20062
U2FsdGVkX1/ihKmSDIR09nUfg1WubjLWMCyIrfQXJiDn6aTUAvvb1xysQ0cCLi8AHmYkjtebBEx4ZIr+OLfKzesOfhmFf1xgrgSvezVk+1pq7DFvn1LCjds6/8a+9uf3WOF+xV26rVtH80epyh9By/iincy07V8q5hu1Qv3PyA1k0sqNa45Lal1JfvvkzP2iRKrHdfpY290pK6i5LWkkf6yILvZftlmXoiFP+WX8K/gUMKWIe0zjvb+g6Pg0eHEP43glzFeEDg9vRuPhpCnhK0MPrjDprrENQsGtk8cOblR01HHA1kwSxt0Jv0kbHK8WebPrr+n9eEM2FF5Yjh7cu+kZonjac3v6XfcXdykctt0ZQMEA/Qm2np1PqKLvieJdjPK84tUjLNs8m16fFEKCfqjJ0DdEpe/SY7X5Cwq+8x+FJVfJ4WMSOItgvCqHD2HfxXnBghbFTMNnAeAngSH4lUPejPsqkDleGHEw6kLHP+UzZfeo7PF6MimtaEnVY/a1/Pb41bYqmnnZwQRkomi2RmR43nhD+r7F6DVco5N1RilDAkwb02tBSJOgDvUMRl0Atn7jFa4WDgXXZRfgcWCA3IwMKpZuPeWcH4W2DZYXLR85xfDcMkm6K9s4Ort9RYho8EDLfYCOdGwDu2DO7Rp6DpQWlwrhpX7g82hV/r4FGvB+G6nletdMCiSA+ymXbiHWIduvljjMiG5RVu6Dt4J7tGXWdsL1gQF7xjCqO9ikbihJ0LCwKN0gZ5TK5p61drvdBbvEbNfzWhPtAK5cOMlLTGyVHJnuI7DhkTjuw+brSNbyep73z3funpRqpiiOAjMthKmp6zaljpahcT1snbRPlVcsaGOSZjB6tSryvCKo4PSZFUZ/GE60M9ygQIuQJQplCbCIFlibenwtNJqGq8LLBT7HinELEEu725uu2QK74PdLmwreKpyL7wuRWcQghVzArL/tF3oj8WrXwhpacWPLqwU6mfP3+oDP4e7QArTdvnQoVBHMOAxMzigFUETyndZugp0Ofy0+NFdeDQPdPH0tQ2Ij7n0p0U8ViI3s8s5OITPIB2qeNyzDBZ7EW0JWgASGz7NflhPafJXfFqgWaHOE6vhel/pCjvsJs7AkrXC3gsM1LkEUVAMxpT0uPfug5+RRZSOYCwx9AIeXnN1EwUXm/Wr/Ln3qq+nTDCFsq6JzuyuvWD+6gats81sIynxT/JVBS3sEiOV9zmKAYkv8vc0QAYpiZmil5gGjpsbLn8LBSppIh43WW3ZDDVyryl9oJiVryD2hX7rsBakOO0wEb3Wie9BxAEKbcoxxJvEkjMVxBLfMXsyAH1Z8aEa1pOFaeq7OCDYU6M55O0r07dSGULa2XLeXFyKdgbF2j0oSkA2kZnoPEvtLjfm/IESUyU0/6SeRv8F+0kdZZ02dlzDtcWLskWrUaNnMfFLWj3P0XIgUAB7YDTUwevMMuP4WFye934+mm4fFhQjVAqaeP6RmkPmeCVGr4ezpaKVs5y+hOOKOG/vvTj40sR/NZYB22Qm6vPDu1B8x/i8UeyctWMnutzgOh6ckUCoRpCjZhAFU1sZsqhBnKRBCQkizSnFw77YtEd8eWRQkWo1rjq/gs+yDBa45ZvduQy8XjOfYYPCUwcmzO1saS+IVc6xrBs6E9BTT+AOPyFmyWrHZVKiPVrhdPe2K2yk7ewEg7yN4EKO4+Dx0ag+gZcTOIYaMiv4tFExyQvpBX2S5bOi/iTn6b8SrLvxCJrP9F/UYFZKZ8A/pVx7SNQdtL5HgMLMf6nno4SEfLSQSmIBr+JJJSJO7EqZeKqsZkiNoizsJ60ghkDtLJPud6o75rknjxvYa5qF8x/hokpdO/JYpefe4brXoWavx7ZZa6NqSH50ByNslC4JW0AvkWeA9KpkwXXhpOE8Xvz62ZpfCWD08fYh1v7euoxveyw/RKrVcLt8ZnFBvd0XiXPgkIL/NgR1WlqlyLLXr1Rbvr9KlC0nBSlz2DQHmJOPArMtQA2Emca4nKTgYihSIA5HZhhKq1+QjMS/RANau+8anQsMBAGqRcsiNt1yGKHNXUxoi0SlNmdKYsQxse2CvWkcLY0jggZGJyRc23NDR1SvOD02GrAUT3ia0xx1NQpClt+DCO08MmgRdOw2hieGt8wmFr90hdVmpLQv92S+23+QHHinz6AnDNLXZmNmVirMvBbJxQ3ISZvywCg3m63l6i41tDUV2ZVS1mflgrTGSqMS/UcHBjEt7k7dJi9GqBRbpmDwrbUSAkKmL+qNv2sgeiRuO04DXESXdVlU/VywipuMYRC/w/TA6nC1l7m2pMKxGXHkRu+azPQCQtgD5BG2oJ23SzKPjTq6vv7cJtzOpMJG0sCxQYcy3FHUezD3zOm2XMMS6b7oUoAAwc+8ZpnjzpbWcehxqr1pMKr+a7XynK3DyyyG6KNQlbvvyfBca1RwCPlMgg8D+eHO6zdXefG7xMHwSiNTDcucNaPKeM1XgXEyxgUQzX2GpaVG3bZXYslCbauq6oZdDi0f0Rk8gbkMeEPYiFkCuB/4WYMkgnsq+rTydAR6q8ALX7uh/Ov3NjRIVB+WuxYdM49TGWRU4ecquyt+NtCwfEglyf5DPJCBs8wadz6omjjK7LgNFAvdQQKEfVfu06AclpcZDa9Ij4WtqKt6eep8A2AheZO0vxKMfTue+ZdbPyEhu0Lzl6xdmwbxOzo3whKmayKtHzp6ggdo1EV7srMGkbVyvhTqG8ptiEU6VcJ91lkcSC3/VZMinarmEuERy4L8J/P8QAzxXy9ajNPVYeNFbEqUwKfHSdemQDc1qXEc0sJi6DKMRdByFjdGMyrOTpjOgdHo3t5+qwKWt8xCKJFUBaDrTw65OCmX+5DxpDOH+THpAG64S3bbArJphPkN68KxwoUtfZWrtzeDWgAjQFoAqNqHCY5Ed8tspYaPQqJRx4crZSHqwn6Q2hhlMtstxcClYCwQ1rhuMQYlGpqldpQPJsBmrIqw6b57JoBST2CfoZUD+ZCzBKw8ZXvatPKBKUQAl+pylEWhSeWrY3ZHF8NHDUFDAwj2FuAFsNXWyYGvFkyrcsg41O2FAdt2x9AZ/dVG7L4+OAmY/ob2r2kNvg782UOG1NNrwTSCSIO+4x3IQw3n0F3Q5mFG5eMY3wuk1H3yPK9GfGKGDlwh8Mt6l6VUjz1Hb2Mp5DAr7MT8Zwm6p+njrACFVpdtcRJyvvbdj80qlzGvGgbaUaauUgZhsg2lEamD+45ZKrH+7kbwFUrwPAM7nfOf3JsFHtExTSBFMoXFnoe7S1e0BC3ch9l0l+Wa+AHyM3rgVTadpGfs0gXIx1j1N9i8OrRAO6iQt/tCnDcyEr83wHeoEyFchv62Bo586m9iLc0eTTxLUEKDFRpiMKZjiLhD2xq1ycnwJG+BP1CLkuQLl3j9ZA68VUCmXzG6lM9Q5hfu1+2B+x7k+lDTkC8rLdOCyhzUjGF84ne3o9JdlpBpKdKdOU/efxl9pSJGEiP2vIyzCsCQxaSgy8mQTaqf5Z8t5LpY5e6ZFt8Rc2PKnb5hqMaxGsYR7dWFlKPqKVaIKrD5s/BgmbBaVmx457AI3RxsBABeM5u/jRV3yHx9RbsjDtsb9+3NMx9I1MKS0aODKo4b7QAoQRPLLAzD3Ohyzcmfu778EFYQjPAEC2OEFvJTAYM7WDZ0FM3DqI23sbmbA7FB+PuIeiN8dvgURTBJPbThcQDIH4nhQdLGDby0w4ndK7cghFvlbt1ybhqM4nuR1kB/PFcB8BVCDsOw5yc3IwuIyuWsnSRiVX4LD36VnuRyxKDNQQMKzFxnbhCdoN25RsskNvTREf3nAaG0jRrzUc9RWnsGHJaz5taaihPDQ/jzGEMdlfzQtfmROVQmLqOH3zVq3R8DGMhCvtIKopnom7bhFridrABLcUzSrbEydLP5SPEVwmKvnj2hRnPbIArFqnRXKX930xUxb0ufLZP2EMHPF6J2vq1H3O/6xeX4Q8q+9GYOvYM23Jz9hjgL4Jyut9YTJALaH/tkXSL44iXZNcYjARrXZ6psezxJUcSAR1OuB9dzKGn6mhvP/GOyNRFDA7aW+g1zCjDJwxrMT94sGdiOaQiJNeQZPMIOiB9DKaHV6/8NSB/Q+b5zVJu8bi8ivSKmxW2w5jh94xXJMJ+TMHZgcvuyrnXFCc/gW1binau2XOaqex2uZOxUQ33czm6P3iN7Dq31gNu4Su0aYFfOFhTbPTLF0otwgM4E9Ku6PjKr3LZ74pifhuy4mg204uG00xVj19A/Ljtu1Xby1QIfGcibyEcs8JVdX9rsT6TLPUKBlKrcFrrieK8brz+fiA3Ifhy4HIn/QB7GF72Z1oH4quXULalOWicw9xQ7ch3rYuLqX48poys/RqwWNTDCsAcKXK1ZYbEecEm329Dr6ogNUShhJekjBMxhZmkfIO4n/bnduCRl6BqN+DI8kD6e151WUTh2TKWGAqvDx1C/e3gREbwsssu180KXRqXXj8gvyAIgem/6yeZvNJhOkqwcOZZcOR6C1lPLzjnXtspteyNxTvDNv+rFf/0q1mEPpqwnDflgQBNr55xpB5WWWoWARX9FBswNLTTVPasB6LcDmCNvTAxXYkV3khJxsRTZw3BipVm9y1sRS4uZCz9Z9DnAlaoXv2gOQj/jRibFXyrDrUNXzsQPN23gEUSp99m+4Tn6XN0u17YZHcBFg3LZQxYP7RC2HHNlSCFCuspaOjDLpCIuVW2m/ObPl6yfhUTZ0Brty+JakuHhyJuF49owd0peRPn7Q6Bl690uEymbiZNMnbyEaceIOxVkNfGAME6bFvEQiUoeDxAGZHpH7RBSmzfkBHTFYJsiHPXqz39WPh4u8KUJZMlaqkM1WapovEbaZ9DKbjSHYnqx24XMkNz9NBI2HbqAIRmOyMp0O5Ro7XewF+6PL4C7UQ9cB7zwSJvdjnUo/xRuyN7UVl8mVHLgbkdnIE0n0HR0FfiipDvaWpNvI1Qg5/h2ZccaRpey/Q4Nq+5EdlPxtLC3UKYAeCVz9XKMKcUqtBn4Gh5YwAN8aedrh2pfAw24hXg9tlDpS7qBxbLxCTsjYdPCKWOp6qX/LjscFIAc/7lswySeIxs32xLFz204UXAICYoQbrL6Db8OYTdmC8hfrwQWmBRhP8xXzdG3Hgb73DO+1J7IsjXv7h2N2kR23h02S3ANW8t33S1Os+yJc9+t9V3idalZn/vn4kB/+HAfv4qy4EkgJ9WWRNL3mRsOrn4VzzHDGRO0eNEpDBbmgBJ3/EyuEMGQZv6bJRel40sremfduzzLYZcerB1do8xmxdPS2XI8qmi0YGNgM8uX9UJiK1zCJuRTXfgaVG6o0IslfHKgQfGngGU7Hp9sZ2pHABypVRquM+Tdfw7SKAmeE0BsRidq6/AwD/T2DmSuy7OxGNZm8hjYLzSG2lwRvDynk4KCxisY1Fa/EVANLzqklJe+P/i+B5WSZMHe9gLf/b4psAemg9QYblWM5lQleLConTolbHUm9sD56wHMvonffPaG14I0eodHUsowNXa2ubkTtOL66oSVIuntXNia5tP0RXB41oui+EJ2NZsWh8VTtP65XfmnPXKG7ce2Uu0dI8WHguVyVF3uzMynrORERXaknsXL/pbsEayLet+CkeCemHoVKK1MBnN/sGYbsZKhRe6DOCQIhstJVssK2taQZ8dk/IOF8A3KAgNpo0kqq/RWB1Y/ll9M9bGl7m3Xo6i6DF6cv/hSSk4BwAOgc4gYQE7msRGGPU7i5KtFnzTS7UpRLeYH53CQYSdWiMrdlRHK+UXHMUZaXzbXua2/96lQaYJXs1CGkgF3gayzkkMFN2WxG2SKbv17s6d+aO99iPDgo8iNieaYt/lAnopCv3py0TlcZ1VWzrnh1cHTSITs+dfA/Xr9AFDQlEhPyJGngyCoa/Y343XIjyKEvx/oKopy0NjtV3MmLTF6lwQ/5b8OduzzpS5ksGx05D1kGDOxBPZ9JlhQGs6cywSYTPr9hvDuLPu55z2KA1uSVyPunDVqS5lOSK88HIaABzemY10f9Bwi2Pj39aGO5je+/MderX9uiu7Bsgk+81qQQLqg9m6cPdH3aOALWUakEdWmo5DXCd5vSeTdpR1JWC7idh2WTnZk9ohf6b23BAKOqUkgH/Gg3AnvRRYDJz5we2qJJzPs/1xdOZtPp5guaY4zw0AW1mCY+aKIXRW7HzyXs+Z3iahc4EEO3EZioDzE+i1dBDnHowg8TJpTBZlI9KP63GmrgxxmMAPN06OQRDrNhY84IzSLB4rFMc9u0jXKgk4TRsY4WXAbWSoD3oLHPf0L+WRSPFXSp3byZf37Ci/E6OUPfHBi/4CHXSOPTANsstqnybJJ2Qf4cRqu6ivRa0uDdGiAPwmMvxvUayO3b+e4ps/eKNnm1BrBlBczA8iu91vYbv1PVfCqbtICAg8gTDDq6gj6RWST8y8iSCozdsGVAUHMpJUFqrHlRc0V1J5/zaH/+5xIJiBff5CyPN/IVng49EO29MbIkYjs7GPBWobK2g9cqaUevZ0OxzC7G91ZL//xu7BxBuZ2Jjnm4blL6dRpB3gmziJulcp5wxs2G3JJd1j8P5V92W3rFKl5x6EvQPiFhEumZ+N5/fhWwsEIaxZoaLNvA5A0KHIsTcLtB3L9IxOPs0YDRS3zNy8uK/2DBo4IjKiXMFEsboLwOCDx+wyos4FFx98z91HdHjXUFmxo3j/e1FO4zpRH2hahwmMlYo8RV4K2PTcRNqvkKK9btB5uf5il0e8tD5/UDa2t/oyVxQxaFf1kWmSv7Ml6cl4b84EvTdEjCzvU97rDFjNHwksWfNdMf0wTwC04AModtu5BCrrp9w8JE/ZH2e2Fezr7Ls11QvDUF7GnIyqu23ctjm8MNHPpj+UW3k1768jGhqcHQpA/kQ+uKXRGrONblMgOS8NtXo0EFIUjDvns9nPwKAHd3BgG426dMKzHpjsLEO/Xi0u5ESKH0z3XREkO5KLxb4OoceYzrI5+HGfF8Y5gA8WerbfugTku4nofa5U6HMHvmmBsoZzU5GvkZ/JF6pEQTLdthDjim9cjcjuL26BaoJz82K5FXAsvfgNT7t1ajDSVkl9l4Z4Q7uy246Lm/cmGETHFj2KF+1E2pnqXTE6oz/mHDviSN18Jm3HvtRvQ9jjymCG/8Ll6jX8WLTpb8qvWwSN7GsJoMAosuvwt6wrraF8s4mQ4La5bgFpht7GQSU51phtvXEia/z9ufqY/5XD48mG/aGEUiM+TuxFyaxQWCPCT48TpLbtQSu47S9c4+KzSWrORXPb/nF7/8lk81UUnUTD12LMcSw66FrL5jvN8ax+IrZkhlB6XUCnzWew6O8sR5z8F/PNCG3WXqWb1uPg0VN10HA91sErwc8QaWP6Jmj7tdCefWZHaRDT+Io0eGfctWhCsfjANFDByo+hzbxd8j0l9Gf0J41lRoqZ9a0xXBa3aLPdG0+985RAQ8DPHZEH+TwFoA2HamA/QuIhvGRazTENfgBKtrayHAWNoVhznzulVIVC07NhsfWgKW+9CCdmAHQFOkWbfLpBwY1R0UnQ049Hx0bEb2Qhi9N2ITTzhJuTdvw3Qg4zvriEU2253bq2BAmGFn2Nu2fn/9Judzk3JcgjswDIgEQsaaiVCtPZWWitYUzEw0o76REWACA2JwHWZnyK67edQizY3LVJJGGlrn99DJEclR+5bcWXcgHSUsaIqvbhvVnBSu934C00cwGd0RMtUOnn1+HRLXEvXUNv0fnNPLqsJ7TzDo8ZAK3h68zESx5yaEBdI2PQH2/EzbzJG6E5+KwDd6T8npviAS34yVh/7tqDuobPU=
Variant 0
DifficultyLevel
558
Question
A pasta factory packs 350 gram packets of pasta into a box that can hold 7 kilograms in total.
Which one of these expressions shows how many packets of pasta will be needed to fill the box?
Worked Solution
Since 7 kg = 7000 grams,
Packets of pasta = 7000÷350
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A pasta factory packs 350 gram packets of pasta into a box that can hold 7 kilograms in total.
Which one of these expressions shows how many packets of pasta will be needed to fill the box?
|
workedSolution | Since 7 kg = 7000 grams,
Packets of pasta = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
x | 7000×350 |
✓ | 7000÷350 |
U2FsdGVkX1/dML1sPvP7ToHMYSDCsz63xDfaZHc7LMrTh4lo2kGvRTqKWZsG3eOEXcOdf5lURWI/CNqtqHfxZ3y0oV8P7frm4NVa3fnAz241z7onlOhwt1eegHLKiaM4M/S4kh8kGI0VhGmOPsoo2T/XTTXhi1KvWVbORiP5wgrKl6Wq2YGYu2UFEyclyLEyM+Yo2/uaoUi0XLe0S48uJO0VC5leMViIoVMmUGBVwh+C4LKMCGbrPUd3fueLrUoXb20w1L/IlrFAmm3nGecx47w89QGQFEe3iFWhhtmw3OTXOCrZPoUQgWzcT7dklWBy6gAl3Jr3id9VEKJ2Y3GCQLuA6GNPSuIe1ghXz2kJzny8+OXSTa6G3RI0BaSDLWOy887kVwk69zlOtSRE9aE2230p+LUCV9RDXIwe5w0IlTzcoOzmJpXS8g6RQTjiSod1GYefQVV2JXyo0IXUaQNgbaxPj6puT9V11F7ZzztoRQ/94RDYVXiFSz3Oqt3q3AbQIVVQg78np8GR6lbP2hFnc3Ry8KK3DcoR7NkJReKPoN7suAwLuJNjBkkKWiThK+fmHdqcssVthm0D5nc2Xv2mXG5Eq0svURs4e+UxNPo7A7iA8sKjnhLdoNrxmK6CkERkde6gMoUmCfvMifvMidvY93gyvw53fVrFzRFNyTr0/qCj3+2XOc92PIOdBwWWoxhYaDKIToTYQcI77F5KrAtQG3J+uzkMenO6YsSsveMnpjVb7ojRrek6dW4Rr1l0pewSog1rp7HI5fmp//NQ4aDWv1C3+ExA+qjK0XdzUcaUhTGAi4IixsWhXelDX5Yiye0A/5T+1FfOk7AXM0Q/CcN3Tz/37JZ9HbuBBFVh9DIMFh2zmEfSsqadp0GNrLMwDU5klftIFNnv+TWIu1Iy8kGppGAy1OMFfonGe/ymQTSWTQBZYX1kmOYuD1oIwY/3ktkjdEGdD0hvlqyMYId0Y6oM+NVr/1mLC6m98EJZFQZYNf59Tlk7ml/JZf3/r6L2KSFebzgVvDNVn9bZFYAjscs6KkINfFjQHT1dDgMx9f/CXlMYqJTMm2/DY731aMuaHtlVUPgWI64e21PQk9uFLBZxws/LUiO3O2YcgIay8/zKqoJIn8WJnHzzSIN1R3Owm8XfngccwW9GDTloWoz4UpIB5RUnrIQb39hoFMTcppYvEps2y03oe9yJ5qTW7BN+uPPEyoP4lOFvEubrGZjnKSHlORCLfYY9YSvmbkDEL7sYMDwQVWLBiKH9Lf290uHYCxEoRto8i8miWajqzSwnHqZIv9hYq4wjnliq03kMX5lGnDPK2pBvKHNQHHo9I15SdPYdwH4FWsKNUxUnlCai8BrKwDbxBanpU0Jq9MFf006uMeQKeNNxdXr//I6izmjA+DJiGENEyY/CKO8MgyQ1G1GeMewF7HH/XF7OVoMPEVW4jDSluczlxSWw315m9JN+STpUcZSd9Ti31u5UMh/uwsDWPjYlcze244ynov7qWcNWFrz1SwocMv4114CkfcHDV8TTYAzF3G7bliLbb0XAZx7c77A5iegSJl29GZiyjylTkbb9IFIX912GRTlxCPd5AMTCF8/uK7xdzslFhDzcYD6UtnrBUdln84wQYanqzBCpmG+KZQJ14hHl5a4fg1hyNXCV9HqppuF+zVkPqopKVuVQ4zrLjZ51NC+J40geKJMAPshIPEcUISkGzWp1CgzkG/7z1s3i/9Sw4WTM6iUKmvGCr0zrLDnqzdKHod4pLtJ7EMHEb7ADzidEMVR71nHOFtjpK6hg3iO1Xs+ALaBaMt0RO3/grc/O3OThJj/UnP/ebZHUHJ1qJB9AnZJt8mugkqgU9SP1k7d0AFtrheOVDNXur480gumICckgNkJU1a9Al3TpaBIijBeu5/4QZSOrHTUhQlKfdfBL36w1m+ffZSWAdp+VtmQcgKkzJ08y+0gKCpXlT2vru8KwR7vYrWrXiIEBxe7Jg3/PA1K50Owp+qgqHkbHesfqqDtGUjDOfaf2FvTtR+wNevwbebWK6KmYYcsugfk7BNHWRnw64p+8rSY9YJpfST3OEdYqC1hohxvpWJ9AiZxQDNofxdUYANz2rANQ305UM/mQ7YHQBjmkfXYoBaNxbp1xF6ouv+lWXKlBydPxkErpAb3xBiZauWRdiaK5SUhOHyZahO5Ud/vCqcCR47YeQjYU831L6eGqdR3hyxBcG6PrlEL+f/zh3po78QvoIWVpHWvp54cMymRZbpmi0sI48IA4qBRBirH7Od8r3VZ5JjFkm9TsYJwrMQW8hH2HkHCu9kQ7gC4WLfnWLqZue0LkcVot1d0rR/tG5pF/jb9Lm10IIASVkNYzdIbXTDHPVnDc+1/2Z0dE2fXPrvU0Nh943pHbq9W4xJl9N5JwUTivDly2bhvk2tLL6zz4PEvqzzqvgjIqJRAfQqgB7hpLvwdpcf6FyUBOARAnj2NNI8Yxh4oaal2kFJLz5Ik3pMIKCcg2tjIX0iLTuQSRtT5WBoBVaccZiZwDn6YwhwSB5oD/9RhIAsVE1/17RGeqnHDMUIVkhSw76qpqiyo1tEQlZO0lMfRSdUjIc6o4QgQemf8IcagzBP2n1CgroySB++YlDi8tLKI4nrRFJq5yz15MvRjWsXqDYhK/lErFjPhEjGC8qVHkKa5VOOZLVvOu3cM/5STCcup6Ezi4PVxge4zffyTo05kJFq6LSqyavT5/N891raZtB8PmuSgCNHskpTLfd6g+ukhNRPfK16PJ7/+tgQR3G1HtxuMOdQLZPrkuNhpTNRM595owuBOZ+1lK5eJqUSJdUvw4hkGbzEIL9TLGNVqqAJI6oD9k1BWPnRjkDChGLdwK/k7Rm5i9CvvffxAavAal4EMMLQJXlqAr9zCB52D7Ht795DGZaz4Zxp6Wxuwb12uQYpDe4p/Tn70e9oG38VxxeeLW4W6aX0jEK7ifH5zmjApehHc9OsK7Hnih6ZpLAb2w+wfjW4iGaB6bpl+jjDuVGsm9kSk8J2cPp6JHH8C5NKwOvl0c73vIgbBzOgeqML6Eq8u2ziTNYoyh8hT6agdadt1OD/1K6DLF/SpHqGoBI5TeE4tB2pe/WOdLlIYW9yvjg3J7tPGLVOsPV0uk1+PYkuUpoipsPi8MeoLtqvW4i80IsLw3CZW+FHrBlpfPZWUKYHLXszYGX1vWZk9M1UESdntSXLKueR/3kq4k9pYO8ykELAoNNzE20qhq4XoAc/uMKieIRAadCr8x3d25RZXaspuurB93sJoYIKlI3SZzO2ppjoGwkZ8QbGUHARCDEltXNZLBbsgvYzsOemweVPpp143jygQsoVRsewzjVbQOdAXtmpU61B/7EtJMEVAs6WylXkaiNq6xD2Yg4Xpbb+8+Sh0ypLcyw4oBZV1OAmw/5NJSM8kYRO1+wMrcCZTsEvqngygMlOTZV3+lluApQfIG83rhz/ho62scWJ0/GEdKOMfpGJSsF9FmyHqa7LFIfG/4J+WoSiZB49b1hdCKdvFKRetXCYPHTmsgHata1zHqOmfEGnoQkOPEoPSmm7dO/r/fdyYmzgV0jUZI+FIAMDpIZFQm2KrlVjVfy/IXv3dUYzKeOOxZqbb0MLK6Brz++uQT5oty2+cjiGT4EcpTnC+XAwdVGxz0/b4rVUmqo2IwycHGJK7s0xJP4gEHkfeoKieQZqbIhXjN7j1hkhkG0m4JKCNtim+csaxiVbhsXpiYnvqpVmRCId1SxdB9w1PHCJRZB/xT0x96liuw/oCE8TkFD6UB/N6qWiYCj01JM+AynT1x2IKIdBfi7WMxB+R1xrrC5jxS0OBFh9ZJqvqW2fvn7htK5CP7cP9fwDjpI8+YF1xWqVe9hf/rrPSam1sCZCUp8SOBSI6EUm8h8tbGFjWx2brLuvd9VC+HhlJoPVsDUolwUkl0eu6aNagej6l6Pjp1ymdwsb4lWw0b7WzvlE9gIQKir8s86HBrK/K2p/zoVg41M7nmlwhEaFT75sebTqqh1L00QUCnXoJQzyv6qqlEJMnptiNQ/AlIhrlghleW3su6ohvHU38bXy5BjRY6F6qSWiynXSUz5E1SB6ioBSWvrIylOxDi2p13jEOOkL1Ymy6wFT7ypf9WApe+ugduPaq4TOZivEPZGchBg1kIg6oo2xxiIIzUoTM+IXcdr1/+qGQ7mm4heQizFl22wiEjkwapPCV4huGu4bYqQVA6W1tczwY92B7Vdy84934HEe6lYBlOx/xZtDXl/Y04PP+fjZSTNYTcuHOG8syXucjS3mgYQU7YwJlQWGu3yg4THleT7sjjiL6O/eDRoAiaVLiCNAcPQGCl5aS4kzPiqmj/focGmU8LI3mOMEjklkMv4GERALeDYLj4PsKQ/jVyrEga2CITtiBjcThRyiqcC/EmFdixq6M4kibzLttM/bc+Eg3fcY1jV/qD3skoeIQTq03HOmiUpW1zPhpUnfNVahiSUHuu/fkggiDt0Rtw9OcfwNNFyphrbpQ1yXZbZI3qLZhs9opZfYkl5BgHNm1uWDlJiehQ4PHiikxvSJpCZcg4il/Ld3CCDzlAg3M8QhnQoO+CPWhZydtxOqBv25nNsqOTgC78hMoT/B0TnIBs46ZXCc6LKMVICbJSDk0Ht+9TmlUktCH8Fcvctg0xBm3UUqUHtxM5h3FHjdPMGQM1uNCAG4naZ2EdnuXvBCiqBMWowS40kieW6/Y4Wk/u71qXwZ9XLog6AP+XqQMjKiEKBNyzY2ia+uzgrdO8/RpEfYGf9eWQeMj8tbJ0Mcdb5byRaCRcS0kzUV2onSwJc83qYDI+7E0eV7EgBtcjl7ygOzOLFNXfofNVDxAuUsC6fbfXJWglPhYXqOu+OQUwHba+l5gluDG8C+7TIxR/ANxyBv1Q8GkqtqHIElA4BsPPPlCdSwZS453Muo0PoMpLMMBMef4oePHwvs5YLDzFf4HO/qAmwqdlng9ReAG6j0k+Phb6CF0m41RRpzSIp0nZN6fmw2ErhJKFyYbJ8VlAd5G5exNC3t8Hqz3XGnj64ZOWcSzJ6NcayJQVV5iXQdufvgNXeEXbQKhr9dD0lzko0ySWjPyFOJQ73/a8DUhozrj4MhMtKnTBpe7F5ealMCuzVay5lJd8bM0sFUnpP3TR+yAeggsGYLMKfB1yKhg50O+2at3z1G9x/w0eUCOVaXqMiHXCzCBRxFVsBRiixrRQzYSNjB00NoY3Br2Zz0bCIIlU1NGAgB2R9qg9EnEepQsVAs5+IQIBgfJ+6exDU1/0teJbSauBgkxRUc1cea35SQv+0dr2nV7PHI53xg5dB1nuhrsaNJD39f/LLxnDfMXWY3k0lKRqAvMXYirWNpG0aeKN5RG1Ha1p5k+FmzWg0WVtFf1yrWQhAPKxKC+dSRnQqkBJVagu482VDszGdTWQvF2S7ZW9Pe72PYa+7qZ3pU9bEtzRR76UieRJURoCluis1ZGASpsr3BrW803a/EiEwn4yOmht92b1dUgWjQ/nxNmskQw095UAslku16//R/KcVKj8wG/6HWTl+RVUrWa26IopYrco4wiBTi5MKP1iI5YUw3HWVjco3OxJ5+aDuPJO9WMPVRWej0IAWUfg51mrTeLtfrRTQKZPihSdK04dtiZPXQiTRLzbrBrluri/nTWvy7CG+ZmIFEV7DX/ADrCQ6QKCdeMTMIADzxe/xAFP1mHVKQzyHKw0kf6SMlB749ynbsKkBVPTHWJH4Z3VItXS0KCEU0yVk3FPheAK29rgsFatiZ6/saWFLumD8OPqzYPKLT73k0HGNck5wYRPdOJwXNhiFw3Z9ojzss5phSFr5bJ9vrqyfDdoVxgmRHG4pQQZv3faBPuVIvpXmNJTn5h4oWl7daKKWARKANWn5jRqSVK73RTj6I5DUz31IeMs97jsdtAiiVzgLw1yRHyWHW/MCnhkpEguHm9KIYKC5l6hTv/hM/hGkVLMwe9sQecvlw4DW5rFm+23U2BgNg8ZoTnThRO1enlGKxKkpxdBppLY9jsccgBv5gNRLJJYbcaFeIiD9ffQ1qkWCTIuqCzCUtWJuqO2EBY8oxt2A6U4LcyMDCPtVXaK4JBX0YdbYi9diYQzoRnt7hd3q9UwUGopizsBonigbjoJBlUz7JQFddiwyaI1NeSR4utPZJ1aLUAPCKWjK2IR2o4Z2Ul6cKZb9bEGWdyjSPdM+2pnjOtr9XGxNsE8b0NNhK+kmb04wXvcVKn6+2Wwhxc6w6MzQHkuqA9FSCxB1qNAcBmUqLHeMwTwtWmpnMTT/8jjpIjj1XKGatZ1sTbMj2eqbgV/tE5WlChRNVQ8uBikpoBWnQ0RerAS7KLmn4hIwS/22w0LqlzeMMuizNs+t9rr/rOWaSDOEVaUNuvA+tv7olvVrVd/7SzwQx4a2RaY0aLsgcjmVKpLRwpJvMk62Aa/nfG2PjJPHIHdI2oV0IIUFweUoRD7inauy2eV2oHrHmwuFxn6VpwlRM1cUb75N2XsDzpSgifl8yPYxlNdwVCbeUSpWXG3AM9PpkkzZAUI6PaIl1P7FRoYfReymdeMfeTvfQNvAp699yep0FST+Zs0jQc0gRriHaIOBS2xaIJdDac1TOSWKqZMebz4jmyQ78rciJQXbRwJMlXnK6DvL8qI2DtJVhfaTZx6QEbCURmwcH3uK4UHuWL1RN/32rjogb1TVvzyvuCoECR9aVx/WSjikqdMLDrFZech9fDHCD/cGzX4NNIZLdNbE+Gb+YCCMrbGLo38Qh4i9Ci30nLW6VpL/6G6bn2p+Yi5p/x8ib74H7cdVhiJABi5euNuxXTxSdMLNmv8QGI3/FEq2lxYgzeXXeE1mNtaGpydQuF4W3wkymjZFlBLFj8+E2q752T0VpOtSq/4uslUwOLPM5SScHeG5qrhBhoClCmXv+6ufQZVTKjw7kJEFKZG2nW2TR9ftU7ZywCjo/O6qBNOQH7NfcJmQH96JJNt5BpkuVibZm4ftgrpqYDvYBvz3MXj/0WSU9KNm4xVboXuajlvueO1XQSwXU7RjeQ5eBvpaptKx8F9H76lz5Hxo1mzgH2BkFZBYLNH9TWmHCbwaTC5YFY5CXcknfqB3LMRsqBdFZJgTEXk2C+zNE+cTgNoNtdR8CD1jheHcNCvGvv1bOixs9cRvpQjwBbiR1OV3TYQ9edznAyvSy2eidj7CZOljTsofLk7VMGGHqX4FhOtk5ipFPDl76UJcJjcIBfxFwm+KMpcSVO+OC2XvR5NjMDWDRp5pJxs2l4b1fcukTRnoaVNIifzygfDr0xw4GmIT7ePZbVBxGoC+AUQ7rZwYO7YGGwknXv1iAiMmGYFKcv0rycxRixGTVMaUDl4WWglXDwFXjrngK0GZJz9JhvPS5XgvFQWoB7+U4ovr+2+BwKy2+zJQj2gnRPm4JfrI/n3LoOaDA2mo4T7qbjjGKhTg6UVEp0Gr84DcvPH61+pev27k9Qn6STzstos8q8cfSsqbL1D9p3m2/81Qs7jrh9L98+z6EOneVAlSRBSmQIVs4BzUxLKRkSlWm6Bc1zXZgNjMSzvThwJvE5duuQ/i9SDa0SZm5gAZ0K57v58hgSwHE1ACMC4/OWpQvbDqw8/uibzyiCtPcQ+Mk0F9ywTXnirSaCFR7MM7JV8C1ScHuPuo/rMJ81L+2bNsBPMw9t1kPgFEU8XX9pm8KpXXCVBVxOt0pBpgkV77AwTr15cSl8XUoHTEKWMeoP+fQWZHP9Cj3ZC9lZ37CKpVEU+usH3bCKm+7OPXUEa5xoYLgaTFK0UtVDFpZq3BfiaOC7rLmMJFvDGzFMsYNiLrZg08ffy9x8HYTbS/FjSs7x7H72jQxw=
Variant 1
DifficultyLevel
557
Question
A soft drink factory packs 375 millilitre cans of cola into a box that can hold 9 litres in total.
Which one of these expressions shows how many cans of cola will be needed to fill the box?
Worked Solution
Since 9 L = 9000 millilitres,
Cans of cola = 9000÷375
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A soft drink factory packs 375 millilitre cans of cola into a box that can hold 9 litres in total.
Which one of these expressions shows how many cans of cola will be needed to fill the box? |
workedSolution | Since 9 L = 9000 millilitres,
Cans of cola = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 9000×375 |
✓ | 9000÷375 |
x | |
x | |
U2FsdGVkX1+80KWR7R9RwXuDVVZe2kbwN/u5XzbDGuq/QiJ2YP4vS3uI6rOvhcYFIZaO7E3IYoznIPEThNFYq6Je3uNSK791lXTnlP+f89hEocAUphIvhWd5t3RIuoitWzfPxEJ9WP5KOkm4AxY8fDGzq7UKp6yN+Q/6KSKoWIew9X1pOK1sQXC6Vn13AImfNIPuvRr4idfyf7U6JqC/KkDYgM5eEKdnzkZNF93T/wha8CPxUninoIhEJtMxMhhkm7sUKWSwjOPpUayjxoATLqr7h6kMZeMvXNgFl8SdE2nmiPxgpHsmgSch8n5W3aBTuvdhrQY07J0ebXSIS2fII+26cAvppX2huFpZcHAH5FQGw4/dmagBDTuixnWHgLj7PIlZjWIVY+NLcoHJ5uYRqDVgxsLJGq1vq94G8vPBgenlT3XLSZI6/bln/Ix53cIBIl/7+DG+aIJvnHmCPm0B9/I7HnVQlDhqhNPp6Imc1EBNDXisKt1+PbtgC9/LoSEtlx1K/xGa/ztXwNu+LtXtXPVgAY5syFvO5d19kGxMnsBmD8yTeFQjFCzP6CNxXmPYqNFVmLGd/uIrZAWaHdoKgJZSXIZhacZaDbf4/n1dmBuydhlXBYc9KKxXWXW+LfHzQIX/59ObQe6UVNxtzfQStgZ63iX5wnepZxC/4usrhM7y/+UUo14bI1+X4sHkmPgNl8DKF+A2bIGFHVzYR2ZXDoSBQbIiIdh2Oq8V64ZLsMS7fc9GcnhqVRP7cXi3V6UM8Jm5YNJpMK8Vk454EC8XXub8ZTUAnn52pFjjQkjqMumTek4lWaq4KfDrz9yzOdb/lfJCYtRLIA/Iqe5o4U8FWxhDo2j6svMImsJ9i2NsKdc1Sg5IcrXsn/v7PlZeOJ8XrzpzNAecqjjpULwz3gJ1mjks391wbUMZFQu9MF4qbcTOBk4dGxNFbLGCc3+YIvXXbw2WQ4K2azE6wO+EQIXYg9CjOhxCXNJV9flgkKxAsidfIPxxYBkcTjneOtVx5Nfqh/Tc5yOrZgDfeoHBqvtWE+5wOXobw8Glr/beyAbHoCPSpnWyqMdggVJZePLZdzaZ4cr05uExjO9aX2IGu7A6ipByYYNZz65AlBamb7IOEuXanpnRATwuFWPlhHcpwNWzHL/PV6DXHrFiHtMd/kyU5P3wxgwQcbCIemNUr5FV8aDycgZf/mb+5FpqHQ+ZPM22zobPa15WZ/gYrC6Je7tG1/7okIhW+30v7oGI2fi1woq0BIYqrfpemvkjfs2Vv6JOfZQ2Yg5VFphwtYPmcWDxY7DPL1PsXN9yumhx5T2+Lc6corX+rbov6g44+Jetri3hrwlTiN/Blq3gkcr4ItL1dV0oEJBq9tmS8+LyWp9xYaS0N4cJi4E6EUfQfz049ZBgntPaCuGLdsgLo0YvBDEthIgKPtSRCFhem888KD5PTaTfwSv2/+labAslxUUChYUyNBUsMTQnNW3uGueJUtifMBueqiG0fN5VQQEDxqUQntqfKYe1DZCzK/ImfBm1GD9CxE2rtABJ0T2E6peg+Nx/52N6IzHbypRtzW8i+tm+4Ajhlib/cyNkM9M2aI0amjOgnRyIIm3wtaY/0UYk5Noha21ZnAVTitpZfvnjXReCSYtbZI1eW/sf0rFe97wJbBOYMJ7kjyNaL9KD4Kb7UR0RXCUMdpjqM3SL/TkfcCmrbLG4N3LyfmIQitsle+5AkwffQqmbyl2tH8n3L6TuQNDKzX7XwwwJ3tt/Tw73DBVTvZpUGHlJ6jnNuIGLUn6IbC/n2HD344Zo5qrL/bcm2xp77iOpoR0nRwmXu4kQJdMgsow7uvjOhKgjfTDQpeDR0eCw2ejDvoVxxpDOFlP9JqpTC1lYuZw+9UdTWZOdS4s5/ZUfN3K5yHfwGfzLy/MxuZ2gRmanioJxyJleyTy2D8WjNFmPFwsjAiYHyQXfP7o+g/Hs0eGAGjedRuxWqrbyDKz6d9s3kPYX8L1skCN55Gw9tJayGVWPrwIpUnLjvuf3Gd+XrRISAlIET27J/zTjN+KEErRewrRhdm8kzeImZSUCmtuC1XGxGWzpj7kPrVi2F39gQ7x0l4lhI8LU3c297E4yFZsyiwiE0fycdpIbfq8W1ZlVf6BFZ8j/JeDqgIJlVjNsdF88/mpd0cYtJVXQN5FU5AgztLDHwRWDi41Tc39AYHDNweNgLh5B4W3tjFQBbQ8Xeay4f2nd+waC/Qml0U7/VWkDVpP8iD/xAdA2hSDqRXNruen2o39QE/cR/A4G90TfaJ+cj+a5pwIssYmEC320IbVpDsKcEgZKbasX+ldWzSXike7VJD4X5LCwXt2zPDeP24hncp8aUDf3uz8noCG/k1lIAvRcGdEWvc+fmTo56pN8SBMLZxkt3phRZtWZtHnOUR6mXacWbkbbMNdvMNauhuvrIunOYce1JEjnk1dejhcwph+MqFsJDewCnhH6JCRe2aagQ8BFDktJyN2mp0FK2rSHpSNd40kshl28WJ3vkiIJFhOKxKvr6LWjwgtabA/ql7FWAtIu6HaN6et5nLgOpOsRsIMiSvYt+onJeH2M66PCnk+EV+7rUw+/cYGGiCBgsowLrT77NgNiNgcuijkh2Nz3p4mYCdxwRfkIRYnBd1u7XpER9D5+5cBhQ6WO7aIYJkFPu5XxJcF+QDh7qULSJ1XqXc0KEvuOJ5p4+HeXm9x3IY1YtLrBMnmHfefPdubNj3T9WRN4WGOgCi7J7mqpZEBSR+XLqk8uYDkifMm27uZlRa5JhMn/P2fSFw7fhQO8OP+SKSTr0Q3BuZEgD0n5Z2dGslMDrWa0Vw1umU28dNowEUAoJx6tvPnROqUGjPfsXYO8t+ct2Z4bd9Ss/Z6AgU2tvj8UQUlHYi05w0qoif00gu6j8FUGndNqtCGNL/MZFy5xiw/98CTzRwl0QXQjYDZe1Jk7N2MKeGhvBhXpeJcm06UqX0QfdxdBPxv9zJTZk59RKuBsxaBLbsAusbOcqOWAPAcppzwY6SBYnEKRTCdVzD8x/YJZoOHSfsE+lFZ6OEdBFT71Zoj92aYyxMHhq/a264PfB9ONWI8rz/CP/BWI+DpWV/lSqF4bCgcVjdFSubAwibtldxG8gvp0BVMqNrlq+XaP95j+ECeWXHxuo+CT4ay8kusZmEYvLzvYTaLhMgabjnoJcyC4KA5HfUJZQQMZceYm6h02FWwJspEbw5kEUNIPGjbS8CSaH5UCxgDs1XpFKHl7p3OqNoCdXUZt/ZHllOsjf0vXv5CIFPoXlae5IEYFENtMfTRpD6Ds1FN8y77WN8Hi5BP/UdD6bzH4yx8EAK9FE3cnxyU4hoWfgxgJJh7P9MGMZmLt/0TPouPqCdrpcgONYZWzmfx7WShx++7Rct+68C3x6sTltJwJ14KWec84U4KRxUDTN6N6wCSu+q2lSQ1KQL23o4MBC9ZPVXFScpQCMy6WoXswDuXCqQEicRBqdSoni6UuhEN3B4RJ5XlkzbsTyQyQPTE5lV/P8O6yt0WkPUd9KPyUpil9OvfvB8eyRBRHAAxOt05HQ06CqDUhdKbqANbdWG6gKc3hgG3B8mzo1YInHAmes8lwVdFfYmNFM/ypaaQ/PX7FgiIzGxjc77yKsUWSNrZEyAfBmx9wcPHTy+/CAXsWiukoFpPpluZcsifj2wa/Yl4qnWVKy38DhKWDNYS/BrRg2GmsDxi0Pp6C0N8WFnyaIOb0DL7WPF9Wa7c+qcXpDMG7kDnJVSWYhF7y0bvOkWfIvN/JihjaYRzSxyLPY8Aaw6+S05ZuiTX4NkYPyMRKkdWSmw2zU381BvubcREC9cJFJe+mQ5Ne0zT/U83bRnVxu/q40ij/ON6IvvG/UQajzopQIq5/vvb0HdueoBpJ71Cg6DGh+U/DZNKLlH8hPtKt+2YXuKcfyVFu5Ieat2uXas3Af38TcyTjZVANVKDCUQvW64aLwfJNGedvniZIR2MHUaHUlhZM1fur9ZC+4Bvm/HICfAwbOd7JZA3Hfd+rZNPcn7M7tkJo1BXgwOQ5SDPIDXjX9IvTLIMtEgaa3WzWmv7sFi1FVUEWjEocBLxKIu42aWTRJMBUfTD6ineISvXPYDL++jNIRjYdLQOrbvyrAo7dXqMa9t52WLbEvNq+P6horZGFA0VsmZJ05fXuv9Tt2H9vdgYbgWke03e9riFh+IPEMzR6qTfCwpPnUTKBkkHYvI2m7jFAu0Bn+teAy4SQH1nH71xTGShCy4iB8fG7ui3TsaP66SCOyE7GXaMYWRoF2Mfco0bFwSwQhkUwKXGGeDnQKa2KRsUk9ms6eP0UaUFP6plC8yHi/qJLk3gbQLqfiHecz2/Yv5G1FO7qNZGXY0udTY/q8laOxIkPv6ZylD/CjRR3Dj+Ow2rwYSpX3+YUBAWyby5HXEskbbXLap+vQkqib1vE689+PIrqb07QMWO1K2wJaz0Ux52mdxsYAGql8gE6MnX1V4LOA0ecnC7AhZX051tQerIUA+t2wuU6ofWF4I317MrLx84a+WYbDhJonVDSzDdxlA0G7m/1699pj6RumdTJpR9g2priMlL2PNLaikejWziNKP1ymUIp4+8E4w+I8LbQvkRCn7ThUKSSt3BIkkz2maAr2LNDVBRTYaMxE+5EaZ8Ct11yMoO5TAWFLN2iegG1D5apktpRpiMr1HPzcjHuS9S9VtD7wZfDB7LM8LZyMUmBvAgH9VI/ov3qc72MDEH76oxwxYh637rByaNmmPUW+GNutUM/p6oKQCm6nSl8Pu2kNia5fIHr4CbGEmC8MXPkVEjjo+SK1G2fQ3tE2X0tunuLoAhdfvM4KXNmLmf6WL//+RVXrNkwJm+j/4wEdkuDUujIfbC/Llw1QeTBNM7H4Ee5x+I1x2vvZPhypdh+u79Ge3j8mcDpi3qMKTa5wTPmTCiSGTz+GyWeXyB8kXnm9wCRCuzs/TinkzzstDX8mYVzfuXMAIWNGBv3ty+ZnWS55yPz04AodNCVJ9QTOQykK2vwSDrXiH4wJtWe1x0ehu8hxSpuQMfiGyRNe0pD84nRRaUvbFTuAe8bIzoV2y017mJ5Ex1A1oBOUQePCakAo+mkWP+hazEcAkElw9es5PkFlfrxS2cRXc4I9wK2hM2Q0tHPLD6bGH9D0a3puJ5a/swI/4rR9A2nJC7vBDy8Zm7nOhIEAsrLxAfky2Qqiis6aUL4hkdtgxupmh4DQinkqOZOF9216sXVJ07x52Dw0vweoM9r3yaFGJwAhk/iRha1h+tWGvhksNNEFxwe1/Xf/Iykqn/Ztt7tjhpmWSE7itgBJY7Ns/gGbGe1LnH9Ye8RL7xJCPEBqOLzjMWYMf5kOYuTBKRCBrmGomUvMT8DxAQntvueW9kKh5zo3YE0ngSlh+EeCrptS8HCBj/x3UoyOwQLc6DmZBvyMZgC+Uh80d6Il6YUVRYwk1k6Dwfu2MS4PDuX53soSALWrkKBTeY4Vs8U8k6241WBTPdQcYps6lteeVlc4m6F8s3VMcMYJAAhiAdB49vlA79NavXo6Jg73MHVThExM3ryxRif1xRqAgUssJokd9Yo+neY87jklhYjE116nqtSqhm1MhrTBnkiivRif3uWYvxxMkMqewa1cnd6yCR6b3w/guZGSBRayxSWFEdBa6Zjt96iNnf4VgOosuaI4SMqE8qcQO8VJA0sW40m5YNQg7OXIui3jWr/bnAQgUK7uGyqRiX/Va5Uczk3NJJGJYKyW5cupZGGG8ZXzFSKs/lMREiq6MhKhT3xbnwnbWUBFxxOBxdRUnNdnSAJpKEwd3ZgTdnwmcddf/LtLKRvlNpe1JmPC29dUWjslfyIofNzt3eW5HxC01u5+sM87LlHEeCAnlzU4WCK2nmcjN7rXO5xZeSWmAqSToA+pJiJBONrL00frF5s0eDHdlQq+yqGJ9HS/b6BgbuUnZSwR1ymyJGQO8f4muAJxv0RfJwjHCBVioz+nf3Oisq4DlclpNhdHS4L18nH+W9pj3qc93rlCMlCj9L/pRGA5ZuOdbwVYeHlwfemQ/IUHl4qvWfAqcv5DHmIx3HrkG4w59PH7aGLzF3+5Zx0QRDmc+obW72dJc3m51xOcQdmFJvofZEgZnDIZdcddpsSw74ZdVHejQlmYrFVU8C5zFkv3yEJXp31ArwWpUBXaJ14lWUa/m5UZIRc9RlVT6e5JrYFjvp1IbvaTqCUkeLhyuR0h6M0G7dMvVfrADUYHI0o2CYyi3Op+h5rIDsAozXWDUDtx+t3OAjMDmm4dls8SW+EvJncjnwW/3ukIHg/QbunOecKPyhr2CA7wowoSxIoLkAPItDXls3W6REqI+IIaHpVfb6x9xfNxZ8Z0s314n9+3ke8DXGLhWLjta9SjDHs7m1hkvoAv3yd9lOkoCqqDFLPSmhkcJcE9hqV8ym7nz2Gu9yh2GKZu3Up5e7CLTXxtYAK7tqWX0judyWk3OJtgn30COrFTa8FFAI7ENpr4QhffBlG0ggYIuoptK2di2THgh85xUHPJZZHrWf4ibaegy8nQKPbVTeAms67FfDRBDe8aV+k1kVszyRHOpxDsfMqJz6CcVrMqMyc93B11w6jk2kA0Reo6AQHMKvUfOGgloBUkj7L5HdB+TK+o0wWtX56YjsWfN8yA6jZxeD4WSCPOjY4N4wRu8+hSiKZYwGYTGPCSFWrnA3B2oQ8eOinx1urwcPnzM74MGyhsaGwcYNOXEZUrHI03OaA/gyzE+SB/h1+LKUbh1fQ+0U0GvWeQ7GevLov+u2EZpSlnFJNxqWHmgX1CeIcFE5Xk/24Dph9y5PkjRENqeXkhv0TqIpXLxpRt+ScUkLQREBQCMI36GcQMHXiEwgpZ1jZEDdqBSSV2sSFfzjKaTXMN67XBK+kOP1z1oNXXlx+hAXPiqPzbxM5nhDPeMm2n0QKZQHt+Q0k1ErNQBBbvg9SReyg49ffA5cLwUAUJXLehFqsnuKisdTcUmRKNLbfhAUkltybc/2S/xCBMSIoXgJCO016KSFPocSnK8gXcCmKziBqE1RRAe35eIeko5QqV2TTvgVXV5GePcza9daBbBs0SNKeATkTp19fGgXzeKuwKrDjpyrAxxHQUUnUSJ+IyrCoY0lQWC4kZEN1ViQYtgYSOFc0WUWlN02gZVJzs85mbtCPAfQnUT5DPG83ossp6ep8b0bXbH+J2Dmw9lEvANUAzAmIQ74KgRlIz7KD6sKtk9bBeJTFtOtMPV0WqTnjGveUyC+1HqdstcSUVFlCffAV464cfBTWpXu0OGW1GN7109TykoiTV0+d7pabSGJPwlDtBrOeqg7TRQ+MtO+O+Oe2p4+7un6mUuNHOcQ4BbjGvpDs2kknirCGst0EsMac87Y8z6diJocxLCV1aIesPSoTKKXlzfLQi9t/L9Sthev6qehh4+1t6u7IEUwx5+B7l10G9lEK/hpRj1InoLDHSFkr2YW+WEvL6+9qMYInpv8SVXA3cxOa6gkiSghejeuPMJKkSjvlM+ybHPTxne+aI8O7HQ/4Dyng2JM/9unGuTdYjkInV9N4vUVen/sCT1wTfRSH8d7E3R5J1T+8bDCkPZbeCQJFwzaUgKc5uFg7wkXPT+/43mWNgAZi+OCVPQtGe+TroN5kLozpdlhfPWk9GDbAH7ldehnveBBeuHN2m6jnZoOUQR6UV+fe+B4s9RgvBKn0dlCCnkekIIJvWt1TTfL3gWqfm0fgbwqLbNpsf3EV4b1XGlTWA4spygYiq0uTej7bKwH8B2xywisMn2F2QXUYNNeIqmGdHE8eIZs5+Z65i7uKRthp2qQkBToX+k4L+ftG+PnZzXKqwN7PxpGe/zuxMfoEGNPFYn3pWdPC/KMxLBagy7Fhq+RvpctfX8bD5xy6lzgWnxkem5xqAnGdRCMiu6prnUSo/Xve1bEw6RFpczHvy1w9gM8jMz3zqJXorhTYan+fnMdE/VhZsrZ6hxBbKXK29tIcVsHaBO+KZgAAAD0QyrR6GRu5/d5An3ODw4oldPScAVaMeFXxiVgLVXlg2tequek/UPLjfiXfavtQl4y8sFgqKqVMNybGTixmSmqkORFRjIfCO6fsEGnH4up1bctKwehYuUBjJO9uAKm5IzOjj3QQAyoTk72LG9Kh+hlLVeGNceVSdUcOF7tTzisESs90K8hTFt5H/HsskFbLAhceNUJsCm5q4OTyE8WtScnrIcJUKmq/6+LM0qkQWazefKZzKwevNXJrwGdW1Kwf8lPfhGIR5Wk6MiXGUyRTAdit6SpI2ivzWJdbhtP6wTrxjoAluIKVmYKvLseT6qTD52vQgCescw4SdY5NBKZXR3mD7Lv7LqaX7vwEQmNFxVgC7MBjKiyt5wn777RL09XZEdUuWaHrbJmKKlqcOIMHwUGwv1+Npas2/6MdBdDKsG8VTlTT232y9tXPrfrL6LQRPTUC2BMGw84JiytgzQkQhpOe2ybEf2loVjY0qE4mnsVXzwAylYE89glnTO6fLN5eYKQ1ib5YNUFj2j4Ws+30pyjRApSPUKps9zCu9aI9+t30lzRiFG1sEVJnN4ytWIAV9AqgayOeZRD1+qHGjuonEtg+LPFOnloL2GtJsHLknBbNYATMmKhfiHM3z9cliYkEjpYsPHk9vVItzaW79eM9nCoW2OwYSb25raTBl88+69dNI7kpCHzKDEhre3M672ixGyi3L58hrGuF4yq7fzEaJA==
Variant 2
DifficultyLevel
556
Question
A factory worker pours 800 millilitre bottles of barbecue sauce into a container that can hold 9.6 litres in total.
Which one of these expressions shows how many bottles of barbecue sauce will be needed to fill the container?
Worked Solution
9.6 L = 9600 millilitres,
∴ Bottles of barbecue sauce = 9600÷800
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A factory worker pours 800 millilitre bottles of barbecue sauce into a container that can hold 9.6 litres in total.
Which one of these expressions shows how many bottles of barbecue sauce will be needed to fill the container? |
workedSolution | 9.6 L = 9600 millilitres,
$\therefore$ Bottles of barbecue sauce = {{{correctAnswer}}} |
correctAnswer | |
Answers
Is Correct? | Answer |
x | 9.6×800 |
x | 9600×800 |
✓ | 9600÷800 |
x | |
U2FsdGVkX1+PF0drKjEoLXqioEH/Rmu/3GHfz06A2Svqq59vUegYUqASI90dsoy+PpE1mHWHB6R6Yi6NakgADvZKZzLUSMiJgRNohQEQBcPBj420bWBngSorSwrw+ogR1eOosfs91B+PDmcs+NHTC+GS8Sp5xl3jlScXvZi9cLTVYIQy/IrTXPz/wjy5ILWF6T3eTm8T1MisTZNPjXRFzbSBo6awKVGw9PG6nLxXEo+o5lZntBHpfvJKoBuPe84E3MofPcnBQ1ZqgY0dGFttYDITTHLilFPKHj4ILDvgTeUxAH50l+N+EtsqtXqlfLVR/hph9yR3Ul8z4kMYMIjdLaOziLHfypdvs/LYXw+WJ7qCKgkMlT2LjmFnN1MGy/HFl5o6rMz2B3yDRupEERDlokdDkaH7fe2+zcBmsC4E2xqRDCmzcXeRRNq0RlJZsYzyS1qYrr3DkfM6169t4ZT9nFYR/Vpa6uJvdBQb9VABuvpNRxxPhX76iQCryebb6mZ2CzYSjnQXmz11OfvBvxEys+uVEyQGP1cB3d/RsjhIRLLtLsDNK4oxNceJ0i+ff/5Y3XYVZF8NnrG317mpgDbDz8q96L1pfB2aZihA6x02DKjEDP3OVR8zTrn8Ns1YXWeVAmhV0vCey+KtuxPNY00Pn5RiYd6CAg1VM4BwB1jh7SX4vSuN32eIBwsJJ9riruXoPF0TcEfgkVTi/VgRiFd5DjGe5CBWRc/LLqD6ze5b289QOJdtyncnIF7zJzPI7uE4k1eqCx1VvF0psJM9Ago+V76wVx+mEbTMGj3nO1CgkeORQ9lV43lv28eAD65TOWnWABgQy3liNEcrppt/5qKtWj0Sx2BdgMbFazpFyGfuLUSnxcNjtevaFrGFRW7LRtRgP8jnAcyH82cov2//DXa9jTw2w0Hl0YIhMxtNaLjzxHHD5y0u0FUWBZOVF6hSBvpvuM2m9Avw3H3K+iXY6JOfXpPXnI52yjVns9eG6dpk8yZuplZ1NHDQ4q7vs35w7kwUOlJEgE68yruR0P1wjU5HveMIeXUEvViY9r6a62fBhc3gThYRhFu4M6gaSSzVoWOAT3mWKo+dl28Vjq8WVyIFy77oGZkS7XTs7HQJshlxRf41814Z9HxYknvrB1JZYhxC9dhzku7nsFwOLdqEx+/5gMfZxH7zY9ZajKoQOZJ6451T4Fv40+PAI8mXU6YnavoByxeiFYmc8VtFezNOyL8q4XVYn8zTqXjKUDQHYh/x51CItD8P2ATDEp4NshOGB+k6FaEPTtUNOrTB/6nku4YIu0eTtd+qxUfbV992fiQErIqOuwP73xGx7hADd+AJGisuFZQCCqMp/fDnacd4HIk89BNQoQlce7dRLAF9FvIBozdp+oIVstC13PVYpJ+fqT0py4qBRGC52PHWGCucZD9SGN7AOrFPpgP1r02a4kVK59ABRKPyJR07VIIEpctpBJwbw/tZ85PPBT6/9NmQgfDxmFRezJ9H+h8tCihlAEHsqzMpFYnYSDFUBkBqhmLX7g00QsAUZ1+rBBj2BktxY5zVDuNCucTiriy0sVGM+whofzLHu+VmLOkzSztYhhIG28e44bi6vrhsDMJWtF36y87Lf2pkQSJWeoKWj4g6AMFuPQ5LDtq3qOyRlDK8A/+wR1wFrrYVhlQtFhiEDbt34MZZOVKS7LF+fAu+WFI6WTehmT6VGgnJptDzBB6Y29DkAe2w6Xk/EaOhn2AU8EsR9VtSYOY2nG/Eb55hKttX4hk1V7EkB9p5VazQQH4oqugAQPWWsMPZRa8aooOVZaZzAAFQVQbISgVClsXjhL/1a2mFmx+YYVxqYDui6f/in5iGmX3cZYTf7egwDebG8wHboJsXKYGEWWIoIof/1I30CPHYMORN1hhUoRbJI1SllhRpnuP7aAUZV+DCoFSKH+U3V8pS+V+BGjyUQtB3sk/Ch1KPxMgo5tQYpTyX/+AjXFFgAVShE143b9LXgtOSRuoFsQlzj6WDYybRjRPGk5mPP2byeSfP5VxPHjQ5Zs6exB7XOnJJseV79XawtN/edUfid/BbUvTADcRJJVDZRY1GOVHEuPKnVH2QEVp+uWCvOUeUhFqeUnjxBK2m6EFvBXxCw4fiCAhm8xyrTmAd6+sZAc8cquEBVUoLt6LG/oC35xM0BaEFKt2f4Ygo2lEbQ1TEMF4iLhA0S+JxI/FlI6ZkKpi02yCrgalY5IzgWmkKg2Ze2I6mx/FGyqReP8cncm7vA3ZlwNaYjNQz+furMy7YH1y8oxgPC95gRweKV5uQpDBEBWbCL2SH2khboi8DoqkuxFPQ71FWbd8G5KzEsDjQgk0vTOD3a2d/UKFe19flUCw4mJljc+H2U1FH6N49lm/ACI+E4uPD+Nmq1Helr1UFED5FSMwRnIOMQIJZ+KOVJrilBnNc8DtPYr6WVgm2ncX1l1eDncJRtCN6xZKpKzKKjb+lNt3N0MSN7t+06+ZxcF7/syfF4ki/37w5Q2+Ly51cPtzAUXJFtXErDOQAQ2LVd7kKcVeEmfXhEUWzUKFtqSVpOdHDCIj2HTnH9doXFm8o3SKvMCtKIu3NBHN+rXdR2oJBxMvHxAvjeDRDL76n72FUbUcq2QrKe5O+ilsQ2+aVK1hwqdHExnPud+/TzDQ8c+tvRtURIlBForhhjeHfNLiZBwFisP6Z+Og9FqRKVsjr6/NSVlrJJSKOGxbRXYiScM50G3qPqAjgkP64sBMaQgfueYB72pd+OvMPUGPpJszhBCAmiZzx3KkUBSIFPLJ7oDzuCwrS218cbsALK3mHUoej9iwRpnN7KxWrPUnJuBwKmlvCXwBz0FLLa43Ua27JGDQcQM2VLi9eFabjnC5QJfaQyf8cjBFR5oDGms8JCK56tOQGxGBax+TKr/MbcMuZByISg3QyypdgbyxAezSDIP8r+jALz9uO2tRXRlUww27klryQ+IRSAXt6lTIteigmjZWBBPYf/UiOyEWFnMHW72ot1k6QbyoNDeYGacyz+qq3jh5lVA9IrvR2rh5oG/9DfImVIlvOoBmx1H7djVPyC2Tiu1nLjllSlIRoKPp1eEyaxLVHivp+FojfWK7b4jR0ZudJsPmnyb3Pp/1KdbECRgbCD1l4vv1Sa9/WsW+UW6k0SrFANHvJxIWgWhHkIpnLS74keb6VSwY7BIQFCVd/Sr/jXLYZgpwFyy+nyMV5xLmuL18kbCmShfmPCiWNXTuftyLL0MICZis6CX11vQszrDZEcumsfLjK7ngFuPk6OpyKU1yZALSagWnfiDIxNHd579oCQbQLchZGQmUK0Z71pQC5o4cvo9xELxs02FqWTHxDJicapOJlt40crGUqI2UeJaFz06jQ/AEPCp+1TbrutAck6Niv7kPlgIRcXk990bStgaQEdm2TlVZqtAvRzlQLOxnlBBkknpFCraLsP3sqMg8dAaGqCWiv9xzGwtiKKXCyiGZa7YZ6ThdH92A3UcAtcU5ur5jcQ8zzWNugwdGAPQYQ+cVYIkDEm/ISIIrBSyjRJ5mq/hDCCEqnJ3Mar4fJ1AuY0fLQV6q8l7CrO6D9erBNLypN6nlGXD2ZskRr369tvcAHLG17pk6NYatkEfCIeXvd/VhG+kw0HVROai2+FLKLOLm0f68CcX9WMEInTUVk1rRxUUFF7yunCVGy6ANz/ZuFOVb1IBzEOQ6yDlNEJwiLiuIDIaF0J5oIH29+8B8W6lYssmpPomLanG+ASF66Lqi9WI4NWiEkPlyZcosOqXCmTDkQ83HoUBU56q8FCawhVJ4qcL2N3lBEU7B/gKO67mHNOrC1YqIK8UMmhwK1n3KAgFiwVkpcPFiC9TA4ljfY0mc5r/fP27+9dydYylHCIqmTilerEOnDCB2FP16S9Qei64+XsPgaohRi0SLb+rtco8aNM86cJrhCKqwBdugOcRNBFcsPNutml4ZYep803UQfevx8BzIw9vtechxZ2wVXs1jzs7LwIGKYFQIsGkcevxobaiAkkNODeKdJ+J6rdJ7dfdvo/RkEBROJWwhsk+Pj5xcsA+tEjWzZvfns2w4Z81WRg5U5ReZI000Mxqa7gDmYqL2lQ9+PduSUInI4REByKFMQj6nLVRUNVvmMgFR+o66NDznOdy8+eOI/Paf+NPPeb26WIiBxR7f0HErvH4DuBBaNyXl7e21FeegafoetuCFdvpEuAPB+cEMnsRiwqGuVUGBMUixfksBmU0Vp8opkutT7DG07XrxV2iQ9nS5v8tDFgjBlejmtQ9AT5WFPUcCVwmUxiDbmxbUVo18PtG/lyyM788dKRUTFDbm9ykTz+6gUmcy6GLSxrMrl/SioCDl7ddogV1IAQohT7ilxX4ftgXNWesJl8f11iLWZv5+kaGA0iAc/zVPuJoCv5wmOORw4FIQE5jMY2F64nMtcnn59lXmckpIKqWtQxHbCV+jAL2rSSBYfua3Pc8va3M7Mc2JSZRxN1oiYYS9zocFA8qr/P/iBL8zT9l70RFtGDHGp/BQDDLCXZPK4YMHQRFOOSIBiFGgzLXIPzTIxlfJVUZbrOJ3XJiQuDF0it9G7gt7zdcOSJ7jVJm/isXyHE3i/KWfc4t6dWU9/T41HLUFp3nAoQ0bQAcQAiVoeQzR9vv1Qer5O6o9uvQpw4Ck0IoyOLCCw852LhxGhp+7Isxn2j5fzJXNg9Uh6t3sybDLZEBwlL51ZyfcQVqnWTVPTEXuiWlEEE7XujypTu2lml6Fniwo0NJ7Mgwa6uLftsUsdIvlPQhbFMH2UmKYxMugk5yzPVhrcbTnV+NYmlU52VRzWUc5Vk5Oq0l50U+hNtzX46kXeLhvcVeXO50VmUTIUWZpQQxdadf9w00SDXwDQdSdV3muFdA7EkJ8ebH5buLWb8/C71MHlSAtj/IYQg0HatBhZ+mwvalXXB+AQTpLon3TmgexfGy2HgsqRWF//FiQpuYGdktM6vyFqvNveiMd35Yycp9UXp2Zsl90icifG1fRzCQx6UgML/IpdvwSHeGXFKJ4wAu51WVHjPxDTkN8QVLyb+X5HvRxyGJRFjzijb1yUOF0YZ2TprT+v5FJCtH5TFnBdyDMpNkKdYP95PzGOHCM66pM13rUjLMckgd1IirajV0mXaC7aCG+NyKMdbk3VY2f3dbkibGliKKWm6eMLM2TmeSQK8fIYhcyDlsrhwFu9LJx9tCExQiZ+MYafeayjZgL+kdjLQjI366Knt9IKT0J+LL+/Jxd4A6mveL3W2VvCLNZjK4uJVFCbrF+tqQDVjP61JpRdfbS94aOoIWjT+wg4DlPXUPjE/Vis5nOX/PdAK4aiHSlyhbDsrxeXFBZicBUlrHF+LTgg1mJg5sqwDpgSGp9UU0dazMgRIKda51wO17EGlXVOBJkNByPiot1vP9gRnwGf1KnWBheyZ6YvnQZUAyk24m30LG8GZE8twz+uRQNQIgDC5A8jGhDr2DU/e9lXrjl7+HgmoeaC5P3aizAuPfFnuGfgxPIaYUxSscC21/P0suYQyVtN9UFiclb7jYA8jW9rL2MWy4ZYExCTE+eDnuPBAP8GARNZ+izXB46ihkosor40cut0w74m/EFzTfun8fO37fcw8RgZ9IYjeZ2X2WYM+HOySUmNbItgEGnx3PO5f23RxqYpk/+HQ7T3LTGBIKh/JAE=
Variant 3
DifficultyLevel
565
Question
An olive oil producer pours 600 millilitre bottles of olive oil into a container that can hold 12 bottles.
Which one of these expressions shows the total volume of the full container, in litres?
Worked Solution
Volume of container = 600 × 12 = 7200 millilitres
→ 1000 millilitres = 1 litre
Volume of container in litres = 600 × 12 ÷ 1000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An olive oil producer pours 600 millilitre bottles of olive oil into a container that can hold 12 bottles.
Which one of these expressions shows the total volume of the full container, in litres? |
workedSolution | Volume of container = 600 $\times$ 12 = 7200 millilitres
$\rightarrow$ 1000 millilitres = 1 litre
Volume of container in litres = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+CjAhAxhLLzH4Td4/bmM4GrW1G3McnKvznPjC8PZmQ9sCcZ1DjDm9lj9T7LgoHO+w861RpCPckLyolQ9p4i5jVQALp2KLmqlu1Ubxz+rCYkYUCEY4h0fN8fddYw/MGRYeToyUqI0ilAXfPYnjg2FCS0e5fz7Hzgnim/AC7qW/k0ZhUPTVC3HxXlGiEPJzsgoJ9IxXCvI6aB8IiEDsXOsY2GW0FF+WxsSJsyXZ9NjDuiXtal4yomyKVXCidpwwLRZIJrJqxLiTgi+lHvxZMQvnMDDd0tHR3xX333Iwd6yFPSV9rI2PxQ0vzMSC07tmOzPUkiEtMrLv7zxdU3EWsn0FvQdnu5g2juvDMGMIo+0PX/zhhnZgekZwdYu0g4lBXlc6JqpTBBwA0UW5F4MwvYVA2gsa4RIcLIuiRpNJSxF8aXEQf5i8iHdv57w6nsdRB7zKJxy4HsHyBy2bPB6CbhPk7PJmhzY4YWNNoP5Zn6ltU00zowsK2g8/dLc+d6WLdkE+AY2QIRRnKgq9gM7MYZqrKFFzKBxYbtnyJJzcIpdFcoCWhq3lKe4OXJd7Ic0HGLYJeTOkPkgeXoyIBuXDoRNPzDGxZWvYDMAZPKhtSyQxZL6IdO15he8MzOiIengzBlhAqFz0NuS4Cj18HfNVMV7D0kAsX5HDpBSL+tdoZylsuSaIq6imhl1TAilUistKAIgvfKhsLeaD/iQitR7HwrQErY69g271KTgOHvPFNyQv+ehzB8Nl6RWPapD4GdGDnOjPfo237iGdDG9UFQ3qZcbP3FtVSUo9tmRLNzlJP/bV4GM7R+UqNrWZzXPm9CKY+vOrbt0gVGPXCCoR4MTrs90Wq8Ay5VY1J0160EXWM+pwTzq4yOjPcL9v5XF0qo4wZ31KbTCzU6/QyGNVfg7r+x9FzlbX05BstRxldOFP3gSioF3Eyh98rqrk1Qs4WlGGMdCO9y6MvvTZh9IEKIIl6JyAtkkZFAPoH2p5xeK3V72oUIsOHhZN1aL0TAyqmun6ijoBXbMOaPGRm9UVtJThJPNNKHT4H2Mk7ecm1vO5P6uiJS1XRTwHgSOhB2BVr+/PxLK3z8bnn70adAIEPD1mD67ng+n+czPIXaBvhVv5k6YlPesdtux3LI0ypXbrgrfmaxRk2T+W8mCCjPhnK0gMPgJySzXz7ZYnRYcTgwAqPtEk6WiIEOntq3JxH/Ynx/bRZExHTC7aq4DKO8owhHwdAO4sMyNVNKZJ8T0C4HbPzxWm3Vx+sKSQADH98xQUb3/w12kiDCXcq0AHpKEwyZizaWZaQvG2d7fjCq8CbfIO8N6wbQVAzmrod+Z1Gb3S5wHjBlqenXxFipO6MFtO8GN081uKkgKTLbNCq6ek8OWwVtmizJjDb42Jt7+e8FeIyFSAk808Y8n3mrP1UYfdxVqkxl5LmVm+t7zgeTsVa/Y7WHCVTPPpm4S9FyMPIMgWujGWtqTM6XtrBrLLdBqyjO/18abSZvpC+7cJ0Z+UJ3SO9XskMYNoPYra3ESyxUyV+QP9bd0CnvM/kJjAvXXwwyU/pfqvfV44uUQUkbvDvfczU4iZqIQfrJqbwUNvgfe+aUssZ00wOaN/CUBs7RBxS21+VYZXzFsAVLppwk03VPx4rCb+ObJs8sOuAj51AX2wQYZ0eaFv98FDT/dDqjU5Dv3jul23WtfFgQeZzVLvydgDEhfAlVfY+rrBVx4Af9D79wrwdHapc7ebBOYaro6PVYd7g5DtP5KE3Vrrh4z9K1r8dcudsTa0iB7Zzyv0Ie3LuXQlMoZN6zrrNSb7875eskH9R/0dNMeVAXZbcUeAf6s7ztAVdpc+BS4iGM6LEFQoIZehgEfAh++N40PKz9atu9fczzAMe/dIbFaqi9YCKHuQIR44q2o+5GABBen21DDpouK12MqVeTNnP7GEGJW5EDBTlxnXCYuR5EIUEumIs6QaRRVGGXM6FzaUX4EuIHyN8JFgRZ/Rz9/EWlG8YGRNzc22O0UQe3+bCoygXyJvyrdYGhwWp9HgII7GL8pkZdjlOJK9SA9as38NN/bz2lnsOOFqPxipAyEPxW47k5ojOpMrBvAw6oS9nJU0dwAFnm7EUW8x9KS0DZB+DBvfUVr3pvvie/6MxQm3zcYbRYQ8F2VKOotle9+PYw9OrUcqFG/ptyN4debx+0tk97H9elEGKlK1nxznXnY8oz96WruTVwpgJZw5ld7wtmy6bKH8dKFpEZQkkyqSRCrcHC8hOk+lhe3aE+FwlaGBKxrkWXASMEMyLSDEqv0a7dCoHAVrcwKAEo37iYvErfDJ1tK+n2RSpBt9twOkU6JSlAF0A+wRf2ivb29R349FLd4JfQp49H0Lk3ruSUM1+nkoL7rDqK8vfmqLQhweO23q5U+DknGR3D2QG614SVqhaB3yRjaGDs847GXKnaQHfJ4wkTshz1bQP2FeaRbJDkIHLfB+ZBMLDfjTO7G2rNTA+z4BOKmEFPTfmpRKtgiQ/ALbuieXJ43lA83Afex1NNlQ0hhKhuUL0dy9w22EPN1rPGjyig7V0H1lgsigm6VJhpydGGMh+ufnkZx4K7EdZ17zsfN2DnOZdVLjH90jTQs82c8iQhJo7zCK+RQptP9vJA5+jZowKuAYXb4vi7x16lkqEUZx1vebhJoT+I9EPXQfSTZkUacpTMZ/371uPuXUv/E79RkzqeYJpChIH4L8uNIMg/ke/z0DSJT9+72tBvGgUBlKUNEMaTGOa+F03a3a2Wt4V5avF/LjXWDbh1Wdj/i+bSZb7nMCXljXr7Zv9MCprIqyD//5ymqYlUDvjhx2NdvzIlaN0yx/oPReAuS2lP6j9y0lagRopX/qf9tYyRFW3J4AXdttwgajhL5hprf/nxNOTtBTyfnmf+WdnOC+5AbVjTNmvO8FKiU4oIiK7yDqrLLlRE4o5rJzAEagCYvNMZylzM2lfSkb6Iw+mzNqw4KEF7se1aBiLQb6z9ImRYkIdRowmFKtVHNJUesppsDGuKso7VUIWUSb7n6S2is91DKe4sAkEBgysCHzjximW2wVu5BY7DzlMc+rRuxMo4FlxiOlDUgMK/6XybIJ5eb9YcfFjofRfbqpQsUxDFT1YDhRRKaKlhEuWEwRf8ElW9a1JY6iQD6KyN/dMc/P5/hWyRH+kWNsEFuRk4SP3hRTw/pGBY93or/dlPp3eHF+kGYRpWWqYR5PGfBY5idQqZAC609SoL0q0sfz01gP32R8i0CmhWBAvXUyYx3TPopoVnGTdmE481EfpcZamSFrDbyZh3CdVcz7M0OWcNgPSbVsbUGSWizdHZAGvndfSNxDl7VdzfOrZudMge9qXWRcfSkFf1Qd0WYj/Cymi49ss1QfBccDvn3g6f382YIJq+IRmBeD5qOJhSp3+Q5OhJRU0ibCtw43Mi8q7jHPQCkxDs5CBIaNgUF1BHHzDkKO8PEl5EQ0UKJUfUuuv6kIZ2xRzQRDvlWQwnAyu2oibWyOxi0/2zOkcQ0f6f5mw73xIASQG1Wj1YAp0OV8ORVcevc1LFcQB7ArZa3HOk68qUAa+uN4Dl27+vB82A7kVQl7pIEbLxvZ6pRY367D0Az4qbxmxkY9ZoB3ZVHxMP/ZDkOBjng1NRzkMllBYYrxxJApP5yrVRClMya3N6dmSmT6zx2b6nveBYoQ/7VskZN4uj5g6cNhQPGhV28+0ImRpKIee+H+jzueQaSY7EwN9nr0e++Z8XHczZRlcslc/Bfa/MHgBSMPXtvw0zurpI//EffezzXkEJicCLX1UcidVftL/DuJz1lC3BWdRVMIT65lS3L1OWZ88iG1JuCbrxHEBeyCytn2DJm/ydP8Ji6SRLCH0UfplqcUUuioBEPWqwkslk00dPWw0/CSd8t4VtkSS48ta9teVQf/ycxckG/Vn5Y+/1KJipvl4SkdUq2/6T4TvXTsMfWASJGXW4Fur+VnH7sKbVTfw89h8a9cbTY99gjT8fmB1i283oVVoAidXh92EUtDAQat7jbaO0Objvhi4otLT3trH3E8uI4CLvtJgZQRllwMfuoCH0TbWSAWMBsnpCLrCsrWqaK0rvf+LyUPgpTZOV5yyeO4EPdg0g8SUa0n4a4fiGvDYLOc0QL1sV8cU5DcbbZwq+YOivujbgVUkwX0ScaAL3gTk/ZCaRlOVTmyZmYdmBGB+bXyTCFVimyNtRNmlo96IazKJzM9uXMiZ2IiMzauIaAblqEwYEaRTD5t51QIT80xJ6031dq9+nbd+DklfBD4xkJHDo6EUnULJ9X/bKzt1tq9nDr2JiLjEDC8kLXyeBMxQvpiuU8siRI/K0iJiM+Ij7wffJn6Y3Xa3A4+KYQKNowIrzb0sbjZLFKUsNp0NQQOzRmel6kPEkBZdo/ldXF2Ozn7uk8eXkBcB7VuQkuV8ilb4kzPWmhdfMGUPzEd4r2ayIawMGzd9Z+4ruTjQvrTy7GnRIUnZjAri6EUIxFymlPW/FpYUxtBTHQwygYEE6eF6dLF/l/FLh0Wpi/peXFFA+SobHIS3Eai442pLWZLiG+JQpZkAdbUxDhhZriu4WZ4z90b6zVukzKBOBiuNPfkcvgrnN9DfNBE54UXMF1pPSeQOTG/xYK3UCwPDa3/+yx2fTjxbUC2ZrWRU7oPurcFsMvOiqEuiMJ3ZJMmWmsdlMPgybqAJQJLbKvqmkzNaJIdci2yhxFQmpCF6SDInDkTKyfba/Kkxhu1Z17BeDhtLS0PaMb/5eBEtXOF8o8QMD44imvgiWijNqLQUoKg1TgdCNGb8uv1+KmTOCOZo3gUf9bRSfME9aFoBvjpD/1RAfSyxDz0EvpYWmAJFQxCSmgrqfdTLSrlOsaz5L5wMNpPxT1x1aSln1js/3EGp7zPbZyFhbJrrlwzktp5IaSY8ilvbFanCeN95ISzE19SzFi/zL4XEIrRCK/zlD1f3UfIsP8ZNKueam1pTzCqHfv5r7csmRTIoIsEpcpDUp5TWYBnk/7QUx7FPzsCAn0tsF4Sa6is4RE9BwNBRwKfcLh4nr39nibzcKVAtH4rF90qg2uAuoh+fH3QGgDR4MFx79nof5RmToQUqUjiBtZVCVykTW3ngBSzSMpk0yBG06jEMI4tjoMZiECeYc+TYJAkVCBBi+WjQ2Vnho6D+NygKnv5pbGvu65kxm2vu86BhyJbOOuYEKIOHH5+pUlL2mQzmPd8tjQbwo+byxH2mK0Nyamsoeh2bUf69dtm4JUefKsPyvpiQUj9xuvdguMs9K9UO5znuJJLzCDeskwNZp+VqSeNdKgKiD5ATpivkeTRYDSmSDajOuBWOPTrE+4RcjUq2igr2ETUsqP+yh+kDMaOXifnSrR48MOVRTWV2JvSpHFgpatUiiuF9ruXhexS3LyW/HhvKl8cphcT0iQZQZQb8K5nME1ZGkrnMevwwXW6+teQExjxSTurVrRFe5WDL1MCOTDkmP1YmC4PYvGsTjeATscpkRfvd1PDS5kW55tqdep3gwv4mvq/groF+x0OO2RpiqD23wvJ/lZ0MlQwZuOdGv5FZkcNWdKnuosJL1yoAs/OzHEusUpsfSXeDKG7HjoQ12yRN4gEYbmhkm9iDHK5knv/htE0jF0lNxxNkeZBB
Variant 4
DifficultyLevel
565
Question
A biscuit factory packs 250 gram packets of chocolate chip cookies into a box that can hold 24 packets.
Which one of these expressions shows the total mass of the box, in kilograms?
Worked Solution
Mass of box = 250 × 24 = 6000 grams
→ 1000 grams = 1 kilogram
Total mass of box in kilograms = 250 × 24 ÷ 1000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A biscuit factory packs 250 gram packets of chocolate chip cookies into a box that can hold 24 packets.
Which one of these expressions shows the total mass of the box, in kilograms? |
workedSolution | Mass of box = 250 $\times$ 24 = 6000 grams
$\rightarrow$ 1000 grams = 1 kilogram
Total mass of box in kilograms = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/bY1NLWME0N0MlodvtQHyGK9i8IQhWOfxKOVkhTdzSpLwM2UWCjsB7fiWCA9DcTpFonJripJdc9nQtKip3X6KoSPtZ+8oayVGoCa5wGWqLwzADvb+0n1vg85R/7xbwXIIWx6ODiCaLlk4QbeJitF1MhkwrhznwpYn6KxSn5Q9VjzObQ52KTaIF/wsShXU/CPtXgbdWRQuJuWk+VaFL3AixdJc5eHlWGQx6cSqWfKQJDs7qd0R+eub+LU9LzEjXLerKJrnIB8xb1yZlrE1aD2a8lEtI37hrbXMx3yg35hpt5umy3yn9KB5ifT8FAyrY4g+RkT6JI6nzBLJdon/81xyBdn8dNNnJNXC7e+yglYQXCZfofFz9tgRpmMUUZHobNVePBwrr7b/fAkxYVLvXy3MgQBlc9W9A7bEl0tfoXT8Bt/Fc++LD5Ofmxo/QR3pNQDHK2m7v3OKVak8mb2aDkf1uTzM+VM3s/Yh6SGQYZjagRMo5fskmvHpkpQfEVmb6hUx1tnWV+lmPQvWpf/LJB2HjXWKc6p9VN+dJB85VYP9MhkKYURscwQoHmVNmGTWSb/QRY6oRHM4Xndt0ZfqHg2H6ToIHsRZ6hcdcPEGoPLSfw6ghbEVwySwSblCNxpgmUz6PsGwIOkKxs6qYIZ/WxIM6Klk+XXxzD7MI4HRB8RcMKhrZv6MEOgiB9sYy0ZAjDf1lEvTNQMi9oDT33fjOVpQ+iyAf4nkogXotj2RpFENYnY/bn2y0fXfuPliS3dzxq1BNpromElaeu2Ud0P5E0C076KD7keD4Ipvbc6vT2VvTcjQiNJWuDs3REPJWTtltKqbYX19gvByD70RBI32rwDsxkJpqkAwVMqG475yojYQaMVTqMKEWl+BtV2BYBaXYrPVqjUX5oL9ZQIS98zFdu497wcCYUc2hqILsB9WBwVEA4Xu1wSoMEYfmYTfocKgwT9dSOIXDQqgKwmfRjLVtAxIU5G7j68vAzhreFuWNOCUZz5I8a8qzJEJ2Nt8tk6E0C8VPxGBf8sY04aaU0PWsyjmGxwu+THjqWHaHh2cDyf+ipyU/2ojCPk18xq0utfWz+dFGgQdtpFi5eMFiDJZkCqjom/7vBsx84ksu2sqPMv+ZNuFDWASWam/CTAFqEMaMJLCqXbaCNNqnsfH/e6a/GiVzpSU72PjXE8qDCYvPdgICcjN+MyQwCV1topLw1TeblHoJJpI0IBjb1RYz0EYtzv2wl27lvvIJK91KlsVTaxA06+gUDyrAhO4dZTB1l7mpnbI87jqg8Za2h3Ege2uLHWYlvS5ADyt2W0BfwQPpZ9qK0FVM1a7CmOHlJNQ3B6mK1MaxQuwTXLEw4DEnxJGAo4WkLw/zra8QcESMo+SOadtmNfAwhQ8fDSmf2QnpvSXKmyBfpJLfU3D7GvEyn7whrtOxl8NRfn4OWprFMP5GK+faJRf5dY/79qg64yErq3l7vdMfaMi0gr4vTkk9VajtEKQlcbhz6Q+ZhT0yIGbX0VAe8GC5TTiVspDfNIj8LdBdE9adzZnYdQkZiyiC8dzwQLBwGR4Qa0QuTgenJRWUx3OaZBHlYBSl2wJ0CqRZ+MF3JWrqLzF2jtqtjNv9JsynePJWoEd8P7OQeG/T5h5pjn4F3GdNEkNEmQnPNspHAMIAN9C1qUsesBEXJDVOsnQTmoCEn+qfxAdIVd8xh0Rn9p6WK6UZ71ReVQHdn4wztX8xlaaEQLdJKkKa++BSwxzwAlsryaxVkGrv8Nlc/sIkG4GdENnzQ2Gqk7K69Oi7U4NLufvpd7nnnwM3L/3m9cVwB35GinWunqCWnsim+7DJSxENqPUegCePLyHCK8t0TZHLt/lZi7anZg897Eb8RZe2wTyQ4qqXQHdnf0gPkafuir69tyTwAp24aBSMD4Sw95eaBwA6UkQLnCAEBtpA+4ERFzQfZp2MXpAXdJKA4brzEaervjD/GkECbXMALLs2rnzicFebkyypx8gSb1qyz6jj50GaewWUxqLW7PhB5GjyOkjrmJKS5sWtUKY6A2x99tuoz7QXGB33gANipypmZLlA/IetleLD2q2LghD9SVz/FIM8scimwKN4BoqGqrc/2riSSRsU5Khbd0CX1gSx8rX+qlLYXFk8EabDNt/j7piUgcwR96NhX7cNBvC3rtx1pDiPZXkFg7XvUWMGX2pxZRltoAI+e6DeshiStE3Y/D1SAq9y29AB8Jm6WztcPJb5vClsikHV+T224fHS2flANGkq/ubiYsPXaCdOOLoyuVgKi07rnEDQnBroxo9njkeCPnF8i3XbvVgsZNoov/TNQnyX4wsN/SvzO7noG/xjHhkq/6OTxqnhnXaWVyXRh4TYXd+qz2yoxS8d5F3otn3vwJNsjUXPYqC2TY4q9wNO6T0cR807TLUEmxVaSA7n0HiorqI5bjo3TUf1bsusbAdDcysTuw+hl8nKQ+rlOypm4g1t0MsxyYZpG9Nm4ulngb55sI+iTis09xZTc7ovKvyH8Gj5U/rwDkyfuFUpn7zYgChbIUg374cIwuD+7gkuFxcVTcxIi3d8PcnhMDMStJO2ku+rOfYgOHcTeSrfgwgubg7AnmU3FlBHrFBhIWP4GG6/rVB5juIxBep/aHe9tsEbPnaxrT3Ria9SnDBTnOn4LCGt0eOGN9INrcQNHbOd8Rl5ukWZU4TCFYqDwRvxnv6qJqSri3xA6Vg+vnIa/BeiXwLkaIPmUVdImPjXG5YYrqPNer4yzzdAncDMrSiewwIC3JjoxDnQLHGbXrZ9UTdMnqWxbtt9zA8SnFcjJhZyXM1vJuBvN9o7CEhhEblZCiPzMv2yWjPdewzZPoR+kFD4TgcH+yC+oWLs+RSiRzYQ4894g5V26aeKbA2Ls+chpr2U3Leb00lqlzmv74OZAXGsWJVm+Ml4bQEALJVcnMvCcjSfZHdHJyAKhfWa0YAdNYOjWdhfT5dxLrCl95GbLyPisyOE4g5+ayYPqQI5kAn3tnq3qWIT3arpBihue7wC8bagkxr1G1lRvBB2HAnEk6BgyclDmF1Nscx9XC0fhg6MvJVptPmELksfPcT4bICyvAdIT2g323bCzkZ+ddo0sp2Z9aIwHwIw35N7RkdP1T6Esf7xiQoY7GC20liGh9YO56NcL3xN+/X+pdECdQQpHHCu7vhsUcFUXdy08RQd/fUlAphjygP3ZWDpfAnLSJDaztcVPxZaKwrXZQ4Kc5yXEr0eM6BFA6Rkh1U2gBGm10YyYBs8tL/7rPN2aMdW2eOZTDh73T89UcJagogUSiCVnClENaHUFz8/5rm8pg7ie1rnqteRMawKMCNZ/FqAjSrBF6gAgP9dPHF84eXWl7FM9VLC7jG1fp0tJpu3HBxPrH0T27D4z8tf9/Mq4+tC4XjQy6kXsTtwxJ2nHV+sNhOotsJoD7Cjsaxu/a7dRQP8mgqmrzU0ZW6YqpM88hiBEU27HSEZAu67SI8B754r8hLVWqpp4SKPKELgbazv3pngYYt8Wh2rlG7oheZ+ajLBzDsWglzKGSjeMy+YloiQ4rpZRTRsGQSwNCIRixqxT6MqXHJtbDbCUNGxs3/e4StxQaCBIq7zcztxpvBvYVihBJmiLpVoVkktcO95nC5SwV+uhXkH1Dzwkdi63T32qy8GSaG1uiffE6pBRx1W0ivttcXt1Em71Zumh2dVpG6/SpXxCjT0FRVnJm/m9cuLAgX1XWgFKVvdgTzegZ4vjrc+q2peFuZeWYHUu04NT1xStOS38wKPP2IumM5eCNruuL0xYI9Tme+ubZQ2/WQ6MUqJ21c/7tn3CxvZVgZQVhqJJcbfhvSEMywYd6Am3YTMizdSmTIRYb/Sm2mEXe6Q31VvIPlGrj2bRweDtax8AKwUm+LO3on2T1u7q7Op3c1FxnnfbJBiGne7QTUxGLj5QId1U13Ee3UIpHFDa8GNpF4eadd+DhRb3TPfj9dThxdTpY/J4XOJOva+jpfS5ILl0E9j/fpFx5RpBaZ9aCQeSoddMrsuSFCl4Ofb6B3PubyhEc2/GXbsaNNlVhYYMvKoPSGgzN3T2kBRGHT+jsMj42dtTFlhSDfBK8UJnsp7guSSsJU8STjpswoBg2TUqCkEobgUPhH8XKAKMGBSyrhG2sf+nAeBo7I/zeJmJpfDY8awYKAcbthZ1rLB3d2BblAgXCXIjIbiodx3aX9owP0L8XW2Xhr76uF8fn4ZG46kyeHk03jKbTToNr5OKH+xwyCu0xhHYzNPHoszZNHS0rbMaSCCDlDsgog2lToRoZ8NDg3b7VRlCb1a3xA+Ugq/sVhzalq7tW9VyZkhAPmmXn0g0gaBv5YUwl2MuJogCLIzwH+XUhffYwQ1Ad5x08KXMCYujLKfwH+h6ZuCn8FqjnJZjvmXPYR9AQOh7H0q1Q1U5vspv5pm0Szdh5NMqEkzrfSxRnLp97WOx92Q/dO/OjL2H3+hsESv6PQDphInDLkT5XHu1rS85xO0tckfDEDM1awfcS87+n/HVpbBt+Pudugphb50RK/HvILCb8ZKhKit6LkgycdFFWfPeV+LIdHuILEqCqHeqHX4JAd+UF6jcmEptL+RqRsPDmAZ+W1Eu5DpudT9BQroR56db1yMR361VXv6EIn0KqgRXm3YcVBvtZPHMAbBwPSZvGDleCL1QxZ0bvz/56up7hTE6cawCHU5I0dda+Rf072+Ix1SAcJXH28HRfR/9oIL/t5mvarv2xWW0bNkZ2fE4xNLEKMhfMuHLuTI0g/PQfL5OoQXOjJdu8OpsB1bYQQJNbsSq6deqZwkJ+3zzWaKw2ajJA9KxzJ7P3WVN6Bmz3UavVln8Tc/eiocfxsgL1rcpHRlx2gpKDc0kceMN7TzI/qg8ppqr4NvzeN0a2mThVSuhk38/ftFPNMg401RJ5y4UzfbAm89aE9ex2IMaOnHMqoMBAbqoMN6nGzCMkIruq1S5BuFRrZwUlgegYC68caB/5T5ZacVVMnDlK8Aly8x9D9GIDnktT1x3Yhs8RXoXn3s9DRGo7G9lerJytriaxOef8yQm6HBixLShBqJMDP2WJgp83uOLxBne4/LdN0x0sKq7R1Xv5X0z/u/yL19YGhtrznAADsgGiaW3Y2v+OCrGExdK0gIHwTG/rMLEB8cjDOmlBZEW+Y/twPBhA8CX6/Dsh8RdstztJLsm5pxT88NIc1BMyzZSlD4BMGQXCx+6i1uEIy6beUTYnYCPTqicWbtafwrMbcjg7wvz3xIZtc1qY2CPIwo4ZPwDNvwimsipk8q2/mI5lHaMsgtw6QJ+qwvLWFU7OInkN2xbYMzSX9Iu4ABWPWQhbn00IIOQLdwqgt2+B842SOql8RZAs8SiS3LpKma4QKbWfVUHKsJS5tAH2PvfvX40+4Qvd6Y0FLs2exL1YC8lmOk1dF2S5BWVgA2Y/IFx48ItJaukbzSiYMa6o0vbmy1f9PYtfFqpN1ah4GPkw4CLrwNZho9xcxEZxNQwS+7mGm2fLFwGBO4iWxUH82fKNioryjOJNrhIsko1Jiz1P26BwQkOBGbfg0Il/S6Uk5zp00SF9xG3JryLu8JWiF0Yr1Adi/j7HMkVGBHQTc5erY=
Variant 5
DifficultyLevel
562
Question
A taco factory packs 450 gram packets of soft tacos into a box that can hold 12 packets.
Which one of these expressions shows the total mass of the box, in kilograms?
Worked Solution
Mass of box = 450 × 12 = 5400 grams
→ 1000 grams = 1 kilogram,
Total mass of box in kilograms = 450 × 12 ÷ 1000
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A taco factory packs 450 gram packets of soft tacos into a box that can hold 12 packets.
Which one of these expressions shows the total mass of the box, in kilograms? |
workedSolution | Mass of box = 450 $\times$ 12 = 5400 grams
$\rightarrow$ 1000 grams = 1 kilogram,
Total mass of box in kilograms = {{{correctAnswer}}} |
correctAnswer | |
Answers