Number, NAPX9-TLD-CA17 v3
Question
Mika is making lemonade.
The recipe says she needs 1 cup of sugar for every 3 lemons.
If 7 lemons are used, how many cups of sugar are needed?
Worked Solution
3 lemons ⇒ 1 cup of sugar
1 lemon ⇒31 cup of sugar
|
|
∴ 7 lemons |
= 7 ×31 |
|
= 37 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/ZyGIYomdNoomIrqaR14n9XPWN7VGvUBGBAA6qP7/OqcwVh16CpO9Yhhpb+oSjiH/3SSYu6UNea06M7u6fqH8Kmd47kJJyMBXQQ5EMlGzN7wzqxC4GzyKPOHx0Vie8jiHxk87BhlPlSgT/gxBOmSm25Snk3lj9wxsEL8vBRv+NsvuvTSC1yWGNNxGhesidUFhGASkjEKBJ9kbzOild2dvrQGwhV54qa//YuE0LnzFudN7b3e6XZMDvTRcdoCsu6rVVdabcrvMriA8QW9wEQnDXtyjjH5hprWrSncMW6Z0AxPWxtAo+447s+6Z5ORncUdoQwYwwQphopxVbxgFSx+0HyJ4DUsikrm4wge/x6CgT9rQ/lq+zeL4a1AF1u1jfC3QVG52panXBrlm1xlP6PNgVR1Rg2rzM4x20gHvbxYi/TJewdrO4kFHeaDQec7dFmIVR7wy07HcU7upGz24WV777lIExGPTwHMQjh6yx5RLWcM4qdaLPkq8Q1z78asGszEbVwN5euD2i7S6nFnaW3ZeCNEACf/mYzPhR1H9Uy4Hhr0p/hVZxf8PQ8OnsHd8zG5CUJyHqZEe07FP2W01aQAHFkJpVEtGjIQ2dQ/dOpLNkJN4bgDJ4Uv9aUWJzoF0hK4Ll+e9lSB9spjjzXULBQQnW1t72ERudxX0iP4WqrE1AfDYEhb6QKuWb0KCmslOm2IWnoXXi799dximvUTwuM3kCmr80T4I/lipuwWWx841rbWa+K18vhkRYbVmn2mMs9F0hFddE88EN+7GazlRD4URPUFeTEqMzdG+LnCaf/WEeqdyiWTIlK/q+dWnq6wIZcQiNBV8OjGjo1dQVzcs3p8qdkTXHUT3R1HgCx0Zm4czv0jhzRZCf8OTXrOyShSlwiI2sxl/O5gZ4cPKfNPUWXh2T9dD1elssz9BWcPXE5oJIgxziobaFfEbstZ18psPulcxwBoQ2n1QpHluXhGAGYGHB2RdxFOBnZ1BShhs4MAIvePkhbxJfexhQp+Onma2ZSas/wJArKoWmNAXj2wGi2ceiQ7TzmjIoFd6laYczzd//t3mRLpg+pCe9UryPQYJ+/NnOO+uFN+M8u2IppjEIxra8Owo47qzjd7NVreAunQiBf5JZtaF3h3AyH7zTodCDVwhOvT2uZdCkzgLAgk5Uh6nuB0Kqo7CwJB27Qb9KTOlroLJccuw0wNaLUeGLQn5EtU/u1GUjYLHXU4YlA1Ame74z7iv9/6nKtplIL/3rJTyM45mhI/t+eM9Le7kwFKQyvBdJAlUd/zaC61uYSDOFjsJYi2I9C0i9x0Gns2bsaVu22EfW2H1kgXYggs7mIXl+7rmBNZkkYKt30BpkoouQZSRsNJ18Q57otj9bmt248cjtNNPXdv3y5zPVsO5HC25IAxKYTYUKeai1pfl+KNK7+p8Fcwnyt4T8j3T1H3oD2NGKABhjxW/wQBLdJ/9JhbsRodJlndup2IaulQmsNMSGiRDkH6ARmElbSYWBMpW9LphTr9sq7U2gj0sk4xk1ppU5pHyqUS3UzzYqhHZa6wO55qwsJAKy7S/zvBFFixKhOx7jg9RcDEgN1PFr/5PeOFmUyO/YDIOeRAz52/voGyS+c/daneigNOrfmT7FqpDKt1OKIzm1OUdJO2wwLAqmGu6ccoWSUvkbp3ksu5EXqyGiJhjrOPvuP9epfMQK0csdGfQ7JfLHZfan46IxAsACFR+r8Y1pGlU1zv8aUjwGPoV9Ce9qZom1Q+6E67knlFIeNTR6plTHh8cQTSq5VaU/EadUF4/b7dydFstgSDCs81iX6xFnztclzJCGPsGSUbsV7i3p+dmKd4WG/563JiNadyk/zaTVttgDPos61buKVm2EBWkS2/E0ueJdRkX7IpFEYx++W1rTvadFSNJeA0HKlIRfJu5Ytcy6RlytOaA/mQaxSh7BIdX2qzET8BJ8XtoIXgk67T06SAnNmpq6DnkiEPs/wG8nS4nkVPH5yYU2pEKv1hq8l7dOtUSss3nY0+qnIuIS/LyxH+Rfha9xy87i+HhRqLhTAYELiBEfpaTU+7klzsFhfVYygT5fJ2UC1A+wsQ0grAFd5uHMxByRdNhf4I2LD+ciiKQmuYXXnNZL3JfdvUto1Z8XhIdh91WkeWwn7kZ6moltwG5P2x3spwoFuxAcZsg3gjdRSMeYvFSAAM2vsz6EjuZbjAkmmzgpOJYvlWkRmko0b/TplWLiK34S0f27XY4ecUz2AGdfbXrlfc4qPmhrcNMpgy9D4sfpOT8BDKcjsttjI7/MclZsHqmI0qG1XnPTHmbayUeD17WIRbClapDED93Rzta6KfX0jXpqc/cGClHI9CLSQ6WgXrNo2e/fLSux023f2eL7Ku2b5jgfwW4D58SAkQXsjm85Qkh+j5ZWe+q2b5/Kfs9LjzYv7jh0SXIz0Z7qTfb5n64jUVPNct7nHdMhERGY//WKCtrf3q5WRsuatk+LxOwxo8K4ZmrOcJvwYWW6OZViUZQ17u9TS6kY2Qj+zNXiRjSsBSxgNijHAxCM0Sh0aU2JEtfxenN2xjVUPl0cXSXeYpjCI1QcUGohzaJpqY6HqT8Xcy5qaKyLf8mgatRWdt0k2tZNWvhtGaKjnBHhGI50DWEqfKxdgl07aCAUgI+Svo57bSpS/Lnf2av/PbXngdV8m5PijnG8mvhMIBq5MFDdxmCGM7eF88s8PLjP/dCtGFb9jUUP8hpGwjJGhofcmRV01mMuCrbesvfWIPv/ctREkA7QB8TATdBX1skxOjgrk+L1oyAZ/IincSOOg2zBYkOFNGnDyChGVKeJtx/g/Vos9IkkC0FEljgxDc1IQOLLiJjEatVmhv/Md+mbuuXg6O6RVavt2wEpTTtmD8Ba2ZMK9OOJlj43hc1Nwmfi1FMlVK+LBVSV3NDATcvO8F/IAhsDerV6rClT+XfRJ9t6Al2gf7PRs0+Fowa1vG7o2f5YugGGErfdZ5hp4An9Sl37ti/swIrwQFekQU8hlDHl4phgEreSeIWpXlJrn/Qwq/Sa5wJfPfufU1LPpc0SpS9dDY2UJHwriw6vQFPS0hoL5MBuKdHtkEkYX1zbDVeDvQ/AQ6t0HhnwDkTguTVWPVAT5gNkM0iSLWRnjG2hte3a8EDBN+8uvXH85IEjdW5FuZraSw4MT/z5xHtaPoMNlGuItqpwBUUzF1FDANDwgZLqCWT4fTT7zOegt0g/CT3gdu2F9z1m+96Pu2Hi/HY6Z6ZaFYyGtp+OJR+/T0pyjC0N/bKsEwRC8Jz9tNEG0utaJaBq8OhBvYHp2h/IMc3LQb65jDGFctLEjqh+sBlR6xcZg8MIMSdzP7V5865XmC+j1BtS94siihxmuseng8P5/95Ra0ndqL7Q2jRLDg0ZS8EtLQSDFJZ/4WN7oMKIzaoyqdql4b8jYfwXAxc1mfFKNdn6sW+e49KMU9ZWRXrCex+upKgKFZ8LkEklgjbQN+EKW4XDi8xQzQKWqwsoYPH2BDJuoRxmlrxs3lROm/7LxBCyLdN7RFqeA/lm9PwAVY0p0NkpoJA2SkyN2PyrJseepvimE8UTuTmGe24i+mKaCxyVNNme+uAloqCqFy0ZjTLNBEOtmO8B+870P6sGU4r107jYFSv9vRtFwIEL9xquNiLYMWD7yMRFv5QMhNQPKZTV64rHJ94uHfSXq6W1M5h5WFqLQQuf714D8AjIjW1s+e48lT7nWagHAJkD+nWWbs870FiL4kw98iCf75G4vFbnAzfsjfvssrz8Pwm3nbtzDo0lYheEqJEEtmsFcYKUnt9FAp4ZkDGoAfLZOwLVv2zWwE+CAeoyRr2Yx766akRyKM65Dm4Rz3cymtWA1YPjNj1bx/xLkQa+Q6Pe6zoUSWZci/yyb283KpPkB9LH1kITh77W55mIC+uG1Hlq9mnnG31zOKJXwHrH5/o7HZfrwS+0o6fxJNhIy331ebVkZC0+8t56T1kNz0eQHUSMI9Ai0Ow49+sb1xz8RnBAf/eZnveCam6x9XDNx88MZdBbNJqvhBU0zDplxKEN84qX57O0luzjHwhO0gQ34w2m1lmQgbELLN+ueuBYe7H7u3hsI2y04DZOE5kzpH8qIdVGElz11Rn1dQMTqjFB41OuLOXHTtKrN3MjWx8OIS4zhjSzR1cnEhROjPIiZEWslZCf5wzop62Boz9Ym129I2O/amGLwLVWYlRjKk7aG7nbrxehjP6E05PoLBLvcmNMJNITRtzOVuE93EI4+cwvex+lGDRxrbpwVgXyv5mne7Ievu92KKrKHV6d/T12MdJsb2kR85wnPgZFtdlFg4aNTggnhka9FfCyK4P6PIQ/c3hy9bZWMby4TY4GpYsXyRLqPrv9wvQJk28S/FfKMMfKg0nyx3ajQyx6937811+XF1GXdY0QX2YJ0YJBOxSZIOq+MajcE/+6L4TeIxhtZ5b7qv1mfezkcxFjjbY5gCytHx7Qhmo24nAy07gjfNJID4u8gw69X9KNsCvaLu/RJg9cqU0JN34oh0ncJqFBHm1AfagCybIpDsGaWJl+I/oFUsCvhbYCwT6yjUdG0v/r0ONwMGtJ4dCFhSW6fEW9TiGaHYsArXwFTykpkxuef7GmbmJNFnN/Z63AO9pXn4phNaebSsuImrfptRVrmzYTimCP5SIxokBgfYMl3p+dtbIRHY9FIi8G2r/Uvb4Cc/zJbcFyk3QLG3T+xYcYdi81ri13jMNCx/c/GmKGbZsLnHjdLgsUAOc4PXtR7/xbhhw6y/JG4Cx10cRyNAYjn9wChF4frk9Lr64PDzTk7eNeHVpROErY0Gu28y8WY7vhs8jpgvXPuCsxXcNRyFE0DX3jZv4wyjniz65Fd32n2QZu8mCZ1vUbhdGqYWCSQ9LEUJUXAld0ZsREZnJYgpHe4D+kq2t2VT80xbNWI3eS6jJkhhVQNFdx/Fu2DyKJ+iN2hJWKGDZzqxMqloh8OXUBg/zfwQ59GDjG3B3c5Uq0n7oEnoRARbt1yimyxD2DbYVwovDCMD/6SqOOuCCfcJOmCJhyGnpZ+Ft6Gkm5jdp2lfzJ7XDRcqNI8PwyV1l+B+Bg6ChmhA+zBiuuGKGJJ+o/11Kv9G+M/C0G4CBrVKn4ODR29e8UkQ4qXiUKLSsVGYqQ49sH57xTSR4Fl/WTU/GUj+rSkwVoxMUkIfSQye2p7wnLu8SeGJGGuhraC+c5znFhUPdphkUnY82Zch5fpAP6C6FIXuNXn59eWLR2XWcQKwaBMy4kvs8yu8vQizL8Ub7Wc4z4t2BC+fFnOSwminC4jpPz8n9jPVxLv6qLNU/WNdSrZWaclOOCqJ/Qwlyqx+qH1QOXvxGTRVOTZUPqLHkj1zvh11lbagYv0IPQWaW4NZfbNprLG58rikpala+mhxe4w+uwNVlkdl41psbI0BdGmZeL4o0r7jyfq/UoScio7LuBPNaidm/SMDKKhGB3mpdOWs4JzO7T7/I6ix5Bf6PcYUCM4RE4WG327j8LyTERvpt3CJAR6USFQd7MV+WbQ4fkTEhJ6gWQ4fMRMo9Qg2p66bagCYnVQHgobW5kHjgxmjFmQfHU54moZaqgYAyLYvNFbCgtaJkGg+y9pkfFv4Zjk9SU5OW2+NJJhT1tZ6xnCqWKuJcxBE0aeMAbTFKrFSbvVpEb4osjFSKmxg2hz7Tx6yvpJLGRiOXwbH92M8qrpiis+jBhjv34v2Uo+yxqLWtDTcDr3Qcxmfo2aFBcBox332TXsCa65Tioin+KLv96XKJvc+bd3NxTP8HSvwjn9uIHHUo+RzG5PXaNrl4IbpyP+9ixl+drXsZU6Fbibab6mkhzNDq7ZT66yspTCRTE31QxTPKP4CYUw3WVnmSp5qCrpgv3O2YqnW7gVBgYLTDrqpdiLOQcWSUywmP2b6GepsSQ1LAU/dGLF0q+yNL9ZSCJ6QWCk3mV6/7wdp2yyn51Dv8U8u+qbuzoxwoJDnE2AXPrNe4ZCOCQL2I6Hb/7MhtGp3rWm8SMTS9ah85k8TX/bFFFHxYjBNRiCgT1QDmX8MSOWPxiXMKSwVNH40CNCtS+BKLCu5Gcf/dl+/2IMbeeDjt4snXRbol47+uU5YA3ob+ilKySrhFF6d+OFZP+39unK6SN6bzFm0VyO8BWAfJd4iTjFYQV7uq8SMUO1DzH3PXza0gXIdO+Eb4nO5zg3Mw4V03yXeWzXpyPdPfY0tn/9+1+o8Kvn2yOenc0EVXzUbZs2UDcLSdhxNfPG/qSGNMMOdR7jeJ7HmWC53XL27BtD+mLvhKkFmKHnBaokg0IzUfPjvouQAqE/5G6YeKebaM4UXUE+xYc35Y4xTkwzS5qqxXVCTQjY3kbRJcgFqWLO5Oie0LA3XiLzz55VXyz0E4s0iINJJywUxQj4jr9ZnYCwkyOtspWF1E99dBZyXfjUzVEpdQubWXNXZfL5zs1/ICfkjTbVp8YjSi5m46G3DON0i5b7RUA1q/pNtxdTrph/I1sUb1lL3IzpnPme3VZXdxCPHxLSbpK4ozhRcLtJYu3sJyOUYERe4wdLlMTyNr3b+P7oRmZadM07Ulfq+/KurOvDsN3z+Lr8+ReXo2CqJzDvBxFbMqunroLYPFdBHgOnWesylqn2r0vaRtn9ytnB/xWg2VDQuksLXadXoXulVcg0VxpzaRlMZeWXR5oCsFPhAukiQq0AI7fkb+83K/SEXMIOEEqcVVEFYuK4Bhz0zB0ZG97Y43tMmhVcJqTwAiyyRmvcXxpRCQ/IrDQGWG0wx2ZxoDKJoWsFfNSvIFmBOa51fH/dIH2pMOwwW2zoSAHrh0EEh9H8BF6d1Co+ga98/YF4K6/5MI0pMVdf0LKuecfa5kTAkapL+4SI/WEgt3RO5kJta1I28DV3Pk9KzsQQa+4gpHy3LghSeyyFmHwGes/7l4pK3b3TNQbZ8mwTxK1fTRURHgHaflNKxC05vROfKfrAZfgYUKFUwMYU5NUvqJb0d59OOWs7wY2PvfuIaw0rEY7kbTBLKgtlAKfw9IVAC60Hlsv+y4TDNtqrzux1jBklAEdFD3GM5l+GU9yjeZYSMAD/Z23KTaRQWCvO2ir6XuYjRuhElpBsjOMU3Cj9MKY3cY7rSav9X1bYohUiwPhBVXQNyDHdbtXBtsqRm1gm2GxCMSAdD41QHvWZ1P7/Iij49TRkE8GO9m+JGgQ7UNHTXGWFeA4PPN37LxsefRwVOQ5KUKkV9mc/8nwmvaiWs/NWrHxxgc0DKu8NPHwnIdGh5LNvXcP/0C5S0PsP1QhyxX9f01JCdAastkdkOWN1HsZnPXksut8PpQRFCxNB4u4FtnHMug2vaY9AimuzRCMvJCwUN0gbg3acifczM/E6BJpzdiG61ieN0I1m+1J3WlUsJw9jZCeITF0tv5cDABkot+5RmKUhsqKlZWl3tdJj/OpnxCvpGkzTwZsn6FAr/8aRyJpW8Tl04VTSg3K2pVbbBderyUdTlQziUIhqE73yxcyPoOdSluX4UDcJNeAKNEyudjuhV6iBZneebQnkn9ib1hlLPTcBAASjtT0XEupgkKsS9DaJ6RlfZjymDClEbwQPK7NtTTkz7bH2ZZCoD8X9b9mIFczVk/Ui0b6HUvlA81LQccP6gsQ1+Z3XCYQX30J4Pb1WSaE8vuCLelmQW+x0uyENsJHsBhUZL1a1DDKxYrmDF9yBDFpipdVhjMRulojYcSEqmADpw39ToLn55VoCChl+io5G83Ge3STuIxfbrSLZN9aloqrSj/h/yyHcfq4qx2bndRnlJDl+lo/PpDXAUguG5bR7KUEsbynAAfY6VGq4HAyotGeiH/pT3HtVSJor5kZd4LdGx+ITL5M3FWBKUzJ1lODdm4ol12M0r3r3gXtMJIgiBkX+PaVtlTchsPrYGTbNw1Kx0FkmsDvmgmRWPXnJC4arXlJ3Y5OIdL/zG3GhhTZ2iiV/WU8XDR5MIKxRV525rSlcxwtODLOp9PvtWUIdhxrCz+ErTOo9RkhU/6wWshxhOGwsSH2MFy/HWzDSCOVgu8bAeDH5ofEwB/W2Y6Gu7zIfdQgbmgl4RAxk9aNzzWxROXp49Lr7wyZTA/qw/3aD2YJdiyiguAygGE4dgDMAm/gSekl9GmmdGf1+hH9IV0KWAvIqOVk6VHnfzz9tflvNztm2THZLDAZBp+KQyJNz5/ZjqU2VDvBCdLY7yEuPbEMW1daarD/30RJ0wj2FSXkT1NsAMYRELDyQA+/3X+NQN6dueY4CjxK8l4hFqV3YNRl7m+3ER0fEtI4nQ1NxyxGaHF9nsbRxLsVbl9oyBnOCzs2P0Beu0MjdltNQruxS2IihxzbCRJVuQSez/4Ercczanzbe76VvzkTyjwkfX3C7a7SwMjoNmm1lyONy1GT8Bq+eMlTeytktfhyNI0wNHftvtmRi2y4utNa6w/QhFYr0mQjf5nPExxIkFg6DQBFgbAEk0mGolA1ei1vd8Xt4facJ4kcH18nQtBIn8HJ4ROGFA+zIwyy87L/fRACa6GfaxTJdugev/K0QdjK2lK/KMuWN/FeYGXgkkTtFtT9EqMZDgv5U0Qac21mMxXLgcs+xJkteO12i1sBoaAgmhUfoTVnwtgBZgpjaWeFvMW3goQnMEvuHYnZxAUdHI3yGxThFjgCW34Ms5V966p2pTO0tFoI+yCUow+asf/JBbx0KW7Vh9sZxVMww9iN/LX/Ifwxw7ARHPv6gxkyOzedrp496AICHIUTQkk+yx/cYeoqcFrd6A0hlVai4knhHGuZO5d/xAGewaNTL7vXgMr5bL2fOFh8AUjlbPJIYfIaVddm9pz2ckwBKXXtWVbp04wdvwetCz1H56v3pulJZmxzXXqlvPxKw6uumJEIdp723S0NtBuiqR0FO5XCTXSidnNYJzGB4zLyCj1EvYUmxUIbzs/4OYvt2b9rqLzwy232IpwQ5pzGBpQoVoc9HFQOiGDMs0uIcSdVCYAD1W8I90yTzJpT5eVJQ4hU+HN1R9JB7mWth9aGOCBPtdtoRAbKCui/NKokfvuzE+SipilaPT2gAY2T5cMVWbP1ECFO/vMseF+k3II06AvxDnXV9y/gT/Nf39Am0mach0wafvSg66v4mZjZn0/q2Jpg2AqwvkYB5waOr/r1Db/B0YeAkq2G+Ge3liCZfu2Fa/t4yJqvDV3eikLvZuGqWUl1oUO/peaYX0CXEoTkKNVDzwwEMjLu4NAdPVEv/OstqOiU6tltAMg1U6uULj3S16GYTaeUt4FOP2a4K9AkrZ1/R/IqdP6c/sOzvXSyxTnin9vz+iA97SWTuo6gdu6SreDrA9NvANfkDUEaTZOO6JQPWyzrGArGwKl2pnckjdVOn/JPQ31vzsDmBb2jWxLm29LsPL4u2GNBB6tZ3+wWqYWCpjWJy+7DL2BU8CAfQbFYStkDZ5S+WVuxCYb17hRpdkvYeXVf9VntXI2uqx9crvIpt2jb5/kKggEDphgHz4TQQOuNt8Q2obHgVkwLTBLq4D8a6YBGncWwa0Bb0iGweboJC2uDZba3WGLshqbS4rLbIAEvnVFPtGRWt/hM/o5VYZ+TWL+QfXzeuegoow/mA5LgwWUzxQgGeTqpHRaE+OvOKRY4U3kYF7QEGxPYPXu4XCSnCW67wEP3yroLkQtiKN6xDXmk8me71m+iAAKZ/REsqyvJWhD9uaFi1ySyeFCYo06n/IIs6EZ29qAuU6xnd4qMHp6TGOFJ80HVoc2KRLRV9RAy4IsGbPIxgqlQDgGV322bNF04bKX8cPhFtH5n0IRxkwbTz+rgcwc+7wWDYeA6jGOuKzBK58bPnUGNiQ2lIiYWW3oqrt3HctfjORrylagIymuyij0MwRdsp3bekMsScZf2m21qjkQRgfJBP2sgwIVC9ZyCWD6jNG8Jci9Z8vubkMHl5ul0/XuGD4cB/3DqmkezcYe++0KpmX5seg35VimLMH9ZGTE0fEBZ4LsXAn71eY4lUuQYcFlDZtDef/VzlP23ySAFohOcfDxLXvovWo9Q50+pobz53Vy0FvDHeVoo0cDZX8G31nXx/hXWu+ZkYULFJTNsLcYKTnjXE5mFPDx1ZNBYKldyZJp4NsP0/IocOf30n94Y1/7984Yx9tzC4+ncz+shxPVjC1FRr1QXIJ2Fp9qqD+jzBxgO0WQDRa5DQcsSbVe/1crLH20ticVMFiQTukBW//+Nsa/zV3/R3eOJwDfmsClbXhFVeNPq+btexaA5uEyphIdWywk7doNxpm4Fuogjz0uwOz5F8KtCM7S7+CG6HTx/mz5ocwh0tp4xSye4ak2pkjnwD4sck7L9tqkOFAvqUXOr4QoNW8vvL+TSxivkumVUAWcy5P85Omi/jqK7buFr5TDcY3O5S4gqpj2SKx3ndWMN4CxlO0PS470jJtddW+Uz2G5/QQxdXJGmQmE7koSB4ffALBHBqzc4uUGhDx3/4ouQjybqrSGBIhtSQk1+LWMxGG+9vUqarBv3eptay7Ndt2oZsQB4Aooxqa0oEDeB9BBEtNx0WL9S91L6b0+VAGIaSp8NCJYyJgghF7lvD2fg3jxvgBjZMBLbukZXFyhfG0kvaSb6eREFEnD8Fm97P8ZD1N6ya8jvKSc/WM5qN9ophtkn2bqLaieWKRxNd5B2S98tPjsXU0kTX32f8xizOCOL5hB7XQDZGyxMLGuJeO04FfroAWdvOWdwB6/BEPtfeW79Ph9P4CrYmmFKYH8vEME/npwSC6PKyDNCOdgOKFq9dqvUlry8oQAcFQm/YX3r/EjQ3Xal4403R/LengKE9B2fWJFgYNZkg3OZRJEky24llwI6E1QevHcVLlABKEIt16x31X6eVtOAiQZOoxeMGGJC/2t99eZfeiGbEWi/yvrJ0U4GwjpUF71GIsH/pvj2unW4enqBLdQmxZL6yEppv/CyKHDJ0Y5kKm+am/DLj6IkKNuO+9yFKmJqr24fERZll1/nIjJ7gIA3uPcMXTRG+lcfbijlhbGIe6HMreHCMwfkFdQnjdSF3Y86yT6MCdvVMKnAVjTOb6lhHJ1VcdJiLYxRr82RCOZFpECA3urqyMl4wJF/wVHlHRE6WnAIbK6aoBd0TSQexAjQ77h+11rR/MfoWTZSkMvWeDdVWDF8vUB13qn23hUNon+KvMrRRXd2dGGsWGb33IXx6xfZAeMG3hG72IyOWTC1BdYBFkyUC9whuuooegF0oB5vQrb+vetIv3IFDt6fszmQbLnY42d7Rf5u3pPPSwYydeLHChIvJrToqkQBerPx9GGaQz91t8vVsVFCp3h4E7xg4GF2vPciNMivplaWeACgM9P5vMB0qkQ88zi+mtFlhQQBm0gW33FODZXuIcMPqB85wMIvm5vErxLMOZ7G3bUpyqcv3O0Oz4AaIt8qdCtKG+cbsmbGCkgi0vVrgY+XB4EFLEYloJNTP1eKRCTrGRkhjHN7hQm+QsrYsWHPnVmo0Bo7BhsNsRDZYD6YGW3l6x2XDrYhzII8T1K74Dnh3u1t88qZxYG5IFXYggX7Gip3byEWHDm6bu5HEiOyqmV7/tJTqmqXuCiKkeJOnhUJYhmzM4kRcbd1wyNgkXSbYotxeL3hWXieyofR8VbWy598FR/ednwWScIFmFO2nblOq89hMzQObF6y+9+FB0WHy1XMVauY+z29mbutAJcjOBkWd0qY1Y/IE3K5+JGCZliLLKaL7c3QEfRLdZdAXdQSfrjQCEmiVtJXekZx60YsgAu/PzBCnXQ2O4SSTY76bGYbEPKavKtk48JegQ6XNM+f23r6AP46lJCGX2YY9H//SDQ2YFuELpAPmPLY1HIGKC7k2EcGtmXocXEkg8qwG90yYX6AazFOPH8xoX2DxSqJ/vxEBsEKMtN8zejsN46nxV2/7nLT7RUhofXYsa3CajpeSH1gd2YHkYFiaKEjZYX+KBh+ilur/Q04o7KuMS206sRUqYVIhWnhGQN7NQwLSj1Kbn3U67y4l8hqc8gxmo/2+qR6eSWvUpjI09vKIhOK7v1H0ODp96Psc8NiLtVLcnmPSK1cSLSst2HYcCVJteX4hzmIc6GZgCSIyVxx3vKsUQ7ulzYLhfgit7mcEHKOZa6UgIcHO1iqJ7oEsRX7oEaJjtRB9Z0A8V3sSAuLkn2hdANRLFSizZGVa3upfNycgl0063lJ0Imwq2Z9huUfZE9e3AREuvd63FHX1xRGOYEwOjrozwLqjUXTjPeZvuKYWtdVUD2piSvmDVyyj+AlGP5G6mkTDHB/VdvUWyEf5oomQDMuCRI5gYyhpm5cUGTHNEt+pYR+JByCYVUbKM3sMVHxtV4nEcDpnwgvrg6cOu2E4eLp1RT4qyP+Qv9lT5eGiP2RtRSPQ2FX6g1HhlkbS5E3rRgvR9K6YZu+fyTHfcpc5b9HQ8LuqlCEsIaB+yAr0VZcgnmPV2ic5LJJR/jZA9kkYLxQWBkiiZ5kyOFJXJYpJNCw3M4E0/k/QqlLHl6XmqsLgWjBEhBLIJ3LoDd9DZGNcDNg1CMb0O4bPXZmI+BrMXRz74fVtsLC4ehi2QwJHndSLfCqHvBABCKeqJ6VgVPF+7W6NQr4loHGeCjhlPTAbcH3K4DuIISmIAxOC5491JtDcI+cD2iEUAmV4KplnHqAf7vpGsAhvMZPQNC/+LucNZ9VH2v3frsvpuCsRzDi0ElEWLcgBgwhvX+UHA8HJfx2cASRbvWnxptMLNsysygKnMZkcxCX0eUF2i2wY+XbbMpzSgvEIf8Ihd4+ea4DS6yoUfRXrXSyU0o3GidTT2feptRZelspacrmvz4k26vgB2iUiO3dZL/xJn/6NwJn4LMRbUdHmNGDb0c3ADZIBXHXeOae09tiGueDNsP3ZJDGAHBiYIKArFugzrDeCf0sp1oAIPiz4fvuPs5BkE1QO8p9/vQ7Q3FgULTkdykEXV5DuL6VCWldJFa3yyOhH3HysIel2IZkbsSqElJMzTfnoA9KBXUpSKk+08zEDR8s7ItGEE2blm8MAGX0w+lT7gCuxW+FZFq4qjEprdV/w2dvBbckbEja7l6qU8MUOBSqhKPTXv8Jth2sOn5PGJk8OjBYqrqEGvcDRhq2icRwEJFOXFfYzXXlTVBwashyvhRMSqNKcWgpwnsYvF8mRGzD4fCCOYWmjKmxuK0Aw6B/QAFKijywFJu2uq0lgyTjp6MFa2/FJ23H9p99dM80K5sSefz26fj5o8peA1rmfEMdDXK9wM07W37JIH144yd+6YwZsQTPbb9njz+plDw55aLCHMSbv6bdn1ZJNPG0ej2mRRB0fcQFx4RvyPbxRj3gOVi+/VI1Tyq+2o7OEmhAMiU0yJuY4/Y3+dymW3gyP8eAOsFpVVePiYh+LtZCyRr7wgvRoe+pAhiMFceffTjHE7sN2tRlUNa/C6bcm+V1f7+dhE2pJb9aHFDffTyE3dfHmZF3rGC6xLLBkp6ZszaBKAE/ocG+fCQKK4SfUr7C1DkNpBLN5AbXJidqQ8dIbL+Zg+0ZS8KATKzPttbqldyVjJoIm3AETqhAvCn3sDpB2cfjqLH8dEHw0irtSVD0QWR58c22F5w05JJsPMZlFfHtmF4m4k0XDhRc+zbeuApRbww0kRi4zZFmt4v5u6B5y3qTUz44QJlYuAOD0XiLzi5zQwT3z6M7AvAcVrCjXpVNxvEnWPtdkMg8Tq/Ap3QAIz6lpH31U41UfaHJHdJxb4vM7/HVB35jjkcKaCdr1XqKqxo7XqCV7Q3jSJBiEn3sBFOG49m+z3HhzS6xaugUVbRvDYL+TKXh5cBitmE3VRaVGgizt3ak6ihkZ39wgmakfz2/d5bpcjVa3m74WZ2fc2hAPCr/8XGafyOdKUArkfhgJwbsvah55UwYZBUkOIqzXxIM3aNl+dJxKOdZz63aJUfHhl0zb+r79Z/P1nV0BEu5G2JgQbl+bE6l2DFgu/eO/svwh5y99Y7xzUeIY1hXe2oCmkjmKKahXaG30aC5GNQuYEQjkZSM2eeaUnJVz4ZX4keFKEiVLn8Ou01ocVBCEMB4AQ/HqRyjZoJCsDE9r+wK79d1XAyBOOvS3Rn2Neh8vdRcPksfC/TLhrQijKzBnn/kceOLk3CYbawsD5JL1u7gGM7AASUAWg/GO3LDxUhktlmJKdeP1Yy2qEfdKS7pUmcQkl6e+hIs7pK6Izu2GlADyNlQrGeQuS10tSkOrjw6Kp96bT7PY89K7jm+oYFJky4sZveakLbBAi2x5qAg/lPjj5anZYZeDHuiQexxESHxv5RvsCFLJ7+uTpyvkdQp5yWRhy0UpORWmLeKaeBCAadOjB4U1pz7y/31fo7rZ9wnlfyEdseNP2waZHKcqnOjxpOY+1mIKgwTqDErlZUJMn5nC9e0y99chDvHlP5DiXNX+qxGzAlhBqydktHUDmqhDDiYHYEGEEAYvtoUQIr6QCd0Hhx5VtYGSfbcEmJU/fwNJN0eqN7Dm+rJ9C3LzMWfTz7RZkO8c9APN20lw0mm6TUMUVTP+nox24Ygemv8b8k5xAO4GOBvjzKbuxwFUbVbvAC5c8fh2v2CsCVQQd9T0DUnb10DQuBNhVXMx91NYQ5iOq6AOQMwY17bouOYef9hyrp7NNMr7qOCqrTeEzCgt0zYoSxaMYk=
Variant 0
DifficultyLevel
601
Question
Mika is making lemonade.
The recipe says she needs 1 cup of sugar for every 3 lemons.
If 7 lemons are used, how many cups of sugar are needed?
Worked Solution
3 lemons ⇒ 1 cup of sugar
1 lemon ⇒31 cup of sugar
|
|
∴ 7 lemons |
= 7 ×31 |
|
= 37 |
|
= 231 cups |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | 231 cups |
x | 331 cups |
x | |