Algebra, NAPX-p106742v01
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points right of the y-axis : x > 0
Points below the x-axis : y < 0
∴ Z is located where x > 0 and y < 0 is correct.
U2FsdGVkX18pwfuPNvwgpD9n0vgkHRsTcmpK+yHgj8QZGjrg8jSYD6p/QQyA8ZoSGbCjHZZYqvGflg7yzqXSINltLzjfPKXd1VIggwr4TsB9LHkrbuB5xoWV4puiF4gFnarnM47TXyvUiOTCux4Ga/ihSzY+GrrhzCWaP5VcOlpn7LmhVhZe5g9+gTQfNFOzZe1VjREjumvcccyGw0vNVzfADlN2mMBMjjBVtDvkiHbl7S9R3d8jiE+4V8MtQhzw+0xrq10KH0ufaD/yUShyb1oqls4n8CgJZsYK+qilmCjoOjE0iynbz+J3lTKreVQj6NnBDYUXRakTH1FP1TW1cr4BPigNi0wAfIAkKqYJ3zCRgP1GYygW2RVFf1ko31EPvAjOGPZl1Y+SakYjCDJRudyu8vMOnSCDykTN0DTEIfpEuKFbjBzxF6kCl3qNsboIZpDrt/KDLYj7bZNmxSnWvuXXAn6cz4buotHwH1J1DWe+dK+bCAQPqMM9144LkhgI1Y9YaVBQcOY6PQOoOHH4VsM9jlW7b00fbVxnUE7TiUb+rRKm3pnCtMXRDpvnrCgG9hqppXnIiW1Tt5C3LkLREJ/yxMsrgir3cVXE1ANqTOaRGVv3CQ2kDrsMADDmhYrFLH1jeqJUl00VRUpXIMzJaZyw79pA8Wz+Gffrp8cVOt0O5vR1xq1ZuTGm3SthBcdNzqP5xyn0KfkClvChNc6qDQpJKSxdKx6tt/tVyia/vfKA29rTsB0vmtGXS+WaIiJpydE/pg8P15p396xzMHpUYTyZupDJyr28SlKxxFF4nHjo3tP0MOUWxXQHZynDu/X7xh8oKCFrIS2bvg2ZqSz+/FT8l4wXVeeVG24NHYlqCyscMGzygiZnffL2o3K/do/hooRqyXiLG6ZHaUgcqOgslbQfmUfAQfMx/iI8O+NgVpSaOUdbjh9ouFFDPcuaH3RQ04K+HF0NL9+7W2FfomJl9xpRviaR+z7CmSDFU+SRLr0fX6dqxSVNkLr6NVJ+Se8jkPqD9LToLKChMc1nkpsJPS69NEQdLIb9A8rWmhFDPSxsmylLh3DZFOrhzD/HeWFl8bhRMoIr9kARYjtiPLsr1dpkUZksrBzX7g+5pPtkZ06w2HElpa16jWfAYGGz7e0OpR44vHUacwWpDGEOLaQ+O3WY04lnoCN7lJQYUVwxqSAvKbO9GHGJoFkMmxu4BjxtTYoTjMCcwKZR0XtyUlOf1Vs0yfsQ805qeo7wBtSJd78Q1j0+DmKNNPmCg+flq8GUG7dFqz495xVDjo5fOR3i3ojAOuenKb37Cove0eDvULsmxISc63AhTn+z0ouOCHrlRpkdokLDwDfWK+fKARiroLvTtxxTwKGCM298vt3ROXFo+wALwPuZ6R1+AkIDTBjAaaenY3beGZj7oIykqZjCUMffyhQuPC3gZd2VyWGnX+OqHoxPI87nOjjFzTQx6HAyqrM2wHnr/nkUXwXihSRp5nrhXRAep4Fphw4pKRlQBQ25lZuHwtlRyQ/cIHwV0RJ5JMmcq2CXuB9uhF0upiO3rYdULzDojdiV/hf7JR7lQO7vnaHBjngVMEFMnyoUqLxEIb+eb3OidFYdhg3bsAxxf80RKkB7rm2P0dZFr3soRYBenJN8lJO2k2CJsUzHsplBsr61dixTFmsKPNl693+Qj8cGD5LIXsybwTwUp5M+k+xTbtAUfM6RO66v1dzlXFH1JlFbrpVb0wYpMDJqtrVpkJC25XHRMbUdcBA1U8d69TpQUoC5sARDdfU+xFWMMiVoBTxeVYHG81VvWvHC2uFn4RSQpC326Aqh5gKeHtz994904pR5+cqQQavnXOft3VYrxAg/QEhbAsZhkWVPPzGKVC+heqctzigfOeD2aXgL0jTJqeZnapdgDb0u5RPFxxeSl5m5WbKTje9vhGvgvtFQ8Yx/cJLyXvGYnEZdcn5fLirh6O8oVLfeZpIriFsSutGUg9veLJV6p/6we3VE50xjgVJuwftHLn9hrGX6ORxRtIBpsAwxIK+oyTm/5pwzNg3jHXQkZ3zE2710SHUR2yJ16KxvVyFglEuqxQSSxaVmKW2ukwJJLyUH4fLRgKCB/Ux0mc28SDrbtvL2KPl1eO5SkJJJ6aA3eUM5jaiEaLKn8MjrPX1iMEq9JOtZ0qU7gfJBqChJ3Q8OUS+7mECmHOzc6nmwEwusvDPKqoimQp70oa3GsyYXGsL1mDked2VQfkKZSp5FVqE8hBZquIVi+1kS+KFH2d1devdAGSHDT+jja+1Xc0Sr5ApnP6LnCWtsFSMpxID1wfxseLyK8gzsDkVYFRntephtlQ1uz8a0fmveC2k0ZvgyVW2mI06DtUN9SXT8rQxRbXFKBWffGoX+bDiTsYk8pP9AZ0kOAmCrTZ2KDJdFuOZAtxCSyofWAu8zagB0jhtRtvO2d8yixsdBV4EIFEGOgG2pWVppu3YvDsG0TcaQpQRF6FQhe6e2CzCrxydG4D8XP7SmtSJSBb6mwMET9i3C22rgDWOVrIFwIwoFV4rZi4qmQnx0dA4T0Fg7D4ON/RuprEx3ExAiAocVFlQ493hh67AqznPPhyy7ruvCX9dcyn2mSQTR8FFJyRZWqkeP6ViaXBMtt2UFeHyDlPMSZlRPOwuTHcRdsY/7XwxmdrlO+wY3tYSwNQRnLWEE13LXTg5VJZ0ZQCne40Hvvehrbroy13NtL8rXalz/FTMS8Hx7ZfXG9abzbPlfW5Knl3IAty+8aVWFAqCb7g9oIAk+CIwON/ZYYiPtYx0k8Xq46mNDNF+NMMVJ74H2OkMax9k3yAZDQ5CpS+K7tTx5zo9g6NFZrN9CaUelIKVF55V13k1hFNt687r6le2hWNAumtgVcYimyatUusTb/nNrd2z1ARiq8jlBwdoeIplo41mWmetQdmree8xe8xis6N5vS31dOs2Q/i3wdh3nE3FoUmHWjDzEbqVsQC6jiuHvujZVjMBB29moYyyw9Xq1dxywBNbKJly+XU1F+Vs9PWHaBOIZA2he8Os1s4FeDXCNAviSXuxHBebNu1uuU/2NqIJjy2pmK60IYFimfNYVCd0K7exC313sOmb90hDMz00BZCiA+eF5QFcrnwpUpJokPlyEKV8QZVdrxpBk1Up54MLBhkYBo+BqcicrqsY+03j1lLrmb3at8sRDxonqDvLOR0wMFPHQbCrl1zDNB8yOV5oBzyho/dUy/WyFrMVs6FeYcGXQs4+RkDsytwi9/ciCPUwm1d0gqgzuUOyktU4W3O+x0moU2PnUuz4dStP1Tseo8rtB/IF9Y2Y5GawdkNY5+I5dhvDGstnp/81BoPv1RuAeSn6ylCfNQpZi/LinRyEcN+JQWDm9rEiPayvyg8rJ8Cm5s1iaB6iKpZAUaWUWX8uZFnFQh/BTbsKPDjukQaxsU/Ia63cB5RvAPA2AxPijbfGbrmnGExZnLSIcDA45BYTzlXpvbAkAcyPOfIIov1l9ng9jVeCw/98zOQw38EEhoBv50UXdqx0FX4P0cWfjO7gX7cntp2r6zSIrCJ0U6xdReiZVQ/Il/ey4ieIMwaOydvZqiDTGJQJU4ljycRIvdHATtFXIVWEfs850KvEuxosaVMbmu6hYIG3oXAZde2HcZbjLy3cR/uJmX0Rp5tV6Fv6+6P18gsAFF9aPEYkXRZRo7SomY+2tnQTuRlEjNb4NsQbwpuC1iAD/sL+9yEzhyciyOB2vyIU6jcB2zRTcQPEtxy+1vXru+L4UsiUqLFeESEhX+kB0CdecbZjKBQOYgmt7iCeMi7CNgiTElCebvmk4QR8SNw2sidVPSeLrbu199wgG/mjtLgPNEpwilMWFFa92TQS4VHAdEpJVr0GDSaEdQ/uM5SqlL26yr9MS861hjTBYcofRy9zZqjU3Vw0qwx34n018+We7q5MObsCQelfFtFwuEycb6Bb8k6HXkxV7YCI+rvMtRtJW3YjiC+cAoNz/yT9FE+9HS/R32sglSvA7MjftuBl89YldAfk4X+f70fw4Dl52Tva3JG/hyAaxV66wWPH9vsv3DWqquOsM8kzu7/Glxm9bWjvDy5PCNs5GBIjsrBDJwX2mW7z7SSAvQ6CmHhhPK0/yVtnkSUE991nDla/eJP/eiV8h8CSwJEanowo5QRpNQmjQtodlyrWNPE6H1Au2vh+Zq+zC2xnFzKhj7/c05rxN6hB/vFEAdgxf6xdAI6fA3BuV2IlPMstBAZLx3CUQG6/vtJVO+YZ3nI3MYPlFtgSUmk4KMqLQmFjz00rq/3ldaZR5ZeuFQvyDVeaRzeec9/04XBJIOUoUoYuml74ir96c9oRiNVOqt0FbBscnDbVn0Ck0mrA9n/9qYVRkxFd8Tt1OD3EHffAp5E69aRfZSNuX18sbDw7M1ABRBmCfGbwhxwivF/HEkst29iq+em7ksTkq5/CWxu/SioXRkzQX9S7pNtIWvA32fDDLikzIOZy1YX/5bNrb0iBXdlDJyQ9mw6YRefhX7r04S7fvpcdpV8ZBw6WPz5Jmj7Ezie8avJFi5d9aLHLOiMy6b7aBoKnsH81ZW//oyp29KOmyyEV3sL9i7BfthXMA1RkKz/5vWrKCItAT8J6ZgpW65bwe5WDqOWYGO+/FX/93Q1gKrZ2MjrBwaFuCY4zqtunk4otsyRZeUHvMtMY1qr9Hw33pxITDbtVeSGB7ov8inCts/dzjFNiRyd7RWVLJU6nc8RGLJfazGvBU5T6Dfh5zYNzAPOdoJCgGkI2EWoLIRoOHF8y8ue95KRaBY6FzJueSXAjSMuWsscZIkrKuI1PQYiYhAndLur9jpDPN5IFQz/8/yUkY+kCaAJ7HxdyuLmgUlKI0aUowPf3zAVYF15+By1Kffd41uMzUmLLRjIVX9jf9gLYLtQrTmH7Kqzf3BxNogc4sB4tspbEJZ+xgmoO/7NA7cwBdyoByUV2bPp/+1mPgkyxCI+vn1vft7ADtMODAaavvWuY9he3ynYd/iludB/IWTgtjJwyjpXcKzyd+xLWJ01kgnGwU9Kg2E9KMsYLHMbJ/2JjuI6Yf+7P4bQXvJIyq5hBupMy6V3K1dj7yQ2JIJ76gQKhW/T3b5JBwJr4vSU56NJ22Jw2VbRLGWQ29mKrfXUgRPXEENadV1eeweT8EivJ/87enaCQrvHn0Fty6ZBXQyssYrf2mudmnbQ4JZrm05tF0VI6nFH16os/q9+M2aR5G19mDmT7FDfIiO6VETVlydoXUqRMeOaFAcOfgBtaUobA6850nfNXhPHNVkvOJpo3tgn/e7kNJuHAmdflDRxw0GGlo6oCLcL8xc3oE2HrX9rqS7NjGuFoBz6KpHvlbrpzrZL3DKMycbSLuXZr360tChJqPojlo8JwTfSLWUNhHLiTdebpvijQQ9CfNjDZmLEc2xgW11ohwnGuBp96vNaONlKgciw7Ucnc+XpCHTOwI2rtoYN/uyTHLwOqJg2KzQVyM67FYZ8OLA9Ete1CTDJBTAGlrY8mihkFkMFDMzKiz1+M0wpsdk1F2xUi6cmyo9AI4Cqoh+f6ErRAe6CM/fbvJ44qlopXJJ32/tZqCVdYYUlCw+gsRcWlV21/JZUYFr1TZDWcnxrMaMh3jPTXAlQTJZZtDB7STAqE8Ekuf0e6duiAhlHld3LbbPJGFZe5qt3lyV8lf74boE3mYGwUsnh3iq6m4D2msIAC/Uqw+lFssvVOMDgndDTPj8axZtmKK7ZIOX3eCvfKjO3uQLkNm3JsmtosknDwbCB6FZ94rvLo538Yl0Ql9atBxuuf7XIcGVp3tW7aTY8lCIc+M5jX/G8J4X99JdnxYhR5tVwYtQSUOLtH5kqlTuGPhEMaCMzN0OiGrWtI/s07pUSTiklXAhdY2ArOJXtsNXYhaSewk2K+q4hN4om7KsHq7lkyzZQbeXqymTEbxhC7TFf1e3ybufilo5MZiX4Cw1PKu9fX8tXfyhyLzrrZiLfBZXJ4zF08Vq8sEoVurVThR8FoZMfqVVXt5QYv9vFlUDxOuU/z1UOoqjy3GpVrsxe3liCnqoWcKrCAc+5UPjIq1sGfScQX+YY/qATpqKo3EE4J6bHZlTs3ReKRqSdCgrGehvwgAQmoODyB5UUSd8brHXZxMND/hqIhn3EIAgr7P8dXN+0Xxw05sJnS7eJPaG2TIrTAjUDh/xVGwurgrfcFNcTSy926Oab4p4qphhkrVLUYcKTgUMRijLQ2nw3i90NmIa9F8GekGUyvvjozuJxpsWjJn0rxF63fhJ9L/YpvYWhQ11DrdUSU79Rd3tIBUW9YpdjEobJLcixCVpdM1Z/YFBYeu7zvUe1hZjAYV/bo+KyB1pzrbVs674qJCv3gU0YgHBXXNZzPheKfLE2KebZ1aTLiULHa++6cxWiZraAi5WvfFzqkXLKct4e8fvuCj9UixttoRpDUkhbcisdHr54dKvx4e66XNJLA2QFXolP4ZaxsfPw2i/MnLChocXusJutsdz0qVmQt2its6UcDeVQIhdfoJJENw++/LaWXr4kUShOTmSHq0nmrkg2wpl0qbL2N+uvVYn/KZWf64TjUZe+KFYQvd0aacR6RopjbDfrm5GNHRVFpCCfEnxAy946/zWbKRpXyeeCVNn4FaGXwSQCI0w3EAhBciTWHfkSrda44juZTi9xOGJpegqrlUDUnEw0t5DCz7EkdnfX6W1dA1334F3IrWgzU1bwCShLqDJ8CEyuJIJhE3RPIa0/L/30gMx5KrDUomwMdc0Jvlhgsg2Nq1DXzcwPuR167w5DvJQCIbYEHZ3+RHeoDi67DmsgZLIp1RAaPppw6Rkufuq9RmWOpD89kQ3LzTSnBuhKW/7icEB5JqI19GMGIVZAJ8AEcj6yRc48JtNcpv+20pRTvcCJ3fS3eoR7kHZhposaWvWAGN/zmcuBZg+ala5GEMwDNO0u/+lBdzf7ZXEwxwakp46yaLqsda2lbbhY585mUuZPhzSyZ8LOWBkXyq+fKixxevA9ONXcMvrT73w2XX8BCdLGCGY53iDCnvsyFBN3MycdyWU059kGIF0ElS3pwvLNjjGkG05N80UKmaekW8fScASTv+YdXRMneldHrxHtKK7GX0ulZNzDCeKPSfGZAAMj246EKmBlDZcV4xFQrXeyvqt5sFk5PxC7nti5wpAdv2rvz4YiNN3vmXDQg4NfbqB0mkuNo44y6Y5sGFE/U8G0CB1YRNQVADsXLuAmL/l68Y3ywA/BoLm9VW+43x0secCjgyzRdS9VIGjEQ/4N1PDGqrHn/Klis+Vr8P7ZXvAkTVvRJ78XeVtlqmyT+0GYHscx94Z0CE//3rfMSJZKzIm5vwl5ufZGeg93lBHyJal5kHT+PIJ6VC0JjzVyR2Y6dG+EMx2e8OCgrOFZ1viJ8POEVEs53I8RwS1nveIqES3Xr8EWUogaPihcxPH/HChWKvPD7UFOS1K+XxwmOvVJyvSg1T84mcnCG3c8YiC+Zuz0SMy0kuUbpySVFMDNcd2wADTd6F+kBhW26idbRN9UrqzBKk2YuMYnD0dRCm+qD/atdnZc1HEc3Mn+Cjn4a+49K5tP9nYHU0KA2iRx4aCDZoyNZJmC5gXjHR6JznzxU6KdzS2r4B9MdvKp7XOy3jdpiWl2GonzQRt8Z6jLGI9Bb4Um1TmM+/OBhxUhK4CCaTaNyUaWNYQ+OlZZxbV8KCUdr8FMbbhNykbrzfbNpuf2uUHz+KrdgPiAzMRySZvsD75sQOULfkDJPp9iW2ujpyLc7iz1nvp847P1W0yIHuWr1v/+6EjosYDuoI1Skhhx+CLkz4sdDbaJ6Bzp6yRSt1JR1tA1zSBphhAq0TTEUbFPcgugoQxwAZsVApH9o1dLgEJnowM3pNoD2ShYJoGNTZrw5i1d25NijRz7xfYDhDacqow8bY7yyA0U3BCMUWLlJl3OO1jgTeB6obpN0n9igEzAyKlRfq/d8PDd0hmkQJ4T/RE9VHjegBM/Yzha5q0t4qqS5kQqtQnLKSTy0I69xbOR1ndY/8iO8yx8JWGYN8m5auCMK+JfdGZquCzDELPjK6eFr6vrdmvmZsfsugxNN64m42NEiSgNSwdkHUDdOeFhpV/gj3mrgtkivfQD1cD6XUBHNQbMBtRNKnLScuyf1RnmPfd17I40/DcN55Hm1Kfv0aU6/64NDQYSFs/yOaGoKsuk/taCxRrkNJ6oD67e8wY9p+k0nQvsmMB3ca2gqm9R6kdaZPGirW0lfGJESPtai6VtG81UIdZ693t0OXpEHxPM5hWZ5dLW/9mym7PcmkegkKTlj9hbc2dbRqYuDV8Qvl4Mxyqg0bnjCMgaJ1Y6pY1g1QccNJVU08Kvw+mGa8X1uKCuyCA30dxXCJWsiiBm3sXdY0wbrb5S1/l3YOcjZ33l6N0FtxkWgOrGomi3hpwlWxh34JYu4VDjrKMDUfj/w0HvyXy+3ysjXRDiwPCbRlKkPWt94UYmM+oJIuLdIyGGmN3otEfB+IYuuYLaig7mf9RbxZnWL08orho8o+opCQiPUUtZxuRkPaTy9kEbCowrEpRHLU0iolo+nTmizxeT9CpM+X8pGiZ4FGbU5pDmZMaQ7YaxAkU7zb3lVeBmLv03Y/o5ElavuoitKPeTc7YY+MWBTKFiKkAVM+kLOdCpAZaqpIlSx0s0LCiFCkfppVobCGToNKG/3yv2vmMMkSv6xzup8PFoCUdTRcjv1N6MvTG0mtjbul3YmF7FHuKJroyeri25KRtb/7t9lTFgMLDdpSSMrxy6DmzXXTWoMdoevnaOpuus8+uNcqenhU0fcibCa1BzBVM2eETya8Ds8Vtm20wiDyWlISHKtT3EEMngjB08LuTMzEyVlyCVpYhcilLnZn/WMkeA/5YVnOcC3PtKL7ePAdCVe921BhcNE+3xhjm7rI5VBLHIym7Y4WJ8r3qsLn6I9TcAWAgExhyTWp3f6IJRs6bKf/uRelD6qL9E+u4YSND2GLI/Cz6pIKRDqz9gSbWqGcOXiQ1vSSiu4VudG50GQePJsZMezqK2cTI9z10U17l5u8Ex94AmvkLSFJef0RRvW3VhabKxEWF6tl3BjiT1wdqSjg0SECSmQ/EiGfkdm1Ag979C6gnoom16Ar8phrO8d+hHivq3bQfo0z1fgmffRRN9zIvW4YvB8fSaS8sB6dRAHeoAqfJLeBMFlMd6zVjDNz7pqCFhF3ZZV0mpoACmFmfbzs28E/zF34NktmVEiymsgSiInlPuVRE1wJa8iO8DEwwmPhLqVx/IaQHEB22MNDEifLl0kWN8aVePepENFROJTelbCrBW7nDYY0t8NGDBjEnbpBlac5NDIvtjG9QmBP0p4SXClzb20frp2dy2cCLijC/aepe83LjkkmmD6JizqHJkjku9sgPDslJRi0b0Q70xgKHRYcV5bHBDW5++QkwfqIWL/LRY12yqGle7/oKxzIH+6kCsVHIiviUuCyzRjM5tX9O4YHAm/FbrzU0EjVLhsMqAsbh3pvuNFqk/j8vUdRBGnyjhpTCEfUtxKIaaFd4oupPWhFPybzDh+3Y5SYJI42//zZRv1ZSqm0CEsTT5yacdMVUvDF1yGvkiMtdWbr3Wdn6mvFaZARGkjRtihxa/R4Y8kvTLrqKxxxk3F1Y5mWuYZ5drISSi63WbBuYlw1yhMGK2aKT+4Vn9f6eFImDFb3nK7xSGlqfkmaR4y5u87izWE2BjfCuPTDMQpLCbHP/dk5yw2RKnrp75Ie1aW2Zb8jPHKFJyj6ave4nqw971pAE42BGKORXJI/LOVKFUz+RU6VXEQEhpUDAuKvYgCt5Y+RmmAv93BrJ55F5OmDRRZBROHXwrCg7Iy0V0XaqqndvKIABuT4ss7ZxfIZrzvzX0KeXuFzebpp2o437PD44uMLP6GBZoJADCyfvWCGRnAtFPV1SlcZYULVjt/QycvqN5+heA8INWPoqAwzUWkW8ua9HQHjGSHWlXos+8M46rhTHwTfjGqmREVtMDFt8+Q+LnlNXB/ouw9cpYdEjlTf836F/fOPMEdJU0fACgvl6/Q0Krkq6uL5oX/Ku+lCeAlXnz3eIYXgaiTNwDoDFSKQGQqvOwRcnITGQmfGWvvPZ9GRrG6hrk0uOU64GAJzh+M8r04teMZyBC16NepwKTwNGsrjT0jZ4cXUlc1F9PEjHydsYSmLLfbsO0Xs/M5yVKG6XF6Qhtjxe+29i7mFx8w2V702RnS4+euYVIyRzNn/9Apm1kkprzJxnSyvTEfvYyTmyN53BzVV1Tb2/JjpJPGtMuBzAN6YGZ4xtnSdEDudY9eLOaJWEcEahmo4H7v4yVNAoHP3soXWKqWE/kgvuPKDqzMiUnveKvdmCmXRdN6bOk0M22DxJVkpzlfI8m7GGe+4WAt6GEygur+xYXQB5Kd7rpl8N0ekQnygjoRwRaBBDFhIFcGe7AGqfkDAWruGYZUK/y5olFyEIPAns9NzhMNxj5KLaXyfXOlQdvvLdTYQp6dXHo5MxtvEWHEfABXm13WpnQs4FtrV8NcrmaMVgOFyad4km95goN0Sld7uEF0fmbybdfVGflelLrG2fFm8q1A956ecnO3Fgc3Y+KES5oxtaqgP/O26jXae5deaipXjtRNWLj2JBmG+3t8Un3KiZfhtgLfy4eNr8PNoaCkPC7jD/9NRyR4RlsBNY7G2W3JRiZOGzXLrFzWaHvFROM9GtTaXUiBiRZGX8g5eiOiwqVXqFIMfH7yGtRGv+FVla/pzDD/uVI5DR00xvckFkTOPYeF0kDHHIZA1OycyS6QG5NDT8V/f78GvVVRHAF+nl0YvKkP6kSI1/u5yumlZW/GJ426s+/mM957vlTZBSvgDryypNDaMj/JZXr7RCHHzRvYE8bSQTv+LUoZ9Sl9s1pL76RdRl+KV/DP8qG+yEAAKSLsrPYN2YGxVIrLr/yEmnYin5w4vvEaewAW4dqCxbZ/gQ7T7ztrJaQpAoT4xNBG4XrpGWgZxmIXME3a+E6w1RuGzrouPweMC2+8bgwev4izjYkifOucLMD33fp6CSiwIprPmXCW47YGO10IkNqENOaUac6Cb6TrS83+jxnLk66RZ0v+UDUez71Vq8miaD7SPxcGFLJAatuQP7yM2CHXjVtfQ/S7GGyGUNuEbTzBBvh/1d1XOoE/0jnjk7SwGb/X8djzbuCwAEHHhRXlt2mKANYk/P9vhnutUuuEgDEj2vTif9Gg/9TZREmj0LMsJgKkgOIww+9fQJo50vE2JCAaaiGJl2rYdKmL2p21U34VTThreKw+ivvrcH0b8nRTAw50Y2sfnODR7DjEYRFvMWcPkD0TONvaH4zEUlAy3+gQYJXbB9hlSxyqF0id6pGUgU2D/oCrH16IppOfmjRlSQLr879pS6e8Xf7lmXGRNGwsTZ6iv19fdSk9HBEFP02iUrLB9kcoPoPQXT7qMQNRrqQb3ZuBtTF5RnOd7awiWc8e3FRl+j9wfzVWWpWrFgE9sgXc0YE77p2aU0Voe0/VriV00cLHK1foSUZ4AG8OvSdtMNFBv093ofx5R/71F4WgzVuCuNIt/xbShppQE315gOQzjxYp/KVsVOW8bxiiG+KwIMb/jdzjL9gbiu9UB8lZLze5VBboV2LoclIderLNZOzlrqYF3YiXtYvhXOAQD02i2jQTuK0yIoOwe2boQt6wRoaCbpqo1IDX2AyP6ZKC22ac/ooqLK2JguoAqItDCNbZSjAbM5gOEY7OMb3qcScaOSieago8yeZwCfDk1J13pyVE76kr17m6KQRC0Xc4/tTdjABjk+isShGPETDlfcuxDOJRuG9fLC43M4tdHGpC64BNYjEI4TjNtgNDaCVbLLsP4QC/LNZwnzBXGmYunhe7Q3/DL96lAwU6tDyLu5daKM0UxQTLucV6kVeVgKmcaBijkf368dJ+cPAFG1J9v5p2qRPYi9VtkEfX5v0aMvE0z3iBkXWGJhsBaGmCJSIrsTb3YJNPxneKzTCa0DSpGdGT/o9WevOxkS7OvuLTCLKlpbFX+6w3XQVBb1WjHDvg0ukHIfS3zuPQKLlYp6awHoBmuqP7Ba5A/aFuYb5Ft9oyHOEARurcN4HPfbJD/KXGEfTvQHVWqg9naS4J2otgG6BnFapW71IH21RlTqg9o9WAVZabmnGNpdkPJ+NDExawItoqCOz6Z2iTKfwVrKqnIjIfD1UWeEx60L6wZKVzYq1lI/qOj2Ct1pIwPL0dXsPQh3m09+0spTsRVGer1DVZXuzr0jXj4ot6YqaxGow8GK8VfSct38V1fgMB8n8dcH0CSkzMiRcNkOODAbcyoT6L9nzBwqiIdmaPpbSxQnSDP2Nm0rtJKUdxSbPWp1+Hzb7Kug9gFrUpG5YG1tH1iqetX9uUXXSvUwjDLxib55LEDpQ5vVh/StqPemyDZXV05NgKYMHpmwuGzSzrklgabsVTWntY0Phx03mFXqw9bfiFAxPwhPAm2JJKmIFr5TKUi/5JFO2tc5LYsie+tDZHFlIGPqNLh/8tTk3//6Qv2qbgIAa6iPCpK9aMI8mMJ8CCgXKmHjVDpeHpEBhHVLHlR2TNHH3AVOmY0P9kCTmUXUITOSE1gO8mBKDynMrZXX/gRPj4Cy5dFG5V2Ug0CcwAXa92Y+tt/B2Fpau8MEpwyKYAQsXFP+RFqaIq3inM2it2mjIwWOdxpNVuYGGxlc/PMxkDtbIDNkIg1NcO5vOM8l1T/aEAl/Izy48W6ezTpotFHj2TgGKu2D6gW6ArYw93lVaFaVvHLgG56AFSh2n/cqSOMVM5iVlv6VA+S1nNtH2IQF9O/HUSOp68A3t1N1Ho/lCdRPLVrEQpTT1QhNTNKMLZYwxMwmGvfJhq8Y+nNUyum5KhRrqDFDfAPqvyDa8hz8+jAroa5L8bif6sHVTVCrbZ2881LBIBCaje7yt1FX9YaOIcioU5+rpaZoevAvsxlLX4EpybY19/lOJzumtCm9XzxDQ/VHWgR6E1kiKgu+EaVAswZDacsYlvVca+mueaqSA86YGHBzCWTX8N30vllV/qze/zbq+KLVIFJSiOcVj3ml3w49GOhPGtJkInZyvu9FVndwfa0D4EBGj2DHWpnmvf1qrzeDAdEhFZP8Nyr+smAoT0pr+LJf8zpgbhvFTDkm6QvK7RWmJEirJTv3gxVJoOVEIQT4QS87T5xN+V2abh4Hyf60DgN8nB68EEgl/j8d3qGHFEuL0ksxEcXMSTVLw9zjwg/YJpxpsIKuQ2MvwK1iP4Y1R1MVLBCvvlslBljG/9MIkmWtb4bNdRw6k6h0WyG60wdNUXNIRwk6ItjF1kBM+xkfbQq1gpcyN0BaRrxulOpf8LkJrCvynq0d32fjt6r/Ayvcqtel5FYT3fkt1lnCoy/dHAwR0WRbdlw87YOW5iS4wVm/i0q72uVAx3HKLsAFaTeGTFsoZd3BxBi9+OIo7OJovnttozkTj1PkbyoqRuuBmbUb4MlSQhMXzoUqrTh4rYTUIk7Z0vkYEoFMBmjVJp9jS9g2grjPRx1aLDXUGl7AQ2sEghwU6CKjmZM5e9H/9UukhA0kRkkTHMFSoB+k4fn3k9v8tej8QzLEqMPSKWDRS92Fp6K7h0qP9ZIbWhAtSiF86a48+/uOh6XF3Zt7LPHG3W78Fb/yFfdAupSB+P3/TCGR2i5rKY0XzoD9b1PM4vnFnXdwQPzJvT/d1pTtV/UAw3gq0c8Kf/FnJUn59B7sJpgbR3OSg+g/rOTPLcT7AV8cujz2UdBGFSXmu6SUtatKX9t0xEtEcaJtZFk1GB6jev+SEdqVt4umN9tJuwxNksQYsWxmNXYptDbyJMsGZawVIQ11ceBgxZNCQXfgBPSttVH3I3MKpiM3PQB9VeYtYmDdyOiZCaw3+HpW0pJsguWaNs3/m+E3orEGm5C6szsGZjICLxDcozhpgQJjfv3OvNzQ0GVwhrHznxwZRvJ0JuEUeA/75imU0bG61aI4NlEvv6gj5SU1nbfTbXrUvM/f0J0PX8s3Uc4nOuRybA7q0jUFgWyLu5og8up4TUBM5I/DByeGmJgIX3xqvOWIaik8iV0dZo1xGbUfbfdxx0s7AQYedoQ5671lN6JWoU+4zDjcBvRO5a9QRYT6tO0C9fH+kiPf6DWPNDN8BiAc0kN38c6XP9nDNo+6LX23vs/Y6Mi1kpfWhaWLhlSVhezhYy3Nrcw3ofZ8xhhOKFLsAeFqoiR/IoPjI1HJsA35yyh2C4bJfA04lOCMhn7Yegp8hxJgfIQ2FF8PMEnBQowQA3fzEO5n+gyHNTIgffnHuGK3UWSmkYlSKrr7E4wmd59yJiUlGt/hLkzNfJhcMlt6pI4cvfl+UG1/ACpLdJOhmcxA65K4B7DvfVyTss/f4imQC1uR4K/9QK93G+4/4CVSTN6pFrLsoEor+vPHTOPeM51Jbfs/6Q+8dOOyRk2U6zRM0rUR6qD4f1qdMYSADtEU0CrC2vSs6eHNn3SnXDqKZunvpxdBXsXDNT89a0IC+QcLxFdFQ2cgayMgRl3n5F+lQdOkfoBx8y3otQANyM5dfFLSpPGqDFQIO9HZy9b8l2FxX6ZWieh7s3mmJrgux2tCv2JoYcbt68xzMQwpZdaL9lxB1vM0rufH+k+i9VaAxoNGxZMtfAUNOoPHMnGJopetIkOnSFgmYtHTv22ZSgnPn9dIzI8nzK8LH5sMHxzK2sW694d2flBvLZ0Xhr1jFny0jMcQyX7DuHpRW2QZpgUc0F1kcE+TXuK+a0fWnNuT/FUittA6whnOX++z1lbp3TfmKAfZpaCxr+K2hzx3VEjLsHkjeWJiIeVvkw1eNiVwMLhlLyl1YTfNcVFGqVgCZoc5vn1z1iTB9cB16GlgmogqxyFZzTZzsX9so8uD4bJTwSzmoATYr9L7Wu07FJ4k+jk45dwHAncuJXehyvUXSYo+SNwkq8NSr7SABYtzK6Lv/0NwxCWoeD0hCPMPKeS4TUA6ctjWIWWLwhlDYiCoHXKsdi/Av7MjobFgF4+PJ1xFL4OAyh45yUXTMOP0SqQAcGATMzyn7y8hc3mJ1crrte596zAF4TX4c/Wbz7AvOmTt76g9BPISlfNLPxLbZsxp/ScPGinmsQ5qIM3YXaxnwojHOWyBmDzLGhCkLlY75KS5Tv4ZVQ1vip3laiCv/ch9zmaRhAYXw9PBWsvnZgAOq6YOyTn+JuWbEixZC9n/xRfzMvoeQJmEiGOtoZt/ruvtFX7VclW41HquEE4e0TwrjQNU5loId9hIUbWDHAPQJbUDR+6s86F6sR8TLieyvK2NYkbagqwJHlAu2TTZWT2JQ5/cASPfFkd32GpqXBalPYr3wJjkROLykV6P3E6sTc4aa5hPRILyghqnfVpYlGL63F9jdVVwwsCPC+Uck43ufhcWaKf4OyTujjB4yhXRlqcnSAL5V2mowN9zoClo+kTLPXPP9yQ1vM4tIMcjklzGZ81AEK7O0HnwU49xs2lz0BiYjlXsa5hLWb+DVWe8Z0vig+aJ35U/Y9qQg6L6G+piZvrp6QJ9zFrQbe7enO/ZGvD1Ic8Bo6vJ41OHMm8AXOv/HYIni7SLz3QuDKBRNp/VhQJzdzMboam1YNrVIXb+xaCIvav+v387vqTON0O0l2JZumiuEfNcqsDSmBAC/9hFUOWeJWsW6vd6JbVfJjsvEmhoPDT48yc7DWENvAUOMU5us6udtvw8tH+9tclQFg0sL1p5h2tdBSrtwVljz30QAm/6Bk7cBhhfGW6yA9HsH+VbCFYDAHMk43aLK5Kx84gfWJ+07W70DKdzvZFBjv8jb0AcwazkoCkWSe8RmWEVSAs5CxK9lQJNtE5ePZqqkdyByM8wPr9oxgyEycpGRjx8qiU+XscyvuuDbZaDoSOFlUoxQh9Cx/N/mmp97lJaaMxvCDWV9UCyz471LHjEVdR2j2zJWk6SdGzbHBgvNifH9tfv5X0WfWODr/De3t16iVMDgKWUhE=
Variant 0
DifficultyLevel
672
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points right of the y-axis : x > 0
Points below the x-axis : y < 0
∴ Z is located where x > 0 and y < 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $Z$ is located where $\large x$ > 0 and $\large y$ < 0 |
Answers
Is Correct? | Answer |
x | S is located where x < 0 and y < 0 |
x | T is located where x < 0 and y > 0 |
✓ | Z is located where x > 0 and y < 0 |
x | Y is located where x = 0 and y > 0 |