20303
U2FsdGVkX1+Ai+H7kFb0rMUVRwrnkJOV7MiZ/jNhPdoJE6z0g4Hhv8IjgpP/epZDOvkM9roAdFSmq7cps24luLjZCIqlzW9Tf9gqpWkO4QVcXLcfgO77yQvXv1U0xdOTiduETLpFEyCdY8+v3JpXaipqFatkKTZLr51Uv/jCrfzybaqRjVmfR+YXoV6gu1+7gfJN9d8cFfSgC8p4ob1Y86V+1RZwfJcYH5Wp2ZrHUA4mT8l0/V3hTa4OHDphGR/pgiw4euzr0jcl2SyziwOohd3I5hvQ9obc1RtGPrbDuFTBDTJ4HqdfuFy29gj8sV2OshiNv1tkCjGkr7GRuaS7pFXvbJjEgJJZtsLoAv03KIAORg8zIF9qSADmyQ+woUlZVmrDIq3UVIN7tvDtmjowD19oMzdpf4dr0SPtedHiLgxVVxK2GSvsn0zkadqpAonRDa4Elv2OQv+oLJYsRnm5DuVRI2TNLwD0OX05GGt5VU8Iac08o78BUzPZm5OgVaspGrYcvRlePOAzhzgaxe99BHyQwtYmyKppkMSFjgwp/roEE+0A3caUJher19mYOgmAUWORaBG5OvBOPB9bePGxQ9fe4abdAQPr2tyIeAFqKexu70HtjMl0dWj+W7jOa4WQMbDM5LU7rX8tH7k2Xv7yFdPJSVurizAwmsDw5uUZnyLG2qS3xq9vCwHH9azga+FlnMEh+T03hUgD3d8H1wc55oo9uCJFzcO1CfQGWHdf/Lq8vhyaMj9KJrhVw2kL3sDryvgSjOc5hM23JtCEioR+8LljJGSpQQK1fyPRE/pgRviw6mTzDgAxsC+rDtehvBF1hyPWyFMXTBAeJzf5T7nN6uSde+429DMpnoQZH7UAVxCkdVYwyXfNTmD6mR0/FJzlnVKM7TqjICe+Hi7NkFSl9aEQvDk7gfrB3kptS5FLlNAU6Qow/OHnNgjV+fEnaWBHf880epCWuny2FqOZkPBFHqG3Uq+KBEb10kYf4N8fWP3dYGgK8mohf9h5RY+ty5N3xSpwYLmwnwYywtKisMnqQ8AwzbvIHl2ZDfq8qPvdS7SGqfJbIFH95LKYxKnkhtN+DHWWXTW/3t37vydbeWe2XdbvrnPXf/Hl9Aet97ZdEMJCgFqwI0MWS9LJhLAgU6ixz/AVRSrZhCWycBd55B9PAZPqiFNW6euPTK9CApLACYtCOmZi7SVCyHXMJMtnTGWbTYXJQ4b+/IfOcZ0MPCiiCKK2JEVShfVmWQuhbtouTAJNYOBc5wcjXqueY9qUxF34opmcvJijvuF5PGq2mGSaLgpAdaAT0iTxUsDrR8QFJXu4sCBdrJ8oBPKLkug/glV9AizKZqxcMJg2F+lvxC7kHJSTDmJ+j1q1RdjCSbyGO01gUNDK+KA6gIPSLzRJYkkBBXWP/bRe/KS63evnIutw93JZOa4FCUxat2Ugyw8qPKRpsDx4a2yT/UUpBDwS6MytKJmQmz7B1qtRJh4UZ43ovvHumRPT9L6TDVDVPkpCC2bQcI9e9h7Ngo/DAezbk+Q2tXYTa2jJIfgBcYtsFSDdu7/2RyuyuQzckiYvSXLxN8x3WKSyp4beWKWb3kwDqmPV/KOxVx1z9fqKrg98sXgTh1ovAyPT23GMa2RtG+LTRNkcEae9DuxuOhKCwb/cuclLsZ0Xab4ARTBIUShb0KogWQGza0v1NwFYQ4s6RYl8R4xrtjE3Sx3WQd4zBSakszkkx6nzVEQ8HsjRlv3958wP/vaTje5PrfpalxQO9hhyO5b7hjvl5zyJy8ioQbd7rltpqwesTB0031Cveag3iW4uBUlBTU/M139jTxJU5DBGePyvxSl1w8LVmaLsWUpwgZgokHJ5+dew9lIxPI5+ajTGfVwtOXeei2TmRylZs2FQxL9g3HVUUGxPdpxw4kR8hl/cRK50bAjC4bfGx/zqdBB4b9OrVzba8jvm5JvlMHY62x5w4HI27/MKps432x5Bbgbsdm/lc4U9iyVg4k/BI2TudZKAR1CCJ3xv2wWce4TrKImD92uUESEaPS9gfPFBTiKGQfTwyTf4S9rYfekkDsaFzpHUwXoWvchb5eysOxhqmbSHK5F/u7PUPDJg53uB9Cazx4yczISVFfXi0ldymNTgCLKjkg0vcUjxZ0H2QAXQfVMxX+LUPsoXrlEBd1/TeoXS9Opeme7VNyISVkmXRYaIxrAyZnyQ6yi3iW3TJeCbL/I3Ia4W0c4S0A5dJAtfVBgO9p+bEKhT+8/dqWBuvB41ngKHpS4INNwogp/0RZVPoME15QMP9O6zz1qvNfFCIB4zQK1pZVjMn1+vJKVAzxiLwKviFx+9067uIiKSyTidmzXC1RJ0NUTKuG8t8C8lpRsRMtUFSbZwrt/MD2sQDp3p0Ug0zvTfDDWQ2SoLH/fW/iDcHO8YDK/r2FaRZWZKRmHzzXRgYzCzW6fkp4UNvMCrIAwDPj1PXANAXfepEglD1gtNwwc4XI0Nc8yloY/7wWrbvAdAyg6ueBhHeoWH1761I+5bRf8ULQkEn9kLalkMNnR0u7BP+iErxrrsxozhcY+oWWqntRN8fcF9xkT07ixIcdQzDLYNQKta3cX+QIMS5uwFCenhD8m6vnp0Dsdgm/KMWXTM0EbBSFVKPHDWb3Xe7gGr5iW2xi9Zd0Y0cHYI+3jjz17y5snvp6mKmtR54Hm8QZH0mT0+hNXci9O5aMTMKniDsL6kcn55n1YMnL6Lq2Svp6JwqAzooPPGQfKY8KZlFl2OaxROakWNkC8ppdf+AcSJMm9XFrKtci1Y+WrIfpCxSW/EN7l6I+D3uIc90poJ+SL/FBdTYJY/CRUHSSMhvYXqih0lwQj193xmDB7UzLWJv9DBCME3Vs8taASMtPxKUEyrwPMHzCHiEY5ITKuc2zn6aKNC6Jtp2czUW5T8VmR2Q6wNTnIHz4ImUxNid3TS9P8jvJ1N2xnfWD0F5qjR/SUIGLcK+upWy9lqgh7mAMJAF5keesXqGVlKnLLvSvD9saktEucFPXQvH0Xb9PB2KT01Od/s3dRJu1IOmmA9oB2/nbJo/0OIIeZu5U524sJo4mnkXtV3r6o8eTi8zNhkFbqSM+R4FojNunA0sF2HOIxI/NCzLbCKEMM2jRx1EKJau6O0tKLrCmJUIuZfDwDv0X7iJXavCV4TJUiphJxNejrv9Rm2RwfheRsC7u4ZCRPAwTLoa7sROdMuG6gOQjN6MX6SMzpC/tHQJNXfObs0fh1ePszH5e9pZ3uHGp2EhnBOyermiovmMG6kE0qt8RrQdUW04+lIbfp2cjQdvBLXKorpi9xNTB3GL+z0qo4+20GEi5YlhXpoFkIbunukdZutvWkq+ZrtWt7+EDoy7u287LS3sX0HEQoRleOG3i5Nps4Q2Z9brCEw2lmoy1Ji2NX7seru0ueAj472rWybN72gQPkv4EproTrYlYQ0ipz3bpgBLGOeDdMCOj2ODIL6Hdsj6dulBGKsXILQv7IO9fdwNF+FczwnAhbBW+XrYwl3Kk4iqR2qMhGajZ6ycmSxFlcTFPUzsIKWbUc9hdDeevBfclwUrfFF2jX/mIEISPF65K19GnYolyq7wkt9I0K6Z0fysy+SsI5JiVbR6jD6oZqHHFmCkK9thp1ZYdxS1BT9Y15SgmuBzLegmy2WAsBQis2sMOWaYogfEUPKS5xSaM33990t7g8YV9pFw6/3vVa3KMFenzli+HfO3F5gVUlk7IH5UjAFH/Ge+TWowun9rb16VUu8CPl9j7cp2YQgYSpEMd3zYma+5hryLxGXBv8dRtM1zxwB6Rb+DRaSxrPDUS4y7cdoq1FVGw6BzYKxIeXnCeGAXAnuLzoWClB5EdH34ziPYinMPT0iKLkPY5j1OesAUy9v4eWrTQ9ZsOwaC5rc4IYa8Wp1DUrBdPYix1xf93qALWzXcVApHvA6YDSnP3G6ihxoGV64LN4Td4f2R3tl9SwV+RCLBcp2XzsaPGaV/jfy0He0tO14kMS5lMgKtnmmr/e3K4VB2oNJD7DTIJ+184TZlpKq3OoXw/b9dd4MsKeSUVVE6hmG9bahblIk5RCsjtnIWKGNodQVvf3QYNiOPxK88Y8B01+MT4v+OmuonQGO+h3hp09LLJo/aS0vDzF0mCI8DhqJrSMzFhaWzvTV9oDGlBRsucoAU4Nx/d6da5BiWKVZZ8KdlhVNsvC5wrRkwubpoh9apEeXax2ImlOxmLX0NQDjRlJj+423D4bis8Hpv0B/9x883sj1hp0TAqDlOEPoU0KTrV2d0LN+xzKZ3FWiB9sU7DYKWCM2u1qUt0hkNrOYtGkTdMCdXoJC7qNO/zdiki3RwlKrnI7A8qYSVLd9lLLIOlKX473wl8UWbFO0pDPADdgH44kLfsQUMpCDtOXTfdC5FZUXXkzgU71/NZJBVYYsTheQxW4kdhbAxVI6Cw+ZxsCIKEHX4FCrU3g/qz9TX5eQtpx1TeaZOrreJB52jwQ1vQlKvRgD5wc01dhV3+jOnlrSfAC6Yr6tDTg/GOp5K+JYBNonVU2+tMa0xKQs0S2x5ro1EOAGpHPTv47XYK53h/yfZ9kW2O93afo13Hu9hQY7c2gop9uKRPJw/J8JSYSGEntoGkbSdIoRklKi9cbJ372zsfUGrzVYDHNFprpyjz5guRJUvlmuE0m3NoicZ+pkqgUwrPRwq17lu4/uxPrn1GxrvoMC4RgnbpTcckG2N9EbrUH3e4OUQETBS+NhvZ4CF3VApj25X/PJSWqTmxvqy+LS+i8v80IFxhMphUufzYRQ5Sr71NenXZ419U+i9/JUJ+rBtMf/mNvZyBD+McgFpyG583Y3o2J1Cg4aQaHSv3o2kelc0lYHDm9uj9ly/oiQi4iKBQ32h+Rg4vN1asoYDDgi4yIK4xmP8Eh54Y9LIIfccO8zVOzZPj26Dmh7ahWF8g0OMTS6gLv/ehijLiNz1yQMTXHZKSgFcRIQVducgbJhC//tNalkwhYnf6glKEs3AmX0wc+Ubar9jYnFXFi74O0f/PmbGMMHh9Gk/kdtlqOUUCVSDIwSNZsnvTxKOGKyNbz4R9+AF1hLOpRoGShqQDCMsn0AmVjkn9YQdXNxwebdDN1Ea83pAFW4jyCEwHlu7XE96sXSIhNbyRbVwql0hHWdpy9dpgjNk7yOU6ahq0LNLByi/6QvMtYlVxQr0XYedVmyD0El+PMxwcjbaTfnMMjr8hcl0unEJKKXvH73hwwXbdYB8D3bKdrEY2El5GpRLBMqPkKFbP+m+YGWOBcqR/+dpBS/qwIk23RDBajPrTJymtYjTu3GrsHlXf1FZQJxiqBwxZvCULb4cA1VE+t+XOSij1qj/7wa6NxF6YC1DTuuDosLriEYdUd6eXgAEuOAm7WX3o96/1fJkPN8BOsOV98q9tp4ugPncEYVo9Zzh4/n1ecA32k/lrEHKzHgK5DJ4DY1T92M3YrnjK24rg7pK2G8hMkSi5OOdUTgjAtxCcSrGxbTlGX6ARdU8wdvpi29+i6rekn544EOURKtRhuSqeeDAR3XZpxiJZATjvVelI6eQpGyeab9lj1fLjpZEh16lOGrFfByjdZCd9Wbm7MJL1q4UZCebNsdsqyya8rULcQC1Amk4fFNCPNNPNeeL0Nk3lwghitWOe7C7H+9W4lJMkdjbFiKqS+O6JXTHiQKnyV5DDzCqo5d0E+Svt96SappiuaqohESRHkMl/uHJe6De3QRPxWbA2IDsGRzO117LP1KOuQ2qFJ1mZE9y26fQkJefQXLEZ6XOtSbNmHuuCVnCQ05nWWqwW/ZHqKxtj2v8pVOglajLPDAlnK5ByOxXd6FkoAQrtZyqP7zlq/brIpP+mkQGz1DuxpyDtDo0iSftLUdsMhnxz7fPfkuspir2RK91YBgJCFit7PZtuzBPR/DPab7HUoJ4/9YpHMNfa+z8ABhRyUFkvV9JKK89F7WkD47fbtL9zEgfAd1gS8sp1oGjL7zzMuaLtGkSkVuMCZLKSnUJ89znm1pEgrxZ9/KMXRbOTxUyteo9Ct8cINP6lk/tLnyZKzeRrTlPP1T1Fh+optdjeZ5jTivjrUbnSrX+VZbfVrr2DWmt/QHrfrzrxYWBjKRzm8e0uSHB8dRhiyTA9gQStcfpjZVlEN5X8Wcsu+sLYyY85j2nica0UX0PHNUplo9RRqCGtUzLrHsm8igrEAUq0DW9cZnD2kB1b413DRu4bmGNeYjx4cFxDuLWVP9MWn0rCI1pc3kLmrmFukEowDXqacvFDa1mLs8l4rIJJ0tyTunE8EVKNIgIXmj/ZY+5nNIiuP1CpIGw559nBBbhsIbZquv2XiX2XDvIkXHscwF86IaMhStKQWCOjpEKHolrlIGfCHsdePQlEChp1uKA3hwS7cSj3OcH69WRP0g0xUDewQuDYdEbrfPBEPiMSf0+gaxOPtVZYJELiV60D8qGP7fZ7ba/Exwl2uW4SvTmI1mC07Vt9AQSnEuoEEOHE9jMz3lwbNgb7Q0xKwf4iUgKvWm2GufmicvuwUVEtGVPyX2zUMnQPL6Gzw1WaClpVAhkwMRcr8mRIVgmbsKLtl9EYX6WvAVgJ8fjkYwNIXHT+ybULoOYREbDbgPv9hJshX6sZkulEou3iDhLeH7H8IvE3YUyL9I3q8Gx9l3IeFME0W2dBZuGKg8bLHgsgc2s8xBsyepKmmAPQBOnJwveA/8mENE5xF7BCTFtfntP5yls5V3GvktKqWeY7KnAI5qb4E4IER5Vbre+gPm2Qmw50SnmqjFA35HcKHw/cByC82psoq+9FQz/1NPsbvk9N5mwp0dI8df8A9jFEIrKjtEB9VmSjVZuuiuuYIEKi+cRP99SmcFdrEWXUNcfx+0dv0Mk9QaxxOHrnzg0RPUFFikYhG1F2Qk/Hy1M7ZNvyaANA+U3SIpuQ3MdKDSSbq4iLjNZEkFEvQW5TzZYk9/DZwvzw6JiNCDiyWSmJaBQZz/Q37Qz8hvA67xN+gcdAyPhHBwIxPClIVqqIeEODkuUS8A1Pl4CQvYLL4lMf/idbf1+ZsLSxLyTWZ5RDkoEZ53nnHIs0hC5VFzFcrEeVKb58tQM+RsZinaq6PBzMUKSjmHAl0WL4NV29o2ak8+nYQF4mBtAR5lGxO9Z7rIJn3eFff/xDBJ9SJKbdl4EpOb92571DEoXKxEU7/JWW45H80M1S4aIDOhYU9GrJdiOvgSgPs6EXPsh1PqlvW9dMtsdTx3kz2W2JpZXqOZ4C1j2EeoLLb7D4UZWBxhDwf4VUZ/BwLxsMR4nwSyyffai42BwewugMOssfrATI/kVItGRH+K4KApSYbKdhdrcPpeUkkrk8BUXvyR60RMc0vWgdfXyPQa59xF4LtSBi90P6WZXWCSBoOkFOrxgpdDzQrW5Oxv8zXxfVhSmq25y3VzGD1ycACmA5ob2wt1XDzGITMzvOYeLvMedFfnLmvdxCg8iJZKeC59GOmfkdksQ3lzNLNy/Im/4HG+bRIne5un8Wt9DKoiP4Mzd3nkNmIXlkj77pp9KRZnr6+pehKm1+mCRjjeCbXk8kJ6LpSevn8QHwN6tGZdUl7fRsLgSJMHmO1dPFiwMwfq5oEQ+Vt2BYU+nwqxUduvmyqdCmg65VbTz4Ih19Di9G0jStwrZr5hYGwazh22j3hw2muc0BNxw2OCR1qg2MhVr2oYT/xy33efNPo564qbS/rw5WdMwbhtd4YkfnkYqOQl+m4SR1cU6p+5ckP1w5up8bP+9B51p8mYHIDjrjNjd5nXkIfpOLhXFZ1E0yc+wOeCe4jJDcsjJG5KuZdzb7Yw8UL4L9ArgEp9s+o1HOT5z19ePW05LiwPf0nhGH0QFEe00+uN9cCBPKkUZc2rfgy5BrGvTOSZw9TEfUlen6KM1vyUUXWs9rFLettEupveeatjgFKT/A/hascPx3cE3om2ZZOC/3ihmoRb7riBo/2pvGmAXlCbRlolIo6C+hli3d3dczJnh6/oXt3vH7OqlysV8dwar2MG0taB0K1lkrPP6wWoP3BQO0lbyPHco/rvOMb/omjKdvV00BzfsSaevO1XXzsqiY7wM2a9Rw5kJc2uz+4WqrSF39PkFFdof98Jdp5FGOaCU5gvMoSbXOB54GMvYFbL1Bh9cPVBmoRE0ip+e1I3z7IHkfWIjsv4cpXjeq+ALzHt93yooaXkEoSMylAqVFVw/taDfPTGlBin8CMgmDff4O7maLshmVRofn33EC13CchurKjB2LiFlGY20rt099C5KP23HFWo9lAU4CmdmXxcwq69xfayxoUHYMkgmF3aUn5v0vkbxz7W/tDqHQzXAI3srRCNaCs83vcovN7BH6rT4j/jwBB2BXGvs3RBuwwf+b4Ah8/agvK+GQWXwMZ7+G937CKDaPyOD4n9VxpFl/7e960lgM/zPJiQtBgWp69o7m1HCyCeP/KFKALPF+Cbsnv9bgqIMr7xF6l7BR9WypRSx3zDDugi7nzsTnDUiqjX7Wtut3hws3Mw9jKIZ3l4+lSS8Tl56XpEO67D4neUKfTXib1QGRrCPsaetPe9IZt5TvORZ5RSDhmJsi2GU9fIKEaQdloZHisyrMSqmOqGRk6LyzWNxeBTMBYX2NsD4Oj1ULte1CZY6ZvzjSmPM/lR0lmqG8gs7T2J+pPVFGBEVGs66WJix7668pNOgDaNwI81WpBy0BD09bfSp/XXvFU+0Lr4aUStr9zSBcp2wFTCq73qQk1iFP6e5ynIE6p0qFgh3LKL6soO2paOM6EySJNrmNXNTUZ6I70Te46p+HQapj6+64ogMC6W7hYs7VJgXSK2DdM6hUTNZxnqupvRTQfjim/QexWL5BvncCey/TMp0H3wZyqQzFDygtx8YrOjdkpZY3HOMWT3UwZhZyE0qw9qfwtHK31Oupo4KQEYTF7pcVhkwFzebukSvzhLLy1hdasHSIhjVuJWkigS3i2jvT+MPEh6mAbSeLtl8JHb1loYQbhiT3aBx91W5oWlCvgI3uWIoqMYfemqMf9ruGh3QegZWw3jahu4pbOG0wpVPndkXPG4BcHVhmJq4X9qql/I/UqN5ws/4Kk17N/dtX5VUMdz9dPs17e4Ww0/7Cy3a48SgU2JYT7ZzLcwbInT0cYXeRLFmI6686NJY6bHb8Rjl53OBvb533G7P793VpXDmwOC/rnn4YwflpdizzvFX7fWzD0qTx6VVMRoHtEYTkGAIgHai+36soQuQqm+hct4tzYMKG+BDd8Nf6DD+GKD4bPH1c968hhtdiziT8OacIFQYFLHhAEC7cBerMnewR+7tI81iwG6y4ERXDGjMbL31CcYeKuFp3Zg8/WPQQ6u7HYNC7WQH+H3MMogaMLfrIuDR5WB7kCisy7YsSljwxve0sJPVamqWJo8drnvGIzcV4ZWZtpgzDaeL0UuLByYYbmAtAzqKyHPeluyPxiKW/pGsMaGhHbkWBz2ifmt25xIc+z6G8ztwlFomEe5MAR5HEcCh3sNmRVu7PRCUtr043dp4iyT+n5RZeHuLophG6NWOjo824vHMHJCJUcWjaewC+EnQBSxw6MyOwzWEFOskkEwe2V4Pbu7wHNaZRPZFjctAmOlCIMcNFm1TLeocWpka9YzSva50n8j/yOali/3bHdQcyCkyiAn5JAajZn/9B6wF7I0iL0iJGsfV5B5nDVl2aFCkJUk6814ez9Q+qfCRyFyF9HpBvXfdM5c+6fXGU/bNX5fn0PqhloxhJ2wdoSrF8ZVkvIatRDaw23MEfxosilfN7Ai5rrbx8sRtdsfVkT+i+TxHRkTQxFCqccgIwLah7U2OVo9oRP9vWYyGMgrlk3XzJL1UXDVRnfyKAUhw7L5hpVCWN1EMBXZpTOk+jMD5lcYyL0AMdOCBpliV4TNFMCVyzedlDpz1ITfI8y4RBdjQgEwKt3cuPNUP5PITmA3HbIWwtOqswz5ed0Arpq2wiJ6wAfWHyHhyEyyK9pp17gUTylqgIekGN8kDqzJWzRt25XkWpx7/eyQraTyIpbAa1VVNx9i8MVAPgSVMhUTnGFYuT+3bWeFfLdHl/gaOd89QbVq3UGrabFRoA8XmQY8FPxHqyDAE6dKWfxdZFkqLwyZEu+awlCoTjJg3YmGrscGtUpdrRJ2repXEnzK72jbGIIeQRwg/6rzldOH78gpyabm296mIJcpQT19ByIddi5QA8psTaq30lPeUlE2J0Fvgym4wRTXIMvJYPwSxt5nhmz0pzt0ENn56vWZ6dk4pMKnJ+UmzaOO1bzUNhMOBIjHHUdGobLkQ2EKFuz6dIPBSR2on6wOB5VgYjI4IjZXwDaJ13z9L64I9Q+3/3jIwISAE2z9l6TTmy6QiZ6R/O8HcIdJRUZOEEQ5ByIXndnhjC4q9v76UcnDoPV8rZ4kb8SIM3tEIpEiwAKQ3aDUCmeptVHCc6DPfGvx5pNHiW3RxuWOUusXIS3/JBoyqYFPqJ9cz7BeJtFKKmyUm25S3Z/i0HPqW8rGECd6jmVggkqChPvzJ5BWh6p91+Y/o/HYMJF5kMLg/DO1SCU4171qQY1gfHwvIMHWjPULOUpRMM+dY1ViDl4WqUNB+VIYQu9h0PwNq5GXT229VYYocarPiYZko86lg/voa3HAqHhzDlHXVMvZURRDj6mzd8pBu4HHjl2nyX/94I8Nc6n6RVMcgQGHjBabH6AixDTpU6dEZPqxAkW+SrPkeFa7dulvRKBBbx/ydrwv2vJ4BxHiVTKGGbftEH5/I/oLowaJqwd26HRtxDhOPUCOj82XyhGZl5i57O8sdspS6thMlB2Da4VlV/gosuPIi28iCG2xtud9jWTZLQv5MbMq2p9rj0HejiT7r6Ma4NWv0VhPzg4RaB4mBXUowQ9ONnUe8mPTs09DINwc+ypxCJ+r4cEnJG3rH+KELOl8LzEnHCRXQi/Si1rQk456x1UJtxISna4xrzWRQWn4gN871EQ3/IYol54NOk3mR6N0aIk2i8nw23gFspbj9GHYt+nuFC7jduDldnzMuKLo/hOaFItDyAmTDuOKA7rn2Qjuta+O9cjLoqqnT8MFckvVspnTb4W1ZA8Qxf0H/mH9uplss6P8wJ+LcXXExn2DOPpg5NOcWc6DJwfVq30FH24EpporK77zAr2ArPoPGbLdylM8zHs+mQoZXG07AJ+c4e0glJlSb44uq3nb+3AWu2ZSD/oxeP28P9tQis0GHHigosFIGoWfcHNiVlrYPSH3Q8DwjUymne60/mmy3x0mxkWTE2gcjCpjDmRtPdfaGzxmU3tPtm9fwMOLd//tYQ2gTQwQEBHzWNKIWM9EMRXfSlzc/rlNlJhf3Z7SrB36eZbSY182DJTYCBsias38wqmQMpfKm3zItV/RL1G5PsVBlPcUqf2VehXAiHPEGqIQNhZSza+voMYIdbHLu9QYY0XGh0le7C4iPRLa3hMGYVzY0GCyfi0XD7oVUKXKj7CwBOOx3BWX2oJG0upK4OIMKMdWcA03maebOxbmCejHiGSMokIs4rAJ80P03hXDv+2rFXjTWKQNbVco38InaKad5sfJuaSAUN8fn7gvsrpr67F0IEkCi5YDtr8mWegLPvw2+LK9tJfafKnyPf5JnG/1/MMsBCc9C+ORXWQdn+S7u6aFZqZQ0PP1dCf608RFpGwc4slQlWC8KQz/jmjfxrvuDSL49AdXC4BAB1lZ8Nxa2ef2imGSwy6pvaGHmOWevTZQJW9etC+9YjA0Qwk8qeTres8g7ee6Xa2RrhBA2FdFxiogRrfFLkLFq1RYIjUaJuigsn9cTchqSwz1KQPE9hAMzWOLgGzmK/pST3aUpIVXi8gWlKTchDS3LF8Ja0MKqzvwJz/EgrG/5jEEfLieiVU9kuu9hIAPLDc6vPENjIWUSY48Piv+8J7rhLwwUDe6qIFEGFC0IHgMx3uPt5EOrg5o8G64u1Dv3JP63e3cxeGhBMNuILKMnOagNkO4Nw68f+JG4O1lMY56GqHMgqJzencXugyW3C7nII25RAehmHVhx3iSb3FcplHctfsIzMx9mj1w7Dh2RTwE5MTU1CqTfEw36/BhzRcHdZuZUzpv6FzRocDOQC/al7qx90DBkebh2sY035iRiujFsrBClGQak5QukpDXAdljyGtZpqtVLFETg/umF6eEYV5lFL7SML2bjPfWhO3bD6iL/r+lsT7dtniC5RuADI6hoaEP31pe0+NlqKzFoR+euo3X1wZfNTBrrpQlIeclsf3HAF03cMcd+fmqIg==
Variant 0
DifficultyLevel
619
Question
Here is a plan of Dave's backyard.
The total area of the paving stones is 18 m2.
What is the total area of the grass in Dave's backyard?
Worked Solution
9 paving stones = 18 m2
∴ 1 grid square = 2 m2
|
|
Total grass area |
= 27 grid squares |
|
= 27 × 2 |
|
= 54 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a plan of Dave's backyard.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/12/NAP-A4-CA17-1.svg 450 indent vpad
The total area of the paving stones is 18 m$^2$.
What is the total area of the grass in Dave's backyard?
|
workedSolution | 9 paving stones = 18 m$^2$
$\therefore$ 1 grid square = 2 m$^2$
| | |
| --------------------- | -------------------------------------------- |
| Total grass area | = 27 grid squares |
| | = 27 $\times$ 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19icUvXtOSluEXgEVGg5slgOoUT2uCsY7BKER5HPaKNHMh8B8Udntj4e7jdMc4oyaTJvoE9SrmjXnNh34/1xHRHkZSaga0OBuKAd89Jz1vQo/vKLDjxBnVPIg3XvwegGgKvX83okT3VBtOVx+Mzys8qNeqcV69+pOvA0Se2bysjginJQlIaKJgswZsMbaQtIWuMPmndpZZFXB1xv6wg+R5rRB5/kzAr9f0hOVdqg8b/h4cgFkgRCzlZ/k/Bbfx6/TwBw5ideC5K9XcFtJJiJDouF2Vs/tzHExrFpo4eCRt0advCZnqyEXCfi8Z6FUCN3YjC2+56zbFpxjyFlUsTojk9vTbEKUwc2TPEZlYfi+O++QE9LIfybb+0tG/BSzzQjJRYCEHIBgW8CqwRoMRVCowXmUcJtI4NqUyJkan6XQdtOmqWiKHqNmyMVKw5Jxk1S8tjPi0NcPNVylzm3wvcCRUvktdqbcYm88IuocQgliSCdGyAC9d6FPLmpMD1Zn2q9BELRLjC3z6Wx/Sg4y97EIB3qUTat2buv8eBDE1Cju3DpvpHHNtaUHvi8V3pL0v+h03CyFdkzhSjDz2GXguK0cbnpIdD0IembEsXXTAQzP0C72yUwWGZePbCi9Bq9z3eCWQmRaZJTBelVnfVbq32+BJowRrjElbiJDNssvjz41rdJnMb3IyUYpmzXPGgw0hOET+5cZcqTSh5WL+BeL3RzWWZ8nPjK5tgAzJVsvWNp0/ZDsTPsPEE69x7ny1bUtM64LZGpg3ayePbb8mOc0TYzQjxDs+Ksxv3jj2wsIt7/7gFUyhBXdgLKLrUjIJgIiClSVZW9Lj/TsIde+eOpDQvamHPDm7xKq/4yj5024R7V4f/htgBrRGZNrXPKxPCZGWMSpX/gqPgjxY4+6zYCsE+cCK9lxseCU/uHGjS+zEH/35tfUr5N5ZjuI2SUZNF2peQ//VOh/XGRdj8PKFq09hrjEFeOGoj1iaCM0A9+jA9jE3EFeGcavp3HGE7nrEhqc/cay6fCWCMctopckYmU/4DKEHwMkNH0EQ6KTYoFaHoygrkTX0NJBEf7FHADk1ZWcTHs5BU3hz6pWd/eknTFZ4hjGviGy7jJ5WALUyE/2kXcm6E53neM3BxVgrwI3deqIFwuIu7kQhVy4PrR10T8fAQaxEfLhrqRd+AxCfHB/z2Pplqz+tflxslojlvyEh8/o/hMMNb0pDfwfOYFUbLgGdDa033r7mqeHVvQ6gcHNsg9jGJ3KJtGqEy6JeBUvrubjLHqZ6Z0xcQul3Njq3g1spYV9+3FvtPimoawB37n5tTE3Z2mmWSEPqpywUGwHr9pYq8eVJO2AWpK1SSGUHxmmkZEsuvwM6oDlG+jBQZ9oCIRyQNs5i+wiuWntCccaWXbKrftsS4o+1GUNU5grzqA6p3B1oghrrxENoAp9n93fFC1v28Zi9+plcmb9yyeGQ02OZPoQyR7qkMkjtWQ3KqUhU/pCJRUhFlaZxKT9wsm6aSaINs7IevxUvPhdE1tcRhURqACi9BdshZ4iEH6RASFlAkJm3ogp9413ySRfM74AGbbOv82zZwrti+n9VzZ+h1DFJj4Cg/JKPbJ/iQddtIkYvecB5Rp4eSVx52pwiEZw2F2A/Pj9k3SnkhbCWITTNpBj6/O2T765wRydL2XSjVzSBulIK/+Y354eEWQec+CjuWE/k3zJMD3DJDwiZD+qXZfg2T2uOstRVno9f7q1+En6mSkrBoWnSprmyGBEGuU+JBo7gbEboE7jOzIK69aZ/dyFXWhrKIBKjezpqCWgBRXNGq63J+lOzIK9ZflNEF2xFSPc1BWUVZKPJyLmLgZWv/IqVPNzY/4EiAhPifGI05QhPSO1792IMGurpkX2ulxBZlIlvIrbHjP2YCX33Zme9UbaUML8qyacgeZIA97kGU3awEe2LopwD1C6jkaFOhjQNiuXGf95c7N/QDj4SO1NgywIdbD+sWbCGeD+0aeXSz/IRqZ3QldWHffCO1ylNGJLs3KOhAbTtyNCUloCfnXiHtAEsYUFjIuSM0ZoADftMMWzZHxBhBVFXjrztCsgJyBj4WshuNWQW8zTrdFmVgkgkHabLY6Ex7jn0KiJaN3xJcnS24zk2dX2XCz9hGyHZAYwtW6K1qf79pnOkMoVkgXph6RPYmiqoZTCI//vOqplFTyngl1at5HOTxxgdKz4y4txZXNUgP/SixzC0GIn1z/GzbjUaF1dM55prWvG1I/W5p5GNT2WsM2z0uhhgY+y4TnXblBYWoxvSr2SS96qL+keLxl5GLJDHgSP6ttOFmwill3gqBuJqiuyT+lms7BrvqVdXDA9v83oCEHhrgi84C+LfJvyIIS987ts9oK6uVKIrVbrj2hp3qfpuUCD+gPCMyxWS+fC0QCoO93XfQ1VstrS793Wh6+bYNpAx0ogr9vfaFnU3kY0yEEgnMfnWYNeGLnPY95NaXb6JumoY/wTNCYV2XbtoVkwXvCrq5AE7GZoqYHxrXJMHOWhk7FjMg2fRHB+nazRJYxZyX+0JGLurEf6On3XdUIW1v4PvaStSZdGy8WyF4M51WapAxMvJE9PdfrUOwJGvI2CEq9gQ6KwxmMEWcqLDHJ4hjU53B5AFvsXSk+XJNixzYMmyZQwmKhoZr7tUOUJYAt3/9OhEEDReXgKFxWDtdBDgPIPAbbwE5rlEg5+YTeiWmTUfBfelETPBFceDZiTrPZ1neuANvYipLAyUn+2iIOyAeY0lQx6EBPmq9AzXsu4/5gMQPNU7ZlyecuqdBz6yU4MOK9V/9skLxjTG6vWt7J1ISGuXiX0F463VEmaMclW5gIJ2CfyI3rXe+0smKPhMhslL/3m6WY50svljBhtGap4XMc82F1QrPYleET37m0g8KvOLEXhDyXTcPA3dFbHCiZVwo5Yqrl2ECFT1EhVhtkrmmxuWvOGKUqZ8xRclTyewCiAI0uMNDllDmFUOYdx+7Aget3XNdkUzoy+yjeDD5k9lQhhA2l+1nNGzi9n4qQQWu6hb+GlA8Wj40a6gPjft7p5DDfzm40pboOYFubkPCoXHnK3HJHy3Lv/XPnxznOEz1eV6PK1TKDq5HqS+EdDUpoqZhBVcHcI8fR0yQ1MYSWWrZSTR6Sv/5emsyLY8X3ftmJOb85rIX9XyXmbLTtaHoz3b3vTeukidDpi88J3abxCPXln5H0m+x1JZAM4MoSTgT7/XLB+037iru9X32n8aL6MRCa9BQ9aP0oInQVgg5GqsREbqRJkTRtAYMjvL+yvZBGtxZQdYFgoh4WjXKlZPNJIStWB0sh5gKmJxeu5OBkUzQmfACQWkeIfbbiNDYS9stf6yWP2tV37loAKcCrPHz7RDw20S7gtILgJCLKyB435KWNcAPFBPgjlMuNSOmKKW/8ZisrSUNLL04vi3C0RxBGGbq7oSnakOb+H/HLiueViWR0IC72n/medenYkADWKJHoKzq8hC08xZor7KYDVMF0oD4tOHOQ20rfHrNsu3Vf67PGhwEjTVmO6xqiky/29AQxup1jyF50u+4w2SNzXixMXBmVDADIN2yQ57HRA99Scj4RCp6LNgsrT8LsWtBRuzx+TYx2ZhnXYnL7Y01WQB887zgyWEzr0hOFaSuF9RAExwhfSLNV3HOfMAhd4hnc1ltgyKE8MHEbSVo+ZQ4l419pupv49z191SiJ2Wh1DvzptqWijOmpCXXsA9fMqkAssL/CRTAx1Ze7A4A/aZwGWVpkGKpasQfiRVW2b23Qa7qi50p6x3f0OTOOJ1oK+OvxTAxaw5b9ZoqFrxlTsH/NGfo9YKNHb0dJpWhs0qmsA5vdeqKGMAKd/NheGrTr2C7gluVhr/+yjD299dQ2qo0apG1T8vcpte2Ewv+QI9eMTu1lYbdeEMz3gEjX0ygVflLuuov2n7q2duYBAKmwMu0bdyM7IwIJAca0pJTp36HjX1vqjSFGwDOdb2/xV5soVHFVyoRwF6wNK6QKTPeAEAAX0+JZo5zp1svptgEuShNjRXo7/AiB1el6I/eRc8sF4YZHzSH85NT/13aqRtua9PWIPZs9UUNE3G2hGkqfrrMqShQp5sHsmATiEh1PG8Sv9zb7nXYfPSjRkU6SA0veaW6VhwG8ZSF9jgVHUR3GyCgadrcj7IuzB9cOykAx23TD7DvR+SaOeAUucebtHqHRwNV0pUhWpDNokC7YrWpNp59/4MVOtUTEvPqJ39NVpZvIBm3tQDXOZmTR92U90uUzxC06N6BO668Uo+UbTDMzp/pGf5POWoWHdtexXbXaI1PCcFC1drbQbtElFzs+WpuihcT1dL6wYgZWLEp/Noz1FnXVJke6b976y1ohArHZAdV2bQuHxGUq1k7hdO5r8vYKy8Ql5mhe05kNqknSvdhQAz2FPcvvLhQ6Ezbce/3ZcgKXk5iSwZ9lNkkbxJdic1Y9otkC+Hz3qFPH8onmUCIkbMRf5EepYrik4AxAEUGKttVNv4cGP0PMqfMlDd9Ad185WEwfTyWTAf4JsIjXnVVBi9KiIieet3LQyXLIr6KYz97qWkg+LhokJrgP7urykbipa8+9Lsc05zeR16eUUEDqfyknTGUfb1LfYBYfyj/sDECMhroNd3w/BLO0f62+OvIzTj0E8Eexfg/Nz3MzjITvf7GFPi8nVRvPzzN5/hTgwU6slh1qyfYGn4Rx1jp/TgkxpzMF3dgRrA3GAAXeEeF0IMSeJtc27lBXHwK7i2IpRbPFmvC4f4ihntvjjxHEf/yysdsAW+TTNcpy2rFd5PZBkm5/HWGAwo7q2wFrpC32xvh7P+Cu+9/t2yc1JzEQOND0eEjiQCLs/RZ1P9lX88G6RDsWvY7YlA3qEsJUZrp/bsXEjKQHUEAEFsAA2azJ4ProV7NxEkb0y1KXO/veMmKChQYpIDdt+FkihnQPLSL/YwaylWO7U+yTj4ScBfwQuMvB+O9MZKKtWomCxh9Fa/n9gB3z1R6sQcTZdDCdoa5lnz40tzmTkXlX8zQY/qLRE6G3NKcMWj4vFdFXxjbbln+vXhmHTQpRs4oMs6yH0MhFsUr45giUE2TmHBOrI5nid7Tup/Vv4az1PJu8wN2ADbDnpIh+NsELrGsCaK0DhxeOoZXY9rHTtEZ3JhruB6GicvMxNiEdHj1u7sunIRQhKVliguUcssRvzp6TivmKGzbhRrGxndg9ZTGinzNiubUgil3Eypl10n7sO0GC1vhPA37rPzgoT0WhEeMY1H0eRqk2dH8d9mML5fN50xtgQKB6v5tMZ6KEVyPqmeVs80trsZ84OkgvUJio0fvdBXUAdlfSy0XudckiBb+mVxjO1RnRZek6iVBsTwKqB+hazcsJSzd1lmPJSE1bWko/KB4Qp1uRAg/5m3EGHR/E4/gY/iBgaW2dXIPje1ytvbp0XYVYh/44+3Zp3TlwrXV+QA4ym/0eIXVBQenW+o8Szo/ec8ZA7q0pX+RV+fwXO/nWBtbuurzeYpzOf+zqgMqDxCMqsta9qjxaIzHkihzlt20p9UxHr0cgSzFF4m1LMxNHj65c3l42mXFH5uiap9OCfDXKP3r8zdadYhZme1dcnQba/hjrC9xBdBSpEa0P2yBZXKGyNpvJFt/pYuoQ9LdP1p0LTzvofpUGVEpPkLN+Jc62Dh9oalE9UcMyOIb4P57uhOVq5Gr/Zxia+9M8u31oSe5NJgZ6z5q2EH8DPrTg3hA2e5oczwV/95GQuhN9mX/9NFvXBDLQFa2wz8CBtKx5l2YkX9G2ae6mmoncdq+YuuCi8ZsWWgobgWuNctqGFuaV5pje2Kd0NjrmoetwnySR+rKFdBscTuLHmST8+KVu1muXkva7L0WMbZWnupmkhUI3EEjVn1C10sY3EhNooT/dAy050NmwDHPJcbEmPemm3l8Dnq3Z9AqGCnjXD3oJeRwTA7AX9suDtLycOIucjhMiAJw1v81epC1PRZQND387LOCYkTufxU2RymSXiUELj0YtUmFUr7Qx7c9eslDYoiDtPWiXn3H6r0Q3Tan91rVGWyb8LP0ASGZGj4Qud36PPcw2rXZRtwjJH6ApWR3F8YLma0cxXrJXSrBDzkn2YtP9CMpIADbLc8QzcGoH4R/4y73evd+d6JvGjBb9lYwkTpeAxBkmikAOx9FkLKJXQS9Wdj6+eWgbRPcOHl/HRpe1Ld6nIl6xW7hQ/6Qc3mXEYtExj0Yy/XRMxdbyCZe3mqv05d8mEcrC2GfixSkIjNtf9VRJu3GI7YxFar30jNNMnH+oFdYDkUBx1aIA4H6bkY/dhFElznka18DUrmcxT+2HZ97cItEw+NE02HrMoaRd/WCrMprQ+s3zoJMIVlIKgDBQrRhgskgfpAOdkeMtuTOzOg4XA75oqjdVowaCPax6Ec4Lk/GfbqYWYUeqMSsvufOIfDyW/ty+1/0S2h3VfJjo7L6TNzwgdN1/fcehtWmjqmDI0ZM293lNE+UJQgB1eV2pSbrooYByvbZp1lVyqbZyRqdTPzhX9FrJiw4728/Z1gk4C7qvf2zYwF39hgmH99ikhXIZ7zTp2N284NnnwS6Mo/VpWMeGMVqTKNdKHrmmSF/owxzTblDi08pZNW2aR4N2a4x2SZ9pei4l1cHE3GaJ6w2ggZfJbJRAMIgHagY/SRWjsPpRV+55lQD+kv7qa+i4fkP0YBwY8EvHS6z/8qfjFMLaXFS3pvm1cyeGNO8umHr4iseKLzkXYKDzk44zeCIc6DevZEtrii9wu/dAD1nNzuNexvZmGN73eON5sDvamedQAuRnQ1KsGBdF61TyQ1KM4eyNdGCCwKDve8cP0tsuANeHavslFgF16+iXh8PSuGB8VFw+o3h1SsTD5Bqn98yDvOK5wCTRLCcmHAmAT8OTspP1yUJEPdtPJDHzrdKn0WzMGvcmUvYtafNdXUEmJDCmCUqmlAsjwHqsrfSSUcECXZUsi2iucoNVYiIqpMFumIyiGOBdFfAXUG2rly8vE9MK9zaHdV4qmc3e9/BrJ1cfpepDj5IzmUdKfhoUg6hjG2dFLLGJC6UYpuOu/raWjjkSV4Ux/GBEpIejL8RVkSsk9ZOrMRh1uaxY/AuiWpdlZzWRQHd0817bP9DZxpZTgAll9y4sVh1cIEas163lTlel/h3BTZ3GNukyIzyj3Dzsfovmj/AGaP+vm4iti9peWkEr/w0IwyuFdCOqorR/OlURhVkzB/qQZ2D2aqyDysFKA+DCubDF9OdWNJ5d+QVU1bcI3tWiQreVu+C0Rad90OcPkHlYv2ugUOCKhAN+GyqRT87cI2LWgK3sh313rRUc3mbPnZgthBfontD75cwNKy85EXG6+ofVU9zSoO9YRzNiV4t4B71kuQFXiarMGJfusVqtvR2MeFGk7GHEpudTikjwvV0NPSpsEjaFgCk7NgVL5YlS8J7A0Z6Ogh3ijYfMZECc54eOLo3UAwg+ssmVWBEJWWULAFMgjCRzJfgMsCzLqAioqKmSj7vB1NUwl9euFB8zUrMlIf6hawXP8mlfBNp/Hvc0CAi3ko8LvE1yW+TGm1/L7bGNzbs4mcDpEAcMUywFNmzDMNZInsNScxCprPnfZ19J+i0n1tXvRrtw+QpIdj/Je9azacHoBaTYOhOZUYDRB7pqKF30gfthmPfrA+pB1WbDdLwBBYbSZP2mcAZ+eoV4rsPRjp1F3ReT1pkE0Ud3MhBVQWwYMAj/ILckhkStf6riyyS1P+La2tHsESyXRITfU1OtB+2jvHExKb/qQPfNctYex6pCQwwlUZuH6bclVoBbsJax+8Roq6G7nObtXwQnHw/ttci5Ihe9UIEdqfimal6eV5S2UIP2GMomsWMOLtWprsGFEUuLIRBixJksi2Vm8HS4DoZZk+Q6Ti3aw7r+XKUWBQQl4KOSkHpj1KddFmt2aFMz61XLGCcZbg9718wSawarUC7AtkfsdA11/Mblq8U8v726MfYO4tkcEaAtGH156i6+JY9eScofbK6euHEMQE584OKsRQrZPN+0x1JlWJuVkE7uDZq1UizevkkpNG1wQxNva8vvM6wVIxNoYzmNFNgXIVoSlkJHhMIFpifOG2AcDlLpiKAh2UyaQFygEgnOUX4BMf1Vgt/1DzbbE5RzsobOy5K0vr+INJOTMgvDEEy42qCBvagk+u1pZ/+/joQ3zoxje8cL57k+j1IVMaIHAFq5HxLb3+Pf8EPyMRKfJlqlbua3qx2gyq8Suy2r6dM6Gx0Ph1YKgfE5ZrZKjkKwEwNWoXI88ipOyR46l581Pb9xaLu9aIHsWQyaYF/80kgoX5xvm3Ke1JHQFYUW4rwSyiZRvg83czSB73e4ejpLSsAA+H4iLBOdplCqUE5oMdbeWCgI8QgspTcR+cIIU1Y/215pp7V//jOBTCqJ5wN6mF8J+D3Sqw8QZNP4rxusmTJORanMQgAa7xXn8DHJDsOx5qAkWRZJkLeIY4GpI9YUBL+zAq4XK/EXaYoVaclYUhq9Wo/sH4TuS1lzlk4qBPUL82oP1IFF50yvw31wZeygFK5IcLCAyZ69dVkougpPYUQlpAsAzQwgcS/L6AlTdWfQCd+uQnjZFFRp1rtMEAXX4MFrpPor2aboG1dgRAdnr6m8ZYG9ug3uSJv4FYtR14LjkKW5Vv0KrfqWq0AToA3ixbvBlKpjZEMAxpf/n3q+19bBGSfyS26FJ8AzrF+xugYBE+YaPBS8S3WqeXUwCkN5Glq8Wg4U962sPd+T9qRBy6B4jevKvoSufh91+UVy6s0cUIOmJDzF50pA4Lc9VRapWOTxBYXrUkzx4XQTgiagX4ZNgza3ktks/0Ys02bP4+93wqtJyPXCu06Fi/suY6p9+Yk0BIrXbzKX8jV3VTc8v9KEKQS+Fpe6GVrz3iuSoySTKsVgojwRRdt55gTOtI5aMy23UuO/cKeZARn0NdSvz6Dqrjq04Lvg+jHxYumB5+UM+zXPvFs3uNRG/vccxkoE0wLVYjk8bYjmWl6ZzaAu3T96lPlCqMTlb9YHKyaUcD6dBxNdUKAxn/vBLQA1W84J0MhCrU1ErLfZlS4sVgKUFYzQOFUkE/uFkAGakBDdPcWgVGnIH50TEBYyHRtX3L+9QN94VMkEEm2ufIwN7OFmkSlxaQ2cv+GO3aloXQZif8GH3Bpdz/qAZlbwlyMFoz1aP/zykBpOGpsIDpzgCQTsiTA5fHopyNKjWwoGQ3aWHHicbA2qQ3Muf/CNzNzjDnkf0faHYGmtp9dlsaQsDw7HdFloeGHmZOQR/MC7nUyIjBM0dewjDz7pClhH/pxQuSIFOUPdbpj+LWwKbojAWYXaHMAxG4k9bWdN5VtqnKZTKEpiiVdBlUL7jMLxTVEb42cFWoPtmaJ41IkyFGxR+CMQqjNCZQX5TLUkWHml2C8E1wUGHjardQApxAl5jhKZzCScYB2oY0cfyPeHizfVzkhOzWcXJ5fINbFerGNTZ6VFbqb/t0ZuyObrEK9wU3/ABa+cYClM1d0GPnUeLEZ/5khh7ka+Eek1UahKntPdv7+7ol9uZNIm96/ycqDgEZDsfZmBIJUdNAWqz046qvfRVpHW3Ze/kOksQHYyyveRcaFhnmjhwuuA928LljwDHKrZKs/IRiSnEoMnD61rBRYIbn/qRdcGPwIZ/emSxIus775OELknwNSstk4ephD5+l+SzEcBqt4wVcs1Tq/WCHj5B4iyBlVKW5tHJEz/HUAD9ZG8LUGy8kaN/XRaR8GX10pGUWsRj5biaQQEZEwBqZPNpEw3ShcLgCEEv3TGFrns+Kqzx8tzAf8HBOw4wrr2VprzWkxwBmUV8DAVJtRDVygl8KIZi3TZ3mxWxgfwhqs3WpPFxfifOgG6pEMMvl21IPmPlxieQhT5ns3tp3xlmSYKavovZp7HzHtnxJDGlw/sIXM+T+arLh2+ebmf3O+WbF1iYfAtJpw3ozeFETd/iX95PIgaI4pt4iYw3sludOBTCQGWMnfmeYkYCORnIh8V+zgsjv5Aj6fq1mSbZEm8Wi8D9gkskMYAGBqV/TnuWHOJHBceY7qI4LtUSvdLnzoX7At2VUNVZY63SYKnWOR70D5SufwMdyS/KLmZeadi6ANCzqYDelSJVFqpVRmTrqfmzed9mutStA1f2reampnoxuozJBCne4GfebJWIiEGFur+bRgqXk3sUfwikCOPDsfcZl4VEk0B62gDjx5qqPGe1SxJjyDOsyuno3AkHWd1QibrzjBloLhK2bUZH6wVGdDS35lB7fnygQtar5MXU8qkgpN36VTe0b7QOYDlymB0yp+1u+9x8w6b+GLPFCccMzHOSXjYahAgu3uIPKSEEkn9QeAvvtTMEy82gkao2Qb7I0w3T4KEkskG+WeKG72G+CVi5ZzvoMp0ZG4qreazE/jO7YXmzbU/3rPXyD6tt3XKlECRUqf/Rt2x8D+o8oUjEKLWpxpB+rGsZvYA8iDhz21EATunyj7j6MBgKroruoRhBhIYbPtZPsTiYQHdDZpSxT0xUWOvcZ92O/IXuVEiQu/kydgu79arHnvk8l3i7D3DcC7HEGOvP8PEKDg/7xUMQJC4v1RQXyPBz0Bs33K3DjJ9tcLw540iRSwL6O1uobxYgzzypXYy0S1fm8roaHaIiUv3P4DR9TF1lc2JW/o9x7cGUP3lpyDe/J8LZzPJOEAKeGEksyOA7RTwzmTNmHAoRWKBUNNqaCgXbdE1y5nTAzk3BtzNT59gNZ8Kg5R5me3B97wNFb016RV45KkL90W1ujtQE/LOebXTeHIrum1vhzxZCoqMnE4Jh3LVCqcGwafBJJMJdTI3coIcaYSYoCyodKDgGHOdPg0CHUB5FmdU6hpH1IEfbK0hncaJfpilzvOIHg/PF9cXlv4Az/mo8pCMzTVVwpzPWeRVzxLB8U+G17HVuubNr4eYHv6R51VSEaQC825KaDK6epsO4MnTIG6w/llxDkhy4vUxCazmqraibL3svr8RLL7+b7b45i8rtSMweWBlpWfzz/Os7WhoMqOmWw1L5Q9z0AS3BneH67NYSX53hBiVGOqrNHmMR4HYHH7Xwpy7j4Rxq+FPvSczBlPdPSrG6+BewmGMs/TCCVI0T/ITWOJe5SN6y/+syKMbmo9wiz0lo3U1P70Zr1tNu1IgHKSC3LAbPnhqgcmjSmRi/IqgLCFB3yXyJnak1nsC4BMCRQj3KD+GzOR6LpCZhZ115vOeO9WdmxLlRKMQFBzFm3Q3rfMdeC0g8MQ+vR2FQD0ZwQxu3gkqFvnF1iWD9NrWCdUnvJJOcMIAxNBHHSnBDI8j/ec8GACihNYkX6TktF5ZXAZasgMcmWAs2tjSvLbG+loL+KRMgXKe3MEk2AHb9/ziAOgHM4kM3HEQAfxyn9NbDjxD4wjAHaL0DlrxKJawyqrOztzMydsiMDcgQAC4LlqO96zk3v0o1jmsQpeyKGi6NC+iLHfyCJHSkSt49gM/2gb5k+C+Csqd5T0+4v9KjdP1MPNdhM3Wjc2FOwlAl1bF3YmGBM1axxPXW+DZ/UFVClmFZWbv07/kieRBihia77Tn44hhxfYV+T4LOg9x28QYa44BwjbnRUn/eD2YHssTQi7cZDGrYfWpsMXnwegaUF5vn+H8oV5ASauxKSJRXCiHFp9l2fwvaYqjp7bDzyV5zSaSbrFsnsKx3o6OhIG5k2WjAFwDvfTj7WEyOpzarGlbZ/QpRh2KOHbDK7yidFayAtRyddqzATG2pG3wpMoB3fwsS6SKfwpf8imXg5AdssFRK4a0R0lWKRzo/L7Okf7uEZsnFPBX7ibjJ2fbkPaw5zK+Gn7eY0hy6kSpHANdKcv6mxdvf7ntw9S2bRB4I5Mr0ZpRg05ppnwBXVTgp9gHm2mqYda5uEq8WSTU0LTH8Z8M9/SazFmguejD3fHpozF0mP9X7OARW6zulHPrDbMiWXwIxhPA8JCL3VQiKwB947FlT7JNf1ROKcUUbe/1Pm60q+fDTpSviAt0HWSpfPUj8Qi3GcYiNTq7/PLm7ca9XKDdavfD+beEzLE3OovHsKlq3lFBax6D/Xn8hcPF1Fyaq/z30+QXf3XkPJxJGgzCWPKylQMfRt07F55N1yGJ8pZ3psgC2Av9F0jbH1KR6WczVnowA1vVpyTdC7hIEnKnXqDnC74D23RAEkweCGVPTBVtwbZmXvYGM2COUkEN7JnYRMM351Mdd0T5oLoMs3mVulw10JGLCaF/eqyPJrHxsHsmBEBYGwFVsy1nSeonMxoa1GEpyQMO8V6zhq0tQlhEveN3v26+ifmRGCxPULbwiCSeQFXoDmjRj63SinhgkguOcZBchqZBHmHt9I7VOphx17nsowWF7xE74GNMpMaNqwWn9n9SvoK5GkTK/J/fstaoDthY0j1dAIlhDe3LdbZBvey0wSMngHN3CgAGpmXqNaPaYJ+/4UP2AmZuGyutrWYND7pjusftUhEabQSsSNWBmmTy6dLAvMAS9EtGZtrHBZfXxej+X/KDAEmjRj9JD6ZkarQBNX7Z4p7OY0QnB+Spd0aiNQWm405uh11TCQaFxa2AvQAq+BgFipkoiJ+RLnwbF8+DfPmOiQYOPh+4Vj/Gpks4BpvmKW/8yIKCJuSPjF6JX27iHsRqkoIuuwfltoOGqVBYqKYP+9OYpTPA6TF3UybuVe4EU5UjelZyBDKfodFpQAgp6CB3C45oud0inSOa08WLFGGMOw3ZM+1YjXN7meeKdgPynT7RbjTDaNyn7GQCBvQ0JRrqzBMWgdav0ypKBsyV6z1xSp5cLlPatKNBtotKr13/oIZyyTMrCsXi5DmT0dqEc1gyZnzeS2pgBYlaBYgzxlUBDQ2zEJIjTi9TUwUtrXBHzvutkNpxeQXiWWaqOU+ad3mkZdiW9nytEtja+Yjbox9OJu+E/rIZ5YDShvXkpl11L3gp0nn70ngKcruy0xH9Eoq2cx8rBr7IqIiad3SLVeEbjZypFIMF//rDx/RAyjtkPaDiAzZvPXyB4ZZEiIrGZ2eQeiTy4yzJOicQq5OL5dgD0QPdYwdXCQOPL5YlQ9RcnjNaJ+Wdjfpxda6ca9scvCTNkV9uF5XZmJ8mCl+az4+xPLqUuR0492YnKZ0sf6kpF6sS1/WjEhH5ambOEK8hhaIDBanwX/CpafgDKBKLzCkPGuAbRqb4gShDb1CE9Or/QMLf9giiSJYhpFAN3AFCWm2yc7m9Vc3J4b4DS5bXOuFwA86AC2paRmgRoqH4CJbNiRb0oPtSsa4dEIRaoUcHT+vHc1Ft6ySxfG51Mk/RIFiOSuWWBxglY2S5XfeasqgjEc67KOWw+ErAnNKobstbS7EzWbWrBtV1C5kj74MlsvUefa40QUbyim2UupOpT7iwzFinIq93W1q6ou8tHKQ6roZLFuWDr41JWDX2HStXCIfaM0j2+R1RHWCjIjgFHGeMACviQKOG/GqlL8mVtEXEUFqBavH1OKIlv16nQfIHJj0RhPr92YwBUAt0GTqAv6fg09IKTF1IAPoSv3tKO2RdChdUrobC2E3NXWZSB8=
Variant 1
DifficultyLevel
635
Question
Here is a plan of Garth's tiled outdoor area.
The total area of the dark tiles is 48 m2.
What is the total area of the light tiles in Garth's outdoor area?
Worked Solution
24 dark tiles = 48 m2
∴ 1 grid square = 2 m2
|
|
Total light tile area |
= [(11 × 5) − 24] grid squares |
|
= 31 × 2 |
|
= 62 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a plan of Garth's tiled outdoor area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20303_v1a.svg 400 indent vpad
The total area of the dark tiles is 48 m$^2$.
What is the total area of the light tiles in Garth's outdoor area?
|
workedSolution | 24 dark tiles = 48 m$^2$
$\therefore$ 1 grid square = 2 m$^2$
| | |
| --------------------- | -------------------------------------------- |
| Total light tile area | = [(11 $\times$ 5) $-$ 24] grid squares |
| | = 31 $\times$ 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/sbbFUHWDbzRjOagOWX2c8ReDhLPCRLVD1vU/yvCjERvNL35NWPtNFQfgRG2y/AQgB47ocx9syvp2V3iQNZ+eHcDAKNYyJHjIEYLRmf4onvrNHlAFF/7i5cJHu0b+H92DDV9DtmW1/rCtC41Ughj5+Rgwa6lGYTREradzIg21yFsHsOxyWayZVv9m/9nCdZaByQXiGZ6nNqPk8eO4oMio7yq3sHD7+MRPE25GiSpi4LGRTEP4ABfKwWtPkOVUdpG6c2Bj+19N7r3Sqn0b3Az9oaQK8UXyG3pSrEDojkYNtaPWW+L5VbjPCmNdPES21jzvLimBarm4nICwNmC6OZ2AMtbBwTE39tGyTW9xcT3HXzPXKYwt3mp3LQXJCdWsCi9wpjV7nGTE+xO7avy4i3hvboyzddODWcPnhEUAepqpOUQfIuQgt7mkHX5jno1NmINqA0mn+iCzpwsjKlc/pQA7mEzCh0DPbqlN97LRn0N/KWd/I0eoPg2gcbz0toZPOx/aJtD0uwJnXWar7SML9KlXW7hxz/VoyrMqXExUIBGLU5kQ74V19eB1bDdDgqLcpejUIR3EN4TkECsVM+6lxtfjX3Wny0KBifeNlKuCOQfG2sk0C/QYt470Nkwz1rHSZ0QDXioBi22zAVskTvDZZprhv8ieW5iHrqRjRAeJ46wsEx/sX37tfLgwols1D4dvD5zt/Lguad4xikM5QW55zAYEmozyfiUQTo9T7dl94iT8nKjgsAetw2UhYL2YOTOA+TYuVdTaNy+R9HOi+nEn63rvq30KfFfHMRsShsGG4q1mzt44w+Azs+JS1bqXag2h3iG1QJJ3THP7leUhiubxYIiP/CT5WslLuWrgraBbUlPO4YA5gMCS/mUb/9+ksf6zjOlzq8qsCLnIGZvEbYQi9vUQ5HxPaCR8+6Ncay/S3OpajeGRO1YYsnq9v3JGSijZln9Itde5LUaTqy11Ak+TuhzbXsn93SvkL4RxDZT3rjWzLKtbtSC8uHyCDKSKwvC1hp3yHLXz/F8UGvV/ATfqJju9K6fK9JARIohiW9WX0h4Ym93xqj0SJ16OL4NB79Q/ZtlsDUckDPWDB1nkNZd0dmLkRWVBJ0tWT1XYMplFSpdAxVIPERYaHJWjr45bQtlsJlDlk/bNWxxd/wEyFAPYbUTLe/xu5HQU4UEi4e/LvVc8ElNNJz2hIuDSckTyKKu+2fDPmrCV5d1tOwabOGTrw+Cg8i7XpeC7RKpXr1qfsACaU314Cou5WL054Gdan4bgw8ICiMKnKRCM/kLQGzwhm1hGwHKnTYcT9qcuVHNNtGQZqg9pfwn8dseWBQwuAoUZBMxF6vh5jN+LNOE2IP0/j0oKdMacWYSCVZh5LgiOZ3tRW50ciOA7TSgdSVACVBNd78M8N4ZFF+UMSVhUe/n6OKBr6eiwaAaZyBVxqYYs6sh5+FVO3JNJjCv3u1fxuwyaquMf7qTGbyq+dg+/2wsg+W77BiDxuR915egW/n2ranfpbinxHXHSuI2LmMIDKGsVTFB5H2ltGyna/qt+6CA7M41LAYhYT/2CYjK9WhVOXXJ/ALPYbxKckgFbTYYJYYNPoTm61CTvuxkVXqnt947kWdf9AZtViiGF+grqCfm5U0CgjyM1Lc7uuvo6Ht0+eqcJQyqvZNep9laoZFJ8xn911L2trhY0jasIjRJvYZnfiezV3F8cvSqUKOpTekTeVc9oXxKZuyfbBvpEorePeQyOHqR6Sc63+yb3Zx1bbOp+6T2+IyQjybAMGuIfdFUW6ML802Uyy3jK+2eE0oV0C6gk6ImKNsSGK1xIVmTRZ02i9N7MXcpdJGMmqrQrHNNtYRshGJjX5hG21sMhOmJ9QZMeNXjUhqL1x3p6bMMMyYg8WyxW56RzHT/8YkRCFk9XDv61jadhSTYClIkjnf19S4Amm4DVCZn1opGBV6/BuAIlU3dZPJoor3HgQKeHLHe/YdLYgvsh7HIXWkbOThK20zx4+gF9isIMDD0ghOuTBqpz/Vw4b6E5OCpD/ZioY2f5+nAM1c8aGdaEbGd6UGsnAMEmBe4ex7qwEm4F/V+fJlJBiVA516HNVHf+y885P2Z6Kjg7hIz4ZkyJHNjTWLNRTBnS7EsDLsh8kuUQmJH7nd6UdWxHLMI+AVk/gZBH+LeiDTaZXc50mKyK/PHoD6arKsUaOvA8zkQo0N5CyNMUMe82S+KeS3XaS2FfyxPhSUZhcSi0uzZsvHUQia1/kAvKD1BzgXj3veWMoWoG1Tm/8uGeMokIgk/prCxregzIPSAjDxp72VAgyJ/yoBnodWpHiSuR7rNl+/r8i4JWHRq1pnUz0CVCkJqhICbIAcaNkxXCDBgj7Iw8g8jMQyaMmNnHMS+bYKoe4f7vV6+a73lONb3kmmwb3tDRZcinupuCjbq7PjnufN+Vz0uAiWeobpLQ/yjYRQnNjsMpv3CicQ6kHEVzgIM0piHJygr87Xl96GBvxiiFJefpuEeHfWcT4+HvUMuGF3obdN8akjwHb0uVOJmShoeTGfivUsQh7LVax/8GOq+1Ma/WGM5mvk+5uuCIcm5rtK82YHFY1ftGoBNasRYJZPAUxgx6FkVDQ9ODvKGSs0ZlvS/Ub3YvX3Bi3OYpil16TWXjgLXKVdpZnMF3JBOPckFiB9AB2l04BYoJkaIDwXPhyB+/CoSVcpCt3V1ASgtWNSZcgEIgrc0Y91Tj+/u/w+VGVLIKUAVIMmBnWKojg/VkayEml3whYDVdnOP8/mf4CcdAjnwqSBZez3+vGOWD+eZua/N8rmtPgr56j1svpiTBh0XRbx4h+w6uO3QltfBdXsdfxWKwbdumBU+F+nxUda6yR7ulzCDVzTy2nypsGq3Pu1vPxKh6L5lzF8Vus7JfJ3nKr0ZgbqYJs8Ate2CsnqHp5rfUixE2QjWFk1wx6ptJrVTBbpg08IkKpCO3Ub4DElxczv20fS2UVc2iFD6XBur9D+bExw7YdrMiYreU3M904BcrbrpMP72OG5J6/F+Yvc1NYaptMK2U37UF8KViPI+pMXBBOfCt3EiiTTUuGv0s86R3JFbMsEFqkatY2JfO2VEHkscVfyYvWKVjlkl18smRzJJcLGpzRAD82n9+A+LA5Ydpv4J5163fuml8qSxrceVnxYSNmtDIw5lSXtAEIBaCNa3RjlyREV/WIgmIQUuQ1XjVLhax3KkUk+6kjLcrRSeubBhuD8WpgqAJ/uEkB1m9J+V2UXRtoIox0H1kMdgnWea8DJnkYVEnnQgEOVYEHFu+Fpd5FpToZgf0euNn+2OcKuzbsKFn+biy6jikOKNsAYPWPPFH+4MAfOkC0bz73TiX56S7MkoPqUv9cmxsAPo9UmY2waSDO7GxX2HafzgF54LYP7jiQczjZpAxcNNNqs80iQkeB7DF5XAw3xIdKj07NpSSYUb3EBV519AkeU/VlWa1a/eJb0vg61YYQ6gYH9OasW/QhqdDrerZCa7bdxLoN+oGI7b+d1dCOA4nKSysEB5stPSEf94MLKa0Z83SbplisomRrvREhW4lfWvVW2jcJaUU65a31JYgu6tgTs0KlPIzv+9vullryJMntvJYGk6JccNUp7NK4tx1InIpiO+HnIMgH3c8UyU83FWgkM9Huhm9HEOODczG6p0ymYm84unUdTabE+A/lYJpkwKByn29RKxGwSpD4nVazbDKu+z0nzMGZKADC1DlxnXL+Z+1niw+vIPI+9bgJSq4jbzCnj5U1HN1oCnNCGfyxlI4tJFHbssCWuyMVKQEqxeC+qWlQG5srYV5c0BFxexLuAYTHXprv5z8EXmJxQiy1bSbhcDD2IbfyiyN1T9mUnf6jsakoG8x+kOo26ydm12cwNPa8FuK0rlU86KItsf0Q6akPNkQSg3dKQP3D9Jmw4gRkKt9g5VLPPtSF9MLrt/f7rfKzAcYkxsmYQDfMqv7DSWMjxu6D2RLRSYUlA8xHlWA3a2zFLDvk9TQ9v+9Mn4E06noaO8jM1FKXhaL5lsehB4/16b46ZOOeVhuNn1Od5hYz4mC4XLH/05znsC/IDQXBGy4387MWvhxwLiOQQ+Cp4mzjDvbbyvJjGPEoenH+DllOq72Y1VSQlVRm0J0VjG6tKErSVGzZeuBFHqT4Fzo+ZWKp7en1bqS4smknEjibSdaBFuITnshObM7Nyy8Av3wdKTfRRho1gzfw2Z+rYZG1FsXU4+VDskt3d18wUYUKhngdUD/X160Eb7Bpo3fOsgvfGviCmUz9OmIbbhZXhrJ/ngMeLgbes+pSwxB+WdWhumyCROzWJMeSlrAvURfheLvSWRpL49X2Y43g9niTKPKst00DMSdO2AuBBa7JZdcOOtIdt2dR0f12VRbZvQ0OCsSxkZno4LpZeEGxTx0aJPaHglUXrt2bYt9JGXgfLFccm5a9SWqrMZAPpUUhAe77G//L9to/SLTphcN0OrRlqkRyLuXlDO0Sa5s3naZy9ie9IP2JjKP+aSbG20hnvW+iJG4AygsTNcF+pLgVISlKHI/luhuDA6CFY49zbv80X3C+Dol1k4U7LghmX+YBMfzOK2vr3zBzhEWL33kZeT1KzIqnBIRnZ9SMKZYxr+gWuFwQVvz0o1WIiHj/v6POlx8QrAXUkSaXsXLkVTVup5fSDMNzOUKf0WDsLQ9QMgrpJCfqcnB1sv1CInIJzpEixmo4vgKepDkNkgDNS4kDAhc5dzxZPrbJEALj1Vx2k84toql6M6xPbx4l6+jqSC9pNlEgY3i33Cn6LdXSXxgdt6KhX3a93y9PSvpmQAtitXBYBKf5SUACJuk09+n8hQ31FIsdQzQqgLoxKrNXGl8LdY1NR7kqdIW4tAtSjE0ec0LGf1oiNQtj/+kvQGdnhzJ/TAwfCzcv/ElzbOwks4LhDH2D3TABiEChd2yYkbnPYJC4frbh7EcRoJ75dXuZ7leGJRR17tUKPxBns048pueLI0IG8FfuGvYENLUdHPr40Tpjf2XADJ/jRnfmk1ElqW/jUnEA/sGL0OE/k3743yr6EZuwI0d1Xo2HI7J/UeSMkg3+0N6oJAeVb0wGcqU2PhCOWzrkugfswMvg8zLwGDulxQZnVAfvAfJtBItmNjz0EdLeIWHXQQIEdYqG/xbozb2gDPcO+M2dgHI0445opqxm03tYD0ufYl6JxV4onyZCgUSgJr+cWD/f7niQ/ZJ1e+kMukdFmm0vAoimvzW4WVkXle2i5vy1Io+UTXAhJdqOekMzih/+eSGBRZKjrANz8pdAm81F0UaSiEF2vfRG/kK49fgIJS+2A4U8tzWJ2FU/cNBSf90sSCAjKHzCnHX1+87G2xyq6xY/+kyLKiPAU1tXO0JIq+YFkkl8AbjMvxq8kwRbVLar5DOCzoVy++Em5SYvEFFCX2dtXto35XbTM7pldP7RdmYbpOkp7WfHRM5eiSts7/LIgkpR9PZx4pUVYtNFxY9cJvlpxwYWtaftZhE2CfWOk/vqjUGXhHdkhkP5+nuoTeKqPybOcYZUavk4Eh9nuUm7Mc+QDqw3kNTmPU0uHcPXovDamz6OOceRAHI8Vwm00bWiVQwoHVT5vu9XVw8KSMQU785BxVH1+fmfMN62vH4zycpLWqj0wgw8Zg/qA3/ihggi5lakFkYJaPdG2SDaoiKaBjqRaBHpgAfDgx8AW1pS+3eHT9flMan/iOeQ+GlOLCKTvXy7DdW2OGh+t+/wDW4RhPaXdvU66eXVZo4l9EQs38D3iQYkpjVEwis9+bKiwTb+P7hTD790eC0/GnQleJhuDZ2XS2tU19FsDTS6Dm/r04sU+4k9CRrpwFwRS0ZJwF3WCNwnBjVocDqH4sLJZLhWCP6nROEtXNA6aZNMpJThAgBQjDLHWOjzJ8snVloiPec5FS98SgpQ4cuk8T2zpHOyePPeGF9YPPVQuuZJKDX5iJUxDZyviutFKJYU3iRCfQBT/2ZSrj5SXNHhNvw5ZZ4O7MrWMU0y1g/qwiAYF76c/ec5hG9fd3C/tJhLijaFA5TPEAqqdwcLaeDSNA04pwtISY0Bjr/40OS8NV5mgzDPAdFWFj39cehBq1gMWJi63h3GeFpBeDMqpb0CH1cRDnUT87/AL5nxsGZDFwW3P3nZTuWjuvHZVgsF6yXP5YAVOqDn0mQX3DuMFRUwNsXbLHVOUfUsb3OxRCqIJLV5gjlGXQ51SELqcv84KIMX2bw0HeGfQlaiA//50ReOCXi21StOryPVmOWcjve5PayBM2YaUFNI+DNqRorm76DxTMe/Y/MnqOVYmyuOEBVvJtWQJpi3mIsmeNo70RtIxQSTCSw/UN9gBl1h93fyfA5Y4nJlvNRDyHZQdrkczOc6l0ehcqLJt44dKEYrOmKNOuWzKsGm+3DuAWg4MGA6w4CezQ/te8q1O+hFQYWwpFbhAanwiX3jSPUoHDaqdMdctkJnFs8eaZnZJayp2Y6i48O0/dFPaXYWC6SM0zyqSJDYoTi16DwnXU0wVCU1vNpeMhzB7NRxzKe3+uTDPXgGZxPw1VPoPzSnjtKd6w+JOVJw6cr9PwNnsb7crz3IyxAsnzBXme2bd46KvNaBmmXam1uEoROg9LTerRTk2RKvuX9lDRPNd21qLmXThP3eWkAESqfiZc8lv+HAOP1GqVshZChg+QAfqKE7gazvDsoylyfDylSGbFfpNkTD9IuGajpXzhE7XGUm+3ciHX4HpNV2gsTc8Dv53qWquC85mnXf68DOpeEDp2ZriISUkSL760Mocn1JqeqaEHiH0trrpQOunI4bpjSOpKmWDNa6PSOFY8YcD6rzWl5b13eA0w7xJRUY+Y4ttn8L+9SsyTW+ImQQVjW9GiDmEUAbnpkc2bxzD6PwNh1I84Zjd2PbGa2RxOyqEXoKDLGuQeQGoi0jzrqMwPIbshmlhO7gCbc+UHmjSZkuzwMvO6Brek05Gj9Rb20+4fWX+rdC+TuPx+KQy5eySYkH4Fy7ve3UmrnvDQqSTqfaCU6eJKH2nfVxlajSEVj7snWJ1M1HiyL5IujNM8+HX2Ki7cHWabt9XbH02Gv+gNaADN9EHZTepxVQ523yxMtKvanIQyrGW+JkteOitKs5B8i0BgHMIu4K/L+mfeVRRXyBGlb+knA+lYkuTz5qfoYeLDDC1shEkf4PeeHEgonzJGlZspHb9cpe/H1osDnLavNB21HBJ1TtUvnFiX1Xf4IaG9VRF1YUMlvOo4qiiCaoLxitQI2zIzJeiv1jRXL4PUgOM0rH8CLj3gzzQ6VDpKCl0h56LttXXeWVO+9/5bXUbWBQBaN6TOq8Ah8gPVdE2vWURO4Y/pI8u2gWyhnDuOSD8Dg+h7QcPZxJQUseg01cWGCUCKRyfE06wcFEQZrdoZn5N8LXUjB+gnHZWeSrSR5TH1hnZjoXtHIsXconb5638jZsoPfHV2H1ZBVnEiBjMn1SOpvyQ81mbAQe7+QdbD56sZUTMeqYgVh3hv6a4lM4nyIU1QICTrCKPpeaxlTdoSH2f1EU+PP6hwPGfZw2dsn4B/Um3aHtjNBehb+hIhMOjUaUxszzJBYPsASY0jmnf2QCZUieeIsuaj+srVDZsDLUkRrn6GlhHCmnVW89tKVV6pYD0tx2KRjljtOpMh3ty57u3SM77B2SMDGnH6Nt5kHwAygT/Zr45YpXS2YjCIgn5BiAfmqgnBr6TNz/hPAh0qNCAmTXJzlRPYEjeXqQueFMtVQLP3io0eNcEx7hgxwyLKZmX2H51CsvGY8V9dOWddzK83/L4g1f+ERlfF1zYUL82rAngMtTQPfxAduslgciisHDIkE7XS4WNj0JfeWF/dAmvjMj+VC+D6TKs6rJFkniBaQR5Qci/4X/DbDZlGx6CLvyfKnYY43u6Jatx6RnyQSwwY+DJisjUkcBT74rUd8oE2h93f4SomF1qxLXMKQwzkiAZY+jK8LbW2vwX7Q5rYYjdqkMDwYpM90MTu7J5hOef6M3ehoCxHIzOUYgNt0vcZHX51Lk9eMT7+G/SSGinpcaWe8zSUQKd/FltubxoJf9jZX3wMj4JNEj7EWIJ2FrHh8i9WfjR7XB9T1NiS0UCjSixpMvoHMSl8zz6xUsVbv346MOil/jLGj90JQhFLwbuZ3j+tvImI8DVTKbamFppPwU+Yi62OU20XHH4dzKRdU0gfj7s0g6atnNdubNt+2uOBPPid42lhhgTaipDSuxciITOfF9P3e6eJDsvgd9/aZecaCgidd2qbCYgWcJg35BUHgvnd4uQqZHJnpmEl/vSVygLp46SUHn+IZEj1s3s1YB7Swc5mXuKo9r6rD7IOjXBbakixxLbBa7emdLbDF7cjm3wyBpfx/ViuBgxuoL5GAwA4pBRvdOK1KdVXGd/O7fkgyunKgMccdrsuhCJ/EUARIiDLAu+iq5FxVn+6F6y6Jlmcvpx1Ayp4liMW0x5QnKq599zXsOoUKj8q/6fkZOko1GD5fy8MBYzjtfkr6m2U/ZANlR7xvx2TTRepp+J9DP+b9kByBp68dW6N8Rib9e3WwmZWjFQ5GhxEx0qHJ5txKLkhwshQ8g743IbQmikIo2C6YZykQDWGff5rPnc88B4baRilSYpoLOJxUFq0wY+k3U/JGINifT5XHYZvMHAkhwBnIYQaSL/Vmt2i/2UIN6vl4iZdZ2ENwWeIq5bXcbtMqms2GsgwH9noSF7+kcYyhv1ZrgxFxfogrP9OtTA/KOnpqtNaEB4tYsveMeD0UA54DVntFKiXobTmFV2mPURa86rXmiZn0JFcqd+VIxKabWiKXurZeUnIFfXdx8HH6iuciWhfPaKWUridS6t37ydUNUP/UkCuiyrRm5W76ixj60JfzrFEamelPot4fCdkfcbaiT6Oafgh3bTr7OHy8/XSYs2m0nMcsXvZ8mv1HawTiE9Qv2hu7WNOigAxBWCmHuWvy7XNvpRVUxEk8LUoAO7irWvxhaG74cNw20F5lNJIDnl2VIbQHuPZg2gA43H3VI+RbS/5qVep7OCSA2MY37pB40sCzoeZphc/hDhMtzv2b/kpm1mZCUiY+hSRgWwWBirscuIhW/Seq1qBUMXb17tHg5HJCb4yKKBtg45vQMNSzwgjQOUYiMklsN3Begh7fMApiNvOKUdAE2asOejRozN9Zy4eRUUkV287JQpAV7+g7T2Nt4GWW49dAlwzzi3aAWV83q0/RETmQzjAp9HERfYW5A3+cahWcyCcAXN0wire1Jjrluo3F1xhSYwZc1lzPFXRhE7340Xef/Xx+p0iJLBz7FNIj0oQEeMU+vwGGkAQ7JdUPsuM0wwbygJuiX5ElXgpfIu8f/Gfbx99XbJPS80xW+Wc/qgfVZk6NPbywx0dsZyeHjsHRR6ZGFGeqY5vqPbS3JKGjqV84PNJJx8HdE3wsQw9Gqh9B48s1AAM3v6qoBTA2zgnS6VqZEh9FLiOwNIpyETrZpicMk1H731N7oIAvWUwJzK2o+p2xNb4Dc+LUwcSMIrM3KVOhogbEcrpiu/4LRWbIMl1JYAcixFg/YqgRmb5+Nd7Jy25KOcyHzK3+T6Z1oMjQbNQKoUGdJbBm7RzQscskCZ7OWZMNDugkZstJLoxkWol2wqXel0YnECQxBFa6Ke/QVpFT+Ffl5d3TAKav9fJd4DMIQq0V92fdIXbG/mXZ/tQ6dBIUma8R6s1mcHGj2SaFmbcbSRA/595sKIhDGrH+g61WdFaiPDpgYRP89muJvGjlFx5AVXBPf1tVDs8eq66KdfwPx+H9sxqWRMA9XznyDZLTyTf/JOkPXsgOp6ftISFlKSVbB7V5V+QJMFX1vF7z6EGWpED18+Q91Lj4lqinPolbelS8BOS/LPEnDQN7w8eTwbjAn0HE6LByUKxlCWJhwa2yuCuDZgBkkhsUIYuFXRuvePEeXOnKN3QAuHZELDrThfR/lBxRfl4zN/UTRIuVzSyNcXAmph5qXo0WhOlKLpEB5XscicOuciBC1K5Zsm1fc7nHVVP6T7RhpmqDpFINhVlimN9LxLiuPe9tYIxYee1INZn7h9ZYUlNLJFf8745+e80bOJnXM7Pv9ByMi9mVOMVUn+eVrsMmsEXLMiOaNjSgQ7QRS+Z8K1MmMUxxZqo1iMJScSf5n4xDGFnT7QUOrNER2VMQGtlUWYDeBf9uM/tp4X42YPcYk8d5CWDjEUzajPmNDi0L7/OhDbYXjXFHu7LJyUGJGH9EEkVALpPH12mre1S86BsIdamP5owSrCu4g9SUFZ/a21Xn6XDcFgDElCwvjdU8YY/1qWstuAJhQtCwIGLWh/Gez1CwZ/w+uqVFFLocM+9NzMDszb9mzTwFhB0/p1kqCvqmjv4r8xTBmvyhnSQdGyFZ4c68v9/iZOFWv1o53YVkMcBdZHEGGCmzP5bn2C6EtJEiXSmmQZ/ZtMaSbpaVkejPNP9wvoMuXIhwUwtEQxEOcPPjkYqpHIHO7Rm+KjcO2LM3oeZoH2s3u83z3YA28WqOpTvkS1BrIpBbIUgIEYhbIeJT4T4HV1VOvOCodIASbE32i+OmShAv3pN7irwn+QXDBml2QJaMTykTqvGKnCl8qY+HArDT1IyMwxuIUs1pD6OkYoVCLw4b/NPMfNX1J/JMK+6OFnbFDqckOcO40fNuaPet7LwdUr1w3+1gyHkZR8T3jQgrscChPKyuN38PZYzo4AcR7pggyKwUfLt0+7E1OH5y8TDHq3+uf6pRobzpsZI5L98mFvZo7ZosGGaOR3KQGpwxLT1SiKnHK0+fnNAggk++6MPbOsnvoEUBtNWGJly+ZaBsXmJbYlM9OKXdgAUoBkVaFvwzprIqHFWsEG5HVLChL6Pu6obSHLvAnBeJuWVUUnfc9w4qj8U78iccXlFYqTz/0/hL8raEtwZC2PUhCxXcXRw/nR4xSr0anJAbNDD2i7KaDSubIGYjZgDy5rk1hz8alUL0Q8ymfyL+UsKJFMUZEeq0ukleLk/IPKZbgaGqAxA+f5BJmVh1LYMSt7DW1+Nip4F3a1g/XhRpmULV2Z1bjXDFAfhix+41ZJvRnKObsbP17Kr2xEeoBN9GR9JCz4Sv24sjrHEfOuMYn3TfE8fWOg7NqpopctomIlLnoUXUCCJw61KXAfUO2FlVh1iKMDwBsr1fqXd54TKuVHc5FCg7K4zpvkw2Y+TE0WEkaGPLMchnSOwYW6aMDYugwXyM0qmDSroVTkOHvCg6t7aZCekpXxsciGRGqZgmpy6q6z85xr9Iu1WwKDgyt4/Kdmo0thK3J86IUJZIiFHdO9V7FTEBkuJ6UtB5QbKic6I0AV1hK9dG/5de/pTajZVFqwrIDDmfLkhYPwKC6JUAHLwUIRJs/l2a0SdaNuqKGIYvs/7vRZ7IHVfxUQMaFDH837sRDt/qsJrKuBsrI3+7dBgoQu39BSVMysWrGSpwvBORsX7yO0jXlA5N6x0SwPgHmdv72Q+ATqEfs3VBowjAm6V9MF+hfuEBArjouAZWXRufh6Mi4CsFyAG92dXcYRk1g5iZ+VpkWkOckSEOKuAet4n4BH1OjmNqmwaDS42DAt5GyXsnpeOvUwJsZhHEP2RIivwJuAB/sT/5ikYuNSy6XPJV6pesEf1lwTsyYZFl5idH1JLFC3mayShbdzfO0/6k2e8JJ5KnY32wrVl1VaKbNRMcfxcllGtZDK/FRuPwkPIbKHdDWERr7d7ZRjOCvLCUc2iXBEGkBch+hI1dxAYUHmtgycUKF+1gjUi6cqs06CWa3SuqP0pLIaY4/pDiut3PEeTUlk4yBnwKnXA+yvoO6iPgJMQupgPZk//zdc1gSZKCUf4GqIRWyzl9ZDOmEYAQ/7a7UIKTFithaeIqd3c7t9QcSaffGWj5DT88RWJuuG2igjjpklOfNOXOUwL2jH3sYIbBMhMJwExtbwDFGQ/RZPkzDipMXJFX2tKggSToqVPPhwbqxGFTj7tl+OZce1Lh48ese9/nomZSLsaqOwMTRPN3IE4K7WzFHASTDnnVEvfRZ0xMieDC+CnSwIHvRn1ZoQ9gbTeDxQmhDb87TtwzRGCou9XzA+nvTWBBNfJUmcKWTTt1E0BBCty8hQg6m22jU/cCU6ozZ/qGdVZqj8i3t+E5tKCGIXcgfAGCoLMAspN0qZREDVIXFe74oo1GNfAsFkcbVHlnmLfEoujCoxx0H3n9OJ+02aZK8ZOVinmHxe6mV/75Vrv+mXOhMgnOe9BETq+0GGQYSU4VkQALIJ6cDQpPBwb4z4F5JU45wMl4av4xVDq9t2QBwB4UpP71ao/LvNLuT9Bk0roImCetwSEnubSjCaRLNo54pDJXk0WFRIz4spXAcqE/0Zilhmm7I0X6ujjLyIia13N+bspkZIHi0OAu72wE8QAOYPLwDdqTC8pLZqO8rveMQb5iMYpaGV/TGY2X9FTUIAnPB6Qx3q7JTBl/iQzUFm1xIYvpKfaPvryiO3JVKvUpHYSUeqWmgwNAKxBmMPG5bcfCNVFk2uoXsXzhGPPXDwAsX5VzU4LB3hPd7g3DHaQkB0n8jzH94LBxJAsk1UHCs+6KzyNZjOmrgjk5bcIhSrQgHylsj9RkCqhPVmbHibHdSSFyiyK2BdGik2Gg+7oGspkMPB75IueuEodIwAAxG51zEW9yB4qF7FqKZd4gAIhLu9oyYclDI5fcTIpYIpk42p1mjBljXBoOnw04SOtsr+DACpo2EOFOocx39ZjkL+R0b3CFJQ6YzqJ62pYJ/A063hOQhb58pLQbve3fb+Xzm2gDIDq/KcHinMcW6tLVI2zkU5T+AbQjNq0sUIYiU3F6Rq40LS1ns+8z4RIOYfjrYYEddP8n+mrDm+rUxUE5UnhYqtZi86F2cZ7lNOMNNlB5p44mbIgKFT5dTq1FNYuGQTMUMTXVtQ3J3AQcq+7TurpHoZCCb76oVYnLxzMrK/H4jK3RcLMTHRmDZIxY9kntQo65sxD5jKTRn/mV0u0BHaCDjWnKwQR7nXZTQ8yhi/jYUXTOmDjPxqSXpL6KuoM/qwhFkfn4KHzTJJ3tiH/doWBze+q1iLFvSGN5od79Sayl1Rh6CXkailaIFXfXCE82/vvZLkP9yOQVeXkZGWpUm/CW5lWjgShc6fexyDtf0TBo3YgM3r0O2Ul/4Q6gkh6Pld/YR7D8X82GXezpoHEyRyYEDK3TJZ/bKdYZPOUsw/srmoIFUmxKkhaNxm4J4AJW1BtoSO63Kg8PMX7B5I8fWBkaEvMZfmSzSlDDweFYEc9/WL5xCkmZ8oubHrNs4/Dq2eYHkMfKBaLiw1liqDBcNCS3rYEIbeej648ZwZJtQPSyd2CLOrmiHiSOy1bswGp4XTun3JiWJrRWLo57N6duX7LdqfReLdoB6KBVKaxkVPCWu3TKzRGPXpOVvBynt+K+6BMHzb7/GkrUvUV+1YMXELFsgwOg+IZrk6P+RvQpKy0rIdV5LxHneud3hMIWuDoYKNW8RGVpLTB+aGpTX8GKTogN1Vs6yeKuQv732u67ldsnA7lPPf5IXMJH8dYe4ulL8LiYevOilWbJ6KL4=
Variant 2
DifficultyLevel
622
Question
Here is a plan of Rita's tiled hallway area.
The total area of the dark tiles is 15 m2.
What is the total area of the light tiles in Rita's hallway area?
Worked Solution
30 dark tiles = 15 m2
∴ 1 grid square = 0.5 m2
|
|
Total light tile area |
= [(10 × 4) − 30] grid squares |
|
= 10 × 0.5 |
|
= 5 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a plan of Rita's tiled hallway area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20303_v2.svg 350 indent vpad
The total area of the dark tiles is 15 m$^2$.
What is the total area of the light tiles in Rita's hallway area?
|
workedSolution | 30 dark tiles = 15 m$^2$
$\therefore$ 1 grid square = 0.5 m$^2$
| | |
| --------------------- | -------------------------------------------- |
| Total light tile area | = [(10 $\times$ 4) $-$ 30] grid squares |
| | = 10 $\times$ 0.5 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/qwucc/8Iqvl/Pvz85YCGFNYKhESkklXIbzLCGchyE4gKLbDDlZlk4CknXdxDuGSyRzAFSVGrBcA6fGel/ch6FNDL2Izv5l7I9jnL1Bj6jM39PsrrY3NYCpQzAaURywMS46+0GecWp5CTgjAnX+jo7H5TWlkl0b4ciHtMz+i4d7Sizco40WdRDcpRXY2qBscrx9+5j5W3ARSf7pkK1XaZUEI8TQelM5avXOKONHO/PHg4+DHsNj/kd1uvcYbLItPnKbkFxYGSEGa1iIl+SMdFuQNm+Z+6/5XZLChsDAo45ydlT5SDzDd60avz1lNd3Cz/nu6AeUfNWXHTgABnkSVAnHISUywey8pgHPPTH2gYbltk4h4WQvScXxPJ7HHUlMc3U4S2vd7DYk2hZccYmmcLqMnM7f2gYNhaJEu1MAicyA77M6FIVLSaCiFlBoL3PmoT8K00jhr3w6twzomuAhyGCJLchHxkqvVSWfPQl1GGsQScMvBNuNM5ce86EaSmDU6pSQCK9/5MhchIs5MPbojz5IjKoikjSkwxxJAk28nwVGfsgV2+aDc0eBG22LCNJFYUC9d7GzdXML4ZUTciZ69zELyiObiDrJ6QyJaSf0i/njoQ0ujczxCJK7JFd6iQUy1sEPjVbhQb7tkBYExivyN7AA/6CuplH41pMr1Q0R/Cp0up7obJ0v9hezMON95aujhkQpy6vhZ7My93i6juaEQdRGkMhc33l3gLwg6MhXHkIcjQnc0RvC7Z9XtN8+aZCqC0eZKAlWo0Wb5hAnoCgIIDPetzNsVv27DETTSRitQn07EVzx3h4Pp+nmK+L/oDXsQTdq4j5eAbfsYoWWTESzS6xfaQOZ+J1QEWXSUcE/dSLrC3CzvVaKUrBr76dU6wRHld1aQtk7WJrHvpMs87S4M/lxZqfyU2WBiuk+zQ8Gh+gKPBQKFtxrDfdUZPoO/lsyKHr+j1J16wDkZvuWE9J56+1kPgbwjLOthKSb7WPXYYKyuqjFHV8mexIw3q/U+rG6n7DfDYhQl7ECSmqtND9RONsV4njgrVDYItuc2zMryNY0bqogq5BH++1mgA+fCeKn4V4ppXsvOZG1WACr0gcSxMkc5lrLq8RVVVdj9wAYOXQY9grcrlO6KDQQmFfzGuW12bvS/qM8rflc6cCZs745EyyIah1ApxJ36lVIYgU6V7hcVHMW8qDCdqp4cfQ11G/NckfI3Z+VBVaBRV0nbU7FiLoVb8yEAcn/8NDjEbq+I1KdACH7gA2/k4L0GBbb8Q/uaOpECzy8CZi7XKss0APAcyJTzRSmneAawCxUBl0QYwBPOTSDYJeTrETjHBtieYRO3PRIatfHf5pIHiofF4/cSwMmGx6PKB7N2mlTG+ems5bUkuO3uBOwsg7kvoNFAZUqk0HWd8pK59NUhira8TnmHNF5koQtSrJn1t/1bc0npjhW/pqOXtp85ZAgIIWSC2cb3d8rjpZq75FF2zF5nQ0YI6939I+cD+3sKLnfFTEddVBB6/46rRCEjfmewvt2iLnKEClpWhuuL+cxbfamhLuWVj9t7YENxj7IyCqoyKDdd0EfxqHkNillSBclB/ZH1aR0ZeTTiNRIVRbZIMHqUtlDMDjztiqhAIcyqvtUZzcKEuyOwzz4cTnL3K+2VqDWjHglR8seR+Y3ncn+QV1VitFCNRys1UWQCCDaqIoGlVSw+TZVykIdvGRQQSy8iFqDXXYEBmDLE06RkAgu6vLqwkoUpXn/av6FCm+0HShuWLAFD1txLiuPIlZHMtEASQ+2l/VB0oJleDJum7zV2sUe+pdWt5F6H5erg7XaHMLdog+OEJYF6KKjK0TSTrDnZw1UrdXIpPHFYuO8k9BDuULK2AAVYVb1f70lhD8erXT9QT8a4z7aGl3w/Jz65DbAy2ZbdNnzB8ml9pUeIrZLw7eIVMrFvOxjB6pQRZtcOXXWZbeSM0gPmqPV3YX7ErdE+yzu3/L7PpyyetnNrU/7+iA5+BZ56VIczQJzAKZPYR+y5OG3dCHccD9/tpyxaoPWRNhye5saLvtB3rQSTVdOujbOx1YXtqkMt1mfa/Gsah5jmWC5GuAxTrZOyHzxmVLecala4SaGLEQ1eznVC1X+2G8lWHWOs2cZ1BXQne2KZ/wjo617Lo0WSQfU2uoYr4CoqVLPB+dao5mHY5d7+lrEMg/dPtEWZwr4nS29bftgl559tW3joNL325SpZaXe1pxTKuXZdqkfsstTNIhlYdq+kbTvyiTWK4SHuP+rd0mbk6f6A6AsLDj34VanudZMhKkTojIDXYn6pe7UhztvofgcVs8UW/56G9E9HlntX5z71KJtPCdIrAD/br8UQ8NCvZMpkfyUZKwpUzomW8YdMhPKqSsPlPuIVv7uciTPKC5Z+XafZM42xeVUe/sKhbNJSQjmunrfZ7QPI6otjNtoTasjuMFVWZxicZJf6K6+4S3ohvKSgjxjqfVmOhH83NlLMedUS2g5WrAz7kTXzN81j6vZlOx1vV/b6Mn3OdXJ8EejrJfUpHjFBnEpkOE2ubzrS687uGDdp0aIAKFZ4/7g+htD9X7egiVCXTH/5cIGM61dKu0MFeMLmf+MX1/ocjcbf7yyorB9ITO4hkI8fW8gqUYnEE0jY6N9AshlV04DAIiwF4hJXsxfPGl5aU2TVVQO1xPA+O6znKxegHpYUCQc3grdp2yRYjmjvk6f0A00QajDLdT1jZYM3mzzuv7TFDPEEGP9Rim4Xg2MDT3fuO6Atys2D8vq7nwRWuWPqG8Jm5N/klcxX8dyqDC771of+9AwxmEYdO2+8mPS3wdhmtd/RALcb14WCXbkgir8y6nCtT0a0MOA9glyhtBwLyhF4tmMXHbjyoy29bs4+N3V8zNgaID2xLxqftH12OlF6kfiJCtrYTFbsQprbszViYAHLpq9W+6xL8LqyxV+20VgaZPdWpI9dMbmKCgXSiMOqCU1ta0V2yf8baz8a6gmmcS7SFBFXup2G/8nF1Gs6z7npaH/2gbZy4FYC8GSjZqCMVoju97l4QZmgLQ2AYJ3zF7jdl8rA7evh5m+lvclLssSq+fqlGthj0qJI4WJe5fYy0oI7krw8XteMcK4c9CvHPKqXjzmU7fU1O5XNzC4xLI9P/Q1F4/kGYEl/hQ+bvkdiYbvmMMmh83j0NJ7jJeWalD4FrpHFjyTy+YlDX7FX7jGCAgPSzA1bA0sQPgRViK6MtZ/IS3lTlxKuWEEMdmdZ7m1WYAy89mjCanv6oAbuhztSTrHFDJA+hJL77L6ofyX92SHqr4pyLt41xsHaB19+O1OosJUG4Dd93tyY/0s2UPm7wBjQrioIQdbpeCDkJNJrmYxgWEf2xVH6ZPbQMfRv/gOia5cEIwofRFKMvwyBbO/hfKmwTq2i5etYYAikOuEFUD005LTLvj0ZGQGs4Uh60SyHdUtv5Yn5wblRnlFkMgYA2fO1eJkeajMISZJbrdxt4JR+YpVTYASbf8aMbTe+rrw0CmZtwMHOPvdniBBte1Mf6ms1jXOKUHSOnFSBsnClCCNm8KAqrDBDQF/cQ7illFoiHJc19pIY9WLajiyE37armaX1IhvtjcHzP1LdNa6fhLv9UsMqGKpRf0ywx6lGVzERKUO0o1mRtUh/rx1s88YDFgE9dElJVuJgbuRju1+5hqnmULg/1tpAOAJBSHXQY38VG4s+udQAZw4XRmgIeE1cqMdfKz8+S57PWWL5cNzQDy6l0p4ZKdt+mbbG0FqxLhAliHtCReJnn68SmTQc0ljtkRinPDGdhYoiplFPJa9NPJkG0WFaz28yx5jHr3uXH4l+a9zX0xo0EeiAsYMg23s8MVZHgCb2XFVOTzt87hHd+pjmcUK3KIAj4f9ox7Ma5Ci7DMxGIH4IXT/i8Us0T8qQa93vHcUO9aoEYtrHAKZoF/I39TB92Hkb5C+hdJNiffudr4187kYc9cvu+kivPciZ5XYGpv650hIXXFTFOL8+x+TXvZi+vU0t60Mfnckc9hk7dvFDGT/PImRdHKdQqjX1ttFve7JOt1wgQcCjsmA1izLQce/z3Rm6iOZD+F2BoNlTLMJvJ1O95c6Rbc8naEpTXzBArGhWlLP+fNeVRAIFG/ZchWjJasVLRDlzePwuR19up7DtC2E3KY2fTzK4oPuh/AfPeyUEISPuAlTDREWZocFrCS7rfeyQQNpbkkpUlLe1Afg2zWah4ellNX7z8pK6Lhhznm9rVqUoGyPUkhMZuRUtYL2VyrE0y902id02zDLw4KqeFFu6tD4k6HflNbMIm8iP1sJbN02sZJ3PmkcqKCdpIpflGKb8dmSfL9bWWd/w+D/kVfqYOfuYO9gg9PRp7/RbuJRS1XfEntYSEs5HGdcLgxK67LVb9FciGMINWBi1l+l3jn+Rf+PfNwROk5FrNw801VLz6ftadLR40EVu8HMXG0PL28HzpqXyYy3nk0MeSNtOE3ma1kWqpzpxLeUfB+Hz6M45RyI0+QzEJCXcGF8GP2jw+TxN1ckBIn+6SnP1wM738ZVo2DeLGemGhh6w/AHWauaH19IuO6qUyeVzxTu9WWYmBvGXHQCX1FdF8yxbJLjCxrGGhnAphuLSvkIXPtx+Q+ZeI9LaAtJzD/wXTv2t9o5MUgZZP6AqAgnUq7gSKfNFmQtc2iXnqN0SOsJ/0sjh//qz+DB1CBQUleR9Z7V5UyogmL95xbCCh2iJXNxP2sk2/R6Cp3HyaiRdA88IuzkzuKJrUVdIeOUsVGSYoChp1R4L4LEIfUSN6M2w68amVww3UEwkZs20DIxB6drDvbY5s5if/KhjwMBgztkZX2Fw+G8sqTP9zssPfQL3Y/deFFTT4VuHAW5B0PZuqMBcWC8MFnGEku2Gt62zV5dSQrlvoM92oYRlDEttksRPO+zF3xuQfWUgbMl/aT6GqtXoh1NNLjnEC8ATYoJJuCWCEkzgS2UppM2ISjG81hJP/7XApAXIFOzjRpbXDoxqrI1b5rUaxw84il/73eCV3c0EP2Md+4lTIrX1rt9sPmp8eZdcquQFWoeWyLg5uAVdujTnoWWfncRaVvrWC2pn2qmmnd7Jazh125Mzi63KOREBK/nvqlgZh4GyaMcQR5HOXA9CWS0ZOVlplSxBhiC663s2YKUrpFr35Aw9J4CQHdVPQtQPSJwThFZ1pPD1U29BCXNiw5wn5PuxNYZ1yShguo8eoGnHVjAnoidko2amRzSThPXKVsvNVXjQCKy5FtzbGVt8drDLEQo8V+2n40rp8jRm10nrQqceQ9wyxye/57rLr0Pvqi2+tm6KvmWtLlsP+z4ZfKsuwF4Ee4sKhejb77/Kdo3ZKmEryaBqm30ifYewy7MunOPFo0q9vBa3jr8KmxmZeJR3sZCN6owOokYamrJKfm5WIwcaemRxu3zmSgjo9KKs5XUSfb4XwiZMgRDfeXa2zpxpCuO6ROSkWRg/EK0tlsgOaQ3uD+Jn0YAHT7W2/UlzCyySgOLVtNTrhtRZ//XRJOGrxDX49jYlUr3TD7EvzefGqwp4RSwAEojv+Isy8KGlGDBaKiN70RIwep0FdgTy4zwzrGjk08IuEjp0JTZ52duRttoDKMuuwFA7PrMofe7eJIO9e8ysEaCMlqoieLXoVQampAX0B/xWn5UkTj3JeWv3ldauzaVtc5T3lKjpUmtgWJAx6IJjyWtaec45r6bd117fjcRveb2Y21+rVk+d4MLpFZPM6MGNxsTzh2Upb0XnPzvQ7LnyGvz3zZBXNyyMdgcBSkZzheb9zXPAA966UK8ilRwXUSo+MheRNfKId4scBOOH5E7RL00zy8lS+WQM/bGwuQvnR32Qzqm0G/xJ649C33XfxZob4SURFjPui8Gduib2VpLwJkT67lX8VlQsce2iTKxbWHnjcrw+jR8JiSXCK+IMejLiiOlNEvP22JGZaQqKJ/NMx++XGprIxXULwrC5PcKkKRe9MOXRP03JNDo49QYT2m2xdpP6Dyfn2hZlF5/kUMpRWlHNzdIvC3hS8YydRxJQtn7wXr5wyhhQ57zhUzdhSnHkr2Zw9D2sWSYVHivv+Cc9XkSOqfzsHJNxl7WayT9g6TV+4Vs8Ut4CRGlk/HAgtvG6vgvw6bB8GrcCDYS2M2s6vmy/dmFui8rWxLpOg0xD7NcdzzKa/Mzd1c2zRWHjTwR7JfcEgiHx0jGcbC7ydSXgsoaYDjswtbpZgmF8QL8iv2khjFEp3y/zMKIjTa6Tszrj9jU1az9csUmVP11qkzDBocNK7evJuvuyHGWtXOrE602DauitwujOvdXjx5Vyyg/2qy4SorKQ3SO7rNc/XNgVgY/pEEVb2uHUlExc4i1M96UOr1momG43pKWKTXIfxZBuzLheC/H2oaMSPpi0goKHaBOczSdafc0X9zaGBSeUXZ1kn3bvDSdrRQwaSGkgrdD1CABHUYC5sIo+Xji5wpejSrscZI1xNLXewAaOze5KnC3Wzq/PLzQJ4ClqpNAstPiLA1TDJFgowr5ZHwTLsAItJKjLFVvpEy82+Uaehf9iShGGyMkbeZDAtYUSUj7IVI5c8xT4dmZ/55ICpsREiSL5YUsn3UZZNyH/jnMEpDSv/ruyxC7E4z2/dgth+m/lBnSrKC1tSs1/QTBncxPyOg8tTmx+McJpeZMlZEGKgYWsGiGFvVVTC8AV6a4qgFUBYCOJ9M+WKSgFb6PdioBFVbcZ/iHCsTKZzH9DKSb/iohEVd7MMdHQrliZC1cLMijZEhaOJD4KjAhhFJNMMZjdMEUKHbH9ZJ5MU6igB/PSlQs/adQayDI5bYCais4Z4s+3L5ILJWfNUsCSfxZMVoQnuoqUngyNX3qyf7W3M7ImHZ3zreMRa2bRJ/vLPyiWQQBHwEy87Pwl3iOlOYG2N/GVuGQc/qC8fj8Za6XK0tk1jrFDVBlhDHvXkDXx3nwaCjK5e4ABkq+jfCIawJYxN8Kz+qdtcT1/f/XxmE5kfl3puNfE3PXps9EZDhq1PXwuDX8uoxLV5j8+mVPPdO9vN8LUgO0cNW0C2qJLW9q3Cov9+NJxjHi/Ef+Imh8nPa1cRPcCIHNBxK3VtnhWVrNJEuCoyq4lxGwEnZxbxVE/4jCYoQKXUSLBsqsjz0IbpIjjNLdnYETIqF5YRKgYneKahMprvrztdO6ixsSZa6tXYEupzjFpFq7uZfGLzK+OFWpUsD8ROmNwM8wzFUy5h9vIxlr21zDkE7gs7pXQgK2q+ZEuEhPdfgpEFdksvJgFZzHp0vqGDnzk8UoYlremIEG1tmbSqvokHwSbP/+lSCXTFgbociSryPyMZVg2gSDmD2nIjhK6S/54WZidOj6eS1yoiNKEYJX0lXa0DtNMEHY6tEPqZRg5OEaBn6o8kNtLTgT9NKdNgbcpc0rCs9h6dlR6c1QjKnSMaU0TAC+y/ViZW1Hw5LVX61Gn2p5faGs2yT3DdebCGO3xfhVGD7uU4sNbHjrzbivcSwwNjqAoAi0XWdjncAJwIRQccW0nZwQ2tkmKP16hFVTB8xpA2nE2NEASAmIeOqM+bl+3PikUdqKM5ffFLvVKFMshh0AUcE3cJtPluW87zJ6LDfxEwRWz1V+ZiMUpGp+ibmEte1/FzV0eaJc1QGScJbKZmowTNPUCP7oLkNNBIb0L9drCgLxk6hAbZgWfcj26/FOn+MOnsleDsP3I3kirNTdJyrZGig9hUiDBb8ci64TwY5q8lgSWaBubqiPOdmbP+Qk0SB1y48hmL6f4c3dC5vCfaCqRmUQoMgfogeJFnF/9MZp8Gjsjh+CpQ3ifgdqVHvrcsCAli9kRmqNSMqHCBIAr3YbToV4sO+npYe6viJY8m6sZ09Q9dIoI8zYBqWEV5qxfGyAanV7ZjKe6Q6L1pTYK3INqXKHL2H0Ber1uWo7jyjHw49LkGflKrin87jJnzxOsYBQH3Mp6OQWRhbklEWlDxyZt9F5+RhQNVPRLahJcoDYcWgSonUqJ7ZWI/FfM5pK+MqA8wpVTf0tGmjRqZU/GM8f6uDV83AImBGcFjlUC/xZNjB2WELzMYBi0BEIeEbiMTdxy0q95ym1HsqVHFiBQycGN3gY123GU4UbbikXfZ7xLbnvW9DX4fkuPVDvnKul/lQMQqUcTeS4YDM7DmJFqvTUqWrZCTm5n09Igb/Oa34e5/MS7nhJOSVcLq8sVhmalcU8t855UKqdDnhIvQmzVevuSpL+2RNL85lG19T4dTQC4i2UDzcXwJ9/2ufUjJ6LWXHvk5hx19+RXfR5UjAEI+N5a44e2bTl3Hg36GhNkwH81iGBPbDIJdpRL7b+uwxhwuFU12hxp0BCDsN5t02cjZeguLMTdJUKgwMd3WJKr+51/5Wc9uTCl6DQoim8Ifhx4m+RluBdRgD65P9Wnxb78Issnv7DSDsuYptmyCYFU3d6SF7JFV1utu8PEC0J4XOe0Hf4cI3S6flL39amcFFArz+YZrUkotbMfwUIbyhww+QITEFM4OZmBu1loBZZw74qZQ4UYcxHKs4dZPaZNV3C7GHrjgvGYInEI+595W2+HDYWKl4tfYJlODWy44W5vGICQqTh39KbtQCt0qwh2QY5LzvV+5rYVqEd1dZ1k4NWX4v062FvoHVsv0C/PhRrufAe1YXKP8FS5q7CScIAyf9I3Deb4BA2SvSyjON+xqGoWn8S9Dh7M2QaVSk+i3T3VSjbzHBFY2HuB7pwMwaLIEdEPnpyKFgMY5T0cw6fPpUgesjHA/QpId42ReNPn1xfLrPAMdxx0aRLBaEKW2xIqL4pwU95Xo4l4zHMCTBj9TrSuldzRORCD5z3Y4m4t4aGfNdX9w/2KUK53GHZDg2bifNG9AThEPrfy2vmy+LFrPBIfyg2uugGh+damy5V6mLPSL/t11+FJMG2LacEOiZON5/6JUDCbG37Ak3g0/fXRpXHyoENr/hwfPRUCboC346xuzNr+hvaKRJ7v6drJJ9GOnQtWpFTJ9Qzc1MBw2E01WZQp3kzrD97IgFt9C69v/yKnel7PvYehK2+S2zno+h52u/UCZZIl0eVl0r23joPNc8ufpaVnWUvCZB+QPnqIes6ngHZhFB27muK1fm2Cmtv/XRMyOTOSdxo92CJmVfwfpWhYj419/7ebMpazhkAhiP1YUtsL6CYPWpVWJUeSZ0eESEVRpEFUakCR4hkd73GGEDaNflYe9YvqiT3I5/rTUBVBwIpKnU/Lzwgr5sb9z0ZVEJe0ZHwW4twpDvRnkzfb2POr6xFpIn72mrNjWMmjpZr+0FQWUYjisQt6op7PJuMey9jkw7LiXSlc3H03RoGvyDsqHgmUQcrwLSUTfW3o+1+EQ4Oqy3Lfyu54mLUTT8sLGWBP2lqbKoEQ9fBc4zQ8TgOTLJqjI/OSbc4W9MTk+fyGrHZ2dOb+O88EVKMLKIqe5TAFr8NyUf7sdsHUjv2oflUdOzg5Qj9dqdm5bWK6IHVZzrOse29BLMEtb7c3iMchHpigkdzTu5gFE84l+mYJpsi7HXW67/Ny/r0Eqy1DlRY9lC6zd6y7G19gWlut81IpLzm+KB9VB9s4H+2GpuqDkmPjW8iESDz7d8Bx4cVhVq+flxkPSUsoR3cLH7GOun+ZomHBQYsvvrXuBGwwUb9JWWED8OnWd59xMxBsE8ILg7gN+3TsLfBnCnU6jUZIN1W30kFzRlijOYnUfcBWa/vVDnPLhq08vez0DB7qkL5j3amdezqGWfua7kdEElxBWpffKomdd8/ykiQIAyqYCZecw1v3C9Ejl2bK13mDt1perqITrOsAQPgrPOCXjTrks+Fz4n4eP+p1lFPBuC4m/3IYwASn8MBpSBZnkBWntJ3qCuMZ5Nms2evskRt75XoElP8a4T8AothTbDpjCY1IgLU7f/acyTB5gesog7CFWcUfv4q4whG7BpiI21y0JhwO6s5D5ZV9FinMPLTQTzXS+5TIzRh++jn2O8Xgeod+KPiHD5pwBnEXGk9DlEg+ZfyLqhMX5VbujFW32rLB9ioR8xf3r+TBBzUY6oWggi7HSq/1Pwor1GTmGJqevWuZKGXc16GCuknA4+Dnqbum3gKtakHvt3QtqOxIssyyt+IaByHcvIMmrsKoxZXnKLvvkyt6Wbhva0m56MOY+bLID71cDlE2WlO3n2iY+Jzj/O+D53aR5ZhJIj5d7QV9hJyhcX9FlrM2p+zrCXV2ePWSrhzjYYhXGR6DTu+HX9PARWdtCs7ErSTYfO7+1N7qpxtPnIWz/gzXLdOogedaIApRvA7mNeqdnc5eDk7D3VZHi28yVsab9eFhG4EloSvd2PjM7zlirW1fuv0Qj6ONMMq5x5UkpGp9NbGgJ9JMUbuymUS/UMztBoPJABLBo1y+9uk4RpyMiN341XYJy+i82VhzT8/Lj3htInBSkevV9dkK/InYVm6wxDciyGC0Aagx1Igj0u5q0ZH+VY9eOi8fOMFNCKkEmPeWTq9x4DKxaukF63l7ggbmTFvS8uMlFpHG1a7/V2/O//hgSgl0I13ys272f24eU/tAZYsjO8H7Vjp2HfWOWl2awtqGLC4kECPPdCXotvXMxWa01ljSE1anEZXv9Z3LgEn371ogBbU1ZUBzqYJTs/Wg5buF4DOA2gBAnzvp6EZ93e7cVG8sTA32+KqYkkDHqu0y+CPBhX7gqJjmNH2VaxshIT2J1vk1bM74LEI4KxvQl8zJFxlo3PAEX9M1HVeiiQ43QAMDxi6NA2XN+J9wno4nGBwQ7Vf4BTaM4XTEo5s6VgSu71G4hgTUZSitldjozJkTPqC00FL8cep4+tZHm5vgi8nnQHXzRsFk/tg/LGpx5LeMiZ5SU4BOBxE0sg07JoWv4wqfULIQ1pwUd012+bOKw2SVxe29a2j6Sa9qWLQ2pySj7K7mP6L0kFWHm/YDxqn4gNJKae11qgmA04KWamYiYe/l8oi65ajDeM/3vb/ujkIhYYH6yGa3EXW57DCFuYERd1R4F4lt0J1OUtrQ0gqpWbIWoaIWtdRJmS7jrkrgGF18ahLlMnXVxwKgxMt3mLpXEwR19F4btlnjTYNTmJmE1g+5Hn2AcItz9zX7mRj81Z0rBpwu+ddFbxPCemfVN8zKXmP9NmCdMEkAMP33JPnG/x+1NdFg0KPbcPslFYCCdTIej5yc1B848fDmv+rHrRobG/Xy78byJuFpmcwjMk2Wj3WelOv//hxZwEaOEhD3Lfx+KPhon68rmKzk297tiFQ3Dx3xVVIHGbrbHdooGNEmbJ5pvNsiY32fPN7V/+ztXg37G/WxgLI4xq3FypwyjD7hWj/LeFeF0bba155IwWqjg/9JBHMXmTpnfhDJNwh5IxjXWwN1EWg9uZI0zLeyR9AyMpG0n5dH9sVub4IvCRPfNQMZZ++bYhyDhzK/DRuK9l8Bepm43TgEfJOFsohozTga3rcSEjlwbNtyG6rpxiCkUMBaeu1CS0vvhO8knle0b5K1G8nijFfWkQBOVtg3pWLWWDPV6b6s3vs8C4t6ZJPNhOcxaSJpd2rsuva7bU4uX6mUcyDPt9p3gGZIG+Q2oYQEN3F9pb0Lnzdhf7PPzeeTL+TLkQcLhXjR0QPPpojon2W+qguOMJyb/PWRhqwZvFp4iFNoKRm8gOGLkUHLrPcax/tErIy4IK5Qdf/ly0p7Gog/XJfFi9QncKqRfq5c+RXPzuzwZIaUP+i1XuHc1nReYdytsye3T1iCyzhSUm7DlPF9ac53dRf7uGstFWAUeBernoH9rwEqjgsaK8iX4Y9g366TocXLE9hDwgi6g6f597ys8Ma6ZHTydAG0po2260REY9SvHYsigJt/Oy402I8aTKnrdOUoEsyVGETZWNwdkJaYG+nHg1wwsCo0bvvMF1w3OtFZGI+zNw3FXzKDlMFCYWo1pSw6xtgazfWW5WuFEDIzaxdDe5BIe+qfhdP+zmkM2F9f7HVBevIxcLZuMtI+FiyzbQNta29yOewzAwdl+hBzY97do44WhB14eCTCd+aHcwgSWwiuWvZXmNEj4+HWY3QbF9LK5UHdgoTTPqiACrz0A30lLs1o186nt/285I/J4+NxagHtQguRJGWMXavyBofYJsVot3EMr6ix7TNClmdb9ZbIvWNXQ3D62EvBVNRv1P0oC+eRxGB5Q60QAam0vLLvkTQ/2W9dWghK5yPwXkA+7Wqwe3u2tO17kONX7q7Bj9OVH5EH83L/+/u4o2/9sbOQXAkR3SiilrbE580gYZ9i9d34pGqNMWd9gJAIQqC35K//lko/6hQOYbdY01D9ItYA4pcV/tjPKB2rr/Q1zEmKPuP7MLIjtpAFn0UGC6B7RgNN8vXLD8ibFjFinTwe3Nz9+Q0IBLrv5JQ+szxwziOsRvBgKM7UUEgxOvhLgKtElcHyIaRdlUGLEvqYCHnHA6Pm5gBjXC2dB52JPWG3YrljiSDDjG9c3poSzDQ+Kgjo0sKU1YEz45EeC/rwBGahPEtKM9zugftxCQCJd836hT7slPrY3lBtPUkcKE8k7C0VMu4kiag67DzQR/QRJchqxgHDKc8gJScChKQuolwX68aR23B1EhpSLZtuqiP0n8Ey54C5Eni8iBO5lc5y4z2E6vojyL+QIBFBVFugEje5sQWWVjDo6DroooBTfmUknunDdhhc6ejQqVQdjTNjDCyKw5fhY2xelYzICRiHpDl4ph4bq8PCmC03S7yPtWh1ayw/sXEl59Xyo3lnwGpN0qyuBFn29qBxh9AA2x+WHvckwaqhcxYzjsgMZc4ZFdGi/2j2l6RgQoEsfu7pByHQrtODEZ9ARtlmzm1jYf7YRb0PrAHY9SRvx2eJb0jOsZC+9R9q8u8H4w0JqtCynzQpYbHus+0tJ1pVE6ANKblFoMLUBVaa2g1KdSAUEvz6DHXKso+K3v6AmhiDIdlh54LMbGDVztyKSiIQccjQyBfT5st/Mfxwl598ILLUMTR0N3DGgmo1o/i9KA0/sp4ZlWSMpueWLZnPe/v80PY5SFND4XtrYi3YGg9PY5fVwe/FZCKdHe8v5ndML2quvGjhtXBYqUWSXOwIIFlhGrgzci+pGlOBeOVscqMetRD2c0tfw6hdINmoUd09MNCGEG54AeTMVUJmg6TE7KwINBY54eMD+yztLso+ibaLGSZsOb7ICMVaLsSIm/X8N7CFu62oYaJlxePpLjRNyY61OEbRhQtDLWdVSnljYgXR8fN75K0TimZmLThCcE9MlO+ON83gh2C0vYY06rUJ9hB7BCmkRRHVoGRqeCnYdU9fnIoTrsLxCjm0aQ+1ZGSa/kc+8NCFTTrMHGiwY7nqBodqZBZhEazy/2Pj8EmPv5Fpby5l92AatETCpRzJia84XwxfQUyMNw9Anh5TmVg/2h2BaRPYbOh8QuB/30VIWz+Qu7fSOr5deiXGXbZqfipjTSJv5pTEhLKg+LoVk/KM+TgcoW7GEk0bqV0IcFgfUkaNxsPRpXkOzXxZ1IY0SZi62wGxmDxeZoXvJW5Efa0TZqmx2VMdI5GZA1+wkfvW9hVgfMOZL0LJeK9WP4iZjn9ffpu27Iag0aTa8d2yQs
Variant 3
DifficultyLevel
637
Question
Here is a plan of Reece's tiled courtyard area.
The total area of the dark tiles is 66 m2.
What is the total area of the light tiles in Reece's courtyard area?
Worked Solution
22 dark tiles = 66 m2
∴ 1 grid rectangle = 3 m2
|
|
Total light tile area |
= [(13 × 5) − 22] grid rectangles |
|
= 43 × 3 |
|
= 129 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a plan of Reece's tiled courtyard area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20303_v3.svg 400 indent vpad
The total area of the dark tiles is 66 m$^2$.
What is the total area of the light tiles in Reece's courtyard area?
|
workedSolution | 22 dark tiles = 66 m$^2$
$\therefore$ 1 grid rectangle = 3 m$^2$
| | |
| --------------------- | -------------------------------------------- |
| Total light tile area | = [(13 $\times$ 5) $-$ 22] grid rectangles |
| | = 43 $\times$ 3 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18DfxYW9R3b5moGUO99ytK2YclTM1vTPXlGvYZYCDsTu3hZkzvZ1EuBlayj3TBYD02zgMNjIy3WvyxtuN52VbLlEFccmtrILCeXmIcXNBsbm8XQzI2ZV55EZCJ0l6W0RNm4vNcge3fzn0lRZ3pHRhyYG76sE7Cm26mGxbY7lgGALLXEZHF/WcpV2D1mgOFWZ4uumkWZrPducj/QJiirxDgBRPLkviz4zta9sk1JBMgSl/k09HfT14aljGQudQVkSsEUX351xsXFpZ5s45bQW+FrcdB07Ixv1XBB0TUBcruAqG2jbpb8ppqL1KpDHA1Vzkq0Y6SafyTVxfZbbfO7AkiZGBHTZNMYABsHndXq7ecTjFGSXqLVdK7RKDqUTVCBpbMECTAjfSK1prd0a15lNeN1VRV6YQVhId0/4uluw02HZPkAW2zC+IWXGPYAMbab+GD6+CVQPeRpmwCviZeoqBveRZYhOEaflOOJq5ajS0EAIuBL0Y4frsFyDljEEvM06mEmQ2w3Dy6s9radksIic/qGSLXVXTVWRpl6fksjkOD+d8kJtVRVmJSxtcPab7xvPNJ/eRp7qnJzDHcb72eDumQAqvivhGcOAdNmffRQmL3gsMQ1xKA7KMx6FjZmG10qqjf/7ulcqi7wzM3VzHww5ZYBXV299zAHQvis040lpwhGqqLr/PCpZB4Bo6K39WuPMsMzKbqB2Nmv/reem0NMW86N1lLvXTCSqJLD5U5p4DFW8/RfjTlcDIabpa7JJg7T/n9eDG/PwaYQN4tBR0fu3gUDkkzOYJQTcgzR8WpStBvjh7Qdiv7ue3rx/Ve9+O/DmR/u2/pOc8xN4+OwTJ/v3pGmkzIXBLdLMLK1Fq8qiGRfKhC6CxfIe3hlGo6FkwSsbGDdofXZrBA9opfTsYuug7BecdB1nBNWTgzrTb+AQknBw5gyYqjua5LX0CSY4r5uXoFpcV0uTAioKRIVCCHlvVToDk3gP4ZJtPm5MlzuSTMqC3Dj4+2WBkdQjk1L/auAmZl1Qh7vulllOPebRICHnhdiQprM6odyuDQBU8m67o4lJlTnHMJbJ9Jkf5H5Y34xL7Cf6bzBRve6+fBNfPBKsTC/72NDs1CYFL/BjXnHOCVCv2hgy5l69HuT5PFPjqtwARnJFcvD1yw24XrLQPy3H91ZQaQ7k5LIEJCSRtp7UvrF7x+VKkSYo3/AHs38n+zjeSRipNK38TP0iV03lA04xCWfNUXs91NjrmHhXHZyLjenzy19yKUwMbXF3Fq6UFEs/rw+namMVAE4pc61cx6LjAQCZdEqJS4KGWnAe+WueL+1kr8dxhFjUU0+hPxprlobrpP6XscTRawq8MLrFIjSB77kU4tqeRvzVXWQ6IG0gR0jVdvuAFXpQk0d022W73QHxPBkmZwXUrVPPohO8WgQkQrChbQqD+DOPr8NU7SO9ot3QcI+wK/wprKMKtvQE6/pJL8ofu9Poaae9MumPDH4/O6ogoc/u7FyJO2/EgIPqf15wsHARanS2CW+JNZSbSGgjCq9LaOhCK4SEve9PeeNtfyKYg7qXl0L/qAaYP1WAWo89YtxF5oRMHLHjewV4P6d2U3LJlhla4EsGQbK/f+mRMqnz38fRJs6NWT9D/0UmF82qmqs/3Jgc7pR0ffpKexTIJ5BJ84UksrJDaV0YzqjZ5K+z8WSJMYqyev2KaoXReX2j6/ymxatdbIcObroLHqwVxDnjapG0gIn+OvVgVVkRVhsCZpMcqjg/fi1udo4bMEA0NWqo453N/jTW0HTuZZD7olf6eTUyQO9LvOJbA6gzn9YpI2D1HOt9hrEkhlt2scsHkyg9SezJK39WjzwcOqkCq1EsB57fA/9y34Z8+YFnFNeBJEjDrrfpFhwMVEyEttiBQIC7ddUlXDrXfmMbkA1NvjCZRPwSN9tnUknzoSmjEFZWrciYy/Gsx1/QqlU/xVkZWafDx2IlnzqPRtYKj6+QUHspHavFcta0ofyOCJ0dm4iDmIGUd5sG1YXPz5qhf9et/ZNTb+zJLoOeVLhMvJwFoHTy2cy+umQYg8R2Qs0fpB+84IPmETA1AR9A/jPQzUFvABp+zKoY9xq4BESAKfWH94vuLaBM4molHqRyO46NS/2CNNjeTQw1P1q9HOP22sDAocakv660Tq0CixVv+cglfEkElVk8sqEqJYhFuytOHrP2vGn6VNWAlmWllrZ5CGiY44C7GtSArSI07SSinompIv043YCyxS3IzLof8o0CCMFebHFRRcXhAo4woFbEm5VogpwTKYszoUqDVk6e/smiw/mTKHeCrm8qvtXK13PwhyMnCXqMMtukD0NlEbJWYLYtQFOLt4RTHRvu31MWHEF/IT4KXEUGl0jvnQsYKxgDbzxEdXMPc+67MS3ihDUdwMBk77W83seRhKmqcqFUMFsvpZq8OqpiP7kIbCSNjigy4J0vdU2oMQcEtz3NfJ1u3fRvI2tt1fEi5AANcIrwyDkJKCVGLPWaFwmJ5FL5rypByzWwxgFe5Es+zhdJzo4eNfaxzO4DW4Lj4kKFt3YgBxbdTtj6dwB6NPxtfL/2JB4mIGTDNjEvPzTcC52NoDHd9k3e+5UCtMFZz2rxriq54dleqGz2cBvwgYLxsYN46dPhCsWQMcDKoJ6yoVHqEKobHmROCThxc2fykx2mOJuOZ4CoTvYscMJR9IfVDfO32NNDFF4RKa7u0ocSdDcwPZhal9ZjjSUG0SzHBizmywOKipTJXYqayq7+wjdw9UzrRUQi9p14YDZV/530EqNj5+u/L405U2YC70wtt/P+kNRdCcIaT6pXGviQQHFqlBa+yThgwzi6pWKfAzNSCEiCYcqM0HbFJHy2oseFZm7AG+hKJBVjf913KS5ebiCVsDw89LEu7F1LW1lML6LceUXgKsr2gg7BUaM9Ou7GUCiP0f4n3D9yJoCLrYFJyFMoAL/emVvW48AOa9w2UDvN7Ipdo4c4pmrwaGmEH+OihD6DewLlSQIM4qS1JPSrhWglpeEf+Kurzquz6LKtthJgCg4TOLnGE9gWVPl04QJbSPxyjhm9wSeteHP+WBPXuHKVsl/0tXqz5XUTAi3eTOvD3tbipxR4ds4rPKuQDZcIDu9heRfjbOdd+e3ET8+NraLLQhGX3Qp2lVWDaFryofX+TXvHfRDZP/xiXKC/DogUzqdp+8AxpBufj6pfAWdjK0H2cwOYXLVP7BMS8LL1k+aDEOUsuM3HBe85oSdU0B8LQX0NwOgFFqJzWlEXbWJ7An5ND/9xhnYNfZVXV+/ijrSfogNdnKWK0MlnT7UNAUL58UflhHIp2d1WTsea/MJyq9JUa12szU0ADY344yU+YlW6PuMY9VilbTfJHuVrlEzLeS9ZAaF9i3Nye2E5/Aw0rqd3bW0caQee7/aN3fE0ACm7XOBZB/gXC1fiwWRVE6T1BYAmDSF/SPTC3alk1SeHU3syji7Je8/8uNc6McOIEZeJuIlhSwC+/c2bX/MMjzALFhhUECe73xUtzB9ZV6PrujL4T8jT1WnY7XIuMuMG6J+8yfW4xB/rGrkXezCTy4bMmX70Ve0WSjRBHubtzo/HRXlWVvoLcWgkcm8wu9x3KOwGnYUW2o8mfD3uuh463pnZpBKo4gXfvxAy8LWluqDKKNu5cvenkFLZgLtvcIkypzkEl4HEGT0v7JRAUfgS4zm88c0brLHXW8upwpecu1k1nKFIpva3Z2xzZAcA9qaN+rsw2WP4+ld50dc5dBaDDLiEUJfi8OkBPj+jJ28TIb5543YJMu1lJL53D7JtZKJJvtyCcVhcG8kGuVFfTEVllVBq5JhB4GIPh+6Yhho1OWjIYbQiFo73XkTXx3DsRqoDFKcVCK2j3MpcJcU2VvUOzlDMUR7oR7qk8VWnNDtJGWw2dr0cGPv5bbRs9mFgJVkMYWo7J9r9HBDs1zPWc06bYnjFOkljCOcUmbpRe5aDCRcdeCRdc1OIx6W67vg2cUzEkQbSmWBkJEiKhAKFst0+ZPvW8JItU/r07nb1b0PqOwvl/7tIRlIXEj/ld+Z1YKNRtroc5LmeqAkwXKc8cMeG3Nces3FF9tBk9Wm6D9PWcHgepOjupTuyPCG7MluVzT4MYuYVCCqee3cZFXreVnjqhfOnn7B9mBH04wEZ6sn0PN2vTCYTeLP8SZDA5VrwSztqD99Ftk5Bcu4E8eGzeM2srbuYewRYTWT9xXjkjLrg71py2tn9a1zhA8ssle1m85kf2zJiBnlOZrrQzSCg6D44xivR8Dl7NwgrkKfELNqL/hElhTBlUIafCFL3woXJXOYQptqP06RrEIPW+ALCsqb6fVH5O+vG6Q4mk1ocAVrLFaiAbowthOxP1JjdB+gfxt4JSh135jerVdUZ1VMeEsIh5ycPqICtmwm0xnvnq3uHLNcv0ZzeDzcR2dud47x6zp6FVKBGYBrmKZJiO8oc2vWukRoZi/wd1XvG+qrGTV00wkU9eP12/ovn8izoKC9ZSK3s2CctRN7f3XZaGSquOt8wAfLzsEyNrKHBzlivE7NZr4KU9SaAd4XW/H/lsNhNk1JIXYH+ZS++Dy7k21NCxth5eRSRI8u474tQwiypBHRtInv9b3DG8KknYXSZ6t6Z2f1u7RXnA0BJFo38QVzAE7vivbmB8b4qcYa5hOd+evPkIqSF4xGTWj900Ph/2q0Uo0hQXsYlzV9nkOg+ya3qfoyWVlr9D8e2uGdb885nMjsdCPxJCfFIt6GE74sY4nl4H7OXf82Q5bz4NmXbNYkcUoTWK7ebjRgcjXzwCkdv6O3ziJnBEn3ebaFAi6LklLqAcX/DqMYTNAAnIvx62Jc2cnXUFeKwQSMReW0d0GqqAywVQdjhVyBdXK8g+J7dqNZWUEXvNi/3NvdIVlvtXt/eGdVyGQic8w1EX+uJ8M/TV52lIM7e0dumdP/BmmX5Ryt9kf2YecqjKxkUk8J5FU7tjfVdMxeBV7i/Fqu/Ot16y9og8/L86wfxcAPzTbA3Y4S5Y2Xy0xD7lX8XIX++KX54yG9cb4HDAvt8xpvJmOhYE1/JTlctKaLE5G//9q5Dh3DCdpBnBuA7D9yxkHXorHmN16PsNue4ODbrOlq/W7TVOSH5FJm8dbFs9XDan/2eqRMjOc9bQW4FytVhZtP+oQ5+qFnzK7f9Z8nZyDlTlVc8eNXlYUSC2ilIm1RNdecxwcPRVpxaZd6jguIxy1CUOYGn5DGAXYNBwkfph7r+miQ/QFhRItdIAvQU2xLJTMG0n+yPoI/FCXPftNPSdn+St0ngfJoLozO+O53EM+Fbr2oDrjcGcYdRCP8rjQGM1Fczmfl26TcFuZfXaNj7ltlydfSil5+KnQx0GEKWJgHJmy09q/SKXDw/Wi/6iwLHP1wfxM9/QCShHiVSAGsFsAQ3Oow0kFle5axZc/QmcdaLGX5MK3C38UHk1PnF30VEJKvjEqy3wFGzfrcfxURf88LKyAsiCO0dciaxvRTa+o5onUFLik8svQjEA9TYXLU+qQYWNbslwDOjQhzgi71TfY1Yyj+oCoOqgIN2p82teYNfZpaWpg0blkgdeSq2svdHVWBvCkN20qizpee86ACy0xlB/rbsV7zecALDKUbx9TLkiyyYR7gyt6t7UhrWkIqF3ZA+mJ1MFxl+GcebUPoWgB0I2T0rxib+lXGLgrlOfLSfVNtN98KEMOPVhU0ONlPhcijS4fq9Dn1XriG8l4IRrL7D75MsxoXSW4SMAhoepEt5xUHhvKt187q9roz/FDo31uUXA7JeLULJEeESmHjUF930H2pFifTzxX1hTPs1uRxFXKJrVHbQJRIlZLU2y078mD6sm9+Woi/Pc/wVZ8Zyp24zGWlpNS7frTHfBKExvSDBcu9IvssbueYC/nTpCUA/I9pFnU4JwG3v8XZ9fVLc5PuhXUNT43b0NXmj4Bh8BKhNpt3v+3ni0m9+vUelxuFwMwlVmKpj+I/MIwSbk8XraBiARVx5i8ZLHaTijvjK/wC2swJmTypH8iVttieclU59L8UolWp3srwPbAK9VWpiNA2v6Vi55E1lEquDFRzIgof3/0eQr4q0Q4zWobvRvECsZmtjD7towBrKMXJlTTtw7+f/kpx8jPrnZcmn7x80zulHPilpLsdVidqzHnrYMrQV+lRoEqtnv6RrfMRGxHCyytSn4oHUQhrT18OSIHyY6V0DXqa9E+Z30xyWgdlT1HuITjti4Zb1qzmYc1x8BojOIglBsaw2gZNRy4hAE4OD5/SzNSXXvGjzSdty5SFklSB/VAJ78cno4v2QtKRE3mIG5AiB1/7Kh71xCUf+Gyh/KElpmN2PvQpoCc5xCg6hCNQh6F3oCkxXPm1y7ADp0ZYA4ufucxdiqaxZJ+6+6rpen0sRumDRehig5/BKLmFObBQ/0vd27o1fot7o9HHRpIQfMO6hV/4Ibkap9XKDKcrDnjIqenWxiR9lyDwkSUxw2OfPH2f2EJ6OEK0VV/uOW9J3PzDAXuXj+9T49W0notgr6aqKoMaXHQwdh6bqWrqPQAV+aykrZWGbqX98iY9JPPxnmIpD524xGbn4wLdiXNZrcfgzfAFEBGn6lZaW3i9CwzOl1GO4zKkRZ2i9KoMp+HwPtdb8WZfu1DSv2AAMSXx8JOwuZmbgSela9EBi5Kgvmt/ZBFsG7JSiMDvwqeOjEQSd5qLFlj9MCOfPANE1UL8tp3Jtmk1a4lfdID2nAvfOocoxRXs9eL679a+xSHWacTACo+K3pjS34Izx6Rxw/LDnj4JDQd1dDa+yJsNqRJp9BMmpxHTL/bPohmBwx3Xs9+NRQ+lUv4Oh3m03AXHATDc1lGI0PkJeI+DAEEtE1bhZvLOHS5PUPUJqQvbwz58VD+CBqL6TnYfyHdX304vhfnnUisoqoAoTGWqaTEAbAmgdTaDo1NUFz4d7yqz5gEj1fmbLPrWYKW3i/u9QbySQjqJs7dXcJ5eCFiMlsk9T6zsZ8pK9m2BSrZuHez59AwMiSLkPyKPIoOCbJR3754a3bTwB2/LYiGycen6I10iFhb0rNVnvs0QVtWbl7liKiEZ6bVvZFpksXjFsiUAT+J2dzq0qhuSZT+P6ZK6eX5vWXpy7nStK3H5cb6qAaZ79tSWanc3Z7sEsbUEl3dYKqCHHxrCOcgtG4wfi89qIDlD0po4JsKDXAvEJX5wfvIvm2KGGdNrGWMSYPks830U9o2n3JR5BPMzQOMg5mMrgoC4EI3MiqHEHZihl6wrqsWyVh/VDbZhHVRiaEUomCYBpFu8UzAGqwMbpFjmaTNgGxh2KZoQUUHaYM5hzV/jdW2B173SAAISjxPKjUvMg3u05Lwws0aD6bqy08mwJw4uhgNcXPWhB1KJbgZ0BKHfVTFwG+W9mCG6nge76lLInEgTSe5qpRabpAiWhO2VGd07sRCkPnIuSj5HOYXQ1Cm14y17v1xNpJp5mCFTuZJsoldJ12WU0is9r9yf30/ekakxjZkuY8p1ibAnQpGf+8b3Pu/wNGPlafkwXigLmQ7zSsp6Sa/dpsXSi5ArC6Cfz5JM6GdgOmzY6WsxHdd5m2BDIkR7ZIbIRoD9QjEvWAPcgzv7DgCAxiTwQTIYSDQpsQWlbWvIhm6tf/m/mrljw1nrj48E9cONuM1cw6fLPxiWJonWK+pFoWIXxuZOn5wWN1cxyi2lUZt2FqghGKFAmfviudDnys5ALhDWuO+PFCa9FiOXiHQvHf1V4aScnGl0/n3Sj+df9cw+8Ptfjs/oXX++HRWCp3oUBnSwXH3oI+aOESFtxDpz7i5SDQS0AnYm+etY8uNyX1UlKnPKCqEJir+rwhY+njsfZUK5PcwqUjFmwBQYkAst4QUKKGhvd9j33ndUP8gSjGxrPtyer8jFWqKx1HBpj5Mqat5AGlQEN/co1j8G/DiZmF9tnTyAtlUXlg2A4D60olcXV5+zEmxJ6nAmCDDLQ/VFRpKrqxjfLCIi+mZmOTG3ErjasNVjzYQHz4Vcq+huxAhjSfC1rMdL4I1kjkZlrj010Vf7gDCEMYUsCHqezsSsCtx0mjBRHc+GppZdC4l5pzVPxgN/xoP/K4CuWQxIEN2XD8K+2/+wMWIfnAxf6xmRg5jOPpbFA6Nm8e+dfdbo0xNQ7p3HUCedtYKjRMFEdKGYc7f46omnByBKOEcYKA4u+QxJUNQbgimUCH0U02RP7VFEfvzk69IhedkM/B/yQnXj+XTwmFaUlWKQK4LohSlnUoWUXtbe73MgFp5ItZdycr/D/9Pd4NC664KXGMoF0s7gU2bh5WYHIKIEy06NRkTh2bWCapzhjsN7/ZixWuntbkkfdKaJrtq8gGBvIfwhvRQQRf/veeAU1QZbIncqS29VMQ066js++C56dxMLjZjjs3UvF8wonhx9F/LOFFxre+O9C3iFtoOcw7tfK18/N/Nnh/RTDt53qQZMa3QeDWUCKUc8ylhrf1OXM3kPG6EC4cGgbu4mPw81vIjkEHcXcFJ79hoMMpeplGvR3CNhu+gLV0YEZHjyrxkF/lxA67082JOuA3yNqAUvnNnQSSlmXj4h+38IhtR/6787a//aBMebuF7KKHYjz0TqOxy7HJgmyBxx0i50mxwRYdQVKrOJdRoJJ8pCjWfMJGfl06uLbWybOCcJkOMyUIG2WAdRBJ3CS+1tMID6lzN33W9E+XgsnjOhZ65rZ/h145lR6TwgHmBG0rOlvmFHVG4cNUwR+wgK9DSNutularR8/BiL0oBIkELCv1bBhDA5wo+90uw7knrMc2ktDpjjZV1dbPjMD73muVst4q4bJYtaDborrAcctGE0X+6OLhg0dPbUnFbFVpNkSzUGV/1PPLOQjSUx0lKBBRAgkn6M7bvpOUecSU0fXjWVQ/IsdZ+biQv5jPyFJdMkew5h+oIYVc20KlmDbiI20G38+Qdc5V/Mdc+S9pFZlqpYIwQFnxT8CcA3qEyv19hhLALYakXzxxUkoip0fnl4pJAYXbAJfJNC0O4tg7LYa8yUkVU2McXRDbvK8zrYhtMEm+FfNVhyYKdzQsD2B+YT5TbBmlU7OhVuOsFgGEDbMW4xZqGgaW5wI7DEpcEQfYfUB5RfspVp0Ty6b2iQiVjB34/Wul7zvoTOChLIj2zvJgJ2cM201ne4ntOSS0bncDoR2B6D7KHF75s2zAVj2rW4qG80OjbvXZ+C5Lhgqf8I6K5HkefOwAJsmLqpI/t0mO9mtHvv+CjdFiAr3zG6bgjcQ+eX0yb+u+KMXUB3Ax/0+zbGP4xYvF57ReSAKea2DwM2IKjTPUJoWf92Qw1JsZUaDHzaLcR9pyWDw8BD3kuyHJHELfxnkPjCLRDc23M1CQ1QZQUXVxIfWKcsD4ju8OoXA+ofa3MZdz9UOzBKcDRlf/r6eg9Jq2B8jsvIqnaLuJqfFrmGHjHyLIpBDIrVVjOeWPLzmXL7bO7jDzqQ0h3gyk/iMLRVmGTrCof9iUP+nPgfEbeJP7KQYwp8qgz+bSH53xm0p/gLEaWOtE+lDuNtIvSu05JDy4HJRr3fUM+QPytquwhtS54E7SorbetoXDqpMbqaTKazFEhx4djJ5qasViMKgUnzJKsDe2MdP2eWUlIJWcP/55QDUcpbZV+TYyEjMsWNB4LFzM9r0snxEaTkAHwHGUZB6C7jnBxAIyOmwdBO5eZ2jeIK6zkrrsVsM7aL7PkXFhHtKfO8oNAnAT7irwVsWOEjBEPE92fYR75Hv2+Gaull5BgpCs13T6dX66iq0UfWaR9+pFEijRQIUkXoeGme22SOr3zlKfqGl6KNr63wX0paQ04Qn87t8uyABtc0TnjOH0lBWBv6K8LfJMgaZXTaGCbE2gPPh1cJEQbdIYNVqDU00OgQ5zVjrd2aZdamjdOEPfiKcvn6Uiz88tXKDM4VJEA4K7psoVMiWajD8rc9JV8x5470NOFQtFsY9NQj7yrkcI0bULGSctjRqTdA6qazv2RiTsT6U8EXFDcjM8zFKXNa9nDqjwq2sqPDvXAno2twbj1RzcXGYk6kxSsK+e0zWE8VBUaZivGRt2UdFwZO4SYTfPqSuyUP+ud5UhMrJ7P1qJXALU0gcSb3KsBrFRtvro5V1be5bStdp+h6YQryokdthQtDgCbaByBH/k9+g5lMHFhpnM/mBBuJ6S9lfkGSmQagFDfGYyLuiKNITUmFjbsnJ8vU9x3Dv5zIubpzIqpbO3+iJtB3HPf1P7zUcbqz4fXX19+9weOLB2nv7AxqdpVlaRWSvJ0Dpkj6k8tBIeVPf5cYeeyEX6rmLBCL9Cz3iuwHblJbyKRAc53xk5z1UIvPEAL7qsB4EtkiLPo1nnsGsXqALnntcdzNzFmOVct9YZndc2gsOKGFd11axs1vtVW59rWFJsSo7qi5elMxPdl704hA2omshYB2UvfP5l09xJY2C4mVYIkRJA35bbmWU2e+BR/Dyay2/pJL6ntiHAHIRNZV1iM/TMFnfh3hYvNVO6rh9hSiVR2CK72ABL9/IPtfnY/c4oFFYRyZ1ynCn6Kq92FgilO+6RCJZ4J8kkRQxiIyZQ+QqWCzpgP2ILzg8zK/QELKFn0xfr/5FLzlcjrCq+qVmd0wem5rglWwB1AbAZ7hA6XGvNy+MV/X4rL2oKgEMY5/H1ZsbTP1xVqG5RKDm3r72Plz/QK9nySvuFEm/ozHpgcfKNdHAFg8ZOwXQqCvajRRMr7mecH6wXCkF/0GLgSW0diIt7J6SwmW4keXuBSRNzpW4eKNjicr72IdzIlhpJ1WvUon7/2HbZ9EdBHFj3HFfp328/a5GVnNlPuV7Xzeyn3cr22rZUMQPE4TCQNbfxQKAoDbNS1Gvs6sysqVGntkgGfyQHsECut3TAd8i3HUYcVJ5+hJYeGjWIIbc6EL8uzs0egFAY1zApCQHsDF2xokDFAHoP5HjdzV52WgK1+d+Uvv9/e8I7WjBbeggrN0zH08fcla8C6QZ4XwkoDu+um4gM9VR8t2TpkvxKceGVQuLYPiZRGpkPUyPCYieClap9H7veUlCYXtJiI0cuheV/fDoyaNkP19KoYIQBDnHyRpTAF84LksIPGrcFd4Lh3Mzc4qh97+pik4A87blGhTpo/p0vfmR7KIQD3XOwih35qCgQ4prSDqF+RrO+TJInvJHKapJ0WnGDeo++0TTCmLQ+3COTJkA6trDG6Ef2MzP9sGgH9WAFOUcJK4ysBgfU6DaKx6pBQQmwyHuM/qRCO7mEkQCx6U8sdhrEoqOFyu+p9dRAlzQ+IByo1swVKHtelVE0STcOSIJIe3Jq9PZZMBmm8V4p85ny0dCyAbkQivFk7ZaCDca15TTOb5hsUFkZ9oRwY8izm42sOoPL5kgAVKh5sgQZ7Q/tTRvxR3gN/cPnXGLPanZaPbgjCjSl1qy6dgh5xyIS8OC5opVaMqHaO2y2JPv4kSHq6zmQnU3IJ3j3U7v57YM2RmlbPxchziWV+SvkfawdyyCZO6bNivZJbjpAab1K5uRq5r2qzRQT5NwcrqiCn4Y2+H71srkZL5V8IZ0KZagFg5MomrkMWIsVk3A2OizSY9GYd5jbOdz4+zsZNNz/VxpYLgCfDeIKN5porb7DYLAjOOVAfmJat2zgZzIpdI7eTDWVWyPEPgiN52rwtW7MX/gnLaM4l/aL5SDSV+C8hVaVJtDxW2rh9WZzPiXXK+/BHvUw/mvwLNyWhhiPYi8qRoMcOKJzNyU7VVcLeoRmOT1zjK+64rp2T6URm5FeJ78Da9qRC/8wrVZHhT0zFfZHwtxsa8jExvUXcfD8Z1YnEpmCNfj5pMfjoZ5zeQvJzjwiUuntBvZ+7kVJC60jr2XAZHEkb3X8Ka7yvqB7wX+Azds5J3ZEUQXtVHF26awOSCzGit+mRCJIuGEsr5eSpHYG6u/lLBKK40GZqGDrEpd2UkWdpiVt2hFJ6wkpsScYEunbPLIqDtUguiZdVuj5gI5YFC3YB/9o/BfcnDVXUzi7Zt7+tAg4lsql1kyoFv73akpg1R/eF4z49Sgk5pFHCFOHNehh4o2nzs7LoWKY/400fD1UYZIjkWmoeL/KjIoTYxlVvM+Z+8E5Dxd1YF0O0LVpkkpztNQjbHTZ/eQZSGthh6DPLgs0vq95NxsFANRSt93zmgcj9OsAAc7Vy8vN5Lyl5YtEZESK74EJyzr/DsMoYn59GcfXiV3qDl8p2Hbkyt5hkB9G5KJ7pROEo04FDP59IiJufRV7k71XqjHdCk++TTbNBe0DBt376aH1+QB3lRi01k5+e5nVXXN2VynwMVC+3fIgDI5dw8x4yBUaNB+q38Db375X+jasFhTuamJzcQC3fy+l9NCVOJ7W+hdfiZ90EQfbCe9qdFKgqrh0TqQgYxZdhHS6CMdo/IrRk5zGnBGFI+RPSLWUE+H63ifauTeIhX5PjnyGYA9jHiz0/TClUh8Xasg3YmlnaOu9TyBEEbai/2sVKfK9h/vaDgnhXbNOxxIf+3oao31TVxoixJB9uVqQWylc5ZtBkfNgY0F1LIyldtdTgsk4SsQBI6M5RtoaZlyXX9VXdlnceCtVeOFIwoROL6UI6z79Ble2LCrrYTW38VCnxGc5QsuOga3YGQFgvzYATmUC9O4Cn7HgzRj3grCGYVUAOeyxxwe7c5aQNecxTbHWCV11ZRG+VRStVI7fdHmmi3Fzo44Vaz7Jod6O7A8j+tTMZ+TMKAw9Q5589PmgJwkhOh5LCTgm6HgcU/pdBlDAkJJFUhyjjH+nq5SDIphlDXFkvkmglqnRVT/tX50EisXdjNMYpy6qVplYDajmXzdyNSTSQ7wBqjjWyuzlmtpZKl6gb9AfhDU7msFiMjY+WNXtx2PJC0fpQV1Z5vCxUO0O+VUz75q4F6HX/krwSRiAS1a7BDeVJvETXYNtX0BAdxczS3SMvCuv+4vVOCNMN1ZupnCB6cT9bo/bBt4SV635ra6VeIF3Aej9+ZzPDwNghdADyQuI7mKah3qjStd754YzIpmvrPQqBD5+XSU7Wd+7gkN4hOt0yx8q4eMDV37DpJGLal5mVwAgRL0MPyQCfR7HvG612aDhd/TaeUu/bxIRSk/aLkiCrysEEGfB+Z7hX27dH3Ozh8SjazQLr08FvM4zpJmeNrkkPTAvesUdjRjEwyh0ETF2/9jFDddGQvRSd6jIgRxULgD3iVx8ZmEgjzgDVAPwjdcu7tcTnQKWznvP6S5gQzHHOjowZivNnLHlWEuZSPoY08+hcrpj29eEupntHi2MTdOB/a73rz5gECZhnMruwka8l/kNXTBDoXufXBJnPyDfnRTRUJhpMGj6+LJqbuL9dyeK6SlfZGGgqQVaD0d0mLlOuNss5HBPbH/FqbbcZnmjaMzSUjLJhjhDrctw29zObh0OrtCamYOr7Cvgt+VEXi+wkxKN5IOwal3p6uel8kgxgiffRGjYZNOgpT27bcuCGQxYwCzUm7k9/2SJ8RyMOum0w6UwIIyQcUJ1p2VZ7EEZeqdx+gop8vIEqnFFq/RLx9yDfyNl315N6J1O5y+OOWuuT6RUfgSNHIhoHBRUTQkFZtDexlRL/Pi7VJBRMVkuak7uW8rfbzUg==
Variant 4
DifficultyLevel
629
Question
Here is a plan of a stained glass window in a cathedral.
The total area of the clear glass is 36 m2.
What is the total area of the coloured glass in the cathedral window?
Worked Solution
18 clear glass squares = 36 m2
∴ 1 grid square = 2 m2
|
|
Total coloured glass area |
= [(8 × 4) − 18] grid squares |
|
= 14 × 2 |
|
= 28 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a plan of a stained glass window in a cathedral.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20303_v4a.svg 410 indent vpad
The total area of the clear glass is 36 m$^2$.
What is the total area of the coloured glass in the cathedral window? |
workedSolution | 18 clear glass squares = 36 m$^2$
$\therefore$ 1 grid square = 2 m$^2$
| | |
| --------------------- | -------------------------------------------- |
| Total coloured glass area | = [(8 $\times$ 4) $-$ 18] grid squares |
| | = 14 $\times$ 2 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19ft1/0CzcxQL8GqxjXKGtWA3oY9LnYYizna6rKcgFWCR49hJP9eD8VfuozVQll4+oF9nkS/0WnJLxhLNCUmgulPi/igE15gowZ21Tfr2k+TCBKFFoH10inphcF1RQcRK0Zr6W7YJS56iJWcG2eaLJp97Pf1B14ZdT/fZQcTZlyKM5B622V6dCFvitsVmMBXUFPcdLF0nqBkJvGiAqMRyS5YPQF7yIguy5RvmJsGl4PGg0hxqKYT7HH1F8ddcMNUsab4mDRP+PXdxkE1I+Xbdy6dVDRJr08i8I2Cv1cTUSpDg3stMlASQwwK/uae1Djyqf0YlGYNKX/iSeY5X7MNo/oMvuqlmowMZ7Hznz3F5HdrtB+KqRZm3bbsJqYWdfBqS/wwIlZBN8jv25vf5rwndOayR5H267tYFWGdXp7xhoR1oVkxezvlq3OYgU60PHxYI1mkwr2oHLQxS0L1INwDRqI7HI3k+rAbKH5LF8fmkK1Hs/RLWPBiQUEBn1zNyg/wq/f8yia6+Nb75/xCmyI8p6RvCuOdvdLYh/SftYWR9+cu3TYWX/fXR0TlEJAQT5l9jh6ivUYTs4IbypJcuW2O9xPbEPqdhlT0EaizeTYIux4SQbpmAQVCiGbJJt2v5sI1TuBOd7O7/hyt7l9pqV6vIBxqjVn21Z6dsBX+wVpXHcLjNZXRlB5CUGO3kaBq1WOUWXRx8vJi/sFtvxSxObCyaBMGM1uZWP5G6QRL6iGe/fv3SbP5aKEdnTwPx3KHpEo6CrcWBsM+THpFzEjNCCby7+FreWYg2HfzMZBYP1Lytau+3Jv3uHr9ZbpjXXPQWeX5v0u/8HU3OTSjQtENF6L3e1AyIQFFegS1z9I0EUxIdSbUEEZS+znVS4a3rGFRFL0xZQY6pDzUO0ICQc76v3xZMdMKTcJ4dxJKrUZrajcL2+6+48wUc5inzSD2ixiIkop0rfKZq7wLZHvnLrWmvFHLuBE3Fg3MubTylYXmqXLy25Z0abpRMDlFw5zo2K9nfHDdZ1zTiYmECR6NINzEpEwiFBWCHKSKX4OiZSqPRxxUo1NFl7HiL3IblKa0rVF14I8N8I1wSZsm/SSKNTk+99JY2BP0bzZxGsaDtFgEGrftj7Rxcg7fWV5YUqd0t2omEzqSlRG4ClTnAIS92n+ygelDu660ATkkGm7hDkFoG3AAYfHjlOlZPGkvCTVsKDDEMmrouqcFw9hKY52KCdlfDm83dNGEUpmkuDP/uvmvRoPZJw0OCcB9hogp00AhWLh/3aL6y5+0Y6e6nP0XFSs6dEeAJPeVhAjVyCGoxlKEEfm8RdRDsFPdbIxJVjfAWK+JhKDSP6T7CbrzdZYW1appR12JAUEZngWJ+3p7qO/zlj2CD+Mf1MfLeo0jSxYOOK2S0TLR+QGxsKV1WwqF8B+FKpgn0qnawL1c/HfQ5UbeJAl5xfY6hNVXH1lnMM+e5HUmmK4UYa4RIPYkPHSJ+N2ooX5IFPyu9wpPlgFjFVy6XS1Hb9T/Al5/mMFtJ4jeXppuHEzW0gXT3gpd/JXIUzEYquhG1CJrDx2Dncd0R+D/JD8uG/IcxUt3pTfvuHCKIKegjWYHTaBKeKc6NEcm77zWOaGdrjdjNkOzBfxtCc0H0nkVrVLJ/J2/uAn4HqhTsZ2SsqkgMuJZ8XMFB5i6ojL4IwQg5UEt7DlR09mwLnvy27NZYa27ooFFyr7/nqHwO9vBSZts3gBkqTRm4LNX/jAAdLthHNWrszJwx4Ps9qrKe257MiArHLu2LmTCvHkeaE1D136DzdmpCFoZxntQn4Pax6HsQxoYxix+8+2c7LmAMFN1JjuGGpn4jfxI1fkcO3oCPaWr7K4ogyTKYZcnY/DzpOsBc+n5CsBAO2d7VFoSYZ+LgAl7UL6r2iYbOiDRVz8T5d88l/9ce/zkH4eMXfUP+LzuRwZMMjxoW9TpVII2QeR3UYZp+KZlK3E63Hcdh4LFLg8zDVcA7hyZKp6qSmbMClTQDFL127deMSHd7LmAdc7l4kOz1BSKwSm53VJU6fkyB+I3I5d8AssD6kF4hu6Ptmx1vazi6Jy+L+HhvBhv7vT4tLCaNhWiCJHZYh50ugXMA9I6aqB85VaZOaA58clfX4j79DJHlFAptvUqpudmM6XzrwL1VQGt9+k1Cl2IO6BNkf39vcahCponCH/ZBDHL9/0iEBr2DM2KmNTtuYqcgim3Yh5dlJCCsE9CNVEq3GnThV5eRgYcEyKIfNtDsBEi/QuwFvj+g5+b1U4FOQoh2YRf/WT3Ek+x5eA3pnXhQE9VT7Di1z+0rN8ImRzENHxiasgxYghSSLtcm7s3oOkzsQRSd/s87ShOKdp6+Iyii5fhM34WtG3s4maj+cqALyLVJUM70aCNlk8lRdy0tr3T4ZmaN+0xdNntKh9l144ypMSOEduqTHb+znSJcmZGtOxnIixbBEYNhJ71XLHe1RQWLEGFbvZAf+Dm0Si9bNCQSYPdLlx/F5aos+XtCDycEp+zTzAGltLOd2/NZ0aVXi9iu9+9TMjTcOrJM0hzdMKpp3iG5iCpwPF0wgyOEUuI5iqKwktP50LoCcv2conTk/A689tZ9yfvAx44DvCvszBB5NbSjxWJWgj7lHbs5lQjnfHd/UeM8hc3p+R00fSJlE9KYOmCizpZ1KEXbTKddsLuhOHPStcqggmmwCsggBi++s1jPaK/EKJHaz+A2e03s2i724JKzmnOysSa8FLEvqY1o8kMqfnfINAO/l6hfk/c7EkTzJ4S8t3mBCe19An9DZR1ejGDew6Tf94KUCYYjZB9UG9H6IViZWl8pAH7GHB9rkWdOxxsgRdUbiESv3B/SFSDoXH3Djmcqo0simAz9F9Q49xhR3SNXi5NumjzBPSPb7CW+kVulVUw+pOJZiEq97Jf5XVOtjGZjnASuFgaw51YxvLF6Es95lRhqAxIAiugkfmTDdMUKSJGrJFYPIACJpmX/T2Xmtz4DeVbFTA8KNKySB6HCV/W2jKYtLq/RCxR3cHLutoNzO6m0BaNyv8C+QQu5i9+J7kIcJEsuWlhpMO8a3cH/pSJI1fNXC6gnecQFESqt7P+VxGNKxY1cjV905EMtoxzU8xLqr9jKEeNY3FHDhze87UTKFPmO3YdN16KUhnGCPoWHoIRkwx0VR7Eea1VxVb5c/EGoRag/l93o6I0GffLWfdq3goOYhaSLQFTT4xjT/lPilxkMI+i3SxUj2fJ9W+xeKVrsJmr02s9wzp6sNlT3IcibMZyWc1Ygun+zC+jtBCsraxQnib89rH4axEEtN7pRMEEK0uxz17gzFG7t4TBPXUfDfAsw2RLsbT1zNFuHHBgWn/XUC2GTMeMolhyQPVRLLXMDMP9WTteycINrvvswct33ssmgIN2Ytxmagu3pFpKPMcm6bHr3USkmDyYBwfZ0eYpyk7mwc1YWY5JI2BbEWVvM5gK4gVJCrMGBRwhvtKQv64t0piUBvmAd9IezTDlc37JiuAHX2GrEI0x1E6ldcKKKdzPj7wF5PBlShsIGSMPJ7+hdH3GP/mJZdPKWbY4VOTrhGGZhizfC+KY7NB8I7vQxJMQuELUaX34+eeuVvrHpML/+h0+j/UO8UdsR+Qn+2AcEBQLuM4sb2pdngYbfHlBc1cNn4WhbgJWFoo4B1AoUJ337wzoSTVyNdW7sfA7AYbCZYSvxHlGNRBqkpBxHmiQQ1IWQUdmIYY6da6DmNdBJEztSbRGnaHnPQol1+omYvV15snxckIY2bL8O2jmaKegdeZyfMpr5U57OfYt1Vdl4H6a1JOcnPM3Mb+pNXpFmsEu+oyi5jhvC+OiuywjJ5UVN9vq1dPk9U4+QcnSPqz92uwoM/yM4JN7LyMKepX51MyAHn5+mtW0K6nRgSXCerB5mBeAqVtkRkgkceRjHoYx6o24JBNgAghzRyltzk3s4vwUNKnj1YmFBFjtAocHK5RqpR8UFrmSrQJKtY0SuhjAThAJig+yRtOAxdqTcmMDNdGCA2lBiU89NAG/YlSZCYGcLTvSKcdO/sL/hgTt1kAEAKEPsvJ5e4KLvGcCWbwJTTFX0r5L3R8i9fxp5YDr2VW3WTXYECVTXFkR1McKgz/XZhK3yYCTTQD2Y0dgoLnRZcd1tQsbUTydNOOCs2+jQMyvtxh1LrYvvF7MIOEtxyLxHhZVoY2StF4hIzww92FpNjDACxcSWfBlYvvWg2SsA4t2wfR/MiDkb//5E6tc8RzVQ+CgycK0A7PsIy6sQEFyryoWhaLuM6D+DChouCQodpASChdXQPWMBNsDGZSHbV895fIuEbIq6y7EdDET/J54Dqb5q7MKE2tlztiXmwMGVephnur+bGUR7PVtznXEOxbnktSMFhBAhYmJfvZJbcuP0epuLRIC0JNLPdQ5FKBbaInE5K+WwZdgMYEPorw75k5MW/2z6fco5l1zeXmRmG47Mk4EawxnrSZECGmitc+/tdouz62SjUNSRSNUTC6rX1LRRLRfR7uJOCRzMWZvKMqxmMGbfQDL0pi/CrhfYofUEcoNQ66L4hRgyyJ+M7aqRJ3YJJinJrFJ3CHBq3o6Mh0AXqLQwUItcAI7WVgXr52bq7x8joolS6qYGimGPI9qAB4vUs7QeA84X6u+esXqBbzyP2w4AekGZfQcFcOHTk3sA2teEqqbl1TAX46QAZr1jXKI1hXLpm8yHL7WfnHpJ6lRJek2xDf8pwd6+HOxC++iAY2HTN5e10vXuElh+vYYA4qzDJOX3LKDPgNHq/G+0RTs+nmygtODchP/tG5MHyxt7FIWk74ca9o9k5v20kDCE7MSBfHX5A7TDMkXLw7vJo+u56Z90qWcvRh1cUJpcROlhwCdU2UFgvd7iXK3nkk38fd3OWqprTZct7NHCD48jbuJBoYbi33YxFybBQbBcWXHi4oBd9aKus/3U3wjzvSed/prdcvVKG6zjxutBtljg1tJf3vfXusS7XTiI/mbh76t33ffPO81rTP0vimvP/iiEFkB5g+PwVpX4itV3Py5b9Hs4TSn6qXQ0tBq7mSAUZRo1JVKEhP1YsXEXf9PkDAlXtOMMDBt9FOHUw8b/+dtm+Hqk8vv3s7EmubLLl3r036hGL+uUDLJ0egL4w9Q09Uow23O8FwYNEDAotF1ra6CAXncpTPY1aMD+elz4dD+mV+nf9wWe4zYx3YyP2p6v0+WdFvmnz7z8t1NP+Yd8i/Bm/TEVR2IkaTpYkJTAwnQMA5uHOLNy9shkn7HUhwx8T7UEra01KYbWZ3UD/XyVMdPjb2C1GErNGIEjGDUAkOocrKHJ6zIrrtYvOuUBjrmyl7eTnTDLzZnr2Q7WHGLJ8bsbLL+4tmZlXQB84jIJRI9T12exDsrrJDgUGQtsRV6kx7v6PfPc8Lm0zBrdkzELo1CYfId0F+YxECsOX7Gm5BOYNPgraQso+oDxFC5811p2p47QLR3cC/HPfILuBZr22cRU7AT9fa4XcMMulY+lHKILApwtnqts2RjMPZIMiEZqt7Al75a+onKQRWiCkVuLosgliN8eas5hYCIwfgRPRxxK50RDAGCz8+qz3hwAy1S2zhBBi+bGY9x3eU6mGVW/o8X/LFunb5V0q7JKD9Ipoo6sZD1V7wxEP+WEtYZyfyLyjNasQu3fyIYaH0cMLAaSQlN23xNuExRtHvTiYIr2Di+OFnm0devuT2zhEIjWHqQDPyELzYL6K84fnzxDN+RKhAFqReN9OayOrfPmT+lCA5IRK9xGUAfss54wd2m0oefv270jlzsCgoQrO7qfmlI6XD/NgGTIybC+xxjB4eizHO0sL7/yKADD+JTTGUtOmprWqqL6o9OTzB5fpJGjz5IaewSF7zE5Q1Tt+z/TxOB969Y/VTIhQDakipcguD8Fu0W9almaloJtsbLjJyh4irSvhTArr6x2Q2IV9RAohQApRgMzadfAC9g+8ifEyPPKYcWAO+/hqylE39TjOYF8Xm9h5IIiWzKckicdHUB6H1ylgGONURnTxp+93Hgs79EUalYW+ly2euE32txS8nBsMP7loQx4tWKlog/KAC538mxtD7TLqmGeu9b6TizUR1vk6w6G8OqfOifZPXlveoKvZ8JQKpbOYHYyi/t4p26KFBcdbzC29Ot+ACrNymIyTzoS4vC5aD36SOnQF/zlNVjqT2DV/6GVWLqxyyyxdgQPohDFHTr/jJPaMWjUc5+ksEeM948BVJA+KiXpb7ytCVwjJ7RcdSVvbd+rKoidJDz5gkzObt7KFKv/BF0enU/2Lou5eEqCgUkmKfXWnXAI7upt/7TtBekRZEnZcODwYfiemyHgnT8SrO8Btr0+NmricX4LuM4u3D2H7vLKRGJL2mRWygWc97NaXQljaqYUkXOM8OO4ZVYyQfNQv4vFLBgyHdSB2wNI+qQ3RUnmD0gQz+amkyOszdILZpnbYKkWFmj/YINpxTMHsccH3RiGNhtEjlil7ws0Ics/ZD56AVfQBwRm8vJP//dqdal+Akkrr8Aej78zgfFAzv5IX90Zmh4MRozlno5BwDjDfdo+SQP3AXwPGRb3G4u2mHP9LSNRDJksb2PLdFC2RNvggpipttarOe1ZHETelyQSU0jyOMXjNv9dGfGwP3t55b09g0LR4qIuJVwwAi3p7yG31Fl32SmjItV+zOf8IoaCrbJWNkjui3T6RpSJXkFD+Oo4S7Dkczy5hVnX8jljgM9jnQ2M3uPY9akL/GH7/txjkoJih7gY2z+R/MRFOQ/WThfaDTgloruYTLwoMFde3iwTJ4u1oiy/Ud9BA4X7QexV0WNpOO3FPOU/VvXmqQO+9JW/Qa4dGfPzmGzP7V4RSy4Fp05VUXe3ExV+xokFi80Lx0XDKXyuxDIwFSsGp5gF9nGF8diV36fGfLIvaQTVJWf6EpYnbsZyT/D08LyN06DnciSVggmzteoNqWEv14WITBi1aWvc1No9LwUZ0YhmvzfOHENBA5WlMWa8c33aZu5hNyNWRalpgkDjFbkUaR5NvobFmNnIbSdeJMjX735Xzs2Kl6hEsqfu6QEPq5ZFKZVMvtnj3bb/FEnGr6eLgaW+UkTPrh3Gonjt4iiqBX62ZjaRLJeBlokYfgi1poIw1yTtAtCeTXDXBDSvkTHeWr3nHeGlsBfaQ/jogJDtSmSBaxkaJswc2WgAxd4oh97MQPqxMDpWFgwf8yfwTXz31jh6OWASYCq9mL7n0qq2CQChw8l/rixZrzys9lM7QCAtLkaREj6K7VRMgQdTL/DGeC553s1DpO1veX9EboLhNZHPrlX00FEj+3qD+b34xgXNCl3MgVu7KBmITzhtH2wWJr1j+zW074aW8Zzqi9hl+bmiOlzUTvFMNXGF/1+sunXz3n9R9d5u2zSQlxt7q8Az8r16NYu1E1UcGD186TgW5ySb1RgU0CHtIGtWH3BRpfA7JMrxdKMJuuF0DWQ7UZsTVWfwDuZrZPfba74Dj22Ys6WllROORlLcU2e9lg+ZMf1zBG2QyorjDLGXRKvR4sO129a/MfpMQ1cX4ENpbfUeLkg5mJaeSwkcR6MQnC8p4foMJnss4OH0m27wjjUlol3KbB1i4zMDY20fUiFrAO6KTFeAqFuqJXulfGX8i3bB/cyrKKL+qAKd394FI9nDUfkcXU3xb29CXSTGtSJcl+wkSauxOLQMjLAImQFBSPyiOCdgcux9wG7AQm7Yo+G2bQOqP1/xtrpwrlAh8RlXghzDX/U3x8CiSXQ2+/WLsD8XMR6SMqoYtUqeSIuIsWXB173H8e512H85FiMe2o/1/sKDM/aIx+IrWLz9iI8UES1l7lgAgIl/gz6jk1ly3Vl7BpEIDYAPWBpVclxMB/YYOfa/W4sIfbzdyWFau+juGp2NF0Na+jHoGnVl97DN/ojOy8OxNpBRgYnLUi4BXe1JLI2z33fP+3mzAMMf1YLG2JbUOE1TMd5qK5SzPXYnea4Uu2ki4D83CxLnoi7P/ug7SmX82tfvLahEAm7ffdgqDkDBYbQFUlmHj/wcliojnh/HWu/q0vLBcGuv5GHRnDz+NYGlPM+7vOeyhrCR1QhHquKWasd3pil9eKprRFpIFfNoRD3k9waC2KOp3Xmj/rX0I57KDlYQgaBgViXkkkvwiizdmyFT1EJUDvRs+RlbfjthwQYBIbLcKKv3xdUEEPyD0qefgCsfTPBAVpw9PKMJoYbMd7qFtDfdmFI3KUwNgM/OomfFd7S6wIk3Bv0jFX0T3AC+leNcOHOSmfRrW04ZXqFZOb3lzLT8sR8eiy0WuVUOeiN99KBKZe8Pb/Hcxv+gPt1a6VbpKW4KnTL5shg3ATh4GxW/PjcIGM7+76+yYNk+PsrqLikVx2xMjQR9rHfYjHgwB4AZY4L6yjQmCvbx+1piNyjhDNDkxcY0rIR5X6469mt1s75Bi2w/oCKfjMJpI6uNq8WOUev3n7fUlFJpE6HzwnajvoaPUqcGQ06KwEtgRvV7sZJQwxCO0HFWDgtSqDVvXzvVwFwlZwFyiLK7zIHYTEQl8GVefDGrzvsRSO082UY/C+7TbfrNv2UylhTDU4hRA+WTY3FUQrrxGBlS1kS9XbkpxdxbMF601BOvWIQ4Nw3HS7O5HHROTaOw+nrALYp93iKf4ylXEchkOysmZe63gAdt+BKkTztZ/xM787lnfmtXwA+3gbl3aU1URy8tbLcM/Ydyou3VWXGXTSkRGgDp2G7HSmw1jguJn4fIjdCCWANPwZVVmiobztcNh2MV/jdmuj6VdqzidBjeb11JOW9RJXeT2LdGg+KyE7MtfpYP7agyhNJ9Kk8NRJmKfN/Yqlv0MUlebhiAXo9gukJwxRCfA38CChabC+EbpL87Rx3Qw+eRTEKOxThCe2Pt4+67Q2szcAyTdhptNjo2gpzPGESK5y3HL7YjF+cFaeP1VXMjPQ3v0JfxqFGJHIPlbyb2qv7yq6I+vQ0nlhOiGBhnNtP2b8eFsvZADG1ilZMUXPMXt3MNq6SiDbm5W3TQqUieCyeoHSBh87i7wZu2agDHnuZku176+eW4vp8N3Y4zgKVlZ/EEOryTuvQHKEjhlgZK+/va8Az7xgNukrlCS10AGCsHj9SgRjUQ3NqaG2yEo2dUdIAqoHZHdsUaA+tFr+qQdfOWtHOGpJf8B/uq8fYu99d7YFRVAXssTSUFiLjUdUXUHUV2w3LVSDyUwyloE97Ojjr1s5roCbK/jRDq2rFPO9SdfaXFY/EHQdq+KCFnE8SZT0unRB+CmnkQW9sKaU8VyABMqpgnRsS7xZwC1GZwsbWo9324Qu1jD0LQ7stJx6ZVuBTDm9QZGgs2HtRLL9eTbjtK63CZBG5CGuPYlpT84eM2T51qqAweP8zoENM3bX7NQ0G07mBhljZfYJF9Yye2IaO4mTB/NUyErjb/f+z00QzVfWohXFwLj6Vo+dEDVXFdfLMSDFyd9lXWFmPwpvVFS6T6/6qY/khIpPgTVtatYH3qzI8C8zp8RAdjdETvAt7YGG61L0Lo4a++cG4sH2J2bnfQbFlQHLOiKZ2GrQBJanASr2+XNQtAYjxSEXBWcOV1d4YXlYdlhxIAHddQBSV+Zvv0R2svAPQp6nn2cWRh9SqzMq0mdM9kcSb5419wqHm+1YrR3rT5UpNzKQQptCjm8sRgHwB1TAFc4aWXxkc4gRsisw+HEqx0QJsBsGEHZTGQq1I6Im4zwak7qt4zxTKw3yyQ/08vooDTQbMOYWe4L3G+t9yhTjtZvz53c5r2foMI4+LKm6R924YIivizZw5z3c896PBmeWYev7D6TVgbu7ga2xO7Yp1QLkFXgDdWOoRhTnUagTzX5OX360kCpUaUnXWCL9yNIKATIg3XDd0KmOugtEyZaTZKqCP/P4ks8ai/cLgUHZdmlT6+b1le0LkEyjc6xeOaR6w8SqZ0zC6HfNEiw/xUAxlbIiXpi9jMIa4+qUz/7uSusfhgsd7qc1GTMhaSHmOQOxdph7zbLA1Prh+QPWXef/lui9BVaREj0zNkZHekGW9XVAO8NQeLkLji4rlNVXDriAsfUI8F1Q90NbwrZa20YodtnADTb+IcQz1CNQOzpDE8ra7PPTncQ58BLm4IivpLFavTtxa3RkmQ3tyTNPWnSyxPWsXdolCae6PbOMnePAAiGEQR6bR6KMuZ2EkeOU955j0oyzk7Va+DUoTggLABMkS8pPFiENzOsFT5zkL/hOGoq98WloxXs07PbXZZnnvl+/auLiq/s41ymOf5mOHZGXF60A+AtMp/4LyzA26N6lLPFA3lqRF1JB3Ju4E7XgHbhtbdq+zLYIRMxz/eLCJA+eW55raPO2j2+ryoGs4e3xiwgOkTUgB3FezaoeQ1GTs/zzFf5r+AbWd8n256mism5g6cryG241k5XCWdIyvJiYUtjN1wm52snOOQfkd4EeeMPidhY0pEecgi2UeV8VyK54Y++iI/69qqLVay22tgro4tUC0x66NcGk9Pem+bn3D6IcGEB/byLY1IbeQIn9YqAYWOR1vIsPlvfL8z0x9+hOUL+dSR6kLcT0F8sew4IB9d3vAG6cy7sR3I4+E5SIb53eTOfS6UW3zPojTjAgJh5g/dVx/PDSfhO8zLrEmkCz1e+L7w+XVeDJHmHdiwWthuUGCHJfII2kGvBftD5X8yobogDHiZKEQUoereqQvYnvXsPd21hHlaeR0jjyjTexLLWUyoSsUFKJJ/mi0Xg/FOrck95Pz7LfwEXHUxlzM8nHw2Ost2CFxhq9d+fv65j5RgjSt8CxkyLmlz50JuhC/HNdgMQGvtHQqJqcl/sZVDt+bSCrkmgCve6MNWVIWlEMhvoFgi4m5jJolYQequOuehcOs3Km0Sk3iPIr9L56defU1tiAGHCZ5JlDgQ4J81nkkK73iADcID4w6Y3Z+ZGDZp2SP8FRaOkVsnna+6ZsgSf2FshlzXgbaHfN9sjAqaqQ0ptvrj+cYHleCQwU4DlGngUi2sND5Ih8QAhJuOaGV4r0epYmI0lRZtnKngtRVyDlQW0Q2d4BPOWZjjQfimV1BYYLGd67J+EP9abES4FQhqjAUvytyD6Lm9HsznD8raayI/0W+kY2oBvgUXDnKmymJvZZYWf4SLQoJraytoYU145Tl1P1sIiv+aXAYv8UxsKWf28aflFiLAqeKb3Bijay+GPDj1u7+tknX7aNdGp0hFPrg67hbAHmmwktEodsIHB60c9oILrWUtzZ3cBGTJG0X4VkcHzU0u6TUztwsRbUei8KzqiHidTc/+xmnNOCc4IRIR9BbavdzskaDVfWv29gsr4nprGKHq/LhyRu+X8ynHINCYmFQAiD8RwamUz5dPyHT4fV6OR3j3lqT+HeqNnv9+S6TZzihOP4RAXuOfs/2sV58LK4Z6KDwSztAst1uehLyPgeX6ahQc0crvD1q1ijI5vRZZtwoylSZHkgkaR1g7lLZ/XxzgkEPpb+Loua2DqlFDOYdCZk/Nz6VqTVk5xhDHLiRoyw26ol/z8FeED/zUGbYBD8wAV1phQivkXhqgf3SeTZqF1g1PB5Y/1i44DWbrY9xUHGCAO/AM4pC+3Z3rMxUqGNMan6EMUtrtNQo7VlvXTLZWdFYTAFx8gA8HvDQO8YU9c13OANcUzqX8mNvtQ5h6ytSp3hl39sqK1Br38Nv8gerfOs8sUs7NgZCxyCYTo5lfoQ3KGeFuaYKZxhjGdy8UKe9pgwApd93BUsNMg27fzGZ98L390tdbAB0MLEkTPCKAN5wjEPp8m6PvNaQtf3AxaJqiVYkrjL0wDEH+0qkhJKdUc1Sb/erEXkl1pKJrQSefL2CZ15BeFJYh8G+hE+RqkYQ1nIMxBpZpsAYjd97cWMOL0o48ITlK3ce4q/BuV55r75dgTA+HH7Z6Xa0YaQ8AcvIGYcZ2hqYfeIUavMMQXp801izYzckixq26bAh76eWcURp7Ih6RGedIJU3w1PflTZxsTghkFHijEHzA0ZfXetw7U5/n2y2FXUCCsRXbPcykoDs3h7SwqGnAveKC49Uf9pGvCx3qRCzVLAgc6iugiBbDnS8/aaCmIpA4csPW/jzcf0lTzhWs1odG3IvrTdcBh63W6qkgCkUIwNcUl3WEMdv9LLUQm75d6O7l51dROdkCuC+hgBEnBVsjeMb/IfpsKAQfgyOC6y1ZQz+FFeeSMaU8wmrXTowuDWZnQnqZnwnT1z0xkI5jCdA0cWUquxf1kJ486mWKrxZmw0u/+ZZ8/w7JfSjRkkmWS/Z32vR3kVn52LkAtkWHkJxRjvJ7pYAShHoWm5CSEVDyJI6qOcNvTFp5CQzgk9h6Ua0S0fIbP8wrbN28ks+5Hro4pTsXvJY8AF7hCEFBD25yIwq0auUw2ep63cjkpDPVH3LN/W+VtpQ558MwLDmXblE5BH6Rzl4ZCLhxqYIYfeDylXNHif+2UUGQ346dOecpvMPO22GVAU0w60erGhnC34Dk+fLlbGtvLUVP2gTbvWeHWhKACzHV8QBjmHLIHXWcF3tZ8kNyWTUoqeAQ4HmS4Jbf6Z711TLW1Uv+kNDsmggZowtFcG50nq2Y0IHBc4uzs3uVU6vy2HmkNX4Qx6rVBOQysLtAa/H7n3jIujbTnTbo3PeiuaPoeuOKGPWux1QX3rEzUxaJkYhl3osWfoYu8QQi2OUbl2duSKc6P/slyvLqwy8NUiYR31Gjoqgk4MbUkKdKUww6YQZj8IZvQWmKlOwSo3gmNP0eLsM2/KwQij9n1B5xlZTBZ8gxZZRO/mCuamSZAB8GjyMAcC7FqpojoboJn4HUgnwi3R63RVTEC9Mnbl63vVa0pe3hoG6s0QdO5WTv/KfvfujFZY0hiGol+wNtJVFTna3+gv2NvgzfGVLd1IDT2Hn8eLeEWUfbMvaEAJK2O+S7QmseFtrZo0rKVA0/Re2FH7p6PuTMb0nRxKiZCa89y6MCSlborUs8dPEO24j8psu/ybTe1DPfFNx+25xmwuV3bwvOjzZ5i1wrX3sbRAMLAPl0Jo1RSHRWVBOf43MsiUzhmWY5QrRHFaiOqmlNaL1QbNwh6qW8V9bp+BKDyYWl7ar0+6EnmNYeuYaHTCZ+ehBaKy0x+5el/CqrDPXdA6J/xgrAhljt/jwSetoituU/hoaMbJA1amJDFnXQv/sc4d/vSkyOqOqCZ7hWxS0dxribzzyTt7bIkY2tY7i95SR4qYPICvGQh+rKHxUDsHLVVvLxPWz4rm2JgyX5dUhy9gbxhNIyZnnoVINXD8mSSE5bxnz3LId5S64zDTo22aS4dqqrR75RiqjmiG39iZt3hKdLttX3/DIB8gHJfNGIDTmcjG/XEa5i53lhLP5uJPF4MTsu4L8mzF6b1zyUU5XdsWwpw+w0jyO3ij3Dx4lf2PGe7Vhl6nWtDJytF8vgbcvDbY3tA6P3BfoZsSOzLwYsct5bRaDqaX2nCBP+BaukWB4soO2BvJlTTb04J9aV/TKa0Ws2KDjHs3lEKGWDslnLOciQwa9yKb/uxe6UrasO8UXo8OIK3oZ8UMezRIFuxyNOFMKXp611qxO6iQiXQAInxGyiJ+/6XZh/YqVoynMG9k5PmzMw==
Variant 5
DifficultyLevel
622
Question
Here is a plan of Jonathon's vegetable garden area.
The total area of the seedlings is 12 m2.
What is the total area of the woodchips in Jonathon's vegetable garden area?
Worked Solution
24 seedlings = 12 m2
∴ 1 grid square = 0.5 m2
|
|
Total light tile area |
= [(12 × 5) − 24] grid rectangles |
|
= 36 × 0.5 |
|
= 18 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Here is a plan of Jonathon's vegetable garden area.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_20303_v5.svg 500 indent vpad
The total area of the seedlings is 12 m$^2$.
What is the total area of the woodchips in Jonathon's vegetable garden area? |
workedSolution | 24 seedlings = 12 m$^2$
$\therefore$ 1 grid square = 0.5 m$^2$
| | |
| --------------------- | -------------------------------------------- |
| Total light tile area | = [(12 $\times$ 5) $-$ 24] grid rectangles |
| | = 36 $\times$ 0.5 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers