Algebra, NAP_30127
U2FsdGVkX18CX3nR+V2owbzl6BvrXUO2zJHB9/uaiZ0olKQlcJl57gPerLCXIZp+U6PkNfyDLd6WFPaeO7JXhAGpqhVsGBVI4NdmTEYxRUtXrHlFpd0J+V1HuQvOViaPW65Pzvt4xCRm3v30zYthCsrIVSS0LEJDl13kGF13wzmAR8GCQIKufb0bHZfa8JvBsOeFQ9W5WXHzb36xkTdypr4r2wAuB1Akw2yFvmUHimLA3ToTp3ppu2OKf6BJOacCyh0zH1JmC3PzKsbGgpGoHb4+U8BYfe6OGed+DguTZO6n+1KyzgV9wcVE4KY2eC5lBYMFq+s3qqUUXyo++3lIu9kzyntsW6kxEPhPcdA9zNMs6THJqHZrFCMtd/Cu3Z32AvNi+Ovlz9NvP14oSgAZpQ7HM4EPpel8hPaqLm9bi1MCd9FJuPMivkmhEGlNLtykmvM0Gm9vtTGH7LDrr7XnHk3I+w435aIk0vmceRAmqbJY93ea0ohKUJxpjUvqzeP5mjWpBwQnpJLyVngfs7Wm1e86FcWmFtINqlJGFSFI09ydD8hc5v+seTolJrY6R8MgFFJiCMOZsoyIx/pSYozhpTJZd4LIvxOF7gmN4QYNaFdzCI9o1uLMtVFm703Ns22No4xQUigj1vRxdjup4tc0fiKmHxp7/KCv09fZLGHkxxBc/As8KRJhCwKodLnwpCVi1wEPHH8QRAIYgLY8JqYrOMIwddXTHvgry1PZgEy0lt0hwelm/NbmkT+q4BraUq5g9X9DNwOARg2ZFe0M2lgEVdobszCd1xuLnL+DBRVMCFZAxNN35rvpSqm5AG06F2kKV1ex/ZJR7HzKbwLyjLn5T1cZzWhVnE1Iz6BcjD6xBhQe61rBDDXsPX/yUEmlUiC4EisYLbaGdrCVKV0A7BgGVMbH+kD/+uOT8jgLMDpyJHTHW4YxCYTXU2TVQGvVfTpez9XBweVgIdna4oJnmVUwRwqvTUzrDT0I7KrmGkvBZOZXh58AqpiFjWQjp6dBdahYEm3vP8mW7pgSxD9I1gwurvgR0ahe3c04bOuOdNY+3pceg5mudOrz5mejvgp66A9sDenXldshHms3g4zW8cUCsEnD5DO3/aVBtCiwdi1zY+2GK4QbuNHq1FksUBFy/kEtlPVBAEAJaZx4Zsr8jE06N/aN6FuoRVCMonubI2DMYkb3QQ1PXFhT9pbKfpadTss8Hn0XA0CMDmdjvguqJIXhwDauAJH8cFL21wuHa41ePa1heNfGocHUwQTgWSJp6aiRPxN3sadkhKx7NykWkXwBJbavGLJz0CN8T/7xkIJvDsCojfPdhnhor2btkdLobt/8pSGV4Qggfd4HZNrFMjs7Q9qAapevdPjJ9FhdFIWJfhd6AuPGXsrayl8DTxWHfdu65bX/5D5nyexV9gDUR5+DfGIsYAUm39/I1ZdIQ/t0fnbCNNoFzQ+ZzL0mvagLU6dl4nkwK5eSDTsluYmq3M6wNpi3JIVNLq21N1FkSBhJ2In8FinqP1RANYRi1gco3yUK+vU1LQb5trDwKRfhhbAKcb/3clMYf59kmWVEYGYhsW6KIwyhy4NiFdfivHplyIcZRg1yd7gZ6yPbkGky8ceGB0OGI03kJFxX02rczendTrHo+uNxmUJd8YQTDNdm3cYrZ9io6vew4s/Ly9YFZZrVnIH2AxKmkpLyyFhJqihWb9Ub+iG3ikI9Bt+ezo7UlF935yz+k/JIY/vo/oZal/aQa+k/yqCF7bR4Gg9dypJzLtL22qU462Tpx9Pz0Oe6g4MyZO6iswbKfvPQQY3dgVhd4hUXhh1rcugrTO0Pftt6CAQ8qfOkRlIUBwcuzY6yvMxWRWnZT2Jd/gk0Iv0uDYiLts6sJfHykdVon8PbvUG61qTLWeu6u0Slp4RnxUMG/aqsVkac/xvzXKcX0/O8cRKZ3VJafLb6f3eH2NCxrA3MlkrNw8vALMIFEUSBnowlToOdB4GscuLZvAg3yUQcBtDHH0gqWKla+C3g80Ww3uVp3EmzRpp7vMIcsK+OosCmUny6gujfrtFMNHIMvcoHTDkEaCYh6TVuaTlSQ4inscrUZfVgbEaq9NWSE1d0UWJy6h9EEtmmct4cA+ZwJTuiJq/xezyMUPLMUryo84yiLFZ/mnDqZOplU+P2J/8M5fYbbFyd5FrRmu5nreLAOO0rj/tBLwI0ibpwenLa/T5H2G6rmFRJrDKbRiVO3GQ+9mDReaoaNp35RANLv8xTdviGHgTzKesRc2hH3/5E799xHAx1Gt39ujUCD1D5TLCbK0otJ66WGIoiXs3D+bT0M0PK9hF8XxgnJdmkaTVPbDiy+twBSDacmNxH8GM5Qs5VLhL7ks2C7E1GncZtsdFxfTz6DGUsGSnn86i3AiECw/ukBlEpsFQ+cginMSpV82z48HOqfkg15X8Q+7NQGbnhIO3VzWDSPKQRvrTq4zEaBoRDjBw4ZOrWT6b5gYbaG/TsJVfz8kn+mo6GN5CTcozMZAMRqfTcKIwaa2Vxaa4tV2hV0p6pvH+6Iz6CggDf/VNEBEYpU2KFqHGIuH25Db7/u+GQedJV3Au57Q+xgsy/bXQnxb89qojGUM/dSusV38YbZ9iS0dpCinF7U9NEBjQf2nVho5aE9vVcZN6ltPObeTwyOtuC6d/7OF+LkB1Z5AzX5Pi9IMk9mp6DfI8RZMJY7LL+MhouejYf0BD0CEbX1AmvxX1GGOPYQSDAWHR9Hlal0urtXuuOBK1oNGEvduYqm5098QFfEp7m7twdGOZWwpNmcSm5Cfvh1rbbwfjimeyFfHg1QV945v2b7XU8MAJFxpDlsGI5qLSaAKQhBKI4ATju6H7+A8/efcQyAXtYVEowi7mD0TrCx9QMv7pCqCUeXkpFmCK4wQPg5CWTowYTD24ABPO6edvCjKZBuJ+xn6S5Pho5nqsp27glnBusSgwsn5iHfc7ZFc5RUe4mR2ZSo1cfhjWD2Y8E9cQtwy3xuB35Ed0KIE8VBwclbaYXTenD8kfg0i9LfqvYB/2Y0x27OlemOkSrbzazV3sDycZGtmeT2ktcSwNNBwYytRHiOOmG+XMG1gbaz6SOBUye5vfZ2GlHsCFzML2CwCcescwiliXCoFh728d33TKFnC3YeSAiLUSdOLyHwqWOe9aY9ytNd0IX9p933493juPPB+rGFW8DNpYlxxytnoRgGGuj73Z78+1p4jxBWzdjlJRzQGoqtUw2gMKfBo6ydkGAry/gsv6pwKMoXOgN29u466E3iHUa0aV9lfjhD95WeMvv2gh9jz64qRDNhOJUUaJszULq7keETwa5F3ZWMSnbsii1acUNNnAMmIe0xXDUUzCwBfAbQhJ8V9fzQmvHQMZrNFBqWgjXiE23s4yyICf+PPM+DToM06gGJo6VVZq9nA/x4lpHJ8p7rgo6lDZTqRwDxi9IWnW2tK+9IbqtFW4V5VEIAr70Lg1Bi20tQIkyEZjbPNzrCF4t0+/PTIDjcpD2xRkKx/7g8eiYzpQfuM/a7ulRKbK8To95niDIMroPOYzOXEkDLZdA0P8RMsyht6sTQmmxGs/qJn6lQnn0TUBvD18YGDcSxM2hp4ROGde0mcarAWz6dHNGkughepveQAg28Qkd5h47F0sve+3z7jsOmc88D8luUR+Gjv07fuqAc3GbZagQHC4I9TO5Ru8hw8lyhHlBAJb1ucFDw4XBpzTDCBEf9eMHZeQC1jknKKD7BFLiAR6wBIahMiQbwOVhdhIdpUhVCI5RdALFI4Uq3hzr3mUmSWozIQ7Gp04Q0P+9wLuNEJIKJuzUVCLbDiR7bDPHaRT0TSxV0C2efY164yYwF5Y2A0IcTzy9tKwml5SG0oDwjx4rYLHHKqprdyZPPkNSxVryl0OfMcO9Pch8vr0Kc7F9Es/hlXd3bD1/qG5KOm/WqcQQZsKJIHotKqe8+vrKg9zfW2c527juNGOwvKxph/w4Bq5zuoM/l6POKORAmga5bJsWcABJCMYSIEzPV9v12OnDLt9VyxxmiKNJhVwCyYJZ2JAXtP4oDV5i2dhjUInl2ocjUVCTrLjOCUs97t02mFnVp0hM0/fzTF8+WOgAzVa0u81FSRat3jt46mYPETskmVy+XJ34bc7hLNDB+f7Cgm1ffPJlqvFB2wVRqG5VxxQMfEz24vvWzeEXYCSuHf4N7I/jR5gF5oznw5V+gEHfkm9iBpkfjSdMHfvv58cz9Abl6uiKOaq1tZDILmhr/ZqkdV3RLV6UIpc5Iwv8W5/XYDr7SO8TikKBVbbOgmnjS/66aLTmtU6yzATa6WRLr7wuHFk+fWy1MIu3xAWZW8A3zsFnmBIPM+wLq8eKc9UhbNU5jOEdqoriPf0fvKypqSNSOl2By5uXRod8hPyityjI/gYeqQ2zLAcuzeJMQbbQpFKifszd7ZdRS5kXmC4SMwoF4DC/3D/4TaCkqQbfWirbyFtoe7V7o2TCunLRpgw0Ph5BQwK/IKMBgNukbIxe4FWDGWCVXex3mSv7ZQ9MKM60E0Z+ZZWlrbJgM4CiCSht/vOXm5mcROA+Y48AiyRAMQnjo7372EUTP68kEZPCJ/BYTwitzlD7J9JwYOknM+svfvuGYJIS6qmIoy/o6/yvO5vz1EWHmkawD8s0sPsq1bg6kzlmxGRXaIhC+3BNcPmWoSRTrs1nfEZ+Ta5kMHr3tP9lhse9OlgGhq0/ei5K/wSeakxo5MBYpZXRq2AuG3xBBOIix5idQjHlC7bq920h8AUYWi3objj+GMvVaQSXJSOxLbflhOvi3ab/sRMIiXw8N1x/wGLXct3KvrNAf6+/DkDlLINMTcwv5nx0zh62/ea4/1Fp41uDbhG+/58E9DB4+b8Sc78ZW+PdJcqCpWM8kEhu80Ac3aX9tkETL8z4nyKIZIWX0gOsdsSR9DiVsZrj4urV4Dwe8MuxSvgS78rtLQHHXy4uDrMRa8f4ZdWIoEYz9eGH218ig0XApRdZSKWB2orHcP3/8kpOuH4++hf9wOb9oBFwmj/J54Aj7/wB0DzXZN90vYM/CjkcwPQDFzhX96kYnhYgr9aO0Zf1WmdZ7l6HbBdT/MOec0m8ghXluCJU8OVNg/6fgNh4cbXf55WifGVDNTQ1Ut56d+/vjp0UORmlDUTYEF0XH1PL5A1k3k9I9r4zBnwhj3uZtuM6jCtKIrk1Chztg+XHu8IKqvodX685ZXYGpSxiPEkdRr8rngZbKA4/IIwB3ZvknIUPbTl/dTEeDhB6HP/QI+cmFjw3k8tZdGw2lBYPWjbuLtn4E+2w7QKeWugrPsLjWAajDbTQ2EzXRcrO+UewQluOc7Ez8DJIQwRfNV6Yjkun67eF9nLj3zUzztPWpbmL4iuXQwf9tyokniER6L+aVJGn+/yVrI1HXWRjnfMo6kalY4XcyEAwh1YwS5Rl/GJ0mPZIjxqhG8Ispb4cMnG5D9ZmgLmeThkKKA0krw6EGRHp/8Sj+k0XF8UQOBQNcWvUoZudCEeI3Ex6tERQBKGHorqJTx1UfBEyere5CR6GHxNG8Ly49rYwWG2H2qlgPthGkznG
Variant 0
DifficultyLevel
503
Question
Pistol spent twice as much money as Boo.
If they spent a total of $210, how much did Pistol spend?
Worked Solution
Strategy 1
By trial and error of each option:
If Pistol spent $140, Boo spent $70
Total spent together = 140 + 70 = $210
Strategy 2
|
|
Let x |
= Amount Boo spent |
2x + x |
= 210 |
x |
= $70 |
∴ Pistol spent $140.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Pistol spent twice as much money as Boo.
If they spent a total of \$210, how much did Pistol spend? |
workedSolution | Strategy 1
By trial and error of each option:
If Pistol spent $140, Boo spent $70
Total spent together = 140 + 70 = $210
Strategy 2
| | |
| -----: | -------------------- |
| Let $\ \large x$ | \= Amount Boo spent |
| $2 \large x$ + $\large x$ | \= 210 |
| $\large x$ | \= \$70 |
$\therefore$ Pistol spent \$140. |
correctAnswer | |
Answers
U2FsdGVkX1+7osC7V/56cAZxyuhWFdXCWNl9XMPAK80hXV1C2oRTSpzFohpd33ItWIzqczQ0+YDIlOYZSY51ufIK80V+uZSw5Cfxj2s/zGzjOmy0FVbSFclOmECRlnRhqFb6OaWE7TpW027FDNj88tx6tz1I4XLRarqsACBa2xiyJXOKyvwtFfxMaIKXA2eSy7I8yetGNMS3cp8Hi8xh/czT1slWV+bIlY2P6899JlPSjJ1W/kVS5mmGPcI0unaZhtVl7eVVr+UCt27iu+2L8xsxKKou6L7nfIhAZfh9LCILgilZZXPEUKFcDKVeo3jcm3satUNL28XvS16K893FmlN2aS1Cws2yDo5CRLsBfoaUHvjpvEbNE62riqaee2I5hZ3WPQ31SDRIXwyP3l9GyEh7rue3kq27rFsObb8ldr1GBEZE+omu3eW+fRmBbW4QDCYr8V/XnBjk4TeSecuOFv+4UhJlKSsC8WX/hTjRUTK3YDajwO2Ox7ZC3swxhiusGpzctX+Wvz3i36FNiPW2wFZ0Lwl9kbgwdMQN3FWMsFyCt3oYSD3ywlmo0lHOK2uxiX2/HWfCmBqSDM/6xBgeNwtRmWwQgMCb296G4K9ICt/cQuZ0+dnBvhPTDdoalugkbiThs1xdCfflMT6eqnIatEBYnFi99zHv7JghS+XrLW/x0NWBtLFCBR+qEeMIMowDeY1jidKHGFdWyaP32NpHrzgfqm45M3wGHew0kuyvpqvXAT2YCWLYp1vrD32t40vFBE0sil7ycDRo5IvBVa4YO/69lqdPHNQuLLfP4YNKvqwfOqs4YoroMiaTgBVxkWJNgRRDFRlNEGhk9W1LsFzozw6aaKlSKaQYXQ6TFZwX2Rdw/jrRxqViTmTZBqvvKQ8Hhi+ZMXrFWT0pALv1RgROvvCLGEp4YGxK6fuVK76sW5eSVqj+kVGk7SYSgdckzgjPX3+USJAQHb6llCG83C+iJGa/as29H/ge/lirXKdIFzg9I4kozmBfHrSQlvS3MMhJAIDlKkUAm5unPqd7+d/nQpjQY1hMXey+1r9/+VdFsypmB6Ha11AaHK5L1wBroUTDIffSjTEySVVblWC23Q3aMyTGADca0fXydBWIDxH7OVhys+gvcfqUC9mMPsE2rqk0ugoehUKB46cmJ7yGM8T66f1fVX24p+o6/7243Swv9xwEYVjglDRihmRGG+ilRaD3hxpL2A6/wDboaqfFeuQzo6jgCXYiKhzpFbGg6a83P3hfMJdZtD8kp/kV24TlL0ZLowLX9ZzVJNF6uoX+mEuxqvT0yYIVnEtfozHXACvWjD62ScXQGVLzBmZFuPNj7lp7zyfqhq96J9JHPDsfxlVgogTJzooKJG+b2TxXGdkOXV2P1zRbD5mTE/lh35UXarIPoQ+XZxCIbOIuAyxWN6wRIsiFHBUmiJw9/ww3XZHULIXPuIJik0l9FxcvKAAIoTIHawQvilvWZXjIyX/CSEYwdbp/TbFcATHs/TgRznS2fqf7Fv5CHzGVomxhll9Yu8z7i1rx6TnwWryVAKxlb6OugVTN4cMB8LXZhtadLUE3eSaKoRGcceZIsW0lgmxOGnw34pUBvB0oUQ3WoUeZmRZ+DypQn8K0eE6Yp5mwk1jBYL0aKY6AkPPLPX4DRDC6iS0O1myCe/vUNB7G2dmwiEecv0fM7dQUZcVljXHKRZcZeAbV1kxcdfojbcxUwNtmhKhQVfXQrBdjddKiHdbS9izmyD9abdbnr/OkUqdIbx8+RxX+H1e5h6ozMZB2rdDpxct67C31405wURlwbALf14R73WcNwPUCKY/JCT3crDCMm+ouXnUDfycehljd9LTzSK45DvdXSn6GXstqvY15fDX3GZX0SgS0+48jDUZNKjjcMXoA4fAGTBH95nyqMbTW6bkrjuOiRsAIuF/bBJHyW1w9GLVEXxy4g1FG5JGBAEbt5VWjzs8fZDyX+3SNUGCBbjZzMMYx83JZv7qoOrHuvHBa71X+slf2zYgxgZA0I8b1IfXBaf58rMxjFjTCuxhXUBo05fUP7ofcKEsjy+40Lv644D9z81is+ZwrIk6aks6jJ1yotN2b4nuudVcOcTvRZoSCN2doc/YNXLGVdQdAmUYcU4YPIiie7Lfcf+f8JQWYxDhrInRMu4Lr1zdfHiaXAoR0wiRknYc5a1nfGVTpBDbloo7CZnmRjk19OttI0DRE6oIgoN2wCXwk9L/SsDU7YVEmuLdWrTGWweIjNaTz3SoTsNAITFp+gTRN44SEv1bjFy7J7vWJAHkuI07D3G+o8Tqiqqk/AnFVSkFK+Vpc23kRr1PO80015yacQq6B8fHU39Wx+gdrS+nhIWKqk9UvsAt5lxKeWvStZnxD5yWFncUgJcOuYWGVo6Jal+pNu9EEQUXsHkREdycot7Z4t1+O4daCjrJdJmjcLzFm/35pBsIVl2i2F6sE2cRQ2GpOTJtNiYao7i8ZUeS/iDN7zgLS8pm5a/4+FaDRztQU3sc74sxKvAK06ylDgpQ0Y1whAz53NvmENTrDKlzLluffVuax5Y3KZciP7ctGR3Dri0UZdK9+jLRr94XbIS0lH+ZZfTxHb43iTCuJsxuGPy/oRV6YQUfBfBGR5E27vpIPYeNEGRnMvcZTiDT9gV3nSXiphKPsySrkxw90gkGzmDv0jW4ZBGD5WZZuygObRtOwa1677fAx+0MHuXHJQ3Gwn1yARsiIYIdrS1GlGbD/U48dmifY3q4iI3xGWX30OiqhmZp5Ezw5ko/q/fV8TMRXNWMvSrcSPnly3IsdHTRd7z+CGmd9gpvdDj94Jf5eVDPlKTUerLtML906V8SKKIoTLdfbM6anut9X5P5dpsamikM8Sg8OlQdHpPvRaayolM9M8339BcD5/ahZaDezfC0oagO4AI3WC28JMOqjwXFNLcuPua80t+lNdc1yv+pUE5B9Q3q9EGTN4LLNoANr4JM9dd8F3kbJD2iS9YSk+wUtTO6OYH9NC3Wdx42TOprgJ73LxiHL6Ii4INj4Ik74bFm03jn+x3JFvM18hnry3siPILpp3yfsviA/b+b6nUH7Y/JHgBWd5KyC0eR0b1Gm/hfAVyhbyrtL8yGfqqwz97fIlIF3iSVa/dLNkuQrVy4QVo/f97gZIO1ovjdHtHjlztQ4xUlAqVbB3wwuLXDLNoZ3jgUK2TFn8tDtsllXSmbJEbUadf1pl+ETZQbS2kQGRxMmOSbIySKWdPcWPuiua5ACOq1ZVavHFUGUJ1y+y+WP6R5iSN7pMUVCX5QTDOO0TmwBbEUNACTbTSpACcAX8O8+eB4HSOqGU9WOPMX6auIwy+Xc7J4gpdCGUU77tpx8LrbKgPMvxhwTwcoy5wdsnGPNbnNeeJ27TbofgTo+c9nFiHSge11ys5xu8kGv1siQvYSUvAEi4udJcjpk8xoCHk2yo+UPqJFgIAf2uw89U11sWcBHJPJeyaVX0/nNQuiqhrgLnwwl6wqIv8cR9C/BNX4Puk2NXRCABaYxdvciC3L/V9nL/caAYgOM5cOE6W66OjyJ6cb1tnATDL8pC+wjDoIKlq2JfxhAm6o6xRqm96j8s3GIkkh2Rjn0LMD/pLiq9KgV7B0sAsLjfhi4/sVZ+byy/w6J9p/Tpp4dNX72CKSNlarlLMSaMoq0vmTFMS+9WnXnw43VssH3WCbyqqyX6Y1d22y2IEtspfxFteIZ5tS7QZHVb2fXP98xay/8RUnPRyZo5E5OXVva9PVcJQjdjNjlGWiER0oc8gckkOzj7u44I/AZgXr2I7cUE+Eu/Oogz9N9Fk6g5H9Pec7aKLNktUyFfenksj07YbBdKeObDOO4hf80ML+9KA1UHVKADE9/O0CmVz9UISdiRDcdH8qTHOLCDReVG5lhRJNp5kGnqy2rsF7HxkUhmXek7isR1ASxOlTADOr1vSPnkk54QuoWKnZWR5NcknN3wgZ8LSUmFi8aM0S2UNwIxRuSG+jzpbbAsO5cAUWyU1S3bcqd40GIX64tb1hNlXSPl1dwLy79/zv+WAyy/9V2WEUp4cdBNo4x6PVbJHWK37Ee+4w9kctvPZlWAprcMboFUUfYccibz22KBDuI3qQYvzaEFPTTrYT+0BxvTcmgarPTCWRS4ZsrCaviLw+Gp0aNkU9QpC8s9LM2ytvgDx0xgg98eWGQ38xVGrcsDM6snJnZrOFfng4olg/v53pGqBn0nFy1rvkr/Xp0ctiy51jww71/JStaSll+s3yKhMq8p2BIxTsXUaMN6gTtHMP30qmkbL0x5M+7hnhVJbimOi84k4Ppsu28Nu/bP+pKOPoiNZMviL0wbAvScp1LHjCnemMYDy94K6UtwAD4pDA/x/Ecy7RRcGVubhIqE+gfy0cLLT/1eTAZ6K4/cJLe33u5bQ+euN29wcHm4HGwjSl4991Vc9zJnN+VGZSV/vG+dlIymG+nHJQIL8WVRfTF2d59teG1aAom5q5Eid9PEW2vleBxLfhDBL4wILnY8fQYm8QnGWOld2fxrc3LnDBYb6IrtxHphrhH907HnBuqT40I6JcX2Tv8a9XDn7aDAyqqdTkb+30geqp2v2u2ph0eptwksE6rqSBk1gHaOZVJBywE6q8Rg+JLPt6wqE+9gxvZg9m++RWazx/voWI5V9svCjtJxqJi4mGHmXaoIz/N/714SrPwat+ooN5Bzc+II31uoTHBzV/BB/3WAAYE573znOYn+X9PCXfF5DLFEfVqGm+grL+VP2YjmHRgj68DptWKD5UvhVi0/ycs8tF+ieKvdstUrfaYg2KdtDKuQVYDwLNCDGAc5VxgPgVl/naeTYFp063yk27n3IKLIOk1nhyjONHqJ8rhMEiYg2RRBf8+5VDVrASFtud2pDQGPo/61LTC+13oOdptllHZ7R8HO9dQu9+0av0RY0zJjirjO9IsGtLBFK7UR7a+5bfK2sddWYQm0AkTmD6CCwbSnGVLOFeJE7yPGSYFp5n8xNS/i57D9LnLKqxeT6Vk8lP0wSjwYfMpexhSBrrXGblqgugO3TXI2+MusIFqeFnCFeOgm+TzXK4Wqjb5MXPD4ahoFiZwjdwLSA+tQB7WqcDbLlbwXVitKpt3VyrBIu7BaWt4uG2hH0R+O/uQFAdXTHPf64qOzkyq9941/2bQEpa+dAN4bXCZ5KeoGV10+/L8NOSP9hCJvn5dTzJAkAI/2LzOsD//v9sOTZU2F9eg/pDBJoF4yPAWo3Mv8whW16vmhaxHnia60uRRaXPjPuaoChEuZglckF3OHlDUgIDDp2esrlICxELhYJRe3HXvAP4a1FyO784VyFhZpuoY5WekEaGLUoK0vbf4yfjfHlzBJFw4DL6MAwF+ACoEVvKc3TISiVJLQRSFgwQcErQTafN/UI3lSC/EGFKCSUZJmTp3XY7KN6L76FsQU3OohMRBjYYcjIeEedw6ZQzBW3T1zSVXVqXfyHiQuDPWBrZG3cbHTdK2GdGqivyWG9RdfT1LrFxBFcUIn5XpbA4K2lcqt4Pig94cxdt/7TuQK54DMa3+siPTWeyKceWpLKX0atGkzI9cltLDs0cTKvvvddw7Yo4Xo3ZzqOaADE3mAwETWL2xDxefkfDnTR3hZgJKMJGqaBRh7dGR4aehb8MUXW8qzrtu8yfjbUd9hrPOfoa7z50RVG3HkvTmynSOHMj/30y/L88MsVxao6CHrzW5mAZ5sff5c6dKHTkj7eFA4Untqa+LrRsd3jZEIQjSrf6QWVtEygcoFePN2nDmvX+kB6oQrWyD5BpdFKy7F8A/4kNZRnszg0x3+xxQEF1esp8IESjMRO9WP2yaPtQLJ20niR1+ExOduebwWRRnT7/EhQAMkgQitJ3HH4e3csIQqDKvugW5DwiHSwJ1myhJsR5cpM6kqmddnZNej/wQcK1A7iX5oVKvhOoqVAlBGn6C/ZGWIRTaBi6ow8CYKDuRz+C4HDJI7alC8D1BBKUyqM/ALgE7ZnUdKk4luYTjUo67zsByrTcJJDLVXLiGwM1MDsObPXar93M0fVjk0/JbxCaYJWy2dP9a0nSVPme+4qfIjM7Pu+UQsj+n8mS1ivcyEEyRBkmIGBkyKtNDzBmilyB7toa1NSU4JQ8z4RKX5f+r3s7QFeeHmHmrmvX1aiHpwPCNsLIVwkW0r8x38v70LOJhSZ8xV4g7NYawxK1n0PJn3gTO7hWx5/vD2jt7dHMFSZXoOPpidh/kDULXxtkuTiPeL9+5wAnn7UjlTqiZcr3mQvxUHbsIBbZwqV5SPAIz97CTgQBQSc3P7HXekk3iJIFSfkKCOqMv1ieFyv9E7yks+81SrGAjZ/Hj3jtfDMs3rNHT8n3wxu503SUKW6nqVNEOUg1abDJFg8NuJzKFk/THCH4oN7PnupEtEe5m+sdZjhNmjkk2tHBLDZrb0+ekCOqDIvvGLPUkGlEJhNBhA/m1M5kiFWSSg0X/
Variant 1
DifficultyLevel
505
Question
Mike takes twice as many kilograms of apples to market as Rod.
If they take a total of 135 kilograms of apples to market, how many kilograms does Rod take?
Worked Solution
Strategy 1
By trial and error of each option:
If Mike has 90 kilograms, Rod has 45 kilograms
Total kilograms together = 90 + 45 = 135
Strategy 2
|
|
Let x |
= kilograms Rod has |
2x + x |
= 135 |
3x |
= 135 |
x |
= 45 |
∴ Rod has 45 kilograms of apples
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mike takes twice as many kilograms of apples to market as Rod.
If they take a total of 135 kilograms of apples to market, how many kilograms does Rod take? |
workedSolution | Strategy 1
By trial and error of each option:
If Mike has 90 kilograms, Rod has {{{correctAnswer}}} kilograms
Total kilograms together = 90 + {{{correctAnswer}}} = 135
Strategy 2
| | |
| -----: | -------------------- |
| Let $\ \large x$ | \= kilograms Rod has |
| $2 \large x$ + $\large x$ | \= 135 |
| $3 \large x$ | \= 135 |
| $\large x$ | \= {{{correctAnswer}}} |
$\therefore$ Rod has {{{correctAnswer}}} kilograms of apples |
correctAnswer | |
Answers
U2FsdGVkX18XljzjmM8iPtwykUW8Oek8yChWzlIYYWQZDBn7tONBLooXmHHby8HeHIHkTauM6tYk1BsbBdklgWIgp8UZseM2L3VykxZdbFrrXn+5Vko2FKWTkGbazsCMQ8UJaPihXn1m+99Gj4krPDf8Cs5WS2xsaes74NdwQQlcD6nfJj65uQcZdIWzTbtxE7UX91c1n1HiVqpSmm6GOgJipgHVVLKZeoxk1vNOh8FTDMBrYUoRE4XN30Xw8az+EQ9W1771EuIf7rCFXGw3hYlj5uyrKzI/OQVczrRC+6dasxtZ9PR4EIagbYutgc9O4UJQfxePJsB3A/4FrSGWu4XVhDpLpfRBHDjnuTw7SMI9waDnB5TCnyuoI8N/n1VtDjtsfRDeYlMBrY0mtJfdaSGsU8S/3JyIXNHmx5CZKPcH02CvCEjJdi7/9RjPdkqiWORIydXrsR2B8MnGQncmT1bVYZ2tmZwXcPRCF7RTX8qIXhhjPeS1Ss5hgonKANdVojnKOtXZ4GNyHyQPf+zH2Qq7w8qA7hHlGOn6DJD5uJxWCv+NTWclZ8S9Fw4PsJP5dR/2HzOPsJWq9wDVaxhcvDedNQoHF5hUYc0lT1iYxJqk54+gJqW2jcjTJNvpRLlkfDkXPDHlIWY+ZftxsC/a8XDfskZwokD2BA67zdBM6QMy+Jfh0YEu6gnTtMYH7eYj8KqzUuJvHs9LmSBoETbSVRr7yu80FEBcnapm2g5a3v6oOShKL+O5VHZT2CQFccYmZ3YPH+9PQRLIfBjw1pGP9Sf65jj/9TrrfA8kGn3585rTs52c2JE6ayk824Kp+6LpMrAOtCJKfrH0930kXiKAjVI1+s4eIrNi/f/dDvZRsmhm+K9oNtr4BNhYauUcsBX+GGPSYzOwsQPQfCFtExpeD32ORHtsOqMmNxbQB7O2Hqzf15cvJZvysdjpWGWAhW86OP8Q35p3ri57wXZNg00BRIIEdszM+/jdIV/4rnPxx94dOCAeMrNwr0h8wQBu2J7fWPU18f5GErMsdbOGDclGmLQKJmpyQM67+JnBZ7PBV4rS5oHZWBb6K3Y5iTvS/dn6Uhsj8NmJKnNtWlr1tbs4PG5kbpSz8oVwcyBamt/99eGuP1kB38iqcu0h1F9z0rsWxmL8W4SXXzqOlRTioVXVv5j2To+h6gc/nnLIee1aemtY9OGME27dmGSgNSk5zH9wWrK6Q57Sc8132NEI+T2juw/4LcBALMBro3bqL8kNSsJj+YgHlGPOcHnWnX33zbZHI2GIQvHJC1pIipfsADv9GkMaVTPqwoB3Ef/UquPD56etsGIoVLVZrLPFFB5LY+fJcYD8JV13N3ZLcDrV3AoL6wxgnMI6/VPWinuR2iS8pjKhl+1e7RgZPlaGFuFNvLV5qOjiBbAKbgdgrqQdmSanT5eIGIvTZsfx2lrHFIm8c30qMAjsojz8q89lTitBt9YMast15uK3HXO9FMZ2wTrF0Qypb4gVhewh8m3PEXDpKCZd3IsDAovuLJsak+6DXlvpic+9b7/DYY42z7hosK3L+4jjanuqbONdjGQyv1TU+3hYAQQoQjXY/otfrezBWLdDGBjCanTcjK4dadNK+4/to/GRXYPn3DeVMxlhSSt2Jy6+JdyQpm+vcZB+LDm62RRO+r0CcWCdKg0FlXg6R7EDSytWcQWtTUAHj7CquUhCtusbPzUDUMb4d+Icz0G/nXRJ3DvjcLKCllc1wIVYcYjao2CP3VF5nEEmYBrxq+r2sDvhzbciaNp2l9wYq54Q1mABqLerpHRfBOV0CYbaZ6PUZWfK2t6TlJ0OQFsR7CXH18qUJrNc40njXp1GkpxvqJ2dcddDn4AkgjRLKWr1M75ZG5MhyWs2w5dM4zBGnqVA6vVuQoc0jGEQrkB3IrIW7CCnquyUrBVfEBnA7uNwgYNvtpklMuxuGmNCSNV5obbL1IQ/Y4nU4ZpCIt6WyYbLNDrzvb/jv+H5YhaUZRmSozUPEdgmtW9ATCYSpZ2UMEuqs8nWjerrgM74HsNP40WPTCX/zxJQjQwKxry8+yk4s+0VJZJpSagz2JLjlS9sYOPxMQRY1O6O1Op34fDiMZLiQ5sPYBqnuXEYQHsR+dG0ZovCIR6htoSAyfHFgMRgR35x37XQZfGvXRwODQbAESx3S4irXK+Cx7bY2Vltoot5yjEit2/ArmdAtDjRsBE7y1gZ2es6dnclMj7K6lhEgt4m6aUwawsanioacKZLAYHSWTSDa+6D5QTKrCu/4tCM3Xz2mIBcz+bGL5gJxJao0vJas95TlqNSZCXpe49qrg+W9hi4pqYBzp6K9WCzim4ixa/RdUgesqs1EXkIq7zH/JPkwxHxY4PtTDuA9KYT7cbqzZ7HFGF2aBkSjglRM5SEUFI0UlKM2RozICB2OfJcdw1SpFdSbvR6lX6sEQ0UG03xotL6NQz0ANasMonrdW4GjBc0BsFLF878A48BR3yqn6MOYrDIN1xPlz8xE9Ux50R/32eJsuFP7fu3DwrWHUOQAHabDzgZjXRObhJ8ObDXFHJZ5TeRmG0cdF+VgZy4kMVEswtG2kxOVPeZ6bZ3cP9OUMwbr6gtWaTDUE1JzxkiXEF0of9Dcisdlr/biDiftvzuup/oDxcLKRlNKaBFt/IR1gGqJ0JmX0pcY+/uMvyE5LPsY5NEgj0/I7jln2/65hn+/S3R0U+dMEeiQUDK4tJwcOSvh0JGxYOAVIobEKHMbbUl/cfT1xZAngpy2kolxN/2GurxhhbA6ywVMAoR7KGdsgFYvnjFVqkPxLq8ebDsF7I4g+sFTFm7G7RvZDxD5Boh9SiM49VIHe1ApSwjqZNMgnDNVwmgdt6/XfI2iyC+XZaMXkZYuTvMp6+mGhvxOeE9b3xtBKnukOF5LOqY0JWdxK5jC5rTdAHtpEJwUhXgWZVuw21na2JcPjm7k+aVqnQn8vWNodg4xDt9LSVW/VMYeN/CLBNsqEIcqRQ8T5nuC/P/eEEMty1G5S6FRZzdT21YlvzmaKIw5mYFTB4XOgTItQJUGt8DXc5rW9UT/EZ2PIx8idce3UQmGsnNBP5k3CO6yvdchpAD7ZldhdA6a5GHYwkbyHaPn7DYBUzw8eAuGmviCFGI6haOcBtJudDViThcRlQ9j1Yc3EZVFcTvQyBbqgPCvPZQm1bCsu4c01Bhc3x/srpo4MmFBeVmQPiieCTWL298xpa+NIKpMUYWhWFdZgwS55HRndESh/bSFRQ2o9IUG2dt1hykSE8aQz+LYh5wCOzfQri+7YwYfQ4XLEltS8XjrRX4OyUaTAnzBOSoehQiPqOXRjV5eDObePTZaJo9cy/3rZd6bn89IMSCYn+7CgsWtjclbLTJ6YeWs+VNW5Xt0E9irGgt5zDoDuznN3CqcZDkcVmjvLA4fKu0Z3xcUWUes2t+E4U1zyClHP+avJuP4jULkkwJFuWATUGomeUMaKJ5CVABxOIp8qUaokwpmdPGzJthWHIAFzOZpbfONg2mHGZPKrEnTSAw5fc45PrEkugaVQBsk1G/vj0MGead8osho+u4uHagewmD19qQijMtvvhLyWAUftcRMFQPwyDN12drM0AdYQSMBN7rFpfqIZM/JbIO4lgfnVBhFTtoffVFklbZQjymer92FiRGhQ3rzkMt6W+3aPqh+vS+B5pzZmToyhUbKL2zbevnxu8Uml9wPHgxYViXH5ofb/WPwbaniFQ/mIvoFkf0mStiXY1DpMVtTY8LljT72TLnUfiWrtc9xPv4z3hRdUNxb6sdUnbSBUP11zFuKeIdBSB+Xlqnxqbn6n5Gvr7PpjFZLTrn+9ku7/inq2HWA8pw7KeRIwLZ/7wL4+RL3BblT3EsKKfGc39TVN3JsA1cE5vytCYjQ28YoKDAOFKe7Awe2iWGxMluoZ6UC8p7S9Cs5+/Atr+xO7fAK677btL3UYnQo2UNF0OlorB15oHIG5d/Mx/1Ip7LVfngWR/iPrDLBuz3DAGdeKVjAX+SuUpgSDELaDMt4vq/taCnDg3y6tG8ZMfPjokx1ByPGLE2QoCUMurYiPFGXr0kSdN1Vpi5GDt9Mm1gQ8/6F+aC5Kkz0xbSk/GJkpkAJOz/UFVnTBzQZOAXBPiovyLjJtqSF9VOxVflEfcAA1/IxHndQs4zbsSEykXPMkYY9KWTWNJHDMH+MyjP+i8fhkp9+cC4eZkeS/dGRGC/bAe+cynVV+APEKzX/3gCDfEPmlJcOovwc+cTBpZx6Yu0UW8jMYwEvwR1qxrt9TFK8pCXN6n59MOedTFPVqij04K+Hf6q6mHMZzYAHOxctme72I/W8lNZkQWjwcSL/4KdhmRSdud+wIpeGI2Uyysr5pZF4c/fQaVVBpwFetcYmgf8cLld8d6yNaGAn9UYqtNn+HPg6NdMG37rClxARnN7TGH04pIzLF3z1qWGvs4btrtHcJbMDv2JnX7HSj77xR2BZcjY8663LrQrW+GetM0DW8j3bRJ6Nv61tqU597xh1R0xWVlDVLWF+tepJNate4hqZ5jvu2NSDEG2qG/qZHLXDMQvG4xpuO0civMegF78K351XDeLc5QQJHUFsR5bjqZztsFqIZwjZVwzWFyKTFuEKpS2XqqRaPN9gsnfNvDysNlAjFHTUyJlGA9VUSEzA4CE78GYb9PLDOx8nVLwXZdgpGTO8lZfI8KpEsFxxb6fdGeZ0RmT2QWYmOq7pf5XKYgQJgZfCyPlibrzGQ181rCSJqmoiuNE/hzeekK8oUkIUsPjJ9R3d6kJa1N5P3eeyeETq4KTCWYYYzBX5veaRZ3WuOrENBxKrf01Sec4iJEBZIzav4fwWZi39e7RjucJhbFzPGd4y92QZG1bDPxaTNPPt0UVxRpkqO5gGZDm5wlGUgHe9Xmz2Na5efUgXPPsxMGV03MvusjoUbSo8UsuWD/Mxk8RFTapgeOzFk/RkMktgp8p4mtfxYRLWdslPPwPO9nG67sP3IoUnqHoljx2Shf2Os34e9uTUOHKse3ZyEt6A0TkipnNnwDS0XtYP8baIZgez4TZm4W2Ujur9FRlJuQGhteAxTsrYGd9NNXIcmFku0RZeV0lQDOtJplQaNd+4WsLP2mbP0OcuRlAru46K/j8diCgqmcr3Y9Byr92Zdg8mcgGrj7oCeQhuY5tDQixRQ5rp6NGccL6WDruN4r2uIb2xVgKJCbMEbQge9/w8mawOPc+Pxvc0bgS3oXxjw44dV+khJ8xX9Z+sXhjq6lGm8lkHvooajlBv3Ek2EEKByyClTo3pUk/zpcECuG9sAEmG150GzIIL+e1RkERMCqt8czKuCy/UguxFMidAne/XvVeAfxIyVj3AHzzpR4mq8Nzl3zuJ4ejja0GxMd0wfMODscUUT94QFoUkPlfHCzlzzrkCaggS6U1SR9gSy8HAjIyHuV+bxqzsYOonidpgMsC7g1wHJJK7HAOu0q26qczU9GlB4ukNVoPqdMkzvNlzdhN0dfaZ2PN/GaA39B8s9nUBdrxANtpJ6QgBQiB8G0Gf3LxLbxNvb4ZP7SBq9pa3kWznNPegheHczwV3gDOYPQ4v1Vx6J0LpF+Xks1W9BjwaVyUG7ZzawCgL63SYqfCfPsTtN7/8mFcbzg9sKkIaKmPpBxTYaAC0IXdRlklHMEb6VYImdf75KAbV7EZu3XkyJ1lyi2GBFsoT2X3uL+AjB3wUgeZDjMt6B0mK7eUwxykAHE94/T7vnMQ/hMz/aVdfSOAu7CZll8L4GhgbQ7N6pSsaZmTRhJhDTzK+i/gSd//V/Xyy70O5C4lkN3yJ97vf5cJL4AsroZY4hQF2GXeQf5Yz9nxo4Asy0pZMQXCo1/LSOhX0OrcUxrdXw4DHvJ9wxRUKh4kFszKrBQciU6HUUL11D9c7K1UDMwI9hLDgRz1BebZbBXh4RvXP4l6WqmugwZb1RsYqLZa3oSSrbxnm/ndKl737AVLbc2UZi3gW77k9giDomJkFMh3oN7ZrCGvXJXn/ePEbkhDqF68oP0OlCHsmseeZ894y9uKzx074XNClB+djsQUQ0pJOGaInnLyiVpe5dHXt+auhO3xpdcYPk3ABF2JjRWKHaRtAeF2PTQjDTabkWP5+gsaQicrm24+vNBekNrQSKaSQmUqIIRP+ZzZuyrnY8LCnTN1LKLmhLSSuhQ8xYMcGBUKsmq5djES7JbbB85qGFW63CUIcgMCxz663NJJZUnFXDNR/24iKEQrV1SkkzwXnIuT2qDXw7wf2tQISSb80+JqIV8P2nZ8deC14/lDo+jMw1pEbSFSJc1ImL8QXUp0yWuww2mGm4XB0vI22sV5E1zk8ru+d7j+z+e88V9X9UOxcgHhAe0wqoIc3Qka/SjLYSRW+3eLtbq6Y20q65B4RGnxMOP6843NC81JAzecq0nKiGFuwxdYeFNTNovKNfLODcSYn1BwIyb8nrDkAKAZukie075LD+YqGzcimeLfmqQ08ke58twwPgTT8eszLFQZyUqsv7Y=
Variant 2
DifficultyLevel
507
Question
Hayley takes twice as many kilograms of pumpkins to market as Coral.
If they take a total of 360 kilograms of pumpkins to market, how many kilograms does Coral take?
Worked Solution
Strategy 1
By trial and error of each option:
If Hayley has 240 kilograms, Coral has 120 kilograms
Total kilograms together = 240 + 120 = 360
Strategy 2
|
|
Let x |
= kilograms Coral has |
2x + x |
= 360 |
3x |
= 360 |
x |
= 120 |
∴ Coral has 120 kilograms of pumpkins
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Hayley takes twice as many kilograms of pumpkins to market as Coral.
If they take a total of 360 kilograms of pumpkins to market, how many kilograms does Coral take? |
workedSolution | Strategy 1
By trial and error of each option:
If Hayley has 240 kilograms, Coral has {{{correctAnswer}}} kilograms
Total kilograms together = 240 + {{{correctAnswer}}} = 360
Strategy 2
| | |
| -----: | -------------------- |
| Let $\ \large x$ | \= kilograms Coral has |
| $2 \large x$ + $\large x$ | \= 360 |
| $3 \large x$ | \= 360 |
| $\large x$ | \= {{{correctAnswer}}} |
$\therefore$ Coral has {{{correctAnswer}}} kilograms of pumpkins |
correctAnswer | |
Answers
U2FsdGVkX1+4YVHoBcOUANcI6WswlCvNcHlKfMeLz9vWN+aPgTO1ureOBvmWjHcLxTwlpxyK0ro/56w6E9bz6VJcV7/DeLft+sTmoheGMeuAzDF6c5NpIwdRKL/6TLbns60RFC+ZC6mWOmtKeX5fkjf2ndst/JwmLwh8QqKDykOHnzDN0tMw++TXvUBTv1so/q9OHFlJWmW8MJ8dY6poQjoszzKSyQ4G00BBa8y2k32oNRzXNJu6uNUJpQMTCl2ESVOnoxN1MPKcCX4yxxJ1zeUpeP4LPrG5LQY4IzQs/k7rOoCpvdvJ5FBOgEHL9TVnzOL0d/fv/9F1XT1AlT8Iv4nI+qXZlsXydEDujuFOKUK/TRlXzt71sJsMshDvuygfO3ob9KXlk+FFYYQy+7M08pV+v/cCghFRoBQmRbXYldZ34YG2RgYZy1RtXgHVUtJ+z3/pSEKT+Mo5KphjzMEYk4eXI0cSYqcxjHUgC1PZDO3dFIO1Q0Ei/6gfyBOswwo0YSurqdWmlStc5yfCp9o0BNjcgwAw+soUa2Ox6iiOgyJwMlTQyO1kVn9m0kQT6rnqV2fVn8uuOjf5YEEHxKtjglIjGDQjJoH834UeH5jMRA5yB98QHsnmaesF2/vrtqimTTtjEfVh2HAMHQg+QL+ZiWbcUn+FZ/oJVssTpQgqQw05ydhkCWtPX+zzscRidtyoHi9t9Xhi3MDvY3hkZ9526vcrrnj9BTnGME81fNJzLWp6nEwWcHkNaNjZdYuf9My0Sp3xHiOWAJpHRFmhRa15/GFu6l2kws2EmZbTmFKaNzrEJ2YhG6VMGtXblhqFp7xaUKuMCwuE8VnksWcd8y5OeLnOiLqz2ii7QzZe/tglFSN0YEimFHk8jR7ewh7+ZTmhuxBW4IMyZG7p5p/4Wxhi9/RIOZVRKqJBHQLZ6qCFNyah1HXH8SuBW5Q0v4bDWFhmJ7XYEJd/LQRDOW7ddiHRxk1oCXOm90uQ0wvv6fI6hv0qbBzgKYrNNDb1AKHh/goG7gwCeUNPgH0Ct7rTm5WUKDQuATEfutywoI6t36hjqI/29EjajA1h2hOXC3VDLh8uwdXVD3NIEa0kMMg08jesQGvsCz0+l1cT/NeR+EWKo70ioUNx1aAT1nP7CvKD33YD+jNDKWn+eGwydlMnBGNKOWjbZpJgAeL+r8Rdi5j7/252bghuefYmv9LbS7mecGHL/A22CtqaejrPdzpqp9rigt6jBxG2tYEQX7849DEsDqjSMkVNYea4mIygkeVw2+Io+pXhUoF7j0m12sUudaEOjZ9xVIo/dAWhPeCh60KN59VQwX16v4Lf5fAT3IsXli+TjtczzfxtdJvt0eRkuDF3yfmz9cmhZXgUsjwtkz49H6B0EF8UH9jYj/N5rLtb4wqrGS76PAOGPBzzPrbW08IBwGZBXf1ZgMTUeSSG6FlSZ/2d84EuimYX6wlpI34r4ILzw2plsf8GDAycJSsCcFye2q4GPaE8ptgV44QU4W5F0kk9mEtTAkLNVkQZ1MHAiKjhb2gWtAn2kN/DrrK5L1AapTNVV1O4HWZFquevLkyA6c6wOHWDwapznVlmnnV/Lg54aOrun6IahpcDm25bTJaTEFEG9Wx0qYSWQC9dnEAwuLyKXlvxX/CgMWkNCN63tNwZEhWZKCVVcyE2CFXwp8QYX/7bf7PKaRInvbQ2VEazthQ37wUFxJisa77z8FdKZmPTSkCNSBJ0CrAgTcU0MJIMMvS9vxavzzBiTDdlRtUqE2A/484R1Mhl9bBDxLUOW7nlqWgQW/FcTv1YTUveQlYlrGp5EiSQF/AHhSyVGJdh4yP9NPzcSQLX8GiLXYIA15vjU+CqPuCe0Mq1uDqrof6tp9AflvqGL0ZJwgCcx3MYWL/a+f+QzVXumS1pdG5WWAQcAARvJ11BiCxDrhvzt1NSV3WcNDgkqbXPA5IUzO4fAk3SKo2daadep2rjN7RmGxEoYOsKoPt+9JxpJGU9I15kGoIb4oCOmrO4+DEZ1r9yz/Xlly7hYJVFrJ/h+mjDUuWiv2meGv4/LoJ1GU8BrWvV0mmY5fdihxVC/CqcYiykIAFNFzE1OJLpHiz0GFMnDgEvkrVw04Bg+SLFbPbPkyXq/Ot/NZOFS1/61ngPDtdDfNDPRQ7NCSbZo5biik+9NzRJMkuboS7hcm/1FtQhKMDSUIXrKce3zwtAOjkL/G3S8eguE8OkS1029JN26xikBlQX/Rv2HEaVUhXsqRplz7Q5vsLrvNl4Kb37dK+zaTgNGw2aQkbHzOQ59a5X7GdLQcqCqJ4KaSBE2hbOMtHuWeRdMPnmAqXxWOx3SZkFvBF5je46GUu+n5hE33riXe9uapXJdZd6eEVcywAC/cfFRwcCl5cgPXru8nhcBBjU40UgDY4XZIecGnJGKxd8XX4szBsX5GID0uaH7b30Qsf2jxXRgTxunU4sklJ3INIRk4U1bEY861FIUtCx4StavbYpxxYViyGatzVu+fdI/KHof3JkOXJTNDnrvUdxxvC0Igze31DJGYOrEFTX4fGeyyLihMLXWjjz9Yx30ESMTA7dZCTTw871oRX6ZRY69dqRWM7SN4TxRA1aqb6w/1r9e/Qb6SW/xzwUM1MfoeEn98TueZg1pJQJ4yeGR5BadgiqfHU/OfdrWcyZG2yYx5ytaQgwre/edfTVXuUnCDCb5lRZJmpyQo6ZpBCKHBEZBF1QQmjNNG4tsm8FL4i2HTXYpa2TPOIH17ULVW7/auE4uMyCjTvF8HYYKCr1XT/FqQimKDSxuzVk50V+5T0dpMEWIqM8AlU10XbIDWww/DIu/SegVtCpVP12uT3VUV/6GqN2A61rzYlKW/cQdBNKK2uNjpx/83TMab5Kt/QITE+JHodZf6cRjRdkCV0AazWWK5YtzBZqBhrWg5gwBKYGRQXuAPNk4WCbeuqvmrnPq9yPrBQBpmasSoPfNknBMFnFd0K0br2sD1tiUyPJbq5IT2CfJZGFHUWTSU5/4YwUZUoqf88Mx97HjNI6mX4qTkazwK9YFgI6F6J+OpQ38lvayyQ2vL6qhoGZdNtqsa2/+G8oPI1XGCs4MCorIZpwWIT2a7lmmini4RIGmaPrsnh0tJB9hGd0h9mbNc8+OdDPx0oKDYVhoRkkR9vO+u3BLTOFdRdmmJnB4ceueCpxEpcr+ot89aqB9snGKWgxhxu8hz3YQcMvMWnrJgGl9Laxeqo2nkSVkx+D4wiFhkQ9tAxsp8LeTXIvACg4LSluLEu0pWXF0lQ865f9st2JjAL829fbAkDme54qPFBeCWQwB0vDVfcThCfADhYoQ+aAT898gIK6EUFWWF5a7MN97lkrq/350qTjs6lhuNBBgqQnheWdXrd8XWlhCt6HgiEuly89d8kadg50YRT5Y1/ZZAS4B3LaVHkznkvW2m03S0poZo8ET3hTTDay1Obd8nxXAkxSD0Vuz+xcutmH4ecZa5NNiUsXbGJ/j/aFkgI2nsG3mcOdw/ap9rKHwV5YGocWidTT5o3vtY1ovxb9zqyeaDD0gYacx1Kj1EaARH+cIwHhx7Of/xJrL8zEsYUJH17wlQNRNh3ehlXZcJvebebIaBh5+fcHlLKXk/mhspGIEVH8d/Spn+VUfCD7VwhWXwLmvrlQ1AdMhBufo0n1Wx/TGPM5GsPfAHFLMeaIBy47fTFhXJ4Hc0sc8vemaPTu4TU7OyitpBFGIpUk+AlU9OtVAH8KCbDy778ofSQbFaaEPXBtusg0lFzTSqJk6dC61QSgx5tgiZsrlTtTGgmrQWNY277j4AJKbHeDPpFsqU3vlA1uxCZIhn8cFexNqmERy9Nz48CLvloc4Esgt0wcfyeSdLvsk9ZL3xLWtUEPW9vE2dPoFT9FsOG48UhZnOlRetMXDG+U+u3amt8JJmK5f10nobdoS630EvSvVsbrYbB9gTjYtXAc35B/MsAhnpX07uhksmAik5VdTq1QvYYUwz3lVfGnPmQnoeoL2ENw5zbtJRX8PDjqJc3XPbHYKy45bWXHOxzkrqnT5a6n4Zy/4TCZL3MertVPZwE3WRfTl1PiVMDFQUxr4vrsTXHyPdjcFHuPwreyDZuj8LMbBlJstnfyKWjogSFatHDamr2pjQN4NV0d8SfeAJeCAx7L+ZbnBizPFQCupKwq4tJ0wlS6dY26vkZySs4ByJpvG51dewmhaS/Ur3M/C5VBMke9f28FpNvFsPH0lapMTGn6LLfCPnehMHscD5VczsXRfiQb9dRTM+BCKB/NrfecBcZgEatTxPAC0ieDnLVMLipeo90XkQQlXGbTkP1mzdUG8+q55eQHwqQ/j4GXHkwb5oDdjB8OHk1oUo/R7u+QtkFB5ol984hObOx56WhHayS5Eo4ZQuEsIi0VdKAKg6PfI/KkR+Y9RwTFtfa5XtXaFwxQQfSXUu4ExGHo1R8LPC5Qpjvpq+NLLRqGobqmUA28aKetkMEjj2bJLi/wwGBy/r7Gd9o/sI2QndIVFdWVW8SCQiffPElWEN+G8PKGxvFjSBt5nBjeVplEVINaD872eNtVUgCGkmub8leVTPsn9XXJb5H3/GDTUeD9jvqlM+rWZY4khI8x9V+oLEnTUQDOGtgLWd5kFsoYJ02IPdJNoZk1Uxlisvgn1dpQRTFLpvf1GkEXBOjiXrQSJnnZSEe/ywqSBekkBWraKL17dD69vsdfinRqMrdUS4xNdVXs8nApOj36YuPWtN2qmmNJHJm9H7QSuXKmuYIdTaDMxMPha2L+CNVlzh7qOM0Bm0bCvFsJne5MjoWv55+FzaR2/yPUJx1Jim5UFkcyr/y2IY2DD9Ik+ExLr+M6Cp6IB1bYSs3gwDRz9dHiopLLgK0UbIKQOPUtSvCAYLQBite/5fQ0yTsPJzdVpOt6WsdCXgrn9JHVz1HQzxiAEkhH59hxc5GF9YiVsORBqCRtEAOqx8ocJpEUgXxo/Z9PDCytkvfnVPPoW7jGMLALCWVinwcn7+aWgIHkCj+ZyY1QDlWA8VSkAMFHwrZIrEn3v6ZGXYWkwmqwlpHEucUlta47xnFEIT5zle28oUCvi0GPXXG0rF/v14dJZoQqotLypa9paYkgbC+VByx+keZyCfwWSqvhq30IfVQ9FeYt5rjUSn2ofCanVMB8xbZGz+XDnaz7Y1YIeHiEmBk9ke2dTkCcZUWIuZrg9YkB1FiMnfatSIUz1NHFgr4OHRDSA25qlTkwyKhgAgy5ht9a8aX6AT1E4dhEMxa1VpKAeUdnSgw5gqbMrd1i+J+u2D17QJJIc0rJ8Sm4f6NAbEVXKWgtm4CsDi79DR/QLFxfYLG9Bc3uc88KzVsVdskT8GYISojYK/TTHnF3cvR5KjgOT5DqSO7mfb+oEtqe2rXoVnxLG9q47b017FugH3iLpRgLPUD39lpax9m99/TL+cSqH04l6VznnELJtSIejPhjfLHZyTAeORwMJKwburHnSUFTjuXDVCWMK9p6IyudxGPAG/14hAzHeJxU3JkNVg2W3VQnTfPcfHeGaKgFHDs2YZNxB2NhSBYVn5hipuHffleXAESl4xbbvydiv+xllnFRbJ2T5/jUXNKb3PVkinlq7xKrgAS5NHxlYwGSCi2AJkeNNvHtBEq/4ZWzSdnnI89GwE6yeC2WAIQy1n6oh0KbIjdj36/r9GdAaojHNrntaU9KmslbsLuOg4KEL6dnON36xUJ1JbQ1UdFFD6c9lFru7P/fLp7wEPvgavtlzaSAF+Jk/YEt6ae9zfDrFAfveOlEP7237QfKC08sDcFk0u3v/oBWK4Dl+S9abxHuAmC7v6q+OiGFvssEg+pwxt7EV/SYyX8NjJGmt0H4dd+kumNN2Y/mDZooKZ6C2fLhBFUNRcWiPDwJi1WjWtNlsoUp8+HryJZZSQmy5a5LvJW9j+K/RrsmnhUKTBY8YrNVONWlYkt9vzKPTK41bYbjl3zccXM3+zAgieBzb/TArY3iKuifT1lKzlWIWrABkBPE7rwu3IcMyIEKfT/TwzxbSbMHB4Gyvv3zf/ZDcjy3G+M3cyflcuDiAH++3gh08i8A4PyQSCFXv0oHcfotKVd25eUnYCp/5uvPPOEVS+Nwp45YRuccRCHRdadkL6RX7uHkSGEH6IC0rn17TzqJy66tk1Mqjdq92zSJcUfFOXsSFqKdYe14oHXvDxislQyBjjuUnDD3L65PS+Mt7AVQPHXGH9qwBxov0KCYGdLsep/M/zZQbaA48F9FFuiHZZ2HmRQjlZw74UmP5WVW30pipbx4nWl2Nzcl3bASHT5p9DUtHpz18EPIW4OJ3IztbwscyJjECowxmvwNqsYbLO3jvVbRlBSO6aXeZv5DuFI7BhXKMM29jWVIBeAXbGt80W4t1TOVnnG7Iorn9BTxR7ZO6GIpv/Dj8PyfALShsw==
Variant 3
DifficultyLevel
509
Question
Hugh buys twice as many bales of hay as Grant.
If they buy a total of 210 bales of hay, how many bales does Grant buy?
Worked Solution
Strategy 1
By trial and error of each option:
If Hugh buys 140 bales, Grant buys 70 bales.
Total kilograms together = 140 + 70 = 210
Strategy 2
|
|
Let x |
= bales Grant buys |
2x + x |
= 210 |
3x |
= 210 |
x |
= 70 |
∴ Grant bought 70 bales of hay
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Hugh buys twice as many bales of hay as Grant.
If they buy a total of 210 bales of hay, how many bales does Grant buy? |
workedSolution | Strategy 1
By trial and error of each option:
If Hugh buys 140 bales, Grant buys {{{correctAnswer}}} bales.
Total kilograms together = 140 + {{{correctAnswer}}} = 210
Strategy 2
| | |
| -----: | -------------------- |
| Let $\ \large x$ | \= bales Grant buys |
| $2 \large x$ + $\large x$ | \= 210 |
| $3 \large x$ | \= 210 |
| $\large x$ | \= {{{correctAnswer}}} |
$\therefore$ Grant bought {{{correctAnswer}}} bales of hay |
correctAnswer | |
Answers
U2FsdGVkX1/J087XePQ/qrL9VduwCjWUTVinPk7xwFtCUtDgG6j6EiZ6+Ycf4+bX39rLo14y500VdfbV7OVJfcUfDlLC23Z6aT4bv9JFj2nywMbkXu2l1+8iuxeoiVh43AkQtLHgWZrtGX9hsYtrwleoh4VbSL65ApBWJKi+A4PZEv1z5uF9v4wGhwcpkU0wz8QGUWDyf6DIBHULmMwGzCv8neUWEYh4CENl7PKzzDptE0zGHxKswsiBmGjiXyAdmTXdVnxvxEr6SHUKBfxqfDR0XoR0hu5LvcYor7fKhF+DkmrBF44JfIgS/cEi09+Os9RPOXwQ5EpgrJWebCtbeBpkNgqAQPsR6PbsoBjPiW2A2c1SxApOyVP2AdFXv5P8TH5B5wGlHKhUZosHdAYZCPbgSPBek41jc9wcy7r+C/72MRS3HPV21+FC8odk3bhycehJqaPy56sFcLjPiX5WC1GvkTOWyMd2nbpM4/zmhYrKgqlB62slJO3ebPlv8/P8+kSVhXBLdhka1jppE31fX5XbhPHV8+YMWz9o5pmGzvJBZuwMuv6ytKLwfYWnoMKUC38XdP/N7oHwC+BMfKwkE1DP2EZypuvXGyZazIZm5yPWLma+ZtatIJhfkmInzmB7Tem3W00ArIY82LooUO51g6GroDsgcXZhW8t679kJ1z5UB6AU2SOxg/mw02wENO0gGcW3tMEdQ1ep/9HDfz13RwTqvneynJXl5C/LyLld/98sdkfREsz9pKZu5zQSosQwoiKf5pr3hfZStIZ2LiYrA58CztfDBflWbjuJK1mlIkUFG5M4Zn4nNPZ8t8EVllhwQqSm3B+RvjwkcEohucNQFpaJHjV+KFs2nKStNcq4oBmQ70ni09ztaekntaEzd+OlhbAFBDqjszywtdwEKEp8KjruVyGhsTfexPSSMFxUWLQJj4XLbTC+TGL5IY6e70jKPcxjP++biNrrKGomssQPfjf4vwYSA+or0wqVWKusQ7WWiCjCJlsyuZcBLcKX6857HPvy3l534PiowRuNXMPYt0OWLymyjNsuST/U62eMpiQ8lxNrUmzYq/3M0gjLtizemdG7o8MUHM2UijH9xkNEbaCPOAVQHBvSBRm/xs5idNJT64Qd9fHefDk0p4+0E0ya/4MvAQsnHkS8xDPfFV/Bo2BV+d0/A7pFgFAB3HXeyDrtU2qWUgiOqsOM85CgqbYFL9XH0313XKW3m8xIhCqNf6TPv0psc0ATmFJAxfNiY6blg7OMqEy6gx1lCY3dB8Ic0UB4ccQdyeRZhhkHg426HBfhJbX7DdTMrah/Mp9GEuNtbebVTFjsvBfqB2/3ducz2+Fb7WmYDYXb2K3AJ7IciEzMALZVuNEzwYfjpylH4I0xb3rXzonCa8JgINr33xU9XxRCeV77F0WMoqpiESH6L3c8/glCccmjiv5YSoSFEb8+sZAc3GMkH0/xQG5f8WO5y32TTexBfcjVqI1u1Id6zHAbRax6Bo7O60Dm5Yb+4BgU88eCMd0L5TUirQjS29bcyjNM7tu3j2u6OQXy13ClbSnVMg4vdL8rG5aqKn4lGp6DN+3GTkiuaVRNJVP6YPMXQdehe32qncOoCkSkiRwc3EBRxhFzt0F73HtSQjLfbIV7ssl0nRkoZnAytSRqodfRWi1x8wOMjz/VCM17cSCYpyhpQa/DHg99ojdYfEpA/zeuvsWn7f1Flrwjs8kY+eh+8t9HjUCbS2c+3MYZKfGMXTV06AvDpHdnAhVK1NNS1Oz1JeXGigkx+b5s0uV6XANFZgwpPbnWq5A9cG6xvcAznrsltHLXjPbNn5sIk/gZ786rBpCggxquVjja7LtArXumF17bSTCLvIl1JEzWjGfYKE41+BnMlgf4HuwXe4Q4LJorM6PQWGI2OE0MWRjNO1d5vk5P+9tX/G1GQcYw9c1F26tYZNGYAM2YDGu95jVfOuHtLLzT7EqaCCQqJ0RsHQ7HKtyZwvwNRBqup7y0IG4ChkHIt3PXUCjDHZSFfDr6GyWmwly2fTGCCo0txe2ur79fg+TCyohuEv7CulljqW/CC4sX2dV2Bk2oQbZG5lom/kQDQh07JWXKjV4FjKi6pW9FovUPgnZ01GofX+7bDUqtsV3LnmpE21mYWJHd1nXB7dS05h5oOMs1oKaI16DZb1Ei0H7wX6JK52XurRfU0JLxNjNEUMDM3Iza8ZuxHX6aaa80B4OjchkEOjYVVq/YG/5MrcAkQsNygmaM7usWEVQwZW9t3TdmLifkBz/avW6IIWrJRjXNZi/S1Sqclte1Asf32E3RgzkcztlC2++rbfnMRbRmUoARoIJf99aYRqMT1Rmz+c2O3tGmbF52lEggn91/iyRkPI+8NkYrCzXEIeFtLj/BYW1mbkyZaQ/s0VV2NjdUVLJuDB19IA05UUPd3yEg2P1LVOizz74w/2Xfl78PMruWfpArv07EWw43fhrMSiqu933lSTbmaFdrWbvd+2wxK6H1mvcIF7IWZ6TULV5Lt4KBz2GxA/GoGI/0DP3Gz06znnaT3RzD8spB7bTHrsAvNYzoy5obJQvvUarIdoyZ4RYRRrUA81JTvfloxIz39I9WFMxJx+5gwfKXnr3kUTTXlZK97nOyKXymj1eaL6rD8GHmG0WKfJfXp4duUpV7iYBPILX0QpeBPWmAM5xX6iedKWCuZdEDQYZ7pfCynl8OuIbULprZnliIHs/9HKRyK1xDjGF9VFWJJ2eji9q7I79XQMLx6ziBTfqxHHH0+uqTmxi1e8r4ICz2kDM2B30GPh89nwfNW1VVChBwmbKN03msXmFjl5wDzzLTRYRVMwY1JRBOIf8mqL3adEa0M9DuA/Ne0UHX5u3FTd38dT+GKvLoeEmCiUuI2lPL/ZLqQdf2QCvy0Ik+oPJ1pFJDW/8HokYOKjTHvC2nog06zIoCf02qmtENcFPG0C1mV3v33ywQcrcTSvhiNDC7zVXArXjfRZwms07FxLytvONwuIUXzLih/drL+AhDKuEPyUudFe47n3RMG5VAuwThvS89GqVGo14J926UliTi5vVRdfu0/7JCGLw4o7WQcPyaoG7BjmRYnXmfEObxT87vsem2I+3+QpKnsoWs+4MNOYO9KgJAIbmN9+/wKO7+G28D3d85wLNp6AdzHt0juhLatrszUHgdjiCeh1v9i6AKHCt1yr1SauHrvCixpYDeE9BOQtaYlhz3dnB79bCSCzFh3KI/HjAsGmv3hU2Jb7FWOwiMKCQA18Ncj2+sKTICzQiWWMnQfqypvAiPR0704DWTkNUS2phqxT9zFMXi1TxKoroAwuHDM5PFJI4K9YW7t73ClMyl1aQGfE4ytDIXWwhA7yOQ+D0uuZImpxb7oo2IHCmb6n/S1rwGjofMeSx8sHJWxhn/PfzXH/BMDuV8oUiTefvgfiEDKoe2ZwPm34szlqH1BhoharpJQMEOtJyGRAtmTKZHbXwR5k63KNL2GPpWRXj4SHCR0TZaeAXIUIvoVr/E61HQjOKkMcItrQ2tbxuRv2CZNSPoqBpuKHp1MI25xQsRJs4vgWmHU3TDquWiTzIcBkDqRYOw3x1I9vUH7yGVrUfpnoI9osFlVJTzY/x6EoRuySYWR8vYx6nRlXkv+P1DT+vxjvYnbGoSXmwEuUeqqFE9s0WOWO52GwSLNP8JL/5BffhSayz2CGhe3T+ebVeLTLsJM/9wuLOiLe0F/QXwMXfupFv9qdKcCfCujg6XOJLeTyuM1PfRqFzXF9JBUjsLDZuP0PlAZcQDwjQnQxP6iiQTysaFmPRnj8ly1zclvJNI04kuRKV0by9ylSImhn7xD1FybYaeN+K0gyhXdRk1N/QB7DNol4fime3EF/+awd8azn1B4qa91aORMjHlgEFoxFcn6WKLxhRdc/f9PkcaeFZm/ybpvn5FM04oUd2pKmtirDtJzPdeMRGpmg6kCWVbDAjrlj5eY8y88YjC2bwsdsErBmHPmu4F/pJEoarwEalfGZToAMgGX4GiFMHN8Jb1C51uA6A8ToPjeYjYbDgNJJzmY04kcmHCbxr/TTu+ynF0mAoQ2miqFIKH5VKaWTQfEvS4En6zDyiEQTGe5h1qvyuyXmzvbgIUg63AHY3pthpNMM7Gc85AtHekmEtiIHDf7uUf0nG0143pMgWB25x5LRPZZLpXfK6KPK2t4LVJKwnXEjqXr+w8MorREaTAmAj1tTHsSyQZuXEoBxop82E1R2X13brtytch0UTJDqwWUXgHVD1JnEF4gLxEKSKTl5VFXCpngPCPwfngfIe3Ieg9hplMPnqhRcciTj/pH/gAs8lCSOYjBy1KHFJ5IuLE1HKkrPER4RJeggmG8T2miv5SGx+dQR+vlLioAQSFR09AKlU5SPrxVeQBHTVaI6Un3DftJRZjUBQr1YWavtIKZjsjCnaIYHyX/OGDyNtVJykHQhiOqVoPDc88eTsLuI/gZ+82RrPyDWCZWGF8yGuzeZvbkwcdgf48qIVb/88Po/qQiLRf3HkhrQxjtrz2rinsdEkeJgRoYlTXNY+QKAi8u7j3K05rOehiW8dFLMnutz4VxWhgjlw3SD2mpvCSMdHeqcdNn7N+R0yOY0eEjWMluv26FMD03jV5Xk3vFnoTFMcXe+99Y5z1AR184jN0ib/W4O8Yac4JA7qs2/J+NFEoTrFDQ4DQCOYXYbqXT8Mp+xWt5Vxh9gQ50zhwijshnCrN4qT4RS4YZDGDoMkFGv/wx3HpTfWWU3ntrAXUYqKgiUs1X0+B5Chh8X/T6pVW58bLglxlvzVYwHV0uFrqUw23cWmEdyeCU5sihw84yf6FddDf4FrEWPrCwS62wuw4CHzLJAbTz82TgGeXegywiEFyH43jUHkPx5AsyROPf6WRxamuEM1yZpO++5ghwQlWYKG7r1TNIKdzyWfkbWwfPa/wFl83KYTIu/HkVnzobbWLThjCXYxG/e7YWY1SLZ07tCTaRBdTN/F198jKn3D0sAz37H4ukE/FmUYH6z1PDmDZGN4MJktkf5bN2ASXLFlrYutceeYBTFybrf0CgsnrlDf5xYOv5EGvgnUYlGHyWMCR7zO1lOY8HVm/y2BLx2n0i5qBHdSdag3cRlSgOQ3RO0m7nyc1LU/97rAA7e8SE29Ix5H/BRb0D7TD3mP98wSstuZnzxTQKIomUaL3QmT72cm/ciFIhRo/9ZqZA+KoJCXR6egZPjKuiijLDH/DJgYHQv03QPtBTCDTxbZtd5aKsqSHGHGyaBSGyP3fKGTyQRYVrAJJsm52CbhylauJyQRxJhqQIj19P+q8rXs5AMLMVr25doOymTW1JzYPfTwfENQLRrUDirH6ekpQcNfVTv/7Q0wjWk/C/lR2o/AaXfATgVE2412rKwMhktDjqj1V7t0ZFBep1IyCq0eakfeMwuRc+QqXOoA1fHHCmY9H13OX+wOQa3X3OilAIQizquhzFUbHwsIBcq4vq792t9Qqcgq8QVIMstifoQVIhyyOF+OnI7bqf7VgeYbmYvyBQ8MChGjqJZfzcUdsjOOMSLgZhr7Vblsn5FZ/VZsaW0JvDXImLmSanDJwJDar77ucRpYFNFiCtYbOxneUvFEcDdOyNNQ5XYcdipcCnCBIMCfcUzJrQqL1DlwokgyCUmQJO60BWSNqviUd19CYw7F1Uu+iKhr4D8B7sAOZ/J/2rZLwL9jx4qvB1Tn30DZFMDHdXTRCmU7IQjM8xhiw6DqA2crow+fZ2zMkG/iPpJ7wBpacAbU9ry7YzRxtVldnW+EKErOOUG2qFlcPLjWSH/xBwupWeoA4+0OzHsl2s5/drLfuNA9odktVVFdLDUtZRAnZ25qQAhgHhN2+6fHVfw1FiBZxypNhtA9Vo3qJCP208Y9E7LKimutNzk5EM6XW4JlHPGDBm48v5E+F7XI5uJURCfElvlYaMCIxrGKfCq3xWtZfuj8d/cywp+2Yp3xglDFkty+1cLOIP7IzededQFgZ9GyX9fHWfmZGsIQsC1Z6mevu08EZNcm0EA4ObER7fBr1ZkcBa9QetXJmMcr0bJqJDTjp1CaOka3+p+wbiyOHrXlYA2KhTdwgkVGl9ZQ4uuWJRvfzgtEfwa8sMPNIxXdaOl0mm5DQcnxwy1hYHXmE30yT3Y2PwTV7HCDatvq5Y9ZPB1w/GYF03TrF96I4LoFO6CqWX6D+Um3Ada3XkYATrSRNBFDX5mcKWmznLVpJmPgtZd+C2lz6309mwVJCOsKNwtCX5Rp36JKUqsn7eQqOHTwa9YeGkuXQurTCzhzp5pE7VPoAbinjvVN1csB9dsW92/CW/w4TKiguN0Uoneas6y2iLh39WGF+FQD8PDdtyAnLQuNhY1e2b8tWckfAO4ccviY=
Variant 4
DifficultyLevel
511
Question
Jake has twice as many marbles as Iris.
If they have a total of 63 marbles, how many marbles does Iris have?
Worked Solution
Strategy 1
By trial and error of each option:
If Jake has 42 marbles, Iris has 21 marbles.
Total marbles = 42 + 21 = 63
Strategy 2
|
|
Let x |
= marbles Iris has |
2x + x |
= 63 |
3x |
= 63 |
x |
= 21 |
∴ Iris has 21 marbles
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jake has twice as many marbles as Iris.
If they have a total of 63 marbles, how many marbles does Iris have? |
workedSolution | Strategy 1
By trial and error of each option:
If Jake has 42 marbles, Iris has {{{correctAnswer}}} marbles.
Total marbles = 42 + {{{correctAnswer}}} = 63
Strategy 2
| | |
| -----: | -------------------- |
| Let $\ \large x$ | \= marbles Iris has |
| $2 \large x$ + $\large x$ | \= 63 |
| $3 \large x$ | \= 63 |
| $\large x$ | \= {{{correctAnswer}}} |
$\therefore$ Iris has {{{correctAnswer}}} marbles |
correctAnswer | |
Answers
U2FsdGVkX1+RC+GzqHHkhfys0KQi86cFmFJtvP7BstWNRaBVfgS5nFvrJjHhrATN3FmTIOIzaDUaprlxYDkdtfvZ1Fsq5yBksWc5YzkDf9l9kkaiJOzIdAiPl0dDYvmZYeVE7WdGFU2+h+0Ho1pU6oIHhtT3gWp69CUsh0/ajIePPJGcEytm/RlUESma5KXKvbTAmQXGSHoYCTGzjGxGw3f211z8NikjTo3GPpwDv4o2o6JZFqiQXImFECVJWJ+zYNNNFwBAGutnZ2W2S4DdU028otxgeuj5Ga1VkdfgT0emNGAAHRg2WS4LHrcOmx2wl+MjBy4phA193b79AocE9J7hPCvaGB/atIT5BUqtM2IHNkggZCUagGHuZ36WGlPkx2qp5fNpZHzKSgOXGX+IVwOEp7c0KjMJ3O3WFE6Ebghydp+jSyXOLY873r2l6UD0n3aUMbfNQm9hCdrIdtET/1V3c4mTbf+VxgaCLfNMiaaT+BEds5wjLu8L9yxFLxFjnrJ0wqw8EkqjLQC30h6nUfes0Heo9aa3VB9l5A786sTvXxseHwyBfOHXNghfWVBrYMi+LAlH0A/Kozk+Ixy4HoK0xgmVKWUzJWFuhv+x8spG8f7egHqgoRINB9T3CTIFZUvlYkC3rcmoGXua2wZHMDxr1DKR9zuyDrl8s4JJqdcruxfDJjzj2weW0VGBPfuS2jWricdlQgcryMxG2OKVlt8VJ7Skwxjf6Gsyzta/movSODf2k/qp8sIxagKnmatrC5V8qXmeacf3YFjBaiyhzSgzswTe6Fm6DqexY4TInnh2u80l04LmAULurMwxYLu97TE3NJpkDzkvGgPRKlmFRnyGVl3WMYMvvVSBYCUMn1nY4eb7ERPPfQ3C5uFJfsdVKw8N2PZVgaOwd7V4npg2wHiLxVbwWGWsyqiriSiJIMc+RYKk7dyPnzGJKneZsWbi8bvPBBxXJU8bmU/bo+pCpkMn8jiXbD3rsY1WHoedG2sRz4zzLWQldg/i/uYLQYvIoLJiR4reroEABUq6tMoCG+I1vZ4tNl95WXVBx4DRLKp9ospUKgc558Mk2LY+go6OJFmzCgRU8o0cv15Owv5gyIQ7IWF8G3JxXCii7CMVe8tMwxXYp5rkkVMO0n+eoecjApzeeVEW/BHTiuaKk6fqFMnMgOlATJJp0NL3ciIU8vVSHgLWh8+jc+fKwwC7cU2SD4zJVef9+cOpaAgZiBsWokhECnHQYz0mzzZZsjK2VFbvQHEAxZX/gD4mdDS2f8biOXm8s9CsKhtDxmw9XVyfh02g6eri03aKzyoxcuL+5kqY7kRSPmEXV4e32CeeIGJwoglk4crDoQ18z4BidQ8LHyFuy0wlCVnYQyRkl0Y1RwWL8/vviiDm7PenlDWvT5uWpHzx5u+WocDslzHhqvdkl4g1PPDnznINYiJGSLKRFRwjC5nW4jREhwzYPC6mSxMb0YJtuNXdIF4kiVVr2KapnMEgaTKIWJbfBNwqumcoPm4MdG24WyQOHgzoV/Ua4cQM+GQnbPCorgWi5SaLVH1tUDCwWr5vBeNbbMaAZGKYC/XpE2jnV/Mp/BOWTc6+bF7lmi+Tdf4Fa/7thJkEMZPUXwgq5nFXwzBgaKcWlmmtCjHSOmwZj2NvrKxBEd5gfkxyENIQvPi76UqCF2TZYjvPFM6k5mjE75xKO9tgFKGExbAeY4lnA8qyWfyOS7AsBLzX3ExkKHHXgkpUUlBEOQG9y4xfycaidHy49dZD7bHEJJmFpIN9YmqG3EeFE/Xz8bAy0Zgi1PYmD+t5SaM3/i/6CROHRQ/xtFju7IaPugSle6p0NUziGaMt1FNqJ+Mvg6Cu8z4DXD4WalglL2LIjAif5rTCG+DfsMQz31snL0HNUNs+t7SNGcvQ9YJOV4PNB8mRFhrUnI8do4JY9OSIy9swx1ITKziqSbHX+mvlKG1Ase4UWxHmC5akk5icBEa76mgzHRVwhBpoUfbbP7RMHW8TVY1UTIcOHDNPpvWMRIQ0F3TeHjMCCc2aKVc47LYxA5/B6mT1D07rNt2Ma8fYLSnRo3kA30HjTyO0iee2yxTLPmx5EhCcxpU4LQGTewdnM8msYoIbPwraEfRwtszdqNfe0RmeFR5Ifq/XSa8/vAEDRP0ELdEoLDWvMCMUVcKO2oVyVr3Rn/IoQ1aX6K9l3Dv9WhGFV16C6c5/5O9fTpLOA8BjUrE8kKmsq9khjQq/mOud54lWPM3ZkT/2+K02/8ncr4Qkuq3CZnjTSYn3c2UxbeeSZjV+aO3hbZ8id+xDAuwcK+30IpuSkvVk71aR/c3egJuTLDbGACNHrFtnBnpqq95nbpvY4BvehZ+9EORG5IreiuO80fB2ZfHUySjHTbZbwIjQRJxlIlxeL4oOjtY+yFgxGiRxtsRwe3W7pZCQCZ0Y/iDHjvWP86rHHF/T9hWScBz0yZPxXkO+h+VJTEOxWkmNYu8A6nDbIVgfVQERn/3fdi5SjSyUYvVE3WWaeozD4q5yG2H7fNhGLcwEcqZJkYjHMGe/E21oi7mYiphHKZmd0VWs56VAhz3RfRb1eNvFHHKwtrn8wto15+IeQQK5oIaohhvMVj+LiuPGwfi/5XGEmemw5ouJbUlG0H17PJuZ75IR7Zz5a2GTSDejWdHD/LFy/RqzmopyXq63g/q5asAOeAc4bMVbZ/r7TiH6VUxlKyn32R3VuZlliRccg2QzuVfmw+LLqBIunAhnRW+OecmtYe10WGbxbyePjkD4IpCMcdraN4Nc23TBBgMveEDUBcUCIpqoDomyqwEVf+JZnlD0yuT26fmvJcPLqOY+NzwHeHrrRsWZo+faCeulMGJsVVI6J6cyEFwDUi50TncyHhes4VzA/XY31aNlV6Z4DHDQximkn4GXzNfSEbvBXE1ion4p2WVZvNWb/DREHvhpSdlyE0IEQt/7jtmxjqAo2TTua12AnHrs6Woc5zm56NiWnH5rugdaHP3XZ5Qu7xLDNSFb+iI5Qb4jAHZG5z6NHOYSytu6VG5Y8IbgAh2SZgwSLBasFAsSS/RNshwRSWhOeWZWRteWSa3cUaovgWnqZncCt7x/lvenO8bJUVif7lNprVsFa4kWB1dcZfYznbTLOVdPKhfghZCec5fH9hUkPw1QzhNKV4JRZFOTdLo75X0aWRA4ZpvI/T8qSaSolLboGZyfbwTjmNyr/Y8kd2xagfBafSwm408eAZy8BI66zblVFc858OgrlKJ6dC0IxSCAuf+1mfljHFr6C/a5mo6i2zhOL45yCofWcYjUZjs7iNROO5zv+cf96dV+vm+1Ajl8AmS7gfDLkLudJEgTer4L3KySAN/DMrfBcxxNd7IX5ydqfdy+NonOqIt2D+nfuxrP3gfIoZooyt57XgpPJSGLI5EEKdUReEACay6BL/NBYo7mNW8T3RrrJojnqdqLXN5o+GmsJfSONUhyhQ4Cybd2V9TmAjvuvbQS3diC8YSzuVc9QBixUqoakqGDrD+uy+p+RFYV7g8wP0ML+ynV7HHZHipPGAlN09xeh9UDLPDVLdfWprLI3xNfVvYTdEu2FYH88LgdJ1fh8pv+mnUUZ/Xidbqne6egwHi94BUPbptjEDepUy1N+oq9jpnZC+JNNhHTXPmvs1lh17sk4br9mLNpePolKk6Ze5gf+mi/z5lf+CwRuYJPO2RgrOHIrn6taA1Z56zB8tXFmBdUpu6QbN0IdIUwcbrpJijj0OmTu3W8JIgN+PPdPt3aOoSHjrCdmufsVJJMmuKfCwlAWV5HXCblaXP7GXl6kSzbWXUUxkVVr1sntftJANBOFzlDGXybCyymop8fFM2V0ec6aMJ3AqFhyd+JOCRhm86GaCjvKNQKh3njAhGM1CskFFBVDjOwBhrMg637asDNXMvxFPnS8Rs7gITtWbp7b7Q2NXB/frOPL3zxqyDTjuV6Ak6QwYVasdc2It4Yjfr0Zcyy0TIGf+QYNIG5qQcpyulbcveopKSd8Z0mUdwWo3AiTvJqUf/K6urSwKM3cSSHEtU4wHTEOYDEtvlgaWe/nxyyS7idKUcL9sEpSzIgyqA4mu8Dn/rPEMUdfsxG51I60tdmz17xEugj2861pyUcYbmuopPTiEdT5W2ER5u9mJba6GXPZ0z4dQz8zY9iTCxqaAK8uGUYDV50GiM1TI8vBmwnpDEcvZsBDAuw+d4DqZy0A0WiXwnDm6u1DRzxptaAWq2tMrMDMJgXHq8k442hJCLDUmL0MlMQWCIp8mFdoltmdQWy1vG9SVMmHoPcilyfFds/ZTf0RUBNJ7J39ygNr69ZQ0U7E5XRXz2fESgqC7v/0mrxvenwIa/8hQWgv5OShYY7ftUql7e/QagXHJFz97o02nRrO9q9uUDylOhGTa8U3LOeF7wAzvAYPfIxp7+yCUzgR5+7ajlMr0Xho/dlcaJ8uPUbvqXjqEY+PKJWDyQJTJ9L+XvlDXBn15ddGH+J33wySnMoJwNPLUj6wFWoCwkb2jjOsyfQvOyo+MZF6NW58BmFXO0RinbbtezXrLCof1GLBHoS52Shok8ncvu3tAhJEgm1FaomW8b1AOqZ9eMDj51KGPxiC7g3YcZEbNDV5hf3xcvjaO9aIon9Nhp7FxDVZbTmKOHBJu38b/tIpHqZJHPPUbVH9c6dRryaDj96jW+3VwLWGGKHKYdJa7kHK0gKxb3BCL1EmmXlESnJd+Y6DOah7Ej0JoUXDzws0QzXCFdcMVNX1nc7o6tjqJzz4ZbXJyZ+JcB1KtJhF6AFQvbRID2FaMq9paJhjunen5RW7t+cYXOo3qCHHegeiKkGqxTibKAEFo2s0/PYr1N38jeXonSxOtNErp8CYrVyonRAAGZFmuj9AWA4wTUoMwYN5Ilv/rBdQZyX0d5uBtrJgJJKDWt05uJsaXikMK5k1Ot+hL4WoqSyWddNPfqC2kmXGlEwC1ldOxTl1HOINqfUFWBnArk7jZQqHAwPYJrp6e+jxFJ65WajJYv4uONxqV0kzb+TZFRycmr3xGEmn+9byvZlr0+mnXfw6ClpEEA5zxl6oNNXsDDEVeFSAWAP756SEJek/WKWkYiwuyE65XvCCd/f3lkvTgGvqdbRiChJJyLBeWL4cS8QVg4R+R9/bS++aYZRTBaqYiWtxZT65/nCl1tLk8Ao32l3eKv6Wt7gqh53wa/ewETgSTtLqSdQiVC4jVv5iAivtl+ZRvohs0XqanK9pkafnUC7u1n6mpBet2TXwwwHtzeWW762CW5uLyiTU6Psn8naKfRTzefn7qxUr5thH+ZkALgzVmRLetu3QLSYFWNByZ9LQu8q46Wl9ksMkNIHbtAAdOXmggkjvTVjzhaLm5rhYkP0fO8mHdVni/sutzj2Cu1ley1hskXAaROv0c1ESUghh4JFinGFBqVnh3W0T0OHpqn1/cwKwLjOgF6FlfYt21s5DdwCF0r8e2uYIla1yvF/nfQM2TEY8NSwf7JmFiQ6+ixO6ubhz8xmKEr4Pa3VxKAC25W9iL3DxrbLWt3YV/CXlIK7DX8P+5inh8ESIxmBTp7K05P0ntX8PPZNHoU/8uKk8BaRkn9/h9VajB/tPi7Z2ulUZiYK6pVKITm/yZmioP8SKrEBG06sq1Caso6n5PX1R5eSG/RgJnL879dFhFzbVgXht3lcpqosvsPGbfYR1y9clpg4Pn5/GdqKMybUERIUyqiVJE94rm9bL+Bh1uctu9EBfrUwQaVzCu7zwJrD4CVPhGKDm232VOWPs40tLzS7c6baXScymGnPDOjfvN5rwlgtJ8yx8/se76o0USFsHJF/wn+OBwaFfYvIhfFhbWFMfUWepVtGzi0qpT+63D6fhed4AEyKruMzwvbm76MyNftJsWWkP4ap2vj+3lbGXewWzd7r+uyPJPCsqoeYj2SOznvtzTWspzR83lcEzjfwDJFhGRJZ5kcoOgrYUCW9QsVT/rtaswGatIh+9XxFa82NCFvBK2yvbKyFx19NyDqHx/5/ahlfEUFyIKvDb4VFvDbkTJ32cwwL4vHsF/eWM4igBzGnGo4ek9aDw1JPmSJI4W9H0VDQV8gVyxpBjFuS/soZNNegMhO7qFm3vAk7ILQf1tk4hyQ/w2ofOU0YvT6OoIXqOAWyM0PysK1LrGrJxYDsNzD4d+ctNlDmNUJ0uTOAa4NhYuiVpkXZQsSG4OuAw0XkenN3XRGVbqaR0Gioc7WrrAoOEigXKJx/P86lOMNv058WnZpZwDXb4mkiHu6iffQlRKKX7o6SP5BVgQT9V6w07xympvZ/0tLDlEfgfbS5WEQBMgV21swhu3WR3qK0dKCEA6w8c7/1f44GoBCp55J4SEvDFXviJgRl2M0npr58LX24vIZUGXs=
Variant 5
DifficultyLevel
513
Question
Sabit has saved twice as much money as Jade.
If they have a total of $186 in savings, how much has Jade saved?
Worked Solution
Strategy 1
By trial and error of each option:
If Sabit saved $124, Jade has saved $62.
Total savings = $124 + $62 = $186
Strategy 2
|
|
Let x |
= Jade's savings |
2x + x |
= 186 |
3x |
= 186 |
x |
= $62 |
∴ Jade has saved $62
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sabit has saved twice as much money as Jade.
If they have a total of $186 in savings, how much has Jade saved? |
workedSolution | Strategy 1
By trial and error of each option:
If Sabit saved $124, Jade has saved {{{correctAnswer}}}.
Total savings = $124 + {{{correctAnswer}}} = $186
Strategy 2
| | |
| -----: | -------------------- |
| Let $\ \large x$ | \= Jade's savings |
| $2 \large x$ + $\large x$ | \= 186 |
| $3 \large x$ | \= 186 |
| $\large x$ | \= {{{correctAnswer}}} |
$\therefore$ Jade has saved {{{correctAnswer}}} |
correctAnswer | |
Answers
Tags
- ch_ratio
- staging_suejones