Number, NAPX-E3-CA10
Question
Which number is missing from this number sentence?
(153.8 − 11.1) × ? = 549.395
Worked Solution
Method 1: Trial and Error
|
|
|
Option 1: |
(153.8 − 11.1) × 3.85 |
= 549.395 |
Option 2: |
(153.8 − 11.1) × 4.36 |
= 622.172 |
Option 3: |
(153.8 − 11.1) × 35.46 |
= 5060.142 |
Option 4: |
(153.8 − 11.1) × 63.35 |
= 9040.045 |
Therefore, ? = {{{correctAnswer}}}
Method 2: Advanced Solution
|
|
(153.8 − 11.1) × ? |
= 549.395 |
|
|
142.7 × ? |
= 549.395 |
|
|
? |
= 142.7549.395 |
? |
= {{{correctAnswer}}} |
U2FsdGVkX18AEmIw/eYHmZLrMPY96qcyJj3k/9C0ETv/i6DNSNvlh+zSeoVUaEedv8P+E81hTmdRw5w+ySgVbf99XQ1NRgxgCSfIsgC1ZDNwkgeJlF4ZGC8UHEEaiTsneM9UO3PDsIOXrxfG107InetE5HUrw4ONug8nb2/CNxyyqoxSEIGIafknEvN2B6RCCPuCWcj60IeGz2Oj0HNLJTyaADZ8QkvX8upstjdxhO1RJeOLacpPuCEd6d6hnU3poeHG1F+jweJksogmIa/zwM6FiDRfCkNXvr5sltfObRReHjPZk2WcRrgejrw3PJOYZCD1USxAvvOZXtjOcj37OBV2RvN+McXGM1u6L16dHy1hK6P0Elt304GzY6GmiOo92+zrvbxnSwksvBoGGo6iDm/YXcn2MeWC6Nb+QZaznRsbHCRnyqtHR+CAcFQY6itXknXxCD/3hNx2q2DanVIkhj4BdtwplyURwF35jd7CcDEDXed8sc0s89kLiYqfiGb/IyZ+41alOja+LcmoG3ejuTe9itkMMPpvDgVeQYU/6TFKzsIYpMPdE+puNhEYMrpnEXOLf8zC+mzRFbxx9KKwW80AvboWKDof9ruRMMDbvZy0CAhhfRrvOiSZAkCDa4eeP4aUc4rDmUAnqgzYsBt07eHkPLYHJp4MsdPagw5GmqnwPXuftEyZrazMMzewrv8izl/+sz/39/yg7KMu61q3YOnGPjoXR+xwzZ/w6DqLhdGlwp+6gXfMqwP6/G5OGECPOGAaTLNYjH+wwyhwFmYu56ywbPh9IjBsUulYFbjwMG4yMHy7j15KhIcUeVibE5kXUkQEIiMEjRbjRI9veiUQoR/1cVZe7vuQbGCNVcqWOCE2GUFc1UZksbG3iGcEKID6xz32UQUbg8eb5trBMujOcpsU9Q2SUCdNKu+Hr14ni5GAbDU000RT5AXnTEnplYk8qqhzSObJEFuYSkoCD23Xpd6aan3VChv5lzCjH4FdfgLjQDP8D8apLCgudCxTSJfwHChsvPsRdpxr9GwH58jF2ksJ4rW6bT85la+eSK/nwIBAUQtTvDOABVXVTdQHSThhpMae/9AefgClEQNSc54jzta8E9w+oJisEQWVW+iAjwDXjYe71sV9TUI/vOHLrSkQ14xcw7+TK2GtmKZ/7IhzlZzafHZInQc45Lj4M1JGVhIP2rzsMo49717mSa2ZdJOhtox2ja3qRRWfn/VBGSVopOlH7ljAG9I4r2cRkjKGQJ+uRsoRBgdbq1CL4juIbvhKotihI4eT9QxtkCo0ESfJoB3Bo3CnrhcSrhibPjXxkTk+2KZyyBg7vmxvJo8FSTFyaUuhMb7SEIk62KA/n5biIJX46K8N1EfjEdNaBHVVDj5dTIwO1+WMSHd5ECO++HvNuGvF/Zw/fyvG5gOoGUjl23IWfEGpc47bEcGxsYcony4h+RQZfKzbcrgxfejt8kruGhwS/pQ7fU3QE6coX8HNCaHOt94etTVGy4Wekl+k6tbpSZZhIIjwJq9aqB6LPy6jaQuMy5If26UUPOB2UxM+Z98Q1OINsGqJW8k1uURkDCfiFm0N9beganouN8RnWKEOxLKX5MjL4ayc1LbkMflv2cUR3uEqelH/aHlC9wbj7VCOJoGmTBZzfPOCnacf4t5gKUECNtuFtYC6HoLzCXfdbWo/ghEpNq8SjiuVnGITjnr511kwm7jGG0QM/Mmpq42+bFUf7Ezou83qvOfcQqQ+CMv0GaXCl7YHYeUTP3KnRmqu5Ek+VLo7ncDRT21YtbMQwuZTE/x8igQQG1soS4tHFqwkCxEWaQIrbMsJEutl0BYwnHXkyydVVVFzqLbZgS33lEz0CY9RU+iKiuUiICL0zT6YXzej0dXDmHTyqv+T6kVmA/opE4InrIjbBzYgFnjQncl/wfvh/hJEiLOe2lXS//f3NT6W9AtlbiLV5rQslnkVCb0isfXpU/MibCwOapFMhXQgq3bnU7qsqa2KF5NslRvtGY/5m9P4DsyYZwxfltrjrjQgSaa1LhmVgSoXNMI5X1U3EUdNU92IDMTY5Jq/eTAmM1T3APBumgu/YjC7EJlyxLEknwrn3sD8yBgPulZS9u0T/NdH1BaZgdNI8X6NDpYComzdg3KlNSuQdL6ystRoZiYHMYTC3LjArghajCYFf2JzxDHtGrvwu41z/HDvBLu7DTOHgEt8Mx+gYdkuKIpEfoqRu+IPYoTGJhVeXfBNKONaZT83u1mcsSWskJbYV8m50kYxUkd816IjSEVH+40KsrBRrNEQYq1vDcQu6mLgEcjLUnEEbfv+eAylIVWZszUl0bnzr4AjJc/EU815utpkpRfy7jBYRO0R5ft0aokmYsGxhx2TdrHiNLYBoduHX2IFdx00x3d5YhutDPOF7GGxKyt+zMokgAycl1ZUt/sj1R12a6QHjhiQ4osrFavezwQZuzIkfi72anJi3cwiUmlIw95B05C6T2Fgu4BlkfPylUF0/Rblbt7KUIcc1m3Qj1gbQCT9LmR+9gVwUivw/5x2zqJnr1HiKJ+fbDu6xFiDlCcMBa94LRRa05Lb2qPEoumF/KJJTbmL4JtoEIPYdmB7oQapLTJjDMuP7J7T/81meiaBFHFkDfZWCyO0eMdFDAwScdG76Kz6clD3g4wzk3mn5yroHgiZPjURwU7qjRFboCPIhbczvyKpIS1Gxj/T5TYhXODDt5Td+V+7cLF7MgCnATEUZhYuPmo5Q2uAEePGhzGJL2dHz1j8Ygm6xpECLwNQedon6faAKLtIyxbU5ccq2s+ravL9TIsPHUpmrhEwTpSC6eeJ19yScPunnlwR21b/7ToJKgz6IF5M+VQfW8lJWkmN0nHkPp62ZFYLY08UhdcwpY8kcbWlWtuwol1nq3Wgs23Lx9PIs8K3yrq+HcohHGVRh40ho+hCnaCwUUaRyANnotk75cwN9pfFfY+mGHWs5ZRRG1SVuDqSQ9tnkmSWEFE83dRtsBsi/hkIgQADVly4lI4Tdrm4/QxLrFhn2rcx8/jmoAFAeB2QgWJsjx3s8fMpZmGsOR0geX7fYfPGTV06z/Z99NZbJ+LfOnQUNoKTGPWYXDvEs2n2GvLd+FYF/s5dIvjg6vf2LVSGfNqZQ9bNjg/db6Y9hPohxyTLM/yUhR9OPaCaLoy//rWpeSTbDPnRGiAV9LVlnAw/e1fRoeCxcrlSSNxegAw7wgNXX0lNwuVGQ+CdCaunEAg1BROm03yEChrGEuJyF5IjE1PZGd+mXHEF2PE+b7wbjKO1kkgOl2IG3Cgl5iFQCSBs1n1uih0Lej0tpdrLOE8Hum2ub2vyNySbFr4ZPSAtgomqfxOLIuTBfW0GvMb4rTzhUEWqOHH8v1sj9f7VPxsM2WxW2p9xvexUXk/VKz2csX/rVlpQDifxsy4BPXCj3k06D8hd/02OeykEXIYE+9G7NyAbWmzwwtQC7JhLemZ0uTYIQmpHhpm5X3+hjxQrDa7DZLOTenV1zoPE1IzFlVgZ8mzc1pyPzRE7L1FYuCLYY5IVIwHNPdHo4pddO5nwlFYZLHSKt4CeFt9HTjm1F5QAGpVfn3XhAeEhQo8JBSDI4UCMPHAPHBVDDfuAfKh+Ol+cD/S8fzjhy5yI54xcuMTtxeoncm5Y19Ecjf7RM21lsbUyOEIyd7R5D6x++/saW0AFbjq55ULeIFhqUhaClqenAjxyjLrXg/gANIXc/ugE8UBh+h0kkHt7VoZLfPibMwvI2lXYtnl9XYN/XsO9HWatQNxyQgS+eNAzyOoOsj05aYBiH/iqlwRVgwfNr//WBCbHdx93yjuc+Kdvgw/CEtf179r+BwK/CL7IE5p3PnoQtLy7mC+1I/IDsQH2QEONMs+l9g4CQnX2IMyjPHeIiP/V5g1a9m9PBoij+NSV+jQ3WEvkByu2ySd+pq2LBk5r8EdWwLuq26nrIoFe8mvMA9C+x84zsNPvj3qH+jKe02Vg0ezksqJHG8dO0WWiR7Q2q4M5ZLrGNpstqchWdPpAyfCnd0MIwxfmrr4DtzbA3l29KQh7ZLS4VSRHifmLqFlaQSb8TrXKzqL/0cJ09W3Xij78J4Gp8r+Ex76kHakQdEYkLxKrSwktCB4IwRJWWohrO6329w+//vRtZzTc4+hD28C1dcA6mQ409H4oKOy0RTIy0eUE4ppLGO1Cua6UGHAcfD5jHVUQvAyZ+lInWEJWYFlotfCd7MypzHrmeu/WsNjJx4eFDx1CzvvlQXrY0SL6AnZd5hCs41T5iML0FPVhmjVR+Mgtngc3y+6NK12c4Ar65o28/VtJJe1Uxs921LIdTF81z3YGWRBJN+DUQP2SEUYOTs3tfo+CN2BnIYF0xtAjEpUM3i6mMTM4ET/O4mSfFQykGZcz/3JoDUVUi5f0FzVFx+mgmGwS+VqIObwIvBAIWcdR6GJ+7c+Mpzn2uUrHjQ+QVBRA5BfRLLM2F6lk+bxmHEDdhD2Tt1RJnEMeTPsRNSPba7oj4Q1DkXi17iAGBMAoV97v5oGS0uRPrCc7pKPhRLvVaNLsjvEvhge6yyy3nFCMOV9bcL5es67Fkqkv2Kd1OlVwZifSviz1NLrWHqyHEvr9nl9LTwxkAzY0vw2KBc037SUBWNv61LgMGSHHNkiDXsuYw+b2ES1pzUa14mMG7IQxPe9K03Wy+SR+F+EaPyrbzQD3wczz0RFduYnT9OUCUvyKglIkd3gD6NZlUkGQ241LJXz5xtEGWjx+xX3vRO/wRgddytdM7jR8mQMexywL+fzrr6rDhlQj+wbS3RHTld8VhK2BFKo9mvDdPfjExQxaGg+jQv6WoSaisKRiDUqKWrBfGINfqTTFUvGijeu5YwxGP71gtYpgvHkKla2/xcJ7LcK3AduuhULqxaqji8CuaHzbmVra6mJda2GAF35my8wZvw1Lvqj1xPgq9o3A0TpTrj/gWumQWoBjo0WEYJ7CukNNJaWRse/qP3s/ORlWBghpPknc30WidXyQf70IIOaVlpIu1jKjGl8tA8wIitvdrO4wvfvZzJCmpOOhC8RgDmT4ZMGXuxu2nVmBwagx/4HlO8U5Tr2F+ruwNTMvc2sghxTtwSffTWeOxev8HAHXn0lcYnfI4/0FAtQbpXTwfA/cUUMGlHtoFfBJKGqFK/h8dtUa94hzL4j126dcb+AQyvkD7pnDC+x9SjWHYfsWA56sJtzKCzgF0zGfNFzliJ1B3ftO6jb3EBChGJZg+H0X15Kg1uJxACA7Vk/LXKBMBEjk0v1VVfVMd7XOIdauspareaoA25lpweqmdUfBmGCQxJ+7x9jx/yi79v0r8f1wuurPVAPMdbpFhNySR8/lWQqsv3xmwtuVkbutkP7EdCRrsSDsKmJ2PmgqwFJHxImsJ6572oY55WwhHLMnTWUE6t7sU3vvxf09CfafYPSgHBMuUQ30PYu5VL6NTclyFkwR6wu3TZ5kB7107SFeVBhp2QpKPZGIxTCSCeUWyp+8BGnEZw0BQUVdWjqvxL+lfoNAjqJcEO6fJHjG49QsG6T85l7iDZUkgTuB2IAKhBAZsViKOlbali17HphlpKwgvJEmfElBo4Wx2GUUAifCMZDockvmAIHrtvrQ3adQ6XBV/wmNzJxo4KcINb7mph9SxTeRTMC7M+DIjUJUzgJ58grryH+GnKdWBHMOj6LpD8SN+PosE/lw14LAN0h+4mK+OLCDJVJbpWGN1dmcl/Lt1VdsqbaB0UYxEgA+F6REnLudueWfin4KA0u23uRLHVTYlO19REV3WhdZu4TKjiwJeUu4B4OoJxAfTM7ZIH8iskqSJ1E2W4H7IjvmX3ClppJvDsGTAg34fFkhXBbHdLqtPqNn3WEdJo77E4WY1YAuRGjDGKCZouNhzcC95FjlQzt5J+WWuvpEJCIREQ7f4pcUi2NyreqQOOkXCtBmIuf5J3aStFSIeo4dQWYmsTWjxpBP4xxYXx6vm19dMYQmbvx4av/b3ROGSumRsswAHA9dKrvLk+BP4FfEioUBTru4B3e46ly0NQrudZ5oZzCz3HYqdTGkKx9PISjoIcJrdW3l+on1jeZHf/7RjsVPB4tFK7Ml//UuV0vxxlKAQKEiZVgxIhyJ0JF3MLFAwUJzT/wo5yK2zVLmX1Hb8bD4D1eoYvTg/2bX9/A0n1/xW4BCxFt/lOBav0JQVmjWDYGxu6S8YTB7MlHuV6wwXZn0Vh3O15fSgzVwLlwOcffyRw52Sgon9GOKS71vPrh/pn+IbJ1xYZb9NY/HHE5oP7YaQxpcLeQ2I5AvE1ldh08OimyV5vRxFoLT+84lxyKD2Iq6QZLG4dMyPIdIfbz/NMVZl1lxUsIUMkxF5dZvdcN9hDbJ/W2v9dTC4GkJtcL7fxk+7k0tITg7sMeLEsRUYGuYLqMlw+m6euo+xyaSSeflMVVFoAqXGSCd4xR/ob4GV8Jy4WNp8gKb3anEKGtCG3Tx+lWC9XLZVN4s64V/KGTo6pTF1YSQHFjKl7kFPgYyihcmEdvtk7Bp9F5jqDaxtabCcQ0ygR+pogfCuq1d/cr8RhaSwCkq1x/zSF45ypURZyweWgs3tsw/8QQqK+a6zG0OKWbyxBcrYcyU/5JNKlmGj0k1S1HT+g7uJ5O1rar7pSOKuIMtHsQxJcol5cvnDLiZcn1strkt96B52aZRNi4tfOviopBs2hiql5rXC/9AR+3k0iyHJsVcNxU9SrFZ4AqCZxj8D4nFkWeWqLHCaQrxpJ3jc4EXZrV25I7zNn739ByoUaW2Gq2KZUUAyVUQU3aOZnPYzpXVViSNltyPWmil/2nPHFeGtKghK7LZJCec0xzXFN786s7LeUJ4H4h0zatUvQG99M+sfe/I7McdzZa5UNRgMR0tfyb/SlQscfDFpQJn8a4eqmA5ix7QxWIb53IvDyfbkJogqAMi6sm+QK+U/KhSl+uJMQdHnz9JQ5JkIjWbQqlfFnpM37+a+5hKNHl5covuWuX2mjpO84vW/Aw3OoPzP8UlheP9BLEeJwYrXGaA9YzPJ+bi9lDr9tQ/8zqUJTBkUujNGWMp1MMhRyt+PqX1NMmbKBVmzxgH3wOLYkv7wIlvh2Ou3yGPa6VQT64vS/B9gnX5jKgyazQuRNPZKomsyWXss1WoQipPY0tKG8TAEAaf2/1OtBKzWgkOXFJ2kIg+bMcJhu9OtwrTEGLtB6B6DkrFQdi/59J4ttR6q1uvT0E7TAwURaBuXH5Nz9bPLSE6fxaBmuKo0Jtnv5zHWWBVrh/KkYusd5N1Azo0EAF6d1XWhfsLOyRr6PXkYG3ZHr/0V2FQjCkvdiqOR0rQbl1HTY5X+QAFEgL9JWC4IrxWoXvknqSzHCjHOxR6lQ0xPafmj0t7ua53+LB+2poQoJdazSM1JB2N1BUYIGv9pMuoqYFrXzmKH8cTl2nob7MNcNT8CwVNt1vkfM6HRVpyNv6rxJGHrfabY9tNzFXFGGHxmVzFMddrCP+rj6LaCgbdJMkWO5ywQ2Q/kQFVDtDPfp/u4NRzx+mdylKaYHvva83cEbL3/TsxsVWw2NvYJDS3f9641BDNqFsFFCMNJTjW7F/r3FvzMBKiMtOPC5lGueiieiaPkKG8+9lY/okO4BaG2n0K2ReQfjEPaNoVDHOirep1GX2PKVWNOXQuDLV7cyPPUxojzVtOpfhDQHz6KBc09DzgkMe+lvsP2xotf+cHv6DJQSIQ4HvKvazTZDqE21+I16sCJlIwZYFxz+y1U5WYDYrtJNVAeGDlfUzwsdAezi0qtyN4W6gTc1b8vNdyg/UZ0ZqUQmlgP/HdGuWjmTrq3vUNI4mlXYJNoijlZhQuoc48wBJAmEzBspVH7CfoDDTUPXPkN3FPVgrUTagqYY4MroMQoi7qlTxf88jwWyCEwNKY0KNrtV3dl/xnsQ0hH8jpajpkqJmBuXxxVTnLJxqigP577S/sNzNZsnTYwkZedyw0mC9rAOA5Hx35PW+EdfttJmL1f4NOVXNCysRIXebaskkcxAbpxvr95qUv08Ex4wN/8Pb5eyuHjICnljxJUT5EE9UevtNh0ynnwp1HnNIwRfy7KfusMbnSKfTeH/pPPnke9kY/cBvWILwSR/1Gcz6yMdoYR8ehsCD8nwXXlgIijcM4nj+MjM3iu/oSeWF69lvBUz7MK8XHmSJUvL7ctFBgA3FdBaT5eU7GpKHWAGsEP1+/npeWaTxLeaSzBEIWvpBQVJ8drVyxHGaUVkTQrBFMdMvI2qOqiGngPOhVnwP6aptNRJJEs1DsOgvRFXPjNy8mDAx47zCE0gPgVqbj0d4Ery5nrOcuIQqG+XbdKUyUNzYwACwaypq1otQnYaDTvGJYNSJqjB2HO997UeZhECOiNKQH9cJVzUrKqqeQpxTCg0eshbR9uAtT+ZsaJq9cp647/8OkkoC4Gm0QJmJVBXqCi4AFtWoUvUMZt2mwVbUsD5p6S6Sbfs4y1jB/fZNDHM8khHnkp99derhP4vmRKdFkss76gcVpNeQC+kUFrbuYTa37NapA2hEyfE3RASn4xKLd80bn1sz0DzsAqzMjfKssY9cJ+iYtC8pYfF2x3DDZsWxuBC1jnOaRS1mBRaPy7zR4uvennDCZO6B1uaypoq2FBfM2al0GK4IRYhwMkH6bvNZ+dRtY4pATyY/1EOhXVLxK70QqtIV4JvCu4+uKwTvCtAcWv7BfgQ/Yqk9EXZYAUVHzpwnaMaPJKD4ytyrNXxNErBX1WGcZcGLbjj3UpeMEU/Sq3B33vzydqZEBpKvtLgPv/QvMsXMVkQ8pDl3FCrxRN4TqNUW/wUtOM4YebNgshpHg8tFG11PpgQBm2ZYHiOra7C+6SlNP8p2oF8FsfAl1oI8+4k6BLDSR44jvlc38fnVjWD85FWg7aUPnLJqAsbpi8PJIBsyLKedReFDjW4h9xzuT4yFoFko84j1tZVxmvrd9eBq9znNyXzKpViunGpCW8WLMIvLLB97RvfSd5U4T4ZF1wLedwMEPe8hMlqevQXStZpmTyhRFXtU6wxnijgc1wrQBXU3jAzDARiuyNUFDqek3pXYv4FshXlUE6QT9Z1LoLcUGGxD99TPPZbguel2rEdNYwvDPwyh9tceHcYyXUK07wLmxsGFtUeB3SraDh0UNWcdK25jLu734AGVnWPdIS3+J9OdrNo/Jlt1xKAzxGolm7u+Jo1RK3S1asdYbGyRtyC1gSHfueZ/Wj0CftCjur/mg60Cpo4gZ8y5hY5rHx8g5QnYAmI1225lOaJNRYZNCtxMATMUlcJ/BDWdKB5nyouUWM2hMuYBUVI/26YC624mMSBxrzqkzhEq2lHomOfBfCXIavP9xmeWLes2IpTRD+7BXo+0IGhiCmLlpW+iJp17SS1mR8A+Exs6tIkKBgqoUGTb+XzfE/BFqJuxzLhYLmPD4LB8Tjax5KkscDdlQhxFymsw2R039AXMSoCotmcmWQYwfFlIV876WbYXfsGDDH6U6HDbmgYR4Dnbs5V61RzWJSiQXRW8c9AwOdzss+i/+i5CzKXQVTXaBBY0S46VDgfhyh8fmFAhPUK6MnLyT93ECavdWR5htQzVFiIT7B3bwVpnIoCVNEJeAaRzn4WSuqK8ATNFshyV20qnof6lAv4JdMDEwXVUyQSx7covJCf+kHjQYh8K7rVrxNT8MeLVXO5GyWJh/FBuLHoeCE8HGJuK3XVMNeO7SiO46cYPHh/x/rHCxLlMN6g1nCLVtPJAKPQHqnVc9PK6YnbkACy6YPfk0S2vsBZuc7frpkgPJp8YVXt7phZBvQzi1MQ1XNWxWFjtEhkHheGl0JiqslM5gtLpTqEkZeR1RKhTx1VUDWajtldbSJf5QzQiM/yhF3eZ9ee9lxpNnhmcqXJfb7uw+WBD1P4Q3mGBIPaw6o3bYBN7MEjdL7389vghMijEOIS/93GZ11TSCY6AyDCk1RPKX86Bc5Ec/W8z3hMX81/VxvoClfpdM+Np2uElIem6CImhLBKkuN79W/tNUY3Wyx/ylyryR/0j3PweUAaJC57wT8PvSRtIe+6DlaYtLRThdcs+aCPKfej35jCWqYTsWREAx9yGCr2nd2nFxrEJhkkaZ5P0Fxa3E6wrpt/kQ4KKRsUStiA8jK7Yoa3rEkzkgtVafY0OSJw9sxTT6S6Zc2KYnXRgn5jQ6llRYesxbYWI/XTv1pbfjx0HM/O40zwMVuyspHP03UGv2cEyEi5apuU8tJSJHx7tmkyZqlPMHoseNcsFqhrcxFSs/TXS80SBOMA1p2ZGNfxakM59WOkHaKRKOWqNsmvtV45yBwW5GbbAWrrKgFpKKQRT6MadiyslxhwxiT7DFo4fCW8BQiqt3lyVr0WpbFysuRS6pjhRbghwK2ilCsfPUBYsi4w6+6GsRZ5orLDQZrVpyvS9Zgu8p+WWKbIklnFFFYY/19ce0Ekl3cd0scM/pnAj+rkq/zNdvFxD4F2lSpRmuKQybRlQ5Ae0BADz7qceHjHeZRpEkLpugYXwMmT487BoANzEBGWhkHycS0S6roEJcaA/QLA19LuzENDnT3AxaTsCOkJUyx0mWv2poWb8sSoFT/9MIRUN8DTGIlJu8O61Sa+pJaEuTMXeECgtat3PWVmvJgnqzoRG0s3u5F4By/yBHmeTxVeTcYdStXd8oQM3cYUQNIeaoQiBNuRr+acd9Dcr5ModZHnqo3ZI47iSBcPctRa0S1VYl9Gdxf8AGZupy6CTd+q7DIZRTCPwpxMptswuzVvk+nYAfJfGbrDIiWS3UzF64o6dnW/M7fTb5brU4HG7aQuPiho3G47zB4sqHIgfyuY3bvQAcITbn74RSxmEO9CEoXwVqphtcTRbKPvHXqfy1+koCeyP6/i3RtCsdyqf281fP/rqjC2EomiCzX7wVhOpNlVzv9hjQgqxyDYor0qObv32+RH8ynykBisNJ2PKSRwSk7CadpmLF2DhaIH3jVyAas+C5YJMN4XYBZ7OJWRAm+tWmqPspMOz+ANy7HB3P/S3XZRJyoZFVCUpPNrB2cYE8O0AE59DwFT9z7V8AOP/eFEv2tryGEc9yFP2QiMnk43+XWs2NRkmjz0zIeqk0oo99VC5PpYTkhjtcD700i5DNanPXAF1xXXLQ3OPsWXyS8zx8QEe6vy/tfIOr/ewATgXuqpOnP74RkR+VMUR3dxYn4boTGemSHwVBi7bjT97jldKQPcfnnuAgXJu/EVhqN+DgVA5T3znLe/RNLMlWtlKyJK1b4IWhfKpBNYm/H1nYv4wFRm7zCMNK1Nax9waIfciO8j/lKv4cr2sD7gU0D3QdbpcoEZfXED/zkkpTdlQ1Tf9rQjhj5XNezZzVe8nJqyZHuJ9W8Blfhf2M6aD9AjUC8m1PuEf1fD7e88Zwp42OAXGkJ/CD9nTFApEDm31Q/zFplvOKaxGfQ/UU98umCXFZSBMetmSKCR+I9ZntqXHyWs/bbJhg8WtiqZafHg8JTL7n23vDRbqETRauHM7yka2TsmOzKK9/RMAK/N+Q1Vkige4plHu3yDr2WJSDvTMcFiLCky7rJCYVmS5cy9/7qHzlB1/G1cts4g0Ku3vdzTlr0yxzduN1fQcfu93Kgv0v8AtoWbc5EbXlVqjMU/jPUOJCwLwoDb5qwWFhdElOXxzMlsEsYCsW4QeSnhj+JwdXatPnqi1nvOEd2GNner4EpBWiX8CQQw580D1wU2bQ/xPmLZNJzLWPpWOjbo4srETbZWSiU+RiLxUurUJuqTuS+k/6qCkRV2CZ3Nk8p7iE/bKnvI79JYx+CZ7zogrfbYR59JeEa0bEWwx1soB1CAqY6WK2I69KCkBkx7PbxUbcXP6JB8LD57E7GavaIAewCHOetnqmoQDTMfN9GSi7yYnVSswtSuyGbjHWA54Enkol4kKgKYtjE3SAl2I5paR3XAjaCeJdHSq+x8S/AyReedvFtBzJ1NjxdGHrvFenYUuqtF944Zl2sR6RCtRm1mvPpOZ7uI3aDgzhVqg9KWQ39b9jVZrPAAhPoqcoJCRRh/Lxi91C4g+hhVJXiWYEIifBkI11Gwb+hZmlLMFy03IBNgpE6JXTZHeYDT3WNNKcsUkX5ujEIUe0vJI6iykpTGnb6nRgzSzCxOiQvkxULmDBpJ2GbL5dQVDz/r4b9I+SKJ2rJAkp7smabNMuh2G77N1GHR3XsobvYu+IXLMVU38dgmgeXRzJo7JlB6LK62RSCkMw1qJFaQE9SG4uQU/vEi/CYi+70HWCrvcJDpsPVwqFMVNKIgwDUi6kHcObYkUiwQyH8uW1itLe6I32EhWH12NMfAQPCHXjp433c/DH9raZzSrtSdKxmXlivd82iWMe6QgBZo8FdkfUCA93bU1LG2xuB9KspMj7JBCuQk62xJFPdhX/zJOrTWhA6MxlqE1KzUz2x9ic7IM+U4KBvpvNgBhvwrujbVD7tcPE1qOLx+gAAgR0FOgFX1s8UwOt04WCCrIxGWXBdeLaRa9CPvB6dJg0pJoXU7fQFB10jtaM9SW932n6fn2iAYKolmNJiM2ZrNfBsuHi3qm8ckeSbF2JoAa5G4woqD9TXBVqoiubH/aoKgwVChuRd2GVdwpvP0sfRvMFjO9ZKWfApHFaNK5M9gt0xkCYJtObCJFhnXBuwL9xGyLXbTYtueT4BAJYD7FQmKjmtI/defEE01L9RRNiRkrMpwKR9PFoTA2y/RMgMa01texaISTkXQW3jxab/zhwxmvCSvojK21ueGN2MAerZbJ/ymFkLSNaT1KSp5J3zihz9bWWvfoRqMdp9w9T2zhNdUr6wuXqKqKY6NIbCwMy+L2DhXpnvOjU0/8akyrHMav1toqn3e4pOAGWsgnPk1Rd8t5EtTpoGP1HQoDq1x0JrJHuArTCM+vPxSLMKq2I72UOuRFZAGDi4aKKvKlopPNu4Zxx1tbJwaaBNQ38oZ2UNyxIID8XxY3Xf3KyKOBOWxOFtU8xkA4m/frjKM8oZR3ARVKEcwUG9fBD02B5K8iNw/1QCNcMbUDjwNF9i96CZ8JHaR5v9AsBRPqmatLoo4Ec5+UplImnayjWSDFK3paqb93/qtTU0P6MIobpNj62vhpAJht2zqFwNxPi/Q3sKWOghvLPSFZ3DKm4lwlpMypI5c7wslS02/1J/YEoRD3t0XfdM6u1hvS81rYsqN38d9ms+v7MF4aLefW+zWj9wOi8qOIoHVh/ck/CYzx9siVH1qlSycs5Oe1a75wzbwZeKylZX87jUJZ8c98k7UDY2tOiXbaPY6x/rrU2XOXdOaOInuZBAbHRtVjR5tdPSJGg+HKhcwzRlNNSyo6H2EXrWaaPNiLOG/BW9KcisURsBrs/NzgUNkZA6M26zxe5JT9/xTArnnOjor3DUskuFXVE8im45JVGXJMNSUWEYpTwvdeMjflKxEiAEA2DYUjtw7J1c/OySV1kFI6jBMp6VKlGg6Vx0rArnFN96T9OvfH/+Mxmiyb7OyRBa+jB4dOVrNyTDnywFBXZfqychxZD
Variant 0
DifficultyLevel
453
Question
Which number is missing from this number sentence?
(153.8 − 11.1) × ? = 549.395
Worked Solution
Method 1: Trial and Error
|
|
|
Option 1: |
(153.8 − 11.1) × 3.85 |
= 549.395 |
Option 2: |
(153.8 − 11.1) × 4.36 |
= 622.172 |
Option 3: |
(153.8 − 11.1) × 35.46 |
= 5060.142 |
Option 4: |
(153.8 − 11.1) × 63.35 |
= 9040.045 |
Therefore, ? = 3.85
Method 2: Advanced Solution
|
|
(153.8 − 11.1) × ? |
= 549.395 |
|
|
142.7 × ? |
= 549.395 |
|
|
? |
= 142.7549.395 |
? |
= 3.85 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers