20278
U2FsdGVkX18JuUUCH19DdbJZZ316hBPTJghqMowCLWORf/6m93Z3Cpw7lnUlm1sVGSsYThhyL3QPTZfHOa/1pAPpbc06Huy0sYa2GEZ8zVcVZN/mPQdpps5E7FH9sYz00CM002xrod98OILEQrnhyDj+aeZKNJuRkHqz3G0VpPpF+wchklhB16K63IoUbs6UnPY6JaIQaItPJlAcbTq3dfgpmgtSURLVePUkarGkVRahj3G2MsNMM/hosn9JvFdE+gH2Vr7iPz7MVKkZTN6lBxgLyBnH8ymWvr38AXi+E3mNowvCl3R5xaEOVdGLEAKlqvdcFUyocpkF3BE6bedo/oyg1IC2gqCP43cSkfat1AKbMvbiEJablyZ8tEB77bFNXeGThX8pECVxAHGED0ptib86aC4/W/nfFJMJ9LkprmBbh6nMyBQ2G3fgrJ1B6+z1rsz6EDWKMmIl2dj/ITGPiVNcDimsk8E57lnqpMGTKrPU2PlBtIUHsJlEHbZu9b5AepbB0YaTf8iYZMw2BeTVj447cHfBi7rrGMlfbW+JHmyuzQ/FV779eKOeZJeon4iqzrPcAFQe4ZXAQC947+/0guzE3SQIrLfMPsmx71rEzLP+hG4K2iLXR6fT6GndOv1jpwquu1rKN34KtByuGPNpZ5SdgZ53ASycY3+fvZimcrmklDDu+6eqHx8NmI8rnCBoRuwR03yT6AhTPQ/D4pOu1zwn4r3NDhKeGMHBA1pYXs7xjIeiPyIlfNp0yyTSZXdYQETZPRtTRvHGK2BKdL8JNSS3Ohg2tQFKQN+O1zIiS0+qIgtF3L8kiKtuRD2LB0UTtmwVOgeYmRiPQGnd0bhXFNwO7IqBwbOlz4JzaGfFR9kPDcPmzS6INRQWcjVKdUcBZ0PfaEWcBO3O5KSZeVQcPhzayWICkt/kZfRisAutjy5+yYD9gWfM5FWhTpzX9g232qEnMQjJBs1TCyg4WkvXTrwEW/WSemzSnXiNRxzWmCCQEh9C+PKt65MjMnS2PQoz15TBNmEV/hqW+bdW/Fukz10+rmQd0CiVxPbEF+OXe7wIdKMJkN27/5gOIJFfdwY5Fld+lQOfeuF5ZXmMUQ6R0wUX5wr9a7bGNXOz9cHXOwQhHtQeono5xfgU5CgQyR1Z+kwvrEremEisJHb8uK22qbK3pPe+IVO4Y1HPBtEap/OV7/sPnFkL0EUC7AyWvgyaKX9nbn2QxEnz85ltpgQfl6Ikavtjxw+A2+pF7Ui1F/TYR7try9CF/mkF3W2Uc6/gZwlwpGyRiXKKC+xYhPruUXqjnOZReDXyme1vo7InTMxkW+a9i8+8M1B8g9OXHVSzCnesf2SNix31Ty7005ygWFdnZNZgkkZCVkORXMpP8yFYRT7Ik1Qt7LTrY+my1Dne3KG26d4MMMx+E3lVDbDFv4vKNHNirKppqmPo3S2gisyrCkZWnjFeZGsy3nbe4e7NEEiYVBUVet4NCgdsgGPkdnXUcNCk1E7tA4Rel795/6/F9yBXyIYph3Q/ufEoAWIyAnAhcgpry4U/oeYl4OMjFoxcwspQy49eREzRrn35VVDyQ72RIek00mljTscTKerJetNwvLOJXFXm2jiK72gsiex8KBYPQ07kmwRgji3HTvkEDWohgW7Yg+TTXWnhgj/RL3HTbSKX2PTOzE1JPfdW73ohWOQxxpuqHAu7bHYAjlfjK6K1aawXXnurj1Q/gBvHQU90QZyLXBICgey05ium/PUNmJKNG/w/bcD/GltjnZSL/RzYG6YzYhUnHatqNfrdsFyLwnkCFMVIIzrR/iyGvsUh9q9q//cl0DEeLo1dHhnpTtxNb9/H0kkMpeKnGF5ZIwAbo9+Kd12pP5qNlUo9wWhR1ZNEOBww8kQCUBnBR+U3K8U8hAPHaZIkInzotO26gZBXzv8Zx6ZbWBDCRTtKwrBHErSyBoM7DQwOfKhrjJU15zqscaLLG655kJ9JFEs9dihe0mL8RyNsQiDVt0/euJV5dShu4eHtdz6pU6Agtew3X0VmdoWHRXNRaCdee5bl2VCp3squ9kXngE4tADCMPeQ7aXCGXw9bdav1gt15kQu6HqeHzlKa4qA2SG08S1fxty7EbsuTqRTFf/tc4lBdOEcv0hFbZeOmuqnzBLgwPGrlvqz2qRM7uDjHEuSIEbtYTrFFYGpvffb6fRDzxuf5yOHbrM/MseGJJwToPRqZgXBx0QsTW12J5p0nYT3WXqildPcNmkJEJS3WwferMXg82hmFe/iEmwn6JcJkWTw8FJpUJ6kX+ks+WILkstq3aemyg96rEqTNT/vPBXGsHHOjCQ0LmOGcQtUIiKk3LR6cHMrSheoIl9kpxKLJda+ssy7UsAMBCEzsc1CHyyWau/qMvlotcXnv349FoosSzZobRXFQyuG48ulvIdsJwtnazqW2ZBKp3ni00Gd1hrDIpeWCaO9QD54OrGmuUarZNCGv/tywhV1YlyFFsKV5J+rdq4q5xnyhFdOMc7uP8N6+hL/brcPbAICkHGCRWo1njrjnQn92bxYofYhXFH+HcjYvoM+r4HEhGX9anGMLndaFbI4Im99Ys/QRi4jhZoQXZCLvvjn81Sk0m7c02h4JFvQNYOz7T7e2b8wmHeTXq/ZkIaasxJlmWZvWKjGPxGX5PdV7ox4n+YoIOFHC3iRFToeFueFrg54A2MXVu+zgoeZHCYyA1XzpxEmWw7I5tPvxli2+0DpHfTN1vQzDOIGz81AM+rHgDP9LNgJa2tIPOa0VHVCH7WCRGwEEx0rOk99lN5zqTCiiI/u65s21UwhUXovxd4QLuRpS9c6gOeycE/G5fFBj6uQeNjYQ0x85ENfvzGNaobQdIJwS6vupicwa+vZhdZfvDYpv5yIYgbrYD5q8JezDRTQqnq3j6DEAQHCVABkFUxv2gyWBGQgJnLFKj+UY09lnATdSl7ZbE/PJrUNPxuFFtdtpFIztkNty8wIH+BxwYax/Ybq9qketv5C89OFiCF3u2jUANma4u7mWVt+VuGEQ0wsRjMpiz0+ZfEAFjsWq2I3ZpcNdAzIlSLVK+CHwHeGXcJZAEGOxTHRWuyWUcDqmH/O4YfuicQ61q7vJgx2bJgpJpjHuM92g1okJ+fXLblImRc38nUXV/WGtnRwm3y6KsaLNoSG4K65ZqHg+0VuQue1q5EHQ7dr+8HBzkFTXSGYd6MvUys65tsLWCP3oDSFY+Fs5OkAapxgTA9ib+bp8cgnZn5ZnXg5QdK33Hr5Wu+r/NdtEJmCWXCvpYhJ2nQIuC7Mpi3Ska0QcIrd5jXLtQnCXq3I73G9ryCGhRfUeqP47ncRenOZCDVQcSvEW0JNrT+8a+GU/qLAFR6+5DeZ+Lc0QHIMADBcZqztFJNM4ap8vmZ+xeYNB8sebTunanli87/gatMUjYFN5+hejOm8KEIjxiHaMPe3rRpIFtJndymR6NfpDkVsth/630rM621lSD0ykctbJe0r8TY+giEQ8EPyMooy/XsLoGK8gyh9bAR1bZAl8egIIpkoHJmt515QF9814nsmEywCy99Y8rN266aK3uqj+vBd/HiwTilWStf5r8HjSsgnu5KjBM63yxzlJp6Z4cdKIrz6aBqP2CbUBth1des3LpfiBTQy1C38i6pmoP4WoBs9BGQX3N59Z3LQljoIYn76BjjCXSx+d2unQKloxH9EDDdD06pJuAR8Hwn2F0itRGVxcjNkDVoPeXxegA3b9vXlvO5MmzxFS0eRNeXmpQsSxN1qR5zqfX6CXS0Sr87ygzhZgmkcZjFSCjdh11s0FGtQL1gcRXJn/uuStNrD7BjiQhGbvw45vSoPFkreLwBBEQaCtXMfgmBR8zN1ltAYXx08a9gT3MDPS8dHe+2i0BPS5CAZp6fy+XALnOLD/dRqdZLmD4Adrm7P6ZRwrdk2wrcb59A6iiKuyTZzGj4+X/3zuLrUQ603PaSQhIAx8vf2dAZe+9FEFs55crtO9L+h09kR/wSa/Ya3GgSECnjhOEbMuHAclKUmR4ksjN6fum/Vs7CjjyMUru4p7eVkfUhgJavA9YFa87CF+xST1NNbK/O1bQnov6HDI2PCAN7d3ccXdB4f8N8CgnT/H/aMuDDWCq55Z/VyXfypqO8MuQnEQG6TiG7ZTAra1sNlVat1zqIcUDDWDO8Dq12HTtQIGelZyLbEGDcv7Ij8nvIZyoA0s18fjqREJjcti4oJVfXuJLTEzYtRZZ8lMkWazXHbrmMwp6P26NlPiyeo1ndZBb6ORW9UfnbTfd1YoMckyluORoOS4QzTs6Ran9f98Mr1T8mQRUyRwJvgicl0+hby8kxfOtfqISGvAYozscemXRx55AFBesLtveECT0Vq6LZn/XmyeSzPyVpZWd3Lpg3ZTdcJg0atZyQ97alvkgrzUshMrTdLoADAn0WOdBuinEX3/80hov20nEWUQCeZWrwOd72SGhszQLiFPQGjM4O1TycOPpAyLfwGYMIsr4BGFN58rUG4hI6K+IYlHOc5oF9qywzCx4qZatKp+ZiM8lP9VouWQnhJJr5zWD7esIgpC/Ek0P7GcyChQnt/qgWVZTWeZhbZEPyR/F1F4jfsuSrbjZ72fX7y8P/1ZpCTKrEIH/96+zIb/68UMLBcmfwu8XDVuHkeV27b4kYQSR6W1kVOayJHdRzNulRT8VYtpVZmWx3Us+/jxfca9+qzGDl6uKp7b6UYAmJe/Fn2CY3zc4e9qNWPQsqKmxIOwZNM7YR6X9pWltXufNfbcZmCg8wMYqBwf5O6UqlUec/VSO6ohF7odL4wk8796ikjXJUlVjKscBE/NR6usX1OQiWgWMfq6n1yeNrAaxHJBZ1LdfDE32RxZSSHl1qOuwx0I8CMprpCt4ZMz0wQCHVH4SKY81WVRnvtqH5B4WzEHqshv8rkCyTC59ErvlGs2vkqx2tYCwIGAn8XHHkZolaW+EBC7cPqfJXcbctrNo04gSw6xPmL8KVX2jIx7XmRLtEbe3GPSnDaUJ9b2Tbd/lYup95FOgQ4A4oiqQjYgeeErBRtwS1X2ifaSnTRqQ1aTrIaTUKzr/OL0cBy+URgKBhTJHXUoK+Cpy+r+hF9oWs66CygPwJmbr1ikS1ANbdbnnBASf4mE+tK0iaHK0415eE6tkuhH3MdMUqCLj6tSw8912LbLb+lsWAPmcVvRuZfpF0FEvx7HLQRzr3P5BYhprvhXlils3a7AWecR5HylmfNU8dbx6kUyHICd86ijK5c5Js36ZsoE3y2Am90mUa3YODG60sfDHg3LShYbgceMCTVjHcSrZqa8sPmShBozWC6oJNb+1ley6dYFaTFPHpv+Hsg8fOa8lJ9LxuToRHhu5y3QHwodEDd3drVBDozYIbXzWoJK/XMuVeISyXV/W1l15DS6Q7hAjPUWXmXSK8hyqWMcwZ2VZcVzTGaPd3uUonVI0jSA7B31SF58rzdervTBnhtQiU8PEZeTT5UC5Dq5WK9TZA1ZdluCH4T3EH8D+N9/RdSyDa+Rxllpw5oxPFudOJd9puYXsJuq8OxRsmrBb21IRIn7sg/I3/6N+FmsABJ8FsZZnlGbdFvgY4agC1i4voRRIxrLDqco68a54mDTlKr3RUq0NmxW98QwK1mCYcnJdKzL6i/JUWsF79UTJriRsOzVlgfZBjxbjtAos6F/r1bas8lasqzo3XXNwWPmTzIY9TYbMAb1QFUV9X/udwsOah+aRGBXyZRYG1yfhgmVYQEkVgqfIac2ZHDIiQgrekg2XGEROLgtvqToVwjKlg3dGD4MkZI1paltsH5vWF+NvaCYtNM05Ksdf+ejtkqaSHafishsTgK9jKXiYwrf7htdzEwUGcJ+wVNQhKxfIOueqVcs5/bZdqqU9yXBeAztzEz8PhJkUMFtkhdBpVnjy+ILwwS8elhEjYVHAo7pCTWe8TM5QxFvomUkZcer8d6CUrr4y/pdLSAO3e+eRJ5e6USovA+c2wgOvnSC/3WOkCwwb+Rl/BtUqdv4F4fL3TIoMeERUQXU+ffr4DwRfbCX77fWyfI6C5v17tSj37y2gjBAEYfjvIdoOHndQl5SPrakhtKZm2cBxjhr2ee4DNZsIJbrlMsWYOiWNhwRjf1a8ec4g4CKcrLk3FaDkhylabtTnSJiQCD/KYVykVEUnHg4+o1451kr+ZH28l4PTyhOZHJM6PrLfPoEPzQcgXMoiSysXcTjGhbTIrFWJO65w5c1Vk6NyYK1ODRiuEJaV28F3tiRKeX1XWU0kk/bRgsEB17XThaOX+2IuPxK3aBZKH5pYdZzhBpWlrcmbVTK4w8gFcpyj1T9TipBRNUnQjfLomF62NjhQpfEaZFcIK9oO+dBSmValoS4GTKGl6CAgax6V61LgJDOkxJEyNpmN8Dy6qy/vgF6uBNrlKOlZb0f0Ru9uqhmYSYYThBromHPjZn5FhtBevY4f5cCCN7a+uA7CBgPgX5/dtKEQ0yP4rOMMdA0ZmFJ1sYBCT/6m4xaEDHumftAMcACfmDKf7JxwMB/CD1VbsJzTtwN2w/ffSIy3F4Yi5jucBmLL7moSjiecmvX+bQY1pmAJCVA3coQbMFwxR3rRU1335NC9uetqKxkbycK0S6Z2MDDjwOcMivbCimZJKrTzJGcHXW0Tp8oQeHh/5YF3jNjXZX/1oKoCQbKcnyUsJeHEvIgtD11vNY+I7CCSgyLE/Le5FJtiYIi5uMAAYi22wV/6o85eY2z5bVxs90fNGQGVamRJt12aoIOo2jS2iADn1oji0/fq4mmsWFmkBi7A1imdiqhcKzLa5FtmYx5Q6/yjkc9ji6G7sb2rIVAJHMRKKBpvWi/Y5avkuwmzkXnq+YqS2D5TMZhY1nkMUzqMrCBqNJ1gLrIQd8FgTCKoGpKTjBGKsV3tWC/hPwQoI2pKSfkOfcF84TA6fOT4Wb+VhNfIrY6WZduQFLoAt1uKQBloVqbLG5AZpCAeh7CCX0NVWeus0pt4r1Hz4PHKOP2MkqfpSFr5mSvUB3hPAWc1P5o5jEUsdU7hRQJ4IftKpWBhJCI4ZuH5XP7se+MWOfrDBqMYIbHf6GC/GT4ea2ZBbLBeuaxOksxvIhpMaGdUozdObphM5Asuphkaz0ZWV78JrINYvbdPtFzpnyLMVLZEquQJYM8AghXDor4AdipWtrhEMwFES+o1Bf6Eh5bNeiYwjR9VOLyLTIqhg5tny9SSeMM+yHERUGojORqxNSYKIs2Lo+NFiqZmQxWKnm1yYD3VvP1ysCdI+sPqPq0s5tlFMKgMdY2CGeIY1ChsTdjG/1/5Oez6xMDaIi4xNYCZQjhL+D18HYVQEd0GXXcckRlWNdXESSZPbUBNUAUc8H6ltsA7CoIo3oqbrMOsN4C/SKhh8+lyK7owZg8Vo243xCovHcZ1xIqcKzcwx6PGabulWSQlzBqiegzeu/aH88U9HMHWoiXs7OlOWlzCzX7X+s3GZ9MyCI58viABVw7F/8BKSjkFt5G7C+TwzkEsb8NmSj4FMfVcvKzYOibhZe6coFCFQ6mvRsXHUYp/DHwEdDcal4rVgT9K1hzCkSyz9C/caqS7Yzxp0Dny2dcGnyXGeF1mkrnX1niZdHXVQ2+COwOkvN6GTsp2+OLHBe/X4tgOL8uddK7rt1RHYB/ZFwmhG0oNPNUK4dch/TQ/f0EFP76dN6BkAXe42xH+kBCwFHzoGT+/3FIR9HNz3LXb2A0xoLQEyThOo3jIjYX3R5x9gng1gDKqrqTJ8WkdLJ0MCXmwy1wlQlKrDIgUvyMqnJu+X+sc4i3wK+8pyz3Af4337XiWQdgphn0LXuGCLo5l0U/KMX2zuHyGXNlZMnNgMa/OZAkOkWZby+KtYlSfxEcMbhUtCNpRsQ6vQyAjybxVly7Vs54oyKbctVtDt5qWNinuJ07aR8PTsvRFL8sdj07NPTUQyX0syXKiBTMeZVxj6ugImjtH0Rm0nSp2sizVowfBgenGkk+IXvO8aYeOy2ehydLMh+J6qz0KAZw3qq/PnmzPtQozJjyE21+kayylNOIA+BG4r9VP9Ny0X5e/CU6Wuiow/dTBAddk2dhUmvBHXArIyGW4RZUxJ8jM31JPD/0nFrAvtvOQ00g4noa3xU1VMJHCMMwQCp9PItk23oZmNljC8ATiCJEH9fQC3QF/+vQunKZkzKLQT8LWYNQvXnxBJwir3YCrf8or+2dP9e44JKicXORnItTzg9f3x9b+vZuDPASOPYH+rmRobunS2NJpZ/qkGUI+t6e8L/ffeIMCpW3ZjjFIiCgongFN37qWiJY5wKrMRSVXNVryBs3V1d7T0VDykcQfyhdDrZJif3yyMySpvAWKutmLVtAT7aKe50VEKX5gOJNtdAHbrqOEqsKNZy2I+fJnm39+5GDcgeauDDSm4YWmH4I2gXh7962kufPULHun0v6qVG846YRfWyfOf/aB//dbe4CUGL6ZQgGHLRvWFdUf/kDfI8kq42S9jp2Sk5M35WCCNY8UB7L7pBZC8dtvJO4uAHXsooBO/q3OXM7q3DwmxIs03ZufQJXrUgG8dmUw8iTiQs/zpOw5ZkkWvgZfx2XaAXnHZ3cjcNCj4F2DCjKKWKtD5JMhvqpw3BFK2h/nPRS9X9vo+zSmw5NmrdB4P88O19Dk3eFGDB4mRM0sm2yrCASP8B1IzK/jkBpmgK/QA0CR8GItmRycHn3TwWdVbIg5q5DLqMlMNpEuDhxZ5eGrbSMilVKPHUHcFwPuuey0Mu8YRcUDKWnXELFgw9CVppzF5yhDZX1y50TPSOX0zNeejgCYcVga0jqjQMPRdOvLdfNnKqg7A5OlfnGtKtacW5PfpYFGKEAtqJlAWpancITsxRRTSdtN4ELdP2y5LX36HXy2kYlWBssZD9zBr9LdnBrUQxRJtcZQsWzhOY5r8lNcUldxGPlLM2GXMYCnKYE7kY8qgD0Pnye4TXPcTwRPgVx+xF73jbREycHUa1e9j+a1wEF0uuMPh+pGeIJZqQDjMeRVaXBy5Z87r7upUm0WjgtAKj/1T7e1wsKHM24YVSDdxVFtwbwp6g3jpHMVhKR7/esBv3uR6GB6NmqbApPsXRrU+ghEih7YEZVwaRcbzzenktzbAHQkydiv11gU3W/QKVPy0zdeWrhagVhCof8+t5DELNvSBT7c7zm2xNzYbEVuIDkJg0apkHUPvxENOSE4jA1SBi62Q4ye4itVmuF2x0SRuur2QTzR7Y2wBkUTQ8oTw2d5gXEdMuLWZ08a+HIYCVGB6NJzHTZHnr1qClzhsqh4c+6w8yyEWJLZ3EADGqhpdQp3Ydx4w1lT1oWGIWvfS3uC7+loVqQQCzQq1RCbe1RkeJxqs8UdoseN/opCm3UocQfnlQt/Zo+MBzd2IzbJHjAYQPZ46+1gPxQDUVGGD5Ng59J6npDjMIP+jISwmBmK0TKTqF8NLyK2aqwj6IN6lKfAhUGPPKlIBRr5erxWkYZbY+0jB7Ab9eXWR4HfFri9iQRWW0esGFgg/b61fE83yfXE3banR1aPWJwDVZ1idqJrTzxXS2AGCuHCTXXrVAs9kSWHqnPAzub58qadIs+vsKUFkDGIQePwS6GDY1HRSuzHIkHnMbqTEWCeRDFJjfJ2E7HDcB080USmkr+mwvLT3c=
Variant 0
DifficultyLevel
582
Question
Sandy works part time in a shoe shop.
On weekends, she earns 1.5 times as much per hour as she earns on weekdays.
One week, she works 2 hours on a weekday and 2 hours on the weekend.
Her pay for the week was $80.
How much does she earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
2x + (2 × 1.5x) |
= 80 |
2x + 3x |
= 80 |
5x |
= 80 |
∴x |
= 580 |
|
= $16.00 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sandy works part time in a shoe shop.
On weekends, she earns 1.5 times as much per hour as she earns on weekdays.
One week, she works 2 hours on a weekday and 2 hours on the weekend.
Her pay for the week was \$80.
How much does she earn in 1 hour on a weekday? |
workedSolution | sm_nogap Let $\large x$ = pay per hour on a weekday
| | |
| -----------------------------------------: | ---------------------- |
| 2$\large x$ + (2 $\times\ 1.5\large x$) | \= 80 |
| 2$\large x$ + 3$\large x$ | \= 80 |
| 5$\large x$ | \= 80 |
| $\therefore\large x$ | \= $\dfrac{80}{5}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19EUOXR6DMoSVw9CKBTwmOjuaxDWYzRBPrrUc2ZgSz7NME3p6enhgBRW/ddU+D75UQqBL6jr/8s3hx/VSbnVIYLwVmck8Eq7ipvA+IqpfkqyIxW7TYUzxQp836ZuP9xcpZSs4eZuNxN5HEIG/JY5jOJ1xC1PUeJx1sZExhczf+wWdNLYmr4fwLqvMhQ8P9fThob2shlfAJJf9CzM7g7BBzFD9+L5olQX7+dLRY/h9EyrqPao8d4L/q/0jW94rZdey1AhZKTcvp3OulFIE8wDcN6PcLMutFgCf+lDwJDpHJVdxmXbUYBSBHbCK56l2G/BqdteWw7Q+nAXSBaxE/hloa+qxlm3clRZYuGbdROooF8vvAsYSnRyxlFx1Zl3DSho9QBFxo46W1OrnuybwebpthO8KPdvSozadINH8EEn7lJeqctdGtP8DKPf75pA+uceGZyRhO7OcpgptJpyKSK+sfUYpQeInIPXkTQE0/NXr6UuxxIlG7eo2HyP4LMHFF5reeHRzoVRQFsXIUYsbE9NMRDy90ZJHMwCuGwr+16Q+WieEEQkuJ5UALYIOSXddlQbyy+4Vo9S4uXj3bvHnD6rh71tPjp/uPbCxzsdvh6md8elnIlBSJ/O6qGn8w81Y1l+ajA/AN4y89dl0LgTPGLZQd4jTTjS8u+dFIZDG9q5d4XZ/+Rz979pXFtJwE1lZ99a3MQxg1gZmKo0+dDXyMuta9iGRWiYTgxFWOC9IKVQ38vc1vkIl5gwHnjB03Oa7OEEpn3bbXRsiHnwpshOsMzqwn/HmoNBqrzL+bymDh7aNEX4v/R9kbsQcK258k0+D0+lnOmcWXMcP56KKutO/vOTRs+i2C67PkLeEmXVFMkb9bGTCGd3he1hIQnWMs/6HiKjrmjEEnFfzToi1nPi10mOMMWm+l+/6g/j7zC6x72g8NmEYjuy6mrr0HxyBXDK85lyX76LVVFhWmHy0XDXwdjzoIRQcwO9g1kRnTFI9p5EXZT7SfkI4fI2zhUktJS96Ftl+DTZmZOm9Kjk3MH/TsFljVGNqKzZBXVferm/vrNpEzaVyyUXhQBUvH3Zc2EZzFkHP4NQr3ugNNbPHEpngTO6S1X3BvFit9OfXYnmKrVONno9zgj2hl4lib97QE/rwTAr8YTM20ztl66ikmsH7r/8ZGKDahkPL8HR1aOgs0SdgX6/nft49HUm2JbKGa+AM5Xq+6xEBsGs+slpYNCVH0l8hrEHvXA5zvV1BNSZRsOr1hQnIN+wBic8e5fbdQb4fgdUj5hwkdzDqicxotpXEZQYQTjMo6XzRr6AsLZRKjVUR/cuCpcBbMH4Xr8DGSp21n2J+cIbLzZqzfZSYpqbEIwRi1jTemZjn3GoUx47pVdKDo9sr6Dv08nOl1j2Sc8oiJ3SNf1drRjdBdzVRffg1Sl3JdB7ylmgN15int8db9223NciQS8irhAEVrppGZnG75OTMtHxaJ6ZDF6AzIriveOhuOuQzqPu3vcTaon+JvMQT1T6SJ/FrZa3E0KifHM4FzPQXxBPhXiBMh1JTGgamMEf0TsYmgLKq4JWckWF5HS6lmBaUxA/5xygsKjwKparRljhHzw1QIPufY6JtxMDiMuIZMyVC84CyZEbLRHRdMZSaXTSMag+hXmwH019DuEAQ2Lr12V393/fQN640NXXg86NEH7Q9jdJjdus0rWZTyebU32SwTPVaaFj+R7w4yEtLR6pEvuVZE7AFYogLOp194/NiQncrrh/vFEmND5hfX+Hu8yUlC8mTPiIvii7nNGIikccEDVDW+nWiPy+1yJh6sskLOhwpICwKq83FhfJ1eNb8/uP4JJJiB4joVkuzxCwrTaWzdQIGEcAJStHFSylQ51bm1CrUgAxiTtEeC9kCIeRXg7VoyHdwL9icAdiq1BlO1rn220PP99+OvtO37wKvatZcsTN6YkmXmODaMtHncTWJQ3tB+tUgoKaiMWryXSFLlt45KCFISSkRBuzH7abWSZ/L7Ln3hrrhvH32i1T7d4ASdhcvEMuftLGG0fRg51RhKm+X5t8+AbN6wHhQPRyNmyoGhoF548a1r4qbgtYgYtM4c7isux6GmzX4CBwulyZKGV/7sbBw1tMzlKxgRE3gcql9aYAKzkG7dWHgEeJmTddE53HSxhJmdQgf20vIEKxb2wUYp3JZ6qrPcPebIS+ehRgwDh1uhfu73EEHEL4wW20Mdh1jxrJve7SrTdDycYp19ezrkPeBlXnJLZqcCXm0NK1jJIotp3Mr8aHa68xsK2cX2J0kzT/P8OrOsujOcgZDiPGu+EDfws1j1b4aV4sBfmTY/oSQ9huqWaTDO6HVVMecq2bgng3T9pH8Tn6b7FBj7ipam3bQhnmU5ZrHaEM9m49ZfReXoZpgleQjX5N72FR/aY7qe4GsNq5pBeuGKCdcABuXeDFbThSMY+E2GMBBmdYQ7skizFe56MfPd24EOgTeoGI1Y9SN8PnjfMhKKffJ+8y9LmqUnVF2fr2BETXmHSuzel0R8UYt8y3YXRI/lAvLSyY5kaJhInMUYhj5UIJMGTa+zFevIf5RVOkNv2vCo9Ha6ReTCgUYN+L62nfsLbJnyOiiqgy0TTZKqMhIXhOJ0fXkQiB+1DnbnwES2qSJT6jid5p/2dzI4cPiX11NZJq6MhUotfyD5s+nv+3MLv0MgrRxukor0KVK5WAuV4jn9dlxgKFxafvmMW9xpa5eCO6VSIDtcJiJRFknIF/0fE/hosEtOqVW7JICrmzLPMK6HoJQXPeXzfBXX+8OMgJO+Kx9Vjf587SID5dgsfXxolMB0k6jzMqwnrr27KwK7ET/xfglTE4UKynosUefdUf/tvYeouHb036v22RMIE0+aurkVW0/AxuKIXv1JifeXpgCpISijLR6VDKqZc2f5POnglWU5TPDERRfazYzc5yOLVODB9Cv6WPs+w7zsiijwAnfyeuUEJOfHdqrTeqcztKVrc5mIqakmFf1rqj1/ZvSVKwQgPGTrT+Y9Z71GAfCLe0mZhhvXZlXNI9MiCTpzbtBzjZUEnhITCPrfnXEm+d8V/3UA5rfnhL1zU0GQip47JdFEVbUo2oGNozUgpIQLvc1JS+WKaMAAW7Gja4VXOTqzY03AZyEXwJkKQsP9/C1CcocLQ43SPwku6LYJOiV/urnnfelrZMwjjOTVyFJ4875o/pZACDbTgcSM+2JVN7rwwukVFWvboz+79lb6vUrRggvqYM8IwdGhqWNgzCQ+l2l+Lxl9rR3xWZZCHzxA4x7yJwa9NE6fWuJzMTacQWRkhwjelhn2WLrWqm0v4NV1ASDYZSMfEUUlZgv8XDFzF1rI61UTg5qqCBc7CveZExg0w73DKTdcmWBQOm8kTohN0dxRyoTa/izwa59tAm2oEtN74iuZMPxQfbudkHh91D1za0QMVRqZcvcOLwnxSuuSKejBunnv5T2gRObsfOrE6wjIFTIEKDaXQLKwW5l5CHb7ozKINzHWaZbEMMLL0gH6jOxwDuf2t6w35P8Ku7p+6el5/sBdm5u/nm+K2Q/Hgith2MyTk8KBODpUlYZdY+bzFuy54Mj+fd+2hJJgTSRQ826bIzAVlnRExKUh+iz+A8LxtO/2/oppzb8HeUia0DTme4QYTblO7cC1Nz5K35Mm2WVn0L4u++GH2qGLV/iw31eQEhKXgsBcSGwrkkJfOgafaELDvHHNQRZF3VbgM19zkbQWRlb6ijLL4xwxC6HehYV8Pih56vdCfdnb/3OsbNMUmGMZUTXbceFELG0qcD83utT2O0zq/P6px0ep1UqKg9Ll8tUcrRG9eA7UUr3XcF9A7XirVTJUj8W6aCUpxTpD+3LPir9naL+9Ij6cf6qirpmfaVHBPN7pkplmi4464BTBfN/gJbKnzLwhdCsjkq5mc1qU269Gbts5hNcVdY0ymw03yVIyCCSlwRxDkeCSv9VQ06uV/ljddE6L4mZRZVys4pUjjh2ohk4lOe9IFV6CRXcf0wXQYA6to9Y1ZS5OiJvRybKWK1XBjg5HFxxkgRsTY9sBv7JXs4U+H28N247MEw/yjXe2S6v6PzgqFz8xIdPY1eZyPkX3T0yhiEkW/qZ4AyR8OXTGZmV5Vt1JnuGdl3aKotS/v3NP0sVrZu8b6jHFuCvIpC8mQRQawKZjtqB1U/ylFH5uZ/Q1SsDnWH/2KsA2S/vunjo1Cww2LSjrrpvdGVdDwVXOAwtg584U9XWm6CoPpnkR5VmSEyHn0f0x760HeTtgAUizn3yFH3tSCc/isG6vUeD5KQMHmz647+/aZpRfmDlmgmjR6gySvGOi8lsokOZZ//YP1ND6Lt0FVh/N+iAZMAtBCF4kiVGL5D5LiXAZ5doAtfAv1ayt4tVE1NiKw1N0u7zYtkG0oBu4GZPTlIqLyOIc6uR629lPvjDU9zxk38eDt4/pk4+244kZG/2wv5E5avQIQJ5Vz2TMTaZxnjapwv/ehlLdlgsEEei9/u8bEoQFuoNfDVzzeiwD5w9aeiYHYevfV9x95sucSZyFpx0k4OytcqXJ6/eA8WvVwi9E1HsTLE6ZRp5EbhzxLkSxjda9le7g8/OcCc0SOiR7i9KonCAy76tm0MsKIcZEtYrxa7UrKHSqygjrKBq2esBcAIczWhH6z7UxOWGkk2Z/jGlZwBmCEnjiuZQu+nDysqZP+qwmT1SV8dDaU+hw5lxPZrnZnVQ6MaqlyzJo4EozvlyF/OVpCHFnDVI+nrAiWoGBiejBfHhwyirrBvlZs4GWvAiZcpmL/OGSGKqPeS9ycvOVtW7tt1M3klaHkcMdwCVdbKCRdnCAIB1KP6tN8K+St1wp73s3urcVv3yWZkEIDkdAtN/Jcd1cwFpfdqhX/KH5E1cxDl8K781B2Lu/P2ED1U8KZ0mwTAQK2JLDuPkncQ84ZQnN+1eO/A1Q4Q566Nfh/L0gLrrFg3tnvpP+lPUHTSlPY6LpdESiBJTqPcbs0oAUc3E2tN2uBKQVKx/azP4R/9M3KK1Hx/qeMXhJzUgGcBuJOYD+xJPCkcEhFDssHomoRq0RtzbwB+EhXhuI+7R9kP+YSw2u0lrlANozTljcKMegDoeShW+P0jhcxv2Dr6A8Cnc8vZmuSsc0Qsf6YF4bxt1bzoqljFQSABJw1eW5boPghSmhvL7XhPlgz2Tfu2R+4MRMi5H1e6lwccfiyXZwTOP5ghMId+lww3DHtzJd93WJhXEqbhulU0npU697NmOrU5A+5gcOpcgBJboAt76bYo8nLX05k/BL7sJC4CX4JsJpIU/nO7wBw2u6FwfL/IuJqLqYpIu3WqmHZWLlFN08AQZALBDHSOicvsUO18fM4Iebf216S1anp4NYwx+6c+goUUgKK65H3q8vnAhu9eMLGRCEdJbwadbgbLXN72CmUnH40d8c+Kb6k6pM4hoi7aaN/OavDZkSf1CIlkZ/IS7N9VbcK41HLxNYsmopteIafQTim0nW8F/7ld+R5QtE1KztvN3RmTR+nL00yMEU9Gy8lX/Fh2LG5M+5xgHtzxrKmj8FKxGdNs44Z61P4Fct3OIVnTMxSWrKa5Jq1m5wJ8j1XK42XLE/txrH/LeMmuipPjphHBGqqyFL3wXlw/7ry/nkJwk1w4AGYUq/j8ihFXp2SB32JGI5Aha9UpP+Uat1tDtax+9ENAXsnO9xdmLeHg1WoBNpwdzAj8pn9UZu40blau6/S54Bj9eApMolAOD/qivr64yuo859eU2vGNXnlOQlG07XwZ1Evm7FA6a2ZLnUbTJWkqe8hZqvU/9Ti+AfVrV6mkYGOgvwmClKwg8PTMvx6jfg7qOHCLwmMfc2jX6XzJIWibaeYJi1g04LdSrsM7eIzSIG7xKpeOB/f1709TbP/DcsoU7AUivX93U+hErXcDtsY7l7Uxybl/xpoOBYtW6T5zQY3+QxT85rF/JX4fVcQCKUjyF6vxxMieBC1xKtrnYR3q61Uve8a0ZOzTUYTJOdOtkRuZj4Gqq2oGHCONP+7683bZ2v9eWSopvaTRz8wYIAp3kGtnbE+o4XF5sTnL0USJL6HBaYS6A1G3HG9QXPA+nXDnYkTvBcQCACEwKHVF3gA6lmLUU/tNE0xO9PuCYpVYxPPj/23P2EVEzxKL0DtlSvrmu74dndKlOxG0ospkwNdW/2ySeq9Rl6oMmvQmBwD6wsQixup/ZlDgBRJL95HTgO16L+EPxKHSeByeNFfkYb/mrFlODvdhKWhq9a969HXt3IIo25dW8eJEc03o5G1TnfGkAORVFqGfO8fkr6l4J8YHXSsYVxA0Jde+zAUiUEYlhsw+DxTMfRBkVCmpPHsJxN4/2+FCFwpagucKKo4PRhzWuzlgpSYMUNvIRdc2K6iyO6wzedxqZnNNkoA/d603BdMU2TU9/k10NfmrfikVsZqCGtGBUgiVRFXJFC8CUHZZC9r3fPYLHD/IcphiqUobmLOr3z8gTjS4HYLke1xVrIHLsrM9NNYAnpf0ev/wcjp9rHF3vy9EFFtfhhfuUqIOQKXIzw6jUJkiHfcNmfyI4jJlwVFLdny2HIxnmjJbAYeS3QxxAa5Y//FcjURjCsGujdcqGT7a0n+LfVuB8xfieIbmfkNlcwXRQBkPSrB1xv6xQG0dxtMTFsXEB+epLx6asAuICkVAeOn5HfdIVtRzJr1QiON9AJ5PIRk0W/CK+MK37IUY1tanl83AIwoN27eXfqX8y5yJ/ByB42E6D2TzJAZ6bweik/CK5fKhmSJWqrEx44AREe3HQtIHlVX05rFAfeT9GZxCjHzbRDYNV8V+dBKojxGUhwW6S/CHvXAmXYf1RTmkAWx5G6cmOi0/CvXFGy9BNUB92N0UDSKxgfGTlVsb9xA5qINnZBcELAZ7ggSRQMwORWUsgs5LatFUCBsWPECaDfz3uq0HyAOpXckctcaV0wqigILTXqc7bmWAP2dZx4Mysa3oYnkfmY7UFBvrjN2Pi1U+3JBIKblmUNUOhjPfaET2fqtl1n0/qnNnPSwBQRgEVig+oWEqQ2vCzBzYM4FTBvoemnoqYhUJVpT674GoCnCVZQ9/n0E7rgFtBUlmzsgjYvr0cczaUywBnVUZToLrJPvd/S9f8BuglDDqD6EjVlzk2+GSjlIvJuNk4elR+J68PfA/uQ3OcVCLGxciT/KKFmhF9pK0ZBKtCTwopAXITYA38dVYPsdXoKjkpElr8JlJhAfWf9ATrFl4UDS/eYF7Il1QLvJQMQ9fDZsINoo7BTaVjxTJ2by5sDkFCzsYkKe5Gz7+NXYYS3Bg1J+XggfMMiBZDSAxPUJkjG7xZA7iNv+PqCSKFI/sp1SIU3LGldZh0D9THc20xXQKEDrOHGdBnhV96uT3vjURyDJINWaZc0jTF4s9LzwsfALzccBGR/ymjpjikvZ9fKf+JT+amRz5U8eCDGrwxW73BS3VVYRP89wdvQPoRi8uK62tjflHb1ADybVE5vd1Q8MtmIiyS7zfOcT9FTiOSM6nkGBJt2ba1cOJ9KCCVDA4WXspT9pC2al58JtnpOIQ5bTOmd6ANBfFzI74UC2U4IONnge0o8VRFKNS1DSXHbpqOl81Q4It13KUWS4aph/P1KbjvE4KvnXYablxdhKTMO67iselYhAXhWEgiFDfGHkdnc5CuhfaQk7a7FRgdgLaT+ft2MOf1qQEZ6brn0dk2gwSN6VU7WyyDrdAjkhvi5IlRbbTYeYZpcFneO3p+zzpJWS+LGBdze5d2JlYSJk+WKInU4HZHbWOlCZ87ZKgeIqnmXfDVikiJfI6FfGDBXFSb3VDS/Wr1ojSc/Zy03a1g4yeSKNZ9YZFiwcw6i1fXqhzaOPyCVXF0jUK7ledsqc9Q2eg+UsQw+AZCzsxJPYoOmWElvcCuk/okvrwRjX8A87qpnWm4gxcRFz/EvsIjLTtY9QrdXZuel5qDE47qV7Vl4PLWZybI3U0KDJFo4rFOybz/JYDKWs5KLCK2Tc2CoY/vA8W5P6ixCsSP8kQeZn9k2q/+3CO937Qv0RD07Uo7igwnvFG31u0IW3ONoWfJAvSaAl4KjnwPj7LwrEcv34tBV9NKmi6KD53SUDgjqQRODL8DIGlVi9jN9tWWJRHlPnE+aN5uW0dIDCIZgrwfyYXeex8nxnUIbMe7fZV/BoVkVja+/7673WKSS2TedjHX7OKGnmaitticYuEObwKBOUnqw+6rIPayNsdV3dgOvsZEPYC7W4bIEvH2uItqXC+wvzJaGnkh2Zks3yiZ9obWmlw0og/9N2CpkekslmDJi3AcFHJqbWxeK7JgGoH4VWwS5SZ1+OiwzAPynkbdhw9jJOUkVUm6JWtj49uLNxURXkY9H7LAY0rLuj5HLkpx9YP0NMrk2zZwb3ICdMANEcdJODGwmJX8aNBncVMW6i13lXq46JjpKH3Y6CkOi1a1XoNvVUb3bn3Hlwn2T24EOFH5+BOQBMegFYjMfztLeMgL+NONkqf9AVlwOBQOhdsJIzfwgDlWDO7Lh6K9VVGAZvFzVvn4FxasfJqNl0YD1VHU4qSwQhUod0ncw/r0jIVabTxIJ6SI7TW/DkpfpsSc3WXvb1mz9usv+v6UFzTqbmlk8D4ntOBj9QAdweKn7USpl13pzOnehhhpEFlCXyeMOrrJ435qGzUngQ6b0W9/2eGJHOUotSrjL6X175/O79BIbCublfOzcuhM4tMrk0WY9orSU7dps5O6ZYoynMnsjU98Fxys5+KbCgfhsik2v5bqb+jk88mdSIcz2lz2jcD/bwlE2qzWxjR6qr7yCtcv0J5XixPnq0xzYpJhvwpPZd+qGKC6DdfZeBl5Oy6C+eVm4gRlsMqmYFje6d604LhM1WMdK28hPthfzsZKhtY6F7MZCSK6jlVwgKfzTA1dQt098zkTUNrQKPn5R7x1PweOb+IuYtgvHsXZVCQsZIt9O52R9HXYm5L7j9x7epUFBlswTiH3Zi6ZHP1IBGmXB6IQ3rImlel3SeqBMTPe8KmrYHvdzYIEy54M00yozxZ6XLZtQJK8l2l156soL3kvduLwMrwDSat13bmlT29I4X2nQhnc0VuCh6J9IIcag/y5G1nTX7Mksv4J9cwmAvJRvnszKcZ1Wl0EPEHkj70qOm87jpQiHRbN2iP8x4Ijghpsg2wcEqspejJ7tNx2rRebA2yTDqxYVycIYNpWCiB+eTXFkbUa3stan0yDZ9VZx9d+7tOHMZwPletG9PyOb1XZs4e9LGOMKIVkP2jyPxiUTvN41Jen4rhcTHinNNWmMiyrfH5vytPMetzpCm3lsua+z2nXiv0xu/5qZvBceU2F6+5IkfuR3NdWx4l/ovqIXF0RlXmB/rZ9VHFx1CsVNgISTjzrdWTQAmcoZBzLfBDZq2sCl2G/hLGMBeU1mzTX8P8TMA8f7ayrc0RAWVf6N5KBi79vNeWcvfrnacybIW4+lLf35fV5IQdiKDq9WnxdH6AUZ9Q9kgCTOmzRt3PIPqos+BzD3UN7Zv2dIXrfSaGDkjJEOPWLf9QJwhJEKK6OPDYXb1TmW9Pjd7mTZD6hOl17KdU+6BPzO8E755v3xAsubMcg4LGZmZLkr8BkMt9XCa2bgT7jkVDu8byfP1v5pKcpLh9Eka2YXVXTBDPGEYWbyviIKruLkhXQMFHBRXxz28O3wUyNEs67gWRRoVTDJKfGHbaQaRWdju3Knb7KgF/WiCW2buJswwpuxD3KjGJ3zHK7z79tUYiKxhOjd4Tul8VPDZelSVTMqswbv+6qUDtgbZZ9k/7HGbQdorwiSwOP6BI4s7C2pYeyhxG38EKgfIaxr5LPcXOudSUPU5nD8=
Variant 1
DifficultyLevel
588
Question
Blenham works part time in a bakery.
On weekends, he earns 2.5 times as much per hour as he earns on weekdays.
One week, he works 4 hours on a weekday and 2 hours on the weekend.
His pay for the week was $151.20
How much does he earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
4x + (2 × 2.5x) |
= 151.20 |
4x + 5x |
= 151.20 |
9x |
= 151.20 |
∴x |
= 9151.20 |
|
= $16.80 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blenham works part time in a bakery.
On weekends, he earns 2.5 times as much per hour as he earns on weekdays.
One week, he works 4 hours on a weekday and 2 hours on the weekend.
His pay for the week was \$151.20
How much does he earn in 1 hour on a weekday?
|
workedSolution | sm_nogap Let $\large x$ = pay per hour on a weekday
| | |
| -----------------------------------------: | ---------------------- |
| 4$\large x$ + (2 $\times\ 2.5\large x$) | \= 151.20 |
| 4$\large x$ + 5$\large x$ | \= 151.20 |
| 9$\large x$ | \= 151.20 |
| $\therefore\large x$ | \= $\dfrac{151.20}{9}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18HopFVibHef9NW1XkE3SDvSo+uz0v2HSSFq6cYd3MMthR/27rR/kEXRCRxniCPvvsFgcJRMC+RiEiDBT+yrKc0fkkTJ1SKmxo70QY4ADKlvHQtPtgMc6fTpdyVsJwmT8WtMjV7S1ToWSLObJ51A6wzUoZC7sGHiTlPAB3V9YimrP2XwNNhE1RKN2sXQlRM4a678a3yQseOEXULZ+q7tMxHM2ADs/P+MEwxEuD4dW41R5WdljC53LPoa1KgyM74ChcanATsQsPUX1SQsq4F9K8IP+hDAyVS1NcZubK1/s5R5cWshg2xsEX/l1eeX72vbk/8JrYpA0elTwNwmRGjuNdaToICS1DEbjS7rntpCXgKhRuxk/ZPjaybL9KHPgxxQgJWdTEconD4nhwlyH5lzkWCUOvTpaC45RSExPRD+oyd9Qs2DXPAS/P7sO969O4nHvhHijz1f8wApCbdeVGwohk/8nTqcXPkYy0gogvD+CT5KRVd3MZ5M6FYsozV3emTOMFS0oZm9DhzSDMb7qU4HcCINEaoOulRX46RuMh6CUKFb+cP6duv2cs/5R0+9iPu85ANX6rJEWUIh1EJWfFLga7DrTIcg/1IOPHLzg88I9AMdgjYhIkvW/s5nxFGqy5TkTXUOZTQ4b8fE94jkANNKsvzv1GzN/AFYkEo068fLuzYcvT22i8btPggsnKkwnC/xogsufCYmloyeJPcSeOYCmpaz5jf2+9xkWrakmVNfm9o2kxdWgU8xb8iX94W4mavzWGiufcujliT7itMpDzvN6H3fy88e5SYMfrRlN+BUTIV8nO9kdf2l9QKP7cqYrqP+pC0aNWwGGsO3Dqz3uQggve5gWEyW2i3amAzKv7I5u1ADm4c5kM9vhWKnR3AkFycIfpkY7NCsY34iOjA7qm1aeK8CtIwln65qn9+h/ZZBEUABr2qy19mJ1i/M7AyO+k8go9tXU6rx2tpzuEt7reOXGAb2XK92vYE3cUPd3c8fGhw61cNQ6dDTkMm3jciwGMA095AS/FG3i6GTzp4THc+IePVGnnZr/FC+LCzWPfWlLK9JWucH4fJgPtKzYN0W8tOIlVti9noBtSiT1mXVsdFU4u7K99oXGmdZLZ72A37vJGbRnKGa8BKEb7g/TnV04THhLUwdY33gbOVe8fDPfaw/yF9TrPou7pXxkCaLRh7yL5m6pSavX9454cg/waIdwKfCzm/1QclmKOAKi5WGHhQdUJmIeo4OdW6gTY8NJzBF1mowvUntB1wiDL1K74BOsIG2czXwQ2eVlwg6D3jUBT37OEmWt704qLTtF3yAfEu2HE1HN0VeKNfNHFP0mfGVAgMHkV4z6YGw7CRQy6lrJvm2VbPrHDxLkKJC/CRJrWQjTzmwcx3RSe+sRnSGKdX+Dm9X/DMofG6U3tjB+26BQ3bNm1Y1j2b5rLY2XsayiN2iPOE25GAAXIV080/BtJnW6nfT076dfLI1Sm0cNMYRmH1O1Op58HVVd70V2XYm6rObbXH6q9kW9e+W3S0JyWVLsVmVDoqVI8xnbMw+EL5vGHAh9k5h6OwZdCeTK+zr3QMJ87jpN1PE5EVz/gExFtwEbf2nNl44pOspf//G17eYRIu3jC6SwdeTkTl3r96eBIUXT0lov+mB1BWXHtkPifDCNpu62sgYhUC6wD1U7wm4inIZnJ/bLXAEXpS0ZPVmeKFm6jhXggk1pfKlPM4IVLz9Xp4KM1LSiI1OqI5ulq9tEQ3h1moqBuEQ/U84VDm0fon8gUS6DsreeiB9rwtIdGARvxGora75jAqZx42JRzob7tEyxTuAZLmVyFxs1sjO6ImsakcEw18/5kkxuDdDxhWBEuEqzQKAS8m//C2HpFrgTuarLLZMXhjA3QNl9kJ8tmmjvCywuoZCrCyGfxXao3o1ZsQKYez+dtN0oKY1njxiB6eaFJ96mvhc0CFR5720b79C3N23H5YLmO/ncnHzxSFsn5prMGdn/axnPzX2F2+4xy89EsX+bg1tDFNeRRI1s8lGRupuoch3g13v2nN7+l/Zz/nJbZgKelDwAnFBd/0l9jnYyMY2t1sAHyn4cRzuU4AXVrf5jixb//9YO/DhmhhWxKaPRwJ19ADS5lURv1Ie8GnszNPdnILmTLLyfJFEXUMXscIGeRm4d8c6v0eqK8w45Jz5fg9fS73bse198OqurqpyMj6aYiI5SEIllGu7iqLYkviCHoj6nSLAqjwl8BGZLxgyW1Ej9WQFEJBGjOZYbmXVWLEF1LPy2WG37qJbaoD14M/rIvD80+Dfe6e+3+BTyyVf1D/luNO1kSM2g+Eq9oQg/ob6MS9ZRl4lnVjuMB/j6hX3YZaGUcXfmPmOaXbq/aCsgA0t1hxzpWRMuau8aC0V9Or+54Or41qFVY7CmttkD+jpSJvbPpBDwXHgQ+OEWTyBUykHBMTKr8IJmAoiPVrqtvviihGeuvs2wX9XQOQQNr+JHY+FtK9NFyd0C6igCUJ6THCkTnOOZtrN1y6cTfGPD5hWcjExwOTSysKKXRpXsZHM8cLeA1Sfd/TaLApjyiA6C5JAS9fr3axdnIV/VCsCvC8b7F9LxSA/8y+vXaqV84y1TVatuDiG9L6x1w3X1S+xi48aWPE8uL9fKHGKlTsKDIHPqRNcoWwv91kD2u8k7U0MEsGRwihnmzF/GThfQva2CrymjDytWiRCflVWK9mH+wgcMCQJCvMlTKrPpPpn/0KdDSW/Hx0lgGMbAST7KCsNw1EYFxMnRFvOz9rlQBtTDYi0s88yMsQZpBEU0u+dsdSow1pPmG4EPG3d8BTCp/vkuLQKG7ZjP0dbnJhoWyC2rE/LyTCUdfz3mBwlnSpHHdNZGFiXMNpvoIVvjkt7bshSrhtElArOtcSt4bWbXZtBoB8Y8WiFJP09f0GvlMELDUzv7A9Drc4NdmLNuuWzVfW84D+ZmoOTZG+zXitxfVZdfOFpOleAGUBjMi80jUDJT1ADogkE2jYcYi+y4TN038Ly7SP+JX5skE/X8OZxsalxZ9amre3fDkAvQM6dHWR6KkwgaB8BokQDOY6JbpdzHFrWUZIOWOr1ZSQMgmhm4wRRcotu8OgmiD75/EZTaJFifmIBl6S0guQZTCkp++AijMk+i3ifUTZ6szW3/AMCR+Qk5+/aNyKKrm+gxkwJqgxdWZJeL4FDqsCObM+KcQvH97pby82NWBXtMCzababWSEY/vYyogJdH9vN1R77j0JDhAaVCVY3uKZPPgSGV9yrg0FOpu9oQ+z7TC5pltwjbZS+Evj4yF4DxDGBXxuU7xu4ThvkDw+qbLtRrlbYIQoJxXVTEu3kn/0bKZ1+9KHTskFTi5liMa6XLUImCzlsthpW9OmcWHk5oDxyZJ0LRkSY4HoE7w+dH8CVOUdVFUwAUAbzYoT5C/+41BmFTroK/9Cb//cZuGNaF1BG56zcwFBNI1ooSNsuAG1wl3uyedO0zI9Aor7bOlgcWfB4+2fdQM4YhrGpTR9ZdiwDkoWQ61lJDMi0wpy4PP5f9W6Q/sIDpP5+MiLBCtRFJ7TyrTQAn3y/oQ31EQaDpj3nfuBymyVG0atpqQwA+SJ5iQuRgqBWWnj9gzPoMqW/q1BDGgGMaTJh0dhjCApNnRAyccULFXNTndHollTYOxh3+XtmL0M2+5iBBgNIZqWFbarSuYImj3HC4unxdqapUlnysLyJwJNZdIXKnYU3RyEOb0HKilkftkoF9+wt6PD9IR4l90wa/pp6oBcIA7Cx3beYC90rPQF5FYvEdsFQuqnTY0IH5R18CV33emuwha9s7xyw0j1I8bDn1c7WuI4ZZ4Snzu/uUNDk0HmwZ1PoEyZFBchZHaB91IzGhcdsJ5rKOCo5FOPXXNw67/hAV1r2D9rEE/oqfVGYJ6ep9KfsEpWhR+SKwloOVokM5pD/9gUD0XXEHcym7O9auycYmlRSD8W8snpOsG2ezu4TL85qZH0a1Pry/VZKN2bOGCh0QsTLS4Oy0xzqVVDh+IXNoILjdd7Bdk7TR/Xu33GE6ON/z/yBtJsgkSEw7DO0ggQb7Zj063vOHO1VDpG0yLkBzGcHz+wjTNw3n/tCZu5z8vh5b77sLinx91192NR5ML6xv8qaoLuXSgZO1xNPmJ1fBOgEv5TZlZwRkCwq3vaKNmojxCvUqcN0JyjJYhMQsUijeKwT9mAbXyB0r7xhzsxqH4dhUrDxKZhEIxDSumkB5A0rNd2fSMnOiYbLBfIYmcgXPZyHWhQFFhfiuvGywcbfEw8a5cu2aVKnaMnfXGG3IanldUu65q3g9rLuRY12oSNCIzDooI286ujGdMSAtjFo6a0VFYHtGQw99Hlnct7zRjF1ZoWxUlK0u7JtRN0QBHPvQ/XiBdtMRPQ7A5LEaDD/gJ0AwXHGBc4zEQWjxMwcp59BsI9wdlIbyAn2fsgP9LwUk7V7qm7VpzYURAXfz1iWfqiVYL7aEn2cBTldsHYYhX2RIRsm6B/fy88vHqm+yu+qGSNZCZLlsOSjjDacODSEdvBnxRWtLoZwm4iKiHgj+gsmDqYQT7blxC/KNjdbTvHuE0wrtbMWBBuNb5u2eP6FiOs/iUHXRSBaKRkjeJKH91THKmaf94aWbk9Jfg/LtcZgGqvhDDGsxzusBoYJeQf54FupTWNLWDDZaXzg1zjey42G+/focD0iHYH+lDkXklguSMYD9+JaxzP6kGbSCAm3HvwWUOwCN6TBg7765UvGx55UN+K6ew3NbdJB6GjKBF7MdsL1HS9ZkL+NexebF1aSwCx8P9XZPGaAGO5++zIs2Mf3wtzhnNN5ph4SxqY20DMO1Gf8qoXa5SxE1Q0Nj+6DEIV4E+VKqhZUq7G2oKYohxJSoW3xQ9ypHXU1kDdfrHDwYs8yyzVFiniYFKpNEWLuSXYbmiB5qv+5me7Ub8FIYk04lrZoIV4H4gvDLBL8KEyTitgEUvZkrD2FtGdh5ySGCbqrhdfW3kwPh3VycwTO0cmZnfll4wsQVpp3ldsOzJisQroMpTnaXhN+RomhTuCpCt+xg6bh+7r0H8z5Kk86q3GsnUXA06UUEH3unwAXHstMZL6wde86Nzn72Qm9UmPJz2Pxe4Rz81Oig9nYIEniWRn8PzMz2GYiD87ieCKCk40g9cRqNMzCJ/WCcVvxFisQ99FSPwG1W0vCgKpIlM0Iqv5HURaMUeksN64MgjFqq8Q8wz68yod/TGAgpSpeLebYcNBsYgvlZHz4gtWUVbS2Nywt2eCkf1iY74RzAlIdBmmCTut5G4ry+VxZqvzY7VC74WCN82ZwRMiAXyM9CTymHlUdycKdDQ9Sx0R9I6dPZNDCo/rM0qOWGEmMIjQklUc/mRGnCsKj4WBamUiOl9rct8tsXOGueCvrbh6+CLdbkce3PNKmcWlsA5E3wMAcoErZABxKfDtElSgEgB5jo+hjLZB7q7XkVgMF1GsoaCO0HyEOXVwAWKz+uGYbZUiL28hxMou1N2t3g7O7HPVXhNSvKQbDc41P3xIFpw5xtBHTCD7lrgrD8iBKwICc7aZZ94PdsTbEFSs8oBkxv4UsKf6YkOnS8ueTA3N86unPrvKWImB39ISVrJM93MLEfrVzUap/y6wH7wvHUQQalzBLCyeeVkKAnVcVnlQyKRPUJaeKDJY6UjZ08z8WAi80w680Jff1+OveFWYOJNDOnBToLMhMIszphn0zpGdYWESyivJq1mtzuABnM+RFypcEbWnPc6El0MsBcdXAh3m2tvr3rHvEXz2cV7trRVHMv3ogLw9fMuNzaP0W9Lc67cOLH1IzCbc05iEsIn+V35JE9VxR2V3d4DIn5+VxYItdlINUa5tKq3KAq+sdee87UNbjMmKa3GsAvbquUe/4Sa6OSxm1WfomugIdAuWfRb0V/GGV6jlMpT0Fn7ZMoPSidUtrvDtvGEt/ycdBOVtlvCbrcS82yTn3bZByZpiHwqn0/dlCCeYmmfYiCR8jucnRSIqg1XhkZLSIeMSV4lrM/suP2Se8wLgsHpsYXcA1k+AR/fw5oQjSh5D68mrPrXK30aQUVT9bo99w6dhlBGK+QtOUGq6qDP7/Vskfmh/a9fuzvX3rLzehSa1734joDqMzCxQa9gWfLaM41fFITIwcWsOQt0jubMbFYK63VqquNIgmZxw2xi1ztx0g/MEKS1decIGWBv9DUQGHAkwAacjKXnnyzIV++EakWb4GFmzZhUz0U2+UyyxI2H8GXfhD2Gyx5YkW4whf7cpRqhv+jsFzBxMxz7ZveIjqqFHj+s61W5yFFFbi+3gN6SpqzKVGVRrBJ6OkC8ehOCTrQPCsPS0wG5ahl/0a13zN1KxfNXO+ms8rKVFvEEG4+DUv/UaBz8wkhRyhtIxCRbRnf86ihZGKo13j9wbB+yFgcd2ja447PIh+sSbDN69gy8v3kwnm8Mo/FEooyq2JBPkdfgpbMIK5ZVsM8SKB1g+i6gqlpImX2qOW9yPLP7oJh+d85eMAnn3jFFz9hfA7TwdUelMPqH5xr0kxl+B0xhc60zJUd4uR4eGWKMj0oWPt91/PLrQT5l4O/7BO2qdOVQe7XWUSV9UwPbfRzLbGhfu1JjFKN+bdHAndu6AcF4DduSC4pV0dAj6x0EjcP5uBru5M13c7/j5tOqTAxR9n1rLEnLtGJ9SQYtZVIbf6b2NjqNgfEu/MkFcgbQJAte6pwHHLL+wj0AEbkO0/aXOPIPX0jKhAvXQfH1oy1Ets6bPEItfpHpz98CAb2DD3TTyy9XDiM6WGptCLQEzVNBjTUPh7BqAZuoCmPeLkDmqSxyppPTSTCFGe1RClcI3DQsh8wu/8s9CjIuBiyJhLmIqInvTEXId/rQMlXVpJX40US760Sr9SA6qs5bLRWN24u4EZRjDGuPPutr2fEcGk3SXZwlNE+KgXpdjRv1qh1leIlANSD014OYOTpWJoHzlDr0lT4Z8cjhC1mxsbFWUHZJz+zwQmS7TTozStV2cukB+cThZtZg7BTksS/JnJgjp07S9P+4HMJ5Xffw0FrgNvYUSSZG64OZZA3ABo3+YWKd5o6ZGV/S26YyTkbpG6uV6a18eY2fdL7B7zvOPFVYd7OPd8m26CwhkzkRP6VfoEggDYA5v5Qb/IscuyCZLqJyEx8BwdG5VpUNMfOUmyWtnEvIeR2DCmPEpl5FijklhdmQ/HJD8cFVq2KUxpDFmIT6JJWozl/cmf4VhJ7fG3vfvtiu+YiScwa9BhI2Kpj59seBFtKtHY/gycLp5m53RWSroLSnQisHSdVJTfFtkz4FBJHqROksMa/jkS12pUEmL267o/Px1jEMfD3wo2JdAfBvbtI4Avllx7Zm3VWrKDzxZ02jiZi7hcUmJpZEUBSFJdrt4etIpCzrBCVEo9RQpgYr3JL5sejcdpMVu4CWdl+Hw6xDKyTPjpIlCdS0pYeBzEB5fFFIzTcTbd3fAo5hCnpqlCDZMksD8BgE0sEO3rbkF1tcShyvRZijljnr8qHNWviH/6e4Gz+hUN/2xizxdK4G9LnQwfAQ+eaF1vAg3z0JVe46/AkGynnaXzxPNfHQHfXNob5PG55REbwewCGaWvob+uN+E5XIjox+xPaiB+R0mCU6luJFNDxougVQLXUGFYkTuxy75tuW8ZFms5Ju9UKwav/Si0yUgM4LEz7t44Af1HOIy8m4TAWHrkTkmqS2C1yI3zfjF0bKn0jHvcaZoU/qxLHHSy1/2Xse6DBBNRb+LF3mBtvlZdnLMhAGPwDCYU0cNbPJfnODJaynkx0KTG9REQ34no2Qfd+Ks3pBDmYaIqXqM5WVndsQbQmGHRoqUt5Zg2joZqjYgCIfu6nd2kIeJXMO5LXusnwcgtuQYryy5kI3kHg11KvysDu3zcaTsAnqxLpOIfUHhliY5bOrjXoCDDvySxSfAI8TePBljh3DGIccNWjuuhiN+XVOSI7n4zBb4vNHnpYNkjtjg6UVjxUJCtQuZdQ0TFGavk7z3rF1DPKoTz8R0T8qK94oR0l7jmgyNefsj7EaKXxF1scLvS4UdVo0oLq5pWG03b5cAZdHgdcZ6B+yo/c8+zRz0kRRTBbZyraCkTR8jg8EFl5GWkxbXcERUTiyfUCUgS/XdJWIIiPt9nIgE078NuSF5f8C7WxQ2MwPNtfDoAqSEhEMit6Jr1JzjyieTiyEmYjWpPSqTaUJ6upTbLlF0Y8dRmwHfNmtqpmZ/rBKfDzB5uJvNRcyVGWpAh+pZZuxUiMnzXj8qhxAaOLdoqWGzJ15Mi09/91Qrw4kyupTyC/QOArHiPUXe3bf+WQBEUiwIbAzoctfU+r+t1KfephlE7Eq7KMeyDyQtJYc9VdsE1Na2s/slVi8QVgElvCV9O3btVli0IGYm2PcJpIj1lXXCR2HORIRG+1+r5HR2psIUd4cI+xJvom9dGM45p+ErBW01x/LBpWeiwXoODQfJ8VneWCjYel6PfsyE6tGBoYj98PIreQ+wIRzsmFkBz0pikXW5pFJp67n0cr44rcNY5qdqSjA/r+w6FVoOuKf2cjIUOjdOc7LXrCF4N55aqTgIOdNHBTIicl3jztWlW0ctNh9ZAEQj2bZFukxahVAnPs0nmM7cNdp1KisWmtBQ/pQLICynbSsGZw5bGQvbnyjAWLn1yHvDtBRiujNR1rIQFM6ObdMfCdMQTKWN8kuV+PFIWw3gRdgDGqaMVfXw/n0y5UCNMTyHFm612JDnpRRv7FoR68z+kJzgCdOdkTIWrBLsStrmsP5TABEUj22upsM37xYq6GkT/QchZ8GMoZyafqnZRe8A+cwg8i7Z4kmstvmBRdXRVy90ZE93kNddE3/xIsk4jrVoVL2jC4RKUtcMIXgz6EDQr+NSc3OEe8Ey9qieUk7YcCjN8Qvb2ajAhDDRjC1rObdFlSc2i+lK3V7fqHnbY30AZ/0+55TkpSbzvYmjx2KE9RW5+JsH2/zt2M7+dmyKIOiJu7kSNXAU2MGaqEd0oPn5q051ASJIeLxYYRI4OIO0g9tNj8s7EvlaQJL6PlGOEbqKVuw6PHfIguQgVdPHLCjh8DLK8nscOF1o1AkDBRvnNNUZMYdxsQLVsvxz7qOpKSCeIJzWWGnFUXGpNuNij1UJzndVxWDiyZoMpy4P5lIuktzWjfUOUyrEJQg+fkemrTmBsPcHN633hRbQ41d0TNiOZ6d6DgEn7BE3IVI9EV2fqbwl6AatvvWR0q6gQ9AzkaOGokW3nIxsnPV6pEE0MuA69Dj3n3f63+Y5/iQ5pZOkc15yge0lPqhUn2iUd1RQVkz+kDowkRxPORGFHpGYEdJzcEd74iGKXSSSrPL7jIbvTca6sOT7rzzrIRD3hSPK4XhPgBgT2Al3ANUaZmihhICJgQhVhUCH2PIsX7tOyg/d0z8Ea1Jbc4YHCngg/yq068Osp/FDRKAMzL7/05aXpiMMAsqCypmRLQR9URNbVXKGQDXyQG6aJkG/onYdFM92JFT1ssCKgk5IFn1eAJuGKAYBxwF6tnmM6tfHWHW1Aoa9DHkgjECxZXm/2uRDdCn8drIwG4azQ+AHIzsjp6KH02gg3usKI0ufjIU7cYLob83h3jgJDAIoeuCs+0CaJrZypRJYPV98tW/4M06+xQkx9bvQ21hyEm/Cth5lOctj7xZeITgHf+3R5O3O0CBfXOTlmlrGAS4KPB36LMIPNZlcbCzyDgh0ycxI=
Variant 2
DifficultyLevel
586
Question
Nicole works part time in a movie cinema.
On public holidays, she earns 3 times as much per hour as she earns on normal weekdays.
One week, she works 6 hours on a normal weekday and 4 hours on a public holiday.
Her pay for the week was $450.
How much does she earn in 1 hour on a normal weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
6x + (4 × 3x) |
= 450 |
6x + 12x |
= 450 |
18x |
= 450 |
∴x |
= 18450 |
|
= $25.00 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Nicole works part time in a movie cinema.
On public holidays, she earns 3 times as much per hour as she earns on normal weekdays.
One week, she works 6 hours on a normal weekday and 4 hours on a public holiday.
Her pay for the week was $450.
How much does she earn in 1 hour on a normal weekday? |
workedSolution | sm_nogap Let $\large x$ = pay per hour on a weekday
| | |
| -----------------------------------------: | ---------------------- |
|6$\large x$ + (4 $\times\ 3\large x$) | \= 450 |
| 6$\large x$ + 12$\large x$ | \= 450 |
| 18$\large x$ | \= 450 |
| $\therefore\large x$ | \= $\dfrac{450}{18}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+rYWce7nD6sP9leq7gN8kNvQlfljiqXcypNpR0E4WuEx6qkQZZeRIk17CrIZxrAed62YvjyhQ4TPq636SRffcgpcf7YO4GzIbZsVUwwFmFiCFaGsBBRXQ/JmQtRUZ94lQqp1CIWdYJcfM85Nux01tNL93RQW3e+UsfcT0xPRYbD2x3O9Le68GNPQvRliiZiC1/O6dylZ54f1BSIi540B+k6I3gcQKhf/A0xhuQwgJn2Er/2Exbj7rEYBC2jzUuljCA6V5pNtUXFefTzY8gQOZ4eROehHEkPKK4wn9Ly4pdSBHC5caiehzu4LN9uxXKcelj0J4bbEBC88R/4+96t5MEDdKVxGtGQxBy7OzXYD5Yx6M1W1OrZumB4m6Eh2WkpU8LX+B/tTGWhRULugJSLdT0W28yTRKXxKe7QFn23xUg5Myk6Tlejf7LoBAtHX3LtUUjSOEzQzeYzgGfML/fc1TPpLsHXcgrKkXayQWuFUJpCYHJNDSoqjGa0U7L2gBUxQMTFXDUwLcfeYv45gwoPtjvjQekbW3toKhXuwQuafsT4//VVGTPDjUif3vBb8SwWh54o/7Q7ZmC+tN5/rb/tupGpfZ3ri7GxZ9EICJRj94Vsd3IVCpdCA9behr4x+o3FLRL6DrWku1GhDooGAc/83dSsyPF1xAcKM/T8XJfae374aRCA5LpfvixpUbQc5OY4N3OlLCKJ3eZ20HZeVwdi/UXm4H3FEgEj725/wQMbZbELjiUj3uhclGdY9hLQXOe+jShluwWWB0nbWD5fA3ScRY4fQJXcs/tcaGIiicPhVJvH9xdowjY79kHPTftZNfYPM6wjTI3n/12O4Zc3KuErNgR2SUI5zzPdh2Hgr7E76WLaP/2UO2vug/6wEMc/63C2sJnhV6R7jeMHPc0wa89hH9v0IMXhitfdFvS8rrmdy1bUJsePLOoWDwgJZmK2CZGno32Tcj/Nx8drBH3dZgxp03TANXVoIuqu2nm4TAHyt0COa1R7vO9XLpy4rfm9PPEhfm/+w++uPFdpZeXz1vd+fcKx/IiOgCHdPraHwexLfEYMyIBEz+FV1xTVy6d9FHMSEp50IjwsNemcQL1eSWEccWeHEnxYhDWKUs6pev4BeKaiteh9g3zq5aUVWG8rLco0lpewAAL76nFeGSKlt0foGA08ft85ddKiD8AuSbJG0bz5NAcbG/h9qYiMrAlce1sUlDyXUFrkSGZhsf6RzxbAAlQHi0UmlE5uGZ/KPqEJv+8Gx7r0LjrJyaVs3DMrliavIraDrCJ+YGtuFH83tSG24aP7gFl/jt7XkzoVbjZDkaiL2pePPcC0PCHe0MRIGXKfpl1BYruWhoIHkks0Md47Z9v0XwMqsRtF//7xF8P0RL34xeRww0BR+7EVwISZ+vpBr7O0CgUdXYY6SgowFSlgG8L2Bfz71pfNecWXZ96CfzSOtzDZdgw8rmHL4wVTfWrxs6Qs80+eulaV1Vi+DslvMbAO85bGKMmFqKCZavGqvvZwY5/68olZX7cp1fNvJ97P8+dZ6UfvzMaIDnfdGyQBBtlIqqcWHlO5IFQ+PLap0t9ObKv6uaogKFoeMWBqMTyVg/ebHx5YMfGnnlfDfWTftYLPKmdhmGQEs9kNeD5+RW/ooLR2aO8usMwAhdiO0Wc+dRNyionS8/MTsDYy2NFgEMaO2sagzFfzFR1x/z6C4Ik3Z7B2A558LPNlycFDJcxHTxBeZLnh6G968E0Keq7T85ko/ganRoNSwk9rfD7fFp+PESCaCsMRbgUwWalA2JDwSP0oX6JLkb//AUO34Q/kzvp1u1CnVdmQGG8SsrNc501joj3VlBjoCykhyvempPff7gjeTKNkQ18wNqTdRIGwz73XxvS0KuLhb9SqNGPTOIyLkq4FBIpTpwlxcXg2s+Qwfbb2iqVempbXRrXq3iTQPWBIKa6iHuj+mNmgzkKuWqL4jSvE2CiPS/k0A7hh4WX4B6XV+r/CA6JWXc0toW72wENnC/ax5JAckO/q4paNAHkEZyL3TjvfjudEIKfy6DdUD+zLkrLN0QT3GbOg+VNOzO7X5Oi4VrrdT7aRurf85cjA2UnS3+zRbagK0Fk5UiM69s2t7DgweikbWRls+tnTO4J7C97IQdVJYj8wEbbRCw6QdYZdnpIZnjvn31LMEZ/QpUmQ833LGlJt+TK/hIu7IPhshyinfjI3rytASBtrfizn15tPXuulucCB/wCiwJqOUCW07ms9bjBxUY00PaEYF3Lp1nHP6laavOzrjs35uWuZxtB+0jvtRcAwO1c6ZD3rS9yPsCnWXLGgKOu7au5j4UYaXLO2BfG7FQMRemItad5h8u8serjBalamGA8eccW0AI6cIJ+8GE4TTDEGMozRwrezwA8s+XK9GPAAh52LHQTh/eKiLcyAh2wRgn492o7AMiP1xESwUUPYhfs/K+XsHZjqhDNMq+M1OGgxVAVHtL6nKvePrGGxmFlVIxcN6fA4hFE2ojYdzBdJU7qN9tFbRcHFGqWM3b9MxAMTaoDRSgXBmPWRVxVWBqBYDo/6PQNs3d2FjCwELbNNMj3+QiOKfb43G8HA0JnszvtPWsiH5evPemm1stPx1MDsZ0GTi1INbZvuZ2mqkns3QM8NPe+V9NkPe1I0LY6G2iu69P+nevKA2l547KcI6kL1L7021c2JNrVVxiRgf1NOBWyZVDUizsn8C9Wih1LUs3iAnEqVwiXqoaVFtwrTDJn5CfdTIxrjKYz0yR5yb+GVZOI6nfpeW67wGhPmnfElmnhxI0Rfv8J+AvK0WdRSHMWJZaYJTAxBhL3yLIC87UZIJCdV1kHn9V8qwO+wrFzxhcTtYfFvUDkQEZsydCykPvcooRvS58WAgfWqdCiikjJeDo96ezc7Bh5x5PKHSm4wduIF4UMUNe7sXzPuyfy9Wnn5takh1HVLp4BIzbDM/psFd5c81mcobh6DSn1jRDJgU1OjYmqGItTcuM4Wjjm5PEH7T6QqrED76dkYwR986WsOx3pvOP/IWVtBVJEdGH2MirmcSPDK3CA71pf2M2r0XAthMz9dP8AuXR7hXQnStFFe8uJ67QYyg0frobYEcpzahTZ0IygQ9MPLjDpm1U8soWZyU0WpdlCkTUlhIctmKcp/qhiO/1Po2n8fu1LE+JZJwn88Y4mvNMx7fco3fnCFGJQNRnqXV5yUjVThG8Jbu7txqsA8EPkky+Y+Nd90P8lzvq3DTUhzuxEc2focUt8oyYKvFhkkiU+WfunFkOqZpLeOeZZ7mcUA55hsdMvkH/1f8mwQ0ktwfQ8lXAgmsdN3W99RSKWrXNW3rf3k0abKCGMbhPi6KJwODR2kAze8+VIEhR4GNytdPoiGXFmlGkdmQEw8z9s1/L3CR9KGPy5rnQziDVToe+66Nv8C00nhiQOTMA/k+EY3L42yWydL/dqUdyHejHz+diQVgS2oitEK/BSroEsUF1qzLvqXq7noYdKliTS55Kwl+Xm9w7atbPfz5a44VB3e6mgoe53u17JrZ6cr32fgYAnN+CPG4kZ8MUC+W6I5e3q69iq09znzSuKKjNEP1lOpdEEsOmJQsfgoyhKyiSqFdzFY8lV0ZDUDXA4noty96Xq+w1F4oN0v7zpwgd+W3caCnaRRAMk4oT1E472DHdf6QlFJlK3xillFQF+YAUKk14/S2GFO0tjinvaTpnvDLc6uqwLWszh9YOEk0DQI1vd94RNfDQWiMOcNyNqAreWgmfWMb+Y8AjyyCdY36kej4Rua+J50ue3XbTo1lVZ4l1Tn050QZLoHl8UVlt7YJbRuszTYpvfhRa4dlxGZv4FR+3xaBzaknADOPDf4QuCqt6UyIim9ZcNmOLuBwBf8PNqI5jESr56Pp8vjZb8dp5kalK+nfgiTorDyxSCwkJ6Lp1G20uZIcp0ORsudZlTshqwtaGIgE6Vri/2uKQ/5TgHZZMVWFK6pwOXxB2d6PkJkn+fmeGqrRbp4YvKe2pwMNHo0Zva+t+ECfHWCfiSGXkMZsqQwxnzMEIYYvWzZcXhVdFm6WMbho90m813b13VaKSHsFcUUBJHH2V+VmZMxooYOTbHsrXL8MzML9QW7Lf9VE79qva0tJNomKvlHYG8/ck/kNX6c4uBimsQhNqgG5scH6xNZeLxdrjNoBPH0LQkRIcPjx19B/o1teKX1qdQ0zDwMpSz+uYLqMP8gLsRZWEZD8xZdfplZo8tPQoWLVPiFfm3G7sYfGKMKhv7HPkdMFCyS5Gz2Csbm2TFVjpdBq66w7HPNnf+UDtK6xcBAI/HY+pUFruAD1irVjaVKOAmJXRf7YZo5aU4cb3oxb8uBtZhnxJqj0o7Y1sfH52BWynx0HwEt1aE5/tyqiKc8h5kX3bTAQTP/kIi13HGusZN3VoIIwr1iYCtdJUSmm1W6ivJh0ZvZ70w55uYQ5gTcG6q2PQrVYM+WWOeBJvVt1aOiulFj8+AuzY+nTDn6Xri75RmzuMd4qorKLhEasniDUyFFSP2nCxGsoEr2v9CQBoL9GinnYWlNPMtjlVO4wIfu47FECqrcgFBymeHemKY1v4pdfO4ypVkSW2iTJJxSP7oF1F3LC+OPfmG8Hbe5BRlzGDINZ94FcWPU8FEu6AbGhLR+dh29DIvI1DqtcHdPpnpOYuqztaJ5uQT8g6hGE/x8DS/2MFOKDqbDBhcOGzNyFBI/yKaYjpNW6zNSehJSJYoiMRXMrBPEgMX7+A4uHt1cHCfPZrlxLFo8wf5JyyWQ7ItCml8fzYuNad2mv76Zlnb6FAgoXDea4GIji4wFkq/MCaGibBWKIGsQhAv8PVA7BkklWOmjmJc5EgSDvQXBLraxTiBPBTjGWlosh2DPdGo7azFGhUGmRi5Gzj1HycTK/N+h907kzh7w9v9uZf8zs+TsxhBq1u5PWHBQv7DWoI7za/Vtlv+zNFQp25tb2PoSafcbdjY+ciNeV0ms1/AZC/f2SA5SIELKgGXPvLS9/dFty4n/JS70wsHgESHuMJ7gZpcaQHSJSKdKAtDXPd8c0/fKqpTjnVmIqaf9EKXUYGY61DjwsHPiwpChqdn26y/hlZeE+RQtU2m1gDbNGoVaj0kM7Fiof3RBrQnw/KWM8KHnyZGS7X2ZAPRWII8WrkmC7JyncdWUejiTHN0r2BP+iQot+VVhtyfyozSyfY+YMwIESo5o+3ik42nj652RLXoDwEvQyJHs4bJv1+8l8rWiBKwpqew7rQFp/736JA+mg9o4SKfu4GVYyUbfblX/cmCwsAwhBftA2dbufUFVudJaDN3tlEAjKClQtWkjYkOMm1cfylyRfOb+5hFzo3Tuv2wrAewL6TVB8Y1ltR/Cs0iFahWqiKMLy0u/ZKqJu6ysqQ7v1YLDbm+HBfOej4jHxjXeZZxQmtkKPGrLszoc/c7R+OMJOzlbh8kUVFUwVC4XKCCxzEflFanQ4+PdKYXvZF1ppDyBD8/Fcl8yJdq3CwAvpuWgpv1NTqhVMkLrbaOhpE5OrxLcCl4KtBjPfbH6mZbTO7x1/7jw/WGSWLSQys10F+ev2+3Bf5bUrdrknE8Xx1AWUyyHarv+7+0FccJv+3XuxfmwA1eSYoUCX0MvCHHwSQAzIqkZemAHAy94jG06y9E0RefJUA9A7cgkvloKEKg3HQ6x87IixnGy6vm+Q7imrYQ04D8ETK+ZInCu/TeQGPTmErrAPQUdYvRCdSLlwp050hNdp9izdCSup8iNRZ8Cdx/Ntr8q6w3tARS6AiRCUXFyc0BlCEbUVzISSx2LykgBNFzEA9QVycQ6ARfjg3pvMV0Zfj2fa/xCXjybEvyzfpFbW9pSkwxhuU8ABRmC/13ltENG8JTUIJFOZSfdkrNS2mF/XHwjnZF3+cvlKFJnhJju4XvB5shE8h9X65n9BgCdVZazMU9ZcZYC9uZLqbKEBVh8wr+VVMwycWmB89wh7xooAKD5l3t2Da4g9RzmmmvS+b2FToVPVNtuAnIQgEvsWM6VXIJd9Rvdf5+rvvhpFq2ZrSNHcIK+eUviLKPlzNGOnasPnZcNt+OXuTg44tSs6jJpMJ8zb4ENvYrvV7/jSSy0RuU7XLm59kGVcGUFTJBwTdsVrR2o+pWkAZGYDqOJ+ABCIrv+9Pc0VW0q1ox4N6IEpk5SVvtDE3VdBpGusPbN3Jv9pZTLBt1VUUHlHHjQQ3ScOVcRklj4ISVAIPv8P1DVI5mlEqcVmbYK+awM1GlNLRX0Ui7Mx1ZnsX3HmgFq9tyacL+c1Fko6dMKWrkJfEonYQyXOWQTwm9uiZqqWDylYe50akFxwjxHPD+oZODom7Db8N0FAhyE51J5ZCIxRqGhaodFlAQaf/GGhF/xFU41v19y1F8bcMz75n84BP+UrD/8/wBblkOua8PW8wt6cmsOtU3fpqSE80CWbviT7w02rMiuSJ7yoxtgbjZacKBt4/+fIkLwD4e1O/0Q8Iiv+XRiJbdcJNJiTKUidUJH7Tk0eWgs6NWdtv3XG7Enumkz4VhfB0ph3/6qmAWc4KxsJSU7rQqDH1XLzRKRAagJRoKLmG5Wgq/l9uezFlMtrxG5NnpxIm4eIZIRcPvGPG75mRmy+msNtV6qCenDMJ3oB2DvBnTxAyh/lG2FZFpIsHAEH79xINT8kFxWYmuRRHWEpWLv4AnXoRwH5cyC3pwE3ExNKuKm1EXFGCC0rVgLyPGWkBQdeEeFIryfXsp0sI4af2xWZJmF8a/uGms/MU5sIFJv+QlTqwkqg2xm3VCdl7eb42ZyoL/2upjZ/c+x8Gj5nASmTds9HK9eMluj17+wCMSNF+PHxEcdkqc2ZqiMMAUSUdlPhjw3MH68Er/f1kExNunSm1JA9WfiT692VWEyxPoATv7zjmU6GzUY3uOqwBLo8JfiViUyVSiM6zV7LLZlXRj3As++1vIC2l2ScoP4+RSruyDC6yvcYzEysRbpl9/H7/AKma8lKFyD3eMpfa8Rioq1PAjbhiuZ5KiNLJlISbXtm5qwDaosGiaALAtL6EahbwKVruCt9+lQsres6aSE03Vd2IqzBDr7TxlQJ9xp6R7y7z6MzpFzd3JT32yyh0fBvddhBhEO8THFPg1wPtwkYEt3d1m4FgbfyOx9Hodf4Ywe2oJ6DeFQiVtv+AxDwoq/dOSHCh0bh2LNeEb68xPDgCs0Wmu0Zgjt9nmJ0yHY6kfTkeZPumJ4i3biNngDCcPKC9FhLVBMHGued11XGGjuIFm8Q9P5R4EoMsY8pKbGoJneu7g/ujYMk5RZqV5a9SWOpexJwyEfccFYbTCa9JIQ1K9TbRwYs/BXX0/Y50Q4vj93afAe2808GzeVync4eOupjnN8uvQxGiGtsxE5lURk2t4ssENPeUpzoPyT8AhKHPoSuriTZKIMhUP/VB9BabYWvVJHD1Nu8ACGQhcjiFH8G1SSMm4B3Gd78+ghccnEOy4DfgWogjJ7OkUCcwCAwM6nJcOfUJVpi6CqFUzojTl5bvY1x+ibj4TUuKoa+aDFMPmSYDcSTaMjAT5y30ffT9xJ8n6goWD8J0l6NMZEwrM2B/5Lmxi4owEkyLcChPG4D1sOOcE3E/m5+MhnjdnS5sj3drwL0DZLbltj15qyT8KzThs+o1vrkKp+HSrrv7vD2wgfI9RHUwPBbSBtI+YhLeUT2no3/Ei3HG8wMkZOP+/mYiC5JgrAKDqoqQjxH1YhrFpyM3azDfkPeNyxTBLL2F685aT1y+JOAL/ZfeRDVzJkv8uzxKmkzR9wKq5nqh+Ct7CgM8f9O0+wBx4W/XBbe1K3ip0Rwg0/UuClaDwerP0pmTTAa9H/25t5agvLxasoPUNw4qjWJxfXV51RyAAhmQzVaQDyHErnpX6FxKTANeKTRm/6PcIXsF1mM3NIMb3i9b0F9VCd1Jo5+6JzIko0mR5UdHwbNS8i7Ju7HlSQhVlM+zPnbITDiZmXO5VfxVnHPx2Dca4RP2kk43gP9+pDAucCfbqTzsorLa5u3qfD9jvQ0TtcPEo0JekFi655l9AKHXAj+U06lZGPCb83iXQfoMUGniL7KXnipNKVR2G/nP8knXUtuRf2hodHxN+2jt1mw6Fl2pE/9CovWCFFSx7ORj8juG3vFn15exE5/D3yJiJGnr8tt1MolDgE6KuuJ4UgU2tLL9NUM/lqf3Vmlyp5Y+IiSyMh5WviIfDt6GD0mwua8ZO/+Q/yOcABonS9K617np2o7rBJveNctc2ibuex80dycv3OWvrjEZtpMW4ylmU04kfFxELIxYWZ/8ayoyLtx0T4892/cogtYDuSUMktSchNpZxjXE06JM49nfTn1ifjbqz2k80i9TEkKYRNFkVpTBMPAQKEZMbqzUjWKbHxb7uSF202YskqEaIoICexSZNrLbOBbuFmsGJpP2Do+jfitQbPe421Q8YV1SO3UHPJRw7NGEz427oLctp9FI6eUvU8b8UOskf3FpJNxXbx13PqS7E/Nlze2CRU7Q9/MW9Frb9SbjzZhflko2INBeh/t1N4gvj+LKvCDOykLzrsxex15q0CqRy5c9nCBhg0Xiwx2fChhhZ6x+q/99k5/Ujfgi2153t8b7kg5rO2/omzrGI9sJFDlbM/tAuVznqEBlR59xR9qkpO4UVNwXRsv04spIF23+sSCdztzsp9vxqpbw13rc1EwxoAAzIb3kWnKT7IVqMRnp7RuqHaT+HA3tI7zNTg65yR4IgVGeYJ0x4FayuiUWw5pCr63UCaHOBmDeP+BB5mZVhP9fS3OYXByujhsyupQdkiM8kIbsFCz0WFXN5UQOiWA8sVtjqv452QTDkU9pwwJWncJP+Tt5NpVuAj1P3Q1qgypnbSlYCLzeuHRc8v8R1fD3pkY5FTLOQFUtgiThG3hraE5pSjmRPYxXSPr03/hzzum6yap9JQn1FHEi7yHjeLKVHSSiyLV8dzFdjeQJYyab2rNiffPxKF5Cou4kdG/QjtZ00FRU5KwldMvDTIheViqmIgvg4E4yDgqeSkVPZ4PyhOVGrod+MzItlTJLzAR5tsU6HazMTALqPbghbz5ztJd4qgNWqad7O4rLoDMYjK0TQbgWizDmvrX+EbS3qriYXo9McnAxpF11uopjniTKVgnDTkw/a6YjzEfiUwwMjWpH64kpPeuEYhrIuGA1mhwLIQC/gJVyn4bpBFFjft7qwbnRx6UCKBt0aDfUbZ/d9eyz9VLLfDr9Qn5gm0v6zEmPNkV3kqY/d1oYaqgsZygTQkjEDQf57IS3X3hI9tqHrdqOl8+4CiDWn++7oerBIcChRY/Y3bVwuYCm6/8otLBAuH23+unij19AI9/R37Sp3D7p3UsPjRa9ijnEwW+hzjdDoBoiJoopKM6wpqDpgxztBy1L/mewLIG+VKnL7Krw0WiBn1pQEE9qs//yQjY2gBQCOKxbJ5LEuFVoRoHpiog714bFCdeaWy+/Zi5T8/B9uPNbdvzuyTe5vquKu5FDI7i/7Tt8JF5bTzMu66XAXP5CEsQzFrz1OVMVbQeetzPRY/Q6pmL5cI8HWSpgNr/P23MH17kgJIwSRJbJN2fTRKlsKL0BNgQW5sWf1UpKsX1Pb8R+DuJTRlOhcMr0dArwmcI6nQg1e2uobvNLspf7rWqfmbc2yh1u2FStyO5PYhyRPN5E7+hjWTicP2XEvAdPo7F148Ea6yFIznt1m0b9vT9BcLzfUn6k8B46XUAcgdfebj8S+tcENnePeZxU1NoLmA4UCmdWenPXseH3jtmYpqlsfk3EVH9Qh6w0FogwRmfM7PsXdekrgWFlxXOynuVvsdR5Sr2b+Yzc6mQGsVofQCxDP4e8v8ycLhyQG05S8IEZr/B0cQEuI8IAuTMejMQi6MbJSfn6LHA==
Variant 3
DifficultyLevel
588
Question
Ronald works part time in a fast food outlet.
On weekends, he earns 2.5 times as much per hour as he earns on weekdays.
One week, he works 12 hours on weekdays and 4 hours on the weekend.
His pay for the week was $258.50
How much does he earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
12x + (4 × 2.5x) |
= 258.50 |
12x + 10x |
= 258.50 |
22x |
= 258.50 |
∴x |
= 22258.50 |
|
= $11.75 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ronald works part time in a fast food outlet.
On weekends, he earns 2.5 times as much per hour as he earns on weekdays.
One week, he works 12 hours on weekdays and 4 hours on the weekend.
His pay for the week was \$258.50
How much does he earn in 1 hour on a weekday?
|
workedSolution | sm_nogap Let $\large x$ = pay per hour on a weekday
| | |
| -----------------------------------------: | ---------------------- |
| 12$\large x$ + (4 $\times\ 2.5\large x$) | \= 258.50 |
| 12$\large x$ + 10$\large x$ | \= 258.50 |
| 22$\large x$ | \= 258.50 |
| $\therefore\large x$ | \= $\dfrac{258.50}{22}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/aiDGEjZsnFgosjGKnxkWALZ3jSaetxSrfoCewnF8WcUJpAgTG/34PhPqIqjxfJVhGUdEMthgcXEEobNNc0qgLeRHFTB7b41NvqvDDnbhJTnmNFPmaDIEl7ZwHGdgDLbxvyODrFWiY2mLglHgqOUgf49ymntsbCR4FzL5UC+3NG5WjNsmCCzTgSm7YP+J/zV0mntH7vKdNSIGOWn2LgWIEO+TVqdJizMTeUNVTAOQ5hAcHjnmayzQal3OPTpKB7uxlUM+IGf5tlgZ53mGPwOeKbqA93qtpn6KaayRjljrclfrYp5FYXH3siUqY7Wji5ao/3Vz8+UFPzoztsStADVL7YbsrSRnFVRoNEhWzWnMmi9qdbajRvmCraCNVF8R78Cn5AWK9/puo7AHXeBO0YzPXl0fszWHUAGoNJupcyZhXbtZk+WCVU0xT+bmVs5aXPheylulcuvXU0qbpmtFPaH2BIrl/6JgS2ikTAsE7ukO0vzHQ+IVO4oMtlHratuelksgzTFx7iouHIWntn0QQMczEpC117VqxG1pcPQsIT7BB1G2FTmsqnnGnUhceM9Bh7baR9/VAKwIjA4cP5UeSQQkSEomX/U6L7DtBH8Z4ouH2hG18AaJJt5Yj7jbzE4j7z/nrcOwLnSrDgs5jKPASFGRmCn1tnR7PQxCBw1vYVfBT7DBiNYIHypfK8NPV2ZqidOzw6Ecdez71VOaSWFZNfhYj+H18hNNRydrFXmcSo+H1tRsNrI7qmGiTSn2QqcGdMqGv1YUrbERIfhCLJ2PcztzmTuc+kOfCutr6EhYHtw/m+V7Id2aP22sZyoB37JdU2e2ETh9LxVEB/9mGZpQ6HkoVBG4/utucqjcOP+PUCwkwm5NJOwNT2GOz0hkFZqPtAxij8U4z/RkABtE6E+xkawmuafXGSkc5XuENnoY/PxZ/cr3ZHBjS70laSQzZgoLjXYucMk1iBg/mnY7wRQjpMIDwq2EiLy3kBYDBYpmBA/QmuecuAEd/0l0QDK37asWouASHxhZvE+PtjT+vGT5A610tF/ITLe3UNoRumHGmCHTWi5B2c+t4lJL97mMAvlCrYllMmAbEmyQfejwNsTbdYbAn9o+kChqedhc9iuTXN0sLkJK3BnFaCm1SNNuZNua4Czj+jkGLbhJU6Tc10fn/7N3Ffc2B/zqTE1jj1LlIi6wAbWKl9w5MmTjbfj+qZUGu2cATfUwdVMy8Dj6r4/NLvVhqKMpQ//c1NWmqJa4RQ/S580YuajJ0q0TIASFYeBHdS8CUEsj6EXlcPKyrEOtP/rvmowoUmghmdqzsEFwnKFAOMiuaHyO1f/wlKnAnZ+S6dd23xsm8+DyYNFL5DR8HeFQRoc4kQ+1Zj/eRRYlF4bxaQhB55aWRN01+ibBESZtG6Mj38VcodriICGelUfAj8yEOLHEcQEiqa7xQe5Cv5mhqfGbFbxNDkltiHeRm5rWFoxSFIH7/DwrpYoCZ7MtSfuEB1ovjJiAXzqLzYLhRwFmkCLeibb3f+gKCaJllFDrn0oejZe1k9iMd+wPxQoZDUb95tYibQCXZ5BRhHghaLf+r6WuZYUfP7iokfX2kAG84wkV1QdNofZQZzTWEGs3VC8PsPi21itrTR0KUr96m0TG/ktCUF3P+Mn+U+IJLq7qX73bmsfvYOESSsFcJasGqI7W8gD8oTKuWqrI1dRsvoad7y2QVtUA42c56QFh3H8uixAKfVKoFBd/7Bap2mdsSlP1a5g5YiJxTTyukbk3zcg19VHDX3cequ1+ryscfP71gcls52dMvxDDkZcOSmrRYAQ8PX0p3psWKlMWU6VXbnKhEWHNwmCH7ZUHzdanaMovW/xe/56Pys55M0BBBv61aA0VW3a1LYL68iQ9OM1ptdUS13olCCfjfAsRwpRVp6XUCTvoW3GxDXiMfLIhH7L8rmrsdFybm6SFPM9pBxwDmA4Wd1tFKZOvVPr4r+9nLgwvX8grpaxGIqkBZYhJ+T1rser3HGirYCLIcdQnG3/1/FRmQ+NiXsH90e8FArBn4tRx1XehugWXvmxEyVU35BkkoK+VIrnNEbiQrB8lZxcB88A83BOTruaNu16ZKo1nsH0ggOslQRoi0nFqdE3SQTnEh/j8Oj7JQRRU666kk9v6KLOMrhvimbZCeH65XDEXBYRnMVDea4G6kJcBuxYdpBhOmrbsEuGHuQpWLU6Jn7e6wBHD9dX1AC2ty8gyqQy48Luo91stmsU/Plexwaxu3Huw93QMgfmm0j/YMR65XmOsdNkTBXjEecR3aeDzPog1V9HQlVAAGj4O+UjwTGEZj5KvzNG56E6k3o9TYo62177zL67mHQ8fLW2v/u0ZXzoxC7xZF23UE5o8XoVp3MScW2lhEJel9GRdguAaUN5l4GPHtG6IcPHOoQGmPr+keslhfhAN6qVi3UXQDuF7xeITi4S/QYSfR8isLqbbCZdwdScYKRDiXC+1ywA63D4WjuA1QXq29oE3QKRRvJmc2Bwv6+BNw2Uasz3uuphLZ1Yz9pFzJgDz6dk8y+gCcj/QGhm87SdryMfGGorgxg6w0TN3pZLsLldi3ERkXd/I9sk96QAqPj87oKLihI1Yv/VI9dCr7AdyK04tgjFXO+sdyac2qD8nM7PdsQQK0NSbYkpRsZbi8xDruL2lzyUup8/sMX2WPgoGEeYD1ts27OESiYSb8Rwp13YSrkOAo7NouncZK6kUjYFJr0LlsE482zcVdd+dyTeA/3he6J0O6V7JOJeF+54tm/J9WEHlBnSBrPTQ/TXUtIPET3hhuPn5Juse60sxVDpMrFX/RAsSMfX/i47nsjPCCU1iMIbAcMR2Alpy6iutqX/F4Pc3KDT4OeVOgTTnRyKEaHeVruJEAlCTnyfk0D5Rk2FIwi4mpPBl/Kpc4LhoMlBfSonQ1dCV1d4ZrS9PkNopF9HF1omUagwR+guCrNyOgvcVoRAIaXm7MIIR+ndFXx2Zg7hJv68bXrhdsO+BZH0/eu4N3vGHmlNZwUJVFhlLqB9nTsCP3SdZa93WP1dRZXUaz2q00LVSCvF3kG1mFYboppvfJCS5k10HjCxhoGwbfMpQWjgvR5p8GaWGQp4uZ0MMuc8AWORQ88ExYAF0qs8EMFl4rf8jDsIqMFRStPX0fgXk5iNmdgrY0Dx5Gj4wp1sSyWC/LO/RBZABLm6Fr79VH03kyepUeIMJFJ15oIVmiNCOX2zXt/dRsm01SfolIslR3HCq7pFa0Fs8HHAJJ1F1OrLAIK18n8NLBERdeSHCqEZHgtvIp+vh03ydEx8HYMCC2xFjslCe7iiBUGz+D6XZA/SFhpMwHoO/FfX2x7siEi/GL0UeJdpz2Oea2ZMLObfgB4yX3vn8DTFc4zXej/xL6p+06kTA15CRs1Qo9aRTRS1eaoTEYr5hkBq1rOk1Xj2wnnk0lvre3ZVyW25ClHwohFZ+YzM4qXcnR8Kr4+6hQdbcRGRKv/0xXwRS98rWsyqORsThJ0+32DS4TkbyUVVz4SKuMd5LjA928+IKo8KaHGr1WQYcgPC0hsoFE0xPpIJtq0NJFKDmDB/m1yKr2JQy3a0RAC/6Nx37+5IX5f3XK5yyfe9ozsCi7jJytbhBOtESuBoGb3ESE3JkvRyhkPjWGeJMvjAuaoFWhRjbPYoIc+MF/Bde5x4uuS0pmGJB2Q8Q0Gzsw6bD6yEizK7+xmMHBvLg+UyHVbkgGTpl0qsuvl6YdFLGEWJGxYtLp34miyL7X6aiaOze2+uQmlgxx3OdZUyGf1vFxWt/9I8BkxFARIfgLk0kxsCdmu/HKLGvlIYZI7heyGAqy9jwlofijKQ05joQT/1nOFxLHBJApeV5MDDuz/wtWIqaQ/qTfy5luz7jMdf1Mx9XNraoD+DaR0RRjS5iTgK4H2YQYkMsB3gsKqiF6tVAC6/6ggh/rjcrHl2AEzOhByNdpvue/sbMI0PaWBHd4Zz7LFN3KSFftGFwES1DvNNarD76axhXu2tDV7g96W/MDTIbGQDfENhiCSxx/22pwGlYch/Ot9iuasDjehFKOohmnxQCHG+fEAOjBg3PfLA1QmoFE4mzsIewKPSVD95I2BrHhLOm86kUph6ptjwQ1vvRDgUBkgcw0CM1Gwfeplx+VJvwb+8xFqsbjuVEst4j3a4ORWundwhifht+Rvxk32h++/N14rWE23rb/GcVPAOmreBUwGyRjxACyeCkcD12V5esvVLbTB3vpNW4jM14AGWK01i6McFkkXjP5Cvl/KV8tuGp3jjAjlbzMddB0vV1euihmEIPjBO1HhHKL92w3XXJeuV0syaPAal2id87B9f+tPGsACLihBEaiiHzP7YQ6nvpsXVjtHms+qbfcfU+GTDxjJETT3Muv3V3tnChlpkpk0uvuPHhLeqLXAKeaTwSouwDBQhGcfwviDVh/cWENMaJWx17Tv77Fi2TAPjbqJWUOkmeRN+QQOdrq83hH4Z+5EuE2WrQa9OH1r7cWRwmcPfLtvyf0sMi8xd7Q7NIIARicbbKHEwLr9GBJJ1XB8ba6ffbss0j8eZq6JcqUsc3bazh8QXv+pDL84f5PngqEJ2Rk9BQX06seekaq+LGHOJeCU2yFG+whQe2KMvfBkscjgdHKJl7TZj7wjB29W9pSqtKHaBj+2APQUYxQAk5J0EzZyk6IUCKw9G90PyuBATO28mXx4J9ryKdwzYb6bwjb9UtAyzheLeFssg3M+ZZflYrhCCrqPt6O5ZzHwZqKnxF/+rz1Tkqj1f/oA//72IUsnW/mBduBAyAAa5uJ8nyzlp3Um8uclkxOSgN3kMR6fCkuVCOU8jsCfm5MJod/YTnXGISyd/a7LhZnvyw817vNaCUNuEpcvI81gs6Cz47LjkLVyRAmPtMMcaF081tWKNlCgQlBqy55nsxrib2Z9hAv17PGtnOeQ+6SQEwyNLjrLWs5KEoWfNnKZ932Qi/iAn8NN30JdWJ7QDUqmh/7vunj2p4gP01OU21yXmXVyh1dEjBuWUNhQYjgQKlTd+25zMkEMe9get9ooihlE8DZdPLUXFW0+A8nVtw2X6g4pA7nzbW5urLfDC1xQwBuCOz1ODqfHW/yzyKcUpAANEBs7eW97TAWLKgvPIAKslcm0nXZ5cgc8Kga16jw5BPbe+Hf3uwxjJuBtvLwDvJbpBvskNsCvESN1UlMx++fRLLVC9Qp2+Ry81VpOAPDLVY+lONrMB/SBTX7lapashdYwnQROJXENVL8onZ9EcALSyhellE0HtbuDsTv++RAZ+S/ivG4+XojjY4aKWpJrN2gbtiNwwrT9CZpjdUmlATWxID/2t9nxqI+YsK7XpKy5dnxIdhUZ+5hZtCMi7Lm2TDgS+lt4P5HE8ElOo3r78/etHmiQWa+alA9GgnYRbJ4JXEUDT88BeAA6jHLboz3UaGnTOU4qGd2aRs20FG5RQH/WAq8GprFDZBP9p8Gaav1WUWNubqPkb1FaxOeuZVmTYx+xG/czUsEz09YJeCVVWcmVKGXsmqGeCazy38SlcVyt1qmxclyVQkcbPJVL5W3YOqEjn3QvGXcTXO3kohdz9vicxAxa/s60T+5pUwcWwyEnKYU4SdNuBrJToAyaPahgB4+0FCDI1ZJ0DfklM6FC2iSxQpWR4mjmAkXHlGiwIS0xz+27v2JT1NLLU0bDKZzaCzbhf87AgY5fRuD5zSrRM5vuzRtqtwcP5cQWNhHwGTQK70FCw0ZBeub1Essz41uWJfQkZjqEBDloqyWMg+LTTCDiHwQGF/StHkj2KgCvQdlgqPv5o+ZrhIHhLEA/AoRO3AW0IrsK3Obb3undFDN7Qbrqrl9V0l/2S0k0BDiSchBjZLfT8ZpubEAzSD9Zf4Bn/0MnXz05mSmqKVYfT99J0yHfZu+Z+yaev3hUDOyebsK3INzyxbscXCB27hQ2rwNeJaQ73iNAq7ujQpCUbkI4gjQBqky5s42MEG3MXVXBId6jOXd3iSlenE9Tn/Bgq6BON6Agn4yzCtjQ6lpK7rfcNbP31gEtDX5Qu/7BRAzmWDZ3uPzOWU+Vd+1cm4p70JsOnChYXSfIhvQcytlX0qDOR8H95rGE9FSJE6AvlDr4GtyoNyH7/sXpzAcSBFDy307huwcjkSjTVqtMPevJZn4KpIv4kL5yJM1MxaOl1C8eICqv26NcZHWuHasz01G7T4Y5BjmU2aC52acR/XH4JO8fs9f+uQHwqksEKQ74ZpmDFCyozGrxc7RF47HzxPZOOJEhXpGmElCby5rTFdb+qX7ldUA1fK2DkOxA3GJCjjLEvWb5qHJRpPy0TNc5pTPjDFWVSPsTm27+a6hj0J47EV016TEAmnGHuwOUv+uuKE7UiT1YNk2EebV4OqbD8gvg0W5Nwex6wu9/aBa5LB9UKQC6uhc8GuSaLQPyXpUe2k9L7nD/QM1spJNNfAGeznUqf2MqJZGAnv79ljqlT2ZDy4CrMlBZCnS9yQ3UsPn+SSck4xGY8VslpkGxbyoVL3iRlUcI/pJlztBtL+H+m1oXnrec+wg9PvYZYha12aPNMIAmNUjIERjZkemvbyHxQvLoMTafTZiDgwmNJtYqPQjFymUvPxSe3+0WPXvtvlJz4XCp/yBpYBi/W3eo8Dli8G1Gc/UVfEmQY/oLv7jQJCMhl5b2rthqwyIbUFcKi/Gg/184FaJFILeEHtoLGWNswGpiALk3ibFO/CwrsZYPrjyZ9+mKzEx0bg7Tn0tdt/y0UMTlKc9jj0zIhdRRl/NhrOEYQLGX0QCIeuZnqbFqWetsxFJkGL+EJGQh2y0BwogZXbeINFbScfq5PbYMkz6Nd4tatETJjlQJu9UyUOGZW/BqkaLtESnoVjBpX3NnhvtaHnYXMgDr4ez5ZNr+RjJ2V04+WE8mtyHo995ObFZFI2Ib+HKmZOvGvFtAK0pO4ugEhuGwGqceKS+3XoEqvF2/T5WAeCWc+U6Upjd420HShw/bMsISSKCG28ZcXeueoKNUv0tQ0nsPG2I3ii2lYUMGkxijNMzCzzA74HISG33+/g9eeTwOPxq73bP/nSA2CfFph4PoQ062kINJqAr5h4V+a+kCz0kSEP9q8UnQSkipgdcuajoS4+cPKIaQLEZ0FORD8UpACI6T4fMTmK8SpF06EKN6uiW5sIl/PjGVom8Qz4MOWEYzLHuC7bohNACmf540M0UKX3x32QE8ivH6U/NZZW2nvraGVSj8KjxM0A3VCl6G0yLcKhD2K2O+sHug56YjdQkAXc4kk0AO0P8cV0Y1Gsb5xwlgbi0WG6nFXCSD56vFr4ol2mY33u69msURljK9wxPIXDLbqIRkyqkRR8Byxcqtmi5EixebZ+ZX+2gvR8buXysPG9i/ZCkPo6JcohU2t3bobDn7eO0tBrq1IEP8VyQbMRFxje1/RknQYT9MrJs+97sGUikDhd8TGrtFFfiH6kObPs61hY5X6xAXF98c+dzy5gSa/zPS99AymPJb+bOi2EjRXTQ7UfE9ue6r1Ceg1F5T68HmCfFbEy9DQhea/kvS/GGkUXbPNpqKInIrfg4F+eAQnT4g1Bk7QiQH0A/RV/CnGyrimld0JF7SMA9jAIp1S9tdiPOGxGWWzCPhiuzUyvoaYQ1BKBjSVCEI4vDsovpsn9DOObcxtIWJo/GHLSnODrNkILlCf3xahuwiAZdBkeRqV3MD1JGhPS0u2t7VNDLiUvHvyn+Fsthr6D2DumxRaar7gd11gWCa9uX+rPj853N+1IW9UiHVvTkSdKuUMbKkz8QJ9L64MM7Gmagc3BsGKTc8snhcVWfgHuWLe1Uv0AseOg+a2XqQOOjXzBupXjJgPIewYy9uFqI6NEY7Q84U9WIzNhhB7ugtK6qfoxLmO03lVa0IWf2hzb31AntG2LYGSCEbSxbUFeX5pJWXyi3giVJ8W3Solg7ynPcE80B8RB8U+0rPiIeWWpuFFXc4ebZ8s9GaONFJMm/hhURyCMZR7UEMOUQ5VdOJ9TI4N8+4oao/345DKj/Aijov6jXvPxl5mWGskY+4b022T6hTB1xWbJERbc7jIxp1Hr3GL+9vuujd3J5udBQZSfcjTXdk2cWAcMRqzuiDiGnFURcp1tgiNYAguPGHJjWsaL+sJ3IFV3vKDSfFOG6zZKixMoR0lXPVN8qBBEMscDFHdEQHV5n9jySDimT7PQdt+q98svMZQqQV+Hy94NjXWUdHEVJ5Jz7Y6QJZedQ3xW7r3eQYs/LO70fiov1PrfE+2Jc2xnjxvu1xUTiavzax+Tu3nF+oKxX2o0XPFMAGeO452uStwS2KAg6+DyFWai2WYS5pwYaCvVhirn2nMq/pRrNGhovfNBZ1JEQSvS7o9mdCA9dMVCeI4XyRz/UkLbwKrNTMHh+RYFykix3pI1EteMHCRfz5wntykVO0A/d2ZLq7ox3dTNs9ycn02hjtcyMsizMBJewbdqk8HNX2W6WwpmleGI5ltB5zy5mn20g+Ud9e9hdGBoe5sT+ze35LDsOICN3L783W9q5v8II9gssTgSGeEr0MkZuARGzsMV1Vgyxjz3IXqVJTmoHqU8zlo8DxdiaPJvJrqgsfgKUZwXfhyIBBxsAx9xsES0fUBRIuL0z8EYIFcQXYx3ZKZ5aRrjihdCA32KUuoaa4flz6GuVIP9nWIDjLd+kMs4u4AZo+iSkcy/kk+nL7YO6kSIHakoyOf4ewI5LA/jucD7uOyjUHt8U7ImySjfIvU4tkDnnXmnRyxSqX657b7jum5uLzAlafTSnxu2nzPvovqTCjllpGi9ISxILsjAtCA/jUmuZwOqB2ViJ+OJzCCtE32V1TOTniGxiZKl7yFoM3z/6FjWn0cBUfAq2LAqp1VYcD1bhX1As43JI8ZDPhXSUzjiAIehvoBh0ryDa5E4Y0OOoabzxgl6jsRIAYBLAgseMxhnoV2NMWQeZr4UE7fb5HWepbLegIrWMBOUlFucdvMqKKQAY/PaPm4nn3S/8TfwPlv+NFASTgk7qVHcGo3+Mtwc9Ul+H9pt0YavD+0QLHEAtZUvt6cgThZEWw4yHdr20J91aIvWTAN95qEO5ij9w64Z51qYmJU9fUkzMw5oaZBNBKdz3XoNwLT+U18b1H5g5bpKLSe93X4iNyLxv88B6e1jAccA0+xxw2U32D2SPOYOeqDTeg2hjGx2wru0GnEwp0eQRWl0BXtxBDE2+X4fnGZlbtioaGKOH0EQl3X37hyevEv7FIXOT5lNTacCO4ED8bmp0cuv4ViNkV3J8Qg6dPgUd2GjF41k6TLLw5XQ+RT50+SMOVQVCl0S/00oS3/hl9fmhM4ZZVdjqyZoeyfIuaW6BRdlgHXHLC8aD/9+xNb+foqPrBjWxaZIfFP907vsgNZSSOzUbuL+2spD5OKQ8aNLObkJQDPanss6j2Q4ZhWAYMVl0CM7Xo5XYcH1ISDt3y8098xhBRt9FO3tKq2hl4Y/WtGH75XMN9HDMvyuppkcU8jzeF3pcQfmtdjpxHUH5u6rOY+LgQFiDZRMQcjdJkyHB4AEvK3Xs/1Y9B5LPO87Kk02xdn1CYYfU7aDGwlJRjl1z2IPpPqwDysBAWaZNIxqE3fS2ZkNQYijsD0FbylOp/nUpK/ePTnXR4gw7qGxfkG3TXkpqdGNndLFD1OR6kgHJlkUWOwOj31F00u4Hy6fSPPJNckZd0IY9RXkWKSSSMwlgHC8H/nGQTwAlmOYY5qIe
Variant 4
DifficultyLevel
590
Question
Tabitha works part time in a pet shop.
On weekends, she earns 1.5 times as much per hour as she earns on weekdays.
One week, she works 15 hours on weekdays and 6 hours on the weekend.
Her pay for the week was $288.
How much does she earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
15x + (6 × 1.5x) |
= 288 |
15x + 9x |
= 288 |
24x |
= 288 |
∴x |
= 24288 |
|
= $12.00 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Tabitha works part time in a pet shop.
On weekends, she earns 1.5 times as much per hour as she earns on weekdays.
One week, she works 15 hours on weekdays and 6 hours on the weekend.
Her pay for the week was \$288.
How much does she earn in 1 hour on a weekday? |
workedSolution | sm_nogap Let $\large x$ = pay per hour on a weekday
| | |
| -----------------------------------------: | ---------------------- |
|15$\large x$ + (6 $\times\ 1.5\large x$) | \= 288 |
| 15$\large x$ + 9$\large x$ | \= 288 |
| 24$\large x$ | \= 288 |
| $\therefore\large x$ | \= $\dfrac{288}{24}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19T7svnDTNMY/iCqoNC6v8RHIt3KpaQ260clconKeXrX7OrxPWYMErot3B1Nzu1bo6Ehrknd5fIGOpiSPjalG0GMKCRIu5YG+/w/4QQICx3T87M72T5FJZIvq2U1i5gcEi92qDgRg+CIzFrghHN/PwZ7/3iEQbosEh1hDo2v0ELj4lzAQ1miPbKGFslhSoN3amRf3eNtm3xcRiVL9141B4kg6hI9QlDH1ipM9fPQQjwvccADgYVd5N9s1BLC1qX69w+HL8op+8+f++9afIw4SO3A8lVM2LbZM1Bw1a8Z67GFXXNIcOSYP9nlOd2B7xLwmrNPOv1qG0fMhhC7NNIJ8xducJpzOZLEznp2yOvOI1v7znjcGs7bHqJfNesJ4Nw18CQTHzAK/H3/ZjLggKNG1APYxsHvfqkyDGxxdDEPwvzRH7Uh1Sj6rQ5AV5s4bSINGTDhTi1Y7UDCKA4xuWAfAVqvh65yqL+XwHZeIHxXctPP+9Lq+surbVax/epRRhhvaP5zOMrMh6oO36I9/dg2fNHyIBfnwzdfFxlyCHD6gV3a8VrLmqh9IwoPMwCUEga+E7YRKhweu98urwlCOEoidUz008ORgorDIsRAAJ5xNE6p6xnQzzGMsCtAG9+FOW7O8osZQRtodjICPQnhZXAZI/Jvp2Jw4dVZWpQxg03uqz6UHSkTd0tVcdpy/FL4i1C1orEyAeocnR6kMw63fTY26i2RglwnfUTbfgwFsfE//f4G8J0vCdVmgNT39DsW2BOfZCV7M8t6p1timZhxGITNyucxO4h7xgF5ytzsrHfXinfmx/9pvqedxA1/AnhPd0kWqCzpWvKcsfTCxv7BDUfPsrvsWyaYGCZA+QxeQ4gYj6icuQh/4INHJS+MiFhfcKrrKxXb2s4VDAwdC+c9r4PZbgK5Rcs3yKeJjb1hYOtXum7SnhnOORhGmjcDk6AQcZrKi9VJpf3PRTC5Y6OR8ZXUw3GyrnY3s2gIvMXmap7go6oPCLGnYqUd9ha9qOG4s7DJnKKZc84RD2VSp3HCrfOs1oVeW67qWCI+INFEianIqH1nMdLAUwNRXAyU45w2Dq32QF9Lr4udQvRzK6pNWbgtPj/c6pWj/30+61iK+G9P5fa2JOCO9fVoW+2t/F22p9CING86zr/+p42oCZ0e/pGtGAU7w/i74dsbylpFo0QQ022DnpYFi/XQP9NjkmscD7MGv3c92fTUNxLub8dB1L2TJUdIeaT0o/wiZFqto8kWekGmp0HnZZcRuzMoHaow3cvvQlhdewGTSoTqqmmChXw+ql3mqPFIOliSX1xBOgxPKr0onLPLXyn0toktN66at7aQCfdvMkPkEKQ9iEa4DznmlguDJK2AITTqYRfM8J1QPcuz1sVLQXLsDi0+c5P6XUFgnHRyFhGQ0vNqYtWQ1D3kCl37XPFsxT3godhGEcE09U8RqCuHx+JxOYMcrr0GfloanlZ4aZNoQZcwP8ZLw6YLrz60AlUfWJbXZxHeHRXeCRzc6rvtTAW5+z+IJxI0ZBSy4Sl+30QXJfXXr+WC+pi6lGzLcp+qX9rCczUcSGrhWwt2fycFcfAzLbzQSI63rDBXYrbo37awGIONfPZecv2xGrMqvzA2vtMdh4z21T5WJe4WkZZ/RWJotGkVKUPvxUXlnecMggvBOy8VV65Br0JqNMq2mgjsO/SxY+nlgt6YcGleRTpVFzYcY+T96QWHQU+2klTFKvEvn+QAwBjhA9D7YJ55GktGjFr658XxCWxARDKc/rdjk3mjUozk0PjzKt6GP1bb6ObUf5lWXr2+95SR9cF3Qp9FUtdMVGqDEvwiY9BcwAkBfC6TeASw1Ad/NNJFtdDoZVIWra5mgWhsVejG0vdYNsLeGixpAea10koXoGuIyuCxD7eSxCzPloBN4qhCeow474MKHUCiyUIfN987vhhQEBkrWB3x4dFXNQ17wuKb8a7fKx4iicfJaxkZfV+wjZDSME3MuB878zZOyoec48EqFX26zRqj5J7GduF5CXC8WNd6pKHvBjtv4TpFT+RPyg9fFD3ajTldep51TY3CuBrszaoBKABmSo9O136xw93+23bItme8a2RRaLMmPLzGMZuoi/7bzc21O8An8B941hDmLjfx5LjdpNDayAB6khts1+wdG3lqt/RZE7rd6/TD9TR1RzrZgMNfTKZEBMdkXm3vSeA/YLHpB7Uxp4I2zI44jb4jFT+VOjPO1bsl6bgfaG4GArynE+qHUhSVeVVgQoJgJBO4eLCjZ+DadoPM/TOPEfBm1ytXlyjEYRKoO8cGNWxs0tsG74PGjciHw8GAB4uARbEAacFbas62kQ3EAAO1WmBMxjwYPF4Ibl8ZtE6lq5I4zg19anSIwWz0Z0XoW3CQEXQ+N49gPXIoI11KrP69HJrKFo4Q/mYkLxBlmRr6T1UzyOjpBBPMrQevpX0XrXyLvbiGC+K73QA1iPGeg7EYyU8M940ySFGz2yHyta2SiHlboXryXBAcCYGvxDvE2z2QHRLcL97rLh5YQKGOXpBqYLekrSIGs3lnKs5lJ9ogMQN9PT9CiILVvMQgsEhTWGq7ra98iOh/xNzNcdpYBaeI50aJBDNoRN+WMTj4q0gWk3WiUCEfq+EDn9yqYu2qe3SJjCwfAF0M4ij/2AFV0sqgSeRMvQABYxjMl5gW/F9h6dEjwrirtYvO7F4krXM4AFDEJJ3Lkmh4w9Yr5F2OcA9otq68aPxfTiukXJpKqP4BpHqz6VLv7CjTELdd5ovF0NY1AXuosio5UsnwcM7KV3mWvnLhTl5rNhEdlMj0Wd1sC5beiAeWsEha+NmeXAUO0fGagPIdvP521Z0sLTe+XE5pTtxtV3xsgfuiZonNORP2p7JFIip8tJEjgWM1VGi5GBLqTh0oHnt0PUd/9Lx65VylkJO7UATwJGM0Zrtwehc4/wFppqitqr9LjPmBWbjYU5ZZfoAgCjzMWDTAPdA7u0AzfIi0hxniLe+KJ79a5YNBXUtM9l+GWK8mv4I1EIiF7Si9+OsjIYilB/dyE+6bY1t9SKrqH4owDElJHOsmJwuOqQTA4WHrCNfQ7KvuD6WyVrxuuC6jmD94JTUVpyK0qnDlWD5+NWYBwk7m3FwcUFhZqHwzJY14KvCQ8uobvSElmttcDpGtJ5j85iXZtbx7VWNHQCLOHVcKl2OsCsc/VpC04EP96nXmwFFMRXrUT9Pq9sTMfyzxwWVmo5oDlgPAjfPN/0rB5enbkxLVy1qLB8AXr7LhZ//At64CJ6GIlCUzLXw6ytLVUA3K/ePXZ4cqChgQk2PuuyxA+ic/wmAgQLrJMhfTT5XE7BdXKfJ2CpFgmhOoXTzBkbtorqi1lyCj6M5mUT52qOP+FrlX4bHPJR5/gigknR6Be3MAdBFP2qMKlO2lG56sWk3wwzjMC/Ub+hDfv+AIbeXYWV37JI/GYr2Rn9+uGDiMu1o6b5dl0bqv9q06L+n/l9BxjrklHDeUw+aNJTPytGWvm2Y04hn8HPrp6O61k3HZCXH6XI6KNjJBMueHWFvqHsdzLSpdtjbSY/zux9vX5dASc6ozZ+rjnw/pekThb2zpJS8eVoDxnkAqthwDn2dAuot6syGlrI6fj3xXb0B/7+PAzNp+t7H6n2jAjyOUI3mx7Y89FhXD7LVMxvhVyFnSagX11g1O//ZtVc9H3+IJB/gmlJ5k3ul+l63FdVcRAErKlxUDT+0Fj7TUmQrYNwA82D5d2tma3hUpAVpspRTSKUbCZKm7O8e15ZY02S/hLthkr0fa/QpcPG5EuMHceb+kgV2lHKQJIMpMl11/FGF/2UxFZWMuui7V9Pq4H+tvWfzNubPpIhmrVuLrVQdv1007pN0fjpZ+wwkGYjSeQsnw5hVilJ61s8J83NIesLvMg02uT+NPQN4zxlYsFRfcR3bZ6jNBLJYCXOUwpDbTi+BtdNAux35+IaYeZbSWpdd3vg2h82J+ViYeff7EoF7/Nnz62OOgudK2zyR+xLdB8cjvgAYI1a3/pHKV4py5GY3QQGPYjnlIiRemtpFtuOVDjL7avnbgI6/NjVtFWbCWgPFQ1AGCL+0Gd14vFNM2gxGckKwDOnJaSz4/pR2yVoebrZI1O9ojdfEXyLHpxa7nYt50SAKnfIq0Ck7s4va99RfTKx/etb0Fv9IDesNU8r35TOKUws6HxvjnPHF6PEGwYw6gDeF1YItqlpZ1/VtgafJgxav3uAJGQG0Vlj7af1I7r2WlQWX1oQfFW5mKwZ0CRHiaN41BAAPJeR8xnotziiu8E4pknYB4OcNb//glcVAa2FLNAxSd6GwABHyOLcNVYoHFZ1Gwk1+MwKOnNGfCOiaXcJFSczLbD0L5Ehclefk1SN57AOKE09fNoBN583+Mgpye3zBK7TBJtqZWPBHb2vitmN17VgNgSO7V9BT4b6Oc+nTh9jKKozBI32q6l+W7JYdrAlV4OTqDGDRLxK5DLfAADOQyKUaheGScOnfWCc7Vf2ooszPehUpsgIwffEyJhByx77/gKvpwq80m1Ea38F6kfWp9vgvePghBKO0N0lVQpLwOu2HVAU9JtzG2UX+V0mQQtZUr8/8n7jZvD0RaPsm7ZfdWfOye/odALOLzDdZ/UD9mdO01HSEADi96abW2KnlyDhKARX7p6+O2ZSEwHjAA2j9YroLQewsnXRafW49TmRegJO9aO7hADVWanwB+2OuKjhuTusWPq2ADnGYR9DP8qf84WVMXNLOyoupRttfArFD1MEmu7bcrRRxfCedrwrIFCuPyDR5TVHIS78VSq2mtPw2Pnbg/ZspeyfztYnbe2tDfbzqIANoVG/StLkqrcUxjGgw1tUm7ZqoKwsRSoP7KfgMiqP2S3pV5SpSF7FMyY7Om2/sfStLA1BsLuplDbyhWSoElHsW/3lTryKwJoMPLixzly7/2+oX0TyNhSyzsg2dkPTn8oI71SWPc9EZByufJUP7yWQRv6g8hq+Db5YwGAdNr7o8ZskKxyhcOu6iY+P5zt5RYlkVtr/TnHrZgK+NXwk/H4nn0qLV5jLtjzwg4qwldGi3yC8ICfcKlXekhDKrzH7U7WWVToPHZ8tthwswfbwt3i4u7WLIePhvMeKP8CwGqg09gSsktAPYhCuce3UnDQoKoQ5exnXw7VY+QxpcWi2KhkbPOS2Z3eay60Rk/CerzAE5RIWsEzwLNNbobZPkbcdSX2EoxuraCxH2dWMxwd7kHrtu8oc/6Tx+V2znEjMSiI7vM2YwPfVZYqFe/B/KAX63OfPKY6g5BB+7F18K0ojCbN5smaZIDs1yIOj9Z3STbRaxGe+GH1MQcYNQkNro+LYP0ge2Fv+XgkEPNbhYRkZWhZtIXb7zlyGRsA3sfWDIl1C8c1UsslR9sn97t+EKWLtZbXmztPM+P5b/hJLkpiiAmA0+YpSNcrC3Nh9xkU3JFV5vk8Md6uwLo6qYRwwiYP+T3jdV6VFV3RxcLOx9ZLF418BZXlLNjwgt1omnisHR78H1CLP0p+FGO4xmJpJEW7uYSEJTsBTHNkIEVnSaCb645CoGuTdLqUsZBsIeXJihaqJkvwQKGUEveTHe6MEwcMUQwAaS/vr+wwbJwx6xCoinzIZwgi2MBOcCYSz9ZbaTcyH4vNbvXlwjDKiPmtKXDk4ZsTKQ2O0NO2I1dWCoib2Dtrr8Q/P35a2Rzys+4HzPxLdrOx5GlLWB99nnMp862hbmCQBp+rQrRoAc9YWu5YInHhppkbbcv7RyNCW/BfaGXEHnYsWoqp8JF0oJO1wHJFGcC9QDsLVz3E4ch0BcZV/KcqC4bRlz2zsIvMgUQRfA4bF4jdmM2X8MyKvqkO/yjAaEZ/8sqtLcSPixfA7ImioHWNg2zbsZEHxunPD+BTq5YJm0RYRt/YO4Wm6Z/41OG/OIbTBBFZLDuPAW05lZP6vsC+WeUdzwmLM0yPVTaGsLMbqJgVTyDt7x7dZlfQ/dWR7/D5Bmw6jl/uiUcv43vZ+UKxzz3++3wk9b7qZog+xnfOiVF9YYVjilX2p2gjXD0iaL1uvrgmciA6yh0GvcN4pPYkQyC2D+2A2Le6qH/KVTYciypbHbm20stOi00q8XbVn72RofauK3uJbhT92OsBHNe1BtmS8DY4t6GbnN3xXgxaswiQtQr7+t599M0eFq0jS/GmjK4j4u5G5leA9nSyMzQPjS0YccnovHHonb7CFQXB5RX7e1TrfiJQgDFHtfkEcR2vmF/b8sZL/6HW/DuuZnWo1kUgYkRsEpYz/agjMT0S0gcS+9jQqeZ+uMtt4cFqOpMNi6pYp4uOWlv9t+zSa637XZqOZduCFyOGBrT6XNyHFTu7e1E8Iy0rBwt1XnXENvaR+50rl7iiKp44uOwJfsT5AIMLK4Br34lwMvzSPpfpZgAITU/Qm6dhH7n7Jw+huuJxExHj4dcjk6mIqRL0RBcp9pmuNRl2+Zzek0w64sxFY4lVL4SvNt9FXXYfAI/wcVDvFO4dbEhQyT6Dn2KSGXMJF7R9E6lvRPVxDqO5saOgPyv2lDwx9cj6luYxYAEj5Ddl4pEkA+RyJLauPXWPiWtd6cGxXTTaSTwI0pU8Y9Q4w/wWmaaZYbVCE5NdD/d1adE71GWtwiNUN/ggoww9ruvQedbSKoH5lP9sgpCvAJXx4h/r6LOsz/KgsJr9T1Eyxa6mTV5W2fcAPO7UVUa2soQhI7m96QeVVPpKWQUz/uHUNKy8w3Vgth4G6yz0kbhzqJtw7LgntaTWDVKFTjmJCmGMX+JP/rxDk246PXbo1dw/1VO9NUKlcRaZYHz5lp0z2ZIu26WyQG3NTwLeoFfinjP6Liy7j+rwx1XWrhbwduk9cyVfIOwcH6+NPmUNlJcgKBJSGx0KfYXwESIEYlHcd9QYWxIBSf3vLMX5FjTGXMt6l/8qlIlOxniN4hWmHYBWjuZthRrrmihy47MC4EzZnzezMRAqtjiVtqA24276YYq7Hx8t2m7WUqzeXq/GokbaGxGBM/3tWsn5TARezbBwdCs3YwyWgbvCWZEbfZdL7FB6+mX6dppDU08u8DRUw3YcHxG2zxFP9dLk4htZ7XUiHsvZL8g9e7FVbm4aWt0dWqabd2kkc6N+DnkebRAt5v7Zl/aUhzftq0+eUeQDHApH4GmUKti5PXQZ/VLoFShdygoDPAMDzTskw163mD/wEAmGt1QvbaZML7/Y/x5OjNgCJO3wtS/C5kVtgrOftDtSmkKll9qC0aw2DKHIoYUtSRKPFKxuxp3sJnMUv8YDmtj0Gi11zY4R2HGwpfd+pVyvL7+pgYItpuYyxQeSopnuwNO1RCBF9nY+71A0MPBrQNMdXMpffjVlZprv4h7ZaZnsPeLDk4gqcePPdngMDZPrZVBLdWBtj9Aq2PlrjSkj0fz8RBULbFNfSKTu8dN3E6JB4o2aC8nnrCAx45y2PrzIeWnsCeHQMb4DvS/ahftXIZihHthC6Z6JOeNQ+7E1CYRdBOrE9SNKPpHALPZqq3qP9ppzp50UuI8RVhkmvNSJCN8YjUiasIRdKTW70Y6KGUPCyzlBgzROCWdA3gTdIIaY62x+PTA+5a/BT5RtHOB6Xh4+Mq21yN2xQjGqF4ScpXE9mPaPrBQBZVmK+3jenL60og/wi324VjrlE965GAVLRJEn/HDg2GzAcp+Pv7C5c5E0rXuTXZt3hxNQjiCiz+2wT3dNt3XkwcNpi6qFsNnjSV7nKaaZBWa6PDI+U90nDrhAJvcYQ5Kt+Pl1u1tcTNaGIXmMDff5/8/wyfa+KPe79bUzI3sYdHsXjjePtCDB+kkFiQPofSgEtNQGeIQxKJJzEE/r1oy6KXmYxSP+CCT5qhQA0ELDnzmTjYYVAWcqjIhsYr+Lkkc65vVHYdlSzqoNNz1PxC2EGuIeUKWZg3F0IEYV5AOMOLEmyttvDIVkyfXtxwhDjzPOMqb6eX7YjRCxUV2QfCw/e41a6TwvBkgy3rqrozIP+lq1vjgXyxyBjS3iNC/i+noPz/U7ocPz4S7cu7Hod7AwcOF4fy/7Z/Ffq5yKjAzYSJq3Qb0TBNfIozmgEvojk82o8aKclRyHAjOCFaUt1lKwl0XySSB0i8PsmtOmDxcER8gbNmLMionnsU3++YAykAEa+6rRZHTlaUWBaVoBjwZuuM1aJrGuz2vqlKMoxas1674CrB4KkJGR0Xj8vHOZGgi/I2UM/+PdEseNaBixKW0+dKIvi1vHwBKWeygMHijWcroQryKu2vzt0bsUmDCwcgOCofFTlI3znPt2R2Ba1l+O172s34zLKloIXtLGlbsSnxojPoDz8Gq322KsbRPWLrKzfeIUzwcdLWiDfzxNqkVg3pw39GwSyL1jwhMJuW6VStjjgU4BsphuZIrcmHM8LUihh1od2URlcNcgTCMT0xWw0pDXei1OvUeysbgV5ZcDROOhIEcLYelCFxSn8+B1G8yyppBGRCpoDannKj7kaXS8gdj9sX8DOjgvTfKrYr20pHndIXV+77+WKg0ULrske/QdYc0a5fgvSyN+TEgGxXlpbBowqNYk4/u4Ky4ZiE1+T95eAi4HfLedrDtXI+lVP5mBS7gNAJSOapnzUkz2nXsSOhSxg5wTRKkLY4PAR26h7sGjksxgeWILps+7P4bpFAGFlg80oUt3ljaZdTxej6HDOSOYbpRIDOL9pZ3/By/cmZnBC/ueNcrcavDbHIqatff93LK1ZNsKUhLcpbIycDFS7ezsRJrRxAT1SLeTgsXwD8pCwCKdcfWl6RGo/z058yBiZM/DoCGzYzT6/aIoR7IW7wqXYthZBIlM0Bn3XgLquc+CdoYhC5kuJPT8WxFkgGyXD2Ex8RlWJJcebtKXxLWRxfeHQI6BC2a1Jou7GXtveRJzjy047MDvWrfFZck42GnDWarYWhq6fjFUBawpk46LgfHql94Eer5jJrdO8A05CyEOfSdk6Q5KLF380fp2uGvuwBwCw3+avEd3Nj38BUDpcEWy4oJm1quu383hR+vhq6xxR6NxJ39RiI79fHnpk4PPB0p+wGVPIYOcoO/1vSLVDFFrg4i1hRe/bsi2t+Y+nk6yaASXVL+Ek8mrQg+icdEFh4h//FjF+kWPgfHsNS9iepZotxr+Ox1i9tKSowpO3O0N585q2U/cvniqEBI0Rvaw2mv/3Jg33tc38KihML68LrKQPyilPVo736bRlx/oTuzUSwWV7O9BOpLyZPV9VJpTwOrT9wJG5uJQBcTLRKKXOpCEWHmiZ/RswLe++jUOazsaPbd4MChWaZIW0pqQF0c29zeZ1YjGy+HDwNNWHMbOz0LfbOdYC7YgRRFByRj8a5WHB6KNC/MYEETCt0WV2qeyVZI2RLRo5upDz7m/xTKipl4dOrmCKDuQuDhmgpEMLJbpsR2FvklqinTItjHbAdOzrKYWEeIsdec3HIoAC1HZtZs/XG6kFLoETtsiuVptDm+TxMuS6jtXJAPsSnP782cBhOflRYHQCDZqxlViB+t2so/D+3ZhOLLR000QC+/N86yIoRJc2UnQ42t7ud+pQtBzXeevlSNR5K4RXdaXHTvD1qmQP6lLxbnXKAqwOM6ZkLPVgyr/VhxBpaert4Aq4Y2APr8AykpYW6l0ZiVp7JazMit4dGg37wrROi6Rm5GxXfwBlPtgkJWcxdRv0XMVdOSGbrRZbB1Qd1UJcSsr+SRU+gEtdKFWqbXJepCF95iwdOnTi4qTUWKv85AMOfjXWNNnDnkuxERYFaHdJrJTM4NrldMRG/K+ziPakYKwwN+iK4HsI7rhMhNqheIiWykVoiemx2fEGQRKzkUDs8aXdXluI1zwI/FduugrZuQtexpLB4VRfAiZiTGBQqxr7vnFc/ENjvxG5Xsv2ZhGtWXBAX7To=
Variant 5
DifficultyLevel
592
Question
Cole works part time in a supermarket.
On public holidays, he earns 2.5 times as much per hour as he earns on weekdays.
One week, he works 16 hours on weekdays and 8 hours on a public holiday.
His pay for the week was $756.00
How much does he earn in 1 hour on a weekday?
Worked Solution
Let x = pay per hour on a weekday
|
|
16x + (8 × 2.5x) |
= 756.00 |
16x + 20x |
= 756.00 |
36x |
= 756.00 |
∴x |
= 36756.00 |
|
= $21.00 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Cole works part time in a supermarket.
On public holidays, he earns 2.5 times as much per hour as he earns on weekdays.
One week, he works 16 hours on weekdays and 8 hours on a public holiday.
His pay for the week was $756.00
How much does he earn in 1 hour on a weekday?
|
workedSolution | sm_nogap Let $\large x$ = pay per hour on a weekday
| | |
| -----------------------------------------: | ---------------------- |
| 16$\large x$ + (8 $\times\ 2.5\large x$) | \= 756.00 |
| 16$\large x$ + 20$\large x$ | \= 756.00 |
| 36$\large x$ | \= 756.00 |
| $\therefore\large x$ | \= $\dfrac{756.00}{36}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers