Algebra, NAPX-G4-NC31 SA
U2FsdGVkX18yPCv0QLp2cj9rAOcw5xt6Q+UHfAddKmODawiI3KJXZhYqg3v0E3yJoiHLlZFFHdtEzsqNDchVM+gEs0M+cRCt1A/4S/OPYwdtDgJvh982Cy/nZtqZTcM2c0ujMRv9uH8b6navmBaHglDEiCJ6CYNIMk3A++lT5E9pcrEErCfcFUd+Kce0woLUY2UrLg2OuxtA4NPv+O90Gbhvj8b78i57tlYoypeUXHV8W0goW9TSBg1Vlbta5pMmYgAGplczWu+yNRuJ4W1wmQMRT2GbeSY+IP8NT6tU4KA62vD9i6fW6/hTL1uSVcAHqbMiAKB4cMQySAWtkC99+AXWnsU4qHBeYNI4lqIlsGJgEKhnntkso5NVCvBgDyh7xMXPGy5oI4hV42q0FBm+Urxvx3GUVHuIT7rr/DuxXs+FmPLCdFlUcgv0tpjEf3NP//ZupPrxGQRtj7hrug+G85nrn+ersuk4rJl3Sh9JhB8g1YKwdECEd0ru7u7k83NS/M0+LNdKa1QDsSOZ7Hcg3TI+I+HBgAXx2gxzJOzNY9UMwU0BS/+RpNTypKputzWQD16/mI97nhBDV7IA6rh6m4X13VVesiI9HqVZ6bb9tb1ZHGTeO6SRLsIYj3sYpLWS9lPoZ4ZyU61XHJU1qtZw7on/x4IccVO/KBdIfBXksQ1au+L9PL2Q/N1c8nuoytgvX3QZVSnAS7sFs2BKj48uyoeHDFo7ASZjXMT4DgD+i1nkW5bgFKvdWCI4j/kJFr1CAxgJIVHyJrGSN+q52W5rfrPUxBHyoATZysr5m6NLwKXJ5BzXS5qMCtt0FzgFQUG0k6FhPKbVKslZ6YcR6YV4HV4kYWvaLLycUJkiZsnqWNBxr0khVopyIkoK82J/+VmZ4B23hKJOWviM1TdL+91oc6TtMEzBR76qAm/gotpIaR60o9TgXmBiEoyhsn6t4CFIgi7s1Zhqncn1IGqtHHHyjUWzAotmJLJeBdGodd0mnfujBErR1eUgzA0K8WtJkfzwtEV1t7MCH6SMHD/w4AHiCWLvhQN/rEJNH/ixdP5K6XPCtdVRYLMZlacNHFZEnHkH5xM4Iv7yPautNzI61Vk9BALQMqIjPdhyWIhrfKOs+qSEAfgJNaYAsADyx+9/KQ9g5wt6FJrcOSVVIsl12CXhKFHJjq7y05AOycw0dsA5qo/ACB70PM9cMJ6gMBE/VrF2kzZmlYpCG6mDVB+cTyLdN2AkBvK30P3cuyDYbceoitYu2mcLXS3gJbOn9HPw3pQ/TeMqFHGyVxeJ2QyQxgJeNtmhySjuQdqqf/ROM1IS9BCF53M8RiMih0UeNy27z0LQBkw9N2/jeVn4HO0310XG8X6f1M1JWJyXitxx57Iz4UAn92wHi9ebJLQE220Z3m9Gmph+I3JB5OzQWddvlKUy11iBi3Fd3wYR6LcJif+PhSmrLYoGEfTlKViVd7FR+FZ3YIk6zQGLifnUFFmmoq4LH/3Rt6CzZZ07caqv7Q6Tl/5RhBqnIUBTTMWJF3foe3W7JUhSyDwqRlqf9kGjTrLh9gMUBG0JlnQMKAPl5aP+IqSCFai4wrj9VESRcYRrXLYe6dmMve9fs/CREHBziq28ap3quBjP0ySPqj7HnVryuiqtHDeha8+f9m8FEZF8O9iClWtVU9TsWwp930upnHBt01CHFygMLzpoulj8YwdveOnBaTfq/94se0rUxf2n6lmf+NMFDdfTPt3gzaveMWlKeh0ukwuLvUFdm4BkB5oeAH5SklUQz0zYp5NS9DmnNEED8W4eBvh6Kc1sFpUOIttCZVVDSg4hJNugoP4X5/3Fd9Q3z/of7Dvnuq3NVsMsLg94bsCy9tHgCrOYxM9r2RUYFDmd68+Dbw1Qaf/TbjNO8lkyqWwY/5AHsqI2vD7FDoLxf3P3kyxIGG89shgNPFtZAxiyFWCjpftEUts8amKMzwTJ0lhxzc5ob4GVUQPdQ6r23vEL8ZPFQJ5SlxyrLX8sCS46HWkL+kOpRoArMv15RQbQ1r6kKLCoXAax+Fgfw5d4R9TvC3NeuRbI54jv/fxNumVbNJAeHNg80fs91AI9zxLvDRH7UVT2MW7Zr1PGM3DYRFuhB3CdRhvX2mQmHlTMHy9L66nrXbwqyoTmM9Nb00REqsoJClpmKOUAdivK7RO/Opn9MS2a315fkxNjKZgsTCo4fg1RGCizG88FCPAusxBuafb7chKyhTkn+V8vTDuSyWv7O1UDuiFAQXw2namB01ORzWtFoEApqat1quFafSgOi2X+UazmPH6Y/w6QxTMkeZXr+DNUJ27ol7LnxB00Rkvv2O74OnW/gRccbyn6JTLx0xq8+CPIkjmLg+KUkfEiKyOy9jtM6hk3XEf7Ul+AyXxnEMy4G6ZDC4QIcAWMvHV7Bgj85PVZPX1AMTjLPpASy+pFM9FoBbiR2UKeSm38z4u6Hjqg9N+QuKA9hCyGFkDXLbUvYHzyZ+znRR2j9LbvaSe+0qBALJdVlLrWsuEBfBsiGolVdXcrHA98uDnZ0Aop9HjDlWnMzw6KeoZ0IuK9FTRTlhpsJNXF/6CwUCl0xYk0sWws72/nuxHrzHJ7+1QrDgryowx6eZwWuiMWP8qxhi85UeJCsuH01hPsS649bFIcv3rGqmIcmQ/W5qbY4ZgS1FlWOkPVIKZRAxaddPfcii8MK2C0SdjMbIGYSzyQIaleUcJX8dBxXSM9rzffyGv2vQc5aQwzPo9K7Utq3JEAXUh+VAcDl4lbQL1P93A7HCFLr78My0Zt1tFJcfkgyuXaW5yWCqrd/uHcoIHNIeHKqZ+D39kBUGDxP8jjtniNekqOKtmM52i7ab/pyisdtI0QjkXHNgaK97R+WB3EeV6K8zgbXmDcMoK5FYJHRAWH98DJHnnME3ks9lSDjb7OXknU5sIg/ihuT7+z2Fh5PEr/8GBAJ65zxYiBbub9mDiwZrspudEAY6uyDiDIIaBqb4WFvHHM31Oo1J9qf3mcz3sIboDsHEcbcP3OfQv5YZ/zF7/klQIsIquCrmVOu9Zpefj7yccvA4a7NXiwRmjL0QgESU6xoNZABlU/UXLTKqIjc0izuEwjfuLRCpsetq7Low3rpsXmB2dvUmTg2EpPYCqqeYFG6GLYCqItq6GFrWv/D/AsWR+dZyee9ZXcnpas8NEoLv+GAj+IzF4Y/pkpmo4qi26hjsZRqxcxfeiyHb0YsonVnrIWPi8o60M4er0gmUqm4ECPZD4ZKm3vr3qL/cRLybBQejLcd2qKIlDvln036PMD9pRPyvxb3DHnPViZtanhDSrs6Jrwl/2LRrS+kaUS4QkqNXOEVt4m5qXkre0qLERBLNKujWMdXG4Z8B6XenU4aBTPv9gF9L//SgiOrKxImlWJq6CpsiSneb7DoNf7CjIgQ92M04pUMHJlrm99gRoMQI6+EVlqlDYe9CmD9aLStMhujAH9IWiN0MgYynTK/uy1FeX13De8AIq809G01wm3nwRknp68fZVvJgn9Sn8rM0C7qF6LopbcDsvulHAMnCfwCckUk1l6HmJ7T/R+b/5ZrTgiAc0ly9JvkvJ6Mrqxqo7TnbUrQtTDlOnGOTPYgrDvZsVJ6oGFy0aUCpUd7u1ws8KHeqiZY2HhQYBs+e0bGx0WYCN3RVbE9RBKHhulExBV00qE8dQ4qX0CVTt/3tZDSkE5bwyDuqMqDDLj5vCVkJF8xYZNcQZSSL/isJCNw/oRhVeetXNvLh75pGFTsNl5BSowtHKam485LM3fBt5XN3Yz5lPuHGqmQX/RYjzxEJKK+39pBhj7twVOsPiaZ8BecdnrsIkWCk2mpxgICkt2FrRxovrPNTdw8i78mOp+yd0ONqJkwuAcoPs6hJAmX+CC9lPib7EmDrph70qD7gKSJ4ma1bIsU5B3fo7axYDy+pFPD1NYu8ull948tNQboX4c9oAkXGfOgOnBZ5fQv9K24KOt2eMkqMGI7g20aULpK59igGCfZyIZLUCAQ5qJbhBK9s+C/r1+ioiMcdbxrLwo1mXmeGMspgccwlGdzgRo7KY78JogWxjY8g2F50VSZeS3r72lV66FCyMtWNKLANwFamBGuPqslKWq9nbYbERM6tHxdC7R2lM3/RQ5+3b4ZcnmOVeyK8/CcikJeK6WJLz0DmlWC6PDQ7M/PFxEIswgbEkZUiB4hXgIZaKpW7V6CuukBgqm9Ou48VNwaeceSsBCgJg45zn8ktnyb199RA40yq06Rj9ztUP6fARY5CJUgK5Pp8e/vv9ngSR6kncIxAlFrmZOdyuZMe9FFK7JB9TVCE664M655vPcyvfwhJYQavZEF6Pi92wt3m6OFQrKlw8nTkIqMS2ZuREMEDCUBe9MPZes0Dn+j963OgQ1Llpju05kw9xA01jYLh/VduQKlfMAz+VJ3TAivq1Ty/+4GxaYfkt0yM9G89sF32CQN9uwkbmbxO0zZZIrvgO4lIwujNwV3Rz1wMjOQxKvNS9F+702PUG1wjKnFSfjOqfJBWg1bnIBRUuh7c8wFSFsEdi2pNvP52qtygqra2i8zAD5RDuuqaCbSU/1+XYirEpuByWL9dclWQl7jxlecLZr86d0YPvZZjqueJSXpY/Jlz51Cs8N90pkeyscR5F8ZzdPMrnIAkwD7vwSF0/Q0Z7HPmsCbETFw1Ne+hejCeyLkBk5KBadlu/3NFjho1RN69j4TVPhl6hY3d+g1+lc39qfH8RoznRAFrw1oVHyC3rkVAL3MykME/aanHc0EDdNM8nxE6YkMN5d0ixXIQKcVQqi80QAZfh9oxujvyccUko5q/l6TA6eu2NeDL+Gwu3aM5aJUWtf1vusyJ82sbs06i+pojsXdoQ2CG+4CmVJLsz31Gnlo2TK5LrVJsr6gblOnriyevNUyKgCQoOxEMDDcvTuO1V/wzk+pbeVhZ3Ny82VTtI66obE6FfKVnMj6E7FOHgYsyN8vF9wziXQsbbt2MvK3hI43PjNzqXXO/2Imag4E5CemZUX635E3bsUcx3X40S0YMyIoaE2v3A+jW9doq5qUuu+fFhIoQPAWU6MZ0rtUo0yQytv6OklGwPx61Dr5uZyF8HXUeI4eBTmgrd5uK1vJnYJ00iR0EqC9ZdwFI09+hGv6kcAlll85pSn1mD9hJW8a0BKOgebSZwTwahgUWXjFGTix1pR8wFqDMBdQwlTv1pQ1cgwPY2gxqlkQ7YLXKEd8WcdvBTsUtH5l6/0T56C8nej/VpwXI2fElSjLBI3hdZlV0Cd1oOekvo19jM/Q8X4qlkh5IT+Df1M/pZZhbbiJoQz/rQKYp8SAIP6q20VPstxXpMRzbGwEHJ3VMYgWFKJeP7GZ27/2+feUgefxprKlUgxarfyAy2ikxoXkiXqmzKAZS85eX5OcW/pmyMO5EnTJ6XFlYOJEVJ8g2vMVIzvaR3yyetwISqD0TP6N/B/8JTtSb+N/A8h5HJYZ6T2Bq0xnrhqRIz0SpGZYsMlNga4iOEwgB/lPRRcGGruxoiMzmaHmW39uy3RYOTwlWzCxtUT+PUT8lAQdwA+AARwkXDgyesqOwSxyG/ws9hVvL/QNHYlOunOk6c8W1/xFfDUsYnw0CIa8K7b8tpLVPpFeAoAkNLusvQLAsRcAe/EsV5443bHpnjpXX4Ax399R05cMJf3npMUJJhirtbcB5yltYNiKIjUIrTz+wJ7NJCjvimBXBG1Bgb46UkNjvKR7djX6IIXBQRo3ndFZ8n3OEaHuDuUxxjK2tqyjrj306LVcjri5yngW2JcGUkigdlZR+q/nRmAyLWuzRYIwmL1KVYq0Io2qqGxk7eACA22ZF96wuLDTGJdoYiSuNr0xBynTE1+8bIljE9Zk4Sq5NZ4r2aZ5K3+Hr61KfOsGOOLyCZR6asv81sQKIeTXlD27m9p+yJGVB58oAtQDlFShs6PkmoDBifW6UNMCeTAo/f41jUNNHEzMsbzV7cqC20x2nxsECU0Y9N5uZkO26HPdQ+TuRL8gVgaGgKIRajz0dcfd5/X1hUAp9jldm/ucHWB2iOg+hRUFN/9/BjYWx5mCfK/PkbSiaQ+azwvT5JvSHOTedrXb9FIMz6NGo9YaXtY4MPOSrEEI4hQzYStQt2XQfgsWZUhR9dcQtbGERN03f5A3K4n4o5QV2y5S0HNG4HMB1bnnMHu6nccScFt644GFShIl1Dqp4f8z0FHlmpjXH2wJ3za31UFRLtrzbuP/eyiRWjspLgPYAmFn7j1lzaLmZ85ECPRj6jnFJpB9u+Q3i6h9P6pL1QrwUJt9eve2WnI/aAPGpBldj39yNvB4YvR+TwUYsSnlRN7lBiU0t5CTqHu7sRqLLddrIa0JlVayhIw76/Ny4uLzg+rb6DpxTUI7VFm2Hy7Iz6WIKGdgoJsNJax+Sje5Y3oIn8PsvuTAp3qA23NX7iutQZItRvUhk7dFoyCVYzY6RNTSNI+BWGrBR8z8iXe2grdnUssjSAhr6hwPZYVFt1FXiVadUCzUdaa/7n3skHbjaDLvVvdi5cYzFB4dTCDrAbgNSZEfctJ07kB4SQ+e1yW63vILyt8uK2jxEc+zr9pf60M4mDODBrHRQrCPjpqtoulkv5K+iZwJebkBIiee7JLI9lsxVetnmwh62pasSlOrteGzfinrgm37tsHcGykV3oAi8FsD0FHFxNTWKqCaurpZAZGBvYUPv+IGBmX28219DjbJB9T6FYQ4Pol4kLSpQ2YyWnpD/mNYi5taEPtpIgwOzD/gF3ZnSDMAdsPXJ0wAQgTl5523/3HuKj4Kh/ddaBy0bDAywTSJ4RhpsTKOzO/jeR0sof/0Vj23jh5OMAAP8jpK/VJzb3yiW+Cm/c8U5bMKxKxoVCjH9BUPgAGALvsyb63r70rJDXjYv5oYA3Bo4u6wlBC7HchrH41hnW4vqlKYUokDuiylB5+eu7zueBi8/QnAKrVVrpMf0LKTGd9ZdXhb8Pfbml8hXAFSo9sJPnomxq5C4OeIAhM3H9EOVOWyiaTyFjsSNtP92f47rm6ulofsBqDpB0G/O0RV6DVgklb0TtQUQnM45eTYQOSRK/67JhHPD9l/H9YOx6CSF3SpbYTeXJzxH7+yzVlbkNevDHTZ2tnbc8xIWqOfOfXTtybAEi+hRILOmqvcaz/tlUQ5jG/vgkIc0Q60s/k/gysqdk6XorGqVrdoe4IR9/YfMetmaadlb5KYVwuJR1f7Z6gl8DVUjREY7iMp6x2oyId5p35iR5pDkqqOYNgPWPKhwCrPERMlvHZoKtDUax+q1QUQoezimMVDSG4fH5MEQTF6Iwpc6sEPg0Q4swQahxDf7z66XrlLTiFYPtB+meBblikyRAzo3CF35fJ13y/EC/PsX/8LiGxqTPNKvPqXlD+sROzidF8YqEqX8NFBJZHYvPfhVDWkW5WlV+GqjGftxW/MbxH1m30S+t6lIOjSQylekQpj0oRu+Wf0iu9HQRLyFsT9Wq14yrj9Wo53EZdz+t0tRiynYk/X3apElAzGQ1cDvC5FT907CIEp2A2sLFkDLIQ3UY25J97FzlvgDFNl3XdW+GBBvQzq/bPPRqQnlZGEatgoeV58cWLPD7hpoP2eqeSvRHx/+PSH52YqBpTCPnlQNxVbjri8ZfkyMR5IO9tPUX4hUIHeHLyrcnCsw81l2W1yh19Rw3BuaE8XOQqVupFcVmqXa0+6hMLpR/XjICkGtfPcbLX20pt7fPiEvUrenSKkWtYxMXUdXPk1eeAbGecwFUGMRj+DD4zSaRyq2vIMFTl6aQNG1kaVcomHB0C0pYjHLl7OTtJ1g9ak7hiEzzCXDFOcoSp/EBMwb1Mni6O02z0eker/dl51Zfu79KVIbtpnrLzwtbC3Hc3XW8Z9duzBNpSsT3so7hfsI0qaZxpIRZE6SvK5SXoIA0YoidF8qmQU/5bLime03xLA55nltEFpANvEIevZbAN5pATQGH5DzbL1i/ynjqMrok/6smuB8HMWfDqkzY0YlSclbZy4tbNFAlFKqrOTOzYMXBNC5WbdkDakU1kpi8QsQB2k5BsZQ3r6uS7/ime0g2jOZHgKGqkXyWUmhXoB+QDRBwFp49nOLO+7O0ai3zGl1HOhG/4xYCoTrgXLyGzX9neGBhNJSAIltq3u9qJsUEyn2rOzvvlvrAFTR+FtEEcMmjT+jJM2ISk48UwPlL63rWhXz8s2IO2OQPMZHeT3mLMqVuW2IwjvPpv4yCk/+37Vzg+tGxMlZ8b46brYfo9fIKRwR95e3qMEJVCtTSbtiELzcju4Jh7JydvLri6uxOQRB+ewezbSXU/GaU3KpJKFVwG5lgCZ6fYAi9ia/DPLQ3JQ6ZUoFNNH+++df6dqn7OiuT8RT0s4EX3/npGDqOeJvaoWFqVg42J9OcO6JBbXZ6bIupX6hb6OWOzp1OR0E4F1JZuGJmtAr/j55fYwE3GaN5jMjVfuS3D7zCaf/WcZLGFMdOXsyQSm4VYkX73XnPsdLOwvE17BpXnZvWT4TAXYhiA/G659X6vcvXyOHY4H2BIkoPSZv0k1xk/8YhCwlh8/6wGvjHO9YwU1pMc9RDcGjGXLKgwA7UEgPmTsu9dErGrdjtd4EeVpzXmY9vWZGCQFs/eeUhsPBiZ7gnOSI1Mp9DC/WUyQLJcxcUpFW2unK3mfhXe1PjBA7OqVgbtDEmSvQu4qgkvf3gL7Fkn1TNRWhReVfblVCOxwtzkpU9lU81UzaFYZnIxiFmrssJS1Syrcoc6u5K6aWzhza1pqJjr4P2xWqf2jbNnKTRvqJ6EUYM8pgbry0IlF0bkqLCoCsKZ+rosrc5ODLmvLf30mZievhysv1rFXfhAqraKwaB78A2vA2l1or2SjIBud5Yc4iID1/VA6Gua21lTqYa7eXjcUFyjBhBmNhTAGYgzSE4MNyqZL2lUXln3YxrpTDxY3IRfIi5KmVirN5naVuqEZ3xUT72gTnFro0ao4TRsj1gtIyYdiKne0fWPBPumXJU6B+wOU4OoR5HuMSCJO8h2P1p5SHufjXEuWV1Ta2XPEen74bT6oOfGzDZbRES0KllVy9hwU65PTZzdpGsg7Rtx5auRtkIFw5S0KE874iebjt105E+mTf4RaJ/oCwF2Q2YdlLGm4CPWhP8wFNDo9UWuCCZVFNROCednC9MpOGQ4hhIrjQXcJjVTgyNgWgYyGJHb1Oxf8eNCRld8PLxvfxlgk/+ntppxPWapXahh0KYFrRHOeCoVHKbPW2t6/XkQxIcOsBIijX8Q3O/3httwE0X9tG7qjnjoU79VVn6Y5tJOayLz9oKyOW1MHwdPm4OkQvk39v67hK1MY5vtNkUELdpKADqtmWykAj9AhWWNVm51ySKwBuxyBpe+FO6DZ2w5YjQQZkD8uYmKT1O4QZWlJ1JoWwyE6AUDeZ1XWsGgZDHKVFgLVbAQggElT9xBrLMF6V5E0W48PjI7LdoYaIFcN8zK8J8ocmQ4R1+wxNtFZ2pxsOfWJICOd+oBB7GsBSt1m32Yqhl1sEhEbYwl/xpW3g6YyK4dGfA6IFpxw1yjS9IaX45eVbD4v/yptH77jg9ga1DMn4yCp7ygNafrx0jMI0LPxjydQensx/oS8L31cSsZFfUtXW33camN+5wZb9UKblteJ7VK/3hqYVuXEtW3rHFBT9ZOQcDPCt1jHnADWXy5qNl47HYfaSAtHAHjsypRjRjjJGQ9VrD/odgGgtxVJC80ShYdSWzWTnCk1SCbDiAQ3ZKfDVy/kxFeGABxnC4gnax0z3uaFBCEPkh9bZ9J6Al86arkcZCtyZHHL6gXhk1MX8mWvf+IyRLU0RRgYWuQpZPBSegQUu8ls2M/zIgRiT1d1jdTB8FJzhfs6QicxqLMfYLHzWqyG5Fo+SQdzZasMtxstv+lG+rywPFhpfrTUBX4FfCUR1ZzsGa3iCujA5tYdN/r61N7CnuMKg4k8RA2aN2dF81AcTR5EvAmHSO16NVlkiHLOIjWLdQQq7s9CXeX9k+EIsMis+KiLNjX6XWBS47hECvh+g5vLKPBnptmeK8C4MyO1nlFoDuELs6p3wUvcIJJYUsrv2mRbe3kbR715zYfNcHsEEoz9P31PhXKnk8qMKdnPNwWvtS78cIcVWGTQHUtOYk9GMTwRgrpAeStv+VyTZv0nmhnSAdJrx92tpE2jB5RpOtgJwenQka3zeqo/+uGOM4fgXcEe50sKc7Yf8+SA6NNgciBEN2nneOTlOsP+KWXVDQwlicVymTtu9CBq3FnpWLSLLjIAvOwN/jPI7qmQukgphwEimaiMkmEtnCM0OnEzxcT4mnryJXgou/Z+J71wwJRH6JFIk4SyM6yUtQgnCMLskxCsznlYHyqX0MziguXpOWgj3u8D0O8xcMDVcCslzhHcxqOe9C3UI8jHSNYA+20SXsqxIBepXw6XjuoCByhtH3jkKlaMBVHufTQrxETANVCWPFxpP0wiWj2yHrIfTjY2KaMpC9Z6uM9E1HKCSRMUi1YxumQYnzT32pNcUFwDrDig2QAa0vzpl3BLoUAyz1ZFVqCb/19P6MekylyIkKIp922tVqcBlpMMAmYS37PVd3b7K/kS0TTJUPPNtdN1aTWriLjgb9O/f7GA4vyaEzL+a1r7d7N/5nku3cgoFwI4L9y3D6nVtySEM+IZSrQ1M6W0rXs3naCVI1W3gOaaZIBn6q5FiqCss9pJq02AHjI43jkCkp72XS0nUV/K47kvVr5ReaX/gCtzD0CdyZ99mz3VfpmnSkY+MxJM8SOv4kxq9SefRsSOtqdyWTK7kN5AjKyz5b5mpvKeN81A5ODkVJTf4WG0Am5DsSCzQEDMS/awojMaUoL/QGnqTM9sZGbq/+LFuxmMusO/oWZDToJlFUXAugCFyzoIhX7tqBKEGDMDNKzIno8/mDA3OuHQjMitg3Z6XLXod5bzN+73w3zocMtWH09b5ob6T6H0MuR46JqPnk2j0+LIglOzDmJEI71OFN4ykwDxzSbDoTiW6NOT4GnEe7I1knkSAiFfMot3RqMmrTtFlA8KIp0PZnsOn7qf0qsJxnL+0xoUUcIyI5jJwh9Zz3DgLhxXfrZYg0JRKUsHdTD884GICPeied8yPOScAYWN1SAQv7FwSUS6oDAvX5qjHyJh3V2PYDpSZc5hXmeVjmsICFGGMLgzmWTgwQUWqlfecrNCf25gJ50SVL17fp3TGCJyGSB2anS+yZOK3IiATVGzk+JJD9IjNUuuqGd4+rnz8QD07KJ9Ts8zUyDYthjA3iWa/0oZHySVr1mNis0Dul+QHui8g1vcazXUnRiaMFhVDg7WxGv5u2Epdem+urAtVQYmqmZYF/OR8Xxr19LSfAMQjpF+hm8J6YwwygiTiABV1GweqGb9rMwCwmnnr/XLF/SRhz1W3TtxpR5Bbf8G70dpOS73+2z1bV9ccZR5LgpSmXgB7nunEBdX73zHmAPIdt+1XoorT25qxVunnTZRP7qXcaOJl6+pmKyorG5RW4ZNb/nyRHIDpHQNdgdve25zq41HjK9YHLoeVRpmFqxoQ+YcR90CzXeSqs6dVCDmZvarWoosB78DUObM2JS2BY9ICdbStIzSrQn17BXzvA6BS2B+pU6vymzwU0Oa3HgJyoU7e172sWbSOj3aKwTydEgReGCUA04PMci/tpsWYz/YkkxlgmIT5hldcIKeKPb+5p1aIkJv8frxAzmzdTxrvfEa7oOzJwUMT1U58JiZg003FUhYsFSR60/EevRj/l59dmabLtMl4pX25ct80S9JS08W34EH2j87+ed6ORVXW1cyXozrMRctQv0OSsKoKssyRaccwc9vsP6Rh3JcJ1s4ZJa0zmh0nEiMu3zx2BrfVm4Uj5W1ZMsr0J4CecN1OvcV+sR7GMDoCotNbmzcDX5aJd3x8h7K6fc2uv005LDltaIohJG2TPjP5IYnkEAzaLuYKlBRtURPal6/7su+sXMNSPUIu/ftDhof9o32cghNWwZGkM5+e19etF1w98IIBkCyW89ESQQDU6uBy9ukRPCxBocoNftL9u65D4w5VD5q0GRdv9Zo9Q/VBBfAvm12YYuVWyGXiQoifY1shMtMW1cjx+G/tMMn3Si8LgN1L4pPBSGLW0rh8e4DM3hSr/xncUBNwCzYDZdzxboy3BUM+yLao42UosyDf6B/7asht6OhBZ60GBAbPKZpew+kvGTIrv1DK9Pvrltlvr2zA3DjiCVLGqGTyJh12hOGrjkvyTMI6Kxrs4fnriENML1NysUmbitaZSIW/JAJ8gN7cGd0qktv2EwVMF/Vqf3YJqjNAYQGefxLZtO8q/vZ/UBSnj1iz5qYK4bEGlBG2WNxa5NbK4GOTBQowJSdIRm1geBXmQrOMLBZCR8TKudzKqU72tK5dG1fIfDvBxAfS1oWkkBQ/4qEUmlkV+iv+TEs8g5myqoOtINhNHAnDOgMDhAqMgM2Wn94XT3GoUWFWdgGZ26jPhMGKkiXuTP5lX1VS7g2s0+N24PuiTlzKhDPZj83LWLdMDeuK86z9xfG8xOQu7K3RhKLURy73FGoP3kiAzVNUTYd+EGjHp05zZ+qHqPdWz3sXu96do/ZTu94QWQUfpfLv/Wg+0o5yMThIfOKiynHlq4V+amz3y3f0aKSEV7ffCOKsZ0geEqPQV2+RvcdX59G6hSTDac0VfCqXX84X7hKngpP//Q6Z47dgW+2SxMqaxzFsIxHilI6qAV4UFtGOcMTw5Y0EQ7hqbbUoXjnGyLLlWM95jVlQL+d1peEnH9GDDI7kVrPVETxllo9jyEeqUTs/a1wUa9PdCCWAsz6+TE3V/M8dlx1XXtuvLM7arH8Z7zOOzgGmR/Pj+zrFQfoKbD+kWO9SsEY849aXNUncbRd0adMYuzHoLnFZVUGNiXD/eB64yNUdi4zMwz887pB5AMnJocyksTPLhbeMaVPKx116vQkTCHCFRxwcbvDr2pZlepFmbKlbQkAqqk8GtNLStaEoCKj0oxFqIQ/zcaIHAM1uM5OHwfn6viXK5j0y0aNEu8wOTz0N+fEayd+0HJlHmbCmZN1zWq/3vJd2b8aOC/r6NMp1HnmHQDGo9EzFXsglfMghtm88qkrUs=
Variant 0
DifficultyLevel
642
Question
Manou was cooking a defrosted chicken in his oven and checking its temperature every 7 minutes.
The first temperature taken was −8.2°C.
The second temperature was 4.2°C.
The third measurement showed that the temperature had increased one and a half times the previous increase.
What was the third temperature?
Worked Solution
|
|
1st increase |
= 4.2 − (−8.2) |
|
= 4.2+8.2 |
|
= 12.4 |
|
|
2nd increase |
= 1.5×12.4 |
|
= 1×12.4+0.5×12.4 |
|
= 12.4+6.2 |
|
= 18.6 |
|
|
∴ Third temp |
= 4.2+18.6 |
|
= 22.8°C |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Manou was cooking a defrosted chicken in his oven and checking its temperature every 7 minutes.
The first temperature taken was −8.2°C.
The second temperature was 4.2°C.
The third measurement showed that the temperature had increased one and a half times the previous increase.
What was the third temperature? |
workedSolution |
| | |
| -------------: | ---------- |
| 1st increase | \= $4.2\ −\ (−8.2)$ |
| | \= $4.2+8.2$ |
| | \= 12.4 |
| | |
| ------------: | ---------- |
| 2nd increase | \= $1.5×12.4$ |
| | \= $1×12.4+0.5×12.4$ |
| | \= $12.4+6.2$ |
| | \= 18.6 |
| | |
| ------------: | ---------- |
| $\therefore$ Third temp | \= $4.2+18.6$ |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 22.8 | |
U2FsdGVkX19Gtx2BxhKSvvTAsmwAqnMOYYHQPIyQgLHmY2SwGYVgfWv6WQ9+rSpIj20V3+N4tWy5ruHHhKCcOCCdmRInUqm4w4a6AmTHLmu9t9UcHWn6/v9yUiHTD0yjEDITnf4Wg2JzReU9y1fYmlTnOdrihMhK1CTHGQ4MLYtDfp3mCZKyoquUNci1dVpkrab47j+2JBAJvOKVYMdLwaX2IWDb1nPy8rXk8v6blX8HOW5d4WN0jDWecnCKkcgjCR3+j/NDg33jEkxYwzMWQYckJHxTTpwTGgrmX2kwlcrCA3uhcZAlZrxrFnPxDYIlzcZLKun08RqLahXu7xYk6KvA7cpZRUyGhegAcMz3vmgUTVEbA1Jld7nUsslpioMh3adYxOOfcK5xkAcH3sjw+CdOmPcVNKaHC51tGdxQTwJzU5u4lHaFCEagDxqQZj16UCyIlmzcjnCl1lKDfMV9K4edG99oUfx+/3YgP9UeA39Ju2V/cX77VUihhCBzpBGbkGHkzPPGBpHdUFEAj1T4Qr2BzWIaiQk8KMvf5JH1woeZlWwnkSgdTzAK4frNJpU9H1Gyz0OzGXDAYNirrclJew9B+WajoT1tBof4XWwxPUKs+Qi8iiXGSiwlATCZbNZN4OkE0FfNcxNmu3NY/gDcwIiVpCZnFYt5OJpHZje4IUg74oLXKMe2qeEnXXs0b9aS0aPlkXR+8rkR/c8uGcGH8nFWjRL8R1JfNcfMHLm42yGpuThsEVQhBc8ij31iAATxmTQJGePtWJXCtH+0+M3f7CvyXA9tp93s22vlXpALwR75abTj9K2K732pMpNn2GHeH3RK2+UcWIqYyfUSuwT87HKohLmCjQlYYlxVKVhP0xQG1bOEvSiPinV7vGVUfk1jRFeLitxyv4XJWAjAOdQCpQerSBClLLbbeX+ljGsrvROwdkNw79rqtCVt8m/mC/vEh0QrzV8n8cf1G5vm0efRAWADAqDUMxmtYp4Qr9ny16lvBLt7oxmvJBGjCcEZtVQr9NtG5wWJAYWC981hWy+6UJUjqWbsUePYDsOwVONaCJ5FHp7DKe4GNFdxmTmyog22EW5ECsG7ngicknuTXjFqd/IpB2LRUmzqQTbYVmEmvZ/XYiuzdZClqKFL9NyeBx8mgd3CPYs5wuxrL8Xh/CuI8AlD0jhQC3dcDrytP5+PqZpX15qQ3N+4gSVIfHQSBfP44eK+8PEUD5294ici0BTMw7HlsO8UwCMjFagPYcUI10CO0ODN9j2tqp+UbQ1wU8/1yitR4uo2pmA2kxAsGPbpTYhhzCbzAEwdsv/H+7tsdPzxyALCv5+OlxsugGh7i7S3FyflAReMqV5vn+SEl9EHmt/I4kVtEAb3ILJ8dh7a4cK6UklTS6egKQPBQN6hnUzyEo4zxXiKpIWnPXW/akDEl8vKvmQxREhOK9v/0q1/mwUCa1BQDDNgKM9Q+4xseWg5/ueW3dgooSfW1CSWi2REFARiPfk9+vN+pQc9+z9Ts+9yxG4r3viClZeeFfDd4fMdcv5jBzSQriOncizTfLgJIzlg1UnARMg7gzLeZ2eCk92qubTAOhP8vQmeGvxIxqnwrUkzfPqLSVDzdbfGeWGM7EsXayzqZS7dnr7DIFIg2gpm3bklmxeL5JdhuhG5qoOkXGgLVQJmZf4TgmycdmDjtYyCvM9hFZmmCHt+r6MuymopytZkrDnyZCj7Q2c+A3tUIDS7shWYzQnITsWwpRVhQpyaydlVFqUSDLBlu3oqlBrM9pk30T6bMetHF4mcEIriLLExERRODQvs8ZY8+9IF3WIqANDkc2hKDASgua3iYiLV3gVZ9ujKyFGf5RpeQDR635CAWKj6L0Dkih/eUmGtdhZuR2xEj5YOhXXCmCwliEJFdUtrshGyXkPCiOVcUZbP9Z56iG3ClQVc1dTTtr5qzTjD/Wsk7pVv/N7WNmdBDryI5NrCuOEIgLVPoScS1pOkTl3SHdiITNsUlP4ZBCCVvNftvNEKJEpe1LADREXhF24fZ52dmCCz6aHzBJgX2RzQFSwK6Lm3c0H9k4mFmw7OOeMP5hVOBqT4f/WWpBcAaDdV+qrkTHnBW/LpuiRLRN8E0biUwg6+tlUqisMPhbIjCkYykUKUqAzsmw+N+r5o9GC6dnMjZCPvc4YUWoBfTG2kFWnxJpYnE76t6bbAl/Ltlm/nv+76X4ZcDcqcH0LGyTUAnFdxIRvJW2H4U3PUM/4n2vyc8YBuezZDGLSAJ5NlhPnYszGZ1Pd/V4G2moaMTAkeJ/N7cK0dMDEjGxPaX+gsSI7A93f+s7qzkiwlUrGhoaPAwxnImzB9H4UIOL+t9/yW6RWJBA7+TscTn06RBxFx5gPZ/tyzsB8Wykohpwn/B2h7YAqG/GjqkvRu/2ncXUKFG50ruQp/L0oAz6I/01wTinWJuKPkTUlptxocuXlOvsg2DnsMJrQe4MBCGPzbCbOeWysuGXUyTQjuSqnlM8DJfrG2w7Ao47y84u5asHurnKAQDk3WiMXOOqBAoqNSzFbq+JE13nOrXhMMCUm0NI9YFetsJAPSV4OBbLnj4yyc+G2PeWP/G0b2aeA1Grgd8SrK9w2ZVmcnQse9/ig6jVWR2kwHPGLYW+EDk29FaR0/UYxK9SMvqDq5SCIpNndPaQnAEKYXKlr4EPc8DvwM8f0N6EGy0+HrdfE1rzG1U4NBjGInjJKQlwCvEbt8eB2uqR98D7boU/YhuiAz/+l+hpBiGggtZfgMCforZJypsNK4JZyj0r8+QZQLvXPagH+17UOq3c0sgsh8vigxfLY8pQeGf85wE/0Nq/5wEWFUxU56SUau3ihjSi/uCU4ZefLL22zMNft1jcXrafkbAJIjvsar8iAh0WdGEJUoV8KeO4geOudwo64oev30gJgp598p2HFCui3uTad4JhpAstp99z1LhhDraOKH1O0xVWyPN6tFPlF1nS3fVuDDH/Owl4SOUFQvlIIxQj8CVPo0GnMtN4QowJ7JPkMupUq7mFegWvRFwb6yor5fFble08tDV8NA50E05e31+DQa+ZzdBQZYsfIrnwAdSMMUgU0lbx9CkHg3LBK69dczX8qX9vYfXVjH7e/fvdkZaxXUdoDnzYbNf9IubYCqRvwLvS3d8P2R9P1iwFwe7eECi61uiDuR7cf123s3wYPtqAK4yME7lbmt89ZShPOKgLGeuJyXJ3Ul+EE0zJ7MXE+KBy8eM3Kolg8dkUn5EGCcJZgwkdQRaicRf3adS5/oVW2I2g4mI1APHEyRtGBWuUigxMIs1atUTj1YzEwWJ3XmMlJWENP2gjTKnZUXRWvXp6pVZHFUwAkDgqN/GENJLnxrBP4BSCvuqQRqA5ZHmK+tDfdl5pSp1bFqGQofdW2LuYx+0E92SEUUzSTuN8WazHJb3TNHx+pxCBuPA9sHXux7xsN0pApqMlo5k+bk+zJdVfyw/SwfBkvlT3VMmAW6IfILONUMILfZHrJQ/+c1mIdcQmzrnSrhSeP6BvMeRQclpJDTnfDmnKboidQi5P2qHfd+tYWdWBN65UJw/cSWGY7ACi01kQqxS/AdnYo0TNy8A7UVx8YVoaiCPueP4qEwp82FnV1zz0NJN6AO+kCKTDBq4BhC4s76YEvoxNErIQGFD4pNdAx75rBVyUqML0U6LrfXLbuyUrjRyquX1rCubFvV2vvwAg/HEy6sXq70ROVeCayCtItkgfdS9pfG5LWhacUURUUpy5Jl4OC2zIqoZDt/+Edr7au4sDBjaHsspqu51TRgHSmsXS3Nk20/wnKN9vpU81p1ys+Ry5rWuH9G22BvvGrq9LPWyYKtSP8/9eRyHZTHt8w/sFGcsbOJa4EaKCIPT/S7NELpLzUxZibVPOBCMQZCYCG1/AjqQb2Ea1H189MdZdjbsScTXx0/kZYTXVWZlT8FFtD0g4TRxhmRrOT6SfSl4z9/dxKEOjSjPxZw6XK1eTPE9xVkLMr0T6bql/K90lrElC4kiHxhFlHejbPZ9sXSkIv+7/zzGqAaBuKjI7ES1xzwb1r5IRbHnZaWalMaD7u0MFnjsGw/tVpxA6pdxpZFMqjek8L5ZOvW1rZMw3hA5Ws/Wf8qSKXa6iPG9x/UcMwk/bTOuZV6yJfl9S8j4hMbK/42HY876dTbyT68mWnm1fn47ifrYa3gGAnnlEWyi9B/zWdC+gUEAYmeqwhB/B4NHm9sI2zsbpC3+hi38YF1I8qmcQzsZ2jqKM/+xB994R1/+gvMh0Mxlua6NMygdrscUSMnZNFC78qlpmSwSP62BgM7wv7VPaPUCLhNlGHgBnynPwK4toi7tGqxqWKJh4KaEb1j/P9PQmIxrEKd59ZzTMsipXNiitoCjor+/JB1nSzGOz/ySjQPcpL0SAuBHMNWDu4AZ2BXagFuAYf1OQRxXLtetVKTWocWQqGnGl87/ph4cxxThRUXvfePtozXNnloj00xK6p4zff6OtI7njhpXFYZriBTVCFfnex57J+913Q9DvWqvginVOi4SpsutnuZWX1kV36hID1FINoImhXwOJwFunqXQqU++9rD7ccnM8fchuA8z9O1RnXH7t+pbVbNmoDr4GazS15fAS4LRXGnJ8TzUeU2RMqwLJ3EO34E6Z/ILuVXbEnQgA2VY7SnbgjKVLBaQ5usk6824ShIf3Ls6A0M9kyR8zFYjBes+4X2ZThylK7EtdsYSqjQkcyje58Kw8Irq9x3sRHtzF5OZg4FC3E5E7gLv0vqQXB6AFohNXvQRNm8F0GlZCxqiW0LSlEpEnDklE2+tjGP5v0qqXrvQqBvwRQul0zcBNnocZnyjw8By69ceSyW5Vw7KeI52HNSRoiCPrQ7Q6MI7l9tsBZeHFrxEzqPP96cDsWizLzXhOIFlfP3yIJebawVIINVbobVCxq7PFAe3YiMjx4jhJekeCw3R5dtQVUsUhtM+yluYZvkq3pxCbaH3YybgIoEfLQFRGxo0FiNM6m9bl6PeUs0N45dSz2b1ZmA6jiN79ojLFy5c3HsVgKp364IdW0PVO7RVoZG0VO5teiIMUoFrE7QeDuDIp1fq+0BK433jisc752CifPUE6Fde5RiPdwct1P6e3nCWBoWRCka1AKQwY7YbzJiqrZsfaRAqdKFz6zazpURlwT4dIACAJ6mYtrXl6UGA1ODZmejXfeI++ROM3VEVfrCsGJEdcDBVpWscOgeeJl12jGqwyDY30DMU0DsokYAHfrEYBYchs3izfAaybc9i8wuwmDJvkeV3WY/OZjeohv/ZR+FnZgAsCQUyXRhn/p+OD4QatJS6/fxdqe2VLv/+SMkVLHhnFlKMmMk5SZGZMbemUevxc8L3ZeOLAGcO/oB3zcBIJTKQwgRbs/9bu6wZvNAPjGMR7SMr3K+BKHZvXx3oIo+1G1qpnCg6Wrf49xbM3ENKPFnDpZfecWmgfRS4s82R6PYt2AGV4AUSn0nx8FxBictwJlJQ51Wp1hGaDQJM6SsSRC5GvtOfU0IfgFdlLZ/o764m6e6eP1LcDRLZMWbOZYlp6SC8m8KwnL0PfzIDyaVbXrqcnU3OAtsxhH40xLlazR27f6I3WkyIZDSglywnViREx8UcA6qZfs0bU2mb2o15GnKD+Ec0yvtybirRp6e3tmZqMJyKbg4GYmhOPzZpY+tyDvmR3uWgeNR+Eo/r3cNefLrYCF4U653MEveq5sNzMlxLaxMdce5cGFKrwan/+8b+XwAe9WCh9ofHX2abiwOVLbC1HnsYvIKmGpmgGGL68DAF3s321sSi24D/tYiVNn+LIGGXjSX7bWx3Yrx36Ri94O7PP07y7smeoSd3l4JX+Fq9eqkVf9snsNHssFRetquD6YWViQtDooGctPP1zw3n/EqMVHcgSqMAZrA4OcCQBP9QnxDg25mKvx2gjUYP5tt3warftKlqCzh0ABZD9GeT7COgQry75F4xh6VorCYimPNVRkzXABol9Oxp2j7mRaOd8z99L0e0cZxOpXj5z8DceG7YlEwyqq9fQq4eKlMX5BKUVPE7uzaheA0rsKfh5p9pfNE7x/9sy0d6AstAog8iQeJWI/6gAFehBCbyn116Ye0IiU6+utRZoTKDwRNsOEJo50twTKP3hZqHsuNN5842m1PmmnJYJkANlShYcV6X9Wz5ehgab1r+ku20sNne2IgJHJUWxPyDag3SWV6wj465WyY42IeveNhlvtHZgtY+eRk+dfxfebpvAVgYmP1NelLKpKc0g0bAywarIO4XFVR/wKJFONq0L5pNQR/XhiFPWYGt51rKR19n2PhDg0zUzDCCdIbI6NwnX4vudms996XV0s5bmqP6pNkHjq07T9hdhOJ+buhsA7CFX7wx+tMVyz0NdIZn0HAT1p7xinfubm5KMij8HSbUtr2/GUGBSHJ5YgkgWMA19xrInrd0wp9QBHz65ybJx+GvIOqJuTwyhX5SN9Bm/yNDN76ZpGX+3e29Fi5MTqTmG8InB/N+FiiWLvnFPytGSGeg5jZkS1Rhfc8bq1GuspTb55P+ewzmXmCgct6m3jMwtO886MxPTw8tJyoJv6AmaRNfYJijPXAisbYNIEXZmljNgSghNV237skbbPkkrwjVv70kL7aK6vK842G8pSYt8HsWndLOJjR04OTJr+ZqCgYR41dNZveuNeh0ipj0CllakLkv0uKohuI2Fvc3P9Q/FHp0Mm1xk9Y7O4/0XgxEMZ26M2NiaDOo5a8GaWD3B2Ysw6X9g1ltpjpF6BoVE78h1CtF2n7s163ZZKUR86BIGEw9Ib97mSmleR/UnnPDNUqHE3SSWH+foTXuv23Dl2gUycA6vIZld+q45yykf6bETH9HGzSzXqw/JVwsYHX53/7+LYKUr+68SlE/cpqfWLBdja1R2iGpkqpjg4OKNXXHd7Dx5fylnSS2UTTmgn0bJ/U0Dor/Nrr4BAHMT/Oo4D2CUoB6pwkGAFi5Te69jt24JoE9UEl1cuxMSdJBqKMgyFVoQu0+XIh7ZhwcpJwWT+S7Hr0r6uw3M2p4HP89x0NkA4pnDB9O+Te6s2nFF2T2YQItDBwAd1sdHgozcQdnNkd6zw/xwv7/l4KNjIvIOak7IjocffqErauAvjD1LRDFZzNH4y0pk8QUm5n4DCZILswhKFf7qEwW/2XJqHSua9qSoBRTHaB/DBPgXNhOb71RKsbPUQnnexyCqxhxKZE43V3pcGd2+zhr8HSiMS9HJhUe0NOt9yXW3z98dwFcwMkuQu/8MibVKIKyxheDIxXrx9IoV5NvhzCZSzHkZFsUH+J1Lv2c1/lw3iVYZyB7wJ8h6DpIirXdIYbOTsOuoDOFzFNh6x6oV1xpOgFeXBnNympFYRmwDIoHOeJKBty/TqJLtyXjRCf7YWduoeN/GHOs/v3nCVIiS6S035Nyqj1GTnH4sHFLvnaTICGuENsCNS3ZlfxRu0hToNHLnTF8x5VRg10/AALIp/4AqqxWlU18M0EwuJZjAxbI/3s0qisCG9MLbXc0g5o3QfaMtoapkr0ugposqw6aGaPjKkdhsVsJTAbJuu8g33cjfJ6C6vJm9s4mXo1jB+jqzHRWx7A4MVhjMm9tNpg+xSNc5NvI5cMhldSjRTWzINp8XVvk7WmCwWm79Kys7UJrZOc1C6pL+C5nmDP+R3yrDASpm2+UXtY2X/1+u5wde9zhfXyJgHgaioqvylLsINgJxoSf43rp7BBsXn6Z9XRJxVR8SyKub6/Xmddk+Fg4vmwC0DHZqKGnPzzPtR91bY478n1vi29t7I0oiYPUGvHOoY0MNwkPvz4Zl7UTXuPSBAnEZ24qgQHFUrkkCsQZkrasMvBpn3BQLR/x6lhRUtKZx1zcMDFL1V8Fzwrq9/1IGDQbL0Nibxo+yFJPKcKB89xpp6znKkU2+kVEwCrbaf9PqejEb9LMdoEdTD/Upq1HSfR6TVS14SP2K6wgvAqm/4m0So1Ymfs6MwTpiZByR5corTvHw/dCoJZRrG4dYieAFcELdOJ+xeTD9xv42cRR254HAtk8oS4it/G0GCsv/Fsh9l0v57WKAqL2gOprEKftLUuiam0h9mjZaCEMAR4YUnCrGfyXi0BDD9ciXi0OGfg5fjmF9Aq+n0P/+SPXdBq8sOpJhGHF1RsfmRWfklyXHf0pzPGsEtT+juEm6F3GUxf72sK4VgZdYxf1+pJs5dwb7vUA9OFj8lTUc1v8wldn5qcS1+RZ7COTr46t0wSfCCEWUW+UNuXUuMJrvWXu1Yn3Gj7CUZAmIYkOqs/khoeboOW392HktZp7mZKIylpozxyvrBdH5RJ4lPTU++2SqJ0459BRuJ/UmclOSvWafnpTbP1PQw7QniRG/NHD4tMKgTt0xhOPz3uBSGUVvXjBO5DjL/r/2TjDdav+3rYqwr6iwgtO5skg1DzR3pOeEg9JBburAOtzD5sWN4//BOCcK2PKxLXs2ol7mNKf4n9J+pL3E8uSzzeMPUt1Y9cK/qaj+WySVP+aaZhmKOQYnQGrwDiEeNE95BlG43HiDT3Mm9uQriLRarC8NPHNcy8C6HJaH7DxP39xCn2Ty5BNxssAkF+P4/DAn+gQwAmq508buD0EFu75kzAZ4XfGDN89sdUWelUYm9x/UU+svwKAGTvyoXeX4bontfSeKUwhGYuZWV2gnmDI7GorgLNXjZ5AASf0Q8CbEDcT48FQZWWWbAzyn/Q1EEkpSRMeUV/VBSMUmPWejMu0eILt3UE7Ny5un9E6wLCS5pe8pCaqV5MH2xK33dXx3dD3ZQGJI4VZT4NkdWOazFgoYKYnE6sNoaBilXfESFmisYX4Js3y5bz14JnALMNBKTt4fCVyZV/Lxefabe4tPwa3lEaxj2EAkT0wKNRAGftIitjH5+4qBUUk7OCFEI6z4ckLpv95vtlEvre5cOAswPoneZ/BaJ6nuofQmxRBhf2meV4SU0W1WuegzJ0K9z6652l6oEZfnryj7By34Sj+aYfPFKJbSBL92q07zyZ03EAY05yq0yxdcwtOg1wPloNdy3slnBV+rDe4nm2of1KaG+TO5E2WjzpVqsW5VDLPE+aFRMLMvUI0/utsPv/86ThqrPSTOdpGWllsp1n9miZtA9k0l5S+Zu1zeFLN+3AYE1BilsAUnS/N96/q2VVf5D5SLjyVF/nqoBktQuX/Cf2Nn1eDzHPGdFbqnQ9tlnK+8Smu+s3apkAMc8m2mzV81TQ3kJmK05bV1eMfjh9MOr44ogMGRr69qPV3g/+FR/Y/xRgLSUhn2B2zqjMqgIOB6nIZ77TJWKkwumrwZexUFyk981XR/41mTioXYuCN2iIz6HezDTf8izirnvuHuj8mhd2t9ci0yXKOuwpfPi6S1qjx8QrxVw5BdSx6RxhofGVZlRhO78yfpyq12mGWXdDTbX3g6qitpVmNfAubU+qFa6AWt9PCVTPcdOXX5IO1KsIiMtR1txWVmAjCHsFF5ZGx25RScEJZNVJ4uT9xXnlrLGSyZHWNaPMyWjLhZCLawNwXOGsZCJcz3cjTPmRLgDAdQpK/Fux1g3TK7LxqbBrDTUKQbF80YdFwaXiLiHBj/9pcfARu0ZK1n5sK9eHtqm3t1V6FI0/sGdBS6OnBamenrMtif9Vbr1qkL60O/s+K6hgtUp1f1+Cx2y6jyuAqohFQLJ41cob/z2XFdjpxYgq+P2sIZP3Nv5zcZfYxeHcBKlrivPioG5d7Iaul6plpJoD3wU1i3/Xc7fr//u53B0Q4gXQLyxkrFSiuNdsEnNPh5TSTVY7Z/4ZFup1SZV+j2QipBzYGxU1yXG+eeEVkk4ftaD6q8nXKFCsGWvF5EccFp6bBa2P1T0FshHlXkdW0jFwoMxehDDR3fL+x4EBTlBMUUAdZbHxv0POt0DfjiJx07eb9qNH9ATPyqg/ldYZggwPWdycHna/UOHuZdxeoMVYxQE6m0WbD/goEn8kCcuF5flvhBB2aPKgSO10YwIp6ce5fK3oEBTupgH3zOYjL3WZfnpzS5qhF3eQ9VAgNfjZEDCx/or9FZjTLuRtctVmKfJg4+VdfUO3xwvhtP7xM5BivNDuzopYOtyJZZOm0p4Fa7lJdq2RTmRIzEVtgUdtLBzhn9C4R2P6J84BmwIjaxKR1y7jDxrVME6uFHqNoJJKpAG4ORQLOjrB+okmRrb0+hxTF0YS+HWmioM2VO4IvXM3uq5FJb0IbCxx5CSb/FvEYI4tzbr+pEgM1ixrieZfzXgYn/4eUJyi1uBYE1ECa7l72lAHM3R/HZ7Zm/Etq6OnCBNRUsD+xMjOdhBD76M3Da9yTMg2WSY2qzkV+bwf+VyG1l2E8bkCiEhi0YhFm0A9hmVCTfW/+GTOyytpX2zpTsXIcUeWklEUcUy8SlbfmIxGpaqYf2ke/LyfpYTFNjMH+x1NhLGQQAaWgrrqG5ZPNFtZO+kCB5TJUnTAubs1LjW2ASj6Mv0R7fWPv4CcaUrEh25ZR/aaAcHCY8WAnX7JQt4p51A1uvJSd6HCl5c1hy1wlJeASH1/DS8TWtQ/tavISHC4Scnz29I/3vZfMZsLQfdV3uWW+6+Duckiauwdixqrtl6HIRXuVCGS+myEBHVP2jCRRkaBv0DA5xlqAmdWbboZgr0voTj4wH23lSTNx2dGo4ku4x4HhnN+6sGQsUYYAp97JrO15ci5bLNUuIqkLJYBCKEE8C41T60LQFQuGpJ0L9hVKQwErL3LutmYqltrPaY1CCxe2C7pBJcFz1D7GQb3tBoIM6QLGCwjs3rGELBv70/RBoq6gvN3qrgCrPIIrsWyT3aPaz3Pigq+eYP/CMkZjSCgYQwbDfFacT2dyuqvp/fo6IimZOOJ55t3hY1sonUxRtBdWayb5QTV2wb3bPHybK2JcroufFoYsnoJcR8hSfixhti6dm2MNXkPAaXv1OzKA57pP3GE1bM5bzL5sg6f1EMEgxn5K6iO9hxIlpuKhoutfCwHmiUIekv9aDLZzUfbNg2+q37iR8tu5EKPsvlPIDWh/k4ZUAeri1k6Gsi6b+t7qtz8VX1GZNSzy7D6t3YN40dOJ3IUxPnpd1sbUVIiW+SjE9NI9MmMvDr4KUmX6em6MVp3G5VCXqxGZZDtvoKQSZlQ1DQ0AxxA4gSE3Wc+PDWc0DGebfj7Ya+sJ/syeSiiVYwDC51LX7zFxYRpvshHRUFDBQBPg0BJxgsLQI6tRCGA4mz3yWqGDNENboFwluV7IGNVmE46K+F4V+pbfxY3BxljI+PiermJvxWlyupT3WVsSB7YMMI8yacMWgcr+qD2BeUbm1CUUvtlpZLAuZNZDaXK0aFWGbvaU4voyqXtlHIrtItvmi9L2odQ5mCttvNhVwBNp3vrDbS9sL69Uj6jHGsxCpIENXMMubXd/jc5tXmNAjkuDYL6dUKmppVZfLbXr52+WsBeN4XLvrU3j6TUE+ltLPKuvYOdHvWzhk8ZStN+HxgWJ9hvyv+RDfoGAYGX3FSXlHTg+Upv4snJMbHb0Mhbk4Nde7oaNKO0WGtQCYBFSpd4L9JSndlNfCx1O2cmDU0Y4+harXKaTfqCyivr4mw8XOoMMDwS8QCk0OZzgCSKAOQfjl+dzdT3P+e+z80hFIdyWvKdrpShMItTSVONReoegvl9jQIvUsv2wuYcC+CxXA40txNjNFe7V7VZk8tJRQDySkI45T94nuO33mpD69FmwbLLIn0U4NFnjrfwit2i/NuNAnXMy0IzARcNTssZTUCyFu4wERUiDePqizLOacDZKoAAT3vw/9U6z4ySDoGpcc/QJ4ukuE+DdKvZTA7SaGu9SvSKC6dOGJxezHLJn0MiX3ANp7pwqLfrAhOYEh7cCP7XQlx21Gz5MNnV7kcnyN6yrunaLKjshemTSccXu+tziBohCuT0syNkDffQ9VRfZ+O5pl8rV3tezfmNlg1gTtF758+jBdwZU67JCYqbuADobmF5z9j2Rbj0zHya21y+u4xdYdZpoXFYWqbUJANkq3TqmghNNA2DlCkdXDmAIYkPnzur+FAzofuQsfvozK6crxeL+GktIUsjvG8dDUQeKgKUOJmwSAEyq62NBUWfg1rCdrcjvSG9ew/Je/JnS+xlM9S9Qx1Y2GgOfLBUI3yxd0iaKJ8son0k4owL+Zi51zM8KVacqUKOexZFmelDFoGOXuOKD6xENvW9liDpxsrCorVY01m4EfRx5zj9hIdyDq3f+ZGLe5rRtBLCrmWd0Nl2tFU0Ftw8F/aYCy/zR+WYZjMBrl8WmXJN75DIHDBPqiticjM8ppGsiKZQwvfhJYJDp4WZ4RUJMpUXS+0JNXIz9E2FcNohw3HxZkrP2UJEcfpL7azUB3uV3YuMMc9ODigtHW49hbUpW/boICT3Iq0SdJ/rac98qDx0NBQxTdsFzOCSplJO5wpTENSQ5V/2ELdN1DZJWmbsCWFCAI8JcQEPEr2SBmB/g1ogt1fcK70JpsGcycvXptZImXwARV2wIbE5x28PuDGcyNYq/bzfnDeEuPH9FA2hmwuhsdyCsl8mSKXH8m6kL2Xtz+PfbDduTcjpUECt6JDB36GVMblpwudjFk755n6zuBmpU3p4u7Vh2PBS1Q89EC4hcfQAv5Iy0/ssHgob2KfUKwV91+fwg5NF1AKffKgbJXHsDaob137ZtZpOzwSTNcL1maDL7znsOLarYZvtuMA7D3tFipPyalM7S8KSt1xslqq3ngwwUjdzk/EpNW/ZqJfdVJxJyakaxEFAXYoDjozur6zp+QwlmXUKWVITvwaCoin7wBTOf0zy3rHW8Ur0rusn/n1RsBJPbrFiJcRseDyuBSawIILGgyWXGJ0rA9linyvDZZ5xdE5rGOGW0j7p4v5td4YmylKulV7oYEh5SnejJ4k9rgnEVp5ZUU5m7SS0AUNgmNKaaSVPBgmN2jf552Ro/73sKlnggU2zDODgR9qL+qjxdPu5d59FZPZzL4mesQOmRAQ0Y2lxexMjgxwkLRAFmZ5qtAR07CXUkOQQrpmUhblVs9KyhS4UACtYOO/vxOTX++LeTpZdCVWSe7UrOp04Ni4WBe16g8XHZQN3lB6LqJgEkDfLssZ7jgDrYVjyi+68DGw+y6xkPRbHk79QcTLY/+DNDjg4mj/SZJHR6BuQF+I43br/nReHVNfk1f0j3CLu+9KEnQvwdN17imDP+7k0oPUCuxkE+kPSC5R8NhKVmGWGvD7On+4/0L+4eRONnXvZ0xeAyI0VJJ57pcUB9TMqzxfaLJ2GCB6SZXqFH4nDqLUsR7aEjDGbqz3YVfDHilrkKvTp2qhCH8gShoIk+JcgHVACVzF2P+nn
Variant 1
DifficultyLevel
650
Question
Marion was cooking a defrosted Viking steak in her oven and checking its temperature every 10 minutes.
The first temperature taken was −2.8°C.
The second temperature was 13.6°C.
The third measurement showed that the temperature had increased one and a quarter times the previous increase.
What was the third temperature?
Worked Solution
|
|
1st increase |
= 13.6 − (−2.8) |
|
= 13.6+2.8 |
|
= 16.4 |
|
|
2nd increase |
= 1.25×16.4 |
|
= 1×16.4+0.25×16.4 |
|
= 16.4+4.1 |
|
= 20.5 |
|
|
∴ Third temp |
= 13.6+20.5 |
|
= 34.1°C |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Marion was cooking a defrosted Viking steak in her oven and checking its temperature every 10 minutes.
The first temperature taken was −2.8°C.
The second temperature was 13.6°C.
The third measurement showed that the temperature had increased one and a quarter times the previous increase.
What was the third temperature? |
workedSolution |
| | |
| -------------: | ---------- |
| 1st increase | \= $13.6\ −\ (−2.8)$ |
| | \= $13.6+2.8$ |
| | \= 16.4 |
| | |
| ------------: | ---------- |
| 2nd increase | \= $1.25×16.4$ |
| | \= $1×16.4+0.25×16.4$ |
| | \= $16.4+4.1$ |
| | \= 20.5 |
| | |
| ------------: | ---------- |
| $\therefore$ Third temp | \= $13.6+20.5$ |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 34.1 | |
U2FsdGVkX1+MBKHFVSGwAR06DypmqyQ4e8Y1arnbquH26fcM5o+ClsgKmAp9PodLXpoEiLCllnlesVESHO+aquu9LYm8dM9Bw/vEx1zbCyfkZHxivjnpxcq0SkflZFAeyJHESAjf8LnrwEbjexi6JfVIRbUWotSa2FO5a0m3ouBHmWaJvQ5PP8idTAt3WFk9BxyP/qMhB326cMwT1csZxjFi1uy+XfX7NGI86QPmeCTjIVuH0ut7lK/MpEIfEI8gYKEg/quKJ6FBeV47FJKGTFrIDZgXoWfV9SSvNcANWJ0uIxH2Cp2qHFoCfdb3k0oGyrSFOjmdwiK9VK6K1FDrnE7mZxLzoOms/igGEb7FItgaB51dtsgETQbVHlByrhJh0gaEDUdAAvL2n6IMh29Pl9zLg7FnRqfT8FE3V5aKCKbZDI86ba/v6CJCBSznJmY/moN1ecrH/v0qevuC1I/qBHz87dFXbe4MDRwitLymaSRmK/BU4WNEh8Q9/7QnUBHR/p1AJEI6y30S86jwJa/LdCgcSLIt6g0167k7ccWlKQ6jZ4xgo+zfjc6Yks7t1Bx9HfdhXfq3mcptoZev8J7gd5xa0WQGGZUU2fvPlARmOFzVkyzWgGI5LofssHlGoYTh8OVwYs2T20aZeBAMhlK1gvQBBmrvqvG318p2Zso8GpaZJqmp608+vRrm0l4jMbXKi9GcHKw/fBkK7ADjqLCHLHYKoV2TJq7QXwd61ZTxS1rMKj7lCSyLeQn2j24nU+Y8xB74t5kvQ7GX/ddXOsZj4ffJV8SqSH+bkmBPyDVRz3zqvKJnTjE8UQYGOruU2RtInN4LmWS6K79xcFUF/6NQxd6kseE9baOZzmEyKSaodpMlaQfTz4w2ZjY9j2QAulpuoilTmykZfhRtn/fhPlpURItvco+lfOrA1Q2Y/AaG4xm4efN7jgGIjWB6U+3RxsdDhssaJMTZfDcAyLwzsxhoWBqnw6YULcINOo66BU7eJaKxHWhDatmGFUJBx0tkfCin3jItyq5LTf36OiIOi8Sehad+cIpPC7rRURdiDus76qufnE3WTZOnJgUwrxmsx+S56ibzuwpkzWDWY39x8U9HtAWt7x3LbjDb3qfzvjWIFv/LHGsEQYFgwRHdlgIs825eixELhmJlcQ12JAEbs3nWK9eCYjZOWam6pNForbHWrVv7sYMklkihneSYgpYf83qR7bjkc3g7l7bAojjIcs8punbEQulFQLfOE75JDsoS7W8gq/2yU31yFQCYKqC1GV7MJRt1WpqHy3DTOxCub0FyE8iViHmHQbOM18nfBCNjwwj1GDVhM3FvAfTLrAa5FvpQqWHKm0WJ/PCE8zjiFzJIYxy6CVJRkOez+wUnSETF3es3oJ8ny4Sy2qrWiYw3SjvEBSKzogHoiD1k5rEZwtMa0m8USmp5nCZXYHcOnZ+jifhGsfqtKCICp4RXh9OMXgw0HjqHKFbInWzXsjm4wxPrHgnDGkl4x/qy/D4SeCOBKaYKi4i/BY/bzOszZv0uFE6KPjQMd5qtUOjdR54MjIhEny1dhttjtAH7AmZzTlRyvTYcLa85Emn4Y/RJ6QKuh9QmtbI/pr8/FmrGt9eEmyS52IGX+PfBKpPfBuonbAi5RBnL6pthWhwCX54DV+zyQEsn+2jvI0I0Hs7Aj+v646Uc1MkJrEPwDlP3nXPMQFxseehlEGmNVUxySaquvbJX3Vg+32clUuZq7A7Ju+eNZnHJESYGGMPD3plKT3wWwWwcng6cpAC84pABtnwlELCwAB7JbuXG8gZozpjLNHKl2CxKtINPYZMaGxMAVwqQsylOlceee3a6QRUQdDlXGAu8kiz4ltGChDIYkdGeliQ/LNXIUiL4TCunpK8KZeTBF1dVpdf5fNy0wBI+Y4Fb5pVYWGnXGYFK4/2lTNNyv7NjwBCx8fElHcXOjUKIP1x2GPKSj+8K2iyyY524EJxQT4ANSTfFEJkr6YO77ehf25iISFiZj8AbSe2F4QYbHafjRjr++x3fI+QEE+NIiBdm5AALupm/0U6n9S/UmMVYMX1GtNTkgqcOz+LqfM727KLt7MGWFh7rcQAXfZVP9ZMatxyP+9iieptu7F91lkVlf0vYpNdmnYGQ2LnCUvD8s1J283c4HaPBucvE2Ei/6rgbsyf1cO7vo2gabch4QUzczyqkxxAwaTeF8S5UVP8cLHqRpoTGjdOf1/4Kv75UPvaakpOaptYgzgY5lfiVHzn68GmlapuSUKIJwXKlh+R+c0xwkO5FE+WWeCKDDism99DKOyJCfyz9MoB4biJjHLA8Rfn+OnJf0jT3HTZwSshOW7HLCx4npq3KAy8GWNxfpSwKTCQWkufyfjcbhxfBtg32vbX/1QAW1dEzZPuZm11zZGKNF0YSpc+HxpeUTAg9bjvdry5JfW0AcV9tpxBZbSdpw5wGSiY/6+jcyfVjOCguJ0fT8nVOP06dKhuRhiLC9fOhtOv+y/Lx7IrfgoUhKdUGWbYYMdb6+66mu853IRFpyldX5REUdP6D8Oospiu1sEJLnelFi92x/xtZ2HHTrdSVeWC+Ejqpw7w0r1z2z+H3XRTfHgnPi6o+4ZeAyanrMPlD9RuIqdX5SKYGo+7Knv+80KczVupsrBh+vmzWJ53g7HJdcADOLpWzkgAZNGdtZHUZ6Godj1qbb3g3D8C1cZLNQntyZQxsN90QI6R0nxXF8aMdIGshGF7MsCE/Cq5qYepFy0KSkGwirLZN9fWV/G8mP/R9AH7ArCGiW2X5agGleEj3dBAPdYLp7vC2qroQWR8HsQ5sbosrV0ZUFHwktDuwvAZBVT17yV1IddD1j8rEMqNFv4tDL1AD965rBKykI574Amz+SjNqv3opUiCkPo0lxESdXOnaAejCEwnbZWMmetEFXj0R91cwJWqsbRMmlCngXz9Yuw3/pYxEC1McHE70b9Vrum13GxhTdDiJMHN/iHlBXvrWzmWR8ChjaLXqd+YidwbTVu7E7ZoX5ZBVlzYnl0zpaS9GXFlrpQ19gtjSyYGCPYW+aLjBR1KJwqMkvL6Y8d/Etzn5QQsEu7E5acre8t6NxYkq1NQ3JB0afP+iVqBsj2HjbmympaJ6c/C2CtOVa24nfSpv6Ex2ftUZAZ363hnHh/R/9SmvVOGYUq3+xtSJ2OKg4newFs+YExULnSVPLQjQvRAumdlARZnv+QZQqSe9oOqAZhkqwOsrNDw0Akr6KlETtd5Iz4JsWOi+z/lh7CTzXEKU7qn5D3/NMdZyuNrfKAdLXiLDX839QvNE48OuDTpVcmwqxZtkJAxad8KxXu9ITHRWa3o2DXJMGmeDCr+uY7AY2GU2KWhT80MSQ3kEOWa6CIWi+GUuZVli7my/fTiJP7u1uENm2XQwAhNJ0qsEBBjfOnRPjon2au10ADV8fZkhFfhlVKTiQXsr3Z4VC2eBOQuVWTiFI+rqpDck1dDLSZ8d3QPQCV72Mz9284BGKqan9c7CKs25pnPDz3KTmaHZbNSDEGIbcnVshu24AXeWYOSZB/OiG5k5l3j7tishraP/CW0hVfF2Cb/6DWIUDVmfdGsnqd7OP2qD006cZmQ12CtJiJm3TS4K4jIz83HSwPKHMYHrgsg2GF/vZHytj/4iaifWz1+8XJU07PKo6brG9KoBkbyQRAjY4XaKx9qooC0dglHyH9zhE8BusH8uejNaRqGyfuyTiTBeS03i/Ty/gw1dH2GGmtwXwhs+ysGWrOtuBjFg1FRgnWbUCVSEKfyb8rd89p0xRER+xyfg23IBsK5ZCRaoDPnadcJJ3HqYCxpsrrMWazr2bv/aRNgJ+/esrkHtxWs3GqwZ8TR96CLWQ1K35o2SZiXDhJtRTmCkgtTU2tk4xRvO1FZWIuHnzdk9KeYr4yELdTELRnFfVU56P3A/JsVIWQggLqGVwBtcrxUWHOWsWQOW33ci2klO7Nrzt3GaKTcerSc/IwZrMp/5DrZi7pwgaeA9PkbZ9cBaGQHH+muFAFg7L0alFd0fJ7jOiC2UkbdAsJdpCnZ4lXz6Lpr/OQvfguX/NeXprKAYgOfTQQAZukRo2jtlbgZmOOWYNncK10GvzMW3uh2PpCdita7K6YJR5KsZ0b+G7/S/Sjaq7Uzy/+pzv4YCGvzySwhZ1OP8XPz4VY6y3/9TbdurhB+yZj20CPZ7HTwmnMIOLaB6kJvb6th36/JXBhpk9tQwKlRlQv0oGTmTiD1KK10R0dzG90MhbfkzPvRznhqPuhk7FfsGD3Qup6syfCGHU0uGXb9pIU96o4tU1lnmUBVnnUV9qiFts8HuqQG/V4JxUbdVPmsvVFu5j1AdDmIJ/HQkYtAc5OfgGMclNiEXDPxjmjRHfJ5s9E2SuKX11H+zcCKWyKwwbKum4TtagIFxW4q4Ii80UxcFuuflxuggssR+LUU10DTbRxTSQg/llyX9cF8LJTNCHsfcXuoYNq+bNkhThFH13mYFEPg/IZ9gRqFqLWXa7tdNIBeBWMY18LLsudHNtdLkS4wTxzm4LFMbwLrcY3V7j7ElmJIflc6eUQXssPpZ/6nu0UGRCnRvsBLuyr+me9SJbvH+j/JKD9Eb2gM25+ASQBz4xkqOPsAwbu5Cxjdp6dy3RudU8SrWA9ZVzgtwIqJWqn1GrHRUYEkxoZFT3/FWkh7GgJXPnqCEjMAyz2Lx9mcw11zVizJRQhZHRG/pwKiMEYI7DuwSEVF0fhN0jjZPOIFrGwGBvxFhusRZ2oC+7vIV43o/TFbVzsQ1C89Omip6XDhp2X6N0EHwo0t2veJx1GQNXLU5J0AlZhmOgpd+d/fKbT7SjeWKAH8QvU4k9ZnxSPPWvFIWttjwlmmOC2PkLsWCK2Gd0DWFRVeWZQbvbhRFvMoUOXe7gPg3rYz8+q2ePWTKdCwC/Sunz1oSVE2tcFXI5pdYff5V0IvkA9cDaebzy2hh1wk7TzMAFgbNlcBkOC5GvIhJttLGymp2+8NJFR55CsVwYzVAu4jhCQ1Z0G4+9kub8XjC1thYcs7ehWbf3k92UR55ddioHTsIiL3S162LdKX9/9QM4TtHmhWIuQvCg+Te/w4YRWiEH6FpR5BHRyCVcNa4vc0LgU/wr1g3MROxpaCZyKoaLVmrr6BabaLKnYk5JWtvB2zMftNgO1+TmG7qYP4NsTB6y1vAFELkyhYBqodeYHSqy65d/JnvgYHBq1RkqsJ5f2d6jAdTDrHmnd5nMmwYVEWyCoujoQYtKJe8f3+H1B39rJOUQ3G3ca0MIEh32dEY216HYFPTU8jjA5N/SFf7n5k5egq2yOJZpbo1Q5TSOgh1bY9rh1wlEwpT8Jw3D8LH44PeBWaadvvd3Icvaf+rYLoU0Lp39N3/SjV7bv2WtfpajpYalyanQqLo8hjhOCBTBGChyb991r+E7v5TxF/QcmmD45kgjIskQvLehkq5BKWaecMnADD9XCO7aNG5c3oVWNLrmH/HNDYH6rSdupB8peKspIAlU2W28aqHDTqhYkORNyDOV4n/2du8NQqMbUeW72Fz2+CTLRP7PR1rMY/j5iToc1Xfyn+4nhuECpbJqwiaxwekWq4Ki7Jcp9ZsWzeAboHJ4UO1ghMICfLbLNK6dbrdFJcAjc2iLEesn5BSWemEnzwFPIQs2jvTBtcLgzm1f0Ql60YQPoXFVacgpHoQs1AM7c5C+XHe1SCxGCMbNNyqPWaTjzTG2CukucLa4AqfVASkiRxnG2oHnRWcuqhianZO9hSiEqTwFKVbbsRy3lvGSEdQJdUih/9yAkc9v5Z7fknl0erJ1LiikEjeGGT+f6HfAZsfeh3FL+kayHeCjkoOrBMu+rDpVsSUFkfcEM7v4P68MpX/3H4GMbXTuqY0V+efJEmboQEkAIeRqXrfELz7Gw6gnQbt4L8FLGdhqtDmX2lRe5YpgF3afQx+XVwOIJQaR3KAtJkLFjTlXW8NUZlOqXe9h/0ULYwPkKMYlR6IUbWpQEtIc8DY00x0RIkOSobqQmv4rAqXQvyuar03TjRtUwtIXVRbqLrpkAc7hzWkMWiNJl1iNXO5ZrgnuCTBHJlKU7B/m7oROGq+J6slJnz5mSpHoGtKgP3jCGre4V8xoRtKnhc0V5yn9n8w70MtuSqdx3a3pxGi2Cj9o8nHfYgZZpaDTpjiZ3mPu6Uurs6q9XdT4s8JUfKUiJnkDEo5KbfMaDNcgBGgtTccYjq+dFhNEUb3AXZ0mPWi+xGA4syIV7oBiH7P2bB1/GbqVQfw0ZEg2d4VqNEFNvzFHL1SH07XrdMu85g97VWo2K+tdIb6VqHs1Fna3ySbkFE6F0bD21dKRgGr2XBbwoAYrzAeJOWJPrpqBVxd/6Tg04g1rvDPNTERyV4LgyavtWBIlLG4BF1nfedFdPpOHP2ybsLZDxd1b07dDbhGxOP0zM861nh8QflPr5tb8vPsoqCgn6f3LPI+iG53lKoOkKwFdeg3GPgkE867ALqchFHR+U/ixqqs1OufKVuKcX6Dy419UyXNaVXgSTV64amh7S0hq/+2WAteXYj6E8oEGlEMWOT1ukH2K95ApnyxhV4VKEJFRnX791oWGKVV04p+3SZy1aUCKG4e/WhL/buFB4hxzCjq3s1l6UVlTDQmKjbKjX8ARAHRIsu86Jp3YzsUY3+zp6JNt1NQ7yEdNXot9xKhhUO75U7ovPXXQvIaWPds/LNKvhXbXW72NezyGs7aZHcxyy9Cv6aoZ+EXwa+tuHst6tgIjkEo12wLcUovll170OBXRJaOpbXTqN0OWACkfjS7TUPWaEmSGVmNkAxmOIn5eUdgOnJMAykI5dLkn6H2NhVKZ6t73uDt8zLjhOHVNfLJBMntIz1LPPDStgaUsQnRhn6hlm4CtGWQzedadEel5z/R+VLTE4Dtk6Q7nDaYmR3Bgk67/E1YqP1CBksGYGuIXMbiXJOsEAjxZlzMnDe0hLupteoDET5UNbn2gEcOaQKJOE40T28AGb/Sa9gffuOPzir/StP4D86lDByOlewMHsd0rhhLRFMePk//vnY36Dq9wsEdy4gUIKN0WGKHhUz6JzgfXVcsO2y0w4H9W7YMB4b9MMg6bjLT9xkAOjaVlrtmJEWqkI+HI5Tcbu/B9Am9/x4fgo7cLBOV9kYfeBln1ftAnEIPp6vJ+c4B07XONfnN2RpSirb7x0SBuZN995IVyQkEF88bt6bzvvzq3BJu+hXAQWT+wCy2xz9D/3qKFq3/hGrCKswQluMWljMRU+CpSU7wUy3OCnTYSMaaRqu709t5Jn+yMKkhZYiKmqjgMtARV99G+VfdQ2EZlvBRMkPx0hZxIlPkBhvwxUtzruOi1KJD+8T70yk3VTfxrNTcQW7wb7WVBOzPFQw3+Kw+paJTWhxRC2+yShiUaQDXGzadqV7Gt5jrTFecVH4O8jRqeTnPWZKP9Fik4cqMWCObh/kqwx+T9GTPTDHNFaNEWCcR846BM1ebEx1Az0fDgiElOzM5ll9+/41+m1gk7J0Qgo8oBv0ZUPUy+TpE8hxMckJ58/PVcSufNlif2quUTwaIucKRNBRknz2aeRBvZnzC4dcJKgUsS+h1G6aVSgjjqBKjGH+UetTZdnIcLMaF006SZZjXEy1zDPywX54yUPi0spjprGlJ936swZJ1zuKalE0sv9T0f1vT+1ooHDNzrKqe2sUuBqyYSf+7hLSNFnhzzN8CPSGcU237vT2TIp3u3qQfudPiqQjb4K1FSeEA6zzDRtaHKFmcXO17BjP2C/b6K4qxEoy902/hxPdGSNw8DDk4QFUnEA3x2miToWY49MaTqFPAIa1teh43LJ/2NR5Qafn88+eCq+lC2k6T2AsIFPJqJh4G4cDx6DpjANZWybBSYcCP2Qxm6u2kR2ghRsUgVpYqaL8Q1iV+Uo/pwJ5d9iDvnoKs7whQA2ptGKe0EbeKQ6DdWVy4FZLLhYDwhxFmuwH5Um3YTd+E5HWRviBdsXr0JzNH4nllem32S212kk0ASgc65/yetmDWx9yxGjfhruk6IlYShweMcfD14ggBdg9v25OHWs8GnZBEpKrYLodI/1yCAFtk7Yrft6XLOA2aOUQpDgN7yTbERzFJiu9ci6UltLLSZnLFG8CA5jvJ6yNWxw0ApbUFLvnd6HMSaNyqPzu+WzIZgbUI8xRSb8b5u0lUqSx/KHLJaEn75P8PcJJZ9f+VY+BJAw8oYxzH0r+uc5y+V0+oIrjY0ARx5vW0aG3K2C91hDr62bXw6doEG48E7YIKjsrGQoJkVvmIGjmG/sT7S2kmAsMsmzNQJiYVk1nw8JgSUaS7WwSKZIkOEZyJxpJqQdygWxs7KXAaPh3vDuUaEIJwPheubcmdpMU4LkIhcDKnwTOFRZXPrmZvpiFyJ20eKukLOL7U373I7BJC0rNiy/wUk/k5xEGnayUJOQMPsi8vbo0FsOL5wyMjSKJ4A+68vUdO2lCsTt68mALMOWRlWgTnfLwLJSbMIsIacRrRjCQ0sJq6UXaZLD5ofFCmkYQ+l4PB2wST9T83TLHwoz2kDOqJcvE0SbyTZe8+u0JqcExYjpeA1XC7s4GPdtFfqB6vmnpALorOlSGFs4A6AGJRdPX4nsGIX1bQ4/EcwcZRPMXkhJIvI3H+Gc7FAZL7Fg7GJnnuIfJ3nYei4Zo2VeRaXdPD0nP5XzZGw7/aA7LZdjJl4GO/mY5mWdRFSSeIZTii9VCT+5PKSeXG3mP2+GYCEEohgCsSUK7mrRKkIojIo8e9gamVCsG43V9pvIJ2xwnIZ99aXc/DQ3vN2awSIUemwRP6d2Vzhajug19JeczYiJCyvpwhaWUJ0X+opLZ0khbBJ4digXleYyxR2hwmXhxb1y0rQisgMAUGj59PtVlh3MtUE0wTyU7p5247r65GWjZIOkDqzYs4cgl+C7Su6UfgQKEgmv+Tcvwvv42ULwRHgv1pRf2q4namqUCjkH9Uv0B8XHZYoI6qPhaViZvXvMwAjzG+Yk4Zrw4paOARgSnpqNUL0IMi1KWebJ24jCTseTT2UEYrxoBEBV0SxaDuoJsPY+M1cLVcd4+jb9W/U9WbB5U/liPwjaast7hQmJizTKy83dZ3UmtRTk6Lg4FpDWgutkiNmnoUMTr5g4MHlysB+xShBxLhUfr8EfL2rwlNWQmixU/85Hlxkrmjx/of38XwrqvqvpJTGzml9ZcFdSOSDRDtzujpkQBf0jT8Zv49VWin/0jjT4TWV56OCJMIisxJ0PGjYEWLFDXTQp+7JNEUQ988cxBjEliRKvMLJvU5mMAyiuMY8o3NurGpIFVSNgS/M76/blP6AmyiFdj51/IGGmXAalu9DRdksk+s753oDIncurjzeMJJqWQ+Qi5ORm3AGMwv8q5PGzPoFXcl6oWCUDe0zXXxt+rYYI+dGax0BujW7poeFpzAk5I5Td+Zbr4LUTmHP6n4MEA5Wr/YN9A4DWqasEcYzuO8+W0GQel/vFOHWpAb5Kk68vvfrCZ2wsPhHAdBNMayDLayKM70LjYqqIXHe1WoyLS3WRP+Bkl5KJB4XSmfYycBe0wn6jaRY3BSH1kMAHoNt58x9JCfWuQLHx3TEfu0pNbEEbZl2M8mePL+2X4eC1/5GmUWaU53c/FeKS4hujqv0eKpJ4VByMKYEngWCCwaRtIeRHBAYEyhTYshPi1k8EAJ7xh5ybunbLTEhpTBNL64dY+Vt424qEX/SjftfPeT6huF1QeveQHHtIDEQVimjLafbUSUGhWOu2NXbGwdqUuYPhM4ut36MqA5XxqZjT6OQOGjEb+WFMKTQpZJWvesaQSzJA0ZQ8sF3HIL6DUxfZy3R9rJYlEHjLukMTayK/J6IZUsMJ/IcULkwhUSRY8UT6hNmRg1he06vkbYQIGU98a7KyALVtk3wmalzpHPDvN13C4+ze0eN9CE9QumuuzL4FNUUOpHT+iVV9y6Up7c3r6Y+Ae+V7v1W+ZrhBzJ0moENotnylpxtNXfpKpUC1lkPQhSwSVcIBaVwKJvXBtzsBXJRdoYST3V8D6TTCaZRCJg8CRveAHRCw8MPCGkn0paI0cVhCXF6D14/+zUwPetLJVMSpIS8ZiZCQhcTey5y9mRFUAszkKmP/5rro1w2jCq/a29NFZSz+4bG/EwTjIZ/mGwEl3S/sSfrcTI1A3Z7NnsxIsYzIelFgiFX/lwVfUIiX4r0FbFmZ2LnpM9alduu2856HPs8sldUAS9TsM0FDtvDy4BZav/feBLe6Er3zDFZ/yP6KukQQqrERG9ppqI3a/KCPf1xupA582LtEsoJ9nqxSPkahgNEe8u139k4JQJj8CpKJZu5kSQkUjwpHdeICkMSYRZnwtRRSMyIKoUcP88an47LV4zBTM5VdLlsv97bFE7WEnE/SvNTcoQU6PYZ8GcQsGZ6ACRKVQ7N/9XbVQ3tpGXSwzNYOJ2IhV3km1pPbRHvF4EjwxOezLS9j2gwCb1D9E05PdGCbUApfHP2LcsQ7/YlP65NaFZg9hReW0aIkMbH3wiA8W3+7A/PYXVMQwAQMIqs9S4EAON4R+w1M+6lzjgrouOPkmVPUgwVOChPydKlYiDVpelZeWQvSjEC3LsIutHw8Zg3yD9y83nTnYhsdM3TCHVSupRkh0eELJjYjyfpVxxPvc84n2GI8cYJQyjMTZSZvFG22F3i2VKhpzU+2ZNWhq7vrsxiSzLA9Olb4jzWLXvO4BPdBsqahFlKtU5wT7mGBn9MdiPNWyT6jGzoQ1B9grIX9XOQXpC7LRIUsZEmewLuZDp3EAqdR25+MbcV2wCsLxSF1hwNKpwRhloVHjOmhcy2Ws1Im7Kg9i83v/ZZpNA4erThDFf/vAgMaDAvvRBJyqkHA+4xXJHPaHonqSFWQ8QF6xN+GkyRlnmYCg62Dl0oV1+73g69NKynjiu+M0ArAsmRaZJarjwaFpOxe9dkj4qyvibjPLHC72c3y9Db/9RKCRf4dT+WIa/G8zvwe+vgVsbY6YMhc3VUgmObaGBlvJ4mhwsdrDMRtEtb6bQdw2qi5UkSva9O7fS+Gj6NZRvccGxTzkaG1Vq5LINtPpwyAe8GtZAw836Ty4uzVo73SWuesNORShG32Jx7DhRvBVjbZc0fmBQK2SXLNBj8FcGPccfhmrse29qvZMHqvpQ8wSY8msFtc3YoMgdBUJ7SE3Gdkss1GBPvMcZjgOGAqEpVe2YasOTLbKiT4VryDU1Eegi1r6TczsRyOo/lb6JcaUS8/WZEzMAQoIb4RQh9b7OXN7d5Twfg/c0ZQKKNsAHPfXn5SSSU4g4f3Xb0QH2TTVEt8yMyslln8RtCJmCfRAfw6PCVHl1HUyaRexWvENn/88nMcZgTFJzyQ5X/xyaF8QJif4+egZj6Vlq2XyjPL/NOf22WhIZzRc5egzGdnHW83decge9wQo+4m+WzBR0ynV3F3qtd3RNlNn/zXRbqxfw0R/E6C4nCJPobEAPm87Lty2xxkcBkdsdEmHcaThYfU2furLNVgRUVE44ZzZYLKMz1k7Pnv5ciotaL344iaFprlbmrLsylgFxBd8JsYh3ph58bn94YHK6pED5dbJqrbdEXB4gBwXS5puRjXgJvgknjSsx+Vgvz+ktAv0NQ6r1jwCwxNoORuGieNf4igxEqjvsMY/rEStwvSThMJa4vZWc/QMlCLSmmPCacTGZ1kXr4Hb71oNG1EwYxlErfIao11Ke6LdV1NQCMZD1SNQlIQg9PLKPHKpz2C6p4uNzDdowDnxqBhHC8LFc+cooeaD2JCcrfMqou/iBUZTdXHzktYD7DWabqUmrXXvC4Izya0MhfVHGPraCsIniH7Q/jmvQDFujNO2noT9YI1RZK6rT+19bCL/UCFAH58ayUSithqh5Kzfc59J3ufI+KOVW4riokcJs16EmW7zkJOCWgSIJ2i/vtkd6eul6iWmRwF6d/fYf+aliO1IBiPiKMwa9xX8iuTchPP1lrOB5WMDrOGuM1Jncfz2180QkxdafX3wp01WDlRqXnaWIP8j5ABJqUPVVFHS+OIyQJCa7WyWRySYxKXjWLqDAH0lSQHPG10OtNT3FWtKltihlObf/QjCtBV/00ScwbKvaORCoe5SwhaUm+iqOpS2Epf2uzQ6QwN0KFSOMMVZQzbK8WgLuGCA54U3U68jN2u29F7D7nzjIuB/XK7UccTkWBUfyt1QD1Kom1oGi3DwUJl+d26B5XBjd4oHueinDC8LSQgkzP850IBbqvUWqBLgUWyfnBIqTDaKPqdpb4yTs/lYN6FxiEk1DVBOGPTzmpoK5kqUh8cMGcOt4lw0joQ9ra/ZDlqmpxtMgx8UjI+lpH+UOC8qDmJZ6j3iqSa3wHjVuHXDjLObCHr2agvA/FvWsASdGRTSz+bwGD+ZV5epY/5wYpb9FflAuFm2ozy5E8UU88kZPGpgAWVHG3gI4jhnpU3A+u0E+yikVSXERxWYcgAUdmUz1ZwJqbSyz1Nqv90iJ8HRshc86hwt8YALQJdkp7UHhGy9L3TbKMukX5ynnKFUrLJ/g20603yy/TMj3BhL3ZB7o0LTEFU3tIFhKOBMxu8+sgGCiz5+m864Vvu4cAAAjhfjV6QH4zJissGAza2PQ48+V0H+6/zqWFJ3+f2ky8hpA69G574oV3W+diXE3bDLtX9Ll3UwFDnEdG6jX4y+QW2iswUknHmUEiZJ84XPX2r4zApOo2ZsmL3Ae0CvbDEHNWH+dK51Uj1LxgkTgcrUzjCc2KpYdpXbW6FxSwO5nmnwRC4cUtw87Hivj7FCnWf/tu7I3JNzcZ0fdZG1QpM4aU2CG+zOinlthPLoG3JCsUewcTw7ELubWQRsnW0n385k8jj9eRdkvtkooPkhHmfbg/dDDQsuPfkLmn9hnpr3BmmpfnFfaUI2IOxFhejQAyaNwe0RpSbpc0zblvEtcYN7AQPWMo3r0ajB7jW2yXv7pz6/6ocoVJvP0ZCKuEz9owiVICDgKgHjQFQ7wwpQQe3WjWB4mNqW0eEnr0emFW13vt5Kv0Kf0YMZ7OUFXPwATuDtv+NlKQkuAkyoGf8B7+Vxm/B+TFNbZbb4rgDp/Rm627jOiF/RMAK5DOfB9qLJKag9u/nyE85iCug/F6FITS6Lpu8L1+evh6CBZhSnk8EwgFzxXw6IiWwODaYtiU957VaPvlJqQpyZmsDk7+WImwReRVazG
Variant 2
DifficultyLevel
701
Question
Adam was cooking a partly frozen lasagne in his oven and checking its temperature every 5 minutes.
The first temperature taken was −31.4°C.
The second temperature was −13.4°C.
The third measurement showed that the temperature had increased two and a one tenth times the previous increase.
What was the third temperature?
Worked Solution
|
|
1st increase |
= −13.4 − (−31.4) |
|
= −13.4+31.4 |
|
= 18 |
|
|
2nd increase |
= 2.1×18 |
|
= 2×18+0.1×18 |
|
= 36+1.8 |
|
= 37.8 |
|
|
∴ Third temp |
= −13.4+37.8 |
|
= 24.4°C |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Adam was cooking a partly frozen lasagne in his oven and checking its temperature every 5 minutes.
The first temperature taken was −31.4°C.
The second temperature was −13.4°C.
The third measurement showed that the temperature had increased two and a one tenth times the previous increase.
What was the third temperature? |
workedSolution |
| | |
| -------------: | ---------- |
| 1st increase | \= $−13.4\ −\ (−31.4)$ |
| | \= $−13.4+31.4$ |
| | \= 18 |
| | |
| ------------: | ---------- |
| 2nd increase | \= $2.1×18$ |
| | \= $2×18+0.1×18$ |
| | \= $36+1.8$ |
| | \= 37.8 |
| | |
| ------------: | ---------- |
| $\therefore$ Third temp | \= $−13.4+37.8$ |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24.4 | |
U2FsdGVkX1/L5CaZ8viBx74gQOGHPkHkMIwxZbGhFdSH0ddyv3LOdP9teRon+NcnVG7cQcj7+krUD1omUGOwsAB7hE4+/5yCXHjG0mxIHM5yJLGAiWm5z9I9bfu4aCkAa+7oP/Rj9CVyDpdHLZWsvBgvYEDUNnPDc89J+NJA4egMedcmTk9AwC/kycc1wsHnQ5D3rt0g7OjZ4H990sE9MTlHoZxqo+HBvHIDRg5lgNvSWYNI4T4cW7i+9D/1672w5aob+vcuY6gEfGauWr7N6RN7YtmvPr2k9eOyOzh1e9AQI5GcpvYLpUNJDpFHeoIKDbcpZ2BRe6IvDaf58ir5cg5LbcwdGnzkr3maUTaOmNRNSmO+NoYKlZmKBGW8lzFKqZR7voZSqCGAdRq9Dtuh8hUwP/P2v2FzB1hbSMCEfF4UDLS4FGI36z32+bh5x39dQ1Jop8E18OQNn7P3wee3bg8DfxZ6T6Zbqa6N/kNkyaGiMrbPH9rnpxP4nK8ONa/jheJDpNyNmKXb912P8MqSB9FtFyRBXxtPC0+toQS669qLwSuBvlp8vKnd7DEBe7mOXPwMHAoAoXkF1BkzcNbtGKEZACQeQ+QuE2xWaWlLDfP4dRgJ7WItcwE2jAtZs3Dy9OvQqA+lNPyLsM3f3GtMY8/3QkfQK8YCO5xdv3xZzhj98ClfU3F/UhMQ0TbCVQqv4bGKPeFtvi0PHm1BZHWsHggyvUwCL2cJl1ERGnWwtU6QA39g/kLwUa+35OkAuROjnljC2j/9NJmqsKGUTMdIqNcEh3JMtHNmc8bObjPAV9Us3IZdOdRQnbmsfvShIqHjbnzfo1/R6BU494rqTpFcasd/zFImx5OEj1LArPj3Nm/jQEVKRxzaVY9eKY/+L26Q1jtHh5yjtokV9vQjn6NVS45CQtfbsUvwg701cc6J6xwOFCxUs0pNMk6TVG54ce9ynw6ij0QHsamyD92q+76OYT0ah/v6Nk1Mcyns/VUXnqgRw1iHrHBWV7ICJAx9E7dtgn1H8FLYim6nkKGL4T7KaoUbVTO1eQVaPoMu8ZT2ePMtG1htKMQvPCfBFVYXsSYED7ALC3E+ipLxWL7QqFIQEm7C8W2H94TIRox00tFwCYSBpuz+yvWpCwTRfkFMqAGNORY4lN3LdoBjd8BdzN5SCykOTBSrB3VhfWhvR9ZY5yTAWjyLpS3tUA67tWuM6aEBzaK9SOpOJz5CXTR/Cq4GwJx6XSgwWdHOhaU6n2q2EIO8C6YEuAYh7rx3RY2+nbcbEbBYkLQCkUw3shpi2wm88mKmmVdL4Ip4e57GABX5PmPHpRUgeyDR0AzK7woxu3vT51pKjh1iZpB5Hz+0IrKxqFumn2K2X6o4yfQ6Ea3plO61rjxcGDR99hJr4NAPWdmW7OaKo+pwyuuPPZtJtXuJev4VAMyxJNzfGifrPM0+vGIHD5XK9NlZv4+X9KM0B7Qu5QeaPb0PQ41KSdQiIq7+9zqaWV5/3fz2sUc++7kufUYa9JCuUgBZeV37TFz4XMP7wttQ52pYpRmdAGLRL8jbuVfjCQusIRNGaHGVx9wqhybOday+mM9irLgu7fwz5eDXrtEiDt67ejv67BBaPdgHp33cmq2QVE9zDNcxo+dmO7+JcJfbm+KaNmvMRXWI4u63tzTt3Pi5GkXgoV0HWzvsk9ilXWtorIgQpEsmPAfnjRH8kn/r3Kd+nuoa+rfLDvOorKHxlXGuV0d3/7qqND/RCmQmCVPdP0h9Dsj3QS2PrXKhqW8mMOiKq4nkbUedHKH4WN+5BN9DsNrsbaz4GiAYgZ3nVleHVlfUkDwdxk4o4g04xmrUOacE4FPisjSglA69XoPcYtrJmmstdaNKtcW24an83OpaaBgyKhR5Twx8SL6ahbILNACcYHtKY0jmHK0IpJppMCGBhwINCmlzwBkCpldjn6oOTj8gKhAhJD6oIYyV80aX3Axy9I5ShwhoJd8o3KOBzxnhRBv2h+9UIpcIgLpgvv7SC5w2f6MHUHje14SfoAPre7b16mrFg1M+i+YW4ycgYGAG6Xh6a9IdrpXri1uNZ2//cICC3wQBVTSST2RYnJDjyP37Kdtx9teMK+2vgG3r4FkSme2lOhrXo8uusiJok7DeJBc66xZ3AjcxARaz9aumDw3wIKTKEdMEk/FWUAG7yaqTtyn9QrRo/3bhE9aVajHeCb9hktaDndkNt7cmGYt+RBX9BRad3AK2vXwJaHLDS6LREJ3OrruEXvPWaVFPgNe9MwW1pnnEAYHFguGbTumokWOvqyA/ulmASvleMENw0w2GgTSWsTN1qocdTE8TnHQ4k4s2kzpKi9jMSck35ehEaafrLg6OAJpqmZ4gbQxvHlyY+JKOUU5gK9NpWiq9XrjyEs5lx7boCRS9mwYvOt419D/ZpRFiAxB4S2P+cSYDXgVLoPmvBwYe7dialRJ5DLz2MHw4sCS0Zse9zTXhAAEaY1VdhhLzDtwG/8I+0pToxUHmCOQuHutBG9hMF+SBdbn6pEpgksuGJtgMso92ScxQJYYpjShpZdXKOnIiOXMQN5nNuLnL44aQ5jyNHi784qtmHYcznlDT1kyapwoRNugly83FVcZwgM5WhH6HkN5dlBBP+kUv4vQ0QwTaumbO8oZ4jslEhVPCg7RVyihG1VV6JNHvyVucUPAkWKskJJOi8TkBudfq9xvrGrBD0ahFQott6GQ08+f8M0BbCUnK4BEBF8cATa1ehMuYSrPVi5PoDtD8aXBFI8/QO5ZaQa8cTTz33xIbOG/2XFVGvliuHbEOHQULjceLfakkJJ1Taevo/JrZMW1+DT/NkpAAehJK1vpzANeNJfbPw5CN0sFPCvTwl5nvh/rrDM4PMFGjAshl6eaImJBHoPq15fKCQ9Tv5UpXR1dNGXQ5WjDLBlebJPg1O0PwzNr36DVCCtUV4y+p0+Zj8rrGgt7xnvQ8mtqymlqWtkudkDyQ6VUGYWAy1Z7cGVrD0wH5cXbp0QlDyFym9wat2vj/jFyJ70/5Sa7wSwBMgHldhWw5NFfjp16S5a07+5AIINtlwiDg5TxfiyQWwzGYmf114jhYVybj0NcDe6JDAKQWMcnveP32eCLGXgJFeMXvXAI2yggCXdxvuSPi9RQTtznFOOPkN+S3xDlZM/L4bff3IUcWqBFJQ3lVk86SGXr6qGGWADVCLdQILpND39N6XZti/B3y2rAd3885dRSZUnnVYXNey25/ON2uJ/zeIPSTmubTRLzsfRqWU4ZYEB2QtxqScq2TbkxZs2OIf6Pm2UVlKBeCJ0imqxeJQm2V3USwk4U8qWRBOyRQxYdJBc63ASo8cnojbqZ7l9oPHp50ULQKaG3D+t/hdS5hpCX1VBMo6hcm3KG6NuP4M0uy1CdJpJSkMkJZAT5zF2YjHht54TDOY2pjvVf8ycS4Sa9kcnqpM0BHv42d6ZHvY2tflFDc91kUAHzZTc8jSwhr6g6Y9JtS32Xe45HX67CyaA9uprkWwg64yswh48q93grUa/TRHDAjxe/Vpn9vKc61VFZVQKgoGHZ5dFAt9AEn9dxoBnyAlmGs+FkdwuJv7DGbCuXRt2+XkxvRR46uTmZ6cc2x4hsRfUU54YEB4+zoJuBK7BmJEI5CHQOGSntbcUTYYmld3sVizcHUirDngkYOb9Btswn3GwMA/mjjHNQ/VpDXcrseXSQ7I+mK4ejb1tBZRc5epZ8T7XJI7JWBAgqx+7+Nh5xEIOLYztGKWKk7as29Jw2MvjvMsHTfXUY3VnqsRv9jEkHWT+2pdyIUEo18TMx1BcJ381dqFVVtbIEnGM8l9CuXWgpxtWiXsDHsCHY8bqpiXlL1lTcLgW/63Kuir3m7seej1sKWbZft6878SGCEKEZduxQWU/cRSKI9Y+VYeJova2wL9onHj7cAN2llv1oTXU4IWk50LTSakeOvcubm3hSTJ57NYPRIpUshDuwjRLS0WrqncBmC7L5TopN+UQryx3CafZ1ozdEYJknQ7FZB69nU3xtUbFa0zemKwuuarSmN9NYaI4RhvA4CsN8eqi+NfyNy3JhgFS+pLU4V4p7L0r+tSWVTvuLki/HgkxPp6GvuN1AONwYKcZRq/TvHBiHCzmicnY/AiLTUias2zO6rzZn9i8jQFdQ0ealhG/PGxFjazaScGxk7QAjywYZp5SS0sxCuLADoC8AiaIaxuZNreQQxRb8hfG9VkC9ZZwwIenvok7lba+kywkVl/gaAi4F8iGMMGGynKZQptxhuOmG46PAmg0m/5GyzmpABQf01Kn99SYaacZ2qwZTIcFcsDQIqg5jhZ6BMdK7/dsIsXV9l0j/IXn81Od38vzs23a75g+IbVR8IaHcruZ4mwpWQ+edxOkA5K45lFz4czKfRvePwMd+W86aijgu5YA69GSBoRxjTl7jZoTc+AO58MTNPDaYZPAcQn4i78RT2bTPGIgf+IRw4bMrOhhg9mENbKt+W2G6pOXYD80w3c0sdP2k3qvRTz32rmzEgxzpG+hJaDyi3seEPqpg6z0EbVHGYiRDpI3wvu8fswfCFM2+f52sZdAk3reUoatt6HPG60XL85ikraLxJeU7/z/8SHE/himo4ppGH3pUBmQWumOc5Nset8rLo7WReLD/kHXDAilTwTnHVefBCeltMIdMnkdPBI+aizO1b5eHgmXyWuQbV+1ZTgse8YMAVslmX7L9dz4WqIIXAvTTChGYRXW577q6d4VQGu6aE25EkI4WMoxpT13C94WEQUxV5ei2DNlbztcl49+Se/AngItsi3LmpIWFxvPBkn8T54ZgGXskMrrCk8rojot03GCF2hP/FFVTv77YBBNoMzhByERHx6XJtkAA8Bg7973Yrft6gGxKq//S7hpPdcdWgBQ3WzgQ2phUW5khdHR9WNoHZ+YSzuw3QSIxntEP5k3RNkdUJYmn/eTU6h7Hxv+vHbmMqjS8YZa3vJHa8Ya56kb7bbmMPwD+Doz8NORpTOF8YjuBhuNkjWQhhh4CZyFlpfN218NIypuk4sW55JYtPrLRhqt1XkiyKH+wQWT/3/xF9IfilTwyhw7KmrjB+6PtAIvIBNgg61jn1WS1c1E+mX0VFJJeVyZzflV+pU6Bhx3rhg3N2pevQhS3ZBRYPvUbHizpr8iWIOf+fqDwzXYV3zyudsGHj3mBREHtDT1nSO04f4eW880PEi+qDCOxOZBDdJE3ZJBDFL/eDJaWVrq7RIOVSkh+wEQ6px2o90AL09aykVqDjkxLPLC1ZMK1+RKGrhJwI/rnGY8Bc9RDcddH48opaacDmPUe/7wY4kjn01r2CwocRBkRSocvzBriNAuwjUzXxR+xMhEPb7nYUJzbft7b8wzu/GzRNwl9WkpUAcotGqYUCBWGrKeLtUBX6FU1HUn640Vzug85ba+6IW0Nvy0Yp1z96vcLLueT6EXgnmFoSTuZQ9oLw6vrIbW+Hwxri0sNTHeb3bkgF+axd9+cfgfcgX5pnj8rNZC/snMvKWTnbGWtujc9xYJFg8neV+fCupNdwPTxjhspWBdoCQEA4FxNOHwMJBgnRdG2M3A1DxJi/wtoL9PtvJdc7ZFisylqEHJKOtztqf+W1xo+H7ZMtXWERe+p/O/ZMC7wsCXFukF01FLb/cnSwjTNgosSusCVdep97SipQSM8apxnJ9Rx8jQg7LqJUBMmD3NDyK7yUxxnomkOj5AmjomBAOOjQzjUrk08IVzaxCUip8PzhsaWmLtfrk7/5H/9p1z0Lv/QQb5yx8dcPlEN8MGF5Gyv5J9VU7BukYq00tVbP0kH4n6s6OfD4ynEFDDm7Q+WHxXpYn6bh+1SeoiTfMaAYppFsT/OI2cQeeo9VOTlZHg+b28kaJytOP+u6pWYcdMf7k4LEIoAcCUpw1RMk+84HEnr7zB2zTfJ5HbaYpbfT8bZjBGSiwmJqpsRnp+3fi3YuGENhkc445eLQsrutwFR/2XBviVWmd2jhrfIlH3HXhX2wSKRmS/pbPbgt5gsg/ZuRU5YYrUHfgdRx8JF+wxXuRierBW9zCQkEPiR2NXyoXNv5heyFF/81Lu/u/fmEQEv2muNYS7u+mQPBS2gGeLKqwVsitl0VqBs39sVi03IO/nOxNZWiPE1h5Q7/E4tV/gEFFhoGgOVa0rCXqY1alCk9q8J3UEhdx9MLzKZaJLOg6Y05mekz587hAUFHQAFRZcEVJPAz++sa2D0uoBXWlE9AxeoyVEW+OiAiw0xWLI+Bqr4FMYJbr5U/OqXJ7GvPEufpT21zMdxLMMTAY45d2mRxRNDQSGYKTZHnneOA8lGDc/+UnsFl8mPLo0W9fGVp9AtGgW+Pm9H49VnVkT5JIJ4bLIGgvHuvWs8bpxxdg/Mzq+W5nM7bjq8KN5i4yThBNXpwkxEnOg4FdHrkHQ/dfmaxDPIKTN2bPP8/5DUYgFcwVzUgqbk26DP7HnPvfCaViBOpsFZgxLZ15HTxbGgTHdwxV3zgQRmXMmsjNpE9y2/rvdcW00PyUQfyavNZqySzY4c2cTlb/3ZV8sVcsWPZ3QI2NuOM1wqDPGvOA9+76azD2bCYFcjbDIFH5mHOtOG1W/9EzLvxHZUpBrhzRnFrnz6/mz3VeWPw8meCWM5mVLQAznYBoYbrqoJ2YwlNFHFHFblVbAHtilcD19791bKZxzyM4RQ/hk379yvh6hgHLcuFbOn2T1GGzXFYfvv6/N8yeOUtrTcs8LsaCnA2Za1RH6xJ231AQMdonVd6X9eZvPDgbuPuvjIeVKhh26OfXT6KVCO5AtEMtdJHxEj/KLIZHhDy2NCHg2bpGS+emyfinYgOYLGQQPz+HD5oMltx1xIujuHQ81olbysVqjBzhvrtPyKZrXRfwjnBPNfxrH/3noXMqp0+MOSzDeTTTd86EIXR3dF7FRQrNvsIC0HAJyH9yjwjrQ1HwfkrgwmRzxT1HGeq3IPFO/Qd8IeynRv4sn9iY0VJqg2yeOcFUs587UQK439oMNlUqLiWn3byDfYtW9yr+YLy/fbLkq4BymUcKVJLNo9eK9e4089OZUd0TTS7n5shc9K1ibHJz8mwzt7J6NtG/jFt+IkNckLT2FTbqDPO9L/8Gxt9XmPvK4dYhZVwKwXIh7IQZN4dhAWFoBvDl222xKKOp2HeH2LWhfIrMhhUkNG8ZtMgenhroEWgmx0jN9ebVpZCuUG0WYicfZECPt7Gip+O8zBB4hOVoJwhwthsEYUCxgNhirGDKrZDlkeo1dFCKUlucHEsojDVPEjggyIwRk2/S6GPUIfBbqPVyl3vf5ZhPoxcPyenUeobY8xyMNl3/VxV1R9TrIofj4OZc4Dfn99ZlUDn+e+hWrRVWoCvVx/CCfrY6ith0qHfsESn2rUh1DYaBQIL06aXfsE/ORBPrgemSd/Z8Sfnw2xqYs6+zRmpbS1QGDHnmsSF55+lzAFYc5jEyFScGJASRzx4bcl2ay1ghHI92E8TAxi22k6awtXcH0VFMFnjds+1DmKWnj8El1JMgy9/7P+aP11DGI6FYWsyWbS8x7ZpMTZj2l8ZIsooIP7d6TKlKekb8cGopmHqzDuYOzJxBRjO52eKwSMKTEayrCGAzASSNavP2wvQTQo/bjt3mxYPkYtiJesuTwbrauVoZ6Z/Pe06O7Yn9P7ZuTge+zSWp3DSm2mc2QJFQzkOY2troHz+INj7OsKs2xhk3duZranpoDYcV0AphPrfDtoMo77jKcCO+82h0cVrKiFSha+RAneXnE8CDmiqrgnN5ejkidLA+0b9Dh9Xtc8URFL/EI9UPN8XlNIcyC5N2fxChx7icVfXFVC4YIiGR2n4GHRvrMDIWrkBNZ9DxuwwTJGomaz4X9ZMOy8PflHuXDWSTpl2VgnJylPUcuAGw7R4RFMI8h9vxP0zb3JttB7h3l7HDr+c1SMoxcboSz/snegmXDS7Ic97+8YGwpwRG1zXfktp5OS8qrTdp6Vz+JMbSChcSarLbKTu/Vv92JEup3xHWA3TtHHH58D8lKuNpvOdCqGVmyLuWjm5JQyqL+/+4Yf9ckLhSfJ0QCNL+77q+oBLEJZzn8PmtceUGslnnTvSz6c6N4FCIvGwrLl8KyaFjnlBLPclXyo9Mi7z40YrqWrvsarkvqWvoIJeZntsXgwwU0SPnwIBzczLBT4Gg52n4XtjAB6yuZpNq+TjiFECu7XOK6mdmsHkB37Rh43YUtMQWqBYqYXCDQz8ZSmprklyUd+WWyuciEPWuSEGJkArsU9TFN5kOZh3Tfk3EkvERqnDP4XceUIQPMRRSQzzrbUUB/JLTyfnk7g49bRH+jrgBK18SLV+ADjPF3mDKoXVEx/xxwPyzi8l0APk8YvhhjUU+hOwES3Pv8rO3UP+IQvQDgP1CZDqxxm2yyFYGdJ2EfvgR8NCDmOjIh2ki2iyPeyfmjFYun+VDCDCVAmhfDstxmxXDw91CAiZPEqEmRr5O/e2ZzuhY4Ob3hes1BURwerurL+ZjBuZj/lcTNO0QIkkvd+JubEGAnSRJil6xHDtFWWbtHXYE/XCGPyrgFmAUog8Mu/uPXI3AcPwTTFhsMERehDpkejx4gt925l4IOFWsS7rztek+OUt6/ilxPrWafUWGboNoB9HaNUEcl1JrqUJxPzWSs6s6Vz8Wlc+rE+a2Xovu9EiKeA8CdxRS8disQT7LNytSidCMiFn9TfeTq1VfF1zm4KteshZ8NF+UV0TJfQ4x5tG5/YkbS0lLsnbS4uXlD1S0XR8LyAWCRgVqDIgiGmO83E7UWWCfcj7bngOGIxQfDUqp5QajB4EwXjmbQqCL6YV6kcTCBBqbQW4BVu0NEum4pex0i+LuYG/9tkFqpf1NQIOtu+BtKyEH+zrK3ceKeKoPBg9j6nFaY8Voc9cK38Ov8CbrIZ9HzfepVQeDbrVRW3xO7doPEpUqOU5HgXnFWCD0ccvucTLg34S3aoQEu2Z6kEQR29bT5qPrEN8dBLYDj7OlKg8pc/tkWKo4PKCKg8onTKBuHGWZZ6ZqE5ggwEM+3vvvn/8pYTO5G5rmm7pluTqnmY7HlOVELk5R6T/RGCQfItIx1ltUQws9I+1EYIVd72agPkL2E8mLOsJPVB8cyPDGdI4/o/sGaz/CFxf5psrodlrgJnWau8rctDrUl1MJxVfy9btuIqRtyusRTEB3elpYAs7N40vxnpVdF+k1SF1ud5MBKuQ9vEXmaHLYblnFl0tnQbFR7jEXOsqvSEODYHlV6/AMjIWn0oDc89NZrNFh/Ug2V5LZkUVIM8By6r3J21Hsg425gnt/BA3iMIoZ2q9kwAOqbdV85aPxp05rjBd3oQagH6l5yRPnSIo/h7Jzz31C2iSspA1/CjRLLlHoEl92tH5JsAUE0X/MCE+5eut9QKCNq443oABiaN58x2SsJVpug87h+pbh4CNUcNyz/b2kpSfo04FkpLftDshFlK6OCENy/F6XAYvJCvx3UO9P43kZGfLnSSMn9/PMe/z0MSp6bI/EM6bdw4DhR61Kfz0x+e8O7hmtKdOvJSJYmZDgQIT2jfIamLjOafTTQxbjhCSywNAsenJ+YPkfYprwMTxZa8ysf/1YANJA5wGl3GSlAr9eljuSnY2zu6RC1Sd3kvdWmiw6G9qGejkbGxEdr+WTTL1c19CYwiclvwyGH8h/pBSpejE4YtQPmBk2OnergyNvF/cW9MARZ2S+ucbT2XRc9rvBoRfL1c1HgPuhQHnjgStLQVRzLWCcfBgi2OZf/ZeNJZ0MmRJuBSF/qSA0olwdakv684MhMaS/1rVAvTZ8/YlDQVky3xNWUz9nk9Gchk+f9GUK7o6VGjPLfGjYOZjYMde8VDRac3oqgTLlHDpKhVJwOJnVdOheF0Ca2dA3aorPTo/yKsBpWEQG2g57U7NL3Ujgm98z2ZgMzAzLz56F0XwKIb7Mi2QzzllwRjhw5/Y4x0miCZI6yjM+CqkosQzP6DFvSd7EXdy4653FBWYkaOZZWmlZ24AZS7AkBXgQcMoE6HbUF+HZuMQY4f454o0q1oGwVAeS83PMebPfNkl+zW/WiUd0jyjzuREJl0o4Y2jcCR3onB4nnxX+XaixDpWgRsDTgc/Y7FUQJKT6OimgOcIL+so3x9R1pbo0ywlgdCsIR2CxmRIPAtuJoomW/k413XW8JpI9qsFzKfkLaMImbbLSF1m/asueIfFh04rMvy5s6IYYy3XM+nC+1KZDcw0lvWHoarIITGGw6l4+BJR4QXLB8LwLFR83UTLa1sKYwOPvzYHeO4V2J8eQgDBqI41dJJNRIu5nYBuNGv5IwKWcYwwe6TdnVe/Ww50gi4yEbBYEE0kVRwr9WdPYzz3Ut7hYkaPR/w5T9hgoDFKUYigSnZP6qVVyJefbsTaX9Q/5zVqSYHdeOvllJchtYkv8BSYR2D5TVApV5v7sbJ4ZapDdnEwUKxi0bTUqg0fu9pqMVsoogOraE3O8SjNgKmGkdJdIh4d8qU1m16KFD5LuWZkhnbx5bWtLwplktlWzZhYo/D5k2QHn+s4SqMCKCGdzpGdjSWDb1VzgXlRCLYTvQeC1GMBB0jIhtVdqmd2DW6bvGLWILX8tRJB9aJ7+NSrFUvC6+Oj6ocRWcpLzxcVlwbImHRgsIz8+LkekGa8my9+CIx4WjEoty5pev2wbUYNEP4R8sJiIbIRk19YlFhXlCl9JqiNQ4OHpCDOl0eDTYwed3dCee3vgQGjvZf0cr9lLM5Ny9NIJHjRdmlhkjx3f6yFXr7Uct6RHNhbDCi3RXpp8WZdjbmSy8p3V9mqDTCrd2csaIlYllFflDEfACH8pbhZKTg6/zR6p5+9eaEPlJfgEZXQaa5VTd6zWk5H6AnPJ7xW6ZE7vNCJR1OlDTjsPKPE+l39nPwD1h2mSFBY2mgi/31kcgrX4n3DLVGatZ1fPKZik5IHChh7izM1p1tp2T4KqnCsTSKHAVusKWdZPIaDTDEf2cfN4ZNh+plKysMpTzCxxTZAz+B1bPK7n/GRhG/s3iukYGkZPLPTfUIFunABv/z3ieL4+wQgL1Owf+ThZpyqtQk40RpUgonfwT+tRP31fUlsx0HYzqUREJEV04VWI8KY0J1IwHM+6nS0cNIyHxBeIk272j2/M6SmAoeVu3zzpVa3qttT6JiXoKvatpAa0XRhGaSDMmF02ytPRlvIpogJcEwKDV4AaMhH5pMI6ThZtIqc3x220EES3to9ty679xluR4veT6GmtqFW03hWavJxSTJeQgEPD5gyMU2tK11VuyiCaRZQiio1ETGKgyifs39MQ8JKU19VC/MM8RPvRtK5fQ0hlgxofYLqi4XaHpXP5xGTORvCGus/5x5Q5RwAi92aalJowro5YIxJdIG+D1ozewE9/kRzVwRsnGn3s4ur2QjmWnRBIQmbsp4+u7vMKP3/L628KAtVF1ClN3tI9y9v76AWO4iTu+O0AUH0ToiujB7axLhekjFGnVZL3js8uMenK4j6qjB0+aVLem03FmmJExccBAKAYstDx22JFcaveOOX6wjuTg5whUxD+X71IctkgWLVQlhNBDUL/r8HPYckSIkQQ04ng3tSwWPKh2dxMw+Z3qO2aUucdIqi76C5ZZOasX4boG8YecvSO68nMOemwBIEtXXYnTKZy0onrOjYX4FtAdYzeDcm4Fqs9W5aUomjEY4ymZ+HqgEa6ZY1+hWpWpYjzbspoUw6E/doZ6E70jCtEW7IauMTCg54ub5YBBoeqbeVU5HMUKzqVtwunbjCKPNUT+Zm8oRW4vRGR8nc48BlMvTMVHrZpIOZC7NIbChbC2dI+s3/vlH1WQPYl9P0PJEAAOD174Awu+tG8LRPA1KG5xvwOZ3x8cCS7Qz1JGntuVLYA8lZzzBqgXbdXf6WnqE75QP6xbZjY8cwublR7lOwrNmy31fgQioz7zWCPBvVj6vyqgCHcCRl9A1PhRPL6HXQhIfCnEuwcrkpQMmbgEeVKMwW0hqgCSdaji+HJkWyc1xr+LD4nD8XUk4qIBE13j5m0C1wVTeLQvJPG8SQaeNQyHVFvwPm7Fvx8V+n+Bpx1OfLQVrKMT+i6kqugEkMk8iKG8NcIneoj++chSKBEVpVS7Frh25Fy8nStbktGmBJWrqaJvwM7r+fI/E0tXRey+myiujt1fGaQiVP+i5GN82NOv6AtnX9UK99MF344veI1Dqt1ZZtdmUWt9Xl5X31BaH4yb/3SAZvXzjlwGmx94kY0eN3HuytRa7FAvmoRDR0gKCdn+i7PrA5eqDu+3hr8keUoSA4A39Yv+hTk/jrDyOVfIF6iPzhifeM/oBcwaepakDc6vLHook0FxBe5UxmyK+f5USc4wy7csHQNb0YxoGgve9fHq3H+5+QCCdu7imvXdEFJIb7n48hmJUn3iIByWWnz1gjccjRgDqhFBal6LSnM4CJN7ch4RFb7wCnP9kohFcbDD+a5w8QoB1HG4iCxKPmyU+wewGorHiNW1ZFKezbxdbge/SUQLPyhvbgnmjGsAF9jC3iJeatA/2DgpEjsRm8OBljyzebw/xs60jOjUE2kLWwB4jlyQPgqhrPaejyB2mbyLEc/gIRxc5VncneMk8gw5s0+eGlssuB7oRakfMtK5qvBVYQbWnBKQyvqwMQFFkJ62yeMug47ljIrQfHlzsZKMX7Dt/E0Km7CAF0wTiaefiaNTH2YJKb3mIKud01XWGRED6L1dmyBUe/b2ae34XRW25C6ZnF3XkHC5dgBBmNUbz7MLlFT/LB/bR/ohNbXpT0FWEHUHw6tJm6lfvjq0Wfj0wKwIZfsAXqoG5QpY4Fq7nghq09iXfIYMuHqGhunLmmwXbAGaqeQ6O7BPaUpwBU99WRkIQ0D5izxxvLh3MXfoLX/Uy8gzau+C+eNeOPIxTicAILWYA+8LAOJ7Dj3j2v0v7pOkkhn8C4LBEPc5t5AS8TtI0bkgfGmzZ9h3/gRX2cieyDI+kdEzu4/nI5y1wz99fckeTyax+NZSChR5OR2oKX0KdAfY/cnsog3+Kgoi+/fBADD5nHz+6fkE1mUljq27pVglH9TWClyQ6hFGpWDL4EGMsygt7ndcyMh0wgMRgD7IpSxLQq4pt88yhhRo4YAA7LshAlqxV+mGF/4o9QFcJyyhGOUahFB3n7oVE9STYesihdX63U4Il80pRTxu5MMF36RM9yLCpDkL2B+bpNJwX2hc5yvvJe/1M+KcIbTJgYTO4iiSJ/OKvi/oefYIx/2zx+drUvT88p+wu8Wr1XA7t4936X1CQZq9CIfE0fO7aiz1DWydH5VqDF3zOqj/z8xAl8vq50yC5EPfAdj6qliZta3Pn815ASK/trIVsbBs2YOs6NW1dXrScywoqibNEpzXl1Buucqsj/yaiexNAefND8w0GvW3oa95kWqON3l2I4Ft7hX8x5xCiibB7qvtUMUNM8VIpoSkFMmA9C9mznqqtveaENgy6VbKAMAnk6bvQaxpWFgO2N5bnp0TzCH25X/PjEJHqkkiftZysb
Variant 3
DifficultyLevel
695
Question
Einstein heated a beaker filled with ice water using a Bunsen burner. He measured the temperature every 30 seconds.
The third temperature taken was −31.1°C.
The fourth temperature was −9.9°C.
The fifth measurement showed that the temperature had increased three and a quarter times the previous increase.
What was the fifth temperature?
Worked Solution
|
|
1st increase |
= −9.9 − (−31.1) |
|
= −9.9+31.1 |
|
= 21.2 |
|
|
2nd increase |
= 3.25×21.2 |
|
= 3×21.2+0.25×21.2 |
|
= 63.6+5.3 |
|
= 68.9 |
|
|
∴ Fifth temp |
= −9.9+68.9 |
|
= 59°C |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Einstein heated a beaker filled with ice water using a Bunsen burner. He measured the temperature every 30 seconds.
The third temperature taken was −31.1°C.
The fourth temperature was −9.9°C.
The fifth measurement showed that the temperature had increased three and a quarter times the previous increase.
What was the fifth temperature? |
workedSolution |
| | |
| -------------: | ---------- |
| 1st increase | \= $−9.9\ −\ (−31.1)$ |
| | \= $−9.9+31.1$ |
| | \= 21.2 |
| | |
| ------------: | ---------- |
| 2nd increase | \= $3.25×21.2$ |
| | \= $3×21.2+0.25×21.2$ |
| | \= $63.6+5.3$ |
| | \= 68.9 |
| | |
| ------------: | ---------- |
| $\therefore$ Fifth temp | \= $−9.9+68.9$ |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 59 | |
U2FsdGVkX1+sB0y9M/60yBVeuVYpwRRJjLNPSHZIKXAjTp24Kio4Urio+ZnZkPC1V+XU1aJXQVW9/j9+vvtf8FiLrIC6AlaLpgVmbnH216KBlS5E9y5AVO6niooOXBnj74eWPPIIKydssKHlIJhDReB3W9bmIEVkkzHqUXw+hN/5JJQefzoJVmQQkomuIivTheApN9b4+NyF5mAooJ0lKQGsQFJy+HZ+kw38JueQiiJHy2cDn6iSt94hzK+ugHXImO0+fWbOZhqbDBujqSc36I+JPvgj4F94HBP7kAMP3BuEatG1BVxGioeGmRndTRh1CssXw9ucg9LaphWfB2Hrl2w3U+cul/S5tTk2WfzDJ0wIQkSvKlnYHV4LQAEVve/dXdrjrK6tb7uPGeBb7QtM9s6vrWlktMLtw4dPA01dA5U94QYRsiJiqxunHlUEbuf5WQoo39nHEolAbSTu8MjfqVAtabIG0lYpD4o8sj5CHRjLPou5C27o3pUBe9eAxWo7xo9PjYYcG2mqHiUKRgi1t3F/keXMExSVZrDXmFrUOtpFMT8JiIpGZ398zv1yf/YlEO/ox9c5QUwmrYG4KZiQSixFq/WHe68VkxWJBC4svkb7dmk+o4Of1Y7JphgmXiViOz60N9YbmL0AKfKDT/Lx/XTCZ1hMjzdTTzaD0o0gnwfSliA/vjXLaKGdn3tpKaFwMbFtauRrRYEDgX0bWh1pBtgpN9OlMnprFuttjwayGnd0JoTUkqj5V980/B38qrNoFw4c0GRhZNNRTInXr4zl8V8LqP29Vqg9xnsSjnTWOHPKehbxJIQYupmKLhz8ko8/Y+ebOoivuYYmgxpJx61Ar2ga96K7mJVSOu7dVLR4PT9+JND3AYA5eaEcn+W5CxhaOBe9/UvXnas+P09Mvosl1rVrK0wjJ8ZSEHF+EOvEZQUieQsgYEZ0W+tSPOcGRvGsbPvZ5MpF5ZS1vSNGxpq2YUCsaLIQ2aPHLrlGy4E2PtN6yI6aO638ldYzSYReb+PQM9bzilw51JvQOiPvxQnDAQgAa+/JsAcFX3GnNs9k3lWwdeW9lkX1rTd4fUMXgzqTmX/aeb8fQfdm0tB0h5QS3Jpek4hZ7GCJt9sc0ZeEyR94r9o3C8HkajOdku8NwjsGKsHywRSWMExttdb9nX4MwCwycWh/bTU0seCBJeuqAc/47g+QCp20Lqg0SOnZJUmdsecqewzkINIJfroypPfih/P1t4uVZg5t/DQSvDxiju16wBT1e/7iVyhSVYcZWUS4owzoTA7Kya19upUKE050axgdtRYlkmFGDbzOUKfE+4t9wF8Hi04VdEfKIIHLtu7GhXUclq+KcHH1kztHdsBFJ+KBvOd92R8C+VUk8Xesk1Sh1uLGBlKvZr7wSNfs8wPdY0h5cbCU7G8yY88n0b4mQzCg/j9GYrk+KPdd4od8p1RDXaXlCa7mmY8VGeIC8BDqqSFElICO73m00Iv/aUsMMMDv8aSc6+JzkW7gkAtmSVNTDMkMFj9Q0/hAtbKs1pN/86je+jt2lil77HnCQiEN8Ka0MPNQ9qVHHoMm9YjZSmbnREJvrOQPcq7NdLdi/PxCx6//zkFYur+/zXoEn0tuRMbpF+W6TvpNq6kpojkGhpHXnKztsxi0z8Dkduyuqpvm+TzlLN/woA5u0uwWOrVK8wz4DMl0cbP1AVT2MZA/+eLeN9sYLp2w1v9SWu0uHu10mT+G9eTiYCNwWc+qGW3/opKw9zq4wJ4R6xhVHW6X15xW0YCvk8Qsrqey+9T9bRSeyugTrZFNsLrghXpKKImSH1/qbgBAq6jR/uTPq9NRiQ6hgQi1vVQreq4ltB4x/CWYYcpkj7gfdnXQjrUnAIfrVB9vezDrXByMcjlri1BWXUoFTb4FhvPL7iH7Aq+scvWFhkOYW78liADOMTRTEQ+lb2f7ORtJIS9Hv1KhIll6y55ZHxm3leyXz5J80hgst/xH0ED97H6jW8FcItibmx0zNFQX2wv9mlUFsgdw4ZVXpcBVbSNuE8PyIPuBIPvU1qfr0oA1/+WaOPCBo8cV1PMRXngehX9zocDgmRfrP95fgn60hrA8Szlftyh8urG36kLCoqb2tsO6Mj24SoxZ3MNmUYSzdS0LVE0RPZrDhoz6IVxtMGmrQFdzErmwdujlmte1UDXVVZTQrE1JMSfoZOSiFb0TD2XNNrmiJWJtY2NJbBu3ik2pBX/M6LO3wUmPLb6G6WqmHefRgDCMdScqJDDPw3jO4uzW12Xln19uFP80/PP4yKcfuY5Cs2oVKjF2G66xDcfGePVSg0TXDbyKLEoeFBBl/qfieUmGI5eSuK6Ar0ufWAkY0aBL6e2RYiwFGWi4QMA0z8WzsDbui3fp6fl40JNzSIVmiUZlvChaq6arHJdLMjZwNPWaEHdJ3pCX9k9RG2IhbhAOqogVjuEREgQuGlb9myful/zUtJdXvHmW1lu2su6JK1AvhZEL5iZqt9ugTRIPephCwmgsGBCnPywjJuFJcIMQ3bLMjlOqLujwTXYATEpIClR5dmqg5UszviCqwZaOtynLOOsHhS6j3QO0guONbWpsxSwVdZ67a9fzNt2rPi7R+Io3f0kXimhAQ9dMKDj6YLYI7cUJMjfZp/YMmuOqEHWzQFr9tye5QtjHh+oyWw+WpaZz7VqORWg2RbuMUWPRzTPdI9xEq1+rb8/lIuvBzVJg8sl8820a/sfd3ABi91ca8cF+8ZUeOSpFRSUsodc/K96bHnvBV3v8G7N08SjyToXKo52lfPi9aYxKFw6XsngpesgfOzvLhEo/z0ilynLw5KnhL0CDrHnPZgEN/q5Kakf8GVrm8WI53DcV0wvnQcjAkWBaA/1/byeg49iswA9Z6pr8jZGjwuN8vqNH46xEROF3rH13BL2OoEd6s045rA7bzIa+9oaxrypasxE5i3QkQEXq/hXmPbaldteqBZJLx7102p6xP8XVkFgQ9f79ZLscsO/jXg+msguY88YEIJeNKQZjCiBuinqBMRmntKh3sU8ubzXIX/1Vjt4VNyqlnSE9F/EKriitsxznzrtyVhUxa3xbPd52WykaHxxM930ICOGcDmWazfynTMa2yff+KEAaN5NuhtR8cup4fCFcnZyQcJvnLZwQmyJrv/ZcDk/vkezH51lt+sNMSH12qOvo8Pm4D64lOE0BwXC7HXXC1Yb3t/VbbcLAgj++1mDLrFGmJATSmcexPUPn41HG+SLj0oAVEd8EhsUo6XpcOlmX6CJBeTaKQBgwLqDIDwqN4TKNxFVDoJj09zlJ5Ktbjud7ns7QFflj0Zyz/Yxp4qeHMXBwavahbUU2TyYtzhaeOoV8pavdw+yXVPFS2L5WwodIAS2wzE8hdyZ9bzYw89vHGsDlRQ3UvX3o/8GND61MbYojAdfa433CX0XRb7ZCSQGM/p9mIRKKmq/KdODu6Hrbnum66NI3dNCZl6HJ/CqKqOKNZaqjmr/k7zMNY3JWcwXQ7VVsZRqJHeuoXYdM9m3HRUO+C5f9+0S8KMb4CLx2MeNOcBOxhFCLvV5zwrTF1706vnWscnEclI+0+ILp/Y4bpeJeH2/n2qhZhzp8pBXAQBDKjAUhNj5SghP9IDC+xQalh4WKMk50WhGfxxL3VFIrOAV/N15/560ys0reXKfY04K3LNlibUhiOJct++yaJbpvfXbs5QckEsqP/7OGXKeHfGVjaOto8+wnxyduJOI5onxc752oA58ydfGwqBfnmJ6jRgwG5AGTihqNBMR9TUiKFRP8vzrvlSGwFUlHSVj/219eZT9l9GOMD1MRXeJypaFIJ4D1XQnvjhx6Be2Z3dCWN7TB2HXqUJhg9460t2WtyypiPCuO6h9LGJfPEeuh5IDQ2MrrrN9So+eB0gQM8dytviRoz1IAyLOFTNgv1FprKlidSY6MPQKdNuAfex7lOPmCkr1ozzdMr6WM0MN+R77U71HksH2GocxrYbCfVURRFlA6mzSDO3aMww3unH1ucEOXMNs2fCSB/mv/B2RdmSXaOTqBuagoI1Imfq+gz8UGYrbWpYJav2nPi1cCSMHco/uuXrw/IbuGwgXrKcC15ZcK4LDhZSe83xjxASQaI58+Jos2Dv3Oy+mtf0LqGCqduQLf/jDNhEYS5PrfnhyROfE+lHiHvxb6+6zzhXLvdCVOZQMyIUjtkbzAOuBWgnmyCVSA6+8ybhhGqQvv6+Y5z71o5lTtah5mnC3a4Ku6mtyPqH74UgLXgISkQRJcXtW2+uABcVtJdvwYvqgQSXqXgj5j633Uk6Vyu3KgNbw+RU5sSRhmYwVjrK6C0rIvPkxRQZWlnYRQ6BP1Zko+ZVODxDM6iLaqqss2TByGVL2TkmiPO22AATfttoj/2EGaWqrTpOnnS7xThb/Fy18Mv+47aNWzCa1c4JFxdw8VicBO8u5Elo7tKDk1qzIEm87u/uIN7VoD5pZNw0rIpxESPY/TkVdG8D0Wt9Qp6twpa8BtaSpdBfdIdShHNuisUiTrvZ60ljkwH4sbi82knZxHO09k27XHln9wXhhSCsSGGFjsi/GoUpxPZjJBBRykGOoUUbLIfMQfeD+34bjjQTsZTEJ7E/hX5Ihl2uKjV6WjFYVKS0lwd5j7P6WBiTGwvvYI5L1I674J/oKjJoy5McTQe1KfFOe7nzxu07Hhg/A6+X03CJA/MQe9OVG/w693kctWlAz+63ogJEbnqxdwXI1dBviYLJ7v/nS7KF6muG0Jcs4e1B7EMmycOWMgoA4GuXrqSaen4k7LWRkcu0TABctw6k0zhEoULF5dXdPCpYpW+6JSPt8cer2u678DmkasAgPCGDGD18rvkDcalqL/pOuvWk2fi4uebZgDocbkDKtIRbNOIyLpUw+j7mFhEe4po7M7FyStQQSPg4K6H5D7eW1xciK9FHggSwKghVc3J7INmx4KftsSY0Gw24c8EwW0zdjAveyvzu6ngh86s62LnFEU9HoT0xS66Tm8vsnpk152rUWUpW5bvghi08tGYGOpinCDxVZiqOgsqRwDDEc9PgFKDpJ/qyRNsuZgORVZShDOJIluqQgFGO90W9bCd0NkyqAa1Hi1a5SBh6/ImTWRUWDL3Q+qAwfrWmNhRi/o3+Y2wjn3vtlpDC1w0S/2aQJpafOvlXJYDiS96Jj5jks0qsVhQecMwfO3FDfWKbOYJneIOUvp2wNaG1uzQoazERoNoCrQmkq/xiQiO/coUV3s03roMOhuZKn6hcEpVeZnNRofujg8fC58AelYR3QmKKAvGzecEWKXC1avjwjzkaP9H7pvD7zEW8sauzzoIVQeK4g79CZfq47IH8Uje9ytVTilZDvflFVbrm8E4ZRiJrzrpwizxQpSqQtdyrbsjND9gbX84fiKvoFSNVvQf1H7BnytWTkU/Unu5D4PVTZa3LUaTz0wIOZMMaC7KiZRN8aM8WP2/7oEeRTP/t5WX7hA9seaxhLJ2HwUHT5os5mNKeDyLvF8aRo9RnCnClk/7d51NxUelteGyIdBrV3Ps1yY6ZXgz3Lmp36Y0+uwQ9YtMdShMC9qC+qwKf8oBAuyuK2udnSQ7V96vdK5FjTk7OJt8iNt423tYIJdEINSEtgLPWJsq9Ffbq/YiTheeDoz46XKghRg3PTBv1//KV+U2Lbz4edDRjRxPVP48stQ0lz8dorGplkc1lfpX7/24xCdMB3hYLsvVzM/1eogtdxAGCH6gYk48cWZro+FTo9w/OhDUsVYimik3tbr6ZiXlvUmpTDx/ScuU030qPWIF1cSFO0nKdZGt615og8fVALsssNi+isXEFZw6wV4Ll7Gu8hIw5KkjkOQMZNvCcUMpwosADi6rPXES18IqiZnc6VbdGZSdi1crBZojlmteiwzbZodblqLSVhTVEIXtkS7oJxiWhcrpLlc16+X4VYVXA46jvUZiFD49jWKtQQkkT9JaMJ4Wq3+S+bewpH6w9WTFhBdb3EbydDwEkrKPyONviQTCT63tbUrDSlBKhINBcW2Kt+gPBv1eV62xTMacxV1Bv1VTR2XmyWW65jus0lQnrh6y5DVTD9x8sOGbQ12YLv3D2LNclAec41WnmI9+rnE+iJJX0Wd2eseIJapNMMs8eD9YNj+51i2iD9pWtFJTmP5NJJL8HqvNQew2Uer3fn62PBHMXHliG+repwiqJP3GtFWE5e6Ne0VKWyTefeBMO0cXDDETljpOBA4UDGssv7Ock1NZM6jtUNtYGpEohK2uNnYwvXssw7Hn7dpJK4ipnKcUQvi/GhXwt8O4rc75nv4d2p85pqX0/3uT23ePAzZTJoarbRL2as8b7w9swowBrx18WxLA55cc6wIS1xIkg1UCz5+XoHp4tAbpGW8km12D6gq6+lTe4DZUk27GpYT+71Mc8VEyTl5mTe9QPwGkop97tKXHCIh9WU8hP8tM4xkQ9Lyzkt/r8JoIz9h3YcUvdQJMrkEQAqWSMikHU+Gb50KsWQcAoBFImzilQLInxjJ2HFkvq5XH42tfIFQl/+F9n3P2GFDMXBCLfzgqxsPG68Jw2TH8zEPvMznZ/xwNMbynJ0iYG+AL12pxnaLnkxIKOYj3ujNCIV3DKhy1mjwlbqcvAVRQunpwkYLCT3SL8In+zQ+GqORXxqBMPvADRxUjklPQc+4sZ1e2cRGUrOH33A4L8YXUuk5jxHsdfAahYr6X+a7zstvnSIERHcLPWNaOy32LHLx5VlTHz7+l7b3SXYMy2oqpHdOMaW5BS6cHe9Ap8uiiWhQTZgsxE51E7JGdkyXlzbJpYdbM1rAouWrRiY3MOY+k7liENXYGmi55gAm0ou/HU5dEoS9+LKgDX6pGwLOw475iMkIxI1BYxpy3WwOS3PnTml2WPhY1XkdqMuahr5T6ZjTw1YECxMb69bm4/gW2lbhqU6btEyJLcX79vjHRhp0crvWvlT/GY/rBQMT3zlaWS8uCBdixNZ1WPhnwPCc2At76v6g2z/v/8SrN6J1xsI00GhKULNwIOG5PfXt198s4XZF3nEU2jzEsBqXImu52CjlEuTWk8E0umE+P5JwJnzPTljCokbAJVRr+WtPK2KsGu/+aV3CAPRolmxIUJpuZo+RCzbCyBY8BWHbxadXJoATMe+bIX6tl5h65BzNWG+IELFveRXe5zBQiJL8Vcu31quHgPQ6gQESIgd/ngOQ9iULR3qJHVUsGwbqo1bxHG8F5M16CcfJLGiorsU2RY/4z+dC0OpJ3iatCfHtJn44qULBKERLgdqQ+zfMQ2FwOmsMsJatWyIeMHXqs3LGHE5fV2It2Oeh6m2H+lRRxiJOgKSytCKtLHpwET/66aMvxmiCGYCVLBO9JKtkck8AlhY/RDBfY4jcjVLaTGZJqyyVZncwGO+VvwDhD7fCUtl42EGEEdHjDOlL3RY+w6wBBo9qd+Zh62/LbEqsojuGjAIy7D5isvec0cuHQyb9Jv64OkBB7hMVvhw0L/QrZwu4G7BjeAYBekuexo3s95hD/jwL22wXoionxC3DEz1NGoHTq0GK649XedKpzI/hBCDKCfPAW0ubSCLNLcoC3Wfy2Rd0q3wPAT2ioym/tXzHWt/8WtKVtBT01TJpJQEJ8OpgeOzkjCXoB8xM5O1Mqug5787aPpQlZ4xzUxQPRWwZCHW8UWGnq/mszpVyQ3h+qNOggVhESTB2813x1AaxnevyJBczcdrAsRpKjlGorKQk1DDDiOmbhsuG3ItCEB77En6fMPfn2hN4Mkblm+XRaf56JMw4OmRhazXQZDH1Z1cIbeBVPN6FBBTgat/TzyNBMtGJhndbRdGF/+gP+SF+6Vpz7Aarue/LjrOIsm4xGXbbRNhYG1A2ZhtQ9AmQrl++zRPP5PONlNZSV3Y2GN/3p3AHzQ+0utzq8+B4q8976Vhrr9ligevYxI87GFEbjFFjS3Mb6bAymV+Fa6QUjGlL1ZBE89fUUT450ZsHnpeQP0cukh5iGuKzhChnRrIPqsLzsCX6z2Ddj8X+fnp+sIkt+msmVwB2PjVMG7Gs+MzeyJiGDAMAFrmTTtTbnKeSsw8++NiOrgVvEHBRowxWcA3HsUz/A2N3xQ0GlDGEKwI2r0ODx+TNY6ovA85QxDRlLSFUxn0yk0W8XqvbmWVPH5Ty9rYa5Of9piKi99NTuoTaqS12f4OlWascis8zOY6ouutyI/JIXkzC2hsYtHdjKnT/aJ3ya49jmkHpuD2dj8C5frqKiYBTQbX91o0LxsgBuR7uCMDW5hNA1x0RuHuasruH3Dws3dBCKwe2BTN4ye6J8hJQIuAegra4GIQcqLM+vzYHauUucwE8YszB9wD0SNvuCQszGYyrfUs5136fP68fyEWG2SHG+2KKs8C9r0FX8+MOZ97fLTjQ/vFwzXUZzzXucRg0lYVqwN4bY2zkH0ABqPUVqRv+bmUhJ9GlK5qCGcj4MfqQOZ/40jbSWn24XMvXg4zOG6tHPN6MA2vdGviqZW4TBAiDKFTiWt+V+jgIijzDAx4oTnYaJSXklhPhAAR/W5wX67kdEQir3CnAYplwwPcVDB872MggUDVceISxXqBDhOVhHFxQMcfKiZ966UO584FmvaxjkiRJ8cEtdX+fIcncHF8RIs0k2FSX+51/waqLepzQwONC3w2nQyOawIy2nSRfUVfiNREgpkVPaxV/6ulvfci9ZOAELssCdY/lQ+cqQb9xs1V9zZMVDM5H1sTSnxgTOckUSKLaSxOsaltL21XhtWFBihDbVkUuKGwmXEJC0KYIHA84a+7w16NWtf7nF1tHF5H1DsPABcXtXIGzTtB93NLR5RuBXFhawEKI5gKGMed3impGfnjCESj89ndNRPiL2AjkxUcFDV6k4N4E2+ZeKAOiwPgCyM++cc2pQYeqz1cwmxf19TpxPcNLi0ENhaW6Ji6ifpveeew/IGBKHxbInCuntZTeLCM4xDv7NoVZZVArspodAg12SgvPoGyRpHlCPbFCSjRnvSbul43u+kKP3Yxbw1nQ6ZvxadWdKc2Dgfu1GHISnezYctOeKwmI3zA2Puyyb8koZIJrOlCaR8yaPafMvVU9b5JAW1405J6svO0gpozbUYqQy4irtueM0/yIp5z7FAz88W3frmbeKnUMD0/1dtgFJocIajhMMV7SvrwNisKBftYbNPP6loq7vKqFhByiXSk/4zkRPBm9WKrgQopxLwdKKGg5bQAEMBflcop9fK/aOhj843Ik/3pa4ag5Pc5G9U1pIMSinl38B2jJVIPScutHhX+s5SaTyKoGEPsHSu6qmDNlJN5sEvID98RzLfmS5w0zi86+OmJpDQY+lS1+Gke/flRDjypHU1DAqrOy+oc7UGdaVBs5BqvM2NrgzGFq1JwGVDsgJSd9KvX/5smTRsQ4imT3wVxRMu3X8g4N1GWNg6QcuYYOqPnUBF2RUTRP73kJkS8kT2rqWXVOSXNxdRj0jnQq/clrQzj/3VfdQes1PR1IruhfG0gpQgsdcyibVJVuy6ziH/S/zeTXD3SO1S6IN2lG8heY2ssmx6OwpmoZpst+hvDxr+zrGxizHFf7KafOyk0nJuSxyKb3woW7e+5WRihCk2movPQwitru+oisOlirDzoGQ6JMWhu7HzT9WvQe+633GoN6CB2sPWgw/h51YRKEizA8kziBQ/6bYYhWVb7J/D2hk0vONHCarCFmQFTzh1Z8oMBusFhc8Rqg/tqsmuor65gWMSDR6AlOBgnJBKgYFYWmbUH3MNOPwTntfOVsXsa5jAs7/HLWoeDqqUYwzoJjhQchu6+5P0kFtGJY/bRcCA94qZU+abeHypX4HRlVSjx8HiB3ELenfwZ3fe06fqNqED0z8RW45/1kYTJ8kJHSOLINymTfFTTY2g43fkccCopndz+9/D8hg0rjyacxlR+kCho12GyPfT/LfymO/Odi54u8AAtDx+w19OPhiV9Ar/Zt8iJWHpw+O822Jq99K+WNTrgFpcEXD38mthDlbDS/d8tUvh1e67zCkd7193prNcwE7pin9FxmPqe1U52oMDoYPJE9IGKxypaHLoDM1E6d/VZ9UgxWTDDbb2ei3VthxeunI4btvOIasfW06KqKx+uPvQgqPaptKpslHN04/FhGb0Pe2nxvXOXCHho75KINKAvsBZFmLFWNllzuIspx3dDbq2n8+/K3+dzrSCT+Ls2sfoUwoEGwdt/9Riuzec2+rOlKs966kWry5PIR2FYyciEsF3zhm8DeZv9I32RPcFyAREv+a8kcINJkwZZGcamX9zcOEVxROBDU9IFfvnEsrNIBf+nnzcTnaMiqp/mSbcAHT9imuvk3uvcrcVb6WyKuoeSS58bPa8wQoJcPYxMzozbCTDFrnoh81K2KnJug/IX55kRJMdrwm/+9UdpPdIMS73o4nh3VpxZyJQT0evKEx/wwT2iW85K1iG3ecmmY9Mvv/NWUnR3RaYWcrddfndvxIF9F5MLkuSRxbXDA2aAfCmgeU/NdPfR/WOHn9IDhP7sRZgxIRUSt6Sm8d8ecBJ+/qNzy0vq30eYnaM+sf/4=
Variant 4
DifficultyLevel
690
Question
Donna had baked a cheesecake and put it in the freezer to cool. She checked the temperature of the cheesecake every 45 minutes.
The first temperature taken was 180.8°C.
The second temperature was 84.6°C.
The third measurement showed that the temperature had decreased one and a half times the previous decrease.
What was the third temperature?
Worked Solution
|
|
1st decrease |
= 180.8 − 84.6 |
|
= 96.2 |
|
|
2nd decrease |
= 1.5×96.2 |
|
= 1×96.2+0.5×96.2 |
|
= 96.2+48.1 |
|
= 144.3 |
|
|
∴ Third temp |
= 84.6 − 144.3 |
|
= −59.7°C |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Donna had baked a cheesecake and put it in the freezer to cool. She checked the temperature of the cheesecake every 45 minutes.
The first temperature taken was 180.8°C.
The second temperature was 84.6°C.
The third measurement showed that the temperature had decreased one and a half times the previous decrease.
What was the third temperature? |
workedSolution |
| | |
| -------------: | ---------- |
| 1st decrease| \= $180.8\ −\ 84.6$ |
| | \= 96.2 |
| | |
| ------------: | ---------- |
| 2nd decrease | \= $1.5×96.2$ |
| | \= $1×96.2+0.5×96.2$ |
| | \= $96.2+48.1$ |
| | \= 144.3 |
| | |
| ------------: | ---------- |
| $\therefore$ Third temp | \= 84.6 − 144.3 |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | −59.7 | |
U2FsdGVkX1+PixWbpXnJcG98cllfkP/x99QIc62Z8FMwciz/jV/HTBqEl6LM0titIegWzwXd7EVauBPjpWzbZibS0oSMwokoC7j9IOb0B4fOk66GSWuzAUSzoVpt4agd3pFRwWGUdxoS2HkRc2jfgsdXD5HariqQ0yjdrhx6QtiuW5dlzg8hoeeoE82Ho9hUqxPvp/ni4zwpPPg/mrE3GZlJaKa4iA0l9rgvU8RyZQfH0ToM1em4be6y0Mvx+8j6xzFHf/DMDeaNsL76IpiPlpJ8wwIGiB5lMfV/YNkW/X1jMrjIEHaWrx8rHjed6W92K/JsGvN5FI59d3My1YraPtJvoGvQb7R23FZb/p2OMSJlFkx53ylLKxx10ZE0+LI+gYdAw5hqFYDOTK9+Wmx2NKGVY5GC8DaZGgeazIscwftuOuyxJIbJoNOF+jz4GMR22nUaLd3I+/EzkiTE7LjOzMgbYvfzzbEnzVStezBWLE4JjEkz+rorr2pwFgkUzF7kHaw6qtCAoAfyAInPwnGEhmPAzhVdXGi1BfbLxv7cNp3oYrRMkR/hJqTN3O8kdMWWPC8KOscWqbqFdFAjh58dVLGK4AZX7EkZAZfzHYVd7PqdiWSZ8/1BUCApO8euL016EfdOQ+h+yafrZ7vXRTnxSFyR1XzVVIpVll8BAqTsBlGhksFtEZZ2Gg+rFV4VgrEAHO+30YZsKdqrIgTvBx/EYMa00EWC5MI4p6688Mfmgobn1r+mdfgBL1V3fN320b1RVny236t7oq/m1PGOM2XlnqRfQdwTUXIUdWrFPCJ373wZjqRtJTcFbnQDbLmAtUhtFA6IBrxlvSAUEupwukxjzeil+N+vm1cTjE3NlW82LoCPakzLz+JmoA5E91WadCopx+MscYGZ2qZ8heMtFEKJFE0TFumgUrQLs0yRao0rWEOY5NsORyi11Ygjf3WQxNpAzMWSY9JmA4wAVWyikUYJWIEMgSKEk8jtw23ImYv9/LBbQX4TIt9ljmsg5nVuCF1Y6exdyNwkHIJpTnBI+0i6V/xcpQZ+lOq4m08YnIIZBlqaVDvXc3uEmcO1zK3p94Y6mpCvl8R51tFbR2tetssO/hUXcHKIicQQkWMN5eC993PWcziC+5tiDGlaiH8PqmymiBRs33+ODs5XJyBbpAUDt84mbed94C9iui3UNB1JBUVlXXwod6ZvmSj6Wmshi31fIcRtA0y5RY68Xn8AppYKVWIsykhEvh6PJMjxQokWbLBExW/apqlkwfoFwrPKkS36yC4GY9S3igu5zxPJHDvlAKxXz74GW4vjNtuxHVSva82v8B6RopqXdoAaeMqz/cfHPiNpm7egn/F469FdQNYcR3gU/dDsO7X2Bm2bgTUnrmwMxvzwfbgI0p0I/nDRLA6XrLYbI2fhzMufwypGXUN62N8X3wr0ia9LipaPocr2oRD7R8WOmSm1H/qvWCwTnUeKDHYYanNIiEWl0jYXOnyrIWlJaDPVC6bd1PNd45vHYNkEVf626TLBjtUgUqFEY1Ur7tD1GmWgqksH5ybTcAwPj2EcC0L1ESpRfz4Ot0iSQLBP2Kw60n8bg3r+JSElKbcJ3NkANKgbZIziaiTRTMZ5fZqkfQF2wiMm4y4S08RuWNSZKtEU7kgyVrRv/WeQrYjh+mbDX3ymv8sCCb5I7I+S8n/Df8mt0zLZUvp506rHwX8RNGnuIwUD/DU3S4HNLEeaEbj81u2NPuh43xu7yooNM+UoBS4ZhQ1nH235n1KJIJQQjE/oSXziXwgh0upmwoFy+ACazHkkhNJaxN2WB6EhFTMLNzJOCNpqWKwzdiPWyClKu5RWuu7NewrvFJyg+x/afXBbjhekFCULklfaBUiuoP5icgdxh+zPxYNRwv3WL3CNjEb6tb42qE4B2fBvMswi5oQdWUR1pJAhPaiv40rqbR8XcIj+ixlEPgtdGjjnUPxvzotWMfgPpcw8lWXBJhcLexQ5Wd8rnQvZEMmKb52ff4vyqx/wiAFHpXzEZV8nICf/08In9/YZqBcBajGw8LEoU27v9hgpRV9l+NJ/FK3MbMovwXHUWSnRygpn36NTg1WfvL51RLG9I1W03am7ckm6z7CW84jWrkJHEohalHtl0XjLDj+gTIjfD8itHpQaoEjzkrFZZ2RG9S/zHgt1AF6NhHY0a3Nn3/H58307nKc11HiaL3dDXprI3CQXDfKKt7tSOgR4f+IuaxgpPKRCxwzWmBwhrXN9DY6AxvN22mG9A66z0/JHfG46+PHmzs114yH5jp0qLSDIJnr5z+b0xdJghpVTu+cU5ee50JhWx1ch9xa1hFoz0qBzSaROVcXBHoSpPEJMMANALuz2UBBAO6yCuiz75JlnJc4RjuIk0YAuChnXqHmT0duhBMyWgwaze6KXS0DelVcxMdfRAgV6RwkfTmBSl3qEPvH0SdiAw/rrCY/XrhXe5C1xcXtpU1+6ZcBSCMCyZYuF+LVwEDZh5GU9hJQWsl6t41txa9hNtdrALOw/XP1muFsHtirdBj5EW53SxaWd4UeJfdFfoV9IGluqzcrJICFRzPCyiN7DkdqYqyycdbNNZDDl2lhuba/QhPMZ1bxV3u4lSjtzXx6pKp0O1hGRWVLF+Yr/AgcSstln6GxhbzaQBU+JkR9dHnllSSHj4tUCJ5TG88epu8DCbPHjRFG5qKWEeBYkJh1qBsuuvm52LIxJXMmAPei7FSPGxy5lHgsLi+XxTkD/vap0IHoi+tkmP7nydG8b4aE9ZJWpwdmSXs8jgWK0ma6tOmBGBHtOQMOVWKKvJ6GquFsR1AV69j2t9tuBeUVn2ZJT2NUHBG8rDSCIux02EjLkKyTiFmgh8JhUqPwEgUeKCO0/VU10nXETx4ZVw6IpigUHpzwHF7pw0m9fNd2bo9lvzVjD4CeOZE//h0GjoHyt5Uk2S91HxSA4EPSikeogemQSp3+wPSzQUwwOZZJdqca/0RmuXqmQQnT6Uy9/gQWnFpTYxvX5pH6rctTtt4jt4AmyTCu+ZzOykuQWDGLrIXiBFQRKPZHpyVG61FBCLebXAXFM4WZD/SZEZdapG26YWnByHExpz7nKEpLjtOGTXugiNTIWjuBc1X2WBNmwzxuPUjTTKnpW9KpLJ2A5RQpt25FYEGD7lvgmPWlWB1M7ZgJy3ySKQhcB5D1gnZz9HzSYnUsRfEN9sn24Z99igG6r94mvOoW4opVgdYVTg4iQ+FJ+mxYww9P5++QAlBrtyS/G5y5SNwSpMYyNtQglWYz8aWr1M+xt2jl0nE/kOoX8mAFNNldiDoJMPrkklU7tYHo6XVatejYfhnTNL9XYwcTpckXHPDlMm5xz3lqJKjDVhJvG0pOwvNaMKjGl9s5FPvzJotmBVy7OkyCvqu1IHWp6SjUFDLca2Jt7PFhVN0hql/xbfNdm0H24Su6xZxoZWFmvE/HguZyXA1vPdQzOd7p0f1FnD7jQiz2LDj+3q8rnKvkYBd/UYtRpi/EeGppDB5UwlzxQMGUVA9JOoZ371ubl+zWK0Y7avvEE87bEniOEosPmk5WaI8rttBYMv381NDH2NOV2yKuXs0efwpLPqpp/97cE31OiiojPrI7ladjWtFEs/+2UmwaqQL9mys7wFXo8Szbc6SfSrg/ubyjKbVDDI6mnzHx8lUo6aj+T8+hLNDgUju/tUuH3JQiASvniCe0oOfEBz17rLVKelbpq/dwqHEld9hx7Fwm8Uw56GOLJekYXHT9ywuIhcIg8ELiKMBjIl57YJkLIYypjnJ7/5t5Ot5z6O2sHoWmejr5qpnLGvFY+rHGZqlMR63K4l98Hhiuvmh/7WFB+kENHVEq6+FELRl4q6iQ3VY5rawH9srzILWeC0H5rFKJOXbiS6jYHH36qCp2Bc9nzITCv/64b0pzBggRGh69utLZmAhBCIMh8FPCDcuSVMIm4IDyGgllabn0jBdWMWl1S3wUP7O5GZcdre4v6jxBypMlXMNXEdAMaXwOqXRwXZkjzQU2r6mO5pvAfKndt6wxv0AToGGqtkhDW8Sb1VHUh8VvDotOiQJsvvN6h59BHij5ROt+url+v2EG215Bv17nAwfGZRem6eeYJy4Ie31pKJ/bfgBoRLKT/hQSEEKjYxfbjEIFuyQUs+4SE1bfkccpFdligJxHea7UCLyxzC7QxHT/q2och0PQ0q8ArCi3NKEedxbDnFCZO5Dow4YA2i4wKTGO16ttsKuj2K0lj0ZaB30J3Qr4UKWldOG+vNBlaxoxLauU5t+ZxZeOORNFMRy4OimPVpGlU3t/3bLZvtNM11OcoX4BbnlSwRfgHleNR9GDIBtFEcSurHwWobgoXGdUz1k6I6qaryOfOONUE3MHUVSGnmwWDJJpAudeNx4UmqOb1siJw4ZJypGmnC5s+peSpUAbRJWYzHeCZ2CJamTHGvhJepfOv4qJmIGAj4W9e/l9DmlGGcSUihMm4VoUM7/GsFaIkzVkVGRfrftmUdvFVCVODJ9D0qSNhKSY7aYPU66TY1qouNIAvGP0d+cC+2UiZmuGMJrYMhPo/ZYd2+Bqqm27D6jL5I1nyXRsg6wGYomzASSlmCr6CcLraNxoLXRyNrtrBjOTFPc7Ln4dS9CLJGNTYHbv35FkUfBG48jWDswPUQ/81gFP6nxo9uc3zE5JBeDGB8zy7GgYaEAVU9lZhmU536A6QtUzS0s6huFOx9sOP3VnQNPvk5OOA1LlogsI3Mxc++qV+oFKqVQhLsbtFaE5iwtHqiLBVToePZdNzkZraT/W3xDdrTkSch6uTHE1z9yN1lAc/Amk2+5nNP7YQmRP5+kGY2t66agyJxB/SUbYx7Sao/P9iJR39GUUSP3LTRP7CBonIEeYsruUoWx47uecEZBFVvLMu35JdVrI65kFcDu3V02jNd/0twXpBoNOtsKNSZZPndtJg343ggwyDnPIjmF7U/DscWvfHq1hD905ZGM24n52M9DWZZ32GWrxaQe9WamYRSMSj6a+YmzuHoVFLS+AHdTU0lphO15V45GedQXJTfvWyVCPU+juJfl6IZaFHBMwKTOnVe/XFRWnZiZcy/V43bcOABnh+gAMRrWkeD8UyP9bNRlKoqNmysOB0QNjIP4UAVJ6RdHjuBlhTNGd9WFn+YAgOuRRdViCPVm7LshFYnbkChp7BjTeG5hLGO+uDl+W8pdp/Ik6lZrQA+QbClrAXoDo5z9ON7r9LaZ1m6oAuMuZntNFu0XavKjA/HW+Hyuqp/VA+rv+QUi55r1jpt08LkPWNq+yZBU4buT/nTWtQJxBK8XOlBZgOL/3+d2Tyd81WUJyc6U2w8VP0YahLCce0SBhDM8cnc3zvSsYE6WS/NVIK1oX/A3vz6IAADDpfYVi0DbLLkFvkWimnZVXIq67kQhCCGa0RbOd6Sq1vosBJ/iulaF3p3Ze3X8S1iLRmTnES358Z5UAX+0fI6nY7V5tn1EAyB7Tdtaw+VO4UEFCCR+NbCnbr+Fcx7Ic3odDyCEgHrNfQpqT5/8KTpJEBYbcLcD7FMopxZMsg+N60YtDFEyxfUVMVCb8hvpVj4X1uVXi8qmlm9+0ar1k3xDuXkuQwUlT/nJFKYI4FBOdmy8YoSWGM2J3niUlC0Mi+f24M911WWwW+kMUVfzV2Ik5zQT0oXj5DNnkXSFCFbGubY6RiIC44ZdlPyD0ExsUaEWa57fqG+F+KVRbGWE+Cu/x6FF1wU49tk3TANiSI5VJtco/j54Tm7q8D9U+grAoMqJWj7iQ0N03ID4o5rEa4Hyhdm6q76WRasJEcSXIMlKVuUzkfiR2IYtAG2AX6LJnjVmR7HflQqOUrxRNuT+31lnUlUEOTLIJuxdLdz2jVT9XSOCttQwTpgVdYPgt7lmI+aaw02mKLfzaTnxnujJp7KJeG41g1V0g808VDusTEY96lhxBxOZfxBdFxhMYDZsoDmHfTvrp/gG0ppAOiyz1ixsmY+w4PlAfcBslCqvtfKbwY5pQ2+i8OBbSfyJ6U1qR0DPTFlJIolsRdYUYlMfmU7lkDN0Hqhpb8iWPrbfwbepj0m2ArccrHgeEO/wxjWRG0brS0w75gmXsN7VYWYxRKcSH7KS5dPuBlUYu1L2nYpCD85sCweJnIQPq11kLuY6pySSG7cYeIxBFMuASZmgDZKaUTz5F256VhVrdQhyDANLblN3WkCa6IR82iSjecCtfKqsie2JOG3Ihjt5om/YUpVr3ux2FYwoHzSpxZmCdbiJCBiS+PZwiaTT+2LbPZgoF6Mtznlg47DnPKPrKY8qahpofWhP9LmtriNz1EnovU5mSxd7w+GCG2pGiQm0eyqjym0W+TA0eRnpNj7PC4xL02LJ1wtZjw5uH1b1IiukxclTrlliePzExmx1tHgEA+9rR84Kd9B/F018FMSPt+5HuP/CtelrAAD4XMv9yhH4kVDjJ6qKt27fkrJzF6qXpx2aOXGpjYNddF0u5LDhYW6rHDyWhgAfiEDceTTFz17JgylDED3j0T2ZLD4DecrFUQnx6YHhC/f+4kd//fTsAtwyfr3mXzKn9S2fUZeEwmC/goZk8EN/DhbiLI7aYidTpGsxARlTHEyx+AQthdaeVfy777a9hAdTIojnkRcGxIF2iB5wA4hL4YA+Bh3HDApV3Yl27rkDwU294J2OFaVnvY4EA4WX0sHcx36+pF3BuikqU2nxoXXQ6u5xmFTQXbESpPomkBhhFGvmDa3BxQRxjNqXSz9IoI87Ehr/qiwgQcA/GlQPNZ1uIkCl7UdVfvLAJoiiTaWJySkha3fFBTR36MRUfMstZ9gToKRSYdRf1+T80ru39EWLmaoZL4d0rUs70O9sin5W6jTdQm3oUwK9EVhvnJG49gJAn53k3d4T0FlhDmhCbW8NeqTOzRpvknTQmxIl0rdOFXm+SRVUPDeby+lw4T574vnblXEKk7xCKS5XGLtrXZP0GygoWhr3A4nyAhrjlhw8RG9kplY2n91wdIfSuW7mZeNaDwQ/V7Xs5FCZM+YNoEQBPGNEAClhKU/Yq9Uj+jg1ZJylRQ4gp/hlxRx7f3jg5ERq+sKF9xldbTeG3W6wm9Oo2Q+p+2oCFyQIyx1pUshD4roJaLIusu00lRpzSK/z6i1BEdvleo8Dt8Wr533B7cDeCLPDMZk9bPyGotZ5HXDmUWNJWbE/G1KABFoJGrX0aQ+r9x+UoKrLmB6L80Ejb1TuWPNcYHbZDFEyZ3iSbqw3/HqpeA2q9sgGuTS7eeBgJQVRyEB8XhK7Yj8CCSKK2P+AxXPX4CfZxgu77MUjvX2Xhvi3haCujURFwkLvvLkdDnR3RtFxDzXTEbbSrTs5GqZmMowQz1nVvFBB2LOq56f8APSM8nwismmY+9IO4E0yPRN6E8oor8GEvKn1HzZiUS+sFZlg8zIXtPKsLcRIcu6fwF1J4FCOiFWpLSadxLGgSgdvJorK6k0lXiIFsSbiyz/NvbbNtO5YUhg1uZtrialhwspcimUgOzBYHvW7MIp7f1dBlCG9OdnmnquwsbJ71XhJVGCxhG9E0yu4wl/ahEvXTusHHLd2kU0ziVfwoloAcS3I5rws5QfuJbUx4k8BjU47emeHgfUag7b3bHW60DH66kDWDs+SEpMaJj0peu8RJ2404msTITj+t2wWADZ5OYncgsZssaXXJOWLFRVBni/zOAeDv0cY9T8E9olNH/Jx2BTckVY/VHAQ3U26+70qlak82UgRb9cqjGxFPCqLVuu0e54nlJrXRq5BDBNLF+6QJuhGPvGaHpuaEeoLGjSYGgzedp1esiKkIesSXDEIXUemprZ/J+YGbIUQEsQRW+TT2/unCK8Ue5ba2SsuBWSFQhBjelMVO7SvjFcOnDS4ZolmRyyWBtCjG8qep527T2XL9XVTs2I9MSB1x7tdMF1MdN+ajDPMdNhbWRvr07plZBdzXeCxS3hGa7s83FwUxHxZ1qAeZayw3irG8byqvR89iOkzrL1g1A/JcLj/Fw2iBjV37Y/j71oQUr6V2CTyB2f9OLvt4Oe3duiADtixMgXEJUb4FsP587ugUPE555FaoeHUrRLUTEap+eAiz4ag+2zZhNWlkYkpYokGk3gVKLrcz3iUzOLvPRyFGIl0iGxjZSZj44ApuRDEZzqAq0k3tTBJb+uZ4t7GkNqdcOit57LPJQFdqUep6BFCUV2e+Ek6eyMCocf6sqLFLc8Ppg3pNl8OKy9lon/evW7Pl2QjOGX/mgR/qg5wlaiDCakZQ1hDNH8BAU/bkdFJ1sbZ0T7/GCKe2hhrIHPZVSZdu9BYAJaNo9uNdNakn4VGByus1aUTU4etE8KfykGCRs7+V6NM+rqxvGs8sOmQUAzo3oaaj9T4/gTlr/btbpGLobcZhp2t3RaIK2V77drvg4r7o0IWV286yFaUgM05v86jDf0v20JoXYiExGXp24l4s+mE8bC4ckqZ2dc8Ve7z7wPYEVxgh36dsmotj8vkWnihwrxGY88BqWoApX2gvnxQDtY4EMR6Ny0YULNG7RqtYFrTISowMgjTMS0S+397IciBBrQ35QMGM6TLqsBS+3Sh2UsVj/EaWOqo7W5NlqtQoSpqlPQMlifnWDfjYtoOrvKusXZRZnZTSeYUAitUqHlW488CZG61i/6DGmWqfpzti5281q7mhrj3bkGOoEQRMX3ErcZqLjppZD+SVYPdlsmcIx6WexTfs4b1wbnNFFbTL5ElPDSZlobb796QfEGOrGLhDAYS56p1p/HhAUfczpPk5e/U8Oz3crKkWuw2Mv0r6ce32hZ2hrfi5HxLjJfssdylfd/jGMWlOkb161ZhS+k0UzKFDqHogDgpGqcUJmMz1FjeheywU6OSeVYVItfY9fpytpT37LpLeHad1/SEhAh8RRUf3X2mbMlndwcZ8oax0lwi8zNiObkWffkCATGqIlqIV5TBIbdTDrVW5KjluNu/5tNPzE0Z8stLQPhJ8QiS1Ss53jYz41e+hkevOSpWi73qh5Oq22pyqDIsRv2qxMPqHPih24M0bMrZ3xMN9fqPUGpKtKwN4n3ma2yeNpGObJMsUexporwqW/yufjAZERJcPRfGyENVrr2kwXjkJalqHxrtWW+bTJd3TT3agUfDaPcP07NRwP87aAWVvk/8XqSzoClzHRm3tJfQpQhvbxbnGNSOH1S14H9uAdMZS9PYrw/vmdiPXcSqfsP4qtcc5mynm/gsNialWoOiccF8wr0R+Upl1QzsYc3lnqt0wbhxwCHcYSR2P3uoZB7rw4hPRet78fQbq/IfXffyaRJ6YOXU3AY6TkF/aoBrz7RCkajDyLajs3GcWuWTh4pLRZ9mewy0XhtaENyxW2hFas+SiFL8c4IVejPS4w8dxozqJgxmPqfq1VT/+kRgEkj5x2gDYX9+hClqa/i9G8uSQ6pgnXa6Q2fG//lNhAqGxldM3/9AWBU+hb7WbCyryo3s/FB3OtIE0YfeXIPtDJ/krRbRzzUwEg+LTf7iF5J6UwPiASvWGAnCC95/5UqAlp5DzmImfY8VvreomeBdlNFoHmGhsSW1wlJUQyqRqVnjK8xf3FeCAdPDbw14EamjeTXdQnpG7+CvEod3zett0wVLlaeFA1SmS5N8L66EAxACemFU7jseRqpF3ZNQKrV+H9sA7eR7iclnSuXlOjqbWJggDN1kY07CtdJDYoWV9Hu2av2WL2LxF0M0BvgenUaDEvsuNyX0Wp4l7GmQmDQ0eucr1OSS3tmIUkEhqqz6qnXc8zklpRoK08RGdGIhd3YwoDqn/sMYO7q/P5UB1j4iJ/uKsF/VCC4AqhWBA6jdqm24aNfGSuG/JTBuXohnjKVkPc1fezFGas+R+mEra25xfwizSSBxBoZ+ZYnTC8k4O5/DDi6eLm90e2aajq7+3SzQDeSZ/GvSc3qkcWQfKsv3YrJCDECsuZVB7HPAbPpvQiH/yT0NbnCpDSEfBKRLyIhAAADeGAUYK5zJMt9zNycItZfMFY9extcd2Fe8t5DPmIFpioxMqJ8FCXLyc/KqDsTHvBnnQIR6x5YBmdXK1WtKn4zybtGEEYZbZT0ZHr4yeuUfnOnl7sfRLz+ICbw8juv7Q7RtP0aOCQfUQ9ycO7xFLyvtpxI+WZFWj0WzVWICU+G33m1qxadqdoAt0mySKj7KOZhafCGc9g1ACnFsyPQyjnFqQPQEjhN5Q7oRv5W/03sq9SqfEXDTbBKlhUwdyc6aI9QkbTsa3YkW6JHU9xL0i51zob5hikMhvcrqztBD2UGHI3WhXQd5dcKg25QDVrdGRjpD3lqKS8VNvPT6jgaC6gchqmnMzwwtwsWRiR1FzwbBnW13Sga+jzyiUXSeIpxIE4HWUzMSSoSaEpSKEa84RH492miCr5K3EJmvPdZzxK8ir/sjn5wn5JqpDhxnP52L0f/wdB6SzZ05xdPTNwH+oLWpE/NCV3NiyQKI+QTGNtbkjWXC/UE/VxC2tE3V6uExXAlAixx56x/fuHnm/6wHxF6wevz/Ge00WybBtAPLWQWV49SZCPGhn4+mxuI5s+A79I88kq8gMu1lx42H3MTlR+sqpFWrlkFUIzbzOm3yhx2Y/XMrrkMzeewE5ZfHbtRvFSnEUWAqrhNzHncZ6NHaiPa7wpaKP0/Vk8LFtWC7t4zNnRb6yFWFpdUbfuoGf/ZJo82OxJ9aIhbFToE9e7FZOtw7xPEUDzPMDX2aqOCzsLasgcStOoRVR6ddLv7+71oE+lQPkShsMfgSlAN4fH5aIgpkitLG5CR+Gdsj7JwBREl4tDeCnaeemGvGbdevFKGPIqy2dO87jVrgi+LoDbKJoyCevkaYwZdfL7Z/J7HjikegZvF9JhzoxXk2QT7QgrPUOtTECa8D+QrElEhBiabQ4hnc2IGHZ11463j/RHfK5X1kJLXMDAV9sO9xpUbOasP/8fr5m1lR9TLmqYHeNLiAn4irQMETAk91debt4Ic1CbJ7ufGrgKNCvvG/29uoEZ+gFpuytbj7xDvyp7pIfZVL8wKjnONu9iynkxHXLaKUl7MMnI6HfutfmKpwXasV5ZNHDe6uD5uOx5tFsYm+pOw/z4ch6oT+Yof43rAq26brRDWYtaE3R6TDcqI4zys+ediMadd4JXr5sK9XmUp+Bl7A/oMTzM4pRGe2OZrdAbT6iIM/83HskUZdm05gbWWSe0u3T04+Sli9p4TBCAASVlDpy2k/18nMKF/wviPMe+CjWdaEJzXW2/S2/gFzsMWRAHg7UjCk+hfdW2Srd/c0G7VmDtO19A5BH37GzGXA09gY1Nd6hhNXx1oqxUdasQVenChT5jZpBLM5QE+Xa/wkSM9llQK9ERToRJPCUvbC3bwb2EunJUNSLDK+gXo5tnwbv2XFzk1sFYbgolN5a9Lxx1wrZdT66120MspcJSs3UwQaXE9uSv39fd62+kxVBoKrsws5Tfi36qJaGxJBiTKDvBlAAN62GcSI/QWgvdzR2NczvY3v8zxWwSkaOCzSbKA05laEgaxr/BCk4JMWV0+ZboPEXxMN2iqofUjvWlwXdGyk93VfmwUo+rz1hq+vVkyhpDcZVOzZjTkZFvC6s2PbDt+CPUVUk+ixrtTghkY2EIQTr8hGdZYy8s9Bz6Eb1GXeKO3lVjZgRLzzt7bWShfFS+Ps03PQITfVZCPFajx0NsHrY6t5TgTDj4EyT8whOPHLQlXSQ+Cet2d7HX6grFZCMfyhJ7ijmaeEATzSlFjINc30tU5p4Ui/o8BVM9mEDX4pK1b7po3+k/oldvWDIe9PmZbp62lKKzqckMkRg1XJhQPOACnChEfdueji132gj+2FaoRcEl4uxQ5KWUWLlp5tB/NuSBmagrfhFWrKtyeFP/A5Jzvz+uKyMnqojeyARh2FjXiBTTp0Jzanx6/n++Azf4UIEiNCLlGVfMn0JpdZS7UvQjT3px24Mt12puSbOOWtnUa2rUUfz7zmvAmrst3G+JXnm9CM/tePEKy+FjTQVXu1GtjGUpfOpyTlghjVl6ICRKmFvAapm+0AlEAc9WkFrR+8WsO+j9KrlXI23DMfWU7OjIbEhkK74DvfWjc0rm8qgrEKmQC9TuXvApbnHRKED8X3Ul/Ue6kBI/smRXGUxE07T6fLj+8tBvyIb6aKaPlStMKuUJc+l80NJWmD3vqvplkKtR782Ngkly28dvxFrI7edTRFdtRkggYkGvGQigkrdadLIyilzHz/flzAiRTRLXyVGWEpODpyXG01ZgmDMjSSBhbE/2CNIpr1fH8zAh9j+QO3O0LWRXi17rL0YfwsfHKmdfOjoYBPNw+KrVWQpHtY1UGd2u+zPQOGc95kSMPvbI4sHotv2AyvWvOixmvOUsbeNu3Q3NyxPVPlRXLCeWc79sUZNMyd2ihQih/aw/h+4cUXOw/L1JnPOamMhO3VIvC0NE76fpJnnpn8s/Ppf1y+SEijZnSf/XBQnJfyAk7MkoBBOv0dGLJREon/qmlZZr24wJjXpxjdLwNpIzVbziwD0dXfwYG66JqUBPF/VF7OtxPg9zx957Kr6pa4tQ2u2oWfOpfkF8g0LoNKxoCSRa3YijhMfXlnwzC7jwICM31vT/xhH00bAxB565WvhdTP+VXeQHkWPvqBIXid90CX/tgK1tPlWh2AbYSbvFkiNANa9a5z9TnWeQHZd3HhJBeRqQLtKkjDpJ/f28mGKxCQpIe6VL6WMAAU4Qd5f3fTVMMosvyqXFS5Fq3mZPQhJNSvnlNh+HGs2/S2zGwp1qfBiJTT3SyaXSUt7PDHjAup6xgIglNBxIvB0y64Y3/O69A4xKr0FJaQYEtBwKJB7/KY1m/zTtpuulrUyQtRTaA4eNEBM/Nd+PBP3GE9A9gjJ5b8bRrfFtCNT+FTwo5NusEsnjxeuqidbkK5uK5E9/wByWjHZqu8Url0bZ51Ih0Bg4NCX/bdOL/kc/Q0yiSqUUeJqZWzGnbtrWpbvjupSepJw7gRe+o7VIrdG8ripRGLTK2a1gplZM13IBaBskRXNiq73+TyJiYxRpB1PnNkSaf4hCK96BnmmCj/kcU3Rs4zramNanM7l44H25uuztMoLJVNv8wSiQXB7mXeZ9zreTPR6AAgQ//9fAqFBEXGkoBW+d/cA5YkCyOLUYtCMwKSFgjvX0LeeEuFT2rfpc3AeI9DRELoAgRsL0oqiJlw6W95HM2p+6B43kYAW4Eoq38ugMQJ5A4V/ctE9F+SZRcBJzUOR4C47CyINnFESkQv9zpnAZ7+LIvrqqs0eZgUopYZ8MHb70R9Bt2OrjHgEKkPHGkGcvqNINQK68k3JeU7d4EXC40n9HE3yr
Variant 5
DifficultyLevel
693
Question
George was testing the temperature of his melting chocolate icecream every 30 seconds.
The first temperature taken was −18.7°C.
The second temperature was −15.3°C.
The third measurement showed that the temperature had increased one and a half times the previous increase.
What was the third temperature?
Worked Solution
|
|
1st increase |
= −15.3 − (−18.7) |
|
= −15.3+18.7 |
|
= 3.4 |
|
|
2nd increase |
= 1.5×3.4 |
|
= 1×3.4+0.5×3.4 |
|
= 3.4+1.7 |
|
= 5.1 |
|
|
∴ Third temp |
= −15.3+5.1 |
|
= −10.2°C |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | George was testing the temperature of his melting chocolate icecream every 30 seconds.
The first temperature taken was −18.7°C.
The second temperature was −15.3°C.
The third measurement showed that the temperature had increased one and a half times the previous increase.
What was the third temperature? |
workedSolution |
| | |
| -------------: | ---------- |
| 1st increase | \= $−15.3\ −\ (−18.7)$ |
| | \= $−15.3+18.7$ |
| | \= 3.4 |
| | |
| ------------: | ---------- |
| 2nd increase | \= $1.5×3.4$ |
| | \= $1×3.4+0.5×3.4$ |
| | \= $3.4+1.7$ |
| | \= 5.1 |
| | |
| ------------: | ---------- |
| $\therefore$ Third temp | \= $−15.3+5.1$ |
| | \= {{{correctAnswer0}}}{{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | −10.2 | |