Statistics and Probability, NAPX-L4-CA07 o2
U2FsdGVkX1+FhYYlWmWzz7oLkoQKM3fmlE++TdfqWRijSPjvk09q0mLAfrjU8D/KRuSaTF1VYQjM+Aye+0evEiIlRZkpUB7SI1J6D7+o+yDu7chSFHPYJr+f9MKnu2+lI9tp8gOgU8fgM76DB7Lw+C+npGOuxVlNMBjafxPKsASEsp+oyV3fPaeUiwYjgHpGOKXktHR47bXEi+J1Df5DHo3BKJrsAS++TYb7IS84oK/G8DHuvDfJyNwtmoUKzmXsdThCuf6c1LGgyrGKAX06PknzMweNoyB+3SQJ/OB2pQQcuZgVkEz5POESou/VSuBMTPp7uUqrEzBQ6OZBo947v/luEbNll5eKFISQZW6ebvtcyg468B48QoI5TsqIZcNxOCdddvNlIyWcV3C+XExdYZQZhtG+kBd8hNRCZvr0ASjQyjC2xoXLgBAsb/PFoyo+5WdnsCSvW01dM+j3wQFBqq7rzPl180prF3yZAiY3cGX3uX4ZG9n0DSFqAz3s67ALGVHAgsXY8C6NkmpN6Gp2Z3qa08TWvHN5VI69qhRgBuLQA57g6eQRT1Grw17v2zXhkAItXrKSqeAG6y6i7AHzvL9qbkX0xw3dgBQuEZEj5hX4hOLEHfUc1WZ9P2R/nwSMc8FjMMcwmX5yzL+nw1zecj7v+p0EcYf8k7jhg0d4/3U2NyByoZcVGAtMmFy1q8bDvdpS6CNOBKOIvWnog8BmjfzonTnF4JbukzAIZTIshSAHLFDK6lpTTJVCL2Hqo4KfKHK0013CFvRFDgmvQSlH6/3aoevAxEA9EcxO16bVCAHuJa8GFHSssre2lpPkZdnMjUMCut1L5DrFYBUt3+tA5/SxtC/Km7j2K3GIJrPZghUguuCLXkL7kG4IJd1uX2RW31NboF+tCCMCJeb5mJ4F32hbmU4boaCKxSOp92rosStcug9/SuQ1HF5WnniAlQfU0t06n/xhJ2k2MkOxrXgzawr5jrqmF2ziRj59/DBEGvBonxzVGjZnsJYsjUbNQW1/oDgbVyGq5lMmqgGktUBvd08y3dsADQAMst/NAMuCH7yz5UoX41yOLMvpPW4OXrOopUmPK09QEcUAZ/EUznoahk1/BNgNaoWBdT0Wu49wcPbMjVwYNbvE9gxrw4CiSEm9HPlY/ZUWW9TzwyHzSaDFkZ/hXTR2j+Mfwj75lpQadLLMqc7SW62NdTpzAZDxqwT9jDEPwaqRI8tLtKko+woLcXpdOd1inJ6Zkb0iEuV9Ipp2JiHD0enuyz8i9kfRiaCamU4eIxm+BbxmD9OMEbK+z3jmavHwNmRWzQC2FT3Ez931fpoZEccaII4hloIlBI74X6adGCy8V2mSe6keJm7pkI6T5roUEFReP2+KAlD08VPrjqIwEhiXVTKg946v6OyDOt+kPQqorwKjDk4T1kMatnVnaNGcS0WYdkl/W9HquEfsHTG89N/hGvQz8LwCPc6/egZi38Dp6C945VTpzAmPCMUT7akmenmZUPv740n1GhQPvWzbSU7iub3e0XclRNKEUrfDEDaUj7AXkse+NQzb9d7TXgNMXAJGVSLD0yOV12lSvUvNLd2NPb41HBORGSFAFvD/51xBDWzshJG4H5VSeCgtadLDxGDxRw2qg9M34exhNUegOjY1xysFP2tHV1M9xFuP6adDhgGi1GoAmKzE7m2f7ttD36zkaLFNGfg38zQmbnYXMj8/IVtK6HysxEqbBcsT/u++x/mhOirZIskI7cayp/DraxPS1Lc4l03Jjk7SRdaDSs5COvL9o7/5Tj+Hu6iYytuSObeB73q+mvJpfmb6E7evnwkW/hL0Zs0NPzMtco/g7VFS7OG88fky0lPwTgElSjqlzCh8ibSPFHDi3I2MzIvSZUn7EYs9yNz/lK8qGgxxpsjbo5W5BQE2W/Z1jxKBPcKJ1bEONXJL777FU3rv8Xj2OasDYmecEKw3C4w3TrkQ2Vf0yYkUcaZgvDOr/NQeIRc+Hb3u3HjCA/15s8jhs9CLiDFpx4ynIE011XSxzRzvaQEq7sqkz8Ed9zawgyIIXNMgW60xgxgMdSM0m4xHK8SnB5SskdCYXbJN0qtMZtJMK2BLfflxczRHp91vD2UKBtz02B6I1W7TSpVE1MIPhTsp6WD/Mw1EsWwKY2U4GMouzkL+NLgC0PIjYd+i4UGk/eT0QbcdW8LWTpvS3LH4YaI1XbywBE7uYnpvty7070Z1OuZtpDq8kE3IXsvsFMHoaoR27L0SBtSahUdFCIkstxoW1fwab147OzKu2n9HKNSb84PuOff7/fp8l5cDWfSpJgGM01Jgg8tPqYHfAqrqqzyh2QS84bs2SStNRrBdNpx5blncSwBNAcyXoHF9NWnZMu6BF7t45Te85G0wgkYDA+MdojND8lqu+UiZfMedDtFIh4UcAlS6PsNJqGAHZhXUpQgU8b8GWoVF5KY0S9099hXTqaGxPV0Cpty0TphAXhz7uMGjLece0RPljzFhlCGQt74lGZcL4J4PNEnvGnj1nkR4l3uVBmFFegn5PhV5YVdWnjWjmjZyB6jze7N2MvVVbVDO1ofiVGgg4Hxj0Bxt3qE4nPb7muYh5waz/N0HL8CSuejLmK3rLiuTHrjPT4bTUEy2W381klArrM6/ythHbDwp0Uwz0jX6mb9Z7/wW3zQZH7jdPkJr6B+xWllE7iBBEt/aQph0IkbnT8JoK90qN5igNC2vE5Uo8dX4zAXLdXdlN/dVHmz7a99IwnLEUac9MJuldrz+ujqpXMoBP6vTUFA0XRKxmrEI3QobPdG+R+ldl77bOajo7S/OAY0gagFKgUxkTbRqRMpvzDDcyh+tf/mm0pr9NSgh+zQBQU3AdvRL2yjbEv/hwVekcMWm7ZsryDSUt/0PSD0N5daoOI/D8yt51v35835UknHcOV6amEnxY0nC8zCvyQi2/9Bk39NMzWRpIvmm/fF/Vooz9+2t9Bf22cVmZyT6Ao7fuiiYQZ4YFrR5BFeKqiJxVJ+xy2WLdTBibc9xxJTR1pOvg6HOERA3KfXhHkTgpSueoHS0T6jZ0UtvIgz6v1eVYgIhLzD+FxnPxY97v/gfh89QFqXXj/ehZa3Y+S5hckqHV2N84J/put7855FZkiuJvSd1a2poB9olcj0Z4VnWTRADReoHi0+hcTm4peV/ms9JsTe16lRktl/wh01CR1hsObZUvv1pT5AUd6ccO+ljVgj6p+LNifW15ObmsosWvvvOp0uXf42+KZf2CQ8QBg0w53nbGy4Xp0T+cz3PQd3kP5Dk4poC/BxNCt/EoC+NJB859uum9HMdsh9kFVNbyLoFImmjx2Y95jV0bqYbcT+8PeE/Tvz+KaErfWUJaZ/gnRYCXF7CDUmkLgp5CICxDR59PaV8ZTUqB6A4dkU1JX9jGrIemwj1Hf7A3EpTp+SLxL0CxO7mWy5mhsToMBGX8Z4wS4kRKNFlPi0/QkjmXk1w0Ot8e55dGWLaB54t3QPqnDjvKV1QRQZOMHBt6ollInIDa7TJmp1hv2jPlnVuM4fr4/JL19ODX2pBwMBQPukv291oWJCPPMoWCTG1Glb/mUVgmgdPjxq/MFS6TL/aMX4JYiboZbtBmVIPHDDpF96g4qwraZKz1pgEp3KeIxux4o5n++lk33uMgpSOvkHrhNOIK4ZkKFbQiUUyjI0xspmhPuJuXUSxA5AE9rg3ms5d5fPqd7MDjhfrQ/u07bn+aqQGpRn9LP6GZbFIHQvay8FS+dn4K0XzDbRzniG+vDc1Lvo8k7onT1h8at1AAhg5DvKJRL/2a6+Bl5qCIZtyazOU/KGJ2y9zI17PFinnaxUppfIVNCaX7uQrRz9pBnOe45aZZcBQovmODggIh2PeA2LGSNLcz4gxVYObCF0M0LxwBwRF8Sh+NMEFs1cEpt3wW9+kfebTKsueEXXVtTLzO17QmQmGc/rRv/hicKVOsqQsTMGjH+62VbjHLaoY8Y8ACswIfLEkrw+LFtskMs1B+EcbNTJ9PEAQTz1ON/+Sfto8GdpoRXkW2oLTDAjWRudFu4TmuXTgdY6C6wE6Aos+VmvqAIq7piOwBai1rvkB6SZX4qaWhDJHJijTCqrC8VA7PeZuvKCrhDsdJA0mXJJqSSIuyOyvUQ64PaXJEz0bX63HB2AdQJuVkGZGzFFd6t2JIh5eLZkRsqxpmwXUOWpS9hJdGYk4b9eomVP6nZI5WftkasfA7Y+pMGfDUjwqbQvp2rBTYoNPvI6BnRl//EFsBI7TnqLUbfiYMgepSsNKYZ4U50m7Nob7+39gJlz+eGNUa88YAUghWaLKVlNJPuiA80+c2DMvEU6s62Eg3ZhnrFYQ/Dh7A8Nyk9V+KW+2l0XjNVp650yUe1oklF+429DkMdrp7xfDS4LKNYq1sGHRaR/qrEDsznLImRHuB92Uv7xgxbr86W07ydJ3WVKee+1hIXTBplL806AzsIcfVpgWuAERDywUgStCj4d98cKMePMKEqll9wyO1fdlqN5hUhpiAOW+VL1713Za1EnaatlETZdwl6on9eI1xVg0+7Tam2cxpC4k51VEisf1ETh9kdRW7gO8SAdLO/myH8aAaPLEbq50a4bHJ7Tpd8BMFR4T8Z238N3MMO0BIU+FhoWQnKJ3ZxOYVgCQHYD86Wbv9o2HzC5ExylXfHVramZdVujK5JX8A3PakOR7CfUJDKZFvx/joBCeHPOiKfm6PQ5p6+mriFd4RLLltnvv4BS3B0LbxbTA7xhdAqtW27QlhuqNalETlhKCLt+lgjEL+iFKS5TjNNxbmkOGKWmU9AF6qfcMIuy5h+hnUeIWI9l4PUPa8lPCMvSObAYPPI3YOolhDDer+fvHqw1fcg7S5YLRFgH4tdjRC3x1ZSASFxXoE9qj1Lz4kLqMhRVHwM4cuEi1DOuJ27e4ArZgsTAUP+wTGSytym0sQjIi/Cp5rra7iu+LAz00c8LNAV68fYmJva1R/0xUNwLyNEUW+z2C8X+9BeLgYgbQ1TnPT/IvWJ1X1Sew2+UvjIH3CMvfsmRMd4asKUd5LuYpyMB+KV4uxRVeysC/YU0nWFVpBInYNdFipOWfbi0xSaTSYgwnCb1Ou6QlTelrM53eOXFySPzz9PDRsq6ixmlXuI4AV6188pEj695zs9aztgx3qIXWsldGL8Z5DpXis8xnlZ8Ip54B47ZYy9NnTd3KiGm47va2OdIvQJ6t5aXKH7Nwqhk1jDKCd8wUAhDB9xDslP62lBYSWiMd0Uly61piWFdPao+sGnTEWphlzx+MbtIQz9rw23dDFilOgLWLlqk+hbEU3XvbjZ7QozJmks/J8Kt2K5fQs068ICN/cDvsoM7YGK01A1f9cI8WMqlGcyLJFUq9z6Pioqwdody6h2pkD8Zi7/jfuBF3Q8JNsDMW2hoIsHs9vSMktUTMpwbLyoYnel+JLMTAT9MCfXmRyT8aPQvoWewKZYbiTAuplE/hehj84IpIpD6NuTWrtOvI8lhxutKVkTrFjnEeXchshCZJKPudc6zThE8ShwXLRsxg8Mmr9+YiOMqrRGTFjx8RIy1Y995SyEH7N5IOt0qJ/AeDaqHldQNTxRIMr08RRT6fzHg07AHa9szPOZdZ39w7ofh0e+WFlOPVKiga1u6uaSTbgr/Qfu4/CJVPY1QKo4ltHf/Ey9hwZVqkOn2RTMQmvarcCxYWqkCYrMAZ+gua+GPs12xFw3GAZ7xrQuDFsKThVaqn8LMgNRRtaPiCoJ4OSE4dgQPEaeiRy8MnH2SV2771HSnfIUMrySNhGAkaetbq+47f39gvkRB5R1o3rm5zacU5QpIQcHg/TgcvYrFQpWabTZmAjMtpAUj/MS9sQUghBJMCmrK56LpC8873OeXfR0pc/0cgu/xzZM2TopUT//WEw3tL+10PIYJIbwEGxa0tIpF2ujxQJSn/HskSuqcdAlET7eqO+c6isijDurloP6Du7jkhusSI/8DeSM64w/77Ut7I1fciYwrVjwdV3zoD4uEGk6zSt+8BpU48AgzOcPRGR35iEHbh0TV1g4/3lQIJHVETy8WCIgc+2ThH3zlmAuuJw3GeBQk3eI0YwCOFZu/hQalLoObs233L6HUM1nv5PIzlDxiEctx/FrqrFveJ+w1TuLDCDNXLyObGQjN1n8hlnmM8F6wvTc1O0d9n9SJboUTxWUahGQXvv7ybZAQYGD7rxN/MC71m4sAB/2qCJ7qAiHyKCN6ypsT0FOspDxu/pAk5emgYt1T3nglDXXP1zB6axeZmkR6gjk4V4BFlM6YJSRX/LFqo+ST3sypjPUa6EgRSsjDJurGeIhPqcResH/pd7EOLG8624owVoOV244PmtS5D3yLgjE9Ryf4cJ7ITV+LC0uOcvJ79bDvnX2JigtuAt+vw9vM7uNqukkcvAriwhEIL3PBlhTixrOZ6XSWNCf61oLsyAoeHWNS90pO8gwnoVSfh8JopDJDAx4RlyWeP4+nFyyEa1VRGCxr0XjaNKQOuSwOzc1e4WF/si1AVC/GNxO+2VhKhsWZdcitjiskLnqWu4frkAsW0/XlkKoYO/3VYBIPFMRztZmBc/pxlupgcDerZOAslmmzbjHL0gyIbiro9OMtRI4Oj7oWpHnKQ00WFFmfTXBBvbi965ETq78h/wGzHbWbW4VWqS76Ck2fSuxXULSGkFSEb/S4XlX1fRF395ZFvWssunsfhAu9StyIky3GKf5R2KUY84A3l5a8ZVdbm73QQhJj74pMO1ViW6d2EWNuoKeHsZ17xpGBfC2MxQFSM6LbCYLV8P56BpvKzh/wv7NkaKIDvMMl6SBtFInfU6e+pMk+5lgisB6Ar9vOu5hLdFoZzRJpYH1PE2ur8Kis9GkcthM5lHTuWYFrzVzgK0jY89zZPEs3opUnIeZS//JjimQmssELrMWlGP4v8tySYrG+esLzcO+Tk1AbmiLWSWpl30/sKPk8r35crQhH44PEVhPgTWn+znlHSd+1RY7p5wFRl7yBoayCdOlVE7ukbRDt7ApDQlp/PvpaY3byA2XbycyV0p+aA/+iWo/Xr59HRncWo2NZnCSp3o79HI+jYLTHlzoowRpioCszMSW+1k9S34GwbrqCo92k+yHBbxxKxfNKdYEN0upNSYynVnthp4FnuqnlEtJ4ctfvCJ2XEjl+62Uoqaehtnzzdewa1geo05DYE0VKuu9MZV+ZccUGaMuR7sTKi4fzH/2i9HRY2qXbVgZeS/RPe40erKjl00Huk8XXR5sWj2qqu3r9PlAN2eqO9ndiV6NtfacsPX5JqC9pSe91YUdk0PMje+XMI6X+DJZ65E8+ppNDnIbGg1pmpgAm/odv8cpvlQxXmh8lvi909Uezrnl+cYVnG05M+8OXzIDCuWevoK9VU7l6jr/pexKz0d9J44AGy4h1ld+9WmWVLuQzJo8zmHkinmeRvlPQREN3eVgFq0FsVykWuJJZhTj5dp7ALOu4bGbLyBL9ZbfSmQvCS9vI9Vg06wtau60corZ304Qt1Al7nZN3Z+SgmVX03V9oE1WktJ3EmkrcKtVwg3PZSLxSwVWRVe3PnGbbU2S/d9C6t20XFr2JoJxLTpfzZgvQHygLrYKNLt6U6au3WccFSSe9dKgo6n9pXDjvy9OF4cTULd7G51yY9hkZS9f1ej+eFHmlMgERbopwA5PJm1KjeRu4Br+VhJBylKBiuMIrcbuNIgdIcjRpz9QyWAvpoSv03UTAR+JkBgmLhWclOLUOioDSeLA4JedeAI6wVTvyTTDYigaX0XeJQHwNkvayiLVSVagHJtSK2U5FNuSYC7AcSJ+Gj+2UJUU6W88zQmt83Q9rhHM+2jiQn74lEYsx42k9N7TrsfNHmNeEa7epMsuEWjQtcRBlb6ew7f/4Mn5VVFRk2LM95X7TVikJ19DIK7giXmntg8REBOX+eTCe3peqDkR0P5b9s0XV+iZb2xCUl6y80zBMtT6Hg2i12NxtokCCbF3EnCovYBnvemLjlFzvV5iqXZpxwj+zG7DS4p0r77jX3QoX3tqjHFH65qqne1vgDQdRYTBkFkj62FNHsA27zVKw+zGZ0yHt7y9uRfhByp3oid+TgKPWHSsoWgLmQ86LyLHX7UGU+Wz85YlDtaCeU2tarZO/B0PeCo6CJUbbgUV+qY4aSbsqtP1eeWcumavy+XGTs8N5Sq5GdDfJLZZD2TIY/oXts8K37HIaqnpMDSsFf9i74Qbh7yYIgbj9R3dwnYWfxwJzMJHDjot5fi47ZCrCUeUhbkAF1mHJVhetqotCMCrL/OUkMYVXxUEN2zjRB9lP6bzJ72G2u/QbIlmnYSf5stWdd4O0huBeDf3f8LcsbT8s33gsKHrJpeiHg3uFPNrEbW9+XFldD41vj7xAejvSR6ZsqGtYuTkPvMIRzihRu0f7SHH5GBwnh7StqpI46FyQH7X0JmWw+f3/fic/npyHhZWNccMQMb94C9vCpZLuRGtWFvokUQrM+ltW3PR9N/h82mmjIni/ak+syiXP/0UCKxLLSF/In1LhfAVZpaYhqNgWuNTja6h0uCidiggwTn99K1BACraZdBHJPzvx8k36OTl5XTCy1XhO94QRHYx1FwZFRRGV59h/SZA2HyRwJMvTs3F2IpDSIgZLs6nioIRyDrdT5wfs/2+kERTWNgitGRC9A+l0xG4UxXQ4CvMgKZvR/A5AYuLIGenDPiuUMa0Ms1HKrWieDHNqLwwweKnTI+I1B3I5hXzvaRSTNYwDd34+dpEhAR/dlDrM3mrwm5id6WJXMW3P1J/OXGiaQkXqUQORTlHeCBbCfuyyLlSpZJvGyLLJl4D7hFR7F450tsiL/Q5tm10A1QixF5+3g+mQuvdKCqFN1HWlbpcxZQCy7Q8gsvnADa/MM9PzbSX/4g5c8k18RBnlg1eDj9GPHfQorluKjonXa5S9+JtZaNO09O+w4Sb+GIVX+sodq7bmfQswtAT4mIE4VsH2oKB4O/Al0He7hzPWpGHmLrkhLnLhQst3kSuk4/+mBRrLXLMhjZsZTn44WbgZN9hKC2+y53UjT6y1oFbotHQ9sGOPRnzGuQS4nhFmoFZPN4pDAHvtelSxi5GUEGd1+Qn8LSCXAlBo3jeawBkYTfoaOX5Q2Fms9tENaamOl64jyTwsfkcqOLexbPZ8uO2GfjDqFlPFYbjwj+SzGBBW62Xj7yCp4DrXexQ47ybARqM6fH8qxOxxsWGk2/5Lu2anE0ibSsbCRgpq0VaurH392fPy3px8byeyUaoEVavL5MBLTAFpMdNgBTPFrf8NgCHW0IXFTFf88TWLeQLCjLkl1dcR0kXUWimNin0ZSattYkoRLseP0EdODmlpQGKuPFgAxjE+z3Gx8htTgzsaN3V51ZuX1JO8XI1AR2kW6rdG6/OTX9nf/JQoQHmBoCfx89Fqw2f0sElEygN1RbjPmL88eDWYuqW0GeY7LTHG7il5GfrwlTXpEAuek+gNBqoBrNzGvdx36BzElknbIQwK6tHs5Y0rZZxEDarENfgKjUKBIoBJFZ/eNg3rKMvvSC+4uLhF/N+Ee0BqN+0I/tt8NTfREaOe9492+SnyQ+UMFFRZ6THjVAQZHF3HsZzov1ltfDfRDftasmwShqJ4WwWDojEMKZxi5GWJPdBggZK71YzqvOd8bl8pWrsTyOYdCRPGZ/WbVmLXWit5oLlpt/q8zSfbwposHExwHUDPGVKThRncN1mky6A+bJA1PFdH3NSkVDgsvgnaGDCszGgVsldO+mgXFFp0lNZmhZ3LnNINRIYFXRfBZ3MyqR9+VrxeavL5kzJrTMaNQrTaW36+mjgIE3up+uTRsbarOdUEANgCZrsvnyBRf2rrU3ccXTmx4jxyXPExAPo80B9jsyHg/d/HuDFmEdmOfaLILey+j9hNtWgJLwI6TPJilx9s4V6XCrDO8lu1HaAZpbQCeRSjNCgMmrCtRNNq0wXzbB3kUX87xQXCPyMrYV6YH+WkbS74Xv5zgEjj1NMW6FNas08OiEohQJLgr4KQ5eiMwwdZB7tYdN1eRutfa9REBxJOxZig16d28zNlGooVINfU6XrE8ai1vA4OBXbgk0GsQX1kYRNE5Aj7UivaVK+upmQ9FY4MMbvFJQp+uYitzHc1y3c/6/0lGQHJkxqbMsMiei7fYt0S920VhnUlqsvWQ6x35LWy433iubXYQfoeZDsyrOR7DfrQoNncBakmvkZpcMO4vsEtQMRCWdfDLVpM55DcPSmjQNGuB+mJ+4tKrr09Hcb0T9T3dH4a1c3p/own6p0hk4nY2uPeC72eWwbAPJh3m5uOpys0N9bOO2dEWV+TJ3bZ1eb36KNfS6eF3P4u0/RUfl9Pg8T4MF/6ohklJdpfpMIDsMVzSu9PQZJkTpeSBA5ZGjk8ofW/mGM6XTt6ayLqwCG14v77fR9+tpqQtfpDvBSzfDKeUNLOYaPJhlesDHX/uOr+KrjURscvvSGGKMYskoEKHaopmvzRkTSTSmslTgMCAs8+c0dpJrG4TtZX6IjN7cqFOLDaElci+Fuzckst3ccpmCsnYA7YL+eiTlKrtmNk34OrR76QEdR4UGmmRqVUYWwUv2SU7kR3yoMyHJp0VOk2FfMh2q0h7hAGSaMj0QJAC9JPchO5WKwf/KRLTHY1Xm/hMRw+lback9jOPMydEoxHxPkSxQhK7jZlBIPIq7sOL7oxEeQXI9mOJKAvUlxGpxcqe6NY3hunklhO9DojTG0J8WDtDgHNFUBcdfX1eqaD7sVE9+l+2uiiwKpAjfCDiI1D3DhP/2O/mAleDKBBhTsQnURPUCeinq4ylPXVWKcebVx8hz4vNew0jw+Y+pcw5WxwjQDJAL6544dWu+FbMhwX1ZoEi4+v7YngsoeV7XIz8DPxQNn8YKj1dW2Ad8mOhukOpW4nxE9y4O5yGwc+Kp0tV1fI+iWkGnndSOXFVbuYeY/slsuBh4ZjuBptI88LzQcZQCibV6q0ku27ait/P6VF6Q+xM2g+ppoQyc2KZlDUHsL8hpefihuAI6ALGXbBEI0Py+DdobtzJTNt6FcZ1pF1bA05qsYriJuX4Ij0nFPp+/UOe9Kzf7FXhCLPDJjPraKaGlwVJV0+e5oimGwRsivnOrnySACxr7DU+2MLtnUXwj+TPePBC/FW28vS7f1/ygvimeSyYp+3W7ec2MPbt/asmA99fbiDSCjkUcBUIVEQps3VI5cIgIzJjgPUjGbV4uNvUHo+/leQMKjEkWpJQqTXkfAZcvTfszrFEHJnIYs0v5cNNJPdZBzDg5TalQAzKKs2NoWvXw4M84Fx9hkf66tG1saE1r10/yXq8i0/jmEHZRqk80DUPr5p9F2Yz43GfrEvG5c+Xi2pF4AW3eVpYSF0qlgT9AzPk6LrGB82t4xTKd/dlWnN4m1CH8J50oqhg8sSDAapN/XBUu3wzuCa7pCIMHw5X94bMs95/Fog3ukCw1RezRvmLKIYVvlh5KIEF92YowscVlJxWah9WNMzabhrmloaq22L4Lr5oQkp/ahqYQhqWEP9wCrWGOiJRU60P0fbfTbO0ni6dIzU3Vpp3uXdZI9rjTjemG1OTAqccisdqka8rnwENEOgHtSrvpC8qe+Hqa1W3zImo602wKvvLGNatVtWvG5LZ3aOjpo4xNgcLVc8tp38fXb2iY/6uXY/4laPzpgO5wcJcTA1bAwqMNtUwLjTRbrDEbydJmIlvof9zSSoJ+qpocKW3rmrmwKCrumV++xaE+nNo9Cv7QiU3TIo1IYxKguCHxP3pqfVwFs+3R/xlU8FtXAmw5w0duuFCbdS/WUgP/5Pj6xSCV6M9NgVLkIZS7Bq9vK0BHx/4ZephvC1FgaVH51SAm61aqWVCoe8OI4nYusWOD+D8VczXh5msRkfCC5LU04Yk+M50+REUntH2VkaHhsyvRLAHphuqjBc1NF3sUY1KZ6mZqFAiE+9nrllUQHugmaONvUvkY7nwr6ebrlajP214BA2dfDoC9hYFAMSM1MuLqGCWhuepdfAiqhQMnzAkYmS5rSfHHa0sNCahLl++Pj1pMkVyhGagq5PxVTrc20sacdj3nBjI2MGbuiW++Il2GDt0q497M457fgwX+FNWrNyyFMXFCLxqtF6jPkVJaxIil75n11uRobCvuv2B5bfwyqlAJFmcK9iHcL5ZJF/qNJwFz+871YX3BPmnzr/opEllXf4yndmjcKmHi3Lcug6KXSKOrPOus8PyMPw402ANusrq2iVIql+yBDGnvpJc62nH98jSHATeAnyDcWMxBu1mDjR557kiLF3y1q15osUwYgx3yQ8SlONBLBdiPd+3Vo0hBeiVi4MCa3kw7SnqYMbhqhnee7KzPsKvF1z3AjwxqxtFT8wSkkaUxYlBi4v1Uv8mtgE35BsGFn5tbnWV7ot8bx30w7bgYFcVM3wndIxf4zcQi/6bzbp8ckXxlZCBJ42+lMHxOsN3eqyYm3MRjxfycTgoYUFgIv4iwAhXwnRySPQziktFwkXzBycSy+YBbBdlbY52/p+y9TScN9DovexwcFLWCYs5xtUgqkYE+GWXSudH75490UJBm+U+LR6Gdt+7tBY8tnkFlozWzb3YhsgDU7qWos+f2FfHZVl+UaZrv/l4nz67L+vhBkSmU13932S1eq41CYovnzmXupCQ2lV1WTLSAeH44RIGYz2n3h/tvFKpFYTnAfoGxXJXg0gkU2ggtfbIPKR/hEGeCxV3zrcaWK25s6H363muMzu65WCwh/uJx962nbsr6tOz+BXVtrJM15VyMkYR6TfDsW2hPQjB+P7NUlB9HJWZ4H8D/R+Ke7CQtYwRX5uVd6uL80gxVqC+VuLDgcwDUi9WkcnrkJxn2XcXdN35XK8vaLpdJO7NS95bgWId+xBVyCSiaTSLvoxK/++GrTK/4WrSZhs58auznA1oZKSZGjLImEfmws32G4KedmtmVLm9V0Q8fOLIAHvy6uqOzLwPuszggywArkYh3Knek9tZHZ6Y+OayVfuKOCmXKT/MSKG/vH3tHcTxDvnC5yO8vGDVgqf825At/jWEM1o2sv9DBTdQKQLGnBJXV4pRaMXPbkAJb9gzT2TYV0+ilu+mHKcShBQ/2DyvoBoi9kvhRX920YUiQFBYGV6mNPfLJ73IalGse0iGTjWW/KJTiR460vxBA9t39RA7INuPtx1lVMN2IEABeWRQMVRZSBCEUvIGFdTVYzN627EgvSdo8LsBRXrG8fcP3Ud1hcT7Sa+lakBpMOhKI2+gef40nSQZ2q8DQdKne67E+ZTL3zpsAgEQM1zDYfi4uoyL+LPblv6hZ7/2PLdXSW9XogeqizcX8R49vVO9dD72De9aUJLJkE+NR87q6D3Uv/RyorqWcDUGrpPKQhrhZ2UtMhFRis+UQXx4q770zwjk63WXELSaT0AF7XRxmxLOlQ1Qs08N4fXWAO2kOvRK+AZBJLH1CGDLOVz8ZkW5TQuqKfr7PGH4q6xvUWYBHFSAzpivD+QCsoDxKIBWFJo7cGNcneMsb6WFVm1xuBF4W6zJZG4sF1zaGM7wKL+PQuPIhEC1UiFkmN2D+k8rtSbwxSJp6fc+1bJPPHXWEKok0SbK7G8SqW8y0sJTH2/N9AS5cIxqQ4thp/fMPqMEeSYeH2hoo5sOxykuXlY7Bvtu/SgRNK8gSJ/cx7RUP8PXpqGwd1mnzOkUrF/E1CB/TKJfpxVKX6MDTVe5acufJdPcAk6zEBmYNHPlfZteabCy/Ljj6LjOaSAs3MMlBh12AC9g2qQg6PWvSfEc5RI6/UOezK3gft/MkngjI4DguXR+npvyEmlMO9Kzyww3E//CZXhBty8+9XDHjNgP9xV1CahXacPOS99iNvmCQDKiGuo8pIzWbQkvOCq9wKP+qNWR9EULLis0KzBN20lxn30gZ1fOITeW2gLOpkG9m9Af8iE6VaxZLpyQ9cH6jQTv84UXjkTXRjqfwV7jSxi7XS1oguUE1wZbjOoEOs6EfM7pQ86jEzTFBiyiZLX3V+60OWEoTwdkKt24G8SO4W5f+diOjuzxivPfa9riPN+6uBIUWdOaONuVuGKjOZSCOV66D7bVBTJf8VypckwBZLfUo/81eW61hJbk4kfn5Cf2O1SllmxDjTjuRTHRFQOuzOTX3rX2KI5NPdRFCWdgos67hYe+zLSkXNCW91nrXC04w9IKEYSQIK9OkoAOiN+fOrJLkxAhxkYxDpwPF8HlIDdVcjjW5FtFpZ0oaeJ2ezGK0D8mqK7CQEr5ZI0W74dGyJFiq9nngh7Uduv6dlO/Q1UL//4thNfAwh3xfaO3yWZx1NIj98C7sVFnxzO50RqhysojilP0GY8I+rQi9IeE+hqAH+ud1lxWqK+VJ5/hUM2+HG1S+y/m8Tbj8CH+dux6kzl077CSGKnwDCzHvQ9NS6Tt9UtJ24mEwchfzktQUw0wse1z6mAoindmpNQSbwHcHQ3bLHkmJHu2LcLygzUZ8IX7BY5fHz8td2S5V7Cj34hlUfLm8Pt/Kxjnf2b4qGdWkwz8rmBZ1bxaS3NEZo4WcewxrNiFwSO6kduwwFGtYflh1+rYIvyAu7T1pnRPn4F+D3/PKIKaCd18VtR9JUMM/pPxlzZO1HUU7W1KHWNqRYUuT2GJvFa+fvyu4OTF1e6ga/rYRGQfYBMRclkrKlgKN3w/I57QVFpn5NQejOsiVb2/HKJNAIz9/Iup8SdOAkIg8qGPVMVQISDRbKOSuzv3AE/0dULo2Ihwhs5mbXnXs3sE6i76I6iZ13+KNdktoVIauL1ke9ekAulsi4WY/qef1X2uXZLdY0PdbkUWyLZ4EGt/rlhuw8A8CAduu7T3z1iokQBF/r6Wq2Pt2hJcWLlfxWHBybwGolKOjFGFhqz3Ly5WnpjETwhQS6RmrzC85cpn+4lQO/oey4YhwMWOI7gizB7/mKOUJbvryTFAMwgPsHW5Zzt1ifK2OuZQxaG0u5xfEGW4YrG+lZ0w+NEegZS7rodjwzZjBuJJaSGWiDoglYEck+Kas7gbqvP/zfS02zhRbnvTvVjoRaQOt72TGsWOUMaMqJLO5Gpyhj3E3wNsf9BP9oFBz3pK/HlI+VXqA065herH6vENSB8HQiKV12T4/INyNPwwJvegzNIIv9byzS/37Gjf63vZfM/dTWIJoRO10vBx+AkmvEzAV5HhuE803aEn8JNmpe4xv57suO/9WeUUSSmqPbQzVPIwTQM/7062YPRp5NI9G7864WKTL2bdfGwbcmwp+X2uuso958rA0xb0lOXuEg/aeUPinXUz2z+hIUgAd8UwEyJU/sldA/zwgOzABAZVXh/gqpQ5TFhxdDhjoPDCiPvhUHWwcsZe/IylTsT+xZKXeGxOG7HYKoSRlJ7PyFO3Uos4GHrhQDtaCgwCnvvKeXtIwc0XIKL8lqVtZu2R7rzjUNAR4g/MlQtYu6nHI3sVKwKJaaKXFeAMa7NBnvjEfxTovw6DeNUzE2WxGG9E1gH9VdkMK6vNh0cxs1hSKqNdchge8UQy/n5tK2ZAV8tNUFcC8/RZu/53oGFM06GiOYNQAe7Gzc26yxRCtizAjko48NTRoXeTBBaCOAeW6b9KoBxH3LIbolsQyW+VpwxA8CY3pCZRP2i/AjfZroEI5BW2X8DKYGBS6x+dr6CUaX9gRNazJ5OTFO9rQ+f7XSfy/bxNcnwDMCytFvzpUxerI3mamQ8TbWQv83I0YT1gFxcctaAFazelQQhsrXuvcdnC8FHR0HjK9EEcu3iOE6zppjWgUBJ8gTX6mqfyGI4f/0RL4ZDsIBEceGPlCEaxWKFL6c4Uz5eJijtVusg0q2RX8fzN69x7j5/bPIBILb05MK3++5izNyQMWMf0kLPd6+7fp6VSrRteifwEgb6I024dVOfH3omEV39AAhCLNoURnAiraX2K3lEuy1fjrynx82/ldaS8Up68XOKI1OnbSqnSM5pEoqd602B+cmdhffNPxBjIG5ViIm3K7M8dGN5743FKnwf0VC3qBthareswX9PK/xsSyX79chvgICV2XH6t5LlhnMPZg71KtSyeD6BNpAR+l8olxvmuuJpAZvxCvvhdFWeLdgNL5IVod9Rj8BUN1sPAowoIrEywOngZhJ3x+H9vVfWwIAK0rVtPvNvFK/XnR1V3kiLrfbNkVnnM+NbiJp2ZO+mOAFDHtYxJeifUTKEE75mxVFpWDJd5u/Uns1KPsJouj37CWGYYHv+PhrixkIJceBt3s77JgibGUEiPRI//i8eZ+N9YFW9OarCjyfEzrBuEav8tUeSdicLYsuGMnGOBtNgt9SXSOTOr1YvNGZHs4eqEo+XE1hfo0rq9rGYUM/V0FNwiGm11OqtVsxSKRgICDd1IaRsmkBrBFuS3HNx2qan8CREdSGjEKT+Yz5CwFZMtrlo4oDGdCF/yNDT4YZEx1YVIfGjKiLw2athVkAmox3KZa6q0B2PyAjHIUe6XmElWzisevMV0b4K+YEOaM2i62y6rEc/gqzGljLytezE0D7JkVmfn+f4oWuxgz6jvGKvR92NIgjE+juTSRsSsz0xjZFhn4z/CqB+8rbyP/dj1pYF9bjyUCWVsrd5JxZbIjpDC9t7NwH3G6BkhxF26TodntFinndmccgUrptu90w2Q9wLd9PpRO3nVngynYm6lF09WVk3GReX957ahKQCDMH4WiOA4pyHiHZZVIPCiuU7O5K0bq7+4SLh5rmODc9ehv08Xayb/pg5YwNB3+sEtu3MorQta5o5dcwDyzbrJsLsrwsH2WKnYSQ3v3Pkj0qusv0Fd3BSe34Az2B01Q6Wbs3htYmrQFvkomjmvicG7yNmzpbR1YCBGoWqfXNmdaoBbJfZTI/Ew4gklfsMm0aAwL7HQnCZmpRryQHTreKFXP6SnqgyV
Variant 0
DifficultyLevel
540
Question
Albert runs a pet store that sells pure breed dogs.
He has a total of 36 dogs in the shop from different breeds.
Breed |
Number of dogs |
Pug |
4 |
Labrador |
16 |
Bulldog |
6 |
Chihuahua |
5 |
Husky |
5 |
If one of Albert's dogs is chosen at random, what is the probability it will be either a labrador or a bulldog?
Worked Solution
|
|
P(L or B) |
= Total puppiesNumber of L and B |
|
= 3616+6 |
|
= 1811 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Albert runs a pet store that sells pure breed dogs.
He has a total of 36 dogs in the shop from different breeds.
>>| **Breed** | **Number of dogs** |
|:-:|:-:|
| Pug| 4|
| Labrador| 16|
| Bulldog| 6|
| Chihuahua| 5|
| Husky | 5|
If one of Albert's dogs is chosen at random, what is the probability it will be either a labrador or a bulldog? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$(L or B) | \= $\dfrac{\text{Number of L and B}}{\text{Total puppies}}$ |
| | \= $\dfrac{16 + 6}{36}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18km5UQirU36m5L8X9J2vuomqEzD7mrpyGO/H07gmT/dLJdBA3rySySSF8UOdezCoqvz4ilSh5vOaS6F1cTI+vs+FfSX8V/qI/nRTrPKg4/W6e9wc7fls2pfm9dTwz5hAVrzYOQPFhMxxiTqLafWaEsdFAlYW+ToTbjB3IFVNZ9JffbFxYaGrN4Q9+pWesOOnb7LJYJudG3C5MVnnIIgIwx2kmJeAXhTbVkG4Fyy0oIaZRl71taq4gdV0hCApRmts0upSdw88jDLgwGuuTMBNhqx/Sxr7Q7M/6V0OezcJwXJIYRuZIWrl/nJ3ZxUCR5mJWmTgtSRGxV0Y7MxTnDq1z3FOx/Rb4+1UU5wJT9llg+d7vXtaZeL8DHX1u+QR+N8eJ1AHuxtGp2l0PrWMzGsI3BvLxIHJi4OE93heRN/7sBlFIVgMeGxXLxEVn+7U62W7BjasggIo6OeljgO3qFXktd6K76iS5ZTfyqeDW19J6WxI3hmTXbO8X7xVtxmXyNDaApZ4inx4Z7/teXtneHtJuCfz+ZcE51N8utbLaZ32dXoHEulvQSn9TkHx4elWMNOeEBcefPU9cNj6EpAz2NIKQf+YzhZJe4T3bbItaPw+af3UANfh4J+mGmEP6RLWBxrlsQh48B1cX19356qmfCQA+qNImdZlMoMHqPGb2rj9sMGHDgdlleI4hLKHUcrGnu19c5lIhwqaUfXbuSrLtrCaGi+/95dOgTzuRN9OYK40vusqeDOoHfcZ2YYcrdKwTaJNH6+IjK5S7c8vZOnRcGYxzc1/T/pMkqOWjBzMxh8UyjpenY8k0ZoQhZnBmaQ3UarSdKp2i04lZsCk9LGz9kXH+s6KCMaxFqSeHHm2k/392wsG2xpDsnpMAeIP07imxr+B+vLYeWSMBKEOgG8oDaKJQenSc08eYgOhIk79BfIIzK3VM+se1/UZk9juNEoruBFpRXGGqlCxEj5XMPJRMmE3PO/OCRkAso643cgU4mEVKPzJG/HNwfoT6T4HYB4UjP3IBnQ6JnKzsWXDG0yLSuEE+FSw0Rr5xWEzzJuD0CbuzUUCl9OrMg2cBxncwffgmzbs0bCo0hkaZ3mpvG2XCyAPSuE2MtEKatf9jR3aPtbkMGT7/8pxyImwvfnw9apK/WyFFGuKZNZ++ITh2AoSlRA4++xxQ113RxmDbOOp0b9B5TjfO6OkPtIqRHALumspTfqXpXi+gnK4+ed56VnGqaT7xNdbXD04k9dH8R2flBfmNk2ED4gd8pD/eNu2BVYyLqB+c+W/6IixhTD+2YBBMmfCeGOUNtXC3b33ElCKW/mP2w1CZz/s6vGZ3Fcd8c914K0R8K/aS28LVcqAknhb1o//RHCIni1SYKRT5t2NHGTXtOMldu/x/pu928J4QBhO70g/ePA9Z2dSLXGkM9iMhaRIO8ODQx4Jif7kYprlmMStGoOmNJUBqwDOJvR2c+h9Oiv6J4YCnmd9FH5CbBI+97364RehTsQoEh5+12jqVGeGbBATWUlPCCHBBRpmmZe2nGojtgCBWXSAOl8RSEFAKO/d3IGepvqPcBQET+McxN89LwkiH5BxzSWSn7F8jhx21Wy738lt0BOApXzQv3M70aiReaSqWt353tZFrTb+OpADndnkzAfsiW3SS07O/WMQf4b7IMpE/bqp3ONFPxrlDIYa3py8xPiGj4VDdFelNDddAKp9u0q/FuHMKklO6t+4Zb5I7oY7bCRJ3oGdUSisnAgGNDOQn/o+VZmmAsJAH6qeALN2xEuoJVjCHUB6VpjWNPT9ArlfumqLf+rYYnUSt4240+MHdv/WHy4MJPFKHmTuvdZ5SOl/EPy59xaXY0Bf+hjFjTlcIvpO8NT3/WSjRwbwtk/78rbVFE6Ba3KKVm8DFlBLJ2yUyFVChLjqes8fvjCk7t8hEEw5HyLKOlUd5NA4Oa/MMjp4ex3+IinkwjU9ImRIYbAKn4x89reTA/4HS96exB3LlEq/ALF4lEVss+vH9r7S4DUwbgzeeuQ73kHFmzpRwcBFPgqgq/eVQzxqXVN/zVyxYd31ZDU3QX56NgJhUh3hbRrhdClK7h1RA6qiqqvvUUpvyDDuzaVjVyg6Luw6Q6nIcizWrV/zr8jBVCMWuWdPMmiuRgPXIPhEVZh4yastHvzp1e8SOalybLqvFidhQQm/Sih46XvuKWwpesg5xIt88i6oOsXnBKJxIv1itE4xMbBlWGsx1wI45S/dPH3AbrzwA2HnDZcI/DbYKxhj7bKr6p1B3Jbw9RsvvCew+73Ea8j3qP7rbkS6mDtAIRq5Qz8xkGgrPODVmL6eRbDyS7VH1at2Dv2qJn1KosfUNgWrQOWtsiebHg3sFskoeLje9toFTwneOA4duG25Z+Dpayrn9CBOeOsaqtYOACe52MOVBtNVBlCuHB9njJ2aZ80ZQ3aNfQ/NQkkdQqWudZk2obDb4+j6jKS5xHIkoXuzUsTsdZdzveF0VvBrocXnYTJKiCr/du+RDRTP7NBehQ8252lUEvDxdZqzEhoJMCnX6S9Qoc947tIZxqQVaMUXpnWuxwzCRu7WhtR1MjHI30MBnU8pwi0Ggj6FHuvHMy1t1Tbs4ozGdDu48PVttRTCJ8ySkUlTX76k5ZnyjjySm3iWdhTP4HpG+7yDorYs5Fd0l21i6VDCh/DVxS2e53XQDjHNA2lCRkisTdxrXQU1eo0h+fNvVli8akZp/H+5AZJFSoh8xL45fdiPvWuq795WucfQHqL3Rz2PRxo+SUrdHo2H09qDEpfS4rKdNN3pS4JgRJ0I+LeuImdeQZLWAxf1Tjt3synEgnR67nXhb32qrFfgryfpQsENCj7FyrdKrk2s4/Sdd+WTQ6H52iPq865ZgBw0V2tFNd8cO1o6cRvbThqsQ5MGGB9F6VkoNptfTIQ5/rLKIunp31bjwMzqB4J1T5cvvBF1PTL3I7hLFjiLfoezQF/ulgvA18/RcKGU5DKFRcjFQlkTrvMAD/yv5npYx3Unp2UXK23X0ub+cUDQU3u3ZRepN6lGUQU5nDwLTK4xX57qkEZt/bRNASlhhUljQ44jqBReD6vWm85vSI6o4G+w1XqgWDzrpjQsZ/K9rtPAxeDMWsy+8ImKxBWvuFgfv+MWTJwcTD6LyaEhUJdngpymWAMgJ8OCLBHUC1VALle1n1Y1luaZowc8hK0LFtLx2/F4cCNqwlBaTe42xR23aoNRDAtXv7EjhIZ6pw9Tja2Lux2Z4/dZYeIuiKIdLFJheKoo4YFOUncAQak3M8LaFYgj5sAM6cwh+Qj7PZGXvMBl+dVufVEQohDiwa0hLdzV7iaRenWBDKmU5YPCrDnrcPkP9nRNnRkJlKtXILbLDDnl+kRFGUonC+k9Rwo/6I8Y/Qclc9L7D0ZI0ijxseb/2UTaoTKAdvTDCBX4HvZEKv+e3P3idUH5H1NkTzxo5jHa3npFrUrUzOiZK7Def0d0XCH8arF4EQkdEgk8KZRwIw4YAKaW8fz2sX8Ybq/Y5lIh/k13vZ71504tWGOUVldKd5mTvTxg3k+Vo+cD9JbTFoGSzbUhuCfHb1ZcgV7aYt80054RqetvxN+HoKsZpUZHs/IRKm/icN4xVEzwv8KeTMmvs9T+Mrn+dshGEx5vM51HYEPyH7JvwIAunLHbmQyWv4mtFMR2B2i+U1Aq+jhNv8cDVjOyVeyVw+z5gLWcSdUD8m8TyGAUfLVL/rmn7eTNZRu+dyHVrebPEZsCn8Yalp051TcGyklE0JAPsWdB95rJUURPO6M6wHJt3jnPDzf6AleEl9IF/cQDVzkoSJpVSC7kSAd+mVsXm6KmNR8WTQEIhe2lFHUcld32mY+N1mfMpdqDt44fMk15iswj2pnDiI2+l+1Ud+tnddj1qiW5og9itltW5fLfo1zbBmjkKEuOlzLIKkWrAEjRAHcAp4d1ftFAzrjPSjrWxDLUnP5ZsMqWrh+brSi6Jb5F9g38YNyl2RzSOoerXzH78d0D5jmB/bjOpd9foUWUg3IYc6IEGDeoUxPxVdprNEBbA67TZy9+Wx7Xbf5OEneT5crla12j3wam8wfrJmgog3FViC8ssQeoEyBiREYnQBSkxW6e3X3wlmliAK5tVHFJ/S8L/yOaMYO14COf4arP00soVf6g2wM4Jd+VBYASbUP2bhKtHBNYwUsoJHQgzLT92de0vZM84ybkF9PwOYFJtYjwOZ8oZpPsh3K1fmA5aHE5yLG0Kr8ffAKVwZLT/C5Qe6wmBxPy5IciWtmj+YjcYOhJNxqpH1qtbHBhUc1V9vz4FSGHMHcONsjYJTH8rnxD4wjpNwA5BKs5lQVVMbTxaZX6Xtu94qvDjD6Zw4KnNMcmdlGmulx+2n0PIH3do4zlgYlgw8aIc007PX3iZ+JSDzV5yUeUFJqfy40pa0xibz66h3vvRXATmkZAQZni6vkH95QMnSKGI4vxACtczdmcwg9fmPUcwKxNpNeIRNFaqf5AYx1rI4qgET473ifsBmbky0EXIO3aEBGb+VWajQQSYKKYPVVEryhJZLPGA8w/3jegyBPABV1jvO4aAcxiUxHe+Oj8h9k7tI7HDOySSQagsRYKJjuvU4FZM4supQyN53aewwzOkkl+O6Mo0SYRX+KiX5/fPwMC8PvarbwUVeYqSZqtrfCOlu606viCMgQKeWJ2vBZZWqNAFDqP3P0tocE31HfcatOHVgHCBYHw7qnK9aNqjH1qn81XK7PEyHpZ0RaZ32y6ZXxxy+oiuDKkq3s2EktlDZzxKbCpCCd4jAsM3eZYzSoMVGBNlG/CHd5m9ZhsFBRGTKDwlbwaOKCdLtegNPH14FzQnfWAPyNLeZiu62Dc2p+mawDccOipa92n0wURXGR0N6nyvpWlAEkBuTFCx41OJXWgUy0mtmFBYpQ2S1ZjM8LEa9coS/xpnAjDd30d0e0vl7GdYlHWtglmauV0ANKWboWB/wDvXghNJNAhsh0TiGDIt07OxeFOr2YcM+XNt+solnYoebkx1WC93ZPtA5hGeNtx6EnhbnIN7prAV0dAxqB7Zmc4gi6gZkdOqqxknUhBfObt128kZOE7BlO+qjkyrU9t2iRkfO8/MUnPbi13hsLMVuUMrhM60uh0jabKVX37aufDPblq5o3HZOZpUQfQhsa7LLT2MX5NOppxfYJm6VEq/wPXJMvfEw3PtbslO+R0vfvhzzchIlm1DhCV6QPTjV1c9vp8wKxprr1nBc36DuhyzJ9RycpyHKG4eAp532MTfXQuqrjHk387srRqnf0QQJwIn9IVogdXc7LsiLFh1a1hYmlYyvWKrNP5TUO5AjkabPneTDJNdLnqS/TvBvBbnyAOf0GUpCkWgXCHEfFrKihHeN2XdNIRHT2HNh1OnREmxUOtQSUb67aFceIkAzJJCEyZlFBnwif73fjL65Q44k3EhjwC+bECZvFllA2DFpdziYerrMeL3KXMiHYU8GVPj/yVjzx+E9/+6fFdsxG6VfHFAbeGAjpI0M9r6+drgEcZXtXaopWj4yy//P2pkSB/Bq16xVJLL8PlPx7qmORTDimCNk8DAC5wwfx3pXIyOVy0cOaTWP1SUom0g4G2WkoDH/PLT1S0/ZDWAdkATz70+qwD8SibLSLQFt4pdSLtVWhQ5jK8UO9Jzt/yAoApuczFwwT6sFl+APt36JUP2reQ9kVnl4OgTnpMkrp40Z2ndTzebbFXcHlfM7I9xKybjcIIfBgUrUQFzW6XmQz5xZoBv3Y+B8D0PmpWWJ3fDmzEBZQ1K3xyE5xwgINHpuKHcXnhy09oETRN5RYCo2z8y0M/vk94F4gRNVEioBhsJkmhCbZED3VSvxxQWKXqdZ18r4izmzhIorF8Vu+djUwuzSHre6Pw/YRDMFJosPMcxrOTG4aH8Cg/5UdBnNcaOnEdDCxD7425eW26w2EuZOhmyDmbH9Q0FU7Hlr9QF4hHfl+D1jR/FBiyTwr1zjtCMCpJOGCKEOuPmkBNqPxFq1lp2kLI68x5/LwMpR+MgiBFHv6/NOSGkXXus91w3UnBNm3qBRPw6tcm6uHLM8xpn9KZZjANYn0ryNST9NwZhhOJShvdxyFTmBzsdTfATPQS7SQDypxNlKN0FPELBi/xOOdUNztYnbUT/eB2wEZmxGiR1RwK0YasJVQCOWUFb0dDUq+59jrcwwQcu75Jnd08qmFXRFD6OYmmYtQTdJ0V/BYTpiWadHFIXygNqzjJI7MPUhPPWQZRKcp78RawkJGKoplmYydE6MZb2HWJJNjWrwh8Hyk8lAv1F4PcGqfXRQ1rZQVdk1yRKWyCtQMmR7gWVTiJx0tBUdxdiQGxXXMGA4zH/uT2Wq5A1hZTGR8YgxWe61+cCV+7xzEaghPyonaFnGqsjC7P0mtbcfc8nZo9rrFG0Wffzc0fnZrjHPLipF8wKvkp2IjL76yExhXq2dE99T4yMaK6oslxG1Tz4Q7aU4Rw1PjYLJK3rGEUCj/pbHWL26CDhaBRMQBMgnsx9wICN8b9T/THY6aoqIm2QtBkH45s6Ht4O9J9DPF0d69nuPyBhnWJ0UtF5Sc3yukQjR1MkeYRoetNA06JbNceprkNRkz1hI6FprfBmQSjoB32AcMAkM27LNtJuzIiTvTXpCA+jIfs3iohsDahXo7eID83y2LGWpIFMQ+N/Xv5to9kvT/rQYFIppyBOuFfEZiRSsSL2AenrSAib46CRv6X6ik9z3JVFlgeNB7jVl95D8lbypAgopOenMfu5TdcT4Ui+XcvEGVKGhOfylzLzV0KMyB0uoPY5pBDOmTJH8n77k1MfK5NXDNKdP0B+Fs9n8KyqYYEuj1Ntq697q3ZazyWNy/DMykYaUQHNaIt/9hLKmu/AwR/wMJ5+z+H+17/70s6m5zOCFbAc2prAox+7NWwJ2H55LkgLcPzQI/5+pQz9U40cJ0xxaEQQBPABOypymuE93lmcQ5hiLa7hpDGDwdxbdnbY/IM+kwIuPjEFaLdJ8rzZ4/gUnwBx8wx8BNcTlltYVDtWdYBRWbc/UT7J8oOuWPOIlrKzSqoN3KX7jHUGtxhTIetaptaERMExi8WEJv71oKQmwIAX+Yb2TF06Qo2A1S7t+kgYIlaLYfYPhC/KP1jQPPIt30XTIBsA+xJjDEwJ40E0czYRdFwQ3Xc+Z0oFtYZGz+LBUTmUIy51Xo661Oive5CZh3Nh0GwkrvFByZr2iK8uVZfePGCBo+c9Y3vgIJUTN3H5g+JrZIeoD5SsE7GXZvV92zdfvts07RgvhWUrHQ1GY4vmVp95rGd9CCiKnmWWarKmft6nIGT6+MzEOug8qx5tat61QuEq5cOiyCWzeey/dx7JWb8W40JrLKAlIx5sSbfEnAOLvEk5aLe4RkTgWdxc3Fvx9ukjd3Eu9O5QY017Fk1/0wYDcTKIidpOQrf0nGpTJ9Nd6XTvs911lw/UFlZ6h/9KDGw+WaAS0ImOUHGea0r6xts0eEi7xcrrW/b+I6hzptOtpDu91hymYC+ep5n6y6TNWVYfL/1fn/5uyBwOmsfUc7a1f9DN3m60gCT48OFWYPPc3Tj4nPjJR/mD9kc3pmS+5EFUWVBubjz+8CiEWe2JgXRN6iYkuiKPKuokSRWmKglC5/1JEntcSfihTy9SLmWuAcMDLx/3sO/QSvyIZHI6R+zrodITwb0w4+IAxGxLN+/ECHOgT4cQ1j2y0TL/3S4HVrjMh4fsHOnSCNWREY2AfPVACd/bZwkhwy0XTYH9K3AVVMyiffR7GQahZRHrU0aqN4YGcsvHMeoN1Z8mRRYxQ5oUml+vG8/p4cytKIS6dgFCt5PmbGOVm590K2hluXUHVyx3mr2UtcjR3bEOMsDMF/r8NjXzWyUTiDEGnY5B1NHPYhodlD4f2gneoyLyWv6/7jBo8Q0bj7cuXUNafYH4HAfUR6+pao7YP1ka+SVoucmQhdorzXkR2YxO8TUOXpT7uk6153OUEg/WxDL+L/Fkq5lnh0QEp9vMeLsOWh3p1DK4jIYbVFWRBQ5HT0ZYHY+UkXtPIFcNNhIT3dJ1rH0aNMRHEOh2uGtN+eHdiqc2VaRSSD28Xvj/BMkbSnGgRsA5Yjn8ne+xNvtI03yizv0rdzlDePHC3xm5/Lz7QRzTiaE9FG2s+joYe4BQ23dZmP5RHSV+O8rMU6ugQNrh7u6DDbXEgysQXg49qdp76l2PEfdTsBxn961BLXqI29GoFyFPs5obNpFbF8MdvcRf/x3+WK4jQDZzb9RIKjj21/6sq25F9ZZSMSn614zh2J3LLfuCvRkBnzt87LnxPDjjwjTH+7VgZetbR+q4QntYCu4n4UX2OjxWdEIEA9lQEpF56kwZExYT2ouJ6z+MfH5y7Rg2jX2ohJqG/Ps6WlddkxKjNluHWYp+3akyp5lVuHGXU+955vFY76lWpOCJrvRvtjbpqG4XthinuP5gNhtJDLV++VrbyWI8J0DnYnWSZbEU419bEI2yBWSfqMMSBIsvHMKbdXfGjeWFUubkzETBBZDHAHohOgQvYzLfTsulW+C6HIVRthjyX3V6/wrlRSTAy4tQ+e70Esl3oeyJsY0KPQnOZOsfJllBO3UncghBmvDIYAg1TA5P+G25KNd9wmz23khaRsjHPNn+lTMmVz+UJReiZRelEwnqx4y37BXQLzhV0NM8YC1APJW2RaIbx5rQnFjrek70EwDWZ4Y3lncEi3/bEO8piEUkA4P/t+D1I7s2pNopTiWvy7xoA/GGJK/GpbIN1AU3EyWQTiTEIeFkQ9w2E+jlQlHA+KcwE9hSK/GV0rfTCwRSx6bj2knIeGkBzrikgoQAPVONoDYhQSBvc4EuSa+RUuA7PSSydB0ygQ/CnJCZViu2+j6Jh/xngaBnJImJnEMnJLa6v+Ta/HBhoIvPbssaPirEBd4Vp19QK2DbDi2NJs5W5EoNnXjnP5+vzKn4AAFYso/mW60C/KVoW0DZjXVDLD4yYOFNvgsjyy3dC5/jIz2POEAV7Bz9JJqOQpZa9PXeGrOHlE4df17qM07tbMQixTOvZqot8a4jTmtIMoWNOUS8Y1x3ptbf3wVhH2UZpvj9s/IQggsF4dnDXqApVHMUR+/UuoOc+4J4ApEj4D+aHN3xPpjmjvv1LM4s0wkuBhaCqEER3+Rqqlxr83uWc9P1qEQoD/bqUD3zFKlMLJXtqmGOEJx693cjxw/yC8yTFP3xbPJ4TfyNeE58h2V6wTC3OVkprC7b0nSTuIp/z2+hfDpruEpjqJYfGwFNvL53GvOW4AR0Vn7nXzRHAVNY25Uedat6/FTh0iyi1Ui4sDVSkCYEcgNVhC7myUypY1idNXwWBqX2iBt66YrOl9zxAKys3hpdFUCAcp9rFEXSqONL+3mMFLeEGLzh5pGXK7CZHFU0q47MMHh7mM4NHH7KlIZy21ci3HtQYGXkAAvRyhqMNufI9D1F+IrLDPHaWxlhMp+h2nq+mSqqWc39eqi3dSHMKwKATc3F47giwR7Jnv+y40ZrHKfpLOmklHZ1MiAX2oCqTu54TfAPiBp5Tbqbp+q2rEzK9HGDJG1p6INqjpPldTijlluss45Ylnv4vaWFNwVDaBcQiuuWeApSFd6ve5qUzNg+q9qMdzlH2IbxfJ+Uo6sunnWj/J0wyj7tOVbuYhaOPx5Ri808eyFEX+psw+Zo2WGooY6JA5uB26FtS65eYqCYdwdt8Y0UCKtdON+gcOgiv3bCbBiOoB/g+Mj2m7Li9IkELgUFAvRjiQo37QUTEGR87ZtTFQXe+6x1+J2+YUZqTYbQHm+pa8iWJk9Nyo4fYyFshQJ1n6LZqwM42c6xUPkO3XcjBHpNpZYy2WZrh8prDC5bmdxxoWnKzqOREiNiLK4KaTQ/CVtH66F4CkkiU/EybhlVKY2GcBca/KqHI+ONPLCRkgASUHG4VQ+pdWvvYbfx5rZJjJh+e+oOLbwLQPsT/vMKPjSRB3XhIhTPxOicwGWlEPBoHPYQQOtDyVG7Iav8S+AtfgTc+1E5pVCOhxIW/Sq/d5CPpsBK7JXBFfxhOrKytR2L4B+mOoktmZOs770oVgZpKBk28ffsmpi8GetcQ9xzvlVolDxi04MfvLDuc+/O2rtVOHbJuIA0EQm6GF7t8drcl+dX2thjjwytfoNag8X0JIHUiz+KBp51Jy5ibHaGhHasP/Raq8nmOWi1xbTVpPih/jXeP2D8yVpi6bjN0NVEThZgFrg0ebxgCXjK/1jFSljST1vlPxoqGV6xJ5LmGtD2kJq/gOmIYI53f3jt3Q0lXgSp/O4xgLu3dBY7MNiUb9TDFC2PU2MJcW8JTdE8sQZmIfLbPL3tfvzPdGq7eyJ3Tcf0HWtgEntD4OXj4ebPMtIjEs83dM5OEr9tHDhrwlz/OfbyZQ3GrZJKyzAJljhM9TbUcC4jPcL+7UlDPfDGU2F/WvhRWSV0wFY1GCnXCfxa5xkjL0wQb+saFlIK9Z7ydG5poWg2ZXkUQp9K86GGpXMxvggjlBK4Er5kZHdpcJuFHnQOY8WiWt6etmfyhZRA3LkdyPwQeJO/4gvnDAiMmIVHcqof5gAy2z5pqqRILkcRZvtJwUG/NwgZjv6jAxMqCkwDqa9EwzuuPX19pzqlCn+wAsPlxP+jaoB5pfuPLYMZDWR/GFPZwM96AWk6cN6a1JbBRKcOCUx2t/CkAUs+IqE82boXKZ5/yfcsJsTsXDizlnC467UY2CH0YMjGSGruH4YFEQ17p/pTWYt1LjlEZyNDq87AO/vhp05pRroQ0zAxZa9ysJ8M3gjx5swBLCHqnt2Lo0c7aydQ8a/MT/DzmGNT9rQnZjtIpklUkN+qyhy5Cz3N5gajhktCWTxQ0lPFbCnnlV4a0UPA4sa71mCleqWq6NNiOD7G6eLqIwWyzYNMQs5FNwqSV/Jnar/A5XpbzY9nHBEDRwdFgXDEw9SWRSa3E+simIjWWfOrO51RpNYQmO1x3sNFspU3oJlDL4QPXJVDNjJzJI/WEZe5ZurBIlnk0gNzELjM3TuVYeVbsvKOxVf+Pw4/sjRlhiKOmpwGXHUrG47OpcDIAguhhFG9RZ3UTLl+oSuxttWHWN/Zu/Ob+0+PGkbZCJEIW/Y8dDsuY4MigjlWat+Gfrok/dUrRBL1jDN5aBIeejPW1NxZlnWT+vCvgNih7uReK//1hs0m7HDT3eoCNk4WU6czR6pWb/t066DYWfcIBRqppGbS5TtEKxmRi1wpwA2hTKqa+YYDbmQx+0VsPru9h78NaYi8IHFXuhXtBryyPK9RWba4MyTWGYrOvWnwfonPIJScisc63f0VG/ziX7EruM9/V1EADeaNr4JeS7k+KUMh/UNb7RiiszS8aaQ0h4DEUQtMvApT6MiRo9xRbMISbRwROXGEEjFOW8bDGXqafxpBRnhWt2NfEnq7Uabaj2NUI21a3yjCxxuU6DkzFfWZdv4ePYgG0eJMvVRBg9Z3Cx9HkXMXhMBH3WdbGAO+NSRAMfrjEJfyin6aqIS4b/IxRcz/N/5CtvYotj0qCLeTOMLpse7BXfsnDorcAPa+Qj4NO0lshkCT8Db+O5XNEUJ5LC3RtLawhFhZ0ucrBDIxKwfa2ciQapiKYJOvwaqOADJFC3MpnT54XnxgHYlqGCJdK4ld3JTfnjUTupCKs1Vs/smNSjxjdYfWzK0818orsQfP6tUUuy/+UUp5ITTi2bhmwKE9qpjAbPlU52MTA/OM91wXHElbICu+9kdju13IbxHm7u4eC2BNwKw6lE4XOM2B/y76i7JVJY8C4EORNcxC8C0/CM/+glsPhl5WY+leWy46RJbxlxNH2xhEBVMPHRLUPJYv9NO+ImKTdVIATIGzdrSTC9Me8kvVC2qZ09u4VyEyya9QTRbB3ms68BPYNZPI8MFvRE0l42flJ0NwpQBfMRmoqHVboMLXT48nHJElWNZsc5xtgxFrVR6pTLwvvj4PBgOqzDSqrs5OpklDRQnP9QVUhEAEyx918ZJ525qyszqL6l0WjeEfxsQYq277XcpxcRl3NRd4Wobw99atjH0jRJZccEYYzlPpPA2/M8tqkrdxCoZhUDtdH6jYRl/84qXCtbKV+da7q8N4/cCInHJ0scbsZHYTf/YjG3O9zGUZr43EEvUyM+4rh1PRixwrF4AEvzZ9XEFbWHF/ML9tWEWjPXNjiZQoXTtfZsKJod76vBtjLpVNEh1G+Ou+0ROlMGS+aZ0dRh5/jE1t4uN9g4XFTUC/yCw5faZi6ywUl303/nFPk9sjUJ4HWaYOnczQyJzoBaG3dD4K/ZG1BJKsCt7ZEM8pBUYSjYzVXy5pKGRHfyhHjKQSwtGf4pdw3U2vTrbIoDKIJ4CiyVM5Igl60al3I8uwzWhKv0+QpEi/p9AZ762lWILrcD/779IR3hRJ1C/b/EbWG/b16bnE/ZgllibFsTrUQ4ukPIMdf7FQiqkbNhcvsy9CJGOgZrUUnYde7EXZtvxxh9jLPPwYeKax/qK+Z01UGg9WktPDiqHvCA6ZJlEpGAYuMdLBIUP2FcZGyBT9CQqANC0qjniizO8sHnIIg04HYsiUsCWNsJJEjGaYsxLNmhrBfS8nd53F1OoL7t28UhBH/fhne3ApcogoD17QQBUlPTaPTlU9P422vSxb9bc5SJRTvIRJ3M6E0qIbkMR/aevzu1bkYecgGGGe9qXInMYFtTVtHibf5J8eSuo4T841tIMWlZn23K9OrQnFiyHxMkSAZwmy4BCkC/t4i1yo9f8PhU8rRkKtdGdNfRSwZQ7CPyVaaW3JW7R1yBlCBbAP/bw0k8COYFo9FALvNWxigaRrvDUHlUPV+KAPtzgiekbbwXfyCL9rybar87xCOwnXb9oHuzE2sKx8GKaISUfaReb8j9Xe6/5Glgm8uR/jyiIirrzz/Jz0Jj8CsdvTyHCadrer9gzEwTfhqJurkALWw51eaWBK46ACuCWdvfiqTcR3ImY1bqTVhDHOPy6SsvId1CQFM+/Ic6rVern9NM3l6tdjr/iwMlVZYNdjoLr9Cdv3OPK9bKAeFp3ClD3Do6Ln1pVQ2/RqHrEvoTR8IOIBVD0bak5nKtqkl4+FEDB3EPJZAz/c8qeLo4toQ3y0pfL3w6Hys7aMgiX8TB6fK5qdqrFNjpYWia3rW2YS+y+81qvkKXAAUJMktzE2AcEMt7O6a8SY/D1xQQFMtGBsXozdNl+xfues3CuSAjFJTRlBGFuR2OVyVydkNF2jrOojbprpUtDh+at+y56RFf8lfLo1m99dXtdsm6G7V9rO06ZTKVlYVMpYx/l/S9MKDgbGe8plQ+VDW6DwyulNgrmI3wELPcOv7Hwe7t1cbR4AdhWU7zfXVwZJtsgzWcBffiEQiYfeCXTaQ4z8la3apd6NSetcmNC0E1ewypVMGpWSRgbmw9VizfpeAy0dxY0VVbl2HRymb4BbJYl4rm9enUBwa3MW0oHyO4rNRdquyim2ap29YbDVc/3n8aWtVvpwaNMQOb4Hp6/jE8Ozn/drEddXc5tFcRYUXRSc2ksvaxm6UaSLDRWHcI7FamVj3EEJuf1YF3grmU9VgJMIKhcSMaHyROjp/3TYg0QW8S7iWvAM+Oj7Vq56o3S2Tn3jSEMSHqY22P1xy5HNxXiVGc189pEnPnfZ+2tupi/VBQLmZVH6Bx9ceJCQXCYA+JrQ/2EDq5NhPlVZvgaCHJa7WWcWue/gFjJ1BMTJsAjZzd/MhsfQGGTUGIPxtItZxA+W4BU72MvUoIBMTuQfpKZwjOhVwEnGF221vR7OCMhxUZsvcnZ74jaQa0FI2gCMRiirnaHeYbp23V0Wr/UbQY60MnuhQEVU3bfNJm3ywefGyrGLHJ91OxrKK43ZfX9OhULKrkAElH7pljEaMC23PRU+WdkdAlQHxRa4ij3SEYVPmNhoax95aHOkG/8Zchun0s+A0j6c2r2UcvEoQpMpdbz0cFft4hZyukMYvJGcXcp25B/vOkJ4iwABWW31ciMKVTvuuqp1Jv/GVYdYwAjEp3/kx3YDHtyvh9fxfzpopUjjbHspcUqwJa9nXr6pJ+yZw10lNvu+EMnPHuqfntz9RXzLBkA2jL7WJzNTBfvjfmJNoVAtt8e7MydVMJnX600ChoXGngDjxfh2L6HTSX9OznACpttkQX1nbMBLnEWu8kZ7eUNKx5JatKRtuH89Jckf+J6NCxadW/S5bDcg7hal4nCwacBxptx/mUnbC7ygTEtA0QINVa0ZXTrk+YPS1aMZIa0yRDWGxABUm5lpA2w/Su0Nt6JX7gg10bkmC/IesNfEWJMOFEjeHFaZkxCjZY4v14jMJ5fSHb1WJORQv5e1VdBd3pGWZdOETpNbbDhayjlxRSpzThSDl+EH7cog58T+oYc1/0xCIvdIjVoFZWmzbHyvH3iQciP/QDOTQq7qU2mGWcJEf0BHp+tbBTSClRtdFrpDwNVkLfjtfiiy194ZAZ23cNI9rmHFuV8SM19M03LM/nRAVnG74FY4CLg6kOOpfAw/AAyOYU02UTRX6vXlJCmNoHG3B3e0EJUcMXgRZIa99Lytp3LNBU1E66IuOeL1mb4qaL2ABmvJAOiLa/2MMIsp9Tbnm8yFORBddWeKtMVwaat++nHzFLwPBGZndALJa/aklHpUprjCDJ8ZZ0aVLbY9pNCBS4Ukt4H6Om64rZm8ap2Q8+IwZ7y1WRv4/iOcExCAmUwrlKM61xvMhlzTgy4T4dN+JtixGtUcTzhfSLr+Rrpwi/9Nd78uzPqhCQKtqsxn//J+87Y9rMRatZsU2uzUHepHlSuxreBYejAklG24d2NRTmKpVbOutO5n6YyofoGu8nRX6vyaGZZDTDsYSfUjM2+3Q6zhOJbcAHI7BG/kMwgjLvznJZ1dwYnTTm5z57qQASdkA4zqWjEem3t3JVUk1q3QLp7PlxCRBpDtM4N6APomKvaV507ZklA9m/5v4s4AjYmHRgPm7S9bTzDi/ZIfLOE31+g4OeRTT9fbM0NMxXykprT10oNJaz+qo5RtG1Jn1N9i0eSRENmaob34QsowC8+FilBoZFKIeWPaiCpbxwu6+tSfA1Me/6g61M08rqxmdZWA6eY4DmoPk0P4qyQ/4vDdw6VxuiCj/rIMHr8vKoVMxvBnqlqwKJcYNBwbrq1bp3tfG7SIwQXBaXDwE8lbe2FtQYBu9dpy/nPrZ0ubJvzE1tuWV+osKMbggz2PMieSX/FnAbGqjHirzIGB1XqXHoDF66q+IPuIIObGNGKiIzP+2FQYQWdmRGhlv7fU+CsO/aoVDAO++JIdsGgb6eldHf9uQ1AjA4swxe+w+irYo1lPP1SG60wg/585uL0XuaBoCCt4JCt1M9F+BgVAWvm3A2aSgifcXWs49D4syiC6NQWpUn4hUF2wSjGy2T0NCieqKQcL7eSWA3yyZQyeNH8iZeihy9t9/4nu/ETXRL86BR2nMbATql02dEuFUyD0t2hVTSDmyaSbgXkU//5G7nQXd543dek797s4lJUsH1QmJOskHa7r9q2/ObqkgrC5qxOXTPeljB0mUNvByyQB/69hstSAparsuOwVNkLbH5F/B827luLu58V1luMF2bsGwW3rSWSiFWOnsTo/UKTSS6cRv0LcY4omFSe+xr8BDWdOJEwCuaDMfv4+J/e1ADXYX0jngifKKQx2cXIz1I3vIJOMGEPrm4dnV/PhIr8macgZPo+qZBmLchOAnUlCTo5KTG2O4tfi60VYuqHXFfOoIlKUjcKHgvucpd1Ss5kBxBzuhnjFBFcWqSSYWQYL1lBF7qdx0He0DVIqQKhKzpSz3+aZhJKdJxOm7VohdymBU8eUPA+LtQlFgCN1BT4ZLkA/l8dTM9mb4v4kBICLVP6CnXvIg7t+PtnRQGPTLjA40xVwfr/MT0gPywKTAOCibSK29nXh18mL5kZA0RZuf+41rno/Z7n5s1jvV/RzL9bWs5L8gghnwrGZat0B0QGCYXwU+uKSkHQa3cUoCtLu3g23cvAd3AcPB+Fsd0tOWpghy8SV7eJSFyHdKm7Fr8hKh1BKlrJRE85rM3ZoR5BmR1075ycF5kJ6nAUklTGsAR3Ss3miXrX9LdlaXCchsE0x8J4TNip6fUxTRnuIzupqBGzIsv6gJe+F+RK0tn+RFxmXQcURxsA5C3Mcf580YN1Ghe8b9pru0cNnFofgLuKWlIzdwpV8HssU9+MIhy3PX53EDv7HjmAFacEDC+rRFjvl0EfbZZtnpUzILtFA5d76Nrb6cjK4dUrhZaJNdod4+z8bAmOqBDByny897ZSVCJRdN7d1353ajPiUeZyazRMG8tTujGCgb/1njlu7xH16xaDQlGY/QHO1/shrFuAKm2OQjt6oPcta8CWYI0AdeQD9SHfZeWzXphcc3NRy+NZiCUZUzCVlSMcLCi1DxqLt1a7GoOzjr69YL7oWWfjIISoXH8YoqhIPLK1YZMwin1Wf8BzFS4Zi3yhrcjZR7Q0z05V157DXOYEglFtyZOs0Dx1TL0IrNyOMNLQdrgh0Twqx9GOD6Y4wEgEqpQ2S6a8kKSsErIRHe0RHbgp+I3QtMALvWN7J098sQR+b+zG1A6Z5heDMGerOAhVzifYqz91CFezjzIYU9H6/G7Q5UhAM68b2zhkEO05p4cwAZeGduze8k41Y2pxLPcAMaPZX0n1z4w0gEMwNp9kzHb+gLExL/pLNYZ4Vs37SAr6LB9UVk7vFRF7E4GUXCN5LZlY34RA0UTYIifWA=
Variant 1
DifficultyLevel
540
Question
Nerida breeds 4 different types of hounds.
Last year her hounds produced a total of 32 puppies.
Hound Type |
Number of puppies |
Beagle |
6 |
Ridgeback |
8 |
Bloodhound |
12 |
Dachshund |
6 |
If one puppy is chosen at random, what is the probability it will be either a Ridgeback or a Dachshund?
Worked Solution
|
|
P(R or D) |
= Total puppiesNumber of R and D |
|
= 328+6 |
|
= 167 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Nerida breeds 4 different types of hounds.
Last year her hounds produced a total of 32 puppies.
>>| **Hound Type**| **Number of puppies** |
|:-:|:-:|
| Beagle| 6|
| Ridgeback| 8|
| Bloodhound| 12|
| Dachshund| 6|
If one puppy is chosen at random, what is the probability it will be either a Ridgeback or a Dachshund? |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(R or D) | \= $\dfrac{\text{Number of R and D}}{\text{Total puppies}}$ |
| | \= $\dfrac{8 + 6}{32}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers