv/TWyK7sFf5JhMsOg6RdMCVohPAEKhw1yxYYBRVRyuxUCQ8QP2DokXJLadl5U/Lbu1YJfOzQSmOTpA8hpePphCnJnOE/VQhM6T3lcC3p3Dcvp6ULLtM+eBHXvc1rGSJVJCeS71tWVpDag98MtE18j+6LGNIZeA5zmI98BXknXXY1uXIWyjUenCLiLk04olFJoVQZKBC5wSO0dVsA9VcvSHQrdYgiaxdAFbapU+Aw6Qry3ZA1JS566V9spxpgVut+jWM+lmv3qxFKm0T1wxpuHEPvb0j/emwLDFDZ+i0XsfQTZFUSrs/jN3wqiIEryen2uuV07egfTJ9lE4GFc6kogOWqrpJOroQ6ckP0rQBwtybRllAFujQ3gh5NUBIT1hqa8HPoewujrN0M8oRL19Eq0ZYGlHcjEuCtYAeXn2ukdfpdnz4KIsUwuRszAexntFg1qV0K5d6zqo7nH7q2fIEnq1N6UindwvU1UCGqU7YP1vMpH/agKN4rrrS7GCzJfMigkRlfzXyCfPNSscHIwjLzJpQtRFsBteZjPTYBGZhWvTvcguIbzQjssP8ohF5HQldfrA0UyBturazAR8BfA25lE8UZB2vRX4dxFmMIPtQn2wdxUBGzDv0wrBXcfbUK6Gae6jUu0QHFdLrn/RvJ2CvEz41LXvwT45XU9ruu5ub/oYXLB4EeGyAwerhFB9V5E2GaRH07s+bu3quST16zX03egOHCZRc3k9QCB6CNaHsO2z4wuHtusKMLn40rVHuvipoa2oeiCegyQxdo3RKBL3Awf+WxjX7uTSnz31sXu1HLcHhN0YDoQoiaPIzK4SbwUC25PX86KfoKbBlTsBz73qgSQpCzX5OlHATnT5cFlMt3csCsNzEKZLFxG15YssnRA3Nwp8GlIKPwOcILRYzkaQiE2V81TbEC9bnRCR4lulC8EeZxv2+KRx/nwWljvdbaFatvWnPpZy8qHKWZApAv6FZaNqxgXZFcp6V0YH52bwZ0wfyxBfuDb/gnGhMa6Abp+HR2E4wq5cn4phTt7pRsoSnCoim9a/Aodkn4dq0qThiqMoeevo9bw0p7udduze9WxY/RGzQkZR1NjCmZkq3Zm3b9t+/PeA/5OK9HnsLbAfezEXDGBPNDimcJ4Odb9oYHOm5tdWdFSw8xY9X2XI7BLzAxzBNYlhMIxRR5PydRVFmGxTNgV+yO/I4abcPlm00q5X8G9XcmObxI4uWpbnNj+QRAru0I1ANFpMxYouuPlXn0PupxTAwfLygauO6bfydtGYo8YMwzAOJ5qje0SGDnbQlkP75kUK+tHYyO8Zg6+NyhxS4OxEP1jsGL5eIuWyQkOEuxJVb+xHCH5lu3HfVbkqjAOFZa0+2J9zeTFDbAHXoUc/19s55WWvcZbocb6YcbFQPxFpCLbEGmnmt91/8lmNVQMAPUqRcFNfwW2Q5ijNRdVar5olys0AGHWh5laqKgLwCSmvaKbuySyRMxusiTZL/gmgCNH91ELNuT0RuSGn3Y8oPcj8D8+SE7vt9c9arKUIW/SV8SnKgPXtHsvXi7E3CEciAZ+zEudppW8N/WMmyArFj/wiAkrNuW9DpzC4PWHlVcTOIFxFXLahALcYUC19Gzz9oK4Fng6DLMGsgbXjp47A4nNBsgOOtL1ZqhnF+haIWw5wva5YWMZF2Y1DXVhW8FJ7OEMBcp1up0aSErB1rOQY8xmudYTm5xWvLPMqiB7mxf4GieKLjNToh+3YMjJlNRH0CVajZuRC8OOXs1xKHDsBflhr6fcgUhVtp2xRhbWgES/6IFKf66H4fvhq2ssWx+bWFZJk7gwUG1Y08oNuOsb3MyGP3PrNCvSJefNeB3KXVfxPPCGZgQ2149yzkq3QAFBquPHZ21auWIyut5diYU9Vp1UY7Kud9eOQrsro7Ls1tHexNT6HtwbhbQmpnesxueSkiKjjW64FKq6ep8GMXFTrp4qDyIxxdWAvSLvk9A//twx3brPqDckfnkAnDWiM40+zH77EiZcoL3cT7u+1lDY56SvPTulBOlf7Ar0HWWTeVSsC+P+VnTwa0iyepCUv2My8Aya62pdeRcRgWloOF7cjBUa9VP7bXlJW5wRQ8moGKpUTnM7/zxlJGygrJA+Iew6FPmmKE1KPfX2+Gqs/Bhhl/MXuxunDOMfToLMukQIkEAwjVXt7PCwCUSFoSwUHs5mR04NmQv41wN0nI0Z9C2/gKenb7tqsU3betB7sgfT4A2AeS6F9tlZGtriS9ikM1q07N9DuIYVmHzXzOmCQVieuPX0Oo+eYABb7IvnIprKdTvHRzdf3Atj1YVS6ckYgnRaaGtlehksCPaNxl698rp/0F2JGlKBxITrtO1umVlFK6Brydj+VffmtU+zJ1UMFhNeWiwlk4N7UfI4HbUtL9XRk5tSWcOgSH0PF3Bo4YREzWYMvC63B9KyF/HoRlh0kqKrXaP/BcnbZ+M+3PrlT2SkQp84a719vY+XJ9WaoqipWEHxc5/eiPe9qGXJJVgSlgl8XnvFelII3Y888EH6gjsOPiGSCX8BGDPBAS23sC/rTBOR4MPF0YIiaYWqPI21mU++ogRCaoFDpfmlJpcYyLVtZvlFzrXefUcGEI0GhXAfRmKFiLP4XJyyF1rrYIlxNVEJ9HTtNzyLQQU+Mc6tOa18kB3MTtF7dy2KOkj116tuFvnAeSXpbpexY18LC0MLAQRKpaaj2vs1J/0xdW0zRQmvEMwTAiohoZyGRymwl6/PBJXrFPgYxZDUCXX1Id+GoZZU9sGilkar7ssK3COXvF3I04/9G0H5jJzYcYz8LR6unw6YjGq6ANjIsaJXRpGHIhBMAfK9G+Mv0DVBrDYP+oFA==
Variant 0
DifficultyLevel
551
Question
Stuart is filling his pool with water from his rain tank.
Water flows from the rain tank into the pool at a rate of 100 litres per minute.
After 10 minutes, the water tank has 3500L in it. How many litres of water were in the tank before it was used to fill the pool?
Worked Solution
Tank Volume (final) = 3500
Water flow out of tank=10×100=1000L
∴Original volume=3500+1000=4500L
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
gender | |
flow | |
time | |
vol1 | |
vol2 | |
correctAnswer | |
Answers
U2FsdGVkX1/18zueWX5T+v1EtGszN3ClFVp9UAOBaBCJXs0CMNi5yK/HdfUZXLN/ZwP/bdd8lzIV1xo9VDBe97SqLoRJc1Ot+SuvcTQczHIKdIJNrHfsEgTIr1L1cTM8ykjHcT+SdPf9F62xJGBL0R3TTt5JX8Nl3w4mDiYaXHgkO0XVniAYFxoFS4EP4tO815gdIIIDirXQjBcEoVTHy8JOX20ZO5jtH8I5GIIs2lvo/GvNNdw98+fSkRolT8Tp8kRmHo+PRLfGc9Od/6QUUsyzOFD2YtailCFTytSyybz5kbYIJesw19VWOeyEQD3jmafJtHV8cBSu9RP0YMMhICooI9DgjEH81cmBo/IkZjAD5l4DNJ5ixB369XmvGeJ8OMUgSf7SlgiqRfI0zn5XhaP/6VeAFIA1nCEJqn+DLwWwNxapcihsCXYPpkEXPLAcumKWgCwPthv1EVZ/gsff95SgKMG5Ly5gE8DlzecJGpAHCv+iqTGuHkUTHkJpCVVyjpY/KXgFDKmKh+JlHgGiJNBmxnqWzsx18pJgYIG5vzq5y0tsr5vokaoq4KVFCCjsQcBl7AkDqcp2LFk3OwtNYuyQFkFCt+rmyeywtywArIQQ0R3kR5mka0BrCgtd7rAtimIumoFXWQmoHHfXDA6jEIPETetE4oc1GVwVbrq7st6czIg+IY+dSFAT8mtHIKdnKSIAgOgqp9ssgg5RROB2mJ8FpNDt1xDy7+RlLQNozPUTv5+RAE2OeE9MYF1LUnlIA0M8YHtJOhAY0DZO0jO4M489XJTyrWbDro5rJ2knWD/As7/x/65n7GsTfXt33K1888m5I8ZMTuSMWSpUo0HFL6i+tsNXZml9SBCty6WPqe7lKmKBepbs1i3RMHDG/69o7FEABQSx91A1VPFBtBRE7zxUFaBeO45F3g815eijG9FYgo8JoSqczF7mi+i/JG3owpbbnv01CVfkrs2z5QwOX9RNRfH/ZKEcIz8K2ViVqm3uc0sBUH1FLhQdJO5dyWs+5+v+of5d0ITcuJ6aYd9sMOeNbzrRKZA59byV065rJcTVb4fIcpQ0v6vQOSZf8etej/ORJQsdD4beEsVkm1yEU7Exy8LvikURoeMI1F7CBOnCD8mNe56ZxVx0pP4O7OiwbsqBtAXHydAxqQUw3U8OZFnkpBuIBwml9hVyyKsKogcNA2vom4DWR9Ysi7j1lZncdhdSXLnSvu9M/9uM0IpB6UkGbnMMM+FJiLS13RSPyf83IBEEKz5RmYSoJMJFDzInmYlR1RsTpdJfzutSg5EKsNNgWNXXUxYyfvujCnIujM17WZmT9uEFL9fGGivs8wcobjKJUMjiILPluUF2LO5tpwMpLzs4q+sJo7gGsgGC+0qQrNmq86tQvTtW0NKAaApjVxh30coQk5CM03ySHiGFN07WMrTZugBwe+6KzIHFGlm2znuVhtnFyZLR4nfD9FodxCJvcycO4ck9lWHvzxRWn7IJ/ydl77fkloDylXtEdojI8vtnpLk5eoNe2fW/DRT0Wx2X0Pp1lAvv1TjBJ1+AInEzQBXUCFglVC50eTQlcITLzHDWkHGTuoLCe+/saWGs/PVLYFQLXJETN1A8ueOb1nWw92DDwtzl9YGHZg3FCyxx84TQMMZYYVgUJAKaNeIU5lGXFyJr+K727ku6Ll9QRhJw+QXQ+I6RY/VYcDXMNN0wrkUwCM9y3xAnXnUMCtAd013sEdtidkSWwdIvA67UyEpGDeP5spqBdAWaNxv1Ari7PoZ9tGuP8qojrBL57IhAVDTC45xT+S6GeESLfaoPzL/jl6AePjWCgc6BLjgW8hdOZpNKuGPeCvDMIjkZ7H7RWPzsfXpxVy04itntp/Lym4X4KtWILPMl/FhFhKWyYEodCdgKParpa9YiSuBE0pAuh+ubiI07yDpNzqIWKg8LOUX2Vcv1rk8yDZU9nVkBNsEQ1IbNSSGPnslxervQDCh7636Bzb9qEBwSDKEXg/PL7TALwwEdqFJuVX2uY0vxpHa/VBoUCNk1d0AHS9O7dFgBdplHt2TzHlVapAtACg+pzGruyDkpF0zaNoO4+9jThw5i93Usn0BNRbti4DRbq1zFnU1VSTYBQdufNnkfGeZ/6h29MRQg6iFwbR6CbjsuHLV7rEV0ovQyH007qWwnGinvy+lJfkfw3q+ZKHjrJJh2UhZUuY1U64Y95aJdcZ0lnFi5M82vILG7OO9quJr5HSjq4xWr4u/8OwKyG4XXlVUZYiMlbDR5lCxskRb1y9NR1RspHR+i0GI3h1qbcOduPBU/1LEr3Fr0h7v8vt4cBqMZWbeeGarHbT4vIlowFrsiMtx0/y2OEH0nJvHOz54Zu8blyrhyDIec05DOPOfrGcFahqk0UXPVP7e86FsfjdqlHGXV2W+tUzo16ZAzExeFjeAAoXgvuogEmLFZjfLShsmBf5VsUQq8bUaJx1wfMVLTSNYGyN3j2pfqiViq/ifT8h4A6iP9z9sAN4YLhiZ2EhtFfqdbRYSxlDyUcwkuJHDGkAt/fJ9OSfRDP2gQev2XAcm2YtR3uUmVpwrmukSgApnWm3yDDX4/05aOygNC+BJqxyXycioVbtlGMiqwe70JSb4beDxO5Xvjt68E26UWP8vzwws5E5QEbrwNLpFeR0n+Vy2VbwwqsUFLyryPFGYzqbZ/wZVB/CC+t/s7wC4ZGXCy1DDrFXMMcPDHZCaAyW+gen2nZ2wSN7WF2XEoUV2wlgNSHxlbGOsSIfY7wwyHyj0LyiB0Cp+jnXnIeKnH/jaPhGPQ4IYn4A/GxJbLECzv3mOz0j7Nim93hvSGwgPedk73brLEMD67FZM1YEeR8Gel43R85nZmEJPMImMyrKt+6XZYjdO12d3iGl4DF2eGqu7lkEeinmbp5x921nexudPN9RhV3oPUSqSHbuHnN9yneyim6pGVB157kaVb708Q1TnNQN9x4WpG8c8UWpKX559ucFmVcFv8sRrO/4Y/0zEN8a1KkmqFYIvmAM0iG7wL3IA8eu9U73Bg41PjnDhfc4diYjzYJhnH304enFDz/r/RhGGX+6qzICsuOCKmds+X2rA2RvYz7jgEF/ix/mufIg6ApPH19uVoSmSVmiCzf4kDy4oMmnNhzxVlyWI6st6EO7c10nNCu7bY+id1C2weNfOYwwnthggr8BA0AfWuduTU5pY8jLbcKc/03GR7RrX7QYD0V+/ewYAvZXwSKMLIDWhVETDtZ/KiBAlhSDi+uY4vhf2AAXrSVWI4vrsuCYYj4kZIHm5EvN7aC/iGnp/o75ijYIIujUaquedDUTZoRjcoQrZs6Kut0Lzduggr5pEDJPJTDttHHnYPosl/bu6RcJUbQcHGc7UUHfCaaCnebLcdLzwAmdIi5t9CPcx35fz2NZW9Pbg0qFiazSf0QFM0mU0NV8qBX1XBdsMBnGz1EnHja6ZI7L+We8KFOtzvv318AT2cDx1MmwaiSTNoK0m2HOYqK6Ur6yGW9Nj3FZM59A0sD0ai+LIkDLk+A5ZmVXyiW5ROIw+KOPSSgWqnqOQtEy9h2gEQyXwcRgYDsoFamsYk1mgPGOYPPe9tvhwfSYCaj65zVA3/P8t+geuVmDzNWKSLmeRfU1Ris8XI83dxWgtUTP97HLpdSb903H/PI6NkKntm06iZQPHhzgOSJeqw8L3GnoN6hXA1DJ4ifdC7UFfxT3mA9VrkohjPhKZYx0iGb2QRc/FY8fVByGQbT4l0E3OomjLy7Nvq9fmpkmg5uuGS6vhoa9Xk3DDJ5y2vjqRzV9mVW+Twja7RoeWTLWGMVSaE3Wvb92Nq4eOFXYJGm2gDwgTvD9M1Tg9ME6sSjY8B3AecO6IUzyh030g3xBB6sedG/w9cHlPkcZPfGubav2KlyWlugUEvq+GOVc4mCqw2tzNYKZU3PSWsBhhm94GrUD8hUFU78Gq9UAK4Zv7s/42owrQKqzVDRBQ0CwfkD1coFjzfmSST+B+8/O7ILKYCjHEiojIuQ4rCNl7/XtVo05nnAv8nPGaqvBXxr8j9XRFkZHUZIWk4yQD4TECAHX794VgB4K5z3GGp1Pytdq659d/FQwUJKqaRlTGS3hgJFaIJM+osQvZT6jiDqUDy7ECIA8KmYtGHr6zEgaJOCPMC1FK2z7fL9piipc2XBnqpxrLfHM5KvjOu8QTY2xLd3ZaE7uCXbuel4slU72mIPaSV2kgGLaAqT3JFHQUlVzmIA73A4l/CO824KwXpzkGrt2cvpGEdGCG0RF4cLUpLVfbFniXa44MtgjkW6iKp395iVsS+BU9Hyg39yBhHVBc/NGBImbQ89My9oJjv1PBxzsgdpVIAM2inuKumarl5r0cWq9pRj0OwvfUGESQxBavJ+rH7mkABRXgRuOpwoYY+VaA0u6r0pd9p2CyHYWbl6fodQTtwOAgpmCDpOPvltMwGTIYCJMulxU4n7oe29M+eCqapW01pYjya8mKe7z3/uHOicD0ApQtHDluI/xJFd/QHR6/RZ9RYdeY90VR8sFotZsSww0v6MsLggBhzRtCQYn0r7wTm/9tzsaQ5pUatVu/Ly8fvYZuzejc1YzX+0L8N2+Vk0M8/GYlQ1W5ZAvSFtLx/379PzuC1AwmbEj5ed4mx+KHQOtqJ2L10dP+a7WdpOObwOqh6/ZM9Vqy5RaIj1NGLVToeE6wPyHVv72Vct3j2+6WQko+7GZ4I4YJehmBZ0hYKZkTelnSD8XH7zmiR4ONsvYWUR58BruLrPc6ESH5c0Yv8sIANA6WM3Rf6JU/2II2EHQD+65ZhSozufwKvl263B6WW5IG7AGjD/kvdnRqvDK0UYUeS+5f0ChvKu6vX7drG7rBd3WLp6lHCXxNxIhG4nJkvpGy6+nnsinPMmC9lS5UUS7rVa4OmZ+zCe6PWSfBSbidwhMv3HYKlDhMk3NCRqCQhJR3Mzi6Lzv1q9625hq606VPPaAq3dtxPdNh7B3ERGIEWD8+uCwCOTLMMjZ1q3MQL28OLsS90N57JTJZfc+sFy7CpW13H0BrrCPNoL9JoI/Usyfp7A06WQKtpg2kDbLaVFr4S5X39NElHSrYV7Q4OK9SgcoGIzo/p264SnFYCruq1fqv1S4gbDCy8F1u8D3DOUzIz4HuuelBRsVOq/tQwqqVrEUulRzzUUNUggUg4PD1/SeqwY4GlToeRVBppcZiWTNWCC8nPBDOE8Wm0kR6r/4RGYzrX2r2Q4auJ0Qim7IKhScRL0Vl/4joUz2/G2I30YDHMcdQV8fOL3J5HrNLk/AMFEBLW/tc6X3UFsj4FQ/EiE2T3DaZ7Y7ArvtuGgPiP83JnCpTQ/2ZNbgBgdqiRP/JPzcrnziavd7GtT/DF4ugjE9BCC/kQe27xb6vB2ZXuZrWy9GLx17+s0iB7pWGhV+iHZ1nxcJUSOGtqLBdWeJktzTjTJ56oxMW4vJDYyw4+b11pFG01O/Uz2mMfZ1+S9Hr70NqjpBsRBJnLZlIuq2w8FifUR3mjnsJ/9Mjc7RgDsuiQcsN8CN5Lwfd/kclRKHIKP3sMYXdCxBUOEhUWbfWDjeDeXkivH98S6ECcXIOf8vtojWPLB+4955tyiNTdZ+UOJRMyAGPTnpQlP/bmlCEndik4hlmk2Hv3198cupMLtoiWNS6FHvcbPybf+6h8wZEk/sH8oeq3E544nNgGd+Zk7hLu58mTjzTPB1eEoHouPaIziiQI81OFpYaYUcEedEQoXupJMcefDByg7Yubmf5cxgsiVLw0jSEbKqhlPHxq6w3aSxYqiM/8zj6vUjT3eB+QmYVrG1b+iWwovggInW8OmLkdCuOllBpUorjFkCrneLJuwbhbaqO69TnFmu9bxv+1eN7yuuC/2kTH8sP2ZBGV2JVG7gJsj1j8vu+dmjMYsZ/VRol0bxKktMi01TlQvNC571ixQRQtEIx+84kBHSqJKrUDP6NQRmkCAB1QjPFTB0XOuf8Pj2GZs55LABYuosroLLWFXNwf4Jm6/mJ0mniGk/D8tnrVukCax3RhdxlNmjRjluHE9J193qbz40iQ1aegSrnf9dbxeF0lBcuGWUYmRGnqZTwRFzixvSQqZP9N7b0jKIv+T+nJ/JA5kb9FPEHC3x9eZz5Ehg6eXW4nTXvorIMlUe2ptB/0tvjONjNZ8G60eKgAwvHldZu97LTqr0ZwjENxIzRLZG0ONArRNbwLaqgPv8pPy1RE/JktBMoQqLq6NVocd0VQeL6e24gmP5Xt8PvRpuz2QSJ9sNly767SfKAaoMqxusjSzAeXKWk8G090eWz45bv4DtIGeZSnNdXMvgrM/iwvms0j7A1JgAR4rxGOv/asoJP2pXLbj6o7Lj6rcFWmUAWcGlpqgVPR+kwhptgDyLFZd+bCdEEVLbhS4tP27g7aYUh73f6tC3VGiBie7PkXf2+d39b2KfnsS3gkPNucck/GdxiRzUupx/C2ywfgxz9xOzNyMBDqjA1rHEbSbrP4iIeo81qvZX/LCUxPb67pQaVFsdLzJo/NqyhnT7J7M1iN6PQyNQIUarvNWGD5Gu7cWTyOiZbNGGrHs0p0r1mDcTkU1XVQoflxda/bxf95OszVgY6EELEQNRM+vJ5Bo/sAW5XAuV51xeJ6S0TsDeE65QsB/S78XogFJK7qsU37EvkFEBbKoyTRBZxHIGn92KzRMWsmvrxPuVx67rhQvKPHIX7LofAYZkkoWnj4iE+W9MFvCcRLoTNStLlBt6Sac0U8YJmXgFz/Mj5yhEQw2PevBIVcmTw/wuWuVdgjNRhs/WPP/u/1gViN7C+Cc2I5o5aQv02d+A9EHag5SaUUEHUjP9+s/U479w2pNuykyiByMJ5HM4AKyetWQr5jg0L6sIDUrQudakrqPVMFlmoAKb8rVeiv+eLNlr9y2V64E4SECVmJmRhRVEDc9jUsrcbRaNwc90qKE1J/JrhMkxNVUeLHLhlS8Yx07H12zuIF66AWadWSDobYEN+7qdtQxcULQ2IkOynh/fUjd5Lk0FUCQaYtxFRGIdZ/A9SJ0cFPx0XqppUeJHpFMxKNIX6imtFhilr+6LWsr9WgL5yogkUi43sSBCDrqZNGULz8HS/JTyW61T0XEHjIk+1abeANS/uucNv2IA/jSMeU9GP/y7gIqPKgzy4h1XK69LkQdCbDzAZc11yZ98h6e/S8o6BBdi0N6NHEkl678W5uOn+3AYauj43w8Op04+ySKt6aRc+EVYM1d72hXdFAClSK3LpW8nerh3KF8S9H5qYjoM4ra/X7HlXfGsUYa796WaKGqNY52vSkd9wsjpiWfUUwOJT9y0YISzGghrMexG0NCJ0bEnCeK6tr5fKTjOqb561EG8MdHczIn2SYEzTUEoWNYrP5iWex5GDWRI0NH8lqUC8Z95FGsYrkv5xBnSCgzyVHtcJfz7W39+ThGg7NwWxBVFA6KwRu/7FXL3lZf3dhrMBCWQgpO1vViHechwHhWXAF01S5netKWqJdJBOEVQpsZHTZpIq3/0eN4L4eZJX4lmmIn0kSkW0atlhcKWPxexu/0YrUp4Dw9ciMG4WOEp9aJmnZ3ypkzGkYYZwgD7KLL+FLrNgYq1inU+eYhFfUHLrCyVnV25gX4NvLbacuuHFh9AW/pNDpjGWxUlo0lP433JDFlmw+QooLJcaIjryRsslHKLlcprttqBhogl1IIS/nhosHQOMB87+mlyOAq0fTs6SLTAUwt6eWlW99CGUJueLU/pUo9+GtgCGvHqLV2a5XHEb9o1PLowLj2c+fKF8N7QVhoTzcw3uQdlOjmFron6aGFxOaOHFGoVeD7Yq/ruqebNhHmw90xLTQ5AHTa3tjqdtp2u69QW7bIP7+E7Bfir2oDZMKXE4d+9TmxmLgHY5/5kcYQawDW9ijTjlKkNv8YBFo0Wv41ExyzmKj0lln2zmckd/tgYaBJOo6DByCEyTZY0ZcSHh0Pi/8QX09IQ6XK1vb0nUx5U5BlcPd2pXMAJqdp7NEuaAk058OIER5X4hPkVQ8QhVX+k0JlH7yCBrWJk+doj3nQ5a28YmI69Rp2lUTg3YpHJzTptcmUkcvwTwNbG0KpBbSjPzowmAK6WgB0UwndOO3ZXCy85C2m4p1rNFAF1Psvex6Af/sALeyTUvUQxyw1rUqexdRtTDMlHFOjOtsuz4nDAVEy9PW+YOC4y0z9UgDTwcI2ksOZJiYJC1YyLiouUtPdmceIztCoU5ybqBL4xK2ZA4e30rcGWUXZ1adUfu58+oxHcmSSve+4Inp+xEHyxjnJBRQNjTaFWm6PNH064Dz7gfEmIZRTy5pxOF8KnNGMdfmF1tenh5KyfaG/5JZ6bJt9+88+D2+gd2/ER4vmMxZlRY9uWSZFyEyNWcV6UjbQMIdBw23rgv9MIWdJnE9LokGC7QHNv4Ei/q7LTwu35HdyW+P7zppEROxrz3mk/auHHusEpcbct3I8XzuIVDKbSyFYKL/LIhmsimf618tLSrL4LYR90+nt0s2z1aEq1g/S9xVaMARjTHqSbLwrY6et2AUKUw+e1h1zE2jmkMWCew97+0b3BYrQtKuVPBzKw0xPlrmlZOj4rAGb0WAQTSew3QKyhpvxRW8diJZvbpt5MTJ+lrVnlxCPUW01kRtq6jVKq71sj6cvsAh3v9qsXddCruxtQjMMgFihIJSPxG5noo7wX2u1cv30V+SLjS6qz+Jz+pwmxvbsbXaXCNn3O3Cv1Ls2K+doSToWNpqqjT2ue4MH488j+yillnO5QoMR1sw8Iry2baOifZhUsRy2QTyEq2VM0uaR04RZu2qY+qliXzL5QSxh4xIkHohgjRZuyEPu2uoNfTlsxZQkgG446rR9/D5aRwknbnvPLvtANoMMLnMMhUkbfUkh18G4c4spgrrbVd54yrzyMk1O9aEdgF0tASLG9Xh50H1tUv5dMGtpCJAbOJaPJz1zBaerNTo0KKY1NzX2arJr+2pvDBdsq579FV8GzsiUGhmbMkYjCeMz7tLcBOLJOt9fWtwZ8SMbmgeiRr0Ye3RpUr0QSD5wsxtWuyIMltDjFHrqDYp5GmF7NeN+NNHODy9XSsTcDNRTRrGx3qJF3zMa7B5Snk8NtGhycfe7wturOMCm8WYcJbtwMBU7mdpsJHdSKVM2XAZrDDejL2P5rZW3T3o2hZhYP9sYCNDuJ2pY/WYOoIVwppQS6TwtFixO7mmDejXkVJuB+SgJx6kJk07iSHNaxkdbmzNKgZ2VYLmLdbTq1sO0p55KOai9rSDXQBvXP84wpTcghVhAO9CqkstAUThxTsOODsDHca7luA1vhDXUBhFlCNSdW0uUOkq6ixwgy+FToYBci+d8CQNUQ8QzefCTG01NHWJqdDgR4vAYPbr/X4UIFPLQE+i6xIGAWr3VUkazGS/6XDa5XmEr5P/8ixg0JWmUKuIYw3E4A0PbRE6ustXGY9EM4Ro2EqaJKvRyQvmmx4zzGBZVf1X79XMUwBRAG8Rvt5cuxJd7Ko3CvUVflgd3O2hSDW56Q8u9E6E63R+puDvdKZZBS6Bctoxmlt6AQ0PVGPrdPF4+Sqmp8BxoQBMBdvRmn73Jo939zYjKKMMi+q3XbMU2fpPJsAOKrncj2LJ+du4Fp5EN005of8Oq48hiSEHqi7VZ/URaoe1euu/5n8+3ekSUX27+esfn70kFGGXlaq2lr/SM4UdpQRunJHYxyznwGFpP2WPf5Ec5NLaTYKEP/S6Ri2djdZp5ryC+R++hsHafr9d6zGDFnafUIJUffHphViHSdgrnAVRs37GKZxQuSt1WnLXimfYKPgWdxMrWPGXpBSB4Bce/1WwQI31nvxPOLL4A9jTNQVPpDXcNFcWHAPso5s040LCM5tGcf8d+fPRJVcMBUJy3ODCW7idkcJD8xI91JK4TwcceeCdCJgtxzB90+79xvYR0oNXOFdzPdfT3QeVZjumllJAR4AXiRtY4nY/BhcQvj559Xdo0q9AgDGVBv4+H6fOz0I53QKR1MJOpmP2XzENWhKEevqROhiW1s5kyhREsxqOx2KedARfLueWuRZLAGbHyD5ATecGbtSEdE+M4zo13cPwhitGk7NL4yGmL3jggVMhRrv5bjwgkymcFwGV4gKITJELbSSgm7d+JiFGHiRrmSPoCVcFfhbXf/mJT7wZxK2/z1C6AbPcyU3ZZdTKMAPseiBxKbIuhLyqVBuVyHdGjEuRnqAMzSb/SPY8yu9cGUgpcgvLyNuIYbr2OcF5HGb2Hyw18glL4g976UKiHQ==
Variant 1
DifficultyLevel
551
Question
Bryan is filling his pool with water from his rain tank.
Water flows from the rain tank into the pool at a rate of 50 litres per minute.
After 10 minutes, the water tank has 3000L in it. How many litres of water were in the tank before it was used to fill the pool?
Worked Solution
Tank Volume (final) = 3000
Water flow out of tank=10×50=500L
∴Original volume=3000+500=3500L
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
gender | |
flow | |
time | |
vol1 | |
vol2 | |
correctAnswer | |
Answers
U2FsdGVkX18MPJjX52CMmIPw3e93UZIcgY4SJ58FMrPAUTFzUtr50QL+40OCvH8PH6Z4+3TmE3MKrjKnPCAj7+5y323XmLCkghoaPtB7sLSsqyRn192BciiskQB81yNPGVKFKt2fziKygxGudKKz9G1RNSK1Wl4QU5i+18/WIkhM01HNCQwRRaCKpghPzIJadCSssmGWLFraxWLWXl1hKC/fxiUIo6VESy9BtpnxXXfW4630J9FSqsTv9KtrcX3xutMIDUoL9S3YY38o+rcCpiOqKs2HvPkfWVcojs4mJN2AB8yhzeu2vKkKY6P9ngwqknFmT+yrVdnVUuqUkaDtAzH9t+YcR6ZkU0Zamj1ojGmgg7pqugU6PIpvxKt4ZrWGqyhfDf/GKybNSB75iql2qTNi6cccYIy6RfO4VEX0k1chL56AtOhC2+yVMoqkjuI5dJJPUW3zVecw+YtI3KEHVcNeqmFhgHPm5k+x1nOB0iUnjBeObLsghXYlBNtNr2589u6+xRSTRoFhgZRYsp+LjYxI2/kNvM159V+60qRualCI36Tsy6gjLhdP9KC6CmhMiEjkdlJo3diPvvgoOgVVLlrXAADKDFjqZS9DCzXGjcckaovnHz4JE0GVhkfsbhuOISygnMtnyklBz0SY+lDN00/zjPkcUQTDlusFHHe5MW1NaOvxewr530HM9QVR9mVlugtTSx4vcu7yga35Ve5tBtejpqjVflT1xrV+qb4LVA3sTm3Zxkn5rWKtx0SeI4Y/qpQ34IKy26c1ypIXK9wZChOTmykPXHOiBWPz7g2drcgAAODo4YDLxpGYA3QjeGa44ojeRjmkY73PTgIDBzJoBcnNzR1CsMXVJokiqDkILfbDyMlv3nmLOJ4cFo5VX9Z7WOZKL1hd8itBM2OJZijO6+By55tDdWXSiR5QEs0q6D9qTXfqHw1qgQ39gQC1L5IkBV/r73/Mnb89E4YThAtCoJLmeyEL54Ou6j02y6RNv4+LgLRE1/8GLXTcYA45G7aZuFInO1VNNKVPWIUPl3VH0qPG4V/+4/WgHmEPzAsYmV4+Vp9PswMM/XRSOl4EfT/7vxglraPiKx43VhgJWPP9nbvAZVn8MB2j2hZA5iJzBe7Qg53XDY0TCfNqD/MYiSB+5KnmeKRS56JVyYu9hSND7FoSDDT8v9BNWuEwZEd2PxkmL3ei+968gO9ksgV0R8WGHISLPUOQ2ardk6fSEy+fWcTJUzsnwN44Y3zjzEgJlZg3xxrSMSDa3PxO+P+ZB8Wl7up7UheUK6rsL+pyHS+dJ6kszHlXOaeQW78bnuDfmY9qOHQj4Ep57PK2ihkNJlrfUG6I5KdIEipjTvJzYhOY6AL1K4zcV29WRIkeoiWyZY5voteGdKQ/8vv6RNKip+m0XV03UKxerzlWORQsQtKAK+bg4sZvCJP+Tb1TavwF7Qf5R0lYb0HbWNHZkbeA/5NwaZwtJ8bUPS7xxvpmuLApMA4S5Q2baon/cxvUMFsT7M4ZQYBDOjeGZpZrb0k7Pm2hXNVlK5k/+E4TL0cM1pbeISV9HRFtyGT8+Gxd0hSnnD8SVv2VCPvKvS2EXBXRo1tQvfx4MbOo/yRDqkGSAdEcqszX6Was5B1dzYg04nwx5lHxxrWcoZFx6phkWymskXwlV8MzJoEGe5nlUH2ReJR6ylcgM4n+rnOZF8eWyP1+6xRvAVAXUfGuYSVwxeTNKuAlhGcqS/9VB9CAeqnPkQaMsRhisAyG4GrQFLZKcttoi3icN71z2rvFEP/CHGGrxTItyVB773FcZsyVKSkTUEnpIO05wLfswosYdxaT4oui+8Q4xpH9G1xWv//7R0R88QTdhOoJxgzsmCr+KP0PkMxAXkYjboKsulS70f4Q9lJNCzl7uuEsVBNWpZQ22egyXjtst7FZGoQAbNxlLhx4elNs2ZCmHhfZJ5LSh+DFkM29NwdN/l0W9FhrpJeCRY2J5ZzffUHFad3zoqyw46Exd+QrMtM6V/CPdPCGK9KCoi/h/HnhapBz4PkvOjVsunNLiNGZ9jrDbmXoBddRFlwf+ZdkTE303ERZW13bIoNyyBsG4n8O+o0Dld8ScCfkpbt8UmviJqxDAiQN7nnZteN+sdImhXRC2FFRk+74v2BJzRl2Y95uXUO597rGYwJjI/1O2l01qLnzceI5j7Zq6zsIo7vW3BO9HLifps8QO+Maac3R1IV9CKq4q9HUqbObcbtfNvN3htfDfJjBa73+KyP8iCEsarnvIbetnZg5Gnr+N44ZU5lUCvhZ23Rel3dC5gVBFiN4nJLwhTLS6Fj6ByVx30+bNMA7qUkAwAKsXcLfSMQ3Loza4hDURFh9aRVf55jHnnmwXKI7DISFN9OfiK1xhy9PXP00Uxr6s5PbpOG5Bd6LrZ9xx3jFuUmQcvBxBtjW7NUYg2iq31F48QKlnhu80WbxKbrtsUBxP2Df+j8heA12QeYbvCF9TzoPzr4jf6cZNOW3BFz90qXXhiUVW+BS/t2HQSTY/ahFDeA6gehzbluNC7sc/qj3c7SbxB2Y6B6LBSQG9ZAMyG3DMvp8z2m32GZk+BhJxBhENZ+TdDx5OzId9O8Rt2dDzz++wRxqkQo5bAervdsxFd61YanfbVRBWn8TlnxzqiT8wMojLwUdonMMAEgpf962a8F7FR/JS+DCtEVAuub4vaolQ7px+DwkFWMmuUsx2w4U5EoK8W3q7zSM+dtOeMHu3hWC2uAa4W5QWH/zd+2yZ00nY2lvghtASpA3bdAnjwUxliPlN8ovyikj+X73TRJirbTW5pniE8jeULJ7aJDyeQDbW41WdxfPRkD2fq1aI1/j8EYWBFPOivxRFdX1rzDgwvIjwU/EYOcqduD+jBamRp9xu+Zwh84IDeHHBdkKubFaQYrb3ZdrVG4KQKZ0cSG7zLdOWS65EACPmasPThHojmqWqAei4YLQCowW9kLlv6DR2MfOvZgyH3+OLuqu4o5qBJPZ9HjliPR4cbrzgcvAj0XQGLKvsmCcLzmIWu69URTE6FJv9CtrzW4HReeBthUDMNtA2mS8YX0IC7OV0/KBSB4uOneUS3MZWoWoZTQoJOCMfckWdJCsIDi7S7mBtfqufCCuvEQZVVTyZXBBALvpSnX14Kl30673xky+fQ5ck/E9sVgK6vOv/Ve4rXA52OAyQp2a+OUgV4khYNUQHPVM7OfzoNU0l6zA2muf+Rf9AuQQi5zSeIXdiPpvzg5FGg4kwdeYR8pJWiuLwaHvszdZR+VgclO6xV94PG5MzYMfwpYI3jrVEWyOwahsaJeZtlAUUfO76kZ4FPKcSFJI1FsS/oEIsoR2g+XANmz4yugQ+hHnGis3qgH5pTAHZFH9tIyMVFpiRSW4kLDjUysdOhgXSUguy499oWlL1aSPmr86MLn81AaplvY7sBQaQ4XlPURIRPsoknFrRvmWUSndtShK6/55TOxJNHMJEGeYTEpSNe+CNiIoITVp/09vmR2pt0fOrA6MG2TG3s+PzaIYvjrxcT9Ou3fBLP/IqDlJR5PAC2DYeIGq6t8lvlrqvF5spqndDynO2vprVa/wOGhPUCVRVG2mMu/btDUY9/2+wkYDQY2YdnSRd9dusfq5P9TSyGVH1qBLDQPuT6kcco0HwykZSVUsI58Xg2mdS3BylqLR7JUc3xsUgGagvd4p+k7/Vtb4Y60WdmGMTfreh/YacA6jGVFBOgGA0nZF5X/HR5uCbvhmfPrzGGeaH387FDcpOfbkw0zZzq/qKPP/+hf/n7qBEkloqsNFsMiLhFFGExJIC2rpbdf96VsU9F/cLiKd6HZ+ToueyuO7DO81GmP0mPGn1/o4jMKNwE6NjjbHSuXMDWIC+HhVmMmVaVqMa4XnLq8kcmua3xwjd/qZTsaPIoLf3Ar+aGRfeeqo1NMQgNWbUoO6KMpCgNon/dbQnoQUD7RsCHwqLJnFALqYV48WPprO/nHy221EZ/ycE+VsCvL05M2/6FI59+1wIPSfy1okLwFYfMebsWC03VaZ090USQ2lgF7w0nDlpdJ+2/EQW+Hz7WfR4Aqqr9a+BH7UJ4NfsROjd0NY8oONYPAx7R1pobCTwkaTseOL6WSWrH9M6hVLFDipg+mXMK6ZSlhlNNebbdQwagbYTPZIDdiXedPc2kIALhrrFZJR6Ja2bMcuGLg7ns1mQ+1RFW/f4bTaCMNCVjFC7t5B78f/QO95D5IuxCnqVIcIlb1l5/Jt0ySJtHVp4xZEJZuItvGmmy59g5mklt/VceGGlH+Wi6DSoaFYJTWzIbfz016+CH8V8XnvFGn6iCkMCN86vjdDzloxvd79jybdaiThaFCbjbqJfR0LNJYxq0/yMtTj0vHx+oK7KgZzJZaURwDTaaoUYqwMxfF/jPZq8cynA6Blad+r47qMzNWGrghBma+w+tK4E5nmqeOFZr/dB8IlF+BJ7c9ZcHyTYNT/a/Sf5qPl2/6DIlIXRUEunZqB0KnRCvGp4ZL1pQd+wF9iQJwKJNbcqaSBtCHTFviioiGypiCK3j3oKgqOs7fo2Gtff91maesaCQ6KedcPN7CnGY222F7YWdg+WNdl1nIOpabwZazb340jPMKu8a4TecD2ES2qDLzpRyPoQ+3gj81Ym1GyHkVyVYvRGb52NE6xQJ3K95fEFg0SEQy4MNLZ8aiulsQd3kIw+k2bBQFH62oIVQUT0fs2i89rw24zCarbMuDevstS2IiuviF2sLjAIUuuuUvHfAg7gIU73lrLwxoDZ639YiM0z8l2ncGSOtVfSlVs2LY8zu9vpGxs+OZsM0wcuzha8TVBkUr2hJ0ntQ+coIW4Lo6CF5dXUYSQWE2xOv0jGwZPwLKNRch6NFkfC8fCLXV0jZCmdyyQchtAHpsbwXT4dcO1mWTzeJ/zR2GxKOgY5pxsgiAjSFeAxe8sDKNG5KE37qyhT30hs5QktRDPwHzKA+VJdmH1uVssl6OngIseYK5l98FeEPe3zI+vdbOdTSNJ2Xz9d6LJz7yWyykr0h2/+MsiateiKMrIbw/b5bsEmymZAjRDmWnFtuziWzQkqVKjvr+jbegUfYEBuL5fW3rFuP1A6osd5fnEZn5tUe9D9495569Z/q3mLnrDuIhiboux5QJrtqDZxhW2+GbFc48lVE880dqDO5L7GyS9nQVMnUDszAusFiLIJ0Gutk/diL7/Dbi3eiNwnOvJAcaDrOXuVR4B/EzRLfgXRkb17/jUoHev5Fwmw0g3Ri9dtKnpTDZ3wLQLjKylJ/pFOXbfK/VR0J+/8CLz3zJwk7WROWpRccH7MIUxQ+CAfy4Eeb472tX58Y1EyrPBilOMH1yQP0YYLcse3XKWg9vfPStUnQoo1xpK1r26xHKTeX11rzzfApKgPlDFOjXIXFmLkyD6kMCXYUjHAR/nJFc7aFkW2eHb5L2Uvpe68wFs0cpiWfLXp7W60QhS3v9H2cXQswqTup8BdrfZ7gCVGeSASGY6+/Vc7nhAJ2hg15OFnlC+M7m9aYXx5G3U3I7CXaQFLuu43kD6vZBmv9sRmTZPtze9L5Vx2zvCKMtRj/wbiYpi4/OOyRE/eqWhOwF5ddnLHTI3y+ITJM7yUNV9CATsQIwnclUROT7XKAJ7xL5yKUMl/le/TDVZGvHNL3Hw5xaMdoEWaYszeAUATgt2DfWxfDm4PZPAEdJMd9DhI2ktE9knvUkgvZKUljHWFH9KXSQhMkkdaLosfYGWT3WNUIHbK+iwAUZjipCPJcSE9AEmCRpknRidKkNzBlNWlK4V0bpFEU4FB2KYDWUZBInecwVKaPD447cOq3W9CcR8Gd0oJcapTxxQhlAU7NTr5R74WVU+L3biYT2zvxCFKm0m7WggtmBwj1gLqSLrqkByTzGBnjV8ALQpk7297kievq3KY3bRJma6gbukQR+/yfv15iwYBPJ1boW7riCttuS+rteDJGuZv4FPVCxSnph73chqcy7JDray/AmnWI9h6C0umtO+IaNN2yRS4M78yGVJgQh19/TjZy3MDsfxd1hM3wDCyOPuCLy45zF/Hs1h9so9RLQmVbm7PK49Wm3nJrmVEON12M3dclE0sMGmXFxmLeTAlKPU36fkYIdeURhxO3Y/90UXPybiW4qnYf67vqjuzPOC8rYFRSkVo9mXS/4/5M5N8VHKqIWarncxqeOEtn1izItD9zki2v+y2tKUitbVL7f423SxxBH5zdnVDbw3PoQJK2QhjommTeH3VHUzd42Co9FqXtwOLKJ0dgkr37shhwsKqgJQ9AXo1fkrzfhCbfg2Hd4aucpu7nvWBs7dWQxEAHraGFFyNs4wrSWyJzzcqC4zy4bDQx9ayDo69SiGCXn3ICJ/i1Hjr6ZTeK5gksc5Pw1x9wyC8ICDAReSzKnNRa3cGo5rsLT/Zmd/a5uAWw6qzUdDsfKyJ+pYIdr3IybtCeLk60LTz29DI22nZGh192RCVEBm/ftOjHxh0SRA/5JzTS6hTyp2YxeXw+r2bwiDb1PinRkbsVcoGt13AdGCRT8fkudcn6mwgt68zAu5ZdJjTC0cubH/k4rjSGhAN8N5MsIDBWbdA2eDB1qQjveZ2rQD+0q8ZvVJvduMJ9wOmUp7c2kD6N26/USGvpwK9FCe3ltV23Un86DjSE4nWbcr88z0FBFYga30CYwKkqRCj6SKGv/PwGccwCDPNbnyevj2s3gr1VvJypZ0NozmgFVUCaMJZSq/8SldnPio6xUaPoFSiA5vZRWqETOIoR/WODesJkNJlF/Gs5uGjDK1g8zbnWP+njP12LWkZQAVyjiYAqnKyJLk8UC9A4Md6z0KMenU4ZWxKlxS2ZVGVvDcgzj/6Qw3u11R53v2UPS87d1CQvArphMALVgIV31IUbMvqk9cmKPa9M0d9qAH7Qwl56LrHKErXNSJ44BKrkHeaGJJMRb15vT8Vn3xMcrxqa0VJIZNnFJJpE+hgEgtWPHQmJk+EpPZ2xodxb1rs6hoAM0a/9PEejH1volsJPrMHbP+VV3ql+HuXaCWPVYsrn6UeSzLDBLbteJ3LcTCHmWPOJgZa6QPWFHVE6h6iYkQL2XvRyQJcXMDMlDMObpOg42WnQYb/NxKlZQJNtYNjZBvFm8qyXSahQWFwSxov8i8iaVBY1c/zCUzf0tipomWNpN0XrRVtxa1vkh9/lR/lINUeGbwppAt6+tV7t3UOpIaHRK7Z401YkER7CeB/Kb5bgkz1+lBlSZWR57RpPdAScK3qbg4IR3w1j1LzxajJ0NLvW7fJURR60J4Y4aP0xLK5OQ/JmTTUyLS9pgzfxNp+KG5UPQU8h89rzojjLo0njZTTBsWqTw9Z1Ey9lBTNS48TEsQPyO2Kv4O8U8MMjaTKwVXg4u7xVvN9bArU7z1IfljbvCNGtxNyaU7QZKGOvuFCt7y2UDXrQL2zRq2GCxa3H0EeLb2exy66GQokVQxBrXzjwexNtaWBHEOCDZtqil/AMl/fB/mIkOCEek3JivzN6VKHLnDDJPbheswBFdT93u2PtvQIu8vpIKQPj57EB9kBr2+nAleGO0sPQBHhkS8HnW8pDBfiUIsZ+AKIpt3Q9a5gR+UC4ROtXX+mwfmeUF4Tlz/wZ7JysRzVZrqxcyj3VALJ6LqRJVSFRZrnh/JfEw6QR+d2cjeFi3Eweh20WPaXz20TsuqT3nMtz6Q2M5lQj9wbqbhmkW5O/fro52XDWriRjfbviV2HkvnKd1MrT4oDvBLh/dEnVz8G/5EDItrL/V7cAtGEB9Y6C6t+Tv53hNiCa/yiYCfzHxDL4yFXXaiYmZCZqu/EoUi/6IAhmp/EdeOuQm03VKmqp1wVs/lboYnIESuZyKBBBYZDForMytPsbVT9cEcPagZmhnl8yWinyP2twN04GdbgtEwYj8u5L8HeCDl+G1QDfooqPIsJkIV4tbTooRg1T4n75SipWvWc+AgEEAdBaOMPByZMuTiKDKpTIEuugSWKj9T4WjzVXEtzD04/hAqGotSqIQZd+Qj+EuE0fUsXKTDupQ7rCgsCc6GC3Cdt5DVeLGOBLlUtXVuQFdEkBQXQubHzi01EEwbJ5PTq98ZPRRHDmJFXAMAZddXIe2PIiga8Kcmdeu3ouAZAbBKGHyZaqhhsAjFC9MXr/llFCC4hUDCsBfZ2sgv8hLxtEfDVXlIQtvAJkMY7weLgboPJeqFPwjZFCHzBIjlkZJTLnjmZOWIKsXl0NQCwIPqtZEcH6ExAGcBWMu//lAMsRS4Gbov5m67hVTPpkYdxnQUkb8zfDS8Sdc9P9z6pfAqWtcLW4A6d5jy5z/Sk7BYDjGYjJ+0utU6oRWiosJlp2+UJEH1hwKOKew9IRkESLWQV38BcYypfpnVMVRf9OABu3esgQCU4UMP1d/2Ak5eyIg11NxtJbP0gaVvzNlCcqKG0zzLdedjilRSPPl9rSzaH+XL55TYg0q1ZtWLNf1E0Wh713XOsmai7/jnefA6Tueoh/8dGFhgRWj4o45UJqXqLnXG0vf90yhW0avzN268sbM/YPreQZjKlrhNYSFNJG+w63vlCXi7bEyc/yKAQMMpLthQNr+CNINkucTZ2/nMOTb2DfqTI7xR6HP1kM8mxEUaC6AG6ss9cbcTNCiPNQVZVKy1B6fBcqJI928OcSZ6eAQsEUplJfb4e9ziivQGcHARzF8ORN66ZD/jQhF/8PcaP456JzV9Lxz6I1rasMEBO1lI1za4HL0Xok3FlcstB7WaNaOWo/5wQh9syl+LpnQGXcsA75X2VW+GU+sFnOG53E0R85BpbNP62tY15qoIpitp/nqNzh5lfMuA7xNMsHrWgGTrhOTbtzUkLcooC7hAxbUKZitE0wxOjREX8jrCS5Bdb1wLrYqQAx+ncbVxJnFtkv/32iO0XY26rm8ObX+MX87mHCmrXCSaVv5x42DeiIZdGS3baD7Fi752RAy0QvWm2eGEoQHvTL9hCI05U/Mxlwq88ffJtLhGngAQYhDR0CQ0C6dCEZtBwiE0x8GsQAQh53ebNyCrsNhqghZC7p7+6XFSiw7hopLLYSmxD2z8l+9VYfdA1sg0Ty/kiDPmi8hIORfyZnmmCvOoTmOJs7MPeNEhS9YDAVFMPj+xbi9eVK4H3AHRRiiAX5ppiKDFSUaL05qK2rlhjhP11sfG7xoTdQ+gHKRZQ38ct71oHLzLiFIW5mvPyAxC3jpFtsse3Wnc7V014OpUaO+K1/3MMM3il46P+bu2C5WutI5nnG2oNpKFjmZ+Vd8BpeslBUtnizaPsDBLYowRjsQeRzKl1PLCyrfijizL7dGuu4WVAhCQ0f8+uccgfZ+sJn97C1Nq06MGwMFIlInWEZ0MAG1MgDwRTd97ssVYmYS9qjQceGp0wjlfOynbxBY/xAnOUNL16gchmUl4Muw4E9rAnp8ViglgBkLKDWLYl2v872yz2BxL9J7Czz3oP+w6hwTjQnoKJU+EykhID4I2oKbpttnAVycbo6/XtI5W+O1A+3XZ0eiazEB5Vd7cRSZ/j3EW35dvIDwz/mDcnuu8K5o41CqM+2Crf2MF2EHO34jm/9nNiqHBaATgw/uIts0eExLpUL0s6lzA75Ljyk0LTWCxqLiaVAeZhv6yHx9dACNXV3I4TSsF9Ac61zclAQupb73b7xIXu34K3xSMMBjM+SLukqum2y5eyM59rtczSdbMRDB6/PwSXF1oKgOeo6B5Z6/EDn5SdqIeMcKfDJ7gkoRsKh3U1srzAc+hxqYg61W87ry1NXknivJvZ8tRdgg9oETv+LA04AmBHcRIXoyW76hwoDvZHmlKsPYyfhc6WwplSvsk6Y2o2oYbCBsLvnj+ZWcBpcAh9dkeo+ANQ1fQJLO3mqBtAntDLhNiT6b+to/GRrTwFV6VAc2WuON9tFZnvYPOuzeuoyt6acmhzJ9nhMWBPdzbeN6Gysr6MYTzcCrU/NQm1qqem9D1nVJqUDlIKaXOX/PwwttTxd8s4ytc4g4zdeakR0cfqntxq46NI8iDER8g4uzWW12iPPBdNSoP59/qekLeDL4bIur5utRoTQV1+VvdCIWHRY5b+ptX00/6PWMMtBi9CDLCfM4kdMdqyWQOybqGj7Ia6Y2l+I7YIlYEcPt8/425WFqYmbcLcR3tjCktIjZl4QKaNqLDWbVL+XShlkQKh6kbuJej6Ed1ENEBXPJA/FHYbVmWN3zeBbc7j3ZGSoSBNUwgyldOEWe2+MlorVrmHUMTsPbHUogzUL5isYIYHMZbiBHB19/+py22DiUwk/6tVMl82AfxQoAL5ayLZtkjnRvLuSNa0xjWZLQO0HAaYqavemoKHqKt4pTp5HkPTH+KLIfCnxaMFdz46ldMD4+ggvcd4vOqNyAOV3eDVp4J7qIdGc0cA8XyUowtkQ==
Variant 2
DifficultyLevel
551
Question
Phoebe is filling her pool with water from her rain tank.
Water flows from the rain tank into the pool at a rate of 200 litres per minute.
After 10 minutes, the water tank has 7000L in it. How many litres of water were in the tank before it was used to fill the pool?
Worked Solution
Tank Volume (final) = 7000
Water flow out of tank=10×200=2000L
∴Original volume=7000+2000=9000L
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
gender | |
flow | |
time | |
vol1 | |
vol2 | |
correctAnswer | |
Answers
U2FsdGVkX1/4fINdxf2FUfexBAU4wnoDJsWPkrrNGgB/bru+IIdNNNwf03qU6CHn5Q9uOTedsISKnk6KQK+FN9HXwDyRTEAB5Ar4m8EN3PYy/cY/BqA6ImK/dgtRHOXy7V+w4J6QRdIgZCm/lDx5esWKD2ohKy2hScP/Ew1tz5ZrVZTIvmJAI52yHLkNhAS4RXYbk0aAer9zzm5shuKBVeuinMIadBlTvJaBqIjjpiWmqPzOOS2qP2sz1moQ93iste6U2HVKKUS7XOWI/aga7LsGK6Cgct30HwjZWBRNcHntrTf7qbaRh33lkZOh97vC/MYSe+OOk+bm75O9NawR7TbuIBBnhyl4rcReIQ3SH1Dr7ykmDuTEBTvgT5BmWXW9NnM8rV8SGGa0w3kixutfl5jF4U4FR7gaLzzjy+cvyd8Zxc7pGbvjhd5UykVZjolbW6mu+GlYYf+zxAGxgZljY5ptlQBK1Ox8iLNEgitLL3RsBFD7qTwcnUTmVzJjH3TOwj6yJQfQRakIPpN865EG0PwnXhwDFwF/0a2l4ElgLujSGjutfBDLuDwbS03tjhWLrz42RHNziRIp6Oep0vGYGXsMqT3THsuqSBlTQgYN5nvrx03KD99yMWxNBfpCguL9eBP70nrJvtG9aW4MulxsYVMxZJ2sF5XWOeT8euYt8FJVOWZsZsHZvT5eZFurAZrELKcqtIWBOM/fd1rH3sx6JE/yUszZVSmg2DJA+5nmykQ1C6WU2XehjMa30pIp9OFEwWRd8JFPmMWVhj3ieYbld3fGtcy4RpnOYEIRRgd1A/Zx0vri4zvAtpv/N3WZChkHs1zW7QfM/mdbhyxIyx8V08J3ylNT9HAtR71iLrTvOd+1W8jF1tzxH1n6kLFAb741fDEeZMZwwCQyTCVpGyA2QXt3+mHfZ9nvw0gvXrAYMQ+rTV6pmKpVKcta3dT8m+m3rQKQNyXNfn+6q98omNl+Wtzs1VO4cFqhsqViJhckKT2+QLq2MLb199brf2uGkp1sgaqXwml7PUc7anW5bn6Ko8Fg7o9umjkcdfCJ1EjcK1AwpdGkhATsPDZLcQYLwc+fQeADAvLV4JT7wAQCE9H8kwyyZvFmkFUm+BTmrX/GU2/BfMDjjKRWqO2qOv+K1fnjZggLsHJKlNi5o43VtRKSEGm9O3PrlDnepxOwPGXG2pvrnboE8iq0HN8UC/GhFmMytQZvaMOiw3BBUbn2nhrtFt77fsWOvOYTW9LQtxSNdShYxcCDUXb8BdIrFnfo42tmIdJ0we29bdu91N/DAYZ6inU2O876HzISTGyXin2kzI+4ZBJC2UyKIg+cKyPIrM7r/TmyI+G1wJG86ORSPSs9j7RMOM4bpYVMiay0wBPfNKnGQe/nmqlF1XE0nyld6aAyIGRc43qkHBo0iGz+ZBHd0amTjq1kfeqvOKfC4St7brTZeCvsSiVJTP03jTrYDlpmNGfZB5pT4lJmVBWT/sqMUMwnt7gr6GS1oBpECXHKUUbRxkfP8E2G7Le/O2TnaXNcNWsYJAhxQ5KlDUigHsB3Zh/he8rnhEs9w3yfjMvlVv5vPYQ5i/4APpnhMOVv0PnMnpk7aTBgMZuqAcZtZziVrPbbzBt4K0OX4J+grJZDXKxOklWwoslfMeifKnQbxVewfVdwRBgGdlCeUCCdahBXz0JCSl0iSdrt3GM5tyTCJGD1pID0knqu/kdfl5HI17L444DbOXvNraihJzDj7f8o2y7eLyIgsY56r1viX9qugSWWUMokd3+rkIgrUiqabakN0JOquep2slTJrG/EzToJd73z0EM03nNoKcNRMsndO/u62R6hd1fBNeewzpKHBN/TzN4fz2PpnhRO3WL3JGuGhMi8jsgZOwNxr8HdVYzBnAHI+Ekrb2u/zEBIT9k9pBK4FfW66FtaUoM3S5K83sLJ3f+rFHqAq2sq/lYpZmfsXmqXMLJg9NZ78PcPizoN859dRLpVrq3Ld2VoZCgRryGLD3aaR+zEJ8laZbWLeJp9xZFwfiQB3JKAN2vDYjPv3OTBAOj+4IUt7ACY+hykI69NVMX7fDAvWX6AgKjraYIjlmXpKRNUoVIEgQEORbI9HmTARICqAP0LFDn0enszZuu5czoH7sDufkMyQK/T1PpI10VXf+0aCq79Jmp4HxxcIONfEsd1BqAm6E9Tx8DyWVeq7lu4tNEzvWQuT9nUzqE9TzQ2be3iZBj8I7MEP0IfZOLjljOdVB7dsHHeWfjj2yeWt7WxTQW2C6oiHW50R4xYPx6KZelNLNJbZzk+UPmYwoVMW8ogwjl8yDLr1o4mV+Nwszy+p0KmvkY3pEUX0D+qbxvSZKEuX4mQTBARp6IgBn3VwV2jJH05NTE9MastOQ5pHZp7+5pWqEqgTvKZzfzcFVEhV/a2qgC30vEoHSOBLKJaz40GfL40uo3qrqvNlvd5vsqBj3IR1vqxjVGlL5S2v8Ucrhei9dREfm7aCnQgXkRNoKN7M7yHYmxApCj5GzZd0hVyJaFR2ciAkXQtdNph0mYS8kBNjUZ6Rue7DnozBQ45/axnPNh3XTrM9hOi/mi5YrUGB2tk/vfohAeiDkLB+MVV/tCGS87MCBjeLty8VQhRv7V3CbLMTQ8O4hsnVmLISo06W+VGIyEpUpT2Yiow2SFPyuMGEdn8lMBJeFBV0RAA1tO4zW5XmpMpYGvZ4PMDyyF5kCdb6m0l6wKImc9k/JmsPcYEfrKMVYwDrrqs6yHbKnky5ftdpw6b5jnbGEMjfPZyeQe2TtdhRqm76oiDYv0uupQN7RYUaIdSTyNhMjOSgavc4/dbbUmp8KT6Y1a/2vdlZ1YN13MsVOSQ8ovg90RkjDC7n5Z7oERuWKjDTS8G+nX8yB8InwGiopHt3/OPxiejS8UGup+sKSSVxNj6fsDVobF0j0tciTS+F0GcIhrXJvYfKZo+MsPhBLcneBnsHNcW8nq8fwZaFXxYx6Z/Ny6I8olRw4373Q4nWhHUFXDJ6MzQVe9EP8PCQo62xYVf3KBYNEZfLXIaW6+Aiv5ibtAhxFm87ooCDOWhJ9OK/wqHu1Krq2w8/hByEoP017pBeBqzO2cVIBq1gSaM6pZufW4tFooAhfm+HCWs6AiErw5aLrlL0UagEUmqGayisd0QTit7lwsetWXrj9VB+aqGEoiUXvRFoB10I1J0IgsMoPO9nlstxaQex63bvgjigdCS6QijYbQjqz+tL3EJfNzcaSAZU8zN/WE2svk6TpshTTQgu8BIJJ9d8FYkZ6qTSinZKp+pZUfslFQHKfDlCtbxXyjeAvopDkFfZdcEW9MADpRBrj/4Z4F3U92H3U/i230xf5Mh5UKB0QL1C7VIpF7E5lAhJPCud7ZUadeEalAAVQrs4PHejyylgI4u1TTmnbwBhnGEsESwiQBGxCCiSXJ/5JZGQCrmbaulmBUVRsSo2MnqqXDnwshwqCo6BuK/M+WiED2enCYvRSvl0kEQRzUzSPQbFWVMW4CjSn62Blfwj+t/FSRkCdteZEELc866ff4LHgHQ5C5Y6oIM6GvikoMXqKR1Y2EmoAkigaz/fFA3ol79AGPtD9bRsnbqfkLsYKuaD/zCA8c51JM6gSSwEW3zLgmlDCAUVLVQGyPM7pBNkg5zkMQfR3nawy042C7LbOrQDHZHqNkGHARJGAKWxYZngAJXkwd4a6hpqijPxqW/v7KkGRK4eaW8JhGU7TVfXeihwcjBIEfGWMw3LyMHtzTIkkf++Qxy6xfTsqaotHRw4LF8fvG117XxXrYH83Dt+nt8JjmiMeB5TEk3wItSzOKv90lnarxc+cSpo0FAWzE4y9TBVEq/z3ABcxw/VR2LDv9Dz6cAm+WGC8VibnbG5oqzMkScYqJEtDS93wp4j8b9J4Yh4ZxKRlT7g6W1n3LPx4KWwXZoIqrPCYHIJqwILmHw72QBwIJp+c7wYD6112iAxTSFOcLLQlkvzPYqrTJYAdkUvpuX+s3/LWj3FfKgzUDvYjJ1tsv8m3FLcrrGSqVsbvzBcBfI6UIWGnA8sjLI5xxUokltPMHxGKmkilqmsf++e3SD5cegWtwGfG4S0DS2n3/pjOcMoF87GI6zjv/0CHotGDBjbINLRkvPLTrEmJ+E2JbgpAfvE2/s6eCfp6fvzMzEuGs1qZ6LHm8COGk9K6xT1TnlwuslC3iDvJFwni7WP0N/Hk6IVAwgrB29UC3ZRf5zNlvkxhAsOckp5NUWlHadVEMq2g/Rjjl/ziDPqvPnYVYnJ7/xEngiM+z1WubbCXvzgHvFl9QemLFW+k8h5KmP/slslBwJfoLWsLwyj/za7tT8DvX2i4yubeolUugFISBvy3gp5tdwy17nE8AXKXulXw4ZCNOWjQlnAZ0hTCUhP0Ptm4fyxcKf0b8Hlxk6d5uwGjr2eibGtxybnySymi0zZYy3sp5XigEU+w6Ko7MvzqaxuoLcpRjmrpOUJkiNjVkUmX5Y0jAzguhODAkhLV16AdKi7IB3Hr6nma83rj5EwvrhuEbMtwR5ECY0u6MagR6ORIYKtj3Dehjt/enXTMDyjkC8AOehqnfe9iWme4RekpbEZHhbnRPOoNxaSj9MlVj3VZl1CK1cE95yHyLu75DGxf5tnN+94UlYy/2KH8rZ4FYUlRaIVvZmdTvjT4X3jqBXmB6Vh9U8atrA+LPIUdArJNgOLIreTUNfF+tPgsBhYTHYCXBjbXi8OodqTChq6WHKx+l96IXop0XdWBGasNNHh57wmr6dYYIyvIO+W11z0TYAso6D1SauggV0dwVG+gsuKF3caNHyp6OJGoIo8sFOOJLQ2jBFcfKOdB9eTkckpNteA6KzgnnacrrdZMbXDvFo+4Aow+Y9LsDqRwOowXfS+YXXfJkktJsIOrTD+6znDwUeMzMPQ9v0XS0YVsXdrJHRasNJcwaLFMMoSNjU/9lwvXvGyZ4jI0Ol/OdaI+UqVVsWqR827B5qeHFQ/NEPa4jfItICH+PUTegw/kbFV8v8ftNsvWJrqSak6h3Uul8lKmeGqC7WTuBmUh7ilZkIM2UOxbviXorrgTtutZyfoor+rFuTLoJ/HBzqHz3I9Q3mr/DuScyhoHyqA1hT1whCGcqTQ8ThXnMg7bplp2pHZ3Xgcl8A2ORaGq7bcOBU1oq0z2tgdo73gdNzYqw48mrlIUxSczcVUT8/1J/cCKjpa+q7uJCfccy6iI3CtigRpOH/2YnWAsBbvyW8cpnLRJpPxy26n6UEYyyqW2/pFtKPqN1zuzdVdbMfqmhJieq30Xl6dTNgfBv3p+LPNJ04MF8kTHckeMWZ/UXTay0ZfNuQTs0kvMqTtSI9uG1Q/qCecToMBA+MsgjmnSnY8SSqRRHFug4fXZTaxsRNO1kwRpr1WO/1izYKMuxr+2BasDVeRW1EkLG4RhOOhrfCw46YSzvZq0CnXdSOAsj3aBNMZLOHR01v5Da5kqlZonVYEvIaoAN1Iu/yWoh0OuVoiIf9n0HJ2lroTmkpQvQTlsaIal5b0LWs6OfSDR0SieDrSN7znRrOcpmLy6stapSZnaSOjBFC3BHvaezEcpXJTKd08/I8lBUbF6ncwZlWKQs36/us5CxccWVtW+rLrgyoAjKRs6O47DJsLiVryB1OFPWsLWTzsGHqeccdMHnkP9Arp+nbI4mbrw/zh91i9Sr2jOh5xm94p2heus4YLhkHoqrQCR+Qz2FSqRcPr0bBmUsugb47jrVk4/w3nHjZfkvnY466c8bYOID9vM734t5znVRyEhue/6R0B35Rr+B3GIcmLoMB6KOSihfIbdbz3/VyPJrAPonIw5ntjLPI3jUUvPgYh2nOwObvEUB6h+4oOsfO3lB/rRb7Tzp/S2S6/QD2i+stnVzZHLaM3eaHvxIFJAn4qnrrOZD5ZREv6thGqPEXXhtU6Y57IcvJvpN73gqioYbEC0Qfur2CpdtTLD7p6fLGmRfTdmyj5SasTr+bHvUc/3wRolIs4xoMvczt1tDJ6Sb6h/7p/qjXsPKlKkJw2r4F5zmrlF0K7FpQc222P+qrS63A1T0ZrYmev3n4gGwgqcGtTx9Gl9gNce8iHfMl50h1NF1D6FsXLLNb4RdOPlWtizpQOVebxk8asX2JRkU3afkw78TRF6tSwPt0nTK/qKNkw/maLw+zvARZJBM+NzQKw7P3MfvgA1zO2RFFWjmu/fCEu7GwNHSY98rHCO+XXFcWBaVBGkC8Ci3q5oxTnQeChh/s+lgW+DRQj5/ChFoH3mDP02SdGhtcrKHh6St2NiTKQ4Adxb6yrmfsHqxj039O2ZHBqq3aFsqFhUV+2+EZ/pEor/uXwXgInKhIqOiTdvTxLRkttI4qdPt+kPqtgiofTslpBtGavg/p9ln9xFvk5u9ExFKg/lNLsLi9Dg3mqDtlgmQt3w0n5yZCVuTdbK40XYZUS0aZpHRadgb69TP1KTsmVjw0qz0iHPw9NVK1VUDAd+6FvZOOo4Fy8BjWyjtez1P7YCDMYLqedh89tW9RFHy0rDA7B2weMjZ6S3yrC0aEJPAYSPaXNckOf1I0WFf7rpf5pXvCM76Dy2pWqoqE2tnwTA2U4ljuZ2DAd98kyLlc//8Jf91eo+4B4FocjJpOWQbx42Iuv9MhsDdloD6jnji+UUwPn9RM3Yczo7LEhTqb2DRu180p90NwC9AQsWS4aLKkD0dFPFkVTDQkTe3dtrj8VjeaR2LOcjjHkDejKGIkxQuDF+E6iozYYLkcQA6jAInpCU3DWSILpDd7bcmLds4TUMw0ht2wmMMZlB9rY53m8ViS57r0/7H5ptWYmX4aPbWeJ+aqXiFjcusJltcRSrbeVqne+ebLnq8flNe8e0N1OkRYcUhNgyiMEF9Bc1FveZrMNbCqq8ksed5fIAqMpYC6vI1q25skuzqmRZh+BaDISfiLGAQ3iCijXEAXdm+mcx9pD9KiK32NNWiIP+b33Af/3HaJlczq2QhTv+IB7eVAiI4t9EODOs11Gu/Vm5tStnIPnVRaYEhKHhns5nlkbqPA21pAABgB4hJSh9UOZLNsWhZyOFotc35McZjJ3/dE25qHvIYiVFqOkk5W93W2hWYX/puIKVxEhTepesYA9VvFDRylub0LcCTi2R3v/XQAF3KwsAS7cyH2gqIKP3QuBiuL7uZHWGatY4IN6JSMlRgXfzIwFLUtMfBjsB/FYBdooEymBReEY0UpuJZVCeoUUYwHB2AbFPhHhosffIZnIlkvSVdADrseU+jKlKdIW2k1VBvwqk0ajb/zSj4QvyQHHViGFi5EdCP5sYKUCuO7yCI3PW/R9hg4uz+NsBRMvT4OrVUIRhwqBtJDSHtMTVeyXf3VkqiSwLVA0hV7tdEUl3BnGuLIsAlOsXVI9rhqIupLm9YXogdceM98O3zpkzCGKxnjpxTkQsp27gnomG3Lqr8sHk7hWWlmmD9LtGp0Z68TAoRgqMnA2wph2PfOqCLYv8QcQ3VafbGSjgjPVlXU6yzvHYyHBJJFozGUMGWbqEk557IxIhtacdXnWuvT1CYunC2E8Zr7vIV/SWNuUsMlKzkVNNm1oxfuO9FB5zC2QHVnb6LCdHs7MSHvAA06tpcV2CwAFYChcIRey70+I5v9LU8ZlFoXuUUutFeGkX20aoISQ5jISZODhQYQhEqYg9xYC/bnVfM9wXshe2fIhHS0nTaVXzUowBVBJpCJ+KrL0I0BQSlEI7OsU7sizQ4pPUqMQS5Z3Z0L+pVbgBg9ao82Dap3lIBAYQFN8ytrRpmIctjjbv0bIcFmzm5AB8BmQf8yHoGbT3Q4BNGPxVnobdw4A3saDVz3k+qN6vFc+LIkVW9Gb1gltlyZfWl/zDWtRpNRAj9GBiwR/v5RmxrevUXaYpc2juff9mQVhNCh4Zl782s5Hqb3C/EZ3PyeZQ7kNTVEYKnWZeljzU1iLcBZ20KyoL1Tg77SLoDN+moEWNEcuCrNHKxUj2kNE3k7nreoeXlTJjrWutmJTeQb/GKYdzlxiF2WqSe8oJG9NX20OUAyK4EvDHyal62okkbHDGgvArjZlf4XUOVrXjAwruBiXeX6fgC6SdLDnKoqZ1iYpCK/r2Y/UjGQF9GrZg1+vefZJ1Taxr27pGECTAhIpvmwuapQeNqT8ipeBW4RyYYcS2D8YyPM+l2eViII0MAQ3cyecD4k/qjyipn00bkkl4mo/Tgh6EG2clkra3gjKVmK5KW2//DI5Yq/yJSZ0JiTeurhFzWRlSq51a20g2QyT7MkeEmKgJg2zps7tsNme4uRcfOqJosOY2iiLATxuGKrJjdVpjnwahKF/xQWBjLVGKmsqa32FwtfvkSCRWNyLnJH0y/anjM39oNiXYIuTNGDS8iu+vu7piiJm/0RgvOTBV1dIyXbjHGFxIqqYF7vlk36o+O3iX77CzcHWrKKIBM7OFFYkAbz3VfFDx5tLyJdb9PKg7In0FSg7c9k2+jBlNM0mballA5XXGcqCf2qqgTwvLgPn2TGZPhF35DXTT4d4lv5XPVNHwkFunrCrhfHPjbnNlet+SSTJQGiugzOd9xhsZqfMk4yHZQ30aExlUExngB0yUBztcIYouAywvlusfmz9eGO/5TQ9J1HZHasU1KwBWd8fCbmNd/AFq/uV9xfiKuogAf6824DjFyLlKmkBxbAZH1XBqP1QjUSAnBdboj54W56DbK6ihqDTGF37Mis17U35dP6J2vB04B4K4NrNIHHQ2IThiJDhE8Ur0ihK//jNgRDIH5OBW/RYY/SUhHg027CUBJmG4IHSMk/1jhlNuv1IahG+8x/qSUAqSQj+IY3JfLKR8YTt555cSfZPxezT48j+dHriFMuHJZhK30mDQjJhm7WkYDBd9wlTV7Jm0oe83CJlRL7L5qxoClAfoDRqoAwsNSZ5FXpWlTnvIdyiTc1WaVyzt9objTZDsRZ7d2LAI4ddFkady6t2RgdkltKoH6iNFTxFjrGGK33MqDW5e2fAFKk+zgL83clr3+tlGuRkoD2X2++oL4nfyrcK5aJ+ThKOlhdqej8Oix97CreyhQmPp3MKt4ftqVx0pDcTH6SDiDfWNI3bAXTLxxecoyyoPu+26h9hWlh6jIGdR+NGWSNrjeDk/ndwGDwEdqH8mdTnZqSxAE3Br/VoDTPT8S4efbFp+jkwkGyQAbiFHkE+QrICmXn1kz8+VjUNCSutKiCqQHSqSpBhj75Hz1vyZzDrfJMBbmnXHKTKkyHarjZb/oRmFBjH92t4Wp3j59fKETpyXUGroeZsMs8NQq09oaMOV2ZRTOaxgeTH/Jx8eVbmsdBOWYPr+sxG+UCKoBN8KRdQZxxwsCaHzXg5jvwAdOOLk547y47Rxgz3/H2u7QN0lLwI64STJH+bMGa61MlM3JicgvyKhF458nSDjEVXNkltMvxaJVTLhKyGUR70yb/JnjnnxwKf0h+uMTUWKTv6qgOF9PnRcMq8TzXKlrT7sBctgPmVly3Eo4yj9clSFSFHLUwI2CLFAB0/dZzL8erGN4P1zP7fLhKdVZouL/2Enl3LKrriPBnZg0jkLsHOdqsAs14QQ8Fw+5gkspVsWVtmqUSHdIUJ9GtY7pNaoNhL4a+GlA06hdw8CAwG61d50yPwvXhOF8BWViGbvsY/TtLUcd/LHgO6gIgwj3Se3ftKitc/vzVqA0J0T/oD9cqjJ1zMUe94+reF2maLJhuGjH11Wfdpu1EydBtwI77Pq/+iimRsymZEKs5Mye+bTco07l6uxjZRX0Uh2l4DH1H40VDPu9CQrfKkK/Qfe2McvlGo8L0PCS/LFtoCstHzYdrEl5uENgdjkjYwu6by3t2++X7+2CxM5AsE9KYe04OK18s9B4IwH87OZj7vca6iLZWT4iQNB97SIiY7wKc7uPo6pEpg17LSrvqiyUqMhDcTLzW+pvi21sEx6Ep8IyTj765b3n4w+q47UPOdtFctB1kdKsoC9v/VLv56paj95zSzDj/qxRGsfNdyGouuoXf4au9AvSeSG5Jst5Az6AsGZZqjSPv52D9xrMt5E50AepAuGN8gBytC7UbJYgT3YbkJS0EIt3MmZQXZEzvUDZ9jNH+VpIMX3jzAjb9yJ7cbPH+6k1REUvxpd6mnK1y6FHfst6+RSlK+oRh7OxhmIqopC5batd/McqZ+bIkJ5HHlcw+vBt7p4fTBMgcBnhG/NvUxoqhYn3hHhYmNjzjEdco9TeaFeiPwy10ieFy/+egN6DkzorpvQogvkG1FUSP2JX/jgWvjknC3lxTHpkhhpYfJQf3k5B27ORLRhc8Q3MGH19O+aCWlyrvE2VBBzFTyagkYop1V23sRiQeqFUMk7CeKAnkApx1A3QePzocYptBSE35tRywDYVJw/HpSWs3ByFV0YTGab0zNA==
Variant 3
DifficultyLevel
551
Question
Sola is filling her pool with water from her rain tank.
Water flows from the rain tank into the pool at a rate of 100 litres per minute.
After 20 minutes, the water tank has 4000L in it. How many litres of water were in the tank before it was used to fill the pool?
Worked Solution
Tank Volume (final) = 4000
Water flow out of tank=20×100=2000L
∴Original volume=4000+2000=6000L
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
gender | |
flow | |
time | |
vol1 | |
vol2 | |
correctAnswer | |
Answers
U2FsdGVkX19QP76m5KsqOWDcw1Hl+astiaHIVmy7IG1vQIBRS/M6M+8+oZNQR0P7kQLHi3uY4/Qp9AE4He7EQPCH4wRX+Gnvab+PCmxKyuuhiuGvVtmlE4YPo+W+kKz6KziJIHZeGbqp7VY14uAm7mldOfoDVnsbqywJn3p4Q6TnZgHyUR8nGpLvyjZJ6RW9c9dsrL7N5H7tG0/8VLOoD4THSvy6cGQ50KIzQoqGDGFHy8x++mymfAw+yAGK//IabVMGWr7JrVYuU2UBXmNlIO4lS4yIHx6uUGnur8QX0TxbYBGnF5i5My+hiv1eaY3+6sCzoH0Sjz01qZfWcQ96g71pHVCjECALyMnjcmFv/f5frr4JtQKZtXtdDxaTrMdbFSUIZwruJlDO7l4PFynQ/YANpUpb+y5AvRXbz5XLPEYEJgnVmu7Lh1bYShEBTi+RJ1KxlKomFTNAoyvFbvIoXrkTI9VcoO+/MrE97eXVj6Xr1UhH0CFeIDRY89dkdeSpsjI+aM7v1DyfrTM1L9YJBANU7hqZ8r4WD8CsPXy+YkcCLbb0o+YN5A/YUBR+kDrKiKjXROhLB2TAEflkBV/deaE0ltnp52Uk8zY1zehoVUKPiekL1E6fweFW9k2+R1xx8rsjsUGmlpqFV9vnEwA0m5lgug3773/cZoKxg2ZNrJVBYxm1w1YNxP3TY0Sr6rve7987c6qD3imqGuQrxq6snnvbnEgc4yCyUyiitWL8rSu7Kq3+ciPMytJhGTPfrhoymfFRZgslUScXaxI6RsIhTy1VWAkBAXYTyhdSCexzhDtpAVBOQ1QzvKB1umFjtQs5EONtid7RVGa0m7TjG8ZWVYzlsrC3N/GmcTl9IAoWvKEMbQlN405jxxf0s4M4ZvCcH/yeQfJlUZHQcNTcgWAw5nydLqEoVr7x/KPGCvFHw3C3ygp/D07V89bKcQlEMtpBRevo+TYwIMipreBP2WI9DjVbXHLlITn0bfcU+vrtrdEbl0ULAjBnqu6k5SafdMArNAy1j8E+6qaBzLgyqGqQPzTJWgNHi50qnuGYp8hm2uXhXeCiS1vB+DCLdSi6kUTYcXcaBfzgYFDm4kmL249Sws/H6a6I3mMruZGCYongC+oE+/xEJwcYESWevgRPz4QdFwHLYKwd1bgPF5RDJpxjZY+cTFqFXqZ8KUS2/MyRjYKWB8ESAFl1WABz/cgts0RkUQN8F9W0p6gB7ICrJ6dVKBz5Tx0O/FcLIsaV5KecYMbSjmGXy/AhSaY2N9HbBQ+L589otmvSDGyHlTDxYJ7SH343aWFaYui2vjgHshJ4uFl0Y8dUHCkA1Dp/mqYwvIlf1G4FQgwcuSGYtQyWJoSMv5o3WPp1sKV0sR8Cd8OzbO1zn7fGq13qO3FAFjta/EkJP7TMkd4qz0BFcvisOWRAU69T8hip6QgoPN/AyKbqIfwqV2sRm1d3nGrzfXws4P3Sb/gmrJEigk/yLVBma9vJ9C/rx8F5nnsTR7CuXnVEqweGZpNkYIFiEDMTDSGmUhNd71XSSgQ7/qW/ZKsyq9uDMK3TEIjQze7wngZIwYZl4yr7mnkgzDZdkYrEVpKLlPPIK+8f8MdQscMefJGhmB6n4T7bbt+Uq74GOSDuy071N2QSgCz513cockeMj0Pi75NlIKDn63fwMCMhx8hZXjs3CABIBLBHXmW+5HATxC96dEH7YvS3eqXuypIBrTSZ2eIxV87NoBUi0fYoAUyWkHeXzaBKqYnFc3KwBKIDADdzFYjf5rZcVO/Sg2LoAkJVGAp/8OhZtC1aWPh2WBzbYRfID4y9vDeb9XnFs/4Py+Cc3y5wtPSV/pOOyUnClIcGkXvg7uW2EXNpXxxpwxEiA7oCw4fLH7MGtYeWOrqvewKwjtHtS7GfiJ4y0w8GEh/8aviSo4aQn9Q3Om06gnAa6eK5lkYKjVQWc5dPtQgSaGXAtUFYNh8m4jrEbnVNti+EMVVjHkPcJFsfn/YEUWdoSmfRbY9AUaNtkcEc2xpB39nGPWvP3ZwJE2OrhDZlCdEoRbiiDBrVgaCIIhoTgrKuXO9MkUKRXSUci1h4uxHqOEdIkbUV6JbxrTuqcRGNrRpewh8IMfC6uhRCBbn+ewRl9T7QFQ7WrVDgoXaxCwCfrFYYY2v0C0g8DntSg+JbDfc3QYpOsQwTWqjUMckHD3h5PG8uLuEJFGsqqKxKNDcrA5E2/LdVjUUsO7NcCMFOqnz1YhJPLMmLt2bA38or3iqGrKnZM4zm1orL0cG6JZ9RGwSMi4uUJ7D/4tJEZoQquv80GTZZkDqqceYEFn0GbQzdtnvd/sVYh9tmDM0Bwpp2oxjNrJWa5xTrqrZt28cyjBW/Q5xf13mVpEWgLhiO2sKnkKxdyzU3pDsrn32GuCMCXv9DfQ6oh2mZyU/c+/Sg6N/3enj+hz2fTV8zpCVPia/8B82PpgJr8/4sberMuemWt4Bwm3cE/eHR/J8jSvxvBdL/ncIIEh2zrvdz8weN7lAGJA56nl918ChRABjp8GOckDThQQqcyReMd3PvuU9ERhqUahAF2Ezw/2au11uxL20BOLF6r6stLYfSXkz7XkW5p1+FQETZ0a94dCCKRU92z685rZLqj1zY9ZdK2RrHfpCOIMtO5/O8kw085QGAF+FF10LzSUJ2Z4C0+PI8Cze/PFlwYjsTWcVX4kMxHW1QpKCQCeLa/j/OaiNlQ1PuLvtYeN5rSYyxTwLIJDrhpNysez1NLLoK+4uFFqoXfDyO28TWuYQnFgrAOCXJtSL4OohGXeYeT+KAJCntqBuLnuvF9D2v7n+iyueGzRNUibc6+dEEXPa2yfFi1Hn5/JRSGeyQi8VAu9D2iL/eQKTF59+apmoCKbe7rn94cI3CAAv1U/R+71uw4OMVoyGiuO6Xjm42NmY9NZLW8om4atjZGnOQImr9KWckyQQK24HMHPy1Lg8bBk03F4hDRMXKpOAqRP0Pyrueg9CXuAwI2+doLr6zkK0fEXd4r2YmBsGBgiQh5kZHMwSntTzYnjttwrSLO7R9qoKrTP6lG0VOEbO2nKm7mMwbCqVXtzmf/yuHnkb1Va26Fc3ry/UL6a197oKsvP+lmKnwbSaB9bmtsTjd1B8CNtqEIe9X0mGKb1eFd8GUea6GFfdXRPG1+PkXvNi+27OJgfTSoyt0NFiXiMmi/Wpnntbn3n8scyR+jKKDrmF3C5Mhzo9m6GEJn0BxZBM1EqofrxiJUQAA0wMxg/LSwsAUFlnhACq7bI1GCEpAvvl8XsWVoWUt6+nHSKGVwuDw6SgiD4Nangt8D2Bo5yhWdcTLdt2MsTZkmC6LPtrY+tlXLfZ8JH+C/CzmtF5EqKSbb7gK/rc+EzXHlctjnNRF+xmiU1c4vKh484DxoJuI6MOcLb+5AVm45sxR37OuP6W64hjMtAYiAhKLbSMNe4PbaztaY44FrrJdjoFQtcA86u5l6QHH0JVtdzyxBZLp7R6SyMpDTJ7MBr61N5H/Oz10Ig4l4TK82IDq4R5eek/ySTQhViK2QiU/toE2sQ7VeJZoboL0hBIO1Oo8Gzy0NY0eM6ASEvtjvxQxSgjmC5ZfiGiJd9cqcucAs+sa9cwJ26QE+uL8PLywCcwLU8PmJOQRSn6Q2Y8K7GwGUJMYLyuEabkJkJiFUwWB9RwgTUTgXc7P+u5mApo+4avt4EpK4ylsqVH4Evea8aiKSHZ4iGLMA9S5NAfhTNy68SnB+4Sgl5Kd1IoBT7tRhZopw1GGWsKooTKVmt7lIaSwhSwc/FZI+EBBrDvWs1ro02FBYfvHK7Xl/IJy6HfFcp3aOjnX9k0e9F2eReXZAyXjJH+HHG403B0NAztdKl55bdNH1x7dq5DPi48f2RdfpfpCcSTJQwokS+G4PnoR/ScIJc1mx7eeFJlNng/Y/xZUOKaTiHl5QlKTNW7740B6i2bTl9iUbZUAnNv5GBTrtGOT71IobWV99/yJ6ptKkALdcPi3UkJ1tTOk0n6ul/83lmrQFNiXn8I89uOcO5sJPm4oC2pC35f9cqVnuB8GIKcS9uQXn1pGGO8DqLM5hO9XPhTs3cvCIAR3qtxho0ywMPQ3ApVUMN23+ndEDjt6WdXAVEs3thVPTk4j6v3W9pFXvi46T6ks1yj5JTwSl/ZKq6k4QfjyETISF8vpaMPrMbCvclKeeiEJOrjgAUIWpnqi0yfwttV/TJC3VYDWo3RU/3L2V4haiC5+1wbpzM6wlRzAURz3Dd9naZQNy3iLBQzuu7b18BRv+B84jA9lMAa5DwneZlyXZSbw8EHBXDq21n1rcPxYbasOzlVlO0UMM5/9odzuTDNrO84iBVDxaHf3vUWnuKG42lXOXd0dnBi8zrsfnKVqvGP5iH1ESHsHHRRk1Fvwy3Rf/2bBrNzuBJLMwGyPNCf1DaVAqsmRk54s5bCnnrEuIDiS1wRW3eq7f6BUSKW4cC7M6E/vq9LKaIXp1bz5+ZP9ZyegOVUSxDBm18mJWXn38o9ND0VeaP3OReuU30d/FbB33xO8W1Iyd0+w48GElftkv45VwBe9tQoUucwyXU4rpeRZlbFExUxIhBhlrA4WBbnYVy30scGyMqZn5zQftHcASFTWTeB7e98mDcNuUrTCgYZo7MXpDSGk1aQK6WABP9hwtBKNpVGgb4l2vGXeICLYxAi9K9a5qOlEezk4GfANMcKilBgsiaUOqBRXRX8fceit9GKjd8VZ0eFg/xOyrcTycApGe+wnugeYNG7po6qa6oz9H85fD42GWsJ8mautAicjfp+srZPIXU3JPnxxofH/mGgjtrw3byDFR9e8+lSC2mblWcOVyvJD6b3V1mYZLKg41POyKDFOvQ2sVoatsn//jmhqQjWtOXhB78tpY6AnMbpbotoh+Hz8qZup5pb8JZrOSQM/rG0Tl+tuunDbfExPN5rJ1+PRrtbqplNaEDQbioxjBS7U48M2F1ckA9+HeKEjrdPHQL0X09AcOu5QbzxUtlzvUmhNNZLR2Ru4CCFE1ylnmMuffqF96vuFfXoNK/qKLTJzZGhyI8+UjUJnEtIIH9MzzYJ1dgGkno4e82L5AZPa6DpwB3V6v0esFAKl49T0uzYLJmRl00bdSbUwGNeVfbb2OnBFPNh3JiRwBXfNTpab8bS5KT8wVwTJReVLEmA10uPtNcAoW3r3pmPYRTYhpuaQjmj20wqsj2Au4Ri2teExutU5QcKn4ESWM2qBTPTDz9iO44aY/8Qo9DfOX+9/DBPrun2kZxpJLvQLNoRq63PUUGA+hqYZOQksKg15G1vxhcSlHvvu5oKSKdWnJpxfvJ+duTI4keuZ7h9ThfZZ6JtnxdBcxDQbzc2PMd69i6lu2dCDfsI8Sxief+jjt0C7HBFvnDgaTj2SOzbuFRA3KHD4D6Vj967BoL7iVsWkCKcSW74Qgtwo3WYyBDj7K/gGsm6XSysN38mYkc6Dz1WAnVoMCvYCmycJK/WensSiPU5LPBkF3AqPCovQmQYPFxhdrSou55ghoMtlEuamIvwSNjxHQBwSmPneHN1wbVIWRamvPkJsxx5wx37MBdjloP3i5wprQu2W9LE+OkdqTMFy6ToL1lyYH46qp2Mx6uTWiH3Jm3HWjAoQfvitRoSrZV23exWsQFxXn73w/+bFd7tGssA0e57/l3lr04js2cxmD8PMqlRARHCSws9kxxFyzTARNuqwTWsdlNqsgReYCmDnK63136PJlgujqlwCMKaFDjTTEJwdvZG7+CcLt2FzccorBR2ss2gKFTgPJMUXSv/mD/diPbHZ9X288aZJ7IRpsDUM02o89OeRybdIYb54ZPwB09SuaB4IyBQhaPRYjVLnOn0QHz8o+iagZagifgZHN02Ue3dJtFbzYCS5A2L7HBhAf1JehMMp6+mjUs1RsZYXr/OWllP2M95Hwbu2zxZyaCuPkEpD11lCQKp5I9gu8Mxp3JkvWxHw7t3YprSrM8K5b1T8NQYgmlzRRwSrA8b8FcKZjfbcgogYVcOtI4fx54w/J5JTj70SwUvVTaOR0Y5rwGyfKPgXuyGwqsqo5rMxN0qkYoxFeS6FbBbjc2z5mqbown4devyUzChttz3bIr+bWXivOMNk1/ODzi8WfOt+/X9Lir7ra2jT0+fSegHnVAie9IwVibyuXT0DHvv6iquIfDD3/LKdVs+FEdopQpVkraIV19In3hbPzByjBi0rW35o7ts7cC3mNLHSC/JHcBxOjsEkBUmXHDrpyz1U0yb6XJqUohvaYkU1HsmlEI4MNcbcUlWzZ0Uq7O/+7GtBdjzh/4uZifHcXVqxht2tSB75eZtHTy0HKrkYonlWNPhN3mN0/G08Ov25JwLYp64awRsL22DkDPU4MzmNoCQA/dHXMCxZmsomAC7/xwzDow2JNHLcts0N5PWq5EqR5+XvpK8EVwwBbuciDRlA5W9fvR9dGB7jn2qs2meosOxG1KjWbw6A64rFKROC/ApVOxotmkV9ORz6cdFZFo+DPiPhGJhVEZ12Iv1/R8DX/efu6hXqtFc4ZImMkoBLx6rTgbQomA8rWxlqrSiAVf2XoXV+ty8tsio4O9+AHmDRoLKKqEa6YITqkWBMjJlG267NcJhOA/0SI18JkrUstw2sIughoYBibOaTnFmieqAlDdMmGwXpFw/fIsMqCp1OFSXZCKzjUcLZRdstRtmOVgxrlDIbWmoaO6A2TuVaxqWj+q1HPrfzEXDnRD+RzrikHKmubP/tgtibmtDaP2ZoNb+1M7k6DvEDbcLq7CMYHIU3RqmSP5EYKcikoRFtrYwYe+Yqr68ypSVG1YP4i/eQk6nxolV8j/Nq9KuRt72mES50tom0Btv3OcAaheTbLIqRqCzFjtzGuu8nA0P2ZSjgPDBipyl0+CnZSjcOexgn1psMFzHk0bHnAsXJIo12TQM91W25EBDbDkyxa1anewIcX4nAq5nZ+yP1FdIQ8Ee37Gvcmaux6pDYeEzRW36VBtZqMcC22AkWb5i+G+Q5A4StRQhy90RgXaPBHIqn7EOlb2CSkfubAKYiS5MeyLQE+UeJ658uQxvKm+fMMMM1dQ0PKXCLnKdG54Tnpu8jHvRgRS0S1iMj8rGWEhoUK2XY+/TTTOpiNkIUgk2CPvMOVlJH/inODXA4N+3Vds1LQcYLtZYhD+HJgZx+baw/BNpuGbI49hk+62bAYXSnt7mhT8jrh69UI5iFmQFkgRFOxFdLqdMohjc8tK6wP3gCg9BdqTpRNDl+D/7qO0XlhGyePI8NUYrArTdyDtbutjQ0Yr7f0kMWPLN5qEFXQQJM8BQX4D/N4VkQiTVk1bBKnCeYs4drlvAWCrctXFjnSvqVA5Na8aAf1OIVCxqqmu6FDeUB4AKuhiY4HhHSnYrBkutHwa5eNSKifn1udEdS6+csG4k0IrnQb/gon7KqXx/FqI53lv/MrDKN6S2rllBomFS4IJx3GY2AVPnYOpRy/gD89GWmU1opeck3O7JLcdsd/eDWNUmESesx0m+mdxRrIsiRh44qr3n9Y+jliMjQrFyLPtLjK+Pfb1r80B+DBtnGKADsHEECStnxt2mEU0+bYHXPqtACD1S/lwhXGW4YVAx8eDdVjNzcRj3Uqtsvfndxib+C3ocI3iwFPLEYS7YLlo+LGl/PRo370ksu3yC3nOgwwx3CHfTJV6iwgy7YUlm/8u6neeuPI2XQfQClEBpcwwjnzdpr7uUzxjxqGWj1hk7wYWqqT7q9uTDbIFnSX6DgEtK2RBY22eObpeuWsd2K2ffzmU87Et7cmT8EhBrcNXrbGTWJnEeEdYMY8Hf8ADxZ2CGTFcxCqJld+kZ+vrkFUE9KPbxQTFm7q4agr+bxG899etvJc+UEYMVU8qIutoWwtVD/To920rdKbChmBplJ6g6CDGavjKUHfWSbDwBkQ4Mj0Er3lAHXwQ4AO1xm2RyjIa92SxL/YXHCphKAbrX0m/kXqt85ome0px0yuKINEl7CgpLELnFGziEkV5U08+Zl0QOCmYlUgR3GaQuxlUQ9HonwQBGcvraePRTl4DTgHTVKwv/iwkgs9s6Esy1aBihU+H4uHfiY7iroFfa7k8GT7CGWclGywHagQY/4Es6h6Jlx/GKyPmW3794D7mpxxCPOyBZDa9JaOdnSbrfv4UmTvHQzLOvy55to4q3xJeY9ge2YXm/Q0kiwNv86HrFkprTuD9uKgaD46icUb6eXL+FXf6Iq/EgpPqZ7Eg5nLfsVVPIQOxQHSuP+GLzCiHFXQqbr8KJPxNUi5qsHN82Y0SMdU15XN4jzSAPm1XwuMVCdWDrI2+ZcUeJ0yL3RtQ7H8G+Ml76SHwGoj4G27hHYlZrAz1LHQd3DeT0jHV+1GWt48czOFzWCrZO1CjB3oQ99jx8c3wdkjryrALMNm7qcl7XIx6uynOIzCA+4QVC3MdDQbh+tNAN5YMBPwvzTNTrDA1ywdeTpHxqsiVhRYYxr9xhdgv1rqfKMDVSFcKegztQsCpXqHl8+DVgx/Pqa/9a3SezoEFLjHDRtaT29P/TrULO+zTcXn4QV567kghrvLizEIWueraFEjHxDFQpLz6HNX/kHjwHrHRg1D6yGk6AH590VW38GyEaLzQYx4idt8hZPsviFRXSdaGXXw4G59RfvsOe1k8m4UMAcxgwzU21z74U9d5ACLtl6sBYrxeoiyMaSSYZ/Henq6On/MCp/pVPzXHiHrL9uuVrvybgmbPn9J1ZaO6a03I0PReO/POhdNfmsf9zKAm1FtdfNEqiowYzScJ1XE5HZNbKQNVoLAdhJ3dMTb9f8aOP+f3mvjlO4D9NQhzUZyUwyzP+QqGlMES9WurgUoHrUAkXkZizgjwFxt/QGgJYV4xAkSaqiovVQxGlGfK3f9Ajb9ebEAgceif3h0MhSKbR68oiz+69oQLXMF2hzlv4aw76qKmtU1YwGVu3MOdazl8wwXLsHXY5UEvrEvTX2lxZI8BXF57GMdD16t0TP5ElhMvuhEGT8j+ukOg6SGBBYUvy7EqlBZdgYUYX8z2ImvbDCVlCK2Yy3OnKDT2EZU8usPyUXZrUoVJxAs3AlGP1oPbbyLgtfHpr3s/aoRC7ajia1zttGB97n5Wgbi5bUM/E/3Bjfc2SXJmb4f14DLrxrLSeJVYDzjXMU4Ua/RG1z8uQmV/rfBQBo40h9K0VRD4RlEpgNvoqFaKacY0fcTb5Q+e6NmEm1e6UyvNQM5C+H8EopZqNL+4CEH59jNEhIiWB1SGJEcSLp8mMwq+UI/HCSJ0SZ+xHgyKifGvlTsIbINfMwZI4DewCSALsiYEUza0H6cnOQH7xDq0ay1O06X5X8nBg+6WG14/Tw6fu1752pwuu19gaKNFb49xMQr/49E3lGobskRS5Q9AGRZId8srB9XowurP0fFdRcDE+ikvADP2kELWIBJZrtmdIrXEqk4rDZ1Eq8uUVJy3/S4Q0TnVUBvW9OBypZXvvT7+FTcLZojq5Fbi0H3ltF15pkRv3tCCKf/aXlT28qn5nD2gUf7sqOWdiCthPiNqsuodz0uKfiTuRZX7C9qrFcT/OfLw3ifJOtaASpP8PF5cu83DXT2fXf3CV35PGp/eyDl4BFZF9mAqCQrSg0QON4vwo4UqqNgl9j7rgdCSC7F7QdZh1Trz26TdTpCrl/ZdIyrlfo8IQa0PVjDYmfPe5A7bShxl0gFSibS0mYePdWg51FuXR+0+obYOKYK+Z9odiBRzD4uMgVoypCy3+kdaL+ngdP2WJzQt/Qz9BJMzYzykPG5W3Ya9L1trpC7bCxdpKx+QQO071GLG93Mt00SoDVgNfdmQNW59mdhgAZub4oaZdJxOZuSeBssgAoeG5BDmBANEnztdu7aSDWBnKOD4umSg39C8JcFJx6ffKXzexkOfSBToKYGo1mzEzSKJz/DAc11mhPRA8GtWmiKbOLWJEp08Nd8JxdPp4jLA1INhGjq7YJwJUbJo8K1TKrpYvvj0nCye6KS7z1Znu8rRbwgCD2t7TbplcPvcXcW+xZv3YxmZqf7UOMpROy1KKN6A1069XXaKgqKcj2piq9Y+rll5o67c7UeMvDtyuOXwFjvatfeCPsjJyEHv3NL2Ou50JEJgxxyQ3B2KgO9gBFxyG39Q7X3fbXMaCMnGIJvPXiXJ/8pjSl0J439AsW7GpHSMQ0PGyBxaTHyFGZXFR6pO6LZwBpZ2IiKhYGoYY97P1EeokRNg5JYQ+Ud1RFJHI7nDSuH6gWeqLkFV1TvrUTMwU4Kw4LP70P7Ol6YR9Cut/g1U+dcSP5MB2UdoIik7natCW+NwCAZiiiXmRm4MszDBeLwjYivG1xeOLbJclZNaLVJiyppHVSoog=
Variant 4
DifficultyLevel
551
Question
Ed is filling his pool with water from his rain tank.
Water flows from the rain tank into the pool at a rate of 200 litres per minute.
After 5 minutes, the water tank has 5000L in it. How many litres of water were in the tank before it was used to fill the pool?
Worked Solution
Tank Volume (final) = 5000
Water flow out of tank=5×200=1000L
∴Original volume=5000+1000=6000L
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
gender | |
flow | |
time | |
vol1 | |
vol2 | |
correctAnswer | |
Answers