Measurement, NAPX-I4-NC22 SA
U2FsdGVkX1+x/qO3UoooIsHzgdrt1hNKgsa+lXvWDU45QzkCwppvAaDhLAYqbcNVOdVcI7rJhVvqhedfqtYaDoCbz0hOxs6V1s9DfiFrl06Nzeu4Hgq77P8udfypgkCVA6RLLstjhRbpW0aBmN15QvPcYfGtVt+MfY1E/Flp3ZlXUqLql2Sc59MIs3gXllNmkZ6hZxz3r2Yh8M+s6ijVlZ7sKjgFJFNsS89193OK3V/EJ8tv9Wnd0k/6Xe9s/J6r8zqqTlnxOwBKp9WQknt2G9puVO/qUOKKpqhI2Zcl7soNJXmZcMhH1OGeDZKBSUfcrOlCIqPlVud/1J7NHHp+Vs0MjuyPPUwmSlsWKSspYwdFqUjMi66P1PM/o50Meu/5BvZ1uPSIYPPXZkENNUtd2MXIK7UbNAAqBqBMqRJLuUaHAlFrAbYP4M6GBDpN+B4uRZYAZcSJI+q2BIwczWTz5+lImuISoajc3+tKER1TOWUvJw0rYEPE3dPzPMBuAHpmf7QQKtKRnulvT+h8VZ5Z0fFNAN0Dcz8f2Ks5Mh/WIpp+RLvQkcVj88hihFzUNwM4AeGhHmtKx9+dCYZy/4mcuDIJXb4LLw4QKA85ZbV17zaL9X6MoEcOR/mQbXv1Y8akugg5LID+NnBKmDbt0wBsSoDs/hEqFfg2VBxO1cNNRc5yKphpUWY3bIdxVFJiHhFLgYTubrNvSceRbD/bhbiOXx14w3020toFVYZ5/3sqjCUQQI8Sh+Y3q0qX6VorUrvV6RClnLS9tcUfu2ip6r0b+TgOufTMZfKXiQwktclfjgCGmO5uhXpVkh5lq9H3ONFqnVRfR11VDRXsppnc/C5shuaE72ezax4XL0zz9eucynnlVg9DLjkqsGbTTnTHONFht28Ts8POe0ENwHF9YEgI+oeM7jPZB7e8IwqmIZeATqst2TIGAyQmOZckAJuueNo+qq0eE7yTzVifnY1xXQP+c/1iHAoJAIqCJPP+qMIVuJEp7f+XFer1nqj0ZEeR5Pset5uNBnKWkYUZlNuzNMMbNykmdbU/KLKLeGoj/YFfvUpogjdZFRbZFBUlRjYnGGcxW5ZHLt+gzPv9HgDDoaxYDarqs/KnbKuXrIqOnsLobXTLzwFnDhazLq/KpuDTdIOH/h4Jdkn1ZhUA5M2rcC7ntZEU4xRGcz28J2AiET96VLlTZ2HNP8w8DhUgp8C2w/qBt0fVpiVLiSgqhJDhmygc6Olv8yDbgD3XYlTxEFWFmESCK9xmX0kyRSmHBwE71VcmagRWpk39Z7J1CiZLbkIwE4Z2aMM99wE0t79oIWjunCuzETJCYJbToubyw2HhXIepthdTVYI9AF3jCUnkDReGN6BeL2lxFwLHRR/Xz/h0wkni7MjQnASfdBp498+V3Z4tHo480Mzu3kABH2lv+rtSQboKQENz6bkLF3TGiV7hbmIsSDbdRJhQjkw+6EmJoDDblE3O5NUTrWlGudkplIJbi7kxlYjAASmeFX7lhSnCl3DxTXuORU+Bl8/fWahM/PhMowK9VMYQW5FyPsFfbzmVjdLilpXRjkxs6nju1Cy06lEwDyGvVWIOqUiMyU+58o8q3RLt++Lzrq8gNJh0xunRxvsZEtLUlXIuTh2Bc0h4/o94YrbF7/Fq8kw3R8RnunrHH9UmVb2fDEB8IHfG1VPXSfEalbnDu05PJ33SZJ4ZoMjPjxNoRI5ia2wrzBkU5GQ4ldyHwZunI705JQ8/NDvxuRwHr5QIF24JShqTnzfKoZDV1Uk/gBQ/YCwz6RftyLMSPE4SUzv76DfMYbRjZi/x7CCDeOwSxFhO1E5JRwRTyUw5zEpWbsoXwoCzxRYdPMfCiJmpigAwUV/yFHUK7RQTf36yAUcl6+i9VJiGnheXwCI/k3k1SGkrwyZIytUgQFLVkoLBbuvh2wBUvqcuo8ErET38hOjWgCa88hIURDb1xBeqNM6N2Mvc2MzIiO3fcupt9yByv/XdMfbUrf5yftUDJR7aQtoFBD4k1obtAyNWlWRbgFXkF3NybO/7O9iklQfZDuAG0aU3va0QQN9tPJB8UDL+8/0X016YPlBBWDExgoH8QaxiEHpXSC1wGz3Vvz7iOyoKSGpS4cVQk1E4LU7LKFUzNkgLkIh9r2NUpjzqkszienRu5r8KD2zvk7Y60PvFZMN+HGKM2stysFMqsfKeiIrGsKXh+n9OKeEo21Eui7seFwj4xkOGThqGdvtr6apTG/6KHmgbT942u5eV+LVpVa8UlvO4b93Uf4a9lSDcfhSTXWNf8pFPuDcCVmh2OSf+cfSAQnbr/pPacwGap3CSLuomFyjufjrE6seJncQSDEpzOjyDaJwW7yY8iRvyeRKd+DrKRx4rh/ttfAdSOdX0xarwGQ3HJs05qagVuYJqn8pbyAfxTAmlhwDocfpnO0/3wsTPE/23oWYePILFlrtdDBVGhm5bK1bv5zYw8PRwOA6NFC28+NIOT30m0jefx4NY4sX+Y1VNHWGXJ8JFXrJofbkaTd36zXW80opX8sIH8OaBbMMzs6PPkxNZeYRiD4Iu7sa7gVPyBLEDzTtua3qq+4Gm+Up4FkTpnD/rsmv9hD4Q5Uwgtwd7zwFAuYfNWOLuMJYnQKCzjxJdydmBuUO04V/gAez5kmorkeN+7FOCPiZY52j91lQfrOBw4ELgdCwawmBhEw0QLKeJmqY8A1lFBHZnk60QKewwB6YbNdN9BXe2KFQ5WClnHqSwR2+5EvVAJDCUoZ8tEdp8uYdH06lOvH/fSF4P7Rd2CBRcTf7rchMiCViniESqNXWDFxw+56jeBtALi0o6yXGRoDMaMkznicAoI8qTg7NHNFn4BzcyQ65d5ENiMc1ZYKjAxnOPRhs87mPOB3wNSeFavEovBO9nQ351djwBGWOB3IoqTIUaShN9ElzADvmEtM3V/OTTy+RJDyeTc5BI6sf/c8gTe70t2wztaYEciCBZFCIf3E8Eg2vXIjCJKUe93H1nAkCs7/wnBLYxJ2+knzuqNbHcS3qiUXTXG0siWGjgYjVeOFGJoJeQRdbR2aBMeWUhHZJ9Fg5NTgFV4zK6q3fgvic5U3YyRIH7dmzUhG4uAEiXW7CFOl9BIDXf0VbyYdocoJ7OOQJFWp/BysdG3t5YPJKCseNeT7gR+e5bSdxGQ/gEG0on1tcFOVcau6EUMwAp2boQktxjMi/4yPV2SPZhPaTD5x4B+z2gZiAb+FVDoIWGNq0RhoaSeSLOsC9OvMKxWDmgaNw2utmcGUuxOziKsetOXdcs/DVdHLYmt2tvGRTogppkZ0mGC5iFKyZ6MneF89ANueJA+4nQLpITxG8flTMcVtoSHrC7+OBqNmZICSlUeZDSeeP136hin/OqT19omcpXpNkZ3Wj5v4FTbAn/aP5yZYOMWzUR1OZddOvZms+wVnrQ1wMRVeaDILbcr7xMiDUvrcdEJs5ShCOL5Ug8xT0Zz+E9FsEUOywr3cnvu+FLdRGWwJhK212dbwjGtrqvf0Ps9pfjg7bmlG6y4iolxQ56rggyQt3895mpciwAFgnGcaedlngnTvNUzgLZlrhMUNNh+kKHBBZUOCm4C+1hA1rsV6uVaUU5pcieh+1wG20ItHBIrqq3c7C5YvZYuwTYkdqxEHh1nqMG6nxM0tP4CsgE6AqK2WSKgL+1vhozi3v15acNwMSOo2nTRoqUB+qcrD2u8PirQHq3+VCM00mFwq63czwOE15u+hF/pZ08qJ0SMtLKOH+8o5nP3v9HQoJKk4WME7FiR8rldNWlKv01DdTHkT8opbN38xTamSbcXWgL4/5YdoaS29s4PTE8T4sgjdkjJsfvnRTgQrsPQDSd8D9GTn0r3ORqiaVyhMUYpUdyZ/KcOTG2/o9RkraJyustLaFjksNcY6Fd/JopvDWp2CWo2Cw0EzbAO8Fza3t9C5PtIz8QBG7VK2X6ztWY+aNgc84t6XvCsS6Lg70Ojon+AhtHN0ub3LjpQRA8T6kI8pRtOOQyPl0GOmDK88kUBtZjyphXwFTNdDS8y51qLmV+jbenP5uit9eYHYToJpIjj/iZ+t/r60Bbb+t7Gcc6m4cJiHCnXXZEAFRMIZKjIlaDEnC2oSSYq4e5hPR6cell234rFr1OwaF2e7/AzV0QZhgFCzwf9OQcoVrc/epq+GxHxwX0sbsBf5uBhhGRFP9mLIDV57gks0GcdkBzM3fwpeuDZnzY8ruIdxW2NWiTLBPVJBT1nmbFWNIKh7q1ghNP7r9BGDqyPp0k1wmO6lDZSO0x/ibT0WOuo67u8xWv94O2YqULe03d0HDc9UdU4sOxnl8cTLyai5dVDhu5vdBGTR0l8XVjzQI1p4Fs92qu0gnLXRd4bJCE5WK4NcFibRC1x3RhiDeXvbzRNaULMhHG1eZcu8W+NsWHLUtLiFVw0Poja9FEn1F/+kvQwo6ZKr04q3xDDdtcfSJZFu7iJSc6sA0t5HNSnrHceBMwsOO/VIF+h5SMAHRcj2ml9hDTZz/vP9XWvofA6UQXFZ8c6A/XMdo98/Rr2kUtk7+u5b2EbSHvPL37az/HT14/cV7oEBVlkRZwv64J/WMmIharGwK0hwmKNdGdjApXTCbyrbODxVvrEIzwWF4ONdKiJR/VCeZwpN6l67KTDhCTAe/E4gF6B9hg6BKmuUD70dcvvB7pUWJkps3JAD4lo+eRrvgyTy5rfVBLW6Xifc9cGj0/CniaomEj5UKupB8Rix5P43HZRRQnzmZKynCy4kCM6f4EYGjroeB6hBfJqR6MfIoNLVZSwW/q2m54tRGrpaAOQATXcZ5DcTocmijRERx3H2gZy72kg6gObM6Nr96QA71aVgOkRwMIHwfjJwZlRCL+xRGLjvvQkVoIrLayOYL2pHJ9MDEh+Yn08tq9xZFqLbSomCqaZWW8UAV2h+h4WZ6b0qLLynUvziHDBVcU8FeDxRYSBrNJdfYPb1EsQ5raWnxHmFoVTzAypLpI2f91ISYRwtTiVc6b1sWJh43qWugZz7W+F/jmey0VMCU5FG37yP4KQM/KyZtNX5MkitfHa2E5R4rNAQalvxckioNmhtkDPi9nXM2sr04T61Ql19SGrqYLwtAS1f5tqHF/1JAIXY75SmxJ2BTFsFGJQDk9VGwnlRHdhG24ERnhEX+gjKfYwJ2vonDCU+5GJpklfWxNV9UFx4e5d/3ZjzWSWU7qGfUpjtBy9wkAa3sf8tP+aEWegJjY7QoRbIoWVrrZycj2Hdjbwn64uoHe2R0upg3qsPCoAhDZetbkbs6Q4kOGsPeKgYdnNk+YEzWaOLNCIG0c5CoL95PwFCC0XrS/ZayoULuKGVCNvEuDEDFfq8eWhjXmSk7uo4+mBd3LxT/tLppqp7EYa3Js9pDPj6BzVIuCve/mrNu1nXbaX7cNBq4IaPHKDX2zfJGR//xNg1jIWFLMTe59tMzbG4qqvOX0tL1qUfi1A56lspjbzIc8RseoU+VyMNuR2RZESdorNtHXmorZ3q9YQUpXalSAAd7OQbkgOOBes3g5NRcCuUOZ6nUse3Cf1/mucZWujwNL3ObPIP5wthJ8gn0Kyc9uU4mcejM54r/AMN4qubD+fraKZy7TQNLXj45+QZwIHpJ3wKKy4ZMmI3pG6gbTCpba2SBKrQ6fj5WG4LaP55Kg+uXLj1Y8IciD6y9sJZlc6s+tzC4emuttp3BF4kMcRQ0PQMYP17zorsMplXF7TnvrAw3e3frfH0A3EfUOPPiQAySJgQte9JnirHMWRHQzAghietoVhTQ6j83XajnboEVxaISDbefHN1g23TeLs/hc2y/mptwOggDM1+XKEiCIUvPJ8E+khKRx6qgqz0xaXFbrApc3/o8+fu3iVNZ31hBfsVljvCXnselsZY5oeQgiq2VGuZTagjubOSTxROJ6KsHTtdCZQ7LKrQY+PtzMlPO3cTchsK2TauPqyob4XEc09KtcwVaEQ0+S+Ncl4xdpsV94pD71a03sFD6VFREdUJyRsKTMOqvh3rCymB3kNLx82Xc85eyeTTmi8STOryx73BYL0ycz3Z2rDzGxNkzEODlUZjW5PGnO33T1j8pIWw7t3XicssVk7JGcvUfiiQsOaJp+aJmAPdmFJsSw3xHkvMoFkJHALVgUIaQbtDexPuq2BtMAb9MeR5nkIGyj2BqX2oO1QP1/9W3bvjb1NGt+wrsFPZOSRZf7OFs/vu5Lj3CbieVpgUmO7aAs65EKaeTtpmIKTnc+88nASldTVSgKUqAhQa2XZ+ghXnN5+i3/ZZZLhVktKdcwZ8FzTRPBTiLEcJXjSXWSvAZgS/tx5xAau2+3KMmRkt0qejkmHzQZLFLzS224OGdCHQ5fTOkrIfYvAIDXzwLREAC2s3v5FaJkGWksvFqwpQu5M32c+ir51pHtwp+Ys1oyHZH23aOhtsfpDxGQ+BGJSCzFCHdRI1/f/+VfNW8J7NiTB7++E7eEZ43hYie7cH22j8m+1tnShk+MSOZhVxdcVG1D8VmGYrw22mvI75bTcVwdEUU99wbyVlKusuVxLgsgAYhNdOIacdPMv94m0Vk5nOfSGFlmLeF24evTAG366Ia+QtNYLxyXLI/B2f8Hn0Xs1OKvgohDGaV+1CUKWYdFNZjUZHWEIAgU+njDQr/7/lbbqX0IENBnq2hbct005bUj3XOH/KLVnp2k4+lQWqK1SajoHlf3tSbzeWnBGLIjN6Pk/mZbl3AIJgDyAX/LTsi17gd4FHb/IG5sabQh59zmaiJ4tQdTeon7ve8Z4n8uXyO82jLEamZdAq/dvez31hCnP+95zJftPNdPYBQDX+I4nFiyuaoSjgRzbfg04Z4MK5KPR+LdxdPV/b8NNBAljvimZcaquUn5Gw5YSM+sfsmTNVNkoVCRu1E1tfELQ/VyP8q5e9ExSlctlpZFww7xN9iS9+33yH2G8bJE7XQPeN2Pj9xmpBSgmPfZTZOXY+5yYdBmbXwANVlFYLh6usNUuBFeMWQd3yeTYrVxu0rVKAwbv5dYARz5sNW5ITAPwRxj+isZzj80QzzW87JAz9nd7+H7NaWgxEFvzeDmqkaN2WOfR3cat5nTpJZcGtGGViNdYT3+bW4OZEWsacKxzhdSc5OsEMI4e37myypjc658fP86TZmuxt1Y+A9SWJhgHOdAziklQrv6rOxk9REgwPUt7crn/mBwXbl/NhRfG5fZUDa069bkgYLEU1ZFKESjzlLEoxwjGDBhu88D68NIlRvUgxrsqNYuvQ==
Variant 0
DifficultyLevel
685
Question
A plan of Petal's garden is shown below.
Petal wants to irrigate her garden and needs to know the total area.
What is the total area of Petal's garden, in square metres?
Worked Solution
|
|
Area |
= square + triangle |
|
= (6 × 5) + (21×6×3) |
|
= 30 + 9 |
|
= 39 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A plan of Petal's garden is shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-I4-NC22.svg 240 indent3 vpad
Petal wants to irrigate her garden and needs to know the total area.
What is the total area of Petal's garden, in square metres?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-I4-NC22ans.svg 220 indent vpad
|||
|-|-|
| Area| = square + triangle|
||= (6 × 5) + $\bigg( \dfrac{1}{2} \times 6 \times 3 \bigg)$|
||= 30 + 9|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 39 | |
U2FsdGVkX1+6zb/DS2vqyDIkG3P8ZWwWhpfIihSyUU7fNXhRydGEJ6UI8DEsHMqWxf+stq1FvY9u2dfH6YWFsqBi0sR3MbiSMkmsgAB6XNBsIqPSZ1WvA+F6pCGzgWuc8Ya6KAjiofYSAF9WtOtRwUezSx6D8dM+T0wGU+z+227HkCGBFI4+JIBR3Co326o5xBZAVWFxVVPwZTZbuV7WoCRt4BfZ1DRe9L3VbtvBV6TyDZPdCvOUv5oGgkC+wJzn8hvFyPpwo/O7qfl2fEHJ1rAEc56hLpJAc9W2Cc/amYQR1PjtCk5z5pA7YDbVyF2M08HioRL063GAdhrS634PPafE07lOdoQ5HOsStotV9uPoP7xcSBiqDFEh2lxpVdURMqBOwP9ubeJUrPNUp/8FnfkhAn4GMYLN2/FfpwElbg6LK1NrFZ478CtmkuWddSrtDLAuwUHQ2dq7fJwMYa/tvdnzpSFNWF1hd8cdZ/+M8FI/t17RFogM/bGkyhkEq6QaIOy1w7GkoirfcSHyH+PvZqigK4vglEvNyaET4Zj2C2cR2hVbgCbE+m6Jt7b0FL0eyGXsI7yQ6HoBXIiOfn4s7d0QXTl19wdih0TcLsu7AlwEOAi86W+40JNlXiEGG3kkXDrDZ8/smSNUrG/BgMD5tV+fSS/OKgz3AmWBk7BDJnRfc9gOGEqzWCPJWv93usG2WcAfZJMSuKr/ACsLz/5FOrKPV/MPtbIf4trVC2YGip/WgANwIHPDl9w/F8skHOER7ettyLPhCIdP2FGJpNUVlNtgluw7ke7vfeQBIfQhRwIIP6cSAkkqhnN2U0VhecLnrDyE2LUQ6L0EY3uGUNvg8zyS0YSM/nuJQXrP7IJq0cO20CeRi2BrDz4vLM9tflHeJkBgfevqhFrlsymmq7P2HffTfiLbj6qaTOt7rXFOWuAxj/CVFggW3aLWjsX7s8ebPApl7clHl+LntaCXIzFNFiTggr9XiIhYM3y8QSorXvEBurvXJWktNnnuKb2xuPzfMMHUWnmM7Y/zGYGtOzdQgF5EjRawn8sJcKkzSil5/H1ftcDvYsjPVnUZpR8R2L5wjYXG6pyA6nqujBpppAh5M70LvgM8zJN77EHE4Mmf3DM76CBSwygqtwasCFN65UNVxJphz7LGMstgnUWSE4YrEqeV4zTxyO/vLjPkXoGtp1q8C7sBfr1YPI7OnusShWlkmn2AyJH0QAy1jTd+kV5fCwlH2MFsBYYxptEc+mnekbaQMZyEUj98dSYo33L0cyuWi80Rte9XOXLPFWAjcShCZied/wkKlv3VxGTWXq+FU8rFiw1EOGPgNavok3aUWZQhvr89ZMzD9SDcQNcy8tLd9y/olN3jHcBv91t96/Op6+WoyWcFB2K7fybpio/1t3qjMI/j3O1Xyi+oAEwsXEvVVMw3bnb4uJ8VRxhVn9gX7vWJWxCG568EXbjeS/bXfRH0dPTAPUOANsWRubWPhU+Vhq4NtsrZBvWKCa5G6urAMsKnezLEHtrg+8WoTSNXH7R9ri2kH+FgFubR0/IYkTyG5AtS42zmZSsWttXJ87iGhtclqPLjk9uboTzlLXLYoQlpanNhTToBRGY64iiGA5zNLxtmX0YcQDULKjs0loyUHUEIlOBsoFpH9E30M8p28VtD8hKE60cehMpLP99vwuadT9jLLNJnVyY+S6qNH0Fj/VxU3vk3Dn/QcIKzu68zgmFsud3gRl+vSVDp7DQK9K1sOy/FI4Ebe/LrqwsQjiZRQzEY0A0DmD1MPD/AU0Nu6Qm+YvNYr86ZKWOd3Xc0Y2dDNQspe8MoRI8v20way19JtvWRq9KwotAvTVQslcKHefhi50t1Y3qwkpSHirQStNbxRzPhRfgJh2E10K6CDLD4e9SDjRvVf+J5bJGbwe+5S/h39qXQ30U7HQVKv4ZYxOiE35GNd3w0melt04lOllD4EW34LsFZ7tlDs+USZ1ewWK8hgD0Rg1SrjjvWulsJ3Je/ztqPovjD2ZfB0R4s8+wHOUuPgD0nk4gRfWV15uPldoSaSrXK8IaKFs84reXJ+8hIztuUoStFQph5FcjUHviIoy3mHL4IRHhwccmHClaulXHhfJ2pKyJuKeVwGu2JwVskGAq8qQQo+OMq0WXqBJSzjKXDLznCvXb+qbd/gwYglIkrIAqTN/F2Df/lYyXlIvWz/Pa8yrLXwqrP7ngy5kUldqZc9te3zg1+cl098Mlo1O6qKDOxKhOCb6xtd40iMsmJ7uRttz+wqLTDsaAfrV6pQcnXdL2+khngVX+/P0HsBYAOkmREvqyu8nxrCUJVK2hGfsUxuX607u1ryBNGNg6yTYXn9YZdqP19fPYa07wHD1D9X+GylwSovb9et/1FTPiRONO8UnPFp608G1baTjUbftnKBmALKuGLe4q1uVmKC701z5vI0tFOVgvzOgPudcSagHBOb3ntBK/Qjq+zmf184OA8eSeKNwwc4jOmg4f99pEP8KbgoCP8A3eymqKNl+uU89Wcfzy6YC37Oqh+XpwfeiTUTZuju6ViIIy5QQM948XMUE/6H+X1Re8m3ci0RCxQ8NKrFDzVSDrmb/dA9lMoK/XaZZHVJ85YBdZJedFggyRf2h4NSzolIkt0JaYPewkUPF9X2XyqZQyqycEQ9kEuWUzj0NKEqZaFCcWpeP/fP2ul/AB7EF08jgpVS93RC8eDT43aSE0yuIHBvp5mIjwdz855iwLtSozEDTuaq/XkYIdld5IvbRf6D02qG1PVXiIm9Y/BEUm8amjQbX+H0ZorJPmUK6BjwJ/XvSui+hid/3Ynq+5JogXcyC6c4iendidf15wKbMVEz/TX0X+MbRPc5VzeATuGNsxHxuc8m3kc9XVYlf7Z0g2Dn4An4qqjP4H2xpW1Y3n/SzGZBVyALOVR9cZ//pjElE1cTBBzOkyJyrjCIq6e4cXuGnInRxNxUOo4yNRQJM9Bi2PG/qs6rzFNf3jXKzm9lA3HHbGXnwuHP0DlR8gk2WNcgeD1q8mooXEHMub4DNH8a9GlCbPO+kZkAZR3vNxq2lUJ/mF8sDWQxjwlGkrHTbciP3P5icfCgm13Nlon4kLkKJH/t88UTj9pG3lRPmb8wikSBZeGFVUSHXRpFplirXyhzr8dVdQUIrj76Xoo4bugfQBHL2DoSV8JiWD0ZqQhwGv4TGW8mfIWsRKuBdxfoun0ZoojewkbIP4ZDtP8i9LQJuPYn5SNb0XWODIXWxdVS0GSfRa9ETrl4pT/TCS7aCgwxfqwvsSYK4BtwzBGC93xbLNjedPsU4SIO07LZIb4kS+DhUWgeNU+zEutcAb5uo4umxhY1lHbYfKyQ1sP0WzUR4jQQi2b21DkiN87+OgC/mg/d0wKwOue2YESTX2Wvi89QwBZjPJu9gcxxzzCf4wV0AFDJgRayxOS2GDHeYANmn42FpRKmhn8yiq4Cns49HYyL6EXQ65pMmYeY5KBEa3aZt4c+7GhpN8C+rCbWTAaheg31lEeoNSTcCNVlatA2gpaYSimT95oQcCLxwxxUJlLcmIfGO9XQGbf0ykGMypcaa6sgsLq6wZZJUwYYHFA6HzZyfgTROtglNhpXM750NURSpjzyUoj4PdoYHg5XWTyv5LCkDC2CbglbUUAHVsgcUxOdRuH4KSBvpD0tWUpgogOebrC+od43P+Phu4LbysC8CJQZ7W7xel2iomSzeEk4s+qtaIG7fnhVCy6u65uPNvPDXnPhhfjOHmVa8mEMSaXHdNNssIFoGzVwug0wl7Cc+4HQn840vJBZYkFoOGZ26PpMmq3+InFeymlq/JQ+aLwaQJNemOH4ZCTKRBcwpYxhjX4qxbyyNZ1L+YpEj2JGMzaaw7gFQ+9MtFFIkBAjlEZWVGj2DzRzhdzylQPGuQjtwRIqB1Li2LgtNdwreMGBq4XFYM3ap0m3COyFqh5q2PduQfOqXluyvSSnIX0+VZkIoRgohYp7WN2gZG6GApKRhUMyuJ4emlIBIBv5M+KdXy6BPSgkAwk3cmHbwYgP0voMbfFZ40Kcm3l89AG8bwQ2I1yn2avOvCAUEGbAdXX2iln9ZlyUlzrR0wRWQCATRdcgrLLuhr9Rg4Cw1UtYNTV7NPRo2RzMVYg+YNvWhneSAdcuJJPcXXO4qB3h/Gg5Vt6JVIHf3cbbj90YRPblFfJ86pnKiGE8RyGiHFyUFJi4PlfwPSax0IFV1CvnXklROfeUU/fNjfHluiejp2xg6ALFXTnv1MVclMMrB/iyuSgIyPkcKWznDHMNMDK4WNYjs6oZNQgE2h9md9UdIb2LEJRDRn4tTQeXdC/29aMlhCELSIGIYDDcXpRJ0OlDe/Mwn4zcC/BMqEKMTv2z1QuaRVP9b4gRfjM9uqqyUK8+2o2IBVRXpGygTr4nXJ7nv4721xMnu1GEeU1PDJVaQrMovV1sOjU9G+14YLBGFxsD6kNtshV7zfP4Tyjg1/3UuX+qkp1d5Lb/X7I58agUG/qXoOwvttDIyVSAr3Njp02vsU6CVMvWyDQ1eCp+t+4Hsu9SPzY3IvS9fXcUa8oB9sv7wYS1kCNCItJiJRWF1IAxz4WetfgKW72QLsqLNlXuM//x/x10tb8B3YdPqOj5A03JmXGLBaNs2pu8CRGZZ4O/CE0xr+ZxlHKIAN6nyA5wJo/TJ9NbzIgGCFW4VIjbUuRR29Fo+uLhdRglR/SbSLpQxLeQbIBoUNXP4gv/N6J/Z+rEirMKiOqj+6QUsmkFWQUUR0BKNmV+gCLEcAPphMnSNVn1uCb+4CtMbVuCF+DhfygA5Ii/dHN+j1h/+jFbNp6trpkEodzEQPNE6ymNMQgeDQ3TcF7Xuye+hILETBu82ynTGOnc/w292MS2AcelILJN8SlNo3ydPh0b1Oiq87C02sZEURq8rFWTHGjjdDEb17YuYLIc7ctZR0w4aPSLasiAj+w5Bf4VO7jrLgCCdltv0b7HvzoDrQomnrZWvi/FeeNCPFpucfm345rLxSs8ltpwWok/kkjERgXytaqXioDk1Ld0a42JQHA0sY1YSdryP6j30XgGb2rNqGaWHkxilW/cMNANyrgfcc8oKRNRRs0/wrn6wc0ja97VL5vzi7VmR4O5yAcKDOBEVmDj22o9IQmA47Uy+fs0ZuVuQC2rIZyk6UtzDLf9rdNh8ynyGxIlxpllMhAif3NVX+SmoX+wYkYU12cnSzROj8SxzMGMrdHkJO0sfm9RJl1UUphk7xMJLoEUMEmEN7suOc2fg3AuulrCeXwbZU4mS4s8gC1DWIOWN4BaSqi9gjqPctyp8vl7VOENv1CNTr3zKcf8Vdg7R/cl/fPztC2O30P5iUoPT1/viKLanOQnIT12qRLnYhzB2sksIXARsYt9y8lfzqP80EpGAyAV9AC7domdd8SkxluPfDPMLk6o0Wbl6UVeWfYHvJKV8QIdNLjKXxsp9y4sm/RGDurxEjdJKrjAAmYsl10P3EUoZ0jH8BKclxEpE3tV8RGqdev99RpXiidvYgPdF204GQefR3Jf0xk986pnP7LV97QMImOkg00i2+poTaC7/qVWHj62S36wCKPuBTG2Do2wEvuA195IGZ/CZKBxWAfsHCFBWv8CB2OvnzlbbkTbDDOFWXMu0HqxXQIXujd2TcBeeJboCaAp3iIxotFJIlFXEWBSZDwXDUjFLQ++ptmuEJil4QL5+wLvxgD1ZnsGea2ERThKwysVmmezLLNsnG6wGTbJs+4NfGbTmTnZak7TthT85eEpg+LnKzC9CY37cbOy9omphP3feAiqz9yN92027p2IWefpKjE0dOa41vEtiSksswy2cVnJo+ojGsX2LwxkVfP8fEqWp+ybIAYXgh2dgVdKswmQRp0RLhHHhz1iZzRKaDdhJo24qzg3PUW44cnh4VWQXZlK58A9A7N6wIRlPCTUaugjrx6hjwv1e4qybfzIMQA1wWVjOUKShzKZZmcCaLRmOTlzxuHgE3TAd+RqHBUDT5mL371jf7gY5qSobtJm/iD5nEhqgVzdxmgXiE3PhK3v2OCG/lLcQ7ZXqIml07g9fDcsBdS0A7GWE9lxMTq8Nt4n1IRyYsy24V5PpnFVVLJFW92EYhCf/NVoJ+ecE4VzCIh5lrCHklPlCclgLwqzsQU/4EaryHryJPBo5B2iZzvZLuwdX9hw4jwpQPPffPm4gk35MWBts/m1ofZf3ZRer+sOM2geNgpCbMSYPQm9r4dJf5ascpOTaIAMl/hYoayglWFBaWue9bLdV3zHLfiHqex1Lt90SWneVa1nGoFSQe3EWMuSjalp64dFSjFKbCXyO0/feVxCSPniAA5rWd8c2q8OHbssVTPBq+93kQ2PHgXE0XKOkgZnyb30NFdzWF6io8sOXZQuO63gGOAzkvo3ADud1kPLgmn2YpVeAAJudh0KD42FOYlbAPdAccSWSK0AJvBz7s2h8wMF/xf3YLqTp5E38j8hdU/Hybeph+P71jToe+WmeFgKApOoU6u7RcEfo6iybWwHdUMoAqDPBdkwnF5fNKmDzMJhZasUgi+EW5z83oz0B9F8Cc8MikBxBjJbAZGh7Ql6FfhhfoZKKTH+vx4AcxlQhWTF9UMzYvwBOA2xI9lb8STNdBs0D1pT/jJUYwtyGZ4YaXbQfn16xV+MBPqqeMnDrD3Q6EJ06DUkGcyB628mQ77ryQK6bj9iMVLRlN4A3+/epXu78zPFDBFFX2rpJVnM6jHUZNdgC7EYj5hrXBPx6xSu5IXRiw5QbH4935K4tBNshxDtaiD9QjEs2eXAkPvVJNWhB/I6OSImGCgLmpRRDFNVGKuh3htehhMvKMkC0xDzJgWF+xtfIgDX2r0BQKGOZKHjB23HkmrgHRdHI/QNyophFzHvAfLKhnEu0/Sa6qRELrHolHT5Nag8d6SW+sNEKFsA/Nh6Xxr88H+OexD+aDrBtkfbRmiHRxq2oELljb2DuPoDG77DDjv5fRXKnq9Dou+ECSzyVK7d7GofeO6jlEIWoKCCyziq8sHUWFcx4B6eolFPYvWwblxez8M3yG9meaZ1WIArgstENwPAmIP4qpV5+ZXA5+IrY9kvFz4szuwaRojQzzEge2ESB6NiD5XyuF5mDekhnXfR+5xVqFOL3ue/q+fY6byydau1R/Y7wefmmYgap0adCZXHIBE6Ij5NmvQNxYtnQlXMqXusxaw2Vx/XkgcYuSjdZSOLKhnLP+1MhWr+5XPGTs0tHSUYwYKsQYSckE/LeZEI37eVzkh4nw4Y3udfL6fuPtpiK2myDM9PEURr9pTS8lV538YlbFTAdFTKRpB/GU3vMPRuz9CCtXk81tpwmIuG/bFoP1849npdR3IuepH7I+AphzvSltNBh2ipdQDjCVuhQ==
Variant 1
DifficultyLevel
684
Question
A plan of Regina's backyard is shown below.
Regina wants to lay turf to cover the whole of her backyard and needs to know the total area.
What is the total area of Regina's backyard, in square metres?
Worked Solution
|
|
Area |
= square + triangle |
|
= (10 × 12) + (21×10×8) |
|
= 120 + 40 |
|
= 160 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A plan of Regina's backyard is shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v1.svg 430 indent3 vpad
Regina wants to lay turf to cover the whole of her backyard and needs to know the total area.
What is the total area of Regina's backyard, in square metres?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v1_ws.svg 430 indent3 vpad
|||
|-|-|
| Area| = square + triangle|
||= (10 × 12) + $\bigg( \dfrac{1}{2} \times 10 \times 8 \bigg)$|
||= 120 + 40|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 160 | |
U2FsdGVkX1/JJDQe5q4CbA0UVuFGrSFHv1lBlq+J8UQ95UoogxzmqrFQagLcGuQqPOG5ymmmsGfkIqeyH2IaMgFi5+GSHjSTYvqprQS4VSDkTKxxq6QlWzDL8iFzdAjEud2oO6gOC8BL1gCuDnMHpRJTS/V0yZcVeJZOzc/TXiOz8PSDB334zicUlkydcunt9QFfnbeSR7S7sZ6CR1Gh+KOnQ21v/7raQI4dAXKkMm7jznYMFteulUDkYTH5UEigaqoB5x5jDEIh/BA4wsYnVwVZsaq6iK0QV7oekSpg7Fu7/F2c8qX1yC7XHBta0wrU7TT7gwyqCXNwtJDcmKnT9LgPedzjTswGm1OSSECw69z7AKndrXKv4moqmMeUV/E6RdLVY1dSq/R8o34zcdwJmagdD8JDkQ5Kkna8YCyicBRWy4vU98ccBO+o7zl8Y1Noga/lEECk2nrKkMEzuTYRYvpxMOPHHdUC396HHl+BaoYGMxckGQ49zfxVZq0QGhSWYfMFWfPgqsBWB8r31r5+TikJ2lzNVuCcwKo9gX73powWd5u6yTFdtELBoHCd2M4ztJtEIN8kSWPEOXYNUvbBqQiZjDp5DR7/RoFf8M1WiHoUs3SovOQEREEO4w2e8NLbcQJ/uc8SS4NjQ1/3YE0rsrxtxl1RrRxP9oPo3h11IefF670GXPqMlvBwqIHmgbHTuaKqzpNrkbqHeTlkfa8zgru4/oUVHmxKBC8Y3t63WsGwPUuJEsWC0xmfEie4cYBstFjAiJo7ER23Y+JP2cGOz824ACvmxyrWb/TEeysYjQ6ivbSeFKBUPvvQvnBG9p09TEz6RDYPWMjNEMGrzCCr9/ud/cLEaxtQh1hzFTi1/LDb2IB06mbG+ycx2kXoj1TIgJvvcKiF/ZnAlIaqFmAHFTeXRvUn0EDU/O2vpgRm2muRgwtTaaQmnE5uloih0X+Mhxe6NAw5MFNOU9XPtqC+jQFPMaqwLS3igI8OSWWCBkzIy+h+pKKm0rVYwi9NP9OVXhQOohVJc3K0oP1vBCRbPCNhWXTiZ7iWBUhmFQKVwTtovs6RC8DMd0lsqakQicasJgP3KE9vtilZZi6tLQRYywIa43z5J/yyQ0RnSJFD5i0yHAmQ2xOV4LetBRMUPmUGTmOwg2IFjxe1nqmm+/rAIuDdB3mfmmA2E+5ta+4JAnqWsaZPvMtBXirtH2ZEj32sp/YlZtgQ3JVI04/LSaD7ZuaBF0YrQBNRbG/TMWSKFjFtzB0qqAK9AlhodkHGsL9mmlMfwgwqRJorJBBn65CPZTrpuiF/vRvpcKPpueJMwA3ZipwipQE9q7ofdAxkecobLAK/Tby+HKR03qYIG76Zl2Wr7DaB7BlztnDGnlWeYZpWAXNoZcZbFtZmgeHfgXMxiPjxMsfNhbmZJw8clBDnuPvLj11GOAQHHmJnBd54GH2Elu4Fy8x+ePcFj7I97PB8trEz1MAt6Hcj6k0sW2SbR9PfaU2Ngs2K4wY6SJRgxS513S26ZOGS0iBL3LJAW5DUtfXsy24x7X4lTQbaklsIp9H3+FScy5kPNLfdFJMh1O5w+pGbazjs5bp+0g69ArWdX5vMM16GQqfdpe0Okk6xCvoUosbWj9GJDHhZu0Sit+zVUHWHPlikhhcEYN/hmXnjCDHItB+vi6uxG3FRkIfVRVZImADj4h37D5NtnpdBXCxdnQasP9Ut4bnjbIJDQyYnVqmQbyslqtJfnUdFYGnQgU694hCm0NjQQfFUaMQ4Y6/O07b/4CSUzUnZ4NUCbdN5nKDrPFe4dMEyPX/S+R5VcXaXHLYDHBT7JuR6ov/nLjAjSoyjDefS/AbO/vQGGX2eO8vVOJe7OQo38zcP6zlZ1pHIca5c5mmFmDnj1KBWJjBaWSYUgtJteYq9+WNoxUqLtCaCuThD2uGgLTRHOGh5ShUi+UfuEUhUH9FtXVUgO13Kzn0UKb17QGo7aXKUeGo1i6T3muqBocZ8U9zHslThdZUlcq6NUglIdcMNW7qzT/dJvMrlM4rj2OMnXXRqLSs3jg3LHPC5oiYg2rCkHQB+DMxoZJV+ySm3QPhir45scYHPn1XDWd6yHxDgjAb9gMSQ7+oOY4b0t0tThbvDM457O5JtpR3IsW82PIW8zrgRE5s7d3jFlrEZj7abOWHP1mQEWBu37xAp5zLctOBJFHjrobQ+Lf/jjZ/0koI3vdp4gEtubUn5mpgNnwmcE/xlr0B4XJZcpXSd7ypnHcxGYhVfZxD8BC+OJZcmOAkmLEiU2Zhaotcrh2VfzvrshsQK6BPLS/8sTp+rlZE1AsHTM/U9oY3D8YC/1UNpoBR2j1m++wFtQT7S6TYMF0GYMIXXyGysg/fSuAy1EupAzjxIHUPadWEwVUDacCYkFqV6sZE6Pacmsku0OG9etl2Q8RiUCxKjCkBMJCmzTew3qMuCmoQ/ccMCcpWvINqux7OPR7mdSttIit0TAtetSWXsB9U5mnYqYazpWsYiXsuJQIMY4f/r59tL70PfHPcID4TDmYDjyGJwHxa1kcfZUDFqrUEeoyNjJZv3QtG4P+748+aN0qSssTiZMqbh/WPaEZLytDNKJBrQtOz4A1z3pRYurj0jkJfGd0ph8xsaoxeIqicgunKBBZm0ict+7wrHUnDcFKy6hpV0r8Nf/GcfQzJd7vxOtsGr8+1oBa2eXmEJIJ0AMGGQaUpdY4ok3/kX7mJFJKf2O6D1zYx9NAeAvsB9KLiZX4DugIwcQHh+GTU1ok7+800YLHCG/m0zHffHA6oUqzVyT4+/TICrHuffSh+kC3kOl5xLYDRWOvtu7GsXOJNkCAhhh6QJnZmNqHTQw92qA9oWSxW5KTAE80yBaofCM4kkN195X6P9Wfu9nzmGXEC3X0YSCE/2irr6SusIBbwPA5Hl17lN1P/hG4wSFoavmtyOg7pKUQ2fQUPbh7g6xonR0WEZYdMG1UmyNnjw+MfCy/cTIpxHUEVYzdsP0cpm21/ZxhGhmCCrBZlTk3IqiZANFaw97yRgHQMYwWnT/610shbhITj7HqdIEbcJxEN+hE9OBHd+QdYljYIkMhd9mDJzESyUnlxCOwGRZq04oPSA5zEP0M62t4bUqbHHGywhadCLZdVaZM+srsyk2Gsz7ufZE7SUimFuyDDkmIz+YAPGRMOo01vUZzhMpC7UmaUotr+TNFj5+ZiQD4zT2rn6rQzRUAYAVnSGPQubAkTy6TzGD65hogXEXrP5YaFrzvEUloFIcx15/pYDnex/+T/ZAX7GaPvKB5pBwdHZJRyMAlE3s330tJAI6u/MET+BpZpKuyzh4g8yIZ5zkG9qxQDo/V93J7xtJiBe4I+A6T9CiXNHaPkKqLywHWTmf7szt356IJX/xEYwFrADao2NI5o4Xr1KryCAb9gO3jAIZkJZfcSNgXiRL0j/WXfkBD905cAbFrqBxmXTN7CwbB61qgexn2Ac4rJfSLgguQrns/keyQwvh1uLCfdWVW1GJX3SgwquUIFyDMlIPbjVqep9542KHdMNRh+7VHERJWR7iL+h/XZqJdwP1ydwhcTVlwVtpvOWk4rDl00H9Ly5QdYk2+oVdl+wNsK15GcnvPkYOkG9/CN2lC3fv4rLuiJ2MBWC8IyzbJT1FiQzYgLsOXwbdZM7/1NIjDPjRM1kVwBxEpF74Fziut5+W+3pq+wMmSIMqP7aKlwZhEFt8YtoIFRtdNFAC19D2UcB3U9wQEHFwZONBf4BRmH1hVcSzJuOHKi5y6L79Zju6eUs/0WbJ6aL3WznUCm7YjH33RQXltCgOoNTXGUSnHr7NnEC6guT+iCQpJOzawEX4IT2LLJFltL+4Wp2E6LWIbkkZgFoMhcz3wFPtu/xhrIGnffVXENkGeeswFzUs0vbud9Bg3JyfhrMvFKYKd53sgLVlj3W0F3CGrjaPYSxHXuF9yzxhSHAspW0p0lnoVuja3XT7O8sJwCEG5J9E0BcrUgf4bg86edWV8RPMjhfB67SB3cvdGn7iUG2SeJIvTDlOqKnJMxXZB8FgPoizjlSsySdW5pMcG3ukk4x3WE+MSJXoYW3G82o80MKMp6cZZ/2+cAZkc8kdLQyz06yilg2lastDila3jYcRxVboSrRrL/mkXEETI0Psb5/0utycbjfBNVYP4mRP2rHrQWkEchuFK9BhlXHJueH2yebxEFIvaYW8QIFei88vPsvX/S6JQ3GzrN0O1yZy7jthuqXXNZ1RIixTNyqgGtD/4wt4vubIJL49slPayU2DqS+LAqlgtQcEw+llZgfY3LKVIigehc53bcvGuL9uWGsS5WFNZWYOCB3L8ix10kd3z9d+rT21Zra0O51GZOPfi7pG2QLO3zr/BQ7b1gbbz18y3isaPpGjJaJTkvfpE4dIjZUjLKxomBqYwesSlqnZKZ7NGWZRI33Mj5iRNBq27QNF5XbW0Zhge3ID+Hg7csHCLfFT4LqDVFbL4aZd85DLyib0hXFMqhbXXIHptXC4c+j7zHabjOFkVZvaxx0atcciobDEUL/3vqX5NT12rITkyEoXlNjxpd4oirm1JX5F3xOCCzOlLBd/b/ihlKYQgeyFoCsEQ/X5xtS/v44cdvLgig15fMWDbT76EA5O0lJNNI1qPO2CgYb5Biu9uttzpLDnvoFGEjWBUz8V5rG1AP2W2Obs63LxD4tgDfB9K/89wHAsk6jg5kjEbmIZT2N9H9cBMoJjrH7q5eaevVDAeaA22uj2zk0eBesAsbyk4FVi6QXmFACnP2jrrwL09MTT9R+SKZhfR6QTKZ4jeeX+4uZyMuDBtRYeawhyNsiIeUmktwijM0vFH6qnpDrf23HwX6aLPH04dpaG6/u5mLYlb0+Qyg9xV7R74b1Dr4+2cuUO7Aksv5lx9gtykDvYbhstJkWmSrWxfhtFtCP/8XOuMZsG/fVszMbdrwtq1tjjltQWyadd835galBmaQtqoCgz/dbKBSUTlV7NPcv3XVFaeoC55+MpkrsQFCdxRWJJBN6Z3Uzui6lWj0jvP/pLsGCtK6YNdgOcNmc/aazuzOxV4LFrIsUSuz+YFfDVDlIqF6bLujrpaGg8wYZKbTSsi/vYXdmxatjOwPQAUbGbO+E1hfHkqjopTepJCmxlzADwmGP4dCfFeRfAkFVrbDiqzSAhFzPIEzFTaKcw+1nxdYYApctuX+qtkjccI90lc/lIa/XUNQVMH88BIGIFc3fMVrNXNIqwz/Ltd04xZIUA9UY3RZGKXKwA7I9jK5lh2pYe2FUvfEUoB4/6iyqqKwx5uorxODQ0GsHzVpYacOlhVpIg7D+IQG6AtZLa20sS4zVjpGZxauSUIHKfPoj1hrzyDAB7r7Vr3F2ABz5Ta/ldrq1fgbfv3OZBsKOnSifWYQEBrUodsMxx9qLgdOpw6LAViKWC5PCewCTX7ijZANKUmb+H1rJDFHXk8wqwEY93SDpX0Aw6w1V8cE4QgwMpOmZsVYmw8LQYtqkg+GMqtJGvAK4PSr/zf9OXWzNbByH+vGAMfpoWa52BBEApzgj6aNJ04xu2tWLtIJoh2jgmhXrssqFd9JZXyWIxNEtHht8FKN2JqNc+GIow6u/gWY0cWw9O2xil1EfdkITCDSNHj2/9WzPxZF5XMT6dfPkPvtzdkA9xhtj9XQh34b/QcU/D7MkYPlB+B3lnxHawO0MdCihgl7d02di19PVaPCLbklxxU/CozhnktharCpLHDjNCNojB2zd1TfnXktVV+D0XDcSopkem0Gk/XPOYvruTxgm7hKcubgYtEQIMA+VPmtLxAsgt9km/ZGT43UFqSoxqlBHnug84WF1KU4b6ONl2e950phbIzz2O9HAxr7pFCHFu1OHafqLAFTq61Ap3YGrYHc8KE7H/1OFuvBWG0G+LRxWfyzEWJmcQEos2E0pQCY901RbGamuRM0jP0Rvu5ij719Eu2ZuOtNb/aWPjLhnrpKycneFaLHgFkvhyuH9sLBBT5XrvZI7KdLODtBX1qrl0P85BRmnbnThJYoHN3cJAcDJxs+120/K9UAnxHMMOQQ+InU5zK2an5o9mPE6lp8yWlEFO+ovgYu4EJLSyMHtNtsecX7ix2ABCCZu4GsywWhCKVF8hya1ZyWRQIbcGRASX3zPB42iZ6VntlmlHjA8PHICOKaA+0ebZNHroS4mCD3pOoxfE/Kr0c9e+UyAy4VSJgG2mr0Z34BUSf1o6430cwVXx2C+YOz/vJ5hF7NPoO3qlN8K4qvCQbG96sUCdPJ43S6cQqU7qTQm1DmQqlKQzzRmnlAWQLUYoU5tH8VYGGcdH1KSD0Hltod2FqO7mIOOC329Aw7D9v+Mx1KxGGJp7OUp5h/gsLI08YGuo2T3koKSb403izHOQ4t7BJXZu5VjbBe40xDz4b4WMhWQ+36kJMRFn+KI9y+QvuPCcvJKCKAawP3ZXnrAz6UGCqq0K4SGdZ1wFzYiIOG+RckbW/Z8F9Sz19ttH2zJfkEAqhYfxJ0VvGmA1ypsVTTmA2XqebWSzqZK4vsOBJhWmQoYylmB1biA63dVrvX5TYX/Je4723DbV+EmRtiql1+/nXB4VrBpj0+UsRlYmISkQmKm2Hx6rn40pJ5iiAACP3oGHhRpBpKxQWpFUVJ9f31DeA4obDU32+zCzsRpv0T/pMGWFqudvinCBJnOQmKlFFHNUD/Igw8b5O9e7ybSdLi+jDKe8W8MmJTHquniuyZ7oeQGkXsIq45VPJZFPQ+MC6GT1nRDuEzXluWWJlCGKi3Q2b5iCj2dQyn5euYPnTGe7A5fc8Od019c0s8CxVRWTspzMYMrSDIx1VFAsayKcCsTDYny5IM19a8Wfh/2N4AjvJQYUzK5oDRncdQQyGz8KbTqjXKnBXOHSdTRgMpv7w9G3uaUHwHPKODz7G0sBAOcSKaaT3OTc+xjm47S5NE+jwXQ1AmhKXBqCSsPwkhMKaiJwr7poNlK4ZSn9SAM0Hxcslajw8E9R6Kj1sZB0slX+KoERvqNKBSP8UOJV3DPlm+AkDIaL3SU5Wz7soLYnivyetsrGniBhOJbLA2nsJwPn9zpppoFMvVDyaKiCHuO1veMXbolkGrUiqQrNhZ+aKEslo4dtouSWYUTxqmP97v8uuL1I6CLniKAbM+dpUcZbc4cTL2hZDxbweHCPdoYrbmhRgOEteFr46HpuevC+L9viuN4YcHuljxHJDCO6Mk=
Variant 2
DifficultyLevel
683
Question
A plan of Ulk's Tibetan wall hanging is shown below.
What is the total area of the wall hanging, in square centimetres?
Worked Solution
|
|
Area |
= square + triangle |
|
= (9 × 8) + (21×8×5) |
|
= 72 + 20 |
|
= 92 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A plan of Ulk's Tibetan wall hanging is shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v3.svg 450 indent vpad
What is the total area of the wall hanging, in square centimetres? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v3_ws.svg 480 indent vpad
|||
|-|-|
| Area| = square + triangle|
||= (9 × 8) + $\bigg( \dfrac{1}{2} \times 8 \times 5 \bigg)$|
||= 72 + 20|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 92 | |
U2FsdGVkX18hWIyzEtioD9d7It2McjDFIBn3+OQG+oJv0xhPgk+f+ioKUoVf0ZNxg4tBbteRoiXUN6iIlOPLjrBEqnmyJMrLBAsZ8EhInj2PXkXm/S32+Pfd7nyLUdsnRZsjayVQeppl+CQ+VuCp2LPcOSomwldGEEaDHFxRjX0bIJUZUCFe78AFTBHSYGqmbBpVI7lLkdjTYLlfc8WFC+O9nwQepUG9fTHhMRF7eFth1NthvqOTSQ498EGtxrp97rcLsLnXQW5SYWJxTaQf6qZcDJpqD0S1gLiQqg0J7UVi+Tz2GAXwK1Uvh3FSZM6aveZhzt0ZveULGS5TL0oekzPQGKRqX5VRXVD9rZcjDIrjvoj9uEDh4RQVjE8fidWvJc0dq+kG5lsPVREwPWCKLtgjByO3I0TEI6hWnT5BXE2OCzusplviN0+57H1bnbMWEivi6yGvx1emDbQxcKFq8vNUbicqxtbo827q7+DOxFASae0VWQ17ZZwjsw4BV7AOoC2/hc9afJePcP1ZuNKUKrmYnAr1wIdnrg6hCTkJg8lAiPCP/tNlY5ke79pdTu4hMbpuOf2FexSZg+Ucg3YH4DMjvSTivUWDXId0cwUnQTe+YPKvlcFcFPtF6pU6kTBAwVb+7OzNYbtytZbeuBpSsODczPJaiSYdxY0rNJwRnNGRARuD2COsOEiXfHIaJnwFx61VC5lEfsNi4X6mtoWFyI3U5aEcC71Ey2mZ+n/t7CglXbyKefziPPY/06Q2tHPI+isgn6aL2vXDf9IIoNq1Hi9uH1ZvXFiee/0q1CszGVNxKEu4bNhdRHdZQmXUTM5szbMQIbSU70nyq6n/GpQsa27UyZEe9st3tCkMKjTWhOHxwa3Knr1Gjf5cVpwU3pL3ldEmdY7QdNoRSnwHT2/q0IaII1s/cGk4Ysq31hGF+uYmFkeX1Jtk3ICAtkqGv5M7iW/eY0a+AD6Vpzt/w96Es1W2TS17PBUCDkTCA3Ls8U5FcPRfkoJwKTWny/wJI1Z26WUj3qZRkxOFMCxYXLyEUs1M/aR2sYydTZzWGunaQFwcsipkZvXovU6Q6yl6cUsEf6FbzKyJNF/hfNIuXF82bZJuqOWM9uQeBNItG26GAOfC2YvQR+fxMNLvVma9Ojg4fIVAANNeib5ar0PIQF2yaF2kTLRb+yJ8wk3TdiCh6zTzuthMhhwD8g/Dbt3j8X1kp1ZCLqDBpYCM1lflkMp8NapUULyFLUeVxuqkFG98NzuVheZKFu2tj8OA8vojS8UD5WIqTJEeJRktqsQ1ML4K4gvsFhVs3OZVGbyfbbR99JzWsHa/ur1l60Wj2w+rNJ4TbsDHAzrwPLjxlrqN3HnF13Go4b+/Sa2s5A8xRrHk0BZFg2lVjdBNiBIIiL9+IzEb61I4v0xL3oyH4gNsoSPfXXjinA1xXtKKWztxoghPFkN9NxVlCqC3AvyP43U+nWh6I1w9XSRoN5BTAUueog4jx0L3HktlKY+KUCltfRdYQYOietzKWn9KKn0seOSlH8gArMi+6XwITCISccjVlqvuDgJfiPOsVk6WOsXj5ZbiXofNgr9aiAfZ1ULqlzk/HcPW+aPR5klmb/8t6Bz6DlnRqoyaOBhilp7cTICxPbv+UypKupB0WNURhXP2Wl6Tbyzf6F/YBdbVy2XIkLxVmolxNStrT4nrkPFeGKhhNh+SjLk17wiW5EBjyrtIPg4U0/H7sR/sJvEeREmWC1pxzKbBT9WLiqogmkpWhSJ112tmXyQKPgFzPdEKJeswtCFsJFIzV+7E6u8WGoqMqi4x3csHctRuxBtDTR2EA8sJAUA9k/Uobf1J3NZ+LsZA5fWbiMwNuuXBwrXO4/ZXijY/H6k/UeoOYTGQLbvgrPGqEgzj4uyoF9dCaHxrzcjEOS/iijhr4AOxNO845e9Tt3U8QnRG/8g1cWRLIKKsUW9s6m4sdUco6+5pRtWJDYvw1qR0SOCQfNOtNRZsOy94929T0ib1BmXvBqvf87UsJlsGC1ofhVCVtzI0trOtO0zbrjCAEmnMua8rgnJmNgExaUu8VUwc5hIpnXCjb0p8FXAFq71xDxKN3rviKQgRnxBG8nVMt35iSlK9xcPa+6pRMAPa2w3Aju/AjZ7Yo0/NSpYT3pxZlMFKasZLCcGdby6lt4mofCtjsY0jc7aG+PA9KaTDpxT+LUwJbuCx10SHeP6qG8hW4U2SzZ5C+vEA32hTaeT3UNEla1OZE3NTLEAZ5ut1cmu5pO25EEKXMaIkdpToa4L5g34cOtLexTimsvKh7mNZHRlHzFID0kNrKDjmo9TGYcjRAuB0I/WW/VP8alVKK2BEzjjvj5fzSkLDyz4QkRMrTVfe3YpOEEQB1LW/eDc1GJjZ3d2u9msW0yVGJf7BkXwx8rcLMO3f2ZERXem0z4Go6cdXpnYSG0n7jU4JkSirUIBKc3V1d0vLg95QqfUsrCLNQrkKNXGs7QO860OYXcbrlSAuLybpQsdrvkBez4WlkwJch7loRHtT7O3JiqlVq628yl93ftJEektR2gC37TgH5ojuS+kKNMyPD6XQackHob97pBA8wb8DR6D0plCch6wRRCRCNDggNp0aJnEfrnr9LDWW+eHDJqIH9C7hWPKWK/G6C0V+Lv5i0xJDCAU2l939YMScbL/UEO0D8rnybHSBc37pA/UMbjMrPcGRb8xe9wPXQyn/MRNAX9oyo4zuzCYWIEFZAKPqsY7WLNDuuAXAiWylldfPZQOVOCSA9hwzfQhloq8xLY6HapkLTFR076ElhHdJQGinuxTJ7jmJCNnRKZTLw4ALCUrxzWzAAQkikGzvFa1x1C2SNIJ0MduIuif4BUPymVUA3xWWmarzgs1RFnE3dOnMF7MdaUSxX3DB1MOsQzyJOGGbt+LzC2Y7cLeE7YZEde0uSo3/5MB9r6BoT2T/jv9nC0519/cXQdQ/f6SSCLmRqLE243jRoTJ4BoSnPWfPdT9qef43LQr74QcCjbahetOavxG51MZ0LLcrmZ3X52md87evzLtU0NhT6qtlccmn7zaTPLMJ0yjjNR6tXRYtk8RYm4WD7mTQVs98mgUoZBm3UbyE8E5oxhBynkaP1yBYaXesbM+8cOdl3teKIrW5TnICGpWqHo6cyOzxo+At4ZhxtQ0aKJmEBT6hNL1BzsG+IaC8Y2qYTKQM3J2nPpJC3PQEERswcoCrCnVFXr4ErTuUe3kDJpRaIXA4a1R06JyDC4EAwQp+tgB5ygyE2dOcQYcSBsmIUA73MY36wD1zNV7x05ksSZxMqghoj2QtyarGValThYE4BBByjfgCSA/Eb7gkCTER/yCIVsXgNTEBJ1eC/CHdJ4MfPN2TBzSG1sKKuzR5a5JgH9WY8LtqE30vl40VNz02agbjQLsclb07xCmnNGct04hnesqARRqd35Jh9p3+iNfIpESvds0PZ0BjR0Izz9GJlD/fGJH3AgVWSKQ1ntqrHEmb5nvPPwPs6WcuKZ3Q+lK8886tTboznahEKpR95tapeIweVNqE2Jd890EqaQSZaYp2BmWi4Dry35VmBM0J+4fU0/0NoS4J6OndFvXZ/3ZFCjKIIN/84m+eiHnfV+Si899WorUJACHJWM7J6J/OJV0XWXqT0t430qts6+Yy2CVXEMQrd/H0+d6AUOyBNXllRo2Hx+kDt0aL+pVyrM50hSvZwPn17h0VhvWKQRf6FoRReV15MPImRaeB9z0w3C8YiXEViSv7yV4wZcRTpfI7t8GHsYIh1p1+HXI28+Yd5hmB2EYY63rmGo6ObQMdqFrzPJGFrJGZQ/O9ZDghzopuTc+F+TZVfCExpBtiHzruwQ90Z/a8CQaTufeRhlWhtpZHY1pXkXxkz+DlnQaSzdfXO0c45pAf0fmbFeZujEtErtD8E3iHEhWJNFs6Zz8LWgShNjNGhNnjwpSl85GoFg8JiLwA/v1QrX7ytwD3oBzDdJHHeqMF+p84WJMQrhq2Cz5iza5Z7kNS5cw9sWVyyJwWblVupwJsbnX137dOXnJgK14hEXbqXCgwr6DqfMEzj3705cSN5+sJbJlFJP+DsEfIaxDRKVEUmBBgA4Gxnb0mAjUF7VwEzyw5YUSvkyj7gYnobxiBocoOLm+j3648KIoEQ2xQgrnyMAy6ehIRszTx2VyDA2Pf61DDCbC2n/Nhtp+jDbcpODzgUV3OZDZpbHT9Y98BuGVQkuF4ZRdKYIXiRGTUYIdIQoeVXalPdvW/bHF/sJrUvjUBa8KKszr1SOIFXgelNqywMwTv2+WsMmWVHF3iKXsLWJ7wxrMJouPWsUSr/02H6OFpXuU3KniAoss+xfWPKbfl+piI5/P3d445TFCLPGz7jXytVMenL2j5cw6DkNBNusqcQDyjD9OK7mabYe+LqIs2DzAgi756nUv/f3efc+BmE0Q86uX54RUYibNMKXPvCJVWNAamN7S00JZ0TxuA0ck6+S6yvqi6x/fgqBHgvj7iVVXB1ja4DrnodLdHotQ5dSD8P5F/j/1UIypkorwluLwIJJwkqFjZJOdBvU4MruqXvGMry45YF7pqIkKF7qCUH7Hb9X/rDJAmzIWco9zQ2caliTrN8flZW9/FWTAQRocZQarC+5UJcBNBZk70jMlVefId/t3VPd81GwmxxprG9/MzCO9zZw5duZKIZg8MNDeHRI8qV6ba+dn2Bz0WCXLK/zUG0ZaXyr8NE1+wsAGz9JOKO9X5HEm1AOmxAHy/nmwcociaPuho3bJYLagHwP5hf32/tVequdZ2W9EkztlmTSzsXTgZGokjxlO0BdtMVkxGZXjMjFvjqcf49RXBjAHbBx6rdOufPTKE2bAFaaCb3IqGOWXR2B2JAA7zeNMg1mD1r4J7utrwOsvXp0lJg108pBH4oWv2Lk2cuLXkjISkMXvq4HchMrNu9+hGF8DhJBdgWWY8XQNtrnZogef7f+SpAzswJgIXgCm/zdL1UDq60HOrgUNR/OC2LIfFtBfyPd+lWGotHINCNSfGznBe2D4yEEBsuyOUPyhr/Y+bGIW5scMBrn2yfRKj/Y7QwGjf/wdZc+c/98nYl+Mw9e9eH+hmnTZVPdm5GxFBg4ZAaDa85VhrdAcTZ9dcnJ3LEOYEF6b8sUBJmE54b7xnVT+53Cr0L3pWejrzB8GIgR7ADt5oMfH0OiJP9lqPDI5y0VRXZFmalNr+vIIjEvPGAar9CHo4DvVdlq+uSuSZdMPYR+nF+t/rHmOcyK7Vnx2C4INPE67cAYH4J6orjTUJWRx6DGnQJbylktri18sj9GcFEexBOIe9F6197ugdoVvjlRzQ4cwXNlfw+RzgJdRnFC0jjSsbmzAHrILXTsg3GCt1dK5QXSPHlkMjYed3khOJSb28cSjG/rbWb8HwU+4YAPx3sISMRtlv5Zq165Or1Tj3guGWvfDee5lEIo8H9F+QHfF1KOLTQ4Pf7d/JAqS4aUvdpLy/6OUEufWWg3TYKkCEU8nO1sANVffmY92Nwg3NwCe3ZdrqraYuYyZLMadoi69shnTVdWdRrim1GrLNNfXc/DIxtV2a7iUkM9UIgZ0arjaQZPSo+q7EQEBIh7jDMmO3Iz5xv7afPygXrlD9NeFkN+wPycijtxL9YFuJbzVMI/4F+htQXQdEJHKPl28xFDR0H4t79pN0t/VTeFxYSlPm4FH/ZBpmJ7mO6mmeYS8N+WIorzfHghX36jFY1LXIpaGVXlZ4Bk7vYcKiUEk1kRjCJ7LRm7NydnqUnzMK0IFvLhflCajkaIti8jJLyWvDKyNPnB15R3gTNYI/zfTT0G7wUZWbUNYeMciwgTb2mTahDFs3Oq4vVpYt+AbGIfEUWX3lHQa7qgo3+hGy8YNXlHnVcCEok/DbmF7+DDu0PVa3u/OXZko/RNkZVD/3tw1xfvrcQow6vws05sHm0s/PbieLCrmHur7RdgranGPf7NRlgLiY8MDKkvKbKXcNvhgsn7R1WhPNc3SjWnio14vSWyz8kuO2L6LPx4zfldMhGwCO5ZNrb72tZHyTaf1aVEjt0FmKtbz7IVeMkVVOoKYmAearQC8fbDDhFHIKVoiH/9Xh8//4Jrh8cdRpP7c1yi7R9fpW1bQza/bC5t58H9sLaAAXN6EecU0yJli/FrdiUu3we5Wsk7xS+w2pfICmnBjAaNnzpndGj9vgBnk5zqLpKKg6SJ6oldvv/NOQ3NehMEdFM35B0qGtdL+FzMGjbb+DVxxKvP8B5z0Mlm0o6pHMNqrho3FtkiBYhXwrLy5KiIfbi60Pf2sLpX2UcI4c8Y6q39/qaTwxtLKg9aaeWyKYL9VbPJGJ8G3M98dHF/wkvNTjkRTVzH5HvBe4WkPjLxCl8KAwR5cqi12GDjaETJhyhWvKx9Cdl/yU6OXnZc30X4NoGiTKnM735qEgr9muDfITKzGLjBEPFtAAJO6YQ4qt3zrzqYTlH7i06bFICFDaiahik4DpUWL0q1PVWckOS5oaxkWuyB5rVw1++xXCjzm9LC9geRrVlh5fn0GOjoHW1wknDcqr2SnuKzduWUkljjAaSfXcv0iNygjpSjQWWfnX19xwTrM21X8BPjvTY0lVpS+2a1BVRln3UWbBN6bSzNV71OLsb5Qxp0dFJERMRZwu+1QxgHhhP+LngB8cDfjRCmz1eoWVS9KOig8t9dZ4CzJhgZTjrl365hcjgN44AK+AQZPdwobybPKXgYAMK9EGTvQ1+Y8EHwkh9fKzYF6WeBVK9htq4kBmrTWTGRphWcX3wrCbhJowl+TCJknFw/e3qyv8JfANSnL1ump8P2VFr9Smiu9g1diE1LTPbDWCvIEUelBsA7ie7XGyXMQhVNh7qjSfgV/OKW5eKEonCuJr358gnKyhe/7PrxdpWQEyX/TfiiEXi2Y8Bq2NLhFzDCO9DIZ2i0bxD1cwB5ngfEk69FroVL6uUXDbaz91Huj9qBxLw+dZQrcK8qcZGBFi/juzrZC0Rj/xBDVLatniZvP7ItnGUThSokHyQ842SntktVgAMZ5VHvXdCy8DYdkC3YOZFI/d2qDgMItY/8X1KE6hkn6a5Yr6xKp/hepebNtCsjrISXjkwLRPd6cjkRH144VkThfjvXcz4+GIBgFvC3Tgi3IGfq8LeauSDbZalJEoNsPzXpfa5XrM74WN+WI/T/x3JfaM4JUjf5TQU1seoCYrFImRduypx6mHRbQyuvfKPnpOGfyvTk3BTTMKyv542QbfpjHE6YwqE68r2L6HdxluulFVyS9gIRlecoXSJPdEcKkARSv78YJmqG8YD8wu0d1d4LC5eB7Fr7zFY99xuzqgCandMdLRMXVB5bKxNGxif3tRVhXRnw1UWvOm6XJJadEH
Variant 3
DifficultyLevel
689
Question
A plan of a floor tile is shown below.
Po wants to tile his bathroom using these tiles and needs to know the total area of one tile.
What is the total area of Po's floor tile, in square centimetres?
Worked Solution
|
|
Area |
= square + triangle |
|
= (18 × 6) + (21×18×3) |
|
= 108 + 27 |
|
= 135 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A plan of a floor tile is shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v4.svg 330 indent vpad
Po wants to tile his bathroom using these tiles and needs to know the total area of one tile.
What is the total area of Po's floor tile, in square centimetres? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v4_ws.svg 350 indent vpad
|||
|-|-|
| Area| = square + triangle|
||= (18 × 6) + $\bigg( \dfrac{1}{2} \times 18 \times 3 \bigg)$|
||= 108 + 27|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 135 | |
U2FsdGVkX18Yz8YsFiijAeH1jMNm4tNm5dvlXJCgUHn4bSbuHOuNzRGehc8xCcyNyp7KDuxcCylIB4ImZ+FrHFvS/o/tEwWSxuRyZ9P3iXhY7PI+4lJYSFisvZB2uj9Gbm4kDuA95H3SrppCayK7nu/WsFYtJ/I6j65Nd1yD1qShuukYVy1ZEcd8euyFtMdYWrSof5GwTgu2gd3HLMZAT/4nTm7p6jjLYHy71MKbR+daNcBEdT2tjmUUwp1Xt+1u3GQSZ8+LaSkE7na9WJ8jK8sojIkp5j9rgD2xrYGfyZpjjLT+qvKUI66EriEvbWHweAORCjEem2ifryDCHDh/4DThwi6nxFYVYHN70svsMYPyNawDdJQBPSViKPKN+itiX0+vUOlx2MStyCzIOfAypueZy9H7v87KzG+6U6ZeD3fuH+/sWRa77/rqF1CpUOxndXhS7lP0biBBJz7XsLevhF2VdRe9QY0VMlXSArF2i/XJKhoOQBezALe5xt5yUZxgBM73X/kPbwfGBuKnV1IqN/e+RpfgcKxBq6IRTgcX6OoaHp0kAkSzB3WHmnsFkBDC/o1RDGVEnndaAWvPCXoEza8hL0qqeNjb9X5Qb8c8SPTd3YFoYqxQNYlTAk/+akeJFSjchdL2bJp8E9VV7L2swfi+V865WuMEOZct70IllNHVaZPH+1Lo1nfRLTy86UL/SEMrz4vzUBbhOFnVASo9M3fsfnNruF6ez0zwCS7nB2PS9Q3xYNonP0E1vkzOVFB80oCV+HFOe63uYy46BL2RSze3KFI3bzcwTEU0t/vvoCjw6pjLO+moiITESm7HGeKk/COllQ06qxuM1oNc6DeUXFu5HG3kEg33KKsRHH4cRuOm/Ggv5VqC+YSZpL45lT8eZ0Urc6VxEBS3NrdP7oKIfhzF0UxIWlRcPefWpOCqppso7YsY7CZ5uu4y/3bM6d+kz0Rdli7TFR+1ILu28bXR4fR2KgF9LPpZ7f/inlYb6uoeZcfS2N8DGnna4hp9qzcyIdWTrbrKpdD7655yy/413giq5d6SJOi6gViuEgojLD70TDr6r7+V+OBzyZlqn8ED3g3HvcBYi++s7pKxZgBnvpI+ImxfVXeX1rpxzkEmp1eXLrAu80kRiCBk5aYyizvpWs47UiF5n6aWC/V7/8/rydJoGzcrak4Dvj0WnPlNaabUR11zl6R99nX/xdn1fxq0mMTvV1ECHQ/jJ03V5VdR1wJyS+EX5gGQiLvVC8y6nQehK30zwO/w63DGqXaIe5cezaNxudulFrGTj54Adjqf27cblbMokDbPoXA364i2/YAssxC/6WxGkcyK3NwYXgVtRhzpK9ODWLkJA6q1ZPsFMb0VozqcveBTfSibnDjWlWarXDWYakEoSFWA1pyxkS6T7bJ0NYpkYuh9/oasLNqul6X0O8AkvJznnB1uNJ71T5AMOq4Zhb14njejFMLB9LJRcZa/PUQV6ZGnP4d+30mYcUdn228VZ/hhrff87HHemFBpZlmSN72C2zwKuQJhoC5DL/rNyAK8njEf+tFsXgwxjqfgo2HXEK7Ivy2ECwC0bkcKbBuJPFfPVL6Iv9L7GZ+u7J7hw+ZxpZzbeVAne5tgtIcOOCG8piKlNqqebcKrF58A+5qyi4s7fx0xGWQDG1RIPQAeulLmJgdGmZdmem7uokf5HCj4RMlBCbm4M98xZWEhmK/orfdJdIk24/zxRtSKuvqoxL/Z5vhoSXkUv9rOuKmKPsfgrSHCbaITUkVe96lA5OUr0lELWirjTTu+Rwy/D7dTKewpDDeH5Ps5+0oyKnGYu4AKGE/T/hDeAAcPHEeVnq1s8300c19KqQHMtpcSR5kBWHZpBBfssCnIIVTuEt/ph4Kk9/dxTWK9Hr88au6UZo6wl8nt7ZHY5+98qQ5e+yIoUDIGcYn7ULmn3UTj8foq+q2U1+kMoZWLuNJLtYmJgxecp2Ru4JhhRmNdzfp+3iFQ0+wSEhe5EmLm6shXye1rHOJMwELHOY/8wDQTP7FvywUqX7q2o0Tm8umK7yfzDtD28XO1YAcqbmoFeUxwFZCx7tYxlOqBzy0yc6R91sCFa9U0vYX/mJXPDi+A76vAFFUWEmyQJLPeotgJfYL0txn5gE/SeKoiB8MWDQHswfIWj0sBrGjUk9TY5v7QICx0THDAzLiPOVqVeKcW9Vk3J1oKS3Y+mWZhqz77e8ZBAAw+V2UrkBQWh0md5/jxhwFMpv27v27xWLU2EbFhFD+QPkRHVIfX4Bwbmq0mx6LLSKGjsxRliXMe9WWR9vsQcEacPfJNgoB8RY4inVTyupU58EaaUHoL2BFCWNYKAlJpVE5XIi38Qg3sHRYv+5mLOZL9MBBjZ/lfXGx5mxrCo8UzoUyhqg8ytecqMk15PCi7WPKIqcWzsuZk3i/gN5v653l3nvCZaqeOeEiJcGgpgOzfql0AGtKLbLez6C4Iun06txHVnIABgy0ok5XepvMFLWlL4xrNIMb53hsuhHTgajBvnQqehY+WHfugFpLJd21M6IEnjHC339bDwbQ0aSyHh5Kj3qWMFl9DpFbPHypKjInZfLl5tdn+RpN8LpBfKRj1U2/lpFToSCqkp52GLUa5gVxULTzZpeHzoZBhp6k9RZmOyVNXCmfHMxUiiE/lhG79iCfu+RP40ixNXIClJNPBy/Qiwjc8V0S/snhjL4+pklYyVjipXa1ypulkqsJpVrCOkptRG5nvSUq9lWoKcvzy4zyRBHMNn4CqhIJdb0YXXtuzyKZ35ZZjgKTSkD+QFQA3NGoRFPWBgzxatDm9ZQ5TEnyRdDG9QAcXNNnEUpOcMl+v4Rao2tNE9JqqZ7+W9WTrMA7fVfHdokIWBucHg/Xj7i8wkiVPGLLrsD2gje0PM7SIipeUrQGORLz5YytMvHGcQX4iti2wyjNwmURI/tuuGFwvjmoKEjMNKKgrC74jKVMH02C7knmhpHsqFgumC42y9fLa7FedOZTUtblEMt6QjVpUz7jsiI17mujcpYflJGFu/n2M2FyUdMOMa+UAeGTlKwpq8SWXw/+ZYWz2pnqIpTHkeN8b+9NqIm7ai89CHB89J1+SqdIEtlx2hM1SHCyWs+vxYCWZvaY9cWqg9QovNIMaWlYHSlKJjhs2mBSCWs85Iwdfr5ZVlurmC3HSwi27SjL7jwsviA3CTqTYi0Z3ICirALROFkXw3c9V2bVa8uXFQT0wb7wgDGzVnSk4NPaz3ZF5gPHbINX/7+PXm0wruVnfePQu+1DwcgeKny572/m84gSJJAJvq/dNrccXCtMe7ROkTzqdBD+gT5PrcDnQJRuq1liNwdlQ/IT7bqbb637kzHRezIcOBgJqu47u+BG5kupYtq+fPQa8NdpmBd6TlxBm6IPFq5Y1jJ2QUlal7Erp3y4yIzLisQeqbyy6f6gTrqAkXPBMEXscUEst9lfJbRikUpT4R4y6lNPeIHKGyTop78Gbf4DxkqtTO5Mz0YcagmO4IiX/mmZ9Mauh6useyp04Kszifqg+j4G7hKrHE/QRHwXOLiFFVRVP5vTdEiGpI7cOiu2IXtJaZvrRZia82sfZ0kWA7C12fv5PJhY0wcjrxUROaUhFhR1XW6GgdVgqaRsHNIM377V71BqmztbygZmIU/CYM06/DZu6h8qFItPVqA3RNm+QXayRcJIs+J4SAvff0u1jdmw9iz57JiId1GwVxbT+73ei5IjjMt/I7M7PMemFqs0OXH6PVniBO+BOz2a0kDLmgT3Hs8DLkvhLhNCCx/4Os7ygCsT9XGb5n7fSdnR9zVN5aWCHo593kOjCKMlrs68fsqQK/+TnmZWoPSl2TIjcH5+h+pkxVzDY3HJkgih+XgEtberFM5o7LxHuC6nqLvTOFGzJKz4/FoHl4qC3DzVq4/HD0qJ5f6wpB8C7l4j5La7E1Gtdv0DFG5aEdVKKUd2xWT8hZSYLhhtjHMiykbT/P5qRpU9weoBQSLV1P5EJmB52STN4nnmy5QipdQ4mMxuSBWxM5eUrvZklAYak1oaBvAX6wvYjXvmo9ha8e8bVtBmAb2tP0oGUvYnJu3l6pGgKSRyKL8IWgeRDyi3nTBRAfV7guVvuFar9hWQa1oe0KfqOwChyI/RSuuoxa/2uf9p1DrFcywznmtaniF7iL4nv3L6DaFATddhwCuY++sp3cvd19DPAxjpkLqnuwY5tzF0rQh6ReezGfP3z8MGNkz+iHQkodQWhsqZzpoHW4zJ0Fwx+TKeuCtS/7U8wV1N/UOEYTcVB6hAwK0cMWgu4qm69sN5n0IbM7h8BMKJRAkR4ze60QJ2hEbKLmnQsb0kKRmcs2FJD2ehyUCMCgfTz0U+XLGtzQ7a/TGZKlfFjz2wdJPPvSfFeIZBSuhCG79GradRMREgTF1QY3X923BioTw/8QDwNVfShOh3Sc8EZ89uio89fWTEkuzb0HJg2YIj104smbejnGzOH8szskA9Fb5QI3BAg9wqZXKtR5egM2gpKStdHNj5qfA+gMfwTuvTLbhuyQFC4/tVLBLkOq7PmmGmAfdTNmwGH7LPMtsG8V1Eea/VQKYtePNnwGc3auLH1cSG7UaaZYqhdznYkdhE1e5Hip8POcMh0TI/annP0MmZFD0uWUJqZ/S8s9hziTOrt4KUo7ztXgGCIlbe9IuX7ILqXjD3WyvZGZ4E163+d2BFrEO/Oe3xpeW1Pp5QZNbGkcQc/zEiziOGo4glUuZFHAr6ts7vZtCiplDkYnD/xhnP+7JKNyjjSd/Mx13SC1OvPHCr2fnHb+tyxYNL3QBj6P53SdYQplNI9uYkshKMgkSVUU9mRMPnAeYH/LvRr6iL8hhXO0PoJyb08mIEPOD5NGKfJacLrkTqh2DpSxhoUAQJWu5ROu1HjNI2dp9scMG38c66CSIEqgvUec2Blykxa6qLsPvL72cbv3h540LzQbXmvFnzOVZJGYylonuqhiVz3WXHXTBtZfw8MzabMUjw1bzKo+gXNmhYTwGO5zPKOMuaN0xbPyPM7Vs8ckdyd05/JYx8/GOqbpK4XRxDcgofSwFIRj3Bxc8NpHNNsh3KTt3FK6SvMcNRa60AAFHHGQ28a/jKrB9cB1P0M2XdLThUZddn//5PqodzNW+4DN+LFgL2uPpGjf4nIyGrvFVMfm0lpoNwVsIwIuxM+lFMZbEZVUmXHLrzPVrJjCAsT8gowarvnHcbXwkQTIDi36Ot0T6TqcgULqj7ophO3lUS/hJ2Z/5a0DU2xqJuZaGPzV7KjxsZbDYF07+L8QX6XzKrHeIuWQmlAsXaGF5iHYsoFhYm8WP85TeYIOQdOgdslEAwTuTrjKorHcPLnlUZ/l1Cr8njv/moTcCAZiBJJdYpqZe4y+D0npedmYMUJWqiXCJsUW00RCDRMkCJrzb8iGCkAbNlLvxKT3Q4olqKmutzuhByTSpLUk3SFz1Gne1RYs2NMLARHSDxHzhVRH1noIjDJSdcmNuwTubCID+vATrA0BgB28/LrVsyOHKcP1Gc/4V+8VL4E+5bvphKK7lgmvLRvOJSkz5+tljj2fZVUj7DZeONh7mnwMuRyzhXZp4eksNDiaze+k7XGHuGEXYuEPAUc7wROcRkvv75Gnl0el5GoD/1lgLlhe5pfQh5B5HfZadNDslofqoYUfchWvdS3qSAxxIyUNb5aGBRlx14GVlRZh/sbqb2xfCaP4RVAxy+xe8lecJoiVBAQNS8jaBP8f7GawRV+6MJl2/9cVhOGqZU+fPR0eZ1REWD281kyy30tyzjnMd8FvOeLktZhcVflzg9e68kNo5+V4AwkOBPPij+CvFA9fjHacScGC/fLSSEJoeV5GTY4j4Pv+cGzUWhxh6HM9h1vYKJncabY68CWWQIUmsJYWr+YiaFqBFkyRgqLj4ABjfxPH8S8feM37gOioBhhS0h4JrD8zRPhCPQX+iqwFWsGH6sScKHZ86P6/lav72CLESGBFLkqHctarQCUnwbLIjYGkNhoOQ4ALFdJDWA11EFd8EWEGx3mLKKsDnGVidpIHsM6e3TYMBMbP0/UUgnAUcU481aDdxsGZwiYgPFzKS5Mh3UTmbsWDJnQRHwh2+VkBhuS/0MZzGyHAYXXqzY3pFaonVYuBH6ipjdCFrq3XTHa0fl/E83PzXHi8viNDrZueK82VxYH0Br03WYzlhJ8FCVlDgpS2ZGpYZ3QGjlS9+kUEtL1BgiFV+0iFTm02xr7o1KImJRQOaisJmdEllUFt7/3PZ+FrEBvOq28zIWSyHoQXCI0SBv8o4Ilt5bJS05kh2FuoGf/EQyDG9w7SkxFzpwVi4iHLI0yDf1ieJCIkGswy4G6usv+O+lHw2CTuiKUcFjzzQsta05C3IDrMiJJE0nncgb+s9Mswo3FotIOzD+jJfFvzDM2Jnqi4Wabw/gYp5MQMzoAVadn0uTuI5yZkmGA+ysYY/MzPQUlp5lF84F6mbpmHv4hDVqGBfNKdi3XoOtGVoQgam6u9ZVNU0hw/Gfya2C79PqtEhyhwyrZag+fhqiOJz+EdR8GPgdWNwfo0SQc8eqhVY0eK0nW4goMX5y1XwbO32CNndHvqexc8ohffQmKFlKg1TgE2doNSGXLwGqahuEBm+JRSzwrxCWvs1o1EH6qEoJLHtR+N+WDFbqph/VUnyUWta1KIXcEjSixwJJGsERGkjXhApFMISNTvSwAi52zJcs+rd3GiEVYaQNt+soB92gsbJnoTbV91fYI4u/qXCY8LydYz5D5pq/w1CEBEi4X0tcPT9LKa/mPrDs5E4qGXD5kIONHXMxECnuopyUqSFel1JddgqBFC8cWEsuKON7vVes8q0eausegEXSHbXNkKeqsgngo85IsMVNpM0xuAXDoE2kMjQqmpvYLRdPgTZhoE/SqEkP+yhcIe65g2PXgSG73JBe7jjL2mO3yEBc+sfL22fAiX2pHNdatweFQF8kHF/RH72xWoqzGvUdDIbLmjtnomsUuNpsmWpMspeooQKEVll1FtfYNP1qE9atKhf4fi98fJz22aRiXuF+ObH4XKtRk+rV1Q6dCmawxS/GAe9c37vqGnePMcS5klgN7vlzJ4pcpiyHxN7pFDMbv4w/b69YZuvq/KLr/jAZOoOlAGbeBeIZS5NpbYFT9w2KlXwh40FoswKDri4yPZBIZcaGpd9J4POGBT7EYukbs/PcI6YV8lAzDIWNTAY3pi/NFbjnt6V7mBgYBQtxczHAlLpN8WczYsSuQFS19zYrVohHeYBOzd1NWmxaI2+DJvWaQyYidRMWDEu3iqf4QQ1SpmOPfoRODI4ZVJconztGjR8zVz15D5aEMZbjP0KMTxOZLa7gfkjiyU3obRQPw3syc3FzvKUMbDMGxnOJlgJdNDGMdQUa7JhzlAgG4jIxdeRVswCVAmb/INqjrRYwUFKI5
Variant 4
DifficultyLevel
682
Question
A plan of a children's playground at a shopping centre is shown below.
The centre wants to lay rubber matting in the playground and needs to know the total area.
What at is the total area of the shopping centre's playground, in square metres?
Worked Solution
|
|
Area |
= square + triangle |
|
= (10 × 7) + (21×10×4) |
|
= 70 + 20 |
|
= 90 m2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A plan of a children's playground at a shopping centre is shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v2.svg 400 indent vpad
The centre wants to lay rubber matting in the playground and needs to know the total area.
What at is the total area of the shopping centre's playground, in square metres? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v2_ws.svg 400 indent3 vpad
|||
|-|-|
| Area| = square + triangle|
||= (10 × 7) + $\bigg( \dfrac{1}{2} \times 10 \times 4 \bigg)$|
||= 70 + 20|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 90 | |
U2FsdGVkX19siDtiglHhThibEDLjxrt5luOQi7o2oIV83jvN4qmHk3pxBD9+J5SG5M/0VjcYQa/eS9IiywpWh6SIQCZd1Rkr+6t34CGj2xK1VIw1n1pu1nAZIHWqLMEZ51+2ohXkiz+CIHfSzMD5DiNaFNFQ/nTrxpvTui5e9EpGiy9g+UoOG1H3Ng1SKpxcL2hKrdO+sLXpKHES8ws658wFNqsvUcmg3L58EGMXOiXR+lVfd2h5ljvJ0/QQUgrLoCwMiAbRxSRXbTwNq7BYl/bwkOfMrlE+l0qOf1f0kCNsdAPry269MWp+4nDcKX6oTDoccIgRelW2I4QqysurvGZkMAa9op2pmlWBwzJabHuAmasQm62CkKF4OXmFvUP1kfXwHjBqyV7QcgpUUq7nwsyubOtmyFlmp8EHzjAn2V9KeEJALEaegN1TZ9ZENN1Ndp6wOh32Tia7e7NNnwKdm1FhD/JFlRZNFjw2U1fmA8bWfIX3nHoCyQm7GgBqWfQ3bcH+iSXiTvR98mHe67CgWB32kyFDoPIlSymqgNC9FTiDc/mUr0HyFEvRdM4Fxg8fefPUsdHmz+N7rHSFbNWBnIIq7ohohAZKIwoutg0jmdBakk9eobgh742mH6MsW2GDDvj5OzqNKaZIi62HcpdciRum2ss+HyyAsVRaUJv0zhoJqswGdjWZzXDYf5Nmx0yvQD1lVB7jOeKkAubwYoAvIjZ86mqGBdDNSye1NRCWpChWEpKAD7hAcgQPgVwOaFfwDvYKz/UZf6hPGz3Yz6mEHgXaHkAPngHGSFca5WZwVWMo7/mbdFHrSgkBHPp9IbUR9HemCAmCPauEAsqPPqDosV7fbJu2i1hR8BnHkxz1O1izL8bbMWcY+GOQZussFbxhyJCqJlRn6zPr+1oEvgN4S7vENEKydG7w+mSKNyAf8hQH4s1q4qYuSBbmMk7Tqraf9UBWOtfqVdq5g4MkE5ouePNq2T+utc67/bx0iuxwLVxoe6qxUfvl3BxAFX480cuJ0Rk29EM+PKQ5l2JDs+qYDThullOV/b25mEZ91OYpmbqxJwqmWi2WBqK1HThU48hgG5T/m0Eske6/DXKTAiWX8idzs+qOjXfMm7KT+xhSnvhkLKnTI5IiDIiwDsCoO4/4Eo3bhxrsZbJmNs1QCeumbKLgXMG27mDNmvN0+qusdgiDvLoMUntvznNIqfVAu+/2Kt1twoS5tLVdPF5jR7MSkFH43mL+XCvWarDLBl4lyPcq8dI/iGK3gdvtdqJAP30ob/hRw0dmvUI6qfWlk18hGQgvxktj9IgSrtswXJMhKaV9ss7fZjBmDfpbvo0JTKEv3NuZbOTe96/rXc1pQ70E2a1LI5MWFuNE80+8jkZ9JZdTrglla6dLtQTjBWbg9y1ewgIqsw6WMXRs2psIHxgfyeSSLf5QO3L/Ce4GOKDKobJ6tjEoKXqeqNt856qGTt8+W93w4/d9SIjzDPfd9ITwSn5x5UnZbhzT7xbJz1/snNIwauw2O9IBR5uPkfu0kvcC4RL23Gk83CGh9kXE2kE7ErD5Tdo+ZPDyVjq+eK3hUjS9vLHvLxTGnMX2f3SsdpPafh29bG9kurehuGz45FgZrGZ/NSFBpx6KxKa0jkaJfvXdcSRGc4k/yfhBdIuQryGdlu/wfY6Q98ZtyeaQV+bdGdQAhJeh5w2P5TdA4agV89RXrdRwNhvxBPQHjjBIsdGdw71D9FaRZnaSGE+6M5xl8x9i0ELeMu25LXRcrDP7rjGXq/wujynTH6h/hdFm93lbFT6qy1KZM2XSboKuFhp4xVVOdxhdmgvq+QEjsuGyUkIC/ZQTBe1glxrlzhof4eW0yQN/wlLapM1rGLcxtymy3tIl7J9XV80vw+kVWGnambE2c6wb1NsyT2m5bUPgoRpBd8PmaF1O02PHdQd/v92EnBRnxCAgRiiqd+XJvt/Os98/ODjPA77JvICetOJIgw78FQ9WHYHD1QdO5KNR8BAJGT2C36HhAG47S9mHhR49F/54vWNHz2nbsTO+uSAcNfKFFYk15otdrlpp01gu6LYXus+MaeHS0jKHESCXiJXwxam7QoEmawL4oDaMyIRqnq84+3XNNnd5kVYM/iPmzL4Rb+OXD9T2Bnoo7MeT1hazmm0rOxLA8thyYUKQEmZK+hglFx6Tx9+NsYliQzoJJT4PtOsb5K9m1L7Zfjz0PQdJkodl2gW7G1mbzhB8JGcab9heFC1zQ/a4v3kN46XgWUW4SnpVVQ/36PcEv4OTLdAJmHjTAYO640QG+vyr5ujpLS4WYAXRwBM5cfExY4v7zQe0BAZ8jkWVzxCYkMR4RJAKiHW5EsMpmbYRViOPfqJ46U1ChOZzDqv64qopEgNipkcNvL/24+6OChqV6SbO48tH4r2AES2H//W+5mHtaFcbeQLQR02NYnnHZ12wTzt0HZpJXQ1sLHXE+GNxcepPuotSZRfj32p+Uli/B5gxyTwKVJTkGT+Ac+h4VyTidERiSxWgX6ETVeO2GUd+iXFpcMYdRihVAvexTJQLmAbwL+vgK5DSJwKr5P1ASqHe++Wbc3hl9PJJgX+tjQdUy+cnTn0H+v7SLZtEPkFiu6SoktHiFZnoyQaI0KlfPz0LhNpFQ5n+RKwHtq6JNqyXl4wxcBTP0fu51fgbzJUT/YEHzEMZTIrE/Wqeth/2g7DoaAf+HxRkwGQoo2tmZeJTDWCVcAjaREXf+MeZgb1iu0Sqw1vcq0OZJa36WKpc7oLP3QaM1is8Ro+18Jo1cSlpeqIzT21T8yjHmI3UU82YCEVKkpI1+R9yzHIE6OfwcBxMy7NLqhD/D6ArWzaSG+Gc7Gr2lzKFTuIbPtMOUGslA/XNqOUMPl/gMWiL6GA+Zwb7fSEDMlxAHZk4WSAa12SV/JVrfPmzeHaY956/vB9XtG6baYUU6Af9FHtOpWrXnmUMbDChJ60c+u6grkCNvzfZWnfAqqj7I/Kxgz9Z7j6Ve6W5AQSzuK66szhECphXrdrooY1nLh8uaVm/B/o99PN7QBr6UYigRLVGb+sxGkKtq8lKXQloqo5l8HWOBDDUoTKAGQskyyH4kj306FSROXwGc7Kr9Wk+cm9JLZyh0+nrJBIiRMq3Edd5n8ThTPMtFNXtpo8PmTlsU1UP1cl0UQ74lM1BOtAGvSpp0b8Fn7jcDdqvIkC1PntyHV+cMf5LYbhbyv17HXHa0kXPRZl+Q8Zuay7QEU0M7coDPNXEvNPaPTs7nFtVcdXpe3kIlTCdd4tIkGmcuHhE3muRp4iqVihXDJiFTQMksR+zD9gpguLQ69W7nFn4jlZV5fJH6ilLKjqLI8xEvxrc1+PQWA5D00JJSAWByZ+UYVDFqVBkQKXaLG9ZWtyAPMuiEtk37iMUw1kk+cZkXq+qGKZCyPlLreJ/MGXQj3KsEaO+bl0C304/cjwUKffijFqKmEZr5mhgGCDMaFZKMvF8viFCtp0YDv9GWMijIfocAc/d3UrlKtcvUriSPiDnF1LveuqwEZSYmsqi5kgjdP7m/hMDS+fL6aNeJqAcj92SchkeYna6nxYrDESPbEjr9w7YbixHlkiJZRY3cu5LPgeX6BBAVfwXLt0T3PZjt5l+EEoNr9aLo7ZPh1mraCtgSSjkhVfTy1lOTwVwMai+BdDST/laqndRIgLb/8ky4RuPA5ELAnNcu/IrL1o5btgVlcVNoxj3UrfVJ3V6j12B1TcTPHlA+1ajgsJMRmUERZfCYra+wIkYUlDjQVMeChyefQlqta2rjzGs8lG8afarB+w3+n/Bf63rkrsAQXtUjNTm7XDaWQMN4EuZb/gmNzeTgsN5bNEj+3tv0YpCcORColWFLLMWxw9Q6kZX3mjNWlwgNvZBydoRGA2jDR/ze9xmfIAuRtf1e0OfoQa3g3bOYyPzaD4CSVnm/oeOZ84F0kG0BsJtFxGuWqPL44COXyTw/CSFQqM3IR82yzlhAwtm77cA3dUnhohDvci2OzFNUkv4lLf2oYC5Uis84ourkeLzxiHMYpg9VzoMmqo5VWyLjAk/D/+WK8/DEbWQ48bKOm+2cUjnuRfx0zw4r7AddjyRYs14bxr0fjxV7W1R+Trg4kb7SBIGffIArTxGWMQ9hZDMeFnA22j/jj6c0uWj3xZ9/tE5wDfiSLdlZtWqzVuGWbm8xJ6a6kxfpiLFM+G5gEiKDKvI3MA3j/oF6elS4l7XTNDA3MG3y1t69z0HNAqaxGP69pIX9e3tLKSNtKQ9XcxUCvVJhUcKgUwLlobAukhbghxjVWlYhwutZNSMB/eIOAFlHesoSZBvcq+7WpQIArQUCEJkLTCi19x9bGBpp0Hs2HQMLH8DbSfCVN/pHWzA93lMif42B8UulV70k1cExZtIwz1CbAqNdvqatPgAqfHOkUsnd5XD6DprfZ8slsiDcXAbWaV/6PVK/HZrSTJpm/Ilu4Uy20zDNW3p8dm2H5yGprFheKQg5Q6pixHYVi16qhuAZ2ZYErQvQIIi5VIyLN7P3CssHXDda7FXfSsZK6BKC9sw7gMr2g6XUnFDkg29oS1zyh+6A+UE0nU8kfgiynnCJ7jhM6LURX8cridXmE0rkZ57XXdYoJgZtt3QVjYhrZJbcUkzuga6rgO53tdD3JwdEO5bcr0lMr2UsMwNyNCD9/lIE2sWrtiag4R4ICxsSpSXBrJUna6zaFEhR9CD0YkEuPGIDofCNw81GhKeh6EHYJonlReIJSXT4ydclHj8X/4g/SGmmtQX3eLyhHsRSC1XcbiK44JjTm8AlCoBqK3fg3elkE0wAngCY0FNFNKJL5xkFof3Ca/M/KdJbKxTOJ7bIDDpsE+NsQ7ffXka4YYYg8E5H2DrTjiyL1JRrhek3HxsthLN2g4sMOlxLt0SpC74Zr+rBcexcQ4FWrSczgKGw6S/w89lpMhSaYcWBSVjpLk8N/rqp5xjh2cj4gsDlop9zRtSR+TL4OZ1lCQ1GW6X42KpDiu7inQFwKeVY1soEX2K33TfcV4Nct4+Uyjiis7b2N2UMAuwP+USDzqIlQi+hsrRsafsMP+u4Zx/VBzPEnnmL+/7KqJbtPtfe8GJ+Mde8bGgDkWuylBJ17iOQngNoGHPLWuV7na9x1+H+bVV4OC5bmZz8S4Xu7x3m4L0u5lckzJAo3SolKxx3uWAmSBF2YLgkCzIsFirGsgxvbDHFgpb78rD39KS+505nP8sUorNQuOpCpW5XXOlfZCciHipyeO1gsg9aWh+Zir42b//MBtXH6o5fKQLmEcawzvSrlGzM4XvSphzB+0HkoPrI2ywvbyPapF5of8w9qO4r4GVd2z3X9xld65EQEmMyLmxkglZWbtNw9JqqiQsoB8hoUFPQQ/iweVctHsnNgzFuTBvc/Kql3rNqbVbeGS9+nWoAyYe6/8QZDWCMaCAyqzjVSb0m8oM8yocFmf28450zIv+WW95nQ6El+0US1QSzhfoSu/LaC/+0YHsNKzLgN9kz/e0es4+tzwF595UVkYbjPFb4XNqdDXGsm6Al/4hZjsvJWEYuG9KcNUq9arUlnByu4qAtTFt0z5l3CSWrgWy3M0D1YgVfa14GK1AD4HWGPNmO/9mnb4LpiarI0fF6V+Ufr2vQ7mKE4/5VHrlkbUS+brdRcpAiyAxggh2jdPdseXtZGmR2HUFCBb6kL4oOidgMrP5hUo0EFGH8W/9LWY+OjCSw0sMdKkdmkXJ30+iXSvPKU+GJ1ahRKq/MP7p4q6imFBbd2FFRWD7wkHa/ZVLJLxtjPubenrWhqkuvuWEZiBv0wpMirGrcaN24TgUvHUZYyPSi9FY9AZjUkdj3vxDSaMvm/fBnyGvqXqN5aHjpjCv1eF3sQC9gO/0rO5bSOLCT6ALuSmlaWXFViulSwGjDPmpmQcsnLt3VsZzLcVmJY0bnlsTOgYoLzuZNx+F/YHeU23lcnDWyrcheHJxwqZQ0YOwF0qLRIQ5TG0s8QGt9UqNQBF4KwFkOpkw5xUsgDWN7bQW+XfN6TafO3RPicGNN0aJ69Heq2cggRHr+j0xTgzSrNDqc26xjUIcV6OvJh3hUNpEAJbmhnTjkGQ8kEGu2AAAmWLpKgVh2hJF7Cl++ZwWTaw2uNAn5SClObQ3zmZwhz4NJESHJdmor+rx0YR9LnB8Kzlqawp9jAX9oI6O37pxxNtB2C1JSuKRrVXY+feJBfG4ADMvwAgS7GG9oKOX277cmImSCPYh3cNRxO0qOgn4Hz9U4Hix4ViSwG6ZfdOKZ6ykm6Kbcr3fiksklxtkRQ7oqxouwpBK5xwyCpUTPoJEI4X0szVKVCwgkWUwKExCv31cMEvTnCjT4x+XBp/7vO9zmNm4q4pf1wZJRUsC7bF9q31FsV8dQk669HD0k3mn0OJ572qPlgbo2adt5Da06XEUCZEDDDjLUAeLhd8bFuJTyMnRvCKhES7klo0/DrfjVcxPYCcymTAiYzjcM10x4an4abBsyHdht9pmidMb0lJUuMi3OnepVj34nIWmdHRehNeZ3FIQt5u1IfDV37TbVgQGg/S79HnBkKQ50f/nGkmGfJ8VdYwsftI8UH1ZethHqlJkAC220hP0LHpCFOGpqY/9VmARX//tBtGw9QzvsUU3FqTW6NRaXUc4Fy4ESoI+ygrcJ1qEUBKKSLqyq4FAo0BDowagPRhrrlrZb8KP+KPqVUTdZHdUgnZaVhJDFme01fC52W7a/z/E2/DLx5JOwB4FzDN79Hqe1Jl0aCVY6QhNpLK479SppUu1ucJPNahjRGF/JAgzuQx71++xAPRCYBySl20/fpe/VD5Ag69ml8TRZMeLb0NaG4/l9Ym22wDt1dhf4IzTsNup6OquoXOW3PiazV+IlSxQo7uuArhQtMyuoJKQQ53R9SMFTucdVJfOlYCHIqgsZ+Knohx33/Uzes/ju43i0/KjvsH6TBqGJomukP/+r0EoxZM22RevHz6lLKVmYwDiFRyKddvMkzSGwCe0E8x6dCc90FScAkoedo2wvoPdecPHi4XByRFMt9o5yfOC3+MMfBVHoctV4Ubx/HKgZ7fsXhc9Sdb4/Oe3ilXtoY3GZtmME7SfseTcA5JkuIHFtE2DaJY3SNkpY5Eg+IGnkHMQoAHQGQWPucG1cAHxr7eOzFdnV+htd4zg97YO4zRh9c9ggAV27Nck1Oilcl7wSh8pQqhFCEAxuHDuPrt1m+EUy/Q4XHIyFteKmXXSTrxLbZ3VYiw1Kf4GsOE6qlEOKLrSfdMpHTUlQyNm3diN6lACvMg6hvSFzGNxedpNBB3w/rfcH7u1091zJMmKZN5u63xM8crHb9wDm6GVgN6WHjOm2RbtORINE5IyR/rjJsNWc+fg
Variant 5
DifficultyLevel
681
Question
A plan of a first place pennant is shown below.
Jax wants to make these pennants for the local pony club and needs to know the total area.
What is the total area of the first place pennant, in square centimetres?
Worked Solution
|
|
Area |
= square + triangle |
|
= (5 × 20) + (21×5×7) |
|
= 100 + 17.5 |
|
= 117.5 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A plan of a first place pennant is shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v5.svg 600 indent vpad
Jax wants to make these pennants for the local pony club and needs to know the total area.
What is the total area of the first place pennant, in square centimetres? |
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I4-NC22-SA_v5_ws_1.svg 600 indent vpad
|||
|-|-|
| Area| = square + triangle|
||= (5 × 20) + $\bigg( \dfrac{1}{2} \times 5 \times 7 \bigg)$|
||= 100 + 17.5|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 117.5 | |