20045
Question
A painter mixes {{colour1}} and {{colour2}} paint in the ratio {{ratio}} to produce a {{colour3}} colour.
How many litres of {{colour1}} paint and {{colour2}} paint are required to get {{quantity1}} litres of the {{colour3}} paint?
Worked Solution
{{colour1}} : {{colour2}} = {{ratio}}
⇒ {{fraction}} of total litres are {{colour1}}
⇒ {{fraction}} × quantity1=quantity2 litres of {{colour1}}
∴ {{{correctAnswer}}} litres are required.
U2FsdGVkX19AEcqWz6oq8H4sMOl4wfXPd5TCVI2t00O/2ckFM4yRnvdYj9KuAB6DwIAs/07kDbqLiqOYobhku+/wzOo30ppQfL7wes21GFPnOMtZOCrJ3yDIHF2B5TIfjkcAyFxczOt7ciUfVar7QHQLU1FPEpZpxp3Ny3hDZjF5Ym2rhrxCBpkStGq7+mYAWftDvCxbEfqAEnO+S0NVQX28szPhi5D3IRi+jQDOw6to+4IqS53QAzrFihzLTwDDW49rgR8K8I4r3qHh/JPlR2kNJC6WvcXIr9UxFl4aILYopGtPqhIDKnKCMPOWVza6Wl7b0c5pS6T7fv3a45PLkgQF5kR9iePbDPD7Tcc0stbWUv0KJUOy2pwUyITcn7NlhvIrp4Mrceh6b5/bNhvUudroYmNUWOenfJkUviDWVEA6aVHHJWhtZ9g5lfEGBU2Gmx/n2v4S5hZXc1IduCLOvAY5s9LPmtpl4XBpHhKTE8yjVNO5b/SWO0jmXCZtxJjmTpR5XDONNoUdjKTfckoqECuH32vSBs41rKmK7jToMSxnScla4TThLtnqqf9NC+QHJle9R+5dR0TY7v8Eq1+O3Pf+s1+jNBWEOA366f7vrmuZSm9pFmu0AcbLBtPc0w5lnN3xEWC7FYkLMwvFCNrXCmq7xxKqqF1l9mQoZi8UlU2AZOfauzD3wtG5vNYm8z05NYWeDmn5J6NhnruSO1UuSevnzVG3c2bbsvn9QbLNYwyaQKNmJ8ZVD9y8aESvCPOK/nC4hK5TBMGfsPTOu2gGho67bTrWU9x5+Pdp1NGjz0wompr/JKJLoRyRgfGy3UTre+ZaX8TnJ72vv3Wf8UZyc5LAL/UZS/vmkW8guvYHE+bR89HhsNUZXggBpAA/dRvknbczNBF01gOlnTzFVfxT7FovvlhJN33S5UOgf3nvVOmxsIDd+BZHp1jgD6iRNgZVwiSAqQpWva5BoeOuywEe05R8n4sMmtEEBNHe8l24dvlsML75lMuFwtedgTK22eUqrnUmO5SxQYts8gDMyvV3JxXuzx2M+t3WYWg8/RDkq3Adi4/sADVRMMF4KRiSmRzRxwuUzT72TiWQ+ZaOJzhy2F4FhGVVoSTTcU7vIP0QCpZXtCIXk3phUug7mEnsOq8wPXWwf5nUAfskwosPNzq3Kp/BiiHg0BJjbr98oCdNAc8/udJ16fxH2aFokJWfktzUsir04jdWZpKVNXBPQkKQJ4hlZkcNNeYNOoShTzMe85gOFrYP4zNM/YRumr7yXsYChJ6Q9umR3DDr0tqQqL3DhjkcJ1c4VGFbeq0b6Zrh0lCmugO8AvMnpfW7RsuyS5dnlrktHBem8UA8TOWfpIAbzrjhGI1WghEQ6JSUG5BSx6Qp2onsG/DRIBCHY2aM1egdXQE8ZsMBttcjzBTg0dWGi3zwNmXQu/JEuygi6lIQSkXYvDddo4yTiSY5+w4NPxkrWNEHQifR7ntHIwyDCbZv8czvh7tZ5cMw7aUCfyDtu4qvibigCxkCy5ANqu7VLPvTwqXf9PUX0S+P5f6BB5+DKmp/y+HTREVB5J1FeuCqJj+cCrk/ihP9eu1mmqWbYrj/Jy3zNiIXfHSVh4EpNeGRVhj3ZRKv+ACgHG5hHZZqogC/bIgM0PmOTdtq2ccNOb00RxVdRwDP76T2Cq0gxF5UV1ZVN7M0w5daopxKm8TlDrfgU03+7UyAViuiurlYkbkrdH7FxEsnV3ErTzSDWP7OKJIMypGET2dUJo11NWYq5RRsRtNRkw4TeohwDU53KWAOvGypHQ3ki1rKAOvl9mNrDbMm8yC/Xf3gm4XsLfHzjIXaQamz8i0CzT6DbMGh4FSHhMs6sbeArUa95fW/9KlCzh760Mej4sLaoMns+egMZS7ZajXwa/EEi0cTUAMqS46IOzSdQBVTKbzcEWt/opu3ILoE1McfenLy8J4Gds62o8nRulEJQQBRsNhQiHlM5WSGDQCDXcLt59yPXiNLzfR7aS6aQ+A76Bh1CBs2Ml8Pz0ZYCfp4by+ossHTnAwdtHta8bneIikXbuHfePDrAussX0rZh5H6DL8q4YaFkl9T9/UhrwA4rs8SgU3zUJwBST+oVOUEO/cqPCmx4BYtQ1ZclDvXh83wcdNhjSiC/xxiAa8OMWAJMgpDBumYGo3xw8EkJxQhPenOnWr/sObKPIR03iIWBp7DVwqNTmrueMkpjhGD/3M0Kz0JTshm6Kkx7Flyk7FRwz2AylgXQdD7uFHrne0SW+XnJ8eSXZhGpBHhyTW5wz66GroCfXcHnQhia0A5Bh1U7DpGP3vAE4/VgXGZogjxzSgN2234jTrqq2thy0DIHzur0CxOllGTBdTkZ9M6Luw1NrFM9a+mzE+E7Yc9SgGg1icU0QRycbwUTWbpxda/k8CTg3CaSkV7aSjPZspw55KOcQgN+MTB8c7IPcsUtu8rJAnnZe0yrBOyWWCQLm7TWgPBHqURVuVUwRymGwsgV1zLmdx6PzYX2xqj0tdTpxb1ZAMIEGQ/efSjYUSjpVGZ54kpuYEfCwl6bvGm/wI1aep4PDwXr1lP/ASNVmfbtnY3jCDFxXWFUAP1bRJ8qBtX8yvoxYbfuj5i4rYMQAefilLLet+Db1/QLHsDC37KX4J0HHze2rIvuW0c407PUk+TUHxfdXsewO+UhNTqSTqVF+STkdCk1IxrO06AlSsf8fcDY2N+WfSyjyThMszU/Rf5ZHTWEheeGQZ64oUtJxCOnMRNYgehX4ETLSWf9y6RfPjG55HDQ8Agkp70vbrY2cdsSiLd1eNcsdnS2QF2Pfnaa9oQy7Rd4cmZ5bvlmZVYC8nX6fvzz1I0BtK0bEt0LPULFHhbcPne/T5SdIoG5DahWDiyrviYuUa5akbClK0//0PF0eUF40USr7itBfOd2kWwrH2DCD/gG4xU8ABUuTEc6bp2DinBsN7Tv+i1Wk6tSr3+xugs0/gbCKRSXOcLXFG0aNoguP96ikAcmZ7e2dcdyjtXqgNtIln+wCKE2Z4B+DSKf7HPs1pBvBI6I30PQFlJr8qODJ/qvsvAt8FxzwCMnTc3WojxV7XLiy3B3obA0J1pHDuWfp/dCHCghFEMDO56en2UtKsZ4CGSZBF9zrRVdcd47gvrwTPnPvBC2f57XpZ6DOyNUgWLjp2i423SLsj8bJ5ERTT63med7sA5LymeR0ThacYhiVOV2yQ7cEOlVC5g2qzk6XsfcFbAotkyhL13Ihu+P4ydDX9dd9YGm7fWZLTnrzivkpqA8sOI4aFeBnZaW2geSP26bUhqnqHrCS2JjnMOCPjalkhH/LVSEVLvtJbSc8zot7AfKdewFAMAFNSjLrCuCwvUgRUkQHnMdLi5wTz3IgN8Q0dylZlJinxRH7pj2Mi2Dd4qpG67zK12NGByHEuiVvN3UbWi1AetFk/SJ7SFBq7cx7oyfPnCokf3/XvUaaKzTJ3qXV8UP5HyazJdZo10ZnabOTQZ0rCBdbRX0fmAfFoRHF3pRi2j/54wPGY/08OsGkrBV12IEZtpD9qA5i+24QTZwnjrJlVEuzGl9cE7JX21P6uTES8Y3xvt2DGELzk43BSTLvAactB/iJXc/8QBHyM7UiVC9lI5PQ9GQR3UnFhICq1gLXrdcC3XQ8O97X6xbP2t0IjucBj3LDtlnZCT/ujEl8Hrg/g894LPQeO4BvyS5U9nZXDMen/eKOcs60ULnU/lbROmHDNJckgDIyMhfvd+UpCLSoB0o8A0MAUJEgIyOadhZV/Soy9FkORuWvK/E6Xhvpf0kKFkWVXnCMGX6yffb9GSGXHuaMIpQKSUth+3NKc6A97Tw9ZHCIqDfgpYx3qVHTWBPd3XrHQpa26OvaS24zWHuVubOYN2kgGL2dwW6/MKtgv+fGiokALufKzF6DDq1eeoH1F2hQa4ZgOF10tITINOali7cV1yIzpTVxz0nopATg0pnhywb74Iwh9UMlMcO18Zedhd6apHbwnrTF2caDRhZIKyXrn5m4rKQXW6iIb2fgVpLyV56NjZqQe6phEony2qsenMircW4mQlbZJv1nm5kdfgc5VAPggL+hKsjayvpyaMbWR4BgQYt8gfx5JX3m1kxwuQt9LJblmkKomkuiT89bBVyXv7hdsIkKBG7CQqzYSD1y6tdHVSLfcaTh05EvPS7n8yApwCjrhOiTMfZpyJ3J8fn6wPavZTzhr3oh/yCeOjJ4CemPG6F0HXG5vXqW/S1R6AaQ2bKMP1MhTPm61RroujUV621BD6ZNgOuB47eomfZwZ+2q4QWrMl7YD0/LrxzvvJnsNUKsZH6G0+i0dtWrGSowsUjl129+gRsVvaV3FvAM8e/O9zvtgdFFR+D9M4Ji73xCtBw2wWhDXK9wdVaGyxkuCECmb6u//r3ldQOPazhdALnnmpN2fxYGakUTwFlzSpewsLthJlncfEUZVa4uQFofHSnB/Mx2Zx1thVGGYHSJn6Maus4AzouD1vMh4+VzmvGmO/QqUq1JKKQk8HBZd95tbn9QDGg5iif1d8bGm3h+k8rOaTB/C29W+BkgKl21R6hmW3f2+CS+YdcMiZW8hfBykcv3Nf4pyI6eBr7LPljSuq0FTCp6Ok5sBi/rveEyQ2LwHcdy5eixx2AbwnvmWf7fMNGZR9JuDaA0n41ibTf4KULtFnamtxhSQUWoS+CvORyDtJ8Lk94uB1yS/sya7UtwGC1ph7Xt5YDk12GkG7B/AgMfhmLwukAKYBto0oWZxM8E1g02n0Ak/QiXSjmjLiUQGh49ySKtcfI2PJz8fSJBrVTJ3ZSLMoiK2i1Nb/d31BrHWxor9V8mbmsZjyIIKEcq51Y8qPdk9+fvGQ2KMqb6Kx65rAdOIS/WQTtDHU/68lwjnrIWNpFZ5NUoR+TsF9dXtxxk9nw0jtbS6vT66CbVW3jT9K0GLq662RE/O/8E/fuRm3vw8nb4mOZOgShYfkKYEkeTw7g9U5ztYkN7oQsNfWYUaf87NuXkZT7jUfc9P6kzVCf7S7KptVcnTbcM3XaGE6CHoD7Ao0HN9R7+2BJHgeUuOfTAx4QuaiaGnytrkeSOWt7HXK7cllApJxBlC5LLBJLPOim4nS6cMgoVbmvth2n6N8weWJhu2Bc5b+9ebeemigc3AchCgifbMMg75tsBtkSsxV7Nh4VG4Cokg1BarGOMJSlnvDauh46m5xPt56u/hhzvlDncYcdXV4APnTGWqd7PUX1lR7i92d7aiky8IAyr0JoRRhDlI2z0Oyg5yZKpWUfAnnPWiLDzgL2JGRRd3NKbGYnZJ0lD7+P/8LEkCA1731dDYUSy/bJ5tP6jlOreo9VJWIgD6KhIZ0BiVq0mNFWXusVC2tvhTDpyM5WWiyHrCh7QFam4Zh7BI2L1S4EuhjAdQZrTgxp58xgKHbTj4h0sJWwRsc4R2f6xu8DiaAVusINJXsdZhGTzNLRGq3EQcEYhZ52yYgxwVM31Yohhl+B51HgDBMUDH96KD72tZjdhO1r/CThqg6utMWowM28AA7nd4ZosCgQEKiMP4MLaHsJ+ogcMpHbHQ+sSKo9prjgLDxrv7ZFgYj7WQzFhp7m7p7KANK1PsH+Bpqph8e874ed76hg9RUWWPFdAwoc8MJhl66YYHZ14PJHGp5i4+9wM1oz8y2uN0WahZXj17CbdP1KvndB81+Adkh4mWd2IWNmUCSL1jDUYsNjw8j2BhxzK+juokp9ooHArmy19Df3BcUsn038ua6iYED0ht3KdVuddiNaLB49LvfolgLa2acEBnaDHEd6/3+SDxyeX62xO9nZfWI5vpAFb+OBX/amqxgJhKlKNNBbbdTrQt6td9MmrM4um4+aWUZxyekhSvtzfnEKr9FcuqL2u2Z2fPs0HGeLzuo1XypAmfHU3yWuv3sz5Cj+haUyCzEkGVYbmTKeZQKyiZgVLXx7wGMZze4EzNUQI7mOckgHX4rPCnzpD2f+l37QoFyIaFkvFTOzw6i3vfxOy/wtlgXVHY/n1Emx3JD2qlVnGOZ44iuiU0MbQlZa6g3vTGpvP4jAs4/1anAeDNZ9gvvMlBR31oX44oQByvAAU4HIoxBcVSAyhm9W+rRJ0cZch7Lv2jgRcQ/HXiI87UgU+wJhmlXO/Oi3drXMMa5hCasmtk6jFLDnzuPDDaxffiUy7BzvGOK0yrTcNRVatLCF47T0lxvODQ4qdlGWw1eyoaE1959YNVYdJmrJXZWqWafEQDP/Xjl6YfY/DsrBW0AY0lITsTMW4IuHEAx2Tkj0hWnB1OM5S9rtN374lfZA70lTQUEEVBKNX4WY2pTzJZAqncGebXh58Sx5KtVXBXoJWyBxNt2jmuxETL0IM0QBcMWNpJRRwFZGy5KSqOz1fO7QPNVdHMaroT0DnwJXQmMaskw9dMVREnkqs9/WBWtIdKne54oIf9QUeUpZdBywqbtgYkJYis7MsXol83IH+Yygxs8hX3Mrli49hlRZONutH9+cxZD37czH/eiTNkUi9s0wx5jGsvIeCW/WwWsbNUN3eXjSJeXxmjxovZsAVtBA+hnNnEYWPptQxvGArk7rqrMBtKGKhjVwH0djTv0EX4sJOtz5NggqOWecS5DxCoYCoqJHxw5Wp1aNOP6ubvvqAQ1fRLq7jpjSPBRRGrrFmPF+1HRMqaq74aAI16QTc/Jm7kKxqxskWqb9GascYICaWQKTVVFH85yh2FVqN/v9LI/KlPTdzG2vmQZNe+qr0S18vVQZHP3utCYHn06/h0h6XJTi3djOhZr5AsgJel0Dj9OS6kUaJ9Bc6wS2CFBmIkaSJd+yFaLzxpw1jSIS48BBuM/BRoa3iUcemwS2jLhij6p99cutswjEe8xLnfyOJXTAKsXf1qiCAtiHFbjYXvSuLDTpaLUcdipN4/54XdrNVJgqAPLXiiy1KDSzaZ2wE4AhuR/9rHeBue16uVjpykrbf+ulMt5VmGvfY8tr+IKZES/dhM/F8KRSM6y2u89yhzRMPC97+57MINUZJATX0emSUHfMiBZYrY+kT+qoVKv1EaPyNSsUrAWAZjR8IPqewcoA5/mSp8xKUhYkLpq/urpCD+eKuX8X69FrKYDBEaTDE7K6DSXZsDvu8JqusF3e7dFy7YWjqrXNHQ7aPTlcxp6YV9MH9Bx1VSmkUgcfw6dMVH968IwXeIQS2OQtxHrAeoq8j+JxKZ7zbBXKYxj5fXYjUxvL73NQfuqbFBHMOzxSZ4LbFchS0SRiLCFzm0N0Zbqe956l9Tw8r6ojOVNDwDQXbGE65Vz+n8BK22YRy6RSfHh1k4JJUyvkiClPo61/Z7ybNJ1XeTKO9fF7lMAA7h6rCrzW/wpFc0ddVrbtXmjtO0543IUPYEozc+BDhNMrasqynZ0YgY7SrP0PSPJMuIpZ0G3KDiGpCrxtPKfvIfFZOBC5vRT7CLrUx2ZgSXclujcsx5L7qO0NpZiE4dvu8skwRKb6ymAKEOXrhUco1BZ7wQ3NHHXlbP1G86RzHTllFCGkPAC56f35TM+7Shjhw3lzDU2pycZ/Q3/dq+hGBEuhT5q3zAMcYVQBU4ALmvGCDDN854C5t9gKCW7jzi7cTHDpQMt0YagqiLn/7RJw93V58l9XPOTgUWRch3F4wpDXpTSc7ewuT27p3IrZPLnhvSQw7c4BpyfN9kfI1DGyfBB8BihDqxoklwFPW3SYZ1eKnOm9odD7uHN5B/Gb47oTOyKtepQH+dJ9iOUSdmLyIVkmuC7nF82IEFBLfHEos1+J5WIlvchfnhRNFiybo0wo5Vr8MZnuEX2SLWLWEuQrd5ff4N0Y1Vnhb62luNShronkmDdGytM8Ylklz7dF29Uo1vJ+tVFjI+Z1KdddDTE/oMZ/yMJoZP5r2JyFZn0QFbmFFfvtZWJ9NTIzGgNZA7gumcUo4kq7TLra1gg4fpEb7aWy6yt0Zp4Tys8fQA7IhoL4c0QPj3zxwerzhq/qrInpGE/b7/69FGpfkWrFAUwIXiagD3eJXjH6xEm4uxDWcXRNzjaqAC2CGKJSrZnZIlWFFgcSchWnTnqOSPqzUAb1V7g93/LWiI4RgZ5P+DO5tWYZP1f9mIbaf/+hIfXIfeVtqoa39uTpzrd4MY+B3kkOA57EKNTTUtPHLombqpyyfdUwLcLjHmPmfewsl49d8v/Bq78O7La6Aj9MgqClNDw0OKzFf8V9LOL3IJe7Ir38CrTLqj/65TndM9AYLl1RvZWuC+/06s0VNYsh2BK1pY5wc+1PkMQzGRcplUR4/+3yQ27U1/iH+OB/mzafFXdlhmcJv0vFsKVHYCH/06JihCAp1O1pXrV8mKfRPcjvzMTAeP6NyMAi70n3W0a+Tpx99hmekqvHoTOOX5xO+wQvZs0DQxeoLJ2iwzION6XaRbhKqzvu1EdW6QF003ODnPNyQJkHHTM+Juk+E8WqVbzCCJkfMf4akLhu8Qrer2XH+sGRb0fReqjfrR3RxHLJ04IMrTlNtR1WJ70xEMSBjS7fIXmC6nXQD23sc/kEU8aQv+Dp+DJm/MUQU+Ov85iM4Ba+5Gb4gTFHoG/75STcGGxzlhdyhFzWNn+AFaG/YRlmA8gQVm864P9ggO6Trhcq7p4TxruM+TOfkuVuEYHPLoB1pkzJGTWvda24PuiCrg7cOTZ6fJYP2ZAFBHG0bEnp/um4ehzZfJS1fDNOKnG9A5h+p93t31/LqpToWReBGFO8H7JF59QF6Jf+ul41Xwj76tjn9BYRFDRtlNZiE2vI0syyfCGwLVeyRjXjprzVhlDYHVE0X+On+ykDzjqWBYOj+32rS3mfLB+H+v3X0BhfBcNM/r1ge0maJg5A2xsECHbvedNwvQAQ64Px/qRX45ZZ+f5SVFD1gHVKe/Ln05sjQFEoZRVtOzp5BuAF42XX6CGidU07AM+fL6DBueibNpboUl1JK1ZEfG7xDVgF3CL5DV7KsFYoskXG1PODoWbt2el+5KxfTmPijENyVVKze8a+ygX8wR/F6Kdpowp4w1P+Vqzxn2MeUAc+k+9GgUC8zb/lBlLT7a1e+dsujrcCfB/OcQSZrLLY4mP1PtDKZAgOVSdaEcb3PWeeWiDDeedoI3C7TpAcJNh2GRpIl3u3lriXPbYMmGZ70sX912TWPvAqsnJSn7+DsSuz7MW+ZSeLkMB8Lk7rm3Iph9nbebhqaD1zuGE4wa6YRiJwG7xQxsO+w8RHjLBPOue3iHSFKbwStWHgg68JJzbIiqzu9Qgvb9425NJ7ZSLuwKkcqz8+jeZc6fRD4Pv6x8qAt9VcIenvh7yfklzR1ekRFBSSImnhXP7a9mCNQILwLCizm7zINMbMpPmdGbYbwtqlS739pwGz/Njb5oWfqzqykwtCOSflsJ01k5+BQej3fMEJ4Ri5rLmFX/bV9vnA4huz6gED34C+ilBtezeWiIOT1Ze2s2FTpx/7U4I+3BiTOpLv7cWmPv+CNW9zEUUbBoZB7ohD5BEmcPOHKmfOPflWk9M9oitDnhsx7XQ1Tnd4eCOprfv/FWl8zHIKyVKUkAG+SVbe8fHxfhrSLC9spBaLV/98r/H2hJs6L1G2Ms58XbQOl568tI1vRfo9MI50YyeW6OfN7ioujl0xoKX6mik+lkEoBRx5j7o3sOIxA9pBGxuptFhU8MJK1y/zQ8vZy6RwDKn7E8hbW8LUoW8iFIQw2Xs9Kg+toovREEDS49M/mkpvZ8xK0iGAOJdrDesQDQCEUrK5Dz845QXhSmDZKpDCDpRQFYJt1UaOrtUwLfAUGJAcLBXHHWMZuQBCtnsBneUtXXJYgc5GE2Y/ksaVxmArLJzwXrO4OXh3WaTIedCm2gtqs5lrPMFxqeH/JioZPRZRObacvB9/mJ1NTNtXY9VsJ1iH4hDZQ9EneMUAq+8DzlnILs0GDbtbvzm/ZFdmViPNOHEYfkM7buOVE+4MI4ADw1T5IcbeBIxM088ASiVvDhZBEdT7OfjFvpH0GQpZv3rxf4kUqTcdp/+OsAqWR8Pv8fdwfuF5uIAVHyZXMFmrcSKkW0t7xiW7Pv2O3+Goig1bqXzNfKmtUtdEwWVlcx/bNh3oUomn0GJULcKIonV7P7WyWd/FPo1g5DiQ4xS5GSx2OMgFYzqi+7Q2V5yvyKg+bUbd1haAEp78AQBvGx9Uy6WbOA=
Variant 0
DifficultyLevel
561
Question
A painter mixes red and blue paint in the ratio 1:3 to produce a purple colour.
How many litres of red paint and blue paint are required to get 60 litres of the purple paint?
Worked Solution
red : blue = 1:3
⇒ 41 of total litres are red
⇒ 41 × 60=15 litres of red
∴ 15 red and 45 blue litres are required.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
colour1 | |
colour2 | |
ratio | |
colour3 | |
quantity1 | |
fraction | |
quantity2 | |
correctAnswer | |
Answers
U2FsdGVkX1/OYvdOoTnD0Jz8Bcg5Xel3Ty8vBq4EVdbytqZw+I/boTpjVIP/A8wnVsEV4NZtJhps+gbQUrPesc3BbBDvDUtnkxtQgFOCLN7m5ars3/EqCOFrBNq8LBhFbhTV70mnaOswc5DHo3+klJcD4czSy60QRSf/LNKJ7+IQlZmFWyeo9FbdQ3ceKr7y5EzitdszkT9JZUVjWZtTs2/EqL5jDj0QJWgi0HkHHnTgKyBYdZPaZ3NogRcvXelJTRAoDKmMdyt1vUBlOqqgzzvW+mfBwyaxBF31uSB9tdzwnO3jpIWllhvAjBnyJEfpMYxF9nTZ13qhfl58MjRv9sGVCKcfdAYgFn5xcpauBW6lwmDedpUuic+xCh6sFVIfdoQGe8OKlnwd/Jw1Woa6Adfymbl+1lNA0hb4OaScJG0/OToh5mj5V+eXz8L2UjMzN1FXuhHHEte7yxo6qIlQOL8HoYV7yu0IebJ1lSlxjcZ+shtyaHJbZ4N2ZDXQWIOMSFCAGkzn02N0QSTKHwdyVKoSiqviMDLUm6ReusQFrmXcELnBsdi+VD9AYD+refTiu/4w3vQo8QJMge65srtOtjCjpDq19PvfZMOEQQMCHdXtVl1+awr141j8D5OeYXL27WO/x+Gp8yObBnjiTelOre/tpeAvAhIMvtmfyfxaHv5VByA6ExUtKOrO3+KOotOHhKu8AjauUFNqLcKITkFHIuV169YFbJ4nYJajmEfOtdUTtBKvIOtizsEq1kE3l2ZEcNwY+z8n94hSR9dYvS/ebCegF29MAke4+91Xqr/uRJZXCAZonhupSfAEUX61fTGv6Umw+PEhCZKEC8ugs5vO+cAPqutlMxrEirMGuAqVeEDK/6uRXdjUOSRl19omlU3OwfiOqcUpwet8Cl68FrII9a8ovyU+Y9nAO+PFnHo5DAyJCqavoItRU/7qRHKLuTkKqBbTFRddiJJG2bWGG6eS4wWeXXP0CeNv4z7rpHJdu/LLpuX2+uwclU1OA7gIgdIQ5J9dS/p0R9efnx48D8/NiyfQh8VVHTvYE9kx8rd1vLGx3+rKd4yJ3KHwCYFr8yohulJZWkdYR4e/rLcwSJ+MW341u5TLqGo6loEo+BBEZV0LWCuPHMXkB/EqZ2iPPuwwoLcsr8vuDlz/tKtJVWO1RRqu6FAu9LpiqkCYfeP74xqvpbVHAk3ZjkHi0p2k4dOChjfD1eBO6sJJ4NKaeXD0yukJexGzQq8eqUJlkM7ZlmaAWHisPIEE7nSja56lXWM2NtIr4u6q9ZimthqsG4mUVgKURmpnUMayiIt+SdekjM/xM7I7lFkVqiKvuF/FqZdBZWjt/v2ipEvx2DUu5lV8n1dpl5LBisEN4CYGVflIll+E6B1t6/kPov9Ogihj5UMjkdAfDpNqa76Jwnz/cUBvAGsVuKBiayY/wg69xReJi/Tm2LabYKUg+3uob5/Elpg1KE7dtC7SNLOjkStP/SDMa0P+bCg+hPcMVHEhDRu6lGbjcXMpeZJW6yP/OAsQPZ5qc/FnlLngguSD3Qb8lmEGFVQfqz8YnBn4Tn43e+cDEA3yjQrRr9gdkYMVc4B8g7h4U9CbDH3d3i5KQdBTqCBvHXgFG5bAPcF56m/fLuIgbm20kKXIImy7Jbi7UA9gFn9YjUtlQU/h0J1mAx+UH8b/lx9l0Rz7EfyQUM+tLZdcjGXZ+kkKrdeFAhPrIg7m4Kt/0ur1mlbfV1Fs3QTmn+8clZzRj5tnyBFZelKVQWE1GkgeTCwJxT24a0pO45M7hFwCz/sLQHOFmeaY6HhmxigsG3Tzj6pWXpir+46XWZbMLS7hYgVTkFXi1b0JCbRa/I5zDhtB0DVh03PdCZB9JP1icj5mCWSXM2XwTWfLqsQcH6AZzTHUIVU97OEKFDU1mekRkodzD1rhIZOCg2XTXdsWV3+Yk+o5nGHEXbeP3iqiB8UYayYYE9eJKOwH/dHuRDPEcnREL2FtAzTU++c/nEQdfjpoZg5gS93MfStHexD4wkk6aREizxKyU9tGBMF68X/QhF8knGYAaLe/VGySIGuXU3VvVzArgmrW3AHBYtXq1xPrTFUMboYO6Y6jn9ae56bCwYFtXd6WGNQCjED2exWxJ2ZzxHi3+7Q2jTXsYZkB2bIx1+6ujbRpO3iJYZdhcm6QucLZ4gF2BbsGT9/LC7tj6psx1Lh9xOB8mnIpW1UxzPfxPQlBSuzcUhcNQD5WggeW2U0SeDOiGbE5/Nc7VoUvpRkNQE6QPURXNsB0WDoz3+Ab3EHv1ce3Yrov4XEkc774DpdLCjgKugCPUfnxXJ0m30PQ3fkXPAQXIovqgVUKK7QL+El6Tk/jXn7oWWdF9a372tDJuNl/jFeSODK3HKQ0ZuM+mvwM05W0uU2l4if2rCH6MKMR8Imic2G+Mp8kSHy/JzLWCDsq3qrMb4tKhhfuarH3IkrWUW39qLz0AelmyjPGuVvb7MXeororiOcDcKR0iaJ9+rrpTvvW+WYtHCJbplZqV6faxhk4D0r3Ii7/CKhLXA7h+6hDsLV+tm+7amEPpXbmxblPjshVT8z8ad9+3q+aDD0i30ZVNVaT+i+mpy3xUtUF1/KeigXlBuarsIdXmoimpQ6OvWofeSiO8yymihBg/Rw4mI+a91clNyKUKvICgi1Zfe3i4cJhQR6X4BTK6A1w3AtP3swNvS3Qc84I2nV6cOXmH0AllPYAcqPkVpP/jNt8fwSUtX2HNZNkH+VurV1yXdU2tGi+o0reEuOdEMc+/pEvmIx6QZ1ToKH6kkzii2C9XQXIG/VimoDuTCwzifTY6CELQ3TnLTuDbVo+H+zEKKS5AiRegmD3BGE/eff/Lgx5BD2NLjmh+1o6yEUJ9nOVpPMnEJCfpYnVT7SN7oj7ZMgc6eigbRzNVjgQ9zdXqeJvNeJ9fRsP3n6Zrz94lWooWSICMURMvOvZjU8IBS6veTlaxZtmCfYLhpgFdeMMMw9fyV7mJmcP3vd3w/c3jmEyHq3ts4RRzQHTETGyXvWYm9Zw9dmF/0wUR4SsxGrhbzyoHvGT73L0yopnLeZSCxZTsl2H+xJAm3v8IYY+y7GF1LDfZ7nQI6Hrr9XqbQ4hn0GUZjQFE/febaasOLILpXMmNvwMonpwkDGJXNKduJi8r04slJASvAvZZhp5k8FJOCWLZj3llJouxdxG87Be7MaLQ1SFfFcqLJYCVzv+XZ9ZzsrTPKm1Np944hUFL2iZLk4lGNTwCyct6MLpzZOeu30c8J9S3oWVTnlxxK8BS7ieRPjema/kWyew21wVqeTIYiV849N7Wm/xzFUg4zQ+70nQlXd5ARA6bSbYAASCcbaVGwFJRCBrhVvofiZYPdqpmBouz+gEX6GRtMBl+3g0XrJuWHWY65UzQqFWel1dbJJtGBMY4blENx97KpVusfSqnhO8OsuojFnpGKqF4+QKCvTHZTKZUa5KBBEaVtedZxyVixZEH5/OrnMLKGwjx++Kl2zY5op4WkOdlnHRKXULKifiQ3RW6Cq0I01or18pc9IlcqQaZr+K62tfBxGWnivpZGgz0kqvFRwKWuw71st4d7RpzaCyVPnSjg6QaFzA8PAGMcmOUa5ZIjv0Rs7cFS6Gmq6+Go9zSbmPxyVNsoGvAZ6VGDY6OsPTtCOXZrDluXN3KS5vCL55wTIs3ghCnecfGjps/9GYr51HXz8oPAlMyEHT9mJjXtEH/MRDWSC3mhxBI7Y2a86mVXgSnHgTZ8m6FuEtux0h9IqG1/3Tgw6Ii2XE1JSWOtTHAo84uVXIhKZjZvcUjAN2oW9d3ZTYxQIZNiyWMS05sqUvhTt2sdr23zcEekzoc3P5Kbw4CD0OYAdDjVYY3UAAkdn6YiuW6HweijS9VeLeBLC/PELhWysP1gLLjZFsx0fB0ICsyr6vM7JRnnhSYcwlXx+6PQTS/nYYGGXbo9n7t1Q+zUr5CPX+JmcxUOlnqhlBNuyqD9qtWDHb6KD5y1iS0ukxORKZ5d/0yFj1rDM4sceuNXJPpQXtf1E5rxRWgXfbMOs29v46vVOYESHyDBglmf9m6SxFoEqK9mMRD9dPJEjHsYsLqGHaJeLsNrJZS2V+sRwSyVPQ0p8IvFzt8z+YGS6qmvJ4q8SQMSzxgJjqQ48dPt6YnRgMHxFflfiVQIpuNWbk4PuvxHRCaw6p/gMLT0Fp9ZcOAtuMWaxtHOaS1e1kMxvsIanFp+c+JauratzeNop3fW5W/B0+uCiXg0t1ZofcYb58FQu4qoWVT/MBLofvrS7ByIqsM0t17BAP7B6z494s74hZDEGntkWJstKkPJcgpu6mvGOnIiollm/lprfgAURuui3XfFbHpv6QpbLlExMoIPLNkKD7/JZiTbYrqoc+pJEyjuzUwiQvXekykZRj8WVHgsA9BJtcFFS/PEU7rp/ygeWpVk4jAHTZLouI/jsMTfPcAED2e35xFwY0TUU47LijJQC+0eugvdssiamm6iv/sO9A8mTNpFK+U6+WHCw3Oqb4VcQB6zutdmnTe6JlVtFyau7jRdYvpKz1sylHpNN6NBAFa3uAKQaxfEiaBDTlrKhzjhk93Fni5EW9Aqw1azkevOpXzZH4OomrBgyMtnnPnOHGz/8UdyS8HDR9WY4ou6q+c/Mm6oORWGzOga45OIGcOpaEviFw/FQMtL3VhbZk6BDQ/ouyVr34nH0hN8WTrjQBtGTFuVyiHDxfADnrqACfQgRMLwzVtY+JBHn8CSon/H2sU4mJKeORwgoi9PuQMf77tbt0uVCdAyVboYZHzrr7wocyPUjwU4SK0HeEn2fK03oZ/6Ybsv3Ghp6LmprUa78qTUIQhwN35aVt/q37fQlEdnSlXKVpBa/UZUB2nDH7/4vEiio0nnjGsVEtIKpet0KzVLR86JUjhPJkU7pIWkp28LUCcyBteXJMmefZE9LuM9hrMfuVOOh8BG4/1Q7Ejduuz8/snIc9oRPUJON9eJCiym1HIIjF6t4Mljkr1c1aHgBsfN9uIExnrIko+74yaprNNRQXMfvcS2+ySZteG+NVQWr3bYJ8IwVLUSQDeMuq2s/EBB8yqxnxzfM6d0onLGMm5VxGS81Xd7OwNIqfPAeT9B1VgQa/+kjCf4YKxeIqlNRiyYVbJWAUPI218LIryT/FXzjAxSHU3bqBoVynX7e27G7WUGQpgV1TV3vAV7o/S37cfDXdXflUrlysAYAAKLKd8ZjrX5Wo8snJczQRI/jTy9eq2aCrXD0q3Q0ytUAvQM1m8RyaC467Jp8R+BeSdQkdeaOp4l9ueZmEiL0lOcyUcpKnU9T+z+3+3zSkx/lGGkkxIrgAigXiAfKmKtTSbd0HxXP13Wni2Qn4oyqm7sNKQl24X2r7+Yi0PsQ0uHEgCaSHGpeWQtJpvIorjbCLXf7xs5WFAyWRXFJXxRtTLokapo/rfAagxPam+Ia/lQS9cxqlXdZRbvY2R8INVwCjvCpZPhQCUzwQEJHqF1LW0WjodiiUs07sYkEzIuUlymyrUA/Gmwzosx9bag1T+HJxnO6v5CCZzafZYMXivGTX4XfDpDiPbz4QEl7qL+QTGjzOIFKCiAgXc7ZVk7gs0qTFoJcSbOHxjPnuiVapX3WtVFCE3WFPskZI7CPU1p2sP1pnW30wWcV3GhdnpeUZN9RZhnpw9A35efljeBUp2IEWm6dFvt6RlKd6dQV9mWhVfRpMA13ywnfd/1/YTtxXgEF3+Ghym7vHaZwe/Zj6+zlt+7l79oFoFDrkBi2Oq/UHkSEMNuz1Uy7IIpaDEJNZs93gpKrBW/gCRkZwbvvP27zyy4xIwpgGK15GFvcf09Nt0IcWpQq7HR9itQTbepMcp3YwiuJcQezOiqkJJs7RV6iKY718jeNJmTnKtarVdFwgLIgeA2o6+L3EGkbjepZpr+XlVVR2X1P4A/2H9SYejfQut853OkKNOYUHBVFTxVYZeesVC4YX28ue1gB/PwHT0V2kmWIJ3mcXOUakawI5pqfMTvuFaGOpk5BbcPmX/ChzoDKVdKg/ltBNL1mp6j/6vMfeWYwAX9xzGvfkRATb7yFkF+HOxmQWzG+TyhubGGaieTa3CNNFO3yJserveSaAK4fDNjQ6pZ9tCVOwFIFOrieVeP4xksF98R/BvNDb7m0zGLRHuPLgHtHUKagBVaNQPoRxBK8NWL5A2BBc7KNcNYqWUL6CtVIZNSPaoAxjqqS8g2HFBi8b7jibRtreC9biR36tGdUzHPvEI/AJf/uDyYSUnVEtx3WQRyq0tE06AGpUq5Zh3mX5dVR4Av9MB4rB8fbA7RELjvrMHLQiN01CVHfwppj99iYMKn3qZdu4r/NLruxAlMaVSZcMfLY60ptVjYWRXvNhvqFp5uK3KuGoa628n6q9+9ELWLerh/XZnA5de3xXBIf4KdXQRG0x/bvTiZ4wF13IEegQGlsKYQ5PB5an8cxsrrm9F/RISAnvFhElG8hLzt5GgT9fl4sO/ddPNiVjnxuCQlqnQgW2jJC29bAVCnGMb7N1S/IjI7xs6qecwh7U5sAwY5RQcAkkIOq2SyGLHLbp1VL3ZRTbOmqIlhZMBzyVjq9buxFjlVJyDOXy4mUSaz7i/RpgeUF7PRv3xbGslZTlbLa6g2wKgjKA2pucR0TgoSbzi+hkaxlDyxLz41agBlKutEXwOLUH+fj8Be7Aic3wTiPt8CFxwGuahF3hyjpMNTYfeO6et9auGub+r3AZvgO8586IWJFLNkb6VD4u5xmFd72bRXGSh4jLaX/T5gXkfNpLZj5apLI3ACaFp88I34D9icdlhf6nHkyOXWa512L0CjW8ZdrMxOxWYWURZyvQgHOIB6DTzPk6IrkgNFb4+J7A2f7+Alm6K/PmT6GWzhofgx8+gIrhWu4nSr1zWvbwWzj0wrdEwUkPLLwXwdGOPTQUIVnnKRV4NjmBUJ9Fs3gG26zjQGOjaT8Cs7qFIC6UWpNMth0Rn9uvCBsA47/E4rUWVIDY4fPy/TGfNA8F+M10EKnOIhsWVx6SYzHMmM3hBFzLfUyclKXMtS2UydzP2yphWkFveobOdLGjEqK+9yrCjV1yBzOKmh4BqxZFwAxr5kxyvnmsUKktMIDjUhQ8Kh00TTRF4oZQWSw3ePu2gLXPnKe9ID5rtt4kuWpFn8OWcXiOQm4DDwVCMMgH+Wx/sVeAgMKUOWpuMwKbutp5CcY3mA8mpX1hSCeeUOfaR8FeWEmOy9A9nJn23a/VVP9FB25xoKK7lTVbGgDxCup8iq5Vt1Qxwiiypgd66jhWQXcxBV0JtsnCSscZYnLHQM6aeeO6tNoJ7FhXFfPjyi1isGGHeKMt9DaTmHfG2s8qDTulhTaWWCQmH3CNhE0usMRHpF5lIB1ipa5mADPHmI+kAlmX+CTK1Dh+qJqTip8ST+X6tP1bMkO2K8kdJpDBEwa9Oe+yJWgzWhb8LeNHRKvt4GGPdTMV8hCQ0Rx1KFu/08xOwqe1WtuK+iEF2xRoE1jgoj6/H7DHBHh42k5qS4r+UC4ipPb803B6blNK77/2y7OKWYnhXHkqPUVNAP3iipwOkOlgKgXnf2u6DUF452oFxKshsrBNEX3QJSK8B9pIOqwAzSRwxi3cvZJau8U3NK/uoe2kQJYfqwdCEIi3VSozdRosi39McF3lKB+NkvgyvP1jirqQylihYwtJlUyXWWAudE2b55G/8P5ZiRP6qfqfsvLOEnry0QuUvHpZGhuiNajEsj8ShYqT3wuiGFFYPr41UtA6wYGDM4tYsEhagY6i1VWaGGTqpu1wBxBpz3LBT3QTdvK8i3j9+brBb8tCVSKgWYj+EAL2zwWoe+ODxLQYPhcXh9QJbmEaHSCz6SVKjfm4uBPTczIxfkyPkltv9IIpE/OomUS3QL86mY8sV5+6gKR9P7jcDLWjYXIuUsReuAEX1mSf3+GN62AONpP61vlX3Zl3GnIendt7yMyXiFvSe46GD3eMC3ABrZEfe588S1FENqAg5QN9CsGSc1gZRn2cwaAKMcuw9UFqPfdz+zBoFP/0L3qgFzu1VkmZLVVbc8V7dsih5eNmH6J3Ma2NoIP4KZ5bzU+iy8HCRVcM5u+po6Xv1ZR6dloBMUclkFIlizAhe08xBkxW/v54ChUBTlOUj8ZOGRkc+eSxOVBwPB6fEQfMsaq1+7Sd4el8xG+Evtz+WTM99G1PaMCaZFUdm8YMvPrsr6CwjxtfXyqIH1l23qBg3gcqZV2yszgPzunf6Qrhc3C51EK84MO2/5R2Zu9uaBCjAAD/UmbPPW1wZYTObB1/oZFkpXeVUeyqAIplVrAXVTO+bjGeTMg1vbZDg3YNt3giZLqBKu4m3qRX0FIGLBMjw0qtmwNw0tm/2ZD0Ycum3Oo7aiIDdtho/GS1X86YYmTJNbD5rP5mVK42E9vrFgWik9Zr3W7e7IhUU5rMwiiTXJWaBKytKvg/+wxL2R8qcTLo/Q2R7MmcgchrZPjFutn/U7gMXvbe1Yg/NCaZcRUggUmHA0+JvCgBc4YYd3k5Mti20foMCuATzS8PDuv8p/jpKEADHLLwvqxV6RnLRyapfHYX3yDVnjObc8sz9TY9MG2jT3A4n7qu1eZsOEBoPtUaRrV62arRuUG9Ja807aPU2u82hh5GhMMC39UPEt5Y8j5c9QyrHCDuMrlNwHkNWWlUvZWJM5AB0sPsfbUmP4zREs6eJBT8PH6EDclw+CF86Mg3O2BX2ECNyclP6io4Ork+/jp6/abb2GpctQPJoB2krT+Ykoi41S0eOHe75gFe8KRNHRMotTCmbUXjoMrhlQw//46UyIJKVR1ZFKs4lukCDSWYYVHeib95neAtFweA0EL0o46MoGT1beKKsf4jVArxGSNuatfwPGuSxcXTtWxfOfZncffv+jP6K1+xdayQpfgo5zUQA2gnE2l0IEVWavW49efv/hT6GteBsI/JyfPDmz5J5XT51BrEZBc2ef4e3nQTQC+1+Kw9DRd4HhGTHY4p3H5vpeNSRzRMTC9pSJM5AyTwCdytNia2jE5Q61fY8B09syMFc0sNF9N+R7S/VBTqiONDsJmIPG677LV+BBAa8kCm5qxfkernOR8Ohqz6b8vFCXnXRe+ARi3s9y9kzi9CAct6hagdi3skW383px73vzysL+0j82fEz/sEQnktJJV0kA2TcRG00ox8bYq7IOMoUlyulJdHe9qT9iM965jxmBpEQsuMLbyaLwomFmqkCz7WIaoVC7HZFzJiyXRk/piaDfpgd0f22wjSo8JtVLK1fSqrVbMAdn4QGoNP3eBZBAVyGFZgs+EgxDbiVtUC3yeH+fqUnK1rUWkgVK0GVj5RIMqTyIxcvMzFasELSovwctP9gRMDsotcEQ/m/zHI6no+eS/LJlIpXn1cVVXJD+tYvYlSvFNjGgz511pyQQ14XKrhQsYEVsrBZbEMhuQJdpGUX1SOvdrsBQtddwYkhqeL0E9rW4s+3GkzQrOsUx2R+hHE0XG7eeuwdYpesrVDrdD4+Obo/9VSiN7TmUhrOigp9rqYRqiGEqjtztXGupZBaSAlsnePMabQQ8MhsAV9AmqrSjIrwr7Ab1L1AUOBYWbKg7+OlkLHMpdX52zwaPhb1pInzIUIiH4PU5dF+xYsAuIct865IctR/CkpYME03d/9GuWGZepXUzJWih+der0LiMW6Lxe2NJTaVQ9WmdmtUNhKNEz6akErNCI80+GFCw3rRvpbNs/h/ckcURD0kpU/2Rwqewj1FH+qnXsCFKfdSPzcDHjuLJOMVXKov7NwEwW0Cn4xIfjoWHQ/9pirNMtsV40mBlg6lxdqYmfiTrAr77chuG36IVzAr7Ay9Et36wlBRUbDZw3TDl4Mwrf7j2xc47IFr+XzNrqiuo1MkX/P23zas5RkxcB6tTjJJgu3B6JVJbqy3e8CAU3yetWS5CHDRi2fsDU1ZvWLzss5mokxAC8ImYwSrdtHMou6z0PfxwSdV2VcVk+sFcfoWKMogz01bF9AgTGqZguJdFDc/cP57fmWV2dy0XAWVIl4Y964Mkxe93oVdjUKNjV9dTD5FQSb55eG+1pE1ENeRi2289a9udkz/2ziD6iV1KhXb531yALHBYYwVisJpJL7nJDKdpF1JfjKJCHodUPQ6rACs2kcrTDqNPEHqbHzv1wwzETTBczloSfYNR2I+oezYs2cQ3HfSZA2fQ==
Variant 1
DifficultyLevel
561
Question
A painter mixes yellow and red paint in the ratio 1:4 to produce a tangerine colour.
How many litres of yellow paint and red paint are required to get 60 litres of the tangerine paint?
Worked Solution
yellow : red = 1:4
⇒ 51 of total litres are yellow
⇒ 51 × 60=12 litres of yellow
∴ 12 yellow and 48 red litres are required.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
colour1 | |
colour2 | |
ratio | |
colour3 | |
quantity1 | |
fraction | |
quantity2 | |
correctAnswer | |
Answers
U2FsdGVkX18sKFS13clhY8Vmbd4CGOhyLrRf38k11RGEck+jr8pvR3PC7oUl5jTOwT4Afhb4zrEKFvvLL/1lX3jcG/ThFzi76VZUO9a5aHXr1L9kssW8q78Bu1fqmLQlRYaCiOxqWedu24ryDy5UuADJFYamgNkalkGamoRSjGJhVP/3+xX8y098brzxvTAZAfjmwDdTTUVh5K1pFzYSZRNZqiQegLDFQHZQ+SV2YiqD3FvQpSgHnOa/9Q/lp7U/TMneOZEfwqKYk68UqU6IxzIirggu1KcqfEwxNDJGKcEdKQ9ouO+4MGwsA6vNc2TqxH9Rrbx4RjWqL1kA/8y7+xV/iVSsCK3Zw6nNPNThKdEe/lkF5xOtQ5qOlAPkZ2fm/6eBlESygOsui89qLFe1gcEm6IELu6+tptRtOxoGFMpRQg8wEsFM94o6U0TaI2i0b9VtnoDElwQ5M88JlVKBZsJu/WTwn2BTnMvVaVtOYgx83OhCDjE4R/EKXgaDxsel5MGcTMcK4oFWUG4rs3KoVLWL9Ff7xkk86/MBN0V5CGVakmLqXoyUZknXLlq9nVv7lWe7RRlPOSj9mF6eRNszb5egm5Jc5Ct8wp03D9viwFN0Tp+GxEtvjk94UD3h6VVbZGy3uoiE+wglxSQU7n0o3rOKdB5mnjO8oPa9DJb/6FCy/QD7wtH7AjHb+oRJf/R6xdM8LMmvs+CPCQ8tJIBE2ziEzZmNhn4RKAjQhequDsyB3IyeRbsI8kM0gaWP9wv/qYwBiCBUAdysgEDCUy+ekfhXZ7PHfoHTHjD1ROILVFdWqx0hg6XTftWn1QKhyKXbHauYfKxbl1Bp+6BXPH3p+GR2s3CZP2yc1Y8rjOn8syl7D2RvEbtO0zjXAoqjHpyc9k2p3y+60gKETNMlRu8tUvcp9XN+zeINqvoLq+tcjR0BxfpqcaeAac5iRpKU+GSIkRV29yTcNtwCq/uLyLVCi96keJMYao3M6i+9knNoeGX6puh2Koam7VoeMIk3msZ5yoPV/CpJlFF9Iu8KknGJ2QTXTRdljf8CRVwXlVaSGvS3cImKwqEV1EGln/bRoCIRMyuNjTOOe/tmq0IGY6HsSDqGEKXhNf33/46GQJi+5Bbm/lCwrZiJH7BHAu9qDlvg/Ldv5U0p+XKCD9oOdFH5k2VtvF10SfJCv93ClcsF07frGkhLbnKzckdQiB53PgbsjkOGuktW9Gg0q0/eavAkh3AApg4FqE2DGrPSHqqWGhvpEpPLq+X60puRo+Vuw+m5Pj79glvCs91MfLOvzeVxuE2LQ0/meKlBeJEgW9hU8CvTNs3G3SlyGDF2ZHeXOAMSVb5vi2QMbL6bMZ84ND4fYOzTtTJTJ6CIqzrIuAAypif+DwcqVRMfebwmaBtyZwwZAM4ajhwqO+ysxFnB28atLdOQWccPiO8FwSFWAmCdhWj1Gx8zSy3EJSj0CT88gMg06wBf3tbAvpQxrHf5hTgfStUdFNd0zJfFneSpf1ztT6uIcYcYa7gmpUnLHhYFo2D4saRqq0mjXWlVymGzlyrRH5RtNf6w2TIx4dLh78nPIKQRc3j46qTKOBZLjbTAhiQxUWFLQYYM+xnqZJqTBLbszH6jfqQ5hings76n0ch05deas/j5pzusbGaSK0oVZFkqPd5TD7LW8IiPrWt5Et2N/9I/SEr870xhZJE5KYOm2zZLJP5H7zkn2OqJX/Mv7xzdCP/cxxS8hrpgdiMO/+uI41LXJAjVQgQyAs7vFHt54/7HBhtRHkY1StWd4f6CF7NaHvnCdxz+xIlXLmRVD9RCeofeR6uu2RQEsHD3zdDpF+Lyvda9ySMjr+Ze4t9/gQV9iIXd/qqhdS+zfGBDTps9grczNbWc7VOm67LWnibEOb/RIyVeaUxS14VwNmM5AzaoXlQq+hfn5fc574T8AsB3shqaptBjA8TJMC8br5CQ8BOe0iLR4VwGb8qTXHHFvBa7WWuZDL4N2zaawo/j4Kwiqc/JVdb6XbaTaKbK4Fdqs5JxgZc555SzdsNTEBpD2JZo08hdwdwTaWJCaj3IjiXoPEL+yXlbEwZrXaqu0b1MByS47Sx8LLa62VHm4nfEM1BBiEw+nuf9sUBGJlLOz3t7dHSotJb56xM6+fLCXgmcfFsptUYutNlcdkN5bo89BYZV6dNkcY2lS2e8738ETWpC2hWV55gQ6G0pmrc9SEJzGI4SpIa6DDWlHNdogky8rCengseVsECzCfcLnNginJQGAegcNSs5QU4mTeCAx6Ze8FFDSO7b1BGzt8GsyJStu/Y8Qpbe56f+lnj3dbQvwLR7wMbWgJXEjypete7ipZTZJCrWMiAM89qTQ2g6htLVoYACW1bp5biNeYblwdImcvTXgixyt/PI8HaljZGZREt+3//ehkZeVyHFfpsU9WchmYkpsNiLC3CDs+YE2JiNXVUh/u+PEMi58d4cl1k5NEnqTHgSQ9h4FpX+JvJEsL/tAY81WNZoJDaUx35QzsVgintOElx2ukQQhAE9QjeSHBAGp2TWPas4B1uNDVbq630dIrCgwE2rSc59RYqOG6wdsF54G8F6yNMOjb1reBZXcF2sSWyqGWpGZLfDaEqPHVscD33rJ5BA9590vUkPjstcuK6ufAy53iflg/RwSTg1JaF2xDcmBF/WGdSTvARBjesMF0IutzLQfucVPwFq35E8otduEuU+ikC+egAxxw8xL7jnxHe++VO8cgbG8Jx+ouYuwofoJEb2xS0JNs9HJONHuU4xAKAPeVIyuCmIWMdWl1SLathvV8ZeZt9Njf2NhxhK2ZnhkaKHbKRZMgBmQcqmphFE1OG0dOwPvynzOk2yF/xYEqBdVM4vTba0Zsce/UvIF9WAs05+sviCdw++uci7IIxhg8tPYny4pk2zxfbZpLN3O1rQ2GvQGHQ7nY83FIDGeOPhTLavPPgU+NM5Si8sR3u3QfM/rqeeeNNnM/UgNTH6G4U3FbFdo9263lByVDLX6MvjZwSXa3KCc6WU/Qzb211DM5mEQKRCWoFfTF467I642/b2nl8zQeSE9u197/DU4hpPqyvbgvCQv1bhJh+lhR/qziQV4SkQIO1tyLq/WXO13F37gegHVISrn/PA2hXno9beCNwQR5nAZfJ9/qOJGfd43FCDDezQzotHx8HBY7s9Tr07UvH/lTtix8mI0P7s+KmdlvAuHtMHRRvPqSRzqjR+4e/RWNv9gJTT6CL5yZuBpesuufQZ3jVj9jbNG4dpEgSDGCcHVBFQJiPQCliN20qFCaQP43mxNhMOhGTaLESPv+7fkCTbzzq2iLg8SHvCNWZ22CWq6cHeYni399OX9P5EIQP6JO620/ZHAsdGgJfWBzy8uEWBVlZipqw2NPIsFDr5Ad9qLQoLeMlc2wlB/C3PP4Zfjt1gO/j9w3RgG3wi6KzzbSeF17frha51PB3qNOJlg5RAFApMqogSSkVIDSe7v14BvL7dwA8v6Ie16Xv51uPHFmm6yN4/o9WP2i9NLWBL8lSbvHUfmtQ5UiMAF2RqvKxRde09YQdO37RAl5p3RobVT63O021mT2UesCmQKL3oQ5uP6+C4PbVh3HI8EGF0KAesvo33vbZxrKVuEMaR6nj86rJ7jgS4Ysuk5KK6/2F0czdaYv6IGU0KVAI27vqtP2xJ0cy0GVENEmCb3vnNZ5V6hPz1c6/kPh9vG23sKYC54sFqJO4rg87YCyYkSj9MuVNWiiGb4KJL+c655htlrqv1abOyz+gw/Tj83un0fa0kTZhzxg9j96TaiAqTG9KF4PWlxPV3c8Gweg3aKJC/jJZTCahwMF2i8t0LJhLKXp2N3v2BiNLcR5zvI+keF6bwD9FyETAjB+jDH7kXV7TaK7Cc+9IRF2/YVbZDCMAPBNPfKsUBIdLyiNA/9Uyw/d2CutsYb1c21EJRYaKeKHy0KyXdveJIBdsKpwfsLte5xWoT99WOz3mwKuIVYhClJAjtqTjUfwWF08bLuHAMDRLIQ/6p2HFC1qMoLFJd0HMn83+jfFBtfGoLLZeDrjaYGRjNpKnMV9vtB2mYI7mFU5rUnQhx+NcjItKzqKt5aX2galnSpiLp2zNu7aSfNZjfk78HWK7+PWbyIIzJpAeFvNxmIfMgnDiUQyrZtS18t1k8fcV1+EULapK9zzNoNSWnVWA2kI5ONaFfZIXXmkT9IYqdpOH2/cGrreqwiIccY5qrVAQgHK0Dk3iH8DpeydlN+RvA3sZx1VizI6fMGpbFNB4GxVVVQBP/BBEbyLOsjv8ZN2k+WWtsIJ8/B8V9IuVjOt7aebskFOZPOYKPXPjlfmSWZlZHjP8D10uAiACHPTlVUf9rj+KnWk11OH7ibt0az5jUfPM/W/lhGiP95jhQ+uRsjs0TBXD7VthUcz7bzFBmT6TJbYvHalBAdu7I1ZVyDykR9tMyc7GldZDpzQWRMwVhmYjUjgx9AfBZ7uWiAW6C+v48elr6KxO6mI/VPTBYFBLjR0ZnMGCTc4+wfl2BkAugvadBgSiQoqq4aypFdloc0D5BoATKF5f+UGagsX/DZrWQ2VwDUz0W1MRe2V0OuB6BE9vMRzzUO3xpKzkDMqgmvep1qz/hAjdh/ARLcbFhgpfMnto5SpFXiUpaI3H4N8WJYIrr+srHLLRQwBOd/8BjA+tSJ4EwKPZW0ywuKVIWLpR3WOiPAqhqmXNJEjHlIqY++G/dIFZOxTislR8Z+09FMS4gcB9tB4rJRY9DbNkchbTm0fHVv4AyC5trY21KbLhOCS/qkWctaF9RG8ryV2jPubm3OX2RybP6Jm6pa6MfI5TGYqVih0ewyPGzZO46OQ/7yEZboZsYIjde52EhXRZjz+KEAmZp+za7zTPq1skX9ME768in2giSkGGPqmvOVQfHCdd8FuivbFzWUZdtPl1hfXB7u37WmCVqXfAwtsfX897nVAXrVcEuLfDmgAdd9Sk5PMMzLj+TKFzXo8frYBAoP4OU9Z67I4syzJ7FlNB13iSGuNdOS1LDLeiG6z8uBLPjs3FvCi1l95WgvrDzzyVdVKDfxaUpH9O3BYw9XNsdpo+QnQMtjomlFo/W3eyjprdCq7ZzJEIpdL37ifd78UYZBtYgA849dG4H319l/Hor1GG/EK5+C9xMXAX67iyZKioocMT2oWh6WfVki2g+RTkXDSuvLVli7E3wmO+5jyLjjCmcTH3AEQeIQ99p1oZUfLVqAjbWIwPKJ4Qg5vxolAGGSq0qcDvI3G6P3h2VrpF074oK+4+fmS6GSp3aL06JpYBHExFUBGiGiQbmSQKTrcMwANDoC44deL9Y19xqR3UxJNXpjKV3vBTQWE/QWzJ9gblnAQAjuSblBJh0WVwukcAmXJFFN1+tQ8PIKDFc64/qR9+oDg8ZkUChI/m6Xxt/lCZM2hBpz4qW/eiUiLQlF4a6VPI2GQ2mW8XCpd2+ObUbrzRs6yqpiqGGrkWr/RNS7/7A1AQrBBCliLdsDvCvvOavocjuNHMSRseuq2yNHUwNQLznsj0xWoUIjuvXA/yDZgChluvkW0547f9B+boaULYuAukpB9erRqj1hAr9aVLMd8KZa3XMIhZC+Ficp1r9TL7hT80r0KDDnqPZ8C8yvqK+dFqMOhU9bFaUSlF+yPVYXU5zaGO24ZLKnmW4lPPovXnGrYIh7in96OBGeUAHW+BgK8vkeS250kTk78+Cu5oGoMUqOSShc1lMGo5mXz5ewfMNBqXYyZR0SsOzdz5bDjd0l1ybBI1gnR16AHbdz2uL+UU1Je6gwJjqhCWx+qKNOGyhjAQdR9i0T6nP5lbVqN3pH4OsjGfedBu1WS5bv3oXI3m06ROIxqfUSbIA4ttwiymWdvbtRAZTBn9sPGTx8fVTGMbrJFCv8J2CSIc155Q1HfXeHFG2drkTefnUx8n+8/LgzwxdJFq1/aQkHKqSWBdkBl6drIj1Eulzw5eTyMLzliKvefZcjHnW+l4aRTOFycJH8GxeU5E+RCseB2X3u4y2iw8OA1KbAPH57r1m5PFvfEoZ3QnnFiNd1G+hFq/3SPJTZEYYudnT+9sTyUXsRVKCYOLks4U6JA+nlGDzW+oYNdkJRFjV+2FUZH1AuDN/NUa+W5d5ektaoDyyx5HYGdo7WtEOExgITmhaB4kVumJ5LmjlJuvY5p9SMueIMh71GtIQk8pDBhmdyRB65xq7EkNNv3YbxsaS9Q3KKVoJh6bXRf1EtPbb+kh4vBmLJPCXm0iEpbwirwM92oln5wmA2XEV2OxFmCb8QexFDzRVzi8HrDFwe+iT5oiNzpG1q1ObE3nCmmFYkyQuQRafYU6SXYkCenM7x/kalZFbR55ecpKuwFDAfpzQ9cF8drFeyZmxESmBg/6VEGGGnb2qVMQcdeU6LUJmEfsHiK/QLN4dNUGhg+Y8rjvoUIxGiHG0Qy1Ei5JUHJyR69ZdFvasTPWeaYTMdbZ9aVZ7ekCWqLXe1R3DaPhdfPYqx7hi+3iOCwIOZAp2ZonB5nhCM3OfBQV0WPvKPAc1Q3uYFgf9FlKDEaD6Tw+g/ZMKncJBUa/RZxh82pPGc0VPDOC41++UcX1fTTtsRzw5ChFHt2iV0LI70EnDYXht+Cj27xYx7wugOdbJVZyWyS6dOTphWv6wV+FP+9+nrYzqYjO5Er9rjOhsDA2dmFKMA+LvDZaDFBzj/mGvHtuaCMgfrUiejSC0n4KNJdeE9Qnv7wvDme3C2qYhIGc7/bEGMwCcBe6RjzRfJ8m06VDAC+y1M6GThVlemw0oNG03jPxjhdTPRMfnKjktvpncQJo+x89rsNDjHjdtiR74QrGB/COPaaejjyxpvk5TFd7lsx1Lxa9aM/4toDgjGqZzYh733POQJZqKhZ+NYWVDOK21BX9Klp+4IMSTll5rxlF6JqVlPq7Zhea2xN8apquxJPfDrP7vFI2lF09mEqo11ouEs9ZGioQk2tih1oPQ+eo+Uhm5MnyC2fkML00I/uZMGJ3DhRUryRg2kzJq0F8N7M6MGRCKslLL4nmqGJ3uxIPoDgyN8DQa8OCA9gwcgtvmblJTmMs3rqJUnlpGlCUDk1KGJdtzKcXg0tSjmEj++bBXvua70Wx1dEVJZoz3Ie7B+8IhYL2ue69n3P3dYzAgmasPf3bG5tn9AxqFKz0RIfMT9g2NgFCdsnRz15MdZDg/MfDVB7zUqEuGdEoBekkyh1bPIA/dNl/3iIBeDeEBPPVaB0g2M3fRGOljJnwCotCVwEQMIeF9bpDQ/aoZIgiZ6qqGsA1ePL7NAdEe88c9bfXqUviqrDUPTJm111MdMnHLVLV6l4yXPDq0TAmHtpmBP0eEDo7WyPK98JXTM86k05rPfvVRP8XphGJzud774iTvS0KETRcCnFEpjl+lUI7+T8RiwclYCYvDBPtnp23UFUZuzvmDiziLnjPwjq/ge90J17LVNBelhB42kauHtgkqYAWgUQU+b1WbJ1yzVC3RyvXa1dT0Wb87V6pjX7HxOBw41aO2I3XW+yXed7WiIBrGTz6QyEI9tBmIrbVg/dV8yYoefGjJHllucqsYzpCpXAZuvb0EpRpxe+L7/anfZ68VD7lTTgW67/H1t7KjVDbJ5uoJttNCaw1kyjELz7ZHTqHi1STVWH23lL/Sg89s/2sEsjVfOS84upolyZbTelJPqEb9tS2coZHeYmzkAQ8y17/kMup0sFoF4sZ3+n9FwK+wBjV4gYaOMMjn7qYi0LFBH2lsQswHExwlgvHsuzJJgiSnyMsdsFrkKKOXBBO5bLdC4v1QD4VKHF7rZmAU6QhKoyByMKPep5y/EyMq5Fm7QdYKDFOJr0gg3Pw3664Bu6sa7XRLajniWCpS/VjYHfUt9T1Yen3sUy7nGu1hmf8X3Te2kimFrbXNOpZshtYs1loYCYGpDWDV9EhrsEnLTqQZYnHvbmjoOnU4dI+aKPjBbmhIiZAr7IhqeIdSfH4L6iZzPU7aHvY1cBdJl+B1QNstYeqGV2bYMZIoitWLJCA67fjV+VAX0GXHCVvVA9iqXvMEsx5WCpZJDqn2ukC5uyVKpogs7jqrZByHYHngtCOYpXvHs3RFNh0QZPFYhPsVJNAr9lEJPYY73VI1LYQDJ0IBNf3djtr98qVJmFRMbhWsHLHRKHTJWLWAxu6wiX9AioycX6qpidvHnzgFKmOFQYaNxzRPRrdDpHaaZVX6kT9ArEZT8iTRP8yCr6Nap36ohXZOXq73C+EcjUBk5QNM1JK2umWNuIjxKlFvV+bMHrrQcuuBnWhrgf8eDshPGZE3UECpqWOaVxPzzaZfrlr6COnCdQ8CLpqbe/NqmjRZ3qIC+2E51LXDIGQlKLVZeflV2eqhIaMAA2ikQ5xTQcEdbU8PUVWE5E1PgH6y87rPskTHFzZnWmcXh9aq7wkbZeSHws5z46xZTeDHCiZryPRfbcv93xdOgGu32QX+etT6/2V6W35ish1suRDR0f7LWCGcYO1nyDn+EZYT3RIpGtN8y1RTFQqVyIG/KGaiQoPEiA4RpedlFJc014Xpb7vo+kwsUelU/HuQboZ4RomWIjHpEYo2aQS78UNSbY/5j9bIHX4ciF4Sr7gmdxqoK4dwpBlftR6j0SxqZgtKrwXudWDl9P5uWPptD6RFdACOenLjlA3N8HoUZPVlqFK9vOLE7CPVhcaxxtAqlBW3AZQUWx3VnblwEGjCKjkp7ARSsnVEd6VcS9eUqrPyLLWxD8RvjybxXatzfPW7hI9JttjC7LJ2B8SOzIjccWwnZ8xt3aVH2U2aeBSC2oQrFNvEcnvRKiZGXPXthMeqRII0idsjAOb+RVZQB2efF1Rq0DIpRGCxUj+qMGCFBUftlra4r1/gmVIGp2Z+18DSPL3P4JtkG6vIbfMJsr30yC6ladywH3GG63EE/NBJ31aemCCRGWTdsgrjCxs6O3qliuaJa07c9Ic+kk5PYirV5jWsZTRtxp9bnnocRgVj8HcW5Qk60OG3wiMaEh5xnyKQAFk03KLesQYd04/alwxz1edIkF98yObdLGLOXP+oa3R2yFHxfejDF3AGJX+1yYzUS3FTprbSbR+Uj/9mO5p7+7ltqGjO6Y+Hu5fkim+pYaKK1T6fhjom24xtph8WVAbvWcqJALfWldHkBJXUwbZJaqZYdoUWdafFcYVvhVS9jJednikhE/sAkZHPfryk3ObO/ZnXiPV/4AOsV3JQygfzjEhEc9O7NGXR1ZA5UNFtNHaNCraltzzJaCZPwRxmuLd8APxLLYltUtxadLChUWDbMo2znIcLH1uJ0Opz81ZqK22x6oom2KK9/rOblMIRVlrjd3QqTgrzUDRzDBf+cThWqFQUPeqi8YbOLyIc5EnRvPFk66eCxZEJNw9JgePHAX01u3KPLpizNTQTz/orTJVjibOTyg9WnFYvoPn+VydLQuHsPiPoyxBaaTpzj2AXqsHKUoLUeN38u4+ixl99UHxGntEaVgfcXHuWgKB7oucwQ4mqB9WihiDz4pjbQYCu8Kz343n4ScBhFjFdM5Mgu2buH3vqNedZjEj4rdAzeCWZ+YhMU1TzXYx3QdTIR9NKTtqrh5QkeasLeDlRe6ylAh0NWuIrQleWjp9b7nnmCagDDvJ02uSCbkJ5IC/eghsdh69lwLV/D+olAEBWwbLwmOU2UIy80EPGuHGnU71337THkDb1LA1QezpTFMhrRev4KKcxS+6Vs4Y4e0z+zZXtWllR8oprDofzQDMKr4S5P2HIai8XoYcNg3oGVhHFa352NVzTbXQP88RcemTG3nfrgeU27kJVhjv0OowLPLS4ap0Mx+AH1eegKZCuUSPK+gZDZk10O/KtVsTDOZZCixJCS3hCRchFvx2MPXtDhKE8sylqdHCB7oWVbO+1GRPLFDlv3D4lufdaUtvwwaxoN8iv04s2X6WctbuLg7i+mygqfGO9V8UFF1GRfv2kwjH80Gc+UvkWyWHvw8ybUH/q4p1UIeQa9PTih5LThKVPtWcH3zDEaPNaKtCpCuWzw2CYUJbnJId3WiufafEp3K+YJ33nld7b9zJj4e1rEsqzfljtaK6fgvWJdBlixcYcMqYoI9xi+OES3EbjqC3Rj7FjmhvnFUhs6yIgimAzfPxjKTASTmBNOmGHeT0xrsVi/6aj7ZynFYfm8HA=
Variant 2
DifficultyLevel
562
Question
A painter mixes blue and yellow paint in the ratio 1:3 to produce a green colour.
How many litres of blue paint and yellow paint are required to get 36 litres of the green paint?
Worked Solution
blue : yellow = 1:3
⇒ 41 of total litres are blue
⇒ 41 × 36=9 litres of blue
∴ 9 blue and 27 yellow litres are required.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
colour1 | |
colour2 | |
ratio | |
colour3 | |
quantity1 | |
fraction | |
quantity2 | |
correctAnswer | |
Answers
U2FsdGVkX19f0v14OSO7RWE+DjxkMSjC52m1dZWhVMuT65heVyyD176hYKEWOuWk7b/pXNkNRKKZuy4Bq9QJfrWQQlOnmiayHlV/PZ/j63bS8MERhh4J9kjlfV4XxaVywIxWIRAXduc5BWjoO2MLDZnRgXMTXtTw9ZPxDNVKI2H6P5/6pfly+sMT1wdlmcPvM2NXCQ6i8GmXYecRhtRJM1F81XJbGelw8LCxkVpnMPy0Gg1HGEGZyENVmhbUne3ZIGBxeh6mSpGrUJbShLPekbijYwDeKBZG22tVFSAS0crYUaGQIVncwIrrvltiPpQjSUDKUs9IX5CI8/Ctz1moeQfw4rPKPHvlKlAnUPQthMseTDI+gG8aE+wuD5P/icG3jUPYLHohTN+hw2US2vuLowBnAePYPo/CkC7K1IBOTQqaE/FRaYbhCX4dKpfhzHX3AVfpa6968oZSmSBNAUU5Mt7f3ZGlxygE/BuFzGjTkcH3oPPSadPLD3CQOu4twdHcMEbTLsO6c/vBP+5BragFl4TlmnMxSbFOUqyxKmmu8PghfuEN9dYxmaxeGwz5t7tjtfbSIA16rmnzNfPTC31cW3bpXNhATzfNzyvG7GNnqzHOMy3QhIZswdNORcKW+KWxNwYp2kCymRkP10x6XfH0RtEBhEgW5Tc0kwfuvmyWXkBc51W+PNlqU2iRV4Ls37S9ZrTvYs2TmAKdIDEkjxsFhKBtC/O6LI4dWAGYC4xWbaRXQq8xQeatDykzOg/E4n0oHPZLr9B8ENOHlQOHVjA1ngrRCNECfyRNxSnDmjILs+23UJUiKBC+NPvS8MCT4oeK4dEfdstCDfbp9PFj1+05vJqMFKoCcl+gTZIvEl83NWYmEZt2S/yymTrj+e5lWnTiWkK4co7yEgxguSXq/gaIehMoKSxGNy3XD4BUSLxOPdPwXf6k/W8ZYQ0YXAE7TXOHffF4lLLrDrqPIWlk6T5ABCaHgAB95MuMM9ZqLCWqJMOCXs6Tnt9N7REUaVAEnEIlx5iuV2w+V/w3EEAU1Quh/riS7+cj1jCI2Kfu9xIRuisd8ha7hbDW1mO2CdfebzF5Ywgiy8suxfNe+fW2VIzeId5YG2gzMDsFwHwr7k9eNIil7VPO4UYy5aJhksgYHdqUSYfFDmZHL1oz/osA1sK/7cIOU3e8nFdUjvHbUmZm7y1WqN5wEEX64kEeTIcKwxp6rkmkFRG1WLjMl8sFyppQP+Nhz731KIpvOUO9scQxWvXp7bu/4Wm6uQP/dx4FK/24fOGkHmRg4gVWJwI7FSWaFRD6mWeaLAGEqKgQZoeiikuQVU4rXeZfbW9o7n2inkqSApgpi4eciQxc2dB/RPXrP5eQRPj+Coo4wxSeyR8VVNFRpynDT33P3HF+U80O/17myzkMrnBjXe/EUYaMQYXzMVY6G9BXs76sI5DYp9+LEGhCqmfuJdQJ14kmaHechVOSg71NgKQafWRTgGc9BJEbqnLhs1jbqWH5uPiu0lo89SA4lVlfhJZnMqGk2wNn9o66AywN+QfjwgBwRaCMG/TWPD7gu0pcCkDvHFw/zEuL7KDtONvnvDFDqc2Z/RpWWaHOQh6aXMF8DAJAfw0zLWpa+xlAzMHlCV68V36HQPrPxLuTNKQIYPcZJEsfyYnMHEjFgebXYfXpasqmiBe9fsPpXQJEcR43SYMLms3N4Ks8fLeL6j5FHiqZrGDRNBilT/Sq/y6yMOkNpN/qIMbDkI67RAZUMFDLPMb1mhn7nVaCtnccvuTbyvea9CXnic7rpoYQhohgYVhyv9fjCit/bQ2uY/xTSZmI5G2gqLCGrPzQtJYrZYmEvZmXU653QcclFI7Q9vB/kBQFlT8COIr1Idro+QDpKKm1rWgQvRseaAlxY6JNRm64Tn3J2HE6KPaJPu9HsmPyLD0eh8aH9WZi+JBd+auxh9K4haa4bHHCv/ogEN9CVimmkF6OD5zuXgb/Yhc41FcMAiLhl4XqX3+kJym1/hYde/kVtn7B0qKh0ZsAJ5navXdzJjwUqDfwKUyj2+mgnPe4QzzCvG93a6TMqU9o4kQXoedCqWcENWeHrLWmDYDryh6KKS6o+aObs7NkNO5U2djmAcFxmSNobsnJkzRiH1+AwGdh7awXswt1NRr/HG2Mc4oWLAtvmklxfkGr953y2HMOZxmgLW4Z5CFctj8/Js+jQ1ScF9CgCA2eJ6dWyKwiix2OFg2ntQFDC74OgH2Yum3ICdRD7ovbmbcJB2C8AKjQNR/Y48By+RfdLb6urK4eKMZJYIw69yd0l0ErZ4i8jksRvc/AeXzD2ezaDokFqsef04kYKmhq7pr5fkrFxMGh+bJq9MnkYhEA1l6zKYTTNBsKxQ0G5WRBG5IdZSWgBM+xeRB7qiFfTOFnReGtd8FbcaLTtCOtSlAAKxZfng7NXn4JcC2uY8nVtKQWmevz17qG9jnVIKivczZNI6qbnlE9Vv5t7IjAULiPkXERKddeBN0wEoPlxwCXlOCxyk1J10fpXmAdpM6WcHEs5tAkgg/WEdGegC0wlKVs28ZUWT0K7tBjwOIk8baPUCFxJ7rAQaKb8M4OLJtdhqZwGDTzIptTsTrEECyC7KMju87ih/IYjdNvV2HN+fGVfdCA8pwqBv6y4iCfAjhldsVqHYWtSCzIk4pONR/URBii1GdKDh8H4rymEgRhHijM9Hbp3cDgMl99leAIksa3liO+x4zSWKHPDCneAHJMhz/iT0PGhXkKonFDe6kOt89rxPHlz9oJ54Faa901ivU+MX3mGRadZpVBSMBphTXGSFBrsBoGEdu63k+FcEPt+t8dPXijWX7S2jomtb0H7zIhG2XMZM3YxzetAHWIfUdijTSkMD3VOfRwO5JPtjY7A0a53Fk6A5PPWKM8UKcjioe5ONAbEnvmDr4Hj8zn4YsSKDJ2V4g9qpdMOr6WvItHcD1QTgN4/errIrS9ptfNbB7dsQHeK8cYW5/SJlKbEBJzW1BKsR3D2WVl2X/Y+zy8Rt1W9SM7EVX+Yxj7bXGQRf86zpWczDB54L5SqRemVnelYYM+PcbRSEkVJrlWuyr1SDslpGE3GdEzHcsdJ3fHZdC3C065joJoudTJ30i8zveSqAarK+V2f6LaBL61s324eTlRTE5Q083lkWH4RDhzflEhcqV3DAVgR6HFv+AFQmOaPZu4UnRUgRWnk8K7843eMPShiE6u6gIEI6oiZVNQuLv5JJqaDBilCyNAfqJpIuXsitzMbRbueO6+nGjGrmyz0TT7zJ2Jr34tzXs7KFn7e1nqnyZzRL++DhoSaP7Uc0LfR8OkTUx0L2xQ8Hy5hr08JR/l9C+q2Vp+/9uOueC7CGimFX4BBJghaEkC8A9zQVlJqgTM3Na5zEJiV4+oba8N6xAvOglbSfs1pRYz/9O1zMkYR1xMxt93gTO7SepxjFDub8wZ1GAbjTS5aOdm2D/nxhhgCFFHv04zwNKugAUjNwbMTd8RuRpjnYe5n7wIHxR0kfPnBHrGJc1YGn78HGIwoKklOHcsJiN3oObRNX2ZqvGiPUxWVJc8T9GYaICBN9TrSGbZOIWUnyRlxTT78856tm6XfOcb3Ys7HJTmMR2wdpr36dExNI3lDkx576IrMQFM+NbsSq1obUG4nR1H4uugDsV99z/DBU6fAbD+gwi88BO1Pf9Q1/BVhD7hFbBDBfWT110Ccaae4YrlqzNsssqMazXYWjZ5fzxEa67Y7nwXxOwgN/LiEM3NnW1YyohQb1cZezC0mmvpT5MSDyocd0962Ck4QDGlSdqB/aWETcywywzEPmvmaC6Utc+l333gnCTSVSAQY688ggDuEyd2gZC3wa3ad5lhtvQ/55m0R2ByfN8iR9N8QJzWbZHdnk+kQslgoG7aTaCpnIP+BSVyr9WPviR8hyw7g1oOLXSDjwZHVUPhQUJYQjvDjgo8PQYFrQac84j5XcBbx3gRrGH22DH9IzIMAfYdtwLse1Dzm2Y7PEvQIPS/RnYb7XORrtpOffwMsmIWCP2kVkQZkx/bwQY6E2pWJnulO0ZlfWUKoIgiY5QhPTocK6/nA7FckoSlTZ6J6kxL4h/BW3lE17hwCTIsJrFWRWI4qu3z6pfhQ304lQc0EHFS0MgQaTTdOjQ7vtGjvZViyi36yXWvb96q4B+xK5ztm/dKJOjR5lmb32TfZTLnDMT8aZDPjtXY5wIEl6WrHSZJrelEuk3C8Evwtc77WBfdBU983JBqOEUoeF810FK/l5OtEkSh3+0Zbh8I8ci2EnRg3wPly4Q+KE6mtezxg1nTiHswMQIEl94vjcxkrTN+eZpfbO1YO/EKEPDqLnCSU3MVvOSVu6J+SZPXRKrAAeV+Bs0BkSflaY/1XDNDklcjkTQrLdOW6ncBoAJ78q8cpYKnyD+BxOmFL3k51/lFpBjarz5O0IWAzRt6z+oQloUAtwM8fTMPR5kXO5QZn0XXf8cAd6nSnOQ7rVuMPAII5FO0K96BVHmh6ZkrhRmRenG+F5YPBb/VBK6nMm8LFrkM2ZqZxMQ+IBFHAWsBlFqo4FNrHFTAVZxEDHBusn83ev/4OQu8Y2XbPb36PaJON0RbayCsKPCSPty+lzW22DxrYylvZvl1xFi1b+W5ZnWIMATahoOt/AYh5t4y5y7XWvrVLiByF7xqrttGma7uOP+M1wLTMyhVZHiu1qKoq/0yQFvZD4szx9GxEEYZRAo6bfpAeFHzKzeCcZGMXmIhwBodpAYLfZcigeBHMFfwt8xERzwzC4oaZYmjCWH/cGqNwP+1NzhManOXtFs25C2FXLkaWU5D0SASv0bk5Ea0C61nRH5GgLO44LNNzeFOqJWiVUeYQP/q3/uZCMBORqIwU2MsimjCGPTdfsWEf4uN8m6IZKuCHfUO0Gdl3ek5stSHNxQsNigmPaf9CL65FFsjp02bfNiquImhYAw2n+jP/OKnPbiKg8++MiW1wV/SfiVZ15ZtVWq9B8ztPxThubCtgVt/2UerLVXyW7AJRKOLFwtxDQ5pzV6Trk861hIG8ix8v2mr8F1+AbjottsWXDk/01TXUmUk2X+Zo1nfqGfoEb69zZ5+6ULrbCSzdiIY5Pwd6LTxcx3fASuPd8TxF/+RWZ/5qq7sPjNvx5ddZrZWzHh0IIxoMO5s4BTWwpSrJj9NgyfyckxBhApvKouCH/oRqhn00K2ziz9Y6X/wisskKyYoB3dG1YPIvH9dzOylt0yoC91KE5k8oLlXBQkKMSVt3g77hkxgxttZXIPpGoFHm5azgcSZgUJYNdwk+gjFJF1JYArTG0u1CcuSlTaibwDwbIEl6kVi4njactvhSVvBC7RHE79tRGnujdcKz/3Dxw/QYjxJYyUzJ4TvHZjt9obBnzs/+kjoeHj+xXWG/qzenbFhAbru1l9eKbJCVAcOyrCCBgePFmpXcMe+zkykLK8mf9Ut1/DB21M7nAwwHe0z3sihwLnSdAsM32VMjWUrshwojll1XpM++gq8UUcXXZeRmnRLM2Qgp1ZtXVPtfmNZyVyFCav/CPjsK0UVV8RuW4jEzhcu6GZfYanUBZ16oZtvee9GQ0Q8zBu2/gqACCRFeUBdo84y5g0ZG33Mos8RGdp4GwJQS16gDumUFv8DgIy5ohVfSKc30O0qOZPrBPEJzhmgjSxBC8Uw4vzFeQ99t21U4JAAbH0CcATBQtySodFeEf8DL/Lf5FArU0rc7a0XRN0zPVMiwYUXuh1efHwsFESWsWyeIbC6zQMpVRtLOpGl+c5zXTxVhOhV69ag1xmG258jPaU92HkIsqnzhFpZQzCTEv09N1VQifwpKnzHplCG8LTCDZkTORAWAzCXGLuUjdIa7ZRjizQn4XLe2IfnPw5RApyN2z40L24SCgOwF+7uc4vwUq+xCAf8QVyHhLIS+RCkcGnNlZhUb3bvVtCth4dfBv+dz/SXB8Db/YooH7qcPqbwtBavISR1LZ/lQ99SnBNq4qNAzadkAacO9CYW7+cbzPZX1fuznEpWtAGZ6o6mNDQVWuOkOa8dZpa2qAC+rsBMwfizJ/7rOW5LSMTvluPtUL0hBCbI6sGHqSNTS56+WszvrKyZBMxYBfrCNOPQjJ7umyfTtMId9VekY64wW3eqQ4EkCoGgcFWbSC3RJviHGR0nCastMhi9xJ0B178NOmmJEyvBv3cguh2sUxyaCXIs4/eEcoSFmJ1XoXaQXOJkdO5XzY48nFtNGi3dvcadN5DEWf/fFtnvThfJupbj0zHczxs75FIbnF90ffzKaeOx8tom2Efps/00rbLkT+J/T/ROzq8XaMkfZa8bpBaQITJtnTNJZ/+Kblv6YdqjUsnkoIYO90eY4tLIINRO1EOUHS2EI0PyWSsYu9u7+ViHQph2cVcVmGdXxNMSQSvOneU/J/Y4VCX/lnHu08EDt74CMMFn5Ih1+fqHDOsI6CGRIOE64fYiWZBuoHyQp2JRryFn/Y5+N/u96Mx6WGaV2BOFS1XG5YWbpVY5i0bkfVu70tdjoxcsG9qfayEtE7a0355ybDlamSroh0loR/7GoNtPfDIUp0IFCcYm5E7Alvu+DMIQvczQdSBOYF8/2r9GwJVJpLYlFB5EGPwYm1J5vndYplotVvcBv+Ud43ahsYSsZqYnHw9ztR3aDJhrOEd5GfTb1OX/zH+jOOHgkxYYWHDquSebWEX54LKAqVHa2EeDLECksJRbuEiFmHCwovsb6HdqNm1d+0M72aNdeFqmoOgwPkvHVtYoHDL3CYJu8J8J/cyUQvMiVJwjWGM4ggSoTt/R5iXSlWqdPefIL6+JnHP2zci1GTKnZFmjEwHri+Q7yCabsxK1ybAU9T2LEOW4LETf/8QXtOUTePQgkz6sjVMBK+3YZ5nixsEjlsq/jL81rWyAxFLbe6pqK0PmRpnpT+CXH1QwxXPN1nNO3td48d24k3WgjTmAXoKm40KLjHApQlzNzv6iPAArap/dyq4DvXRrvQJcMt1OZCr10eGn7p7ypESWWlxgAgF90PHthkhxml5GiLsQJjMgvdEGzJmy4SZUhfm/zqlW6/6Iy8iZ2mpC6eDpP+ZySsw3U0md8keArc0mZjQeg/zLz9nA6tDJIej8hz51rfqYR3Wb6UQ3dc7BzjJVraraoBPCpMgOrQMgSJKyav8WEfwD0nK9ghh2qGToSjHU3iDldWAXsnStjMlbBuhOYyHHAtFiYgtm0QkQDw+q8VCwyt+L0zCM46zuA0cisz7JygKWTMWGzX+i82i4sIsPTWmFH1IYft2J/zoVPoVpOJekUdvuEDDxcGKC289smlLSjIiNa2wqsfxvjgrgYLYZ9etomHMTFlfg0kYjPXE92G5cGCq7hCWlNtOVU+JuLVWjrBwXyc/Yar12d/f24+RIN+jL3szurgZynURdtzf4gzIHCSAO5u+dHE0h1J33jmhjYz8Wu8E+eb5+LaoyYK2YsQyQXjC3qLj2NjrSEPPz2jP+yn+BbLobgVkAytbyLqkIGNBnKMAy1s/rihSfneW3osV/I0VKANPKxtC+63SvfLDJK/1lNmIByujPiFfUW+I66jc3ncm+N+p9+dXjYQyeAbceXjtRszAHepZ8jV0Y5Hb+orqMl/7q6QhK23ZJMzn5//vMBhQDUMaNMTXy5lVKGm5qGH923zzq4RkdRuiwpjYhwdu9hXEsYm3QCqX88g8Ts+s5EhoJ0R9ZEGViqNWPOzgfJ9DM7FiI41YDQ12PVtuY49TQe0SRVferLlwiKffA1Jg3HT2W5nK9HRX5FNm5dfjSfcFfB6EMq+bCccDTs7/TQEnEzD4g/92EH0JIyMz2/Bjktz6FCsTPuM8sdGvDFnRiVBg8ZLKkvRXsKFAzJ+RW49Vu9dKnX85c2ZXZpW0isW9aYvyql1SLgdz9qfBM0P14gcFd6ny/l1nlS3rdhAY3E6wQHxmXFXHER2f5W+cPRmF329vq5qi8URhfYsN5/UWsffUGK3Ox3nuMnFh9VwATGN/jxqMIR+KPM4pwp1J4szTUoS5gTqOvXL3zVTIgoOZLdnO8ajuHB6EXCd3Qro/inFLpj0o5+MwMJezFoCxONuHmvE+zuwIhmwFiuH3iZf2rfwYv2HixxIP1IbdzgkBysZ4UUarhKgIytyDZvFk/ThiVrGx4G0m33IEbTYTyhhFdzXoCutDx9/NVgCtGkpK7PfZGFoc49Wal5zahuQLneORSeTod378iR/1/ZtFpuDbpj3eu1ycM/piFI2WnmNgKKLDUi1SFJ8z52wVoIyT2D7A4SN2rFhy2rs6t9H/44C85o4A2eZ9uzAuztA+goOt43VKEwtK/sOYdyqumMQgtNuK/ym6ZJL47MurAdKMn6R3n34PjdMBcGqYwk5T1GfRt/FBjA4nsBnvRqsMkdQRE2WlEGuXGNGm+KGEJIJavqbg2bKeUfIZGxaxiNg+Hx3QsyvLKwwgxb/EXgTZpqzyLsKMfJFauSvXpi0Pn1mJQYSR+WHeWVNx1dbslyfhEdulTTebNjwFWOXBdHnCXe3Biz+85aVJxxVIzg8JHAh+Htwk4G86sKM2KQcYUMV6RBBDb2ViXg6lPeLC18iLBzGBbB27xZueYCvv+0x8lVccSCpaAwArW2z7HU/UWX645j+u6IL8NtiCTXXoCL4R6zMM8T4Xpoh3VPWmnQGOQBKDTQuwt+bHxqS/6ztabGsUAzZunoQLBZplzLN+75VwF1inag8GWEEQ3nxs0GqTSAECBi8DsWUdyc/FtkvZ/tTJTTUCgVUd0Evmw0J9JyqTS/BfknQNmrb0JlTt2K4/IJa6Dq+1PheyDNjYpJNhaFAiLKdPv0GSyNWyFk5F5QgmVkZ6KBkbToEouuy9Zjr25A9ncQNHh5Uti2xj9fjsuzzHraNPC74XME6LDePlVdsUJTeqrR5UnX6wOhrr1dHITrVfMO+5YN/KzyfYJl4yIs0NCBejxreT1CrkMDJRAQ4cc0hIzFIrOJQZEzanWKKYWKnOz96tRgZGPEeXbtG3o2ErY6LxLaGYsKYzC+jVH1fedN3bTcADgmk0ER8r9kZDrfb+6TJ0/jU8z7Xg5NuFmEs3L3Z76yw3dThGnXuyNHAdzhcafiiY2bqOOpQXQ6suJFMeCSYKn2Px5GhEHsilplQJNZcM7Lwu4BqvL/LOSX7G174TK/2r49XcsnT7q6gE6sPig927nr220sxiyH4+2q1EEMWCFhACSIhWQMFlAKAZT6jUT7n3fTpny9kQH+UyccGddKRi799emVXsDuTzd7Hja62rpsHpx12SirNpCX/wZ1jDRzUlmjXe0PbqqHHnIHVXxCJcFY8iBnVROUs5vO8PSovpjHdg8u3kxX1BQ7hD8G3PFwFaTtRPJ4vweZPioJmN5QRR3axlEG3DfC98bm9biLuLse41s6nRGf1JS5+XqmAHhtJLZXzKckHUMGecdSqZzhjp6IugKdXHjqCxMJLOMC1iUy0IwG+O7l8p0nBtXOP6mEkF1jp5h3Y+nkahG28Ic9afw2IFz5XUVjHvAgrUSCeyAjRyRB6VNQtHKZtUKgzubWOnqtYyz7FE/jRtTJsD2odKUT/XLDxBKgeW0lz+rn/fj6yIfsvREw5WYSHqT8JwF8kuBchNkS/Fc8O4UqJP8Ec2V2WursSGvCckK2tD2ujLQl8O5izYsmSyKHTYgD+YutBA++LXUl7qb5ZGYQByBt0PnlaoN1RkBl7YXs09CfNMoFu+kZAtsExUkv11QA/EoaUL44BZqvD+3/pwhepjp7cQBHmKXzhXvl+29IOKsJzJ7FAShl4Wjla0AVQ5q4MoLcqywiQBt7Us33QaVtx9BGWJee8f3uGZXw1s13CRpkqd5qLLctahMwRzZ1O9Oy20DYPmolgPuIuj6Al5o47SSglmPPqxEXTVUU/hCVXq2mHdLg7FW8pXF8TotLI3D22hHrfso7O85xnPstD65KkvpbwpRYgccoEaCn1vKDVgrmwVlOUFBwrQ16wKKQ2zyE0GJaYF1oW686KrQ5ufwZB+0DbvoousHaKdcARLIScKxI4I14EFAXyliCAB2c18Xd4NgEjz6AVNYN6OywmjexcSeadxV84tUfcnzEgxVOfdF6UxeawFtg+f0bu+As3TeQhA99AL0JDhiB9FerA==
Variant 3
DifficultyLevel
563
Question
A painter mixes blue and yellow paint in the ratio 1:5 to produce a teal colour.
How many litres of blue paint and yellow paint are required to get 30 litres of the teal paint?
Worked Solution
blue : yellow = 1:5
⇒ 61 of total litres are blue
⇒ 61 × 30=5 litres of blue
∴ 5 blue and 25 yellow litres are required.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
colour1 | |
colour2 | |
ratio | |
colour3 | |
quantity1 | |
fraction | |
quantity2 | |
correctAnswer | |
Answers
U2FsdGVkX185cumxRj78CL9U8dIC+oyGo5Rt3CiFM9yvZPc+adRgB1kN/xZATJ+B2WWgG7Mb7VlO5/9cTU9OEi8pBEIYj+n8lbEdhCa0cF0J/p2QUUZtTfvBFfwAwizrqCgtWjpjxdmKL+N03b3+HN3UO5Mb0Ki/FWJ/cOp7793VizbMlsIwS4YkRZg+Qf5UGghip7BphorKLZd/EOhNNiQgSuNka3l+lvM4uhRlxt5kIteVau+U8Okr8q10xvnetgOGkJRPbcPG5hiH2BChrt3FePg0/1qa5k6nSn5UTj0wxg7497WVjF/pLtozTrWwQRfqODRQ7p8Sr4G5x6aAxIgPXsgrdTXzZzQOtxaTDTnOXIavKDIsLnqCIzNLEJw65sCU/jzcoZB+HIGFB9WYXGeVEK+rKXo/C3iqitRbaO0rhXRagqJmMOCSv4gUuZ/pNLhXpvNQ4pill0nWVHqHWGsFcXxsGY8vdFdmZqCugafafjVUGSI9Yua3fGH2Bglk3bCAzUMSgppslVkB8QOkAg5wzpJwBSGXTcmIZeVBpSHzdZG0ZVgGZocB1t3MZwLgUP6AapkvLp0r87kg7pYzmGEryhzPbAvkmEVGhcGRpj95Ux5jPeaW4xYQt1+NEBy1w4m8dttiDlLN91Cu36jFl8pcBjVlYt7FHcBA+nFQ6PYnspKa1BXt9bSLtDMYI+Woq7bwCOVNZS7+27ET1BPw3RD3Be3Bo/5n9qm5FFxcIda/89+qRm72I4EzMFGvmC8QCRLlbtrgVeKTUCwq7yHzM+aJtV6QL4OI6q8I8FNUYhATbAtNzZFolIPomUt2goZ9kUR92rndq2I6fDrllXLFBJbU7S6BOB8g1Jakm+m6eLFwe2gvZf6XTK1JiMVMkbwHtqw7x+1BT6+3EFfygX8gg32Kx+Le7AXMTuYMeUmuuogOKeFPSlBGffjbSvVjneSnuIfReKb3IuX4loYSIH5IYVaqRwQ0T75PUomPsCtnOlmLaFZE5bsIecy05gkD/xnGet4PUnjWd4LvVj+O//t7DaP1wIkns1kuKRm76bJt1k2pDNcvmSDH7VCpQKGCYIUcw3UhLtk5oqqb8v9C7UEzZdpiqJqJGLfO3KlosWMKkXUx24oMa3gRwzadytWMMF+LONI09E8K8DdDWbVv4BQCQXB0aWkmNP1nX6hlkhdCvBYtNrZLVMHxNu7tZ//UD4UPUTGCXfG479wyK6+6uczyReAaSsVy2A5VvecKQ9mgkk0+LywDzek6NBOwr0U0MHwKylFBcOCqLqRBZdyHX++8vN+9hCtkc47XJ0UEKe0JR6/8U0bapcOZmayggrQqX5L25JaxJ5TnwcNt0IFP/i4E8z1PqF3rBj9LefLH0qpOcI4HjY/mXn/GlX2N+EtxLVWOpRwVwo5c/CTXt7NilQvTStBpwUIMk6I1GnaK/XTcM//JSy5eKsJXmJ4u1aWj5LRBjaSrNxeVXKZ3wQ+cU73yxc1V92ZYPiT98oAYHLg7XXI1P8JmemwLgQ0nYv2zAmQ9JRJyz1Li871SbXS/y0lL/uUaiyY/dqCeQCOlBAqMNEwpJ9++qjv79tX6oHKVxuuLebyNteTvqQMWBV81+H7+gWw6+j+031MUP0yBUWrnVK5cONryl5AtFXWCAS+mvGfD9lGEjseDB+GmFpEQipqnnGr4SgXRsQqyxwYQSUXM/AKn+r2h+kDzI6vKayGMDhYdCSbGAYjHgBddGVG2jX1453AUmHk5E8ZUEP+x/tl+skZbVDdrj+Sw47wQglnlefdxeYW6m7q04lxjsKm9inSGxGFj35zQ0Pq7ZuHLqc+xeLpWBaFnGYCJ79GPmof3jNnlvILrt/WMDhuf4QQgsxzt9dvAH2xRYtoGt+7yOBNa8lYoNEReMcYe1W2a5Cm4UOlQNyWP3e+XI22C6aGIAVc4wi4VHQoMKu/Lp03fVAua7Qu9FYNUwWB3+v7+gvHK4RLXOwpsEPbcjyHhVop4WBaxQlo7IMDU/nWjwllrtiV8YyJF3+Vz+RhsQ9Yb2xkUx9DEVamat6Xj3iE/rlGcFHBT9sFdvbaWRG3hBBboejEk+4zxetIG/OU/GDqq7U8XtmA/yWHC+0sF5NejDssPz/OAJHEjFT0ZJj1pA+Eb+2p4Y+eX1iO5xAxlgUp6f6yGzu2DkB2ukUjn5flDd3rOeBLt5t6TB3S8TAKk49xlgY2tYragnetPbRtOn+4/7oKxz8rxfRlZ+SAKJrZQt8AwZnNLJ+C6Gp+wkboySgLBShgwzA5ASwaEFygx01+H3V+A6aMr/LpcX1TU3P7sIFzKZmj3udNoATnPlQz4yOKSLZGeCoEF+xx3xGoq7VVeL6J9Pj06xnUVkZkLfFhXSIF3rqO5mrPfCu3RmJJgiVr8jdPG/62Jt5qjpz7245Pq458u2Ox4uEr3XdTHpSJwgNvkOFIblmmINuOpxfWGVwO0M5Ghgtaf0LimSJbdeHEaqmeNeogD4a6ayE4psEbpu/U4/w1BBOY9eNCZn5hX+5H2s5SbENbE7RAkPcMsxVnjQ0ZVN2KV0KjQ2FsoaOurFSv3R4WXTCZOP4lqI8r2bTPwZMwuZTTu7RodFbw6l5XYOF9ZYm6n915HJOYYQ4vo5x09lPafjv8UpeIurh10XGnOU65gW+xP0RUOam4SvX+TkNML9V9JUlD0Ca0Mmotb1WbBPEFrOrxvYl3rc1sefkLSZCe+tX4jX5I40R02BinbkoP4vI1Zc8H7/njn/G30Y3zOfrXnN5RSyOjuf1rmn+J3GKoI0iEWDlWivXp0/DpzKPxw3sUT5fkn19/xruZ0ukpyQ8zWDR6C82WwSNEFWFb69/xALh41pqix90J7UTgS9lfIfE0ehoxY6AkRmqOPVKfxb41wAJMWp/NmsqH9Z/7I2lG/xO5Ni8jL3CNVB/1hJdT05TxEC5OaxmQY3VwrbijPU8lDjZ2tK0jnVOg5JadQnpcS6hxJjbyDXJ6+16zGimjpMN+htx82fh1Dy2cT58TkDWyEDtSXIfIQkaD392ECyhKnxoKyVlhqH1DYQM6mIHuXbPCP4fS9SZlOPpY8XaBVt8srWur0B81x0dIngH9sounup9nVWlCdVdkSe5k8aydkTLhx8Qa3j99DALdqBHSw+l1rzCnujyQ6sMyHHiKw7WO6zqvnncIYdLY8ijVtBCoBERuKSDkYOxcKlKf5HkV0CsnF/J2ct8aUYPJBGlaGH10HC4xNUA/2xs0b5b7NnRLbQEQDVTE6w84yga7WjqAjttLdDUIWELHAI4ztarW3nxEhNb0iIE4/uEV43EEt5ViSFco7ZMkr+o8Qh9guJVPSApTo6sYsixsiRCeQvrXdGb0ZTC5b4uw5z2HKV+1/vRbxpByqhyxSf8fOAAb2yXwC9o4vMe+UHVhAc0EcK/L+VG8lVpd0ib+qZcOeV6S3SkB+ChEJTVdtCE0xzZ88nf3NA5HGtKIv0v8rLS0bv2b7H6WQbIbUy1suQ0UnMN7pQY9q0hmcjh6W6/EDH32cLZRcbhdKD9sNoabb3TStqH1OZrbU+wPpM7MQf4dVW7YZKQyDX8Fc+nMG9f08gCSNxDEfoBJRp4oMw8RyB4MbuxK0tQgzvTEnlIa774GM7mynrpu8gF/tIDj/nrqHZIMB6M+LH68egsHLNobxZP75EY2voHPRD03wOdShGLgINMqIlK7zfFJzaDGffnNvp57tXIyeW2+l+KSUXVUIw4gCxGlnLAdWY92ET5o1t1n5H+MgxgAdz2Vii7Cbkxx+9JHmH722FeWPwf/L82PKRD1ZZg+wn74IljASB/dMbJkfwXmI1xPPFKzy45un86/OIjwf8qGbr88RALs4W15+mFPEti1t3eqnDQaYldXvDJ3Bzg87FAmWZvJXaV0rA7od7P9jrvgyDnvcpLvmSljNyC95EaV1TGeBt86Ancloi2qaOPzbp4efcP326Dd/nb96/JgSAUaN6jQ7fFUD7fIc3DoDDd5Tr+rAQ8z+w2s0fFncY1HX794Aghc+4fFp7MRtd10MhRsO+xC1fUsB4TGILpa5aKruv0hHRonQfb2O6JLjkonzC1ylAUiOMatbqP2B5rpGxAX+VEyZwO3KByW4a/Hc5Y3grm/4jZhqkmOwIEHdepyeW8V4yxygqKVBrZO/EThYyPHpJpjG75+zoNVy89VWK29+xrULnaFFIkZP0906+KweRa0WOYUHdqG4UFhI0wS95h810m0Xt1qGOdAqUmPPL48R6KlmL1Yt2jTet+YvO1FSGJqQZwT9IAUC03eLawv5TXfD5gkkqXqNpySAMnJmzmmR+SFleaIFcc/NCU9FSajlDSQvHMFPwURaJR9axnWyaMMZhrkufKTcZNSJltTVisQhH6ZpBVUzlr+LeWteL/Kij6T08KtqNcmlRpTUiNUIOEjblTNPbLnyTRzh7eiOJW//lEf4bYFqwITc0mD1/r4dB6OpwKcE9jrVX3r+ux4mk+o9fjtEKHPmQaJ91bHOwluN3eKECV706eh2wliFn6U1ggnppeSiOAF2fDy3jNnXXOcOow2rhLKZmp3bCeDbIezPsKC+efwVx49Ek5KIwcRqvg1zq+odgxUgP3rbr+XGIVqzIKkD2WqNnjER/oVbQMZEURfie2i43rzaQkN/d6+jL4T3FquxycF7PVxi5IW1bxQx0IjOVGbJHcdu6LfSJP6GXINJDINmbvxLudN8NIbmlOYz4ZruxqMCPefJtQQ/X+i+JTScApEmc5g1eHikDaab0VDq24fYTly1Fh57Ivcq5HjqRtXZvB/ghoNBJAnsIxaBvOQMq7l2/N438JirMBamY2nwnT2YDG9NZ38bQOjBm/L4gek/BVVAdMREexFRqN5tgDOzbViGWdh2bONLJYp7g+iHSvlbFQz1Ja9ZGTvd7OLtrPrUGoYvcSGQr8sBlFi0EPH4dQ41WcilRta1PDrgbWKUwPgM/Bo5geHqm4/0IPc1JiRUg1rkhPK9SEfGJC0eLB1Qq1dM91t82ZYKnhHm38uk7Zyi/msM901b/zJAAX2VBgUe2WhWKyTue+d5AexCxIgNHowtfAoS4OtaEOP/Y81AUrTqq16Xbhz2JND+esacgQfFVfBsCDlHjPouKgneTE48KxZb2tt2fpR+VvwspD1Hkk4JzUrRPC6qWp1Z5y+0Oi98LCAB6IC6mf2NQAD+a49DXfBBQWECQJm76gZ9GT7CJqqcw9oTNvEotSr2l33Roqu7xgqqqpqdi09pDsLfasmcWWKxC/ZjzcLiB9Z9Q73MNftWTQPFl0K2Hxdaqd88JfdPMVH6uknOEnvgyFjj9F5PK3P6CMisJbOrLkzqmMeJPA0KjVikBtYTX2GrIjdN5MQYGUkwwybIlV39S0TYU+E1spCgphOtPqXwq0m7Cg7wvqWaEje3GSPP1ZNu0eS/wMVJA/mKZfQNKRc0skppZ80Gm7fsh8zVztoPTbY52bIbyvvE+BO++qTvclCdx78vvUQepH2Siih1U2D1Eqa/AljwEE6ZJj+WxHao7iHVrFLgINgz25H8GA2YV6yzg7f5RPWvmWkgPwfodJ2Dwe1mpP/TmJUngmToV0/aWk8CiKWPfVw5SWOV8uBDD8nAPMzKlbwf2SR4lOtgdE/du9Krhj4cj7FJRFU0p5OLHYk474YjhmyTEv6yAc90KrsIarrvu+yzrP7dNcU6RojXwfWhzzzMz5mO7dhk8yJ8lzfS1ccSmAQfGyejoGmTavgegXVsq/6A9GF6xoUBb/QQD2qIroGXUNlDkWIrgSWaHMkygaeG5pOPwQIAgleQcxYV83lQZsnLz6ugy+sBsPpX7u9OCrjYRjwAqknXikVpj8LIyUFKrEHM7175/I5g0mQdw8z8t+2QAcX13udZKky8Wky63dH4+d+gW5hWdRgZoVBNBF9+05lLJX+WciTNq8MQaRxulcpwPjoQhXK1O0c1WSEIWXFBiq0RiIQUQxLyJe3YISJQJGrXRM8B5htWdwhUOgHymy+Ml8j6eYlIj30X0Ot6jLhJ2ebyNcoyyH1Y1iLXKxz02PInlFTx6ZS9M6lxyayV+2mVfdSCdtii/GxCJQ6ChICtdHXCouDEi+GdX0UjHz6h92V2F723hjswhiEd9Itv5Aw5vkJ9PAWaqdsvFr9lFx9QeU23ZfuohgffTNRa/oDmLrBulISxQbyQCjgTERlZbGCXDmhb0nNYXhDo7qNiyCo0sh50+fVy7ClGu3nnWJVrL4zu1ntkW2F2k94h9EVegmKuo+Wzkgb3YIsq77U4gs7Kq0IPlJZWgU02R/kGA18zMs51cgFWk6/iwCAXMN/tVj9ULsv6Upshso+PhIYMIzhkZyZ9eutdWExcD8kau5DFg2MpdSKwpFAnZrer0oVGcGt8DU7WyvhLl1oFaZhFjTTeefHg2e8luzsIhvr/7r5cCe9V51HcCSAN4471VFRed9Bht4mPNLRrzhdY9C6FJ7x7DLsYErJ3Om+Nk+CTjxVVrubwfRssK3uK0vhrfwKlgNNDcuksJQ49yBBOzLDPjcbxEoXAuekPKHWcuJk1KRsiZMK4tYQDYOXFvjjd+Km09hcOim+6qiaUh9gUKMvy1PgJYZ3qXvuwHIzQ3IhrUtmYB1J6CsLntWvqjh+3njXJGyUkkP1A9segw0hnDHsZc5c6uozF8fuxoMg2DWTTLABT2B+pAwc8L4WT1IxROCMpR6ErQzUlF02lXue/j6JiTId8B6o8hIL4oN/dFPlaojARYwzSnYhe6l94xR0CclzIN45OE2lE1RIvCDOpn7+jQz9iNoyQ2w3Ie2oYOi/CzsZDQ/1Ja5KbRUNffbU5FbvcMZgw+0pGC6GUOzr8R7xZJ33RjUvOKmLEzehqNrb7WGAoFzlhmj5QJa2bxqqBYby2zZfISXbwBRRYHnDAvjO5aDV/V2h3pnOIvUjb+JU62s1GWpV6AvqmADd8U8DbqDQT6rQiBLzHS65tGYjxJhymSS+qXf9fQRysKkrYKIpyoFU016b1KgBPgmk3iOAmbMTNmwNy6aSSjuSqJ8ZiOaISQdDmV4dSRCSGNJIbnqyfrcKcfdMOZW6OxDfBaVjE02dz8SCJx3W3R5LbOJj+oN/4EOtdwdzTRiFBSkjdrtaDuc9912uOvTV5MoXISFON04LaqfGN8QSK6jWjMPJDHFj86NDXBxPw14ObBlS2fpxZV9k54h2t6z22JKaQLCUUjVNjmiL7uylR/t4taEvNeLqPbj2Vv0MWLFBOArflv8rlB1QkuSL66GGEjdF0jWMsmhpjkiwiv72GHQEbbDu1kLbvRfrXdDDr+GWXMo0onkeIVZSOXc36o3h0E1q9ee7dD1+T50/5P3gG7YLVJUCuT71yYwZNtlgCjMPavpThX0jm/Z9aazjxd/9QoDLOlLQe2yIDHPtUWtJqKKNOga7tNMHdwefy8ckYxk8QzsWpCBUN1tarjQ2Y1sQX73Lk1v1XzJQu8UNIVVmQymqFmnIc1gWNRkZgdm9K5AYZMNdZ3m8Ib1KKc4PNHeUbJIgkKCiNAThZ40jZppbULZqJs9HgmOwGRhL4KJzJss6KxjbXVUHKtCs1oODjNMP8uEg2wjddrgO4T96G+vbkthI8g/HiywCK17oVRJCqjoPQM9pO7GW8CixtbKjm0EpLCzgv0qksbljyybEtUCHWw5CHEgOdiSNYAsV+QHl1dqueEa05xBHVLAcIUY3rqbgOOo26tsBvN6k4D8y3WND02qwNl3GM1NGc+pvSMrKObQ6UTVgN8tMg3CMp5DCraNqoYvuoHj1XNHCtlZWG99bnb3FBpiIuxUvWOPj4F3KXHQTaIPluL1z2HYSA8Xy/g+QANCv2vQ09PGG+0VmasRQ4KUGyGO1NyLHyIxocjrbp5x2OHzSx7+i9u8OQGkEqI0r2+ww0azLVIvpEKR+k1wPDEdxdSYkifeGq5b6slEdRS2LO370pzATr/YY0afpVilTw69tu9Nxq5kTDJ9wqhrytzLN7zXpo0hEUTFTXe5lfv+PVR9dtQy4gZ+JCRT9iScx4Dg7KSHciVYSmlvKEJK8wuWTDPyBfs3JribPfBu3/WFWu+0ljFETkuIWkxnn6XK6sxp/XXBdhw1AwQxvScEtlKKDdKgOtX39dQG19FUQJriAlr904HkxC6yXtLPR9Wz5ndQ/UUkF16CyVGb2XAjok1Yba+yXvAa+fqT9NSLCN7XKLNr3cnkYHnKWzqJP9EXLegNUmm68ck2/iuDuPYED7mg1VLkrOcZ7Mqp/wFpJVpfn85iYfY61lScLNC3iN0YXgip7mYTPFE1Bt9lz12DuVplv+c/9jE5qvXkoAs87Ra4fdOlMo5ZWVvEuWKKkCpKWmkmjKQ3YOMZofaJRvMacBc6RsfirdUdBbq5MyRf7cE/pXfOH1frZjrLm65onXp3VQvL6lgJAeUdId/bS4AEw9pyaqjVvkGP1lGqhPKVWzOKbOdtnMcUHyDFcd2cCvjPRN50H8duzesP4KV9iK8r1xKNyBx4OkHWWQv5WrBjVD9CBHozgBDLEzh/BrGM8P+nX9/Urm1si9F6ISQGopygb69xadaCW+mxzP9LlerDepI/4S5BdgF2LGpTyQowA8WFE5cDiLsqXMJvIzAQNVaP3/gPQTFtykQKdILHnVquqRMPuWXanhrsAE7cIXBch9eXSHRb6OllfwoBrEJewFrg1Ssma7Qq173t3JLzC6kF1r0NqWE40dNsmHThFLHNpISmZhHxAKTKPwbA6SZTOSM72GRCYMo1QuVlFtuRKxOzkCoGbTM7ggzn6NeSQNmmeZbNoewyE41de0wrjvi4rIH3GnjT0l1dJ8gpQozNNa+2Z3hghCTWkysQbc3hl+3Q66MeCclIu9MDzEwIopxJ5RPFTAsg3wha5mZBFM48njQeRV8y31hWRV0rM6m9niOiAP99P6MYx0Zu8aoHXrqPvlFJTeLLQyN/j9odezRH/RY+fenRajsg8+a1+VHB9yzD7sL5MZpticLu3JAqJAWaavEPTse+lw408TR74Ask7E2fZuWAovbo0ikZCqYL4zwq3td/DDOt6zZ7N92azdnjV5ICG2Pxa8kFSkSNXunW5NigfxWPQeRluOVrQ9PzqVS0pxO6pLG3IMl6lBSPTpOclnCsGI1QFpCC6j5CaWiyDFRoSFAN7B4kvvEZDPaixAUuk1of4yZ975nqvgi/wMDWEWuU+7ZS52vcWCsC6wowZoaYUE7ftFeJFPvjLutkecK68R/VlYecjBPw585tKrmiNU/tPLHiRajbIN6XodstyImrjD1wMCDznEHdfKDyTF1UPFfqdmG+H4soGRDamJAnjw5MsjUF90+8HWaKA88/EQeG1egi6ZwKIJOEmKmTpTE2+MX+FfQMQInzhWS0HMwu9YvsBK+TGZJRBx4DB6sZJJLm7L+/d9CAYQkCidXcmt4YSKVAd0YCYLAbfbZfgFmhimntPy7kD62WuzuWitIG4wKDfyiMX+0FTbsNt5ZQJaoKDCvoBgZvbIL4cuuyumlMIdb8jV/ibDrX1I7GmKlaZuJ011LBy2c567gIDLrttb02IJawJuAJgTlb0u4XBUiltcgnNcXd0T/dukBPbVUrS/qeWNbI7PHk/DAJzonp1kfyZBuVBcw/h5T8dHqVhbgOqmsIa8FcFlD49K2xAQ13AciW9Z/zFDXuA83uaQIEpVucjnuSuBQK0Xa5OAkJPCh9YnAq0jGPNCqtlEpo4CCsn+GaHWY61Gf4HGbl1zt64nI2aW/fuhcI1QJOaCoupuJ2KKlkETvU7a8bSKph/KOJNCDF7iGeWRODNZWbLurLg9o/gmbrgHLm7oXaX4nV8OEcRfyGw91Z/QibYOnJ4EsrfRz4wdjaoyD6J0qxzHzLKL90brdTNsQOLYgatQdDPG3teqZQ5SAyAXVNwCMvUFcUPf1YvF8sb/DPzxcBHY85LdSGqBrK+aGOvxTZugImpfuUW1DpXqQwmzui326XbaA8doI8lolgPpXYTCHE7digLEstKaT08wzmoFDOIc6smA8Lh8aG3GvVZYtmIdn9tZXMLMMrSFpkC+MLGiWvCmLSR8B9qyHRd55fqDc1iV8bhauyLLFC/8iElsrHwEEnfUPMX26HIfCXlFCfl3E4cpGPenO5/eTcMiOKnf3TkDU1tzmWFV5V4lfgTbmxsNwKI+w8sqN2w0xwr9aW86u+thWtuHflA=
Variant 4
DifficultyLevel
561
Question
A painter mixes lemon and orange paint in the ratio 1:5 to produce a marigold colour.
How many litres of lemon paint and orange paint are required to get 60 litres of the marigold paint?
Worked Solution
lemon : orange = 1:5
⇒ 61 of total litres are lemon
⇒ 61 × 60=10 litres of lemon
∴ 10 lemon and 50 orange litres are required.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
colour1 | |
colour2 | |
ratio | |
colour3 | |
quantity1 | |
fraction | |
quantity2 | |
correctAnswer | |
Answers