Measurement, NAPX-F4-NC29
U2FsdGVkX18I/ldSjqNXKE71mu0pNA7qsGWm+64xykhzQpgg4SytcMN7J8oQFm3Dni2+0hTneDe3DdNYEjAXq1PDjq9aSKKD/vDYhIAQzZAeHnQZ6YOG/RirS0JNoHbzDzDuLmFJC0KSyKvZwmKcMF3XM3bdwbG7M64+z2+Z0qYnGYHyNYomPoh9Cb+p7KjUw4K0lUMG5akuCbP7LypxyDP1CSqTEGGMCu4wJ0DN5M+Ux8pFGyMxXKoxvskZWVt6Sq4gRKpVcztSN79WsNpUvZ1JXmAz5ipWDn+pLej4AJdtojwjKfkuoH8rEDP8bDLWKSRyLuWxhDPWBmHB0YNRdf1vayNua3Ma8lvASFyKmdNWvwx+VjJdF78ImcpCmrkPtbBRcHsbXVfO5jlGn+bruG28AVH+I1/obOhRMIwha1iLBxhhcDvVhaNUj/GLs/JrxQjE5qzZnQE1jw8Q5W1vDa6jDjYOYu/nG4pe0Zg82aY3U+6B84foXXIm2h7khDUTmYhmmGUkhVeD1itnTtIT0PlmjdjKKKOqu/xIzXC2WW487Fdq+4G9vIzXbpLxp5OL5AN/rhgE3ogWG1utRlOARx36ychYEs8UOZUkF1GShptO9DsKQkIZBJ7Ubc52xLt4mnj2FsG3dPOSAgKQ+QcTbMT6n2FGMRadr2zBqxsb0GdusvBQIP++mf0bb1gMV2RVADu91Py6pMkexmTOCn4UydGvatMswEPYosg8Kv8xmvFQWHGCxWGCZkjn7z+E3zWktIksnQEr+FwfFJrcwq0RyPQxpjJzJav+xG4pz3EwYiMCkVfILT8+m35vdXBcfTkr9EWhY1I87Bww7LUSH4OkZhs/n4w6omOyCSNVhYzqM+H5afBHBSpyy40ekA+6exYQJB+MTYobxf1zojCC5miTavgUWwNDnmCkBY29Dg8tWoAnRydkSiWVb0g/aiH0vIMdAN92X0d7g8sE28I27PLW+etWZHsMSfPTKAY8U3ysGttLIwEJqrZUPyiXT9tdRQc837PKR5m3t/QWM6OVqFcKJDWU8danVOQgo53rYIb67qPsWEh6tehKdhXKlihnlwtiKHqoKlYNkHlXDt55yCJKVESn8cRjUIR6KYrWjC1me4YAhPsbL5jmAU4W2+BFxlVi8pHkPPMve0Loi4inzNtWL+YEowbkDsPemdp+XxIlpvOJHGX0D3uwnZrI3jcd6BkXl+Jw51YiDPUWC63G7nKJFGFFQCheg6HITAPGhGcg4QQ60mfSvBMQz0vvC8CXuOG6QqIU5o3qqBjy2p6La7tw/qeuuHySHURLRJksUYsSXUhYb/cqonkHQOj8ymHIuVoW0YEZdpQqi2rG8QlonHJQXCnNwDCu6+px/5HeF6UWBDVi1p7YdNsKw7PnGHakwfBTiEqVvYMKLsJmwN2cAtKM65B3f/PCzR6yKbA7alkZrwfY0edG0yW0DlW6kGdSmoZ/Zn1oFm+py8nMPC8dzzSwNEMw+3LRZzmV7F3iO6d3ILNLManzNQReaEV8ue/r/5toFRafIQdikVcJsX6+KQpzsosLCcgqIw1LB84Ozc1U8yOd73r1SdV+e195PlywJLgOjB88RLt8pawnHOX0hNhTVdTiarEt4O3O35yEViFYD3XT7qiF+8p0RFcRi1LpnCbuwvAYIA5Y2P5EHaeIpi0xRN8fujuMA0/W6lFHLTLq3D4IRBqIvFLasLkmVtUIAqA48Y+qtSlwt5f0RwvclPeCdYNWtA8xrSuJpDcibPQu1+mNKswX6i7segWy6G7xfm4+I2xm6hYYQwl60TkgR+L6aXLjZKwxaLWklxnPfMT/pOd7X2oluOTuFtx9Jqj/yPqSEB5zgPcvCs2JtzzEngUTvBhxQSmLYzl41pxF8nE5vexqivSo5TD8bWeWtGx1Ok4OPJuhRJX3CD0JFaCuFjP+p3dA87MYDMc6Atx5plB6Wtl8sDPri5KkNwMdG8rSuvjGkDodNasi8Lt1RHjjbJ9K1Mk3+dyvPveeCMzQptIoOoV6RK1DZkU8k9IAGXvV1xagHkJpRkGTzmDdg5wSfh47zS9ifFlfXCXjgkrHWkhYEGBGPudIEF6TjYHmU67QNkn2zKEwDoOhA5waiG8me6n/jfnJY4dfPgahmi9cckrukMwVLvENhx68kpIKsCDTlePlDwq7Rpd0PfUdY4htv170TuFfN65VpuKZYRmwotMhVG+qp0L1j5n8xaTHP0biMnWoNEacXvSX/xN2FVy6Qd/dLoyYZ9cDTUB5UrrSMsSJrM4J0zhXQbGDUAtlz3BkdwwgAk0Qtue8wIDXj5HkQJylo9kru26wvPPz5YHQtn8GaNntSfKn7Xe51S5hliCHDTF56bmDvEU2zsIBsuCgwOFFhAG8wB6g3AFtHWcJTjNqO1eAdppzmkvpgTSju7QMGt/mTOK/cJrWG6quV+xFUDsbxp+FlMie+jwL7V76KavR6v/Cn/yRTdIu4nX3ZBejXelBPdM6xaCpM9DxDrCQFLRKMiE7zepjcFC1JH1C+LNaP06vdiaNoxmyRBX8YWFoQBG/d9cjm4RDSA1OQSwysiJSJa1yv9MSm5X5f4ssaFtFNj+kibdSWBtAFk1r5HY5SiELRNOCbYN9hw8tItetfoFNEE1ybrF1BSjWss746e0CyEtdfVQ7jFBUJ+7Y1UjsHEXOd9RgSY8p+z7l1CISDLPmainmaqrfJTSuoagM+vZuQm9FjR5MzVJvPnqBfe+jjTQOne513hTjv1pfcCiedwPe8lqM3uKTj9vX1KkNhFX0VYf5heHbQM2IKfb4qQeUk7biQTStvjeVyPh+ew8O7sb9vJ5DITihJ1C28CjfyaSxTFZ3Hd8qLZO/SlaaTdgYNPWOya7JtDVP8A2jHGO9TtBTcoit2wgI79cyKnX/6+68rEkojheTcrJxE0r5MnLHWCIF8f1M3rWoSpKvoRySGOQ5gNwRtCCFQm3m9g9S9YZ6+4vlSIcYO6gZeaYST8fEjA1ckRfddv8y73+G9oHCeGHlrcUi1hREFs0efM8aqB3l6fXmFtTn5HiCoZv72vTuj5Ubv0dHhN3t9xWKzndMYJQ21LmIRqL72TL6jUuHWZuFpRwMtV8EsTiPu6dSub2bQ5l6H9V8HxgPYTUORysU/8atqMZT/TJNbslO3NOHcUxBw0eQcQYus0j3yN+goW9DPwYo29163ToROGVycuxmCNjJy2grQFNuLxQmK28GsdZ4l4rJq6Tpfe3/LoEje1KcFgW4vmYbRyoMp8mHY2zI3BCHxCn4zypKFc3CipGxB9RgG5TZRLYKrWB/Benc1jVAGVhpvQ2kxWv8U/OOrB5qv3OLYqM9ixQPxUYuDHBLVrqruhGnXTVpOLjHHdOROyBfKwvVfeY26ZpI4rv6PixqgultxG4/LOijW1+CZZ6sobLM9hEzUqF759fwh2CPMpn27LCSLa2LRVEPm0lNKZ4eaPXc+n5C2nqka/5SeiVb7ZGVPYAPuNQ9vRg1WeIOGH1DFColgeUMkAambfXEL8PnVQ3dcZgiaoN5mCx4+Fox9+SjYAtObx0IyfCcPDaC4Dw2bu4BF0On9/RMwGba2/U75DqeAHJ9Gv0kRLPOjyvHw5VZALhV3V5cSMHikGYI8wOSFEJ/nVJPYC94bAOumzMPjbNvCEk04N2LSPZ1a+5t1/7l8BFRbOd5Nl7vJZ4UJTklgtqJ1F51W/kq8npMbmN9LyjWFX9OpA8Zd4QMvp59AZNtRut3RVzJlW1MackhU4h/js3WBG+5DQx6Ngx4n6pMFOfg+YyWUocJEJo1KfjWgkJzKoHiWT6pANpGdpcJGXouKFm5N56CNM+N9icjiAPgTcFqW8xpIq8W9yn03XtnAEPuKQWyV9gd0jU7Mpb9Lo2LHOcDmOZsgYTkVJqSlcj474hRCbiZ10iHHGDzoaUXT3GgCMnFVqWd8RgR9tZUaCP9tPiPGPDO2+A2t/uqL29wp/s2o0aw96nPzJkp1iFqYJdQuOcI9vhudhTw40h+vxcclkQicuZGTm5ohn0Wnyb20RUE47Pu3JUGoasnO+mVUFSJ8l3Ytmnt7s+/Bls89Ib8jEp9aKoX5g7XXEf3JUEFIbFEKdaFVfL6wOyIvBEnvYBURuELm1VqwwnfWG5k6vHooX6Sfm4IkLhI/C3/AjAidTp5eTYFpu3VQPjzAWN9vJ8mSbbUL/+a6I0qu6KL8Qywy05/wX85UqmI10KJ33m2msjz4isCahhyMnZhl4ohLmcDiLJOk8WfEmu2PbnuSof+PY9nugcE2tOOM1Ec5AgSvgvnhdjpVdDvPllDunoboVc6JUoSdXc1eZ6E7G2mrecv17XOrgxR7dX0JNyeSHXpoIvnq2lqWHHN7bxhSQCzByyPUROD3IDaC/OXeDA6W8SFZHQNLZ5FBQr1GiDCg7VDcEQfirtotHPrAowqphbNzumUhPR7CPL44ilDAGX45zaIQ/21mSSOimlBS2jSZadZKUcddrbyS/kJW4mHfNn0EYwKu39r6IiFQLkZ3D/B1aAeTtoSxfR9CMWSSP0rVKHvYEiyWLmd2xW9w/htNuLkbAi2KGrjs57rpAGhso3CEe6PsgrsviA42pKFgdMFwSRMZVLCOGpl4f51uKQ6Y5LmdyK/dmZeNGJcpzhOPxuvy8X6gjrSAjGj/+pH2dtMAIB0Z4GHo0ykV/h8tJzbDiqFcb7GweqnIi68Nrz+4CA41HLDJIC/fUSGlqAiF1hX+MuNLswbNPtMAhNvlqHMpYo4ReP4UzafP9HRFgcC15MZGzXT5raigjxiWwsvvqeNzSnf7q6QBMhEVj2+yHVJteCUvqy9Kr4t2ISUbFnbkHSCDdgfvZXp2D1PZ3zzU2yjkzKM8n1sc2L3uCsz5tFkCYQU6EOUuXQ0kYAOhwyaNOBWQcO21ptyNvLknkrRfiOU7Sd+fDyyX7tSJgMXqeVdAsfNrVKgGfmbElo5OsIGuN2vPSAOCb7c9IBssIofYTaEoAZzLeSA6psmVFxMzHUDiLr9w7ZQxohOUhBK9JZ/Z5plr0ohvQtWTfJmS0lu3sJIPa6oGyfiLh2yqdRhoYJ8JSTm+CQBc6UpJTxyBbF0fuWJGN9UpuG9WAHk6pg2qwvK7Ucm3gblQ+4XBueSvQz3wyRwYimoyI6YMQEiHtYA5a5RE8PZI06w2FqRqbWMx2YIgaA0r+8LbgRU1upf1DMkFfBpai8lRh1mejVFJADdczXYhyJzIMXn2+1TDt7cmsTROFc6+kOff6/1btDEYxS7LpGL89lb8QX1ygRC91dl1OG8ISU1FRAfjXIJ11JyNuYnFqPsLXBIoPJHQgMq0KMgQFbM8A2IVFAKcW8kyGUN9HUH+aC/bihPaktIDIT1aEXlGAYBJ7bic8L4ahk98Fkp1+6+6M8WwUPdAnz9IgkO5sn1Z7iPGR1H2mJL6pgEzW7bDvQkVh5bZ2aMUQZDNvZjflA/nZC4KYSuOiXlrMuzieRrLNsdjm/kSwDmkUIxsk2cVd1q3aIjhsmt3s14OPmn44gwRJb2WWRpxtopShwkZlvatlMrWz6RasolMDEUF7X799TK0PRNOo7pHjx7S4WaXfsyX8Pe0+EggyfriQbiqjUx8wSRVSN0F5QdssUejW58iZPvoX28CA+96gVQ0CfEmgTXRRMNOSvXJNCdA7iVDmNyEd6ImXfAh5qzBHARTNrRiGEYnkl6Em9ZpjYOP5ngfmQJRCEfqgAday8Q6a+MnKIWcMCH66RjbIwh9jI6baK8NdedIkCAcVp3Cz8F6PSGurvzy0FiioGf0FktBRiY/zD/PhCoqZljppDaZTcF1NWpu0aE34u3CnZgd6Cza6rTgjY7HZr2C7uYXNQ/JKColb/vh7ZRXx3+ztjKy2zj2su6xBwjMT2V+PjGuJBxO+25DfTNfGSuGg7YznNnFheaseg/zxFQ+3i/nkEr2RxoUwdjtu+lZIWqhF6D4mfFW69w7aPJOj874Re1ERvbxlQK5qEUkPu4TOfix0Ob0ZgFqmO4a8tC1QGd/DqNpTCTODVVBqlySK0OU+QfHXwC3qH9NRMU0QQzPeGfQH5DxZ/huaKlWjEv1L/Bcahbz/kwAnZ7m9V/Dm3rX1/1EbXP/KmyT9Bv3BWyp9td+eYj9Maa2imuIspUXNstbBPUJBs7E7F7d0vyIBiGm5uvKMhNxE9QlZ3RM5IGaaiZzXmVYsJbGO9FQL0fom0CihzYuxegYO7QYpQWvQg0TIuUglY8ZBAX9UoV7C3AC1Mmi/VKBHqUHEi0G5ZpaFIMuHYsNArKqSH7oLaDfngQp5fIpKhomRmycodP4ImABnEuU4j1v4vSZTaCCj04zwvMnbqrkkQn4TwuHaQCjqul/dxj5K1ZxV82UaPSYX4eTHe9ME5tMnOx9+V9mSgzvraNN4/V+CLQdzmPhJmPJf9jLIZrBFNlphQxJ1EZJbEX0LGZYuE2Ks3LjYm1ZiwnsHHKi9BMoPftpic/HkfdrNYsr/2tGzJQ4PS0JHSCV78t8DVeD4EaCV5UEutvZBafzkiRMSgzJxTdZAezqrL/zbPIHN3ERnJIuBDUQATc/CjDAnrJujphu8AHPQ294XhLwHsqWX5fbAzvJIucZ9KVZqoOLRnKTEOL8EziiIOwa3lJFCA9+LjFHcYBKPqNrWUkSwJoVEZxU5zYLBTOKBAMWDek86W6SHGLg2u1WOXjFc4eKVyHMpxyFTa98g7GE9BxgxXGhP0UVOqgAO4iMhj6ZKUQKogM+AZ7f0iaNw/y3PBp5a8NLwj4Wm0ZQ4Ic8+XN3Locm6Cv3UlJYMeRAa8W3LuBrsYoEgTAWJziuWGKoRVpDckZv3rwkcnHxLL+F3/7p/MQdy80ggWtggJJpQCFonqY6CjZDq755rCeeECn1phKLspORJWVtqD8oNzHxwYyejZ+vTkX4vWgj3tN4aOntQUZpoI0wfgQAyplaeBn1rIm/PMDSChSMLug1574jnTz918Og+scR9tzYASAXPORlvVGxVlMSY8H9FcEKA//g391pLVHz4nRSoW5duXjOldHErj2S3gcZr7UO1SdFSQ7KtNO1hghRIXeFRd1kJgHlvl1n5ZQyx5UXHpdVLKrpHFDSH2vq0aXzuTaJDfVjfcdcDQZ7FM9fOPSlZnGcOGfY8kr2W5gdoQna0k8TNWSX3upJ1uzwthvFeec3qBnzROR1jzSoemqyhTAMFThASDD5WySGZsLb8vKSQMsyt4eGrDTx3Oz5GENPZ6SBlqEpdnbaI4LQo87RUsEdIznph+j36R7vZtV3t+3E40gaVPQJwKTm1NMSaCOFt0Y+5DKEetmv/h6XqIiejtgMAMnMFXXVeSo2nvHOFWLb9Jga3spN3GYknJ3ajid52ePpqpPfr4CN/3BxisN2Mp11C5zGy+zpj1p/8fEo3ubhcb2k4FG2Pu3gOPvATkrEyTH21L9myjSISAoYeK1fDOJSwnrmX1m9MiRC3QYOGB2himGgN0u/xSHFPkoQFXkGjMQWvSZDRDFQEvHSxeulfx09H5k9s0XwqFl46tCeG9b2J/XrKkPHmBSehpfvlOMNLiZL+etI8/usTurUENAI+Xj1ablXTncatuJPfjQmmH5A/KHD+qqi7jRFasZXr1FdWq8ikFHxMt3TnQcsp1UVC2kI5fdqOJ3UCN7b1gzvlutS7H6Z1wMp9SQCLaWg6PEio4H/H/bdO4MroMEl6h/9IEyyJaMu9yJRAs0+TfvegYiH1siPhsb4+cAzAXNqEghBw0B5DULX36ZX7f3ErlZ/NtXTCAETEnR5RxDbMH+1E6KjAYD+kxMjN1+jvzNJP/9+qO/fNtBdV+mTFxeOPzNW5L+Tp4pghXJ4RVCz280dp76+mWLNJqswmO1VgdkloWQXyZ3WhHrzM1awxPpoRiZxOm9s+5m3e2Rpcsjdmd7wPQAuApmabDeZ8jQaA0UNOPTJjYDGDtlAmlODTpCUnVlQPjR3c78yybri+a3x0M4ubDPB3gO0OiLgNDrlCQTMBR4IJ3b4NJ8aodPSwwiIz0gy8maAq5DsKSw234q+kjt/s0U0l+QuLIdh5tP2PpZ6cE6kUJsWOQ5h2nJrlGpJgD9YzxR/HLgJGtFegpBul3iXdNzKasLPXOXjmBHXmSTX1uxjj+Qp2s+GHMCE+GwYcHW71G6cKTkOo8C7DZF1tV7KkQklQl0q/2QNOQLTk1RSFFImQha9cwq+GOd+KWJ/8SicYowojnHXkmCpoxeMIFt250gFGQEzVUMMLY1A+OERRUmgo+MVZj/DexlHZC8dT9rDTqsgWTC9iLBdzr3MH9eEL7Sh4wzPVZa9scTwJu6CeheshzI8cJ5yEWCZFRbXEorV4AKMV/7QRZYGhiZh5p8MxJtDrJftOC7HwRNLlPdrjJFseGlRRKsLxL9huNDPmT3kF9L9mYW3teN9hMujLRewwIUHKSnZf0Fl0h7LKZ9MTQ2IsxSpXBEGgUSBrq8wAkdLJeEiPxWCM52Q8qny+GUXc78o6Y0AK/tB0V6gftomZK1cxzipOAeykfHvpb31EdCP5VIqBBqGb3JxtifvijLTeOW3sbUTmT8b0MzikuDQdFRnktzMQjzhAqylmXrk2P/KvmmLX38blupDt8ZwZifshuaLtMSgBjEhDOfHnZeFHMX/tISxDHJqeZzzeYlPNv+HzBNHt4L2kBWpzdP+APe2ImvbYaxmaHBK+1RSICgM8vkN6ibDSKrqRkwhppDvw9orz0jJlS/C3/VvanfkwtH0SGeNCBe7bIuP5Ugy6Yxc+UTvEvDG2Us6c8xYHz0f/4xR5jRnu7S0Q18MhHGENnaURQmflRcyjpiFo9Xw3T/6WXhxjwG7l74mphkyCdB6uCl+jNLgrq4s/nWxbsLh6EqFZl5oWTCWzIzIfWQ8odiSEAPk+BPE4HXLrYlxxRgeM1IzrCkhui2XbTFF4GpeWxTj9dVHi9XRvgJwUqUYoDFeYLOmQb4TbBUBNxXMZZU5dZxldrMPToHJkiMmAMOGX14SAjlPDtY+Ogf6bs/0Z5pHobrZtASfHzHOEmSy+5di5uunu84L1t/yLOePAdU0wQQgR5gEON03RI4JJvCsUYTTLbngk8TfD8jhsVyGGqYuHImOctG89tgIQTySTUWb51XNIMx3sYU1e6hPemDiXXH+ZoY78O6yJnPGkDYLBP3XKb9FNmwrOzY7ObVgMLh6ccnTOdo/aWXzsnwi4YLbE4prugoLme4AciDEJEMEcgIBIBS4BKVakFGfqLT9GLDsP1cMVI480UwIsvJsLLhcYf0i/YjocDJMEdt6j2U30f/WFG/gmBAiqNKCRo67/WlQShq5E4q8vHoeBk/fxeZHq5rxqoe0/jJGov+sMZ4Hj4ILVuSIJwMSNwWSD4YIJ/UKKoGsEOKV2TtDTfyUN66uFkG63KEacPC1Zp/H1xOopJhJtbv+RLrlz3HS3rQrXs+k0WYCLeqAlTV049ncKzK8KRGSbNrHv7fMQy/YNZIcAmpxpOR3Lq5s+MtQ8GotCqVg2dGXkx2lyZb/keblbvPR1hQS9NZFpi5eDHmwcS9tFeOFHk6+5pIU7H5B/yDjnTf+90332fynfiPUCYHGZhw3kn0PplC/USSIoR/qkvQ8/lCqr49yT34PVL9TA210Ah0s7+AyPfUUR+r/+kiAlys1MW9seq+xcXoh5j9G4IBWbsPcohTwz/bxhFkkffhWBWX4YFsDp5hKF0i6cM88z81ihm5tvLT6OTZuktWV4TlCCmInu9B+Iz2+mVUKBDiyxnsu6KHW5iyUORQOa8ZwoZlbLmNvdAJaKRKAz4DQGrgd9QJFVK0A9B8rAx0baSrKDHRS7yS67NyK5RUeXtgRVKBsvzn0bAfEaW9kX3B9lIc+0wd3Rz4iooCh0epPkKvTWD+Sdj9C3P9NLkGavo7iCuKQO96953wBW7wS8EUF/GjO6djQqAqJf3lQTXKWK9Z4T4/9aJB2AX6RamUaqgrdqsNQ6TcPve719ZkvwD7UuW7EUZZoVE0TRrXdVU1yuSwprYr6Nw1tUU3ECgBJcvAJ3tTXHBdC+4XFdivdYsMBwIdFQcPI3SL7Cysf7wSlgqWV1FsmVQ8SAiDVaVXGZAIbExUkmi2ED4bTvHScfkPCMmg7Pdtr64gNxrJxzbNXMEjKG07LhoOa9IvjmrSALN71NJ/9wFsCEpj2GekmlDhDnhIpZLP1SEdjgn2KadssqjVf56IR1ltxxze0Y1EbrNxjj0xSviTFeMNzCJ+OpVQIewNr94UD9LTci7NztF0ORrpUGjgUnOOhsfnObrN+iCsINdXXjpN8LkAvh0lQ5Hb1XHUHO/0HY2B/lYjVfQdkyPyi6E9XhNG09b2pLFvQXmHngC9Nt4Uq/HHzvNX8k6BCmLvGOpTS/Q7y2djbFNlMRXg/MLDkZosUtxTb0S/G+r2KqLu4tXfgtPRzqYzxC1SLVzx86FC+u5u8SW5NN9fUk2UCsFRjt9rOszs2G4/0cGJ+hnbiZEgK5sJGmnv/4jF/TbHj3PJs9Yq/hm7aySn22VigWROi898ykrbbmCc+jDWE+eIuGILU1MTbz12klNc60eZSxE8OVmyd5zLJ5wyeBPHEJitQld9CGFXBfObyn4Y+xBjOKsUBNt4oWfEfnCKWL7uiA2ri3q0O0UGRoBfo90ovO2qNyYdD59YOcVlUJIEKUnc6yecKQjeHIpxQdLX1gG+JVcKw9b/x+kdbIiUpK+fCLwVA3VDdxBSouELu5GODksU4JC48QwvG+8aCzVApo2liXReJEz+XBou2vTBqQp3lJoNSA+KgirGPVwcfyeYw4LfbZXSPo4a+rLKzReQaXqs9IijfraCfop1dmRCKgy18urWkuUneZU42tVguES9SpKjToQJ6465pXJeYJVjKz0DD48PkbgXJNq88BtlF1hodmE5wMM2RhuEpUm9PSlz+iGdwnOtYeip8z/IJgyfJPdmLw1sJysdKP0rNb4hRdBfvzowEZU5AGA0mveOHDjN5cgsK4vwIF6ZGz8zLgZ3Y9oCLVYpP7fegI7DBBydkl51V3S5UwXt9iLGpyjUAq1fdifPoq5TZy9JV9wvYvtK8qjNyFZhgVG3bhOqgadqVVcuvi+qVIT4MGkdvKzRd6xYlZemrbhbLttBVqrKfET+pCBwwEhV4HZfrWfCSpcG6HsaFxz+rMkS6CrIoLeIfHrEBvWePqser941ekkyqwO6NqIhdPH0SpJTmR7xIaslQ2ZRn6ET3dlqXO3HQeUF83jxCE4JVWLSsNxHzJ44WRfuLl6GeUbCtozTfPh1tFQfliI9Kg7V4dIl1ZOQtpEQYejA2iOY+hxGnIVzp9rkIOxzF94O6urmppC2gYX6313y5uolB5qBvnl9ABynnOK2+CIBMh0m7OoLWPHeiFeKMo8ciqk2bvp7ompcR203oBOl2yiFPxHACjnPBwcBPKOsY/XE5A9L/hYYljJXL27+OPZ0lrX01w64uAAMnSWmFhT+7lFkL7nb2e7h7N6kbZlkz6qMBAAtcYnly5qOwWro68vh0eELbT4B/smq+TxE7HCqD+chkW2UerI1U7bDH+lURVBjDjMtf00sWsW/+uJfBtJWkTsmxA25Bfn2+jjOqaKsj5LdPSlfWxMRVx7P1BfOciZaOWtSUfonwlOIf1bE4pwHd+EKtN0HJ0YjfDQ6RYeCNm9fqs0XuVxTs9RvvbxiaHGO0QGyyjQ5567NgBECgJIJHAcHs+2u2dhs19uc8SVcXaBa+VCeBNtJF+xavGdw7Ow18D9wdjkvkVrD7DX+ED+MFkpAQTpdLx9yMqIoDENIw4LAw/6wZbcvxQzdaTlbZ/2j70Ar4MtogYxI+Swr5XC1ZSKVn6L2yuWaU5kzd6JPjM3IV+w7SwpTSjIwVmgC35P7kGMegqPfXdzYQETVKrbwaMST151HHt1cwhHFqCrPdomSs5RsrDfhNZrNTTnXFR5qCppWstQSF4hD6QnYpT6NfFzFpl4VO4ujlh55Uy12RaHIcx1WqxOf+zLzle6dr2ip2zW+7etbDQ+L2+azXCtJwmVwXo8se0O+lPv0WDmwjk8gNctQxjU3V51326Y0rRnSWuU1FphpIMzx5clzJbyVr1W6gjGvZQIxJJouDLxXgOjd+rgV9I4P+ElvaTQP1/fZZNb6IKAL81AqOMmw4xcrYCdi3uWe+mh67eSOsTAx3Iz5BZFLDXoIkhsfoot3Gj9XC9KCi5NwO6GYKKR8+QHY4hOt6ofXAuf37tWRGj2lw3JVlgZ6JZpcrnwj6j1a4fiqETy1Zw2dUM1u3X1txheYFs8b1XIcxHJVi+T4HI2+ggs5B6zjzXN62C4sDvyNROAjHLQ/vcyrISHGuKdnS2R5UQvFYJhS9HENCeD8FrghMWiWftv5V2u1
Variant 0
DifficultyLevel
711
Question
A wheelchair ramp is pictured below.
The ramp is in the shape of a triangular prism?
What is the volume of the ramp?
Worked Solution
|
|
Volume |
= Ah |
|
= (21×7×0.4)×2 |
|
= 1.4 × 2 |
|
= 2.8 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A wheelchair ramp is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-NC29.svg 360 indent3 vpad
The ramp is in the shape of a triangular prism?
What is the volume of the ramp? |
workedSolution |
|||
|-|-|
|Volume| = $A\large h$|
||= $\bigg( \dfrac{1}{2} \times 7 \times 0.4 \bigg) \times 2$|
||= 1.4 $\times$ 2|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18A79VSxmbqAnnbqH9tT/p4bZpTnpszfbRUtYyvC7M5wG4LCOcJzbGs0DBG8q/lE6ANGJ8Qk4k4jSzqb+nlATaRzGcc2z5MKjvbwbwHJW0eYr40QEotJWDB1L/vSfCa36xuH7de8Tu3LiB8yDWcbtDI+9dTgiS3rS6FxSWzZ36om+uXUa3Tz1UbTm5gVLWikYrNAwVxFFVu6wqEs+QaAhv0GvlNDKiOltqOq5CsTqkKM1mbGKEwtCq5WFjv37eYdu65W1w0bNxI7uta017fk5mTAsjpMem7nnuZrseuCbBhPF+Zc/OzYHcyDstwvbCx+pibDyxGypUJUt4JwyJHVz06MPJrQVJDWmRydITBSrg8IPLnBHGVLdnhxjLXSNP2ZNv0qE8CRML0geMeepR8jzgTjGNGb+BqW+a15roIgll/g87yclOPjE8R5sEma+3tJLksxezXR2WkBFsHOtnktKuvC5/PMsI7eC/t285i3SgtbmjKrmavC3VPObKtKo5KS5f0GNdpIqzRO61M9CYeeMmMbPyXser2OWKvE9YSWq9O4fHKUA/sYDdyx0tWhlYa7fmoBLiYsig/MJmjjT32Ctv9MXgiuQLMfwp2sQJBNpMaavCCDNvWGKuxregKmRSRHHD/vX4prrGfxzlw1tg2ocK1TPuN9k7yfDs8yonwBtsum0ePpJGaL+4kl8oz4H824+86xoxPHhmzz0dYR/7RBKPj08kIHxYH0wYaNgZFMr2TK52+eOYFxJpNqZCDc2P/J0ROf0tF9nxRwTHTche6sJed2TfAKbLkBc5gtrJZdi81N3voA6gr2sfoHz/2z1Yvy+rK8oC0y6qFE5UPy0rQBtEwk97wJ/gbNPhHjPrrxlUhB28BoWdQvs8KwF7RozXp8GBazv2lAKW6+nFAfc2447/+wZrCeWdRqYR4MRo0HxTY9yu41zScxa9ldt8oeWA3/7RdYROqrAQHTX5B0ZTZuhgqUd9FUp9hwytMjGi6lMMPkBA4XZEOrrqLH1cQIhtw05ATfTCO1s5sLwPNWatsEmBpc0QEyHBpXQQcQaxzqaRsEmhXIX7en5aCuD6bfDkHV/CXqBykOaA+s2MEkEZu5xngwWVf9B6Nro53tlHCgiIkDX9SLc/qkS1nrBlycOz1eJsCU+IxZHAm36YnQFz5vGXV7RGifI04CJzu3gskf4gcoBC3fjbYgsZ3TXIYoJ0gUrUplXc2ZuCuKPhvqaUL7n9+utmb8HwmBk671iTnWagM3dt9ycpG/+vH2tF2D/D2pwciUs6r01eY6k2rhBcNZ1LfiyzKwIezeYJfv83Rn7VVfSnn5WXjB9lNGh5RsELarpv7lLb2XMs6ihtbfo/B/IUD7vKIa9muZji0Ve09jJiP7t+uUKleenp4L23BQ0m6btIOAlyjtOXBYSjbm2WkExi8nXOjN+VGzJ+niQMruzv1dyQxA7RS4Q8iwS0BMr4NRYDDoshre34WhT432lA/D31SK7r43Te97+HY4v+lkvvL6jdovp51mZFVDr4Fn68r9/+otdGQWTnlOJxECQUc8BZmf3PhbLQDC7wVUm6tnU3+83hdm2FV81UKHD6DbZZGeElNvKGEbtFGPz5HAj6u/D9r+dHMvRVIrpb3+usbjSdhSVFNAoRHEtcaQp8zflLpBUV8MoyUTDCMDIJB90iOMP5Q5d1wV2DB6HCg/EGPTDPtfF43bMQkwBb2+UvDYEOfdSAS/k0GKCE8YhNOGk5+/6kSlTxanDb16vrqcIFLqQO8BiHzEZS7bRo7tlFau2n+mp4Wtc3/6KYu9ctbzh5+LZfEmVgP3pxZiQ24n0C66T6hGBEnRjr/c2KrEsQTwMc3Mb25UOuoci+n894pR7USNKYSZYuhFMLLZ8o8Zp+Jg/TqhZSiiL1sy845e3PBgDAb7YWCdcl86mtF2AMWZJLwUlox0tBmKS0Us3eBysUoEWSZJOyjOfGOtTil+UhjBv0iQ+AZCLUR++LoXq+85UpgxVCPRCQn8nyuSb5enji32j+xa35pKJAwYx1d7Fj/eBDGkgciW+Wg4ptYLBhjk0ViGvrq/0tFniG4ST6u/7VNwRh2FwX55ZibE6nwogl4gDr/FAMKkjDL0LL9RN7TjqfvzNvbqGgqgaIRmfpdvcC7+MW6Eftu9n6yJYFVFddrzbmXKRaEJl0AL1DyY4FAc+3Q8kcch2OCnO2vyIJl/cZ/I1MPky+Kdesw7WNp8WmRgM9Q2+MtWuIcjEqAYRY7Vs9oaoK4Uo3ladEic7TGU/3BCNFXtsIUfuWVc9lP4t390GkJbX9xp3tQlr3bPOTnbcAd9CMTqmpf3hUnQEAhvlvYnRDAVK17oqk40OYkxdH5oYmDao4vKwuoOeptj9Un89WY8CNjTWP9rU542iF/0My6T1CHJSBHVtJNTWPQUP9e9xNHHs3SulRMD1+kuxLVHsmgnUC4UzUAXPKLuxfz6fJivhOo57UZKAJzukrZEYWLBuvyETto1Qu288xihOK1tsKOzmSYccRz7HqogK+2agM86fhuloSMrpJDe2CPn3Q/3GGdEw1T+3SPs+D2ZNQB12nMEguadUCIX790or/QphELILMNM08Z2bggq1h9GcrTOFCShX8EBN242K0SH+OzwSojQuRxBIGMTfaxSruLCgijIcpREVoOKuNSfhyyOPN8rfXSbOICC1PZqRzAfexrcN1VtsXCyvpj0DleaiERvBLaG7exUnREXtb17Nkd2lwWZmc1H5q6HPX+bE/rXG3sQ7l9m8szBEcO359oAaASUOTbiwl1lcZ/AZXLtWkw0gLEXouIu7++fLSM+c2VniSVgnQdTpxagVfuODbNNZVhdYSIsUgHmvt0W6dUVqJAqqjj56+o++jtt+X2zBTc8XHcAA98CnQVANX/JHi3XZslujOBKKitgi2cx613zIouWz2j8NWvmXQLdIiY7OsC0kzTmBPJ+bn6Y6dwGWeMpkIFkxopypXlWSTPaCH+nT3Q4XW9oGv35b+auSv8Ps3sLdODHYweFjEi+vtERCHm0x8LPlrSzlsnPOp3tqtYbCJX/is2Wq5BLfCSLB4sZaeJ1L2A6x0hhtVA6+dwW/tV/hosPXL8zLAxwf1sOGsAWY5mjp2XdEsaCNZzoZO1elggQbkNiWaY/CXz7S7clKYhmBalyk6Kb5r5v1AXuT7NnWOnmTOWNwNZOnPqdJwXqA8jfrW6VEspj5Zcc3JbeRsjnX40nErrQYkTLKiLh2ZzV3/GUsQNE/lIvlk8dk+kZf9lHA89Ue3vYI4aNYQq8IVRoHPRFp84eRW4Tx9yQ4m0NtNBDYTVcajbrS12MnlFcK+C2BeJnyIeJqExwqratXTZ3+uXNuDWqgar62VNqW+lScW4VGTYdck3MvnG2lZzSU6ivZ8wXtGqoLfWAsZm/+U0gVxejJIoZQK5xpkQgy+XNFe13DNYrCcF07j2mJzvXCcs+zDFpjRMyDbEz/bLI5BjxfAjW93Bnfr1TefiTLd2za3cgnhEW/rTWg5G/wkAOJyYjTu6RQ0LpNF5eGsXVeTajwGxXXskjFW+0GuAnVbrDTJ6mfyKkCx8EL4/vkEVXdiQVccmN7Nlzjba0v5V3CKGOXin9UkKC3NXGx5u/GJw9+R3UrYP6wxV7c94lqFaa3oM0HxX+iD36gBjsuUHcji+AAEkhAgdRk2qZ+9j5sOuigw+hT0Zha3oREMhU1/pxmeydjmpsoW+ZbkLO8/15rOBlGk1nAgsB379D4xEE3sPqvLAykTga9vIZYRDT6h2/vyD+aAvmBQinqHhvUTEbkPBlqKW5ZO3z5WCd5f7qTTQKKe21R1DzqbYuGq0fCJg2btbBo8rmzvPWGhrcY5sM1Ym8NE3Ts0un9ncC+0nLxP4+nudcrpxDrCJYr2kYIYJaDonVqyKzJ7k0uvaEEWyjHAaMnMzBYwJPOm9k4w4xvpQ3Q+MfS24iBcQmUPJzixaRQt4BYEcgwpawZvpB8stNIEGVvaZvkImucbEfryCWyoJfoRFzrXEfJxZl3BqZ7qHltfwXjamt7mUivF1dogoWx5w7lk10NqCX6pgp91WyaWeV+7TnxhU6W2QUJkEg73Uvgtmetf93m/DXSwnXztU16xOZOEl1Lq5K+LywjtGPQ7SVXc4+5rtTI6PBGyRcjMJKD70m7uFSlUTzhDd2EwC8MZM20d7jJiG2tFvh+D/fljcOqqNBRvGdKutdcrzuR/Egsjd+4Wqqqie7FvMqzx+Bl89Nf2+ZJLg3q8FbYoDpPcc6lPHxBZQIiKU15c8AmFuXKyOs2jf86Qg3QdCQy8sohzTUF2oDfruknLF1ou2EIEWtjzysIwBpeDx1VT3Zee0mADrt+kEoCiTaIe2jb9c3qWrMJsm60d/nHlV7vBH5x+R89S9luJlHimkg+NPXnNUacFRU0iNQ1HcliVy/Gw0k32A7EmWS2WkXHH8FlIpYDK007KIkV4zNqnxeR3zRxU0Wr823XjqdxUKv1t9GkQQ388YK6806rP57U28kOK1crhce+cWSmFdtstANCGzRWpkIiPXcIt1eQO9ttfBU3kzQ7n1JUfyBuD5L0YL0Ex64EaG4VQcRQkuR42BR9xxAnVPmxWlt34V0KjZLvD2DOz8IXl4CpjSB4+FNU35zzKoWVxDSIygyk9DsKNaPJ4zWdeO7CuPiJokcRy6Ry90MJ6Q6tsj9LtSFn4ad6HCDiGASAKc5y4/vcvsAR1Wn4Fkb0bpALZBAgvOve30+rc0vfvMhN91nqurnBb+T6YsKZN7wcCssmrAHDRQ27RluGoYkDhZ+VYW6VtFn8U4udtb3jkXy8B8ahhGyUfw59lfNLW03PBG7ZgD6yI6j1T1drJ3LkANr3rPb/euGjJL1OQyGAyUTUQEKtuP8rm9JPpi6RnMPMjyvyl2wYnFnRCYV44QfNRkXOStvwr820QCpGDUeVuHI1i2kj/7xf6XshwjdUKjLTzO79o/4axdZyxYd04Rss//sDXnqVOOJWxZCIF3qXTLKr3xsOX39QNN53AyvSaTz+0+pcuiHDZ8ltAI81xzTOSOosqOkGEcoUjtPGJqZh+TYsJEKTczJ7d/EFduRHRMxU8HNz9lTKxC00QuxfZ8Kyo53WxtcuI3RBJUEnBZJMNk6X/NcvbU0Qdnl+TN+J+ssPjso6+F5RmPLUVYNdeTeF+EzTat26AGDCt+s4cVIwvo5MKuZ80x7+OresT9W0amPXxLtIYQs/efiGqi/CAvsooZPgcNYxtoRMeBJlFhYOBEzQHFen1ZoclFrt1zg1Gq08h6KFqxlwS9LVtsMvym58/ztjZxCqY4Bt/gdfR+q+GQW++E6TU8mpPV7a2QykS0wprLfQHTMx9jVmjjIoFlGpN+MRXnS/w/arD1xE91aJDfqCmemEFmYOiJrvMyR3bvLzOLjstwd9zviucULTc6b4ZUmEPc0AhgkJrDrizBLunsHf9m7LTMnViZKXwV+7TFQJv3fPwnBYY9w5XagqsDAnwX0CntRbgWFEwvj3GgfC++ck6+PfOmTOqcYSVWHJENUMmz8i0bn46serWlJdcP42SgGMRFs6uPWxxqCdsY8S2mRbo1UC2r3oao5vVGXN4l2oFtnu9OzVc76760uSGtVyNJCshfkaHNAcJ5x6bjs2338VC9fZPA/lvFPJWMFfK/qWTrZGsbrn07pxblmX72frC2SOWi88jdq1qiomckLsS0pIKhQMuyMazzwrURSEnxtxKUy6nT5mSbZFaWjblEQjgvCDGskmLmjYIzQRjml0kwbOzUUFznkHs75hhHaAq3A7vVJX6tmyYOIiSCrBSgiFUKO2OHkr8TiTEJKt+sk52mOzL2UKZWIOFeTXMIjA65jEHFuJO0FnfSz5KLwsja9b8P1q1D66BtYsiRL9gjL71vmrDkHM5VtBKXtMCZUKeBnHfeKU/PWgG3fMMiJ6T8RE9FGnA7xYk/FMENnhovNM5vgT2FBzgE/PwAGW4RO/y/9BFbf2Vfb1uvBsUiVVleIzFC+TgIHRI1YHq8NwycR/WSKp8vfb+yjimzAb6BKTKeG7cGYu7KyN9P6xcmYxiS6VQ7oKKt9k9YA79HDlpYyqQZbowBkvOHKnr2b6v1m90CTwCltVusKv+lIJJGqYl0ZRUhXAh2VL6cbliA8/DrIDnHsXtF8W3ElanfE/r50O5IYiMEN+b70zz0JnD8TnEhsA5CDtgFskKoKhMn4716zvjSrZte9tKc5jSxSQsdMRotdfqhc66l7a4h9JM0Y3NSZ5vOvo+KeG98bdLuPo+ovgZy6z2XwWSxS9EPrRXhM60pBQvPt8tP4lVyBObD/033wTrB4/YHdX0kzkGn0TABv1sd06cTKtSkNjv779Dvy0L06tH4pREDaYESUeLymOO1XYE+uPjiN/Sfwukp5Bnh4duQYWuHh5tlLCEuds1ASUyNNexAhQJObZhLSBnTzYrjiXI/f+/bPAUTwvVU3NtN1mB6w+rzASFIvMRtdUvulhxrO9PKXqtJm2b8Z1haYBU5ndaLl1ENs+bUOCtXYjzt+5z2MntRw2gTy0Sjv3szt0OHwiKDfvZNsigiD3atFiQL5N68+3F/5d1ulGVFL1aUNFRhwBQRO+VLj0wwgn87eDTMsXr+qctqO1Z91SptEIyjFXgW1KayQ4luSCWbTRzw2CxkKvtRDw5aae8JOWFoh97yGXvy+V1mhvYMcTpAqUwsca+VqqotzVbNtN8OxwIcqhD0vmYApJsw9yYjKCulrS9YuQwT5vOUkGAAiVvle5rGw7SuJ8a/NRq10AE5NViAWK1mJaPb6aUoZxBiqyAgBuawRYKQDBdRwfUSG/UFeukMGvYSRk94Coop713TCz25eUABMdf4TThhRbLKjAREisM4K0s4slxVRjxDrqSd5LTOVXcPlLZjV+gRRynM0qG7WefxjXp1q2kFFQ8qWZG5PvzWhZCuYSEdu8VXCzBUGGdFEaaN33BiF1hZ7HMDxvSENWPxrKai3FWoxB2JL6+Kh+R3zvIYqH2ZtXNdzSuQRDIyVjfMER7nQ/uRRWcLXAes7iVkypqBmlVe9h3dHlKze17xcGsyaWkFX+sDWSthQFNGLizOzFNxO+hn8RP0OvDXdj23ZzjvKfodobV2scQmu+rU5inGFzprPx9P7T2UcuVwzY8XC24sX7XKzX4U7YIlP0yVrRrKdTBhRLNTCZvjw32U/mD4Vdye0cfKYVQOfwBDdoJv1m0Xc5+nxVJVgKKPV/vApwUS7pvh/C1g2GBgUHCsdiCeWdN/843A0o3f4I/IS5L2gupTpUqCDmPx3diutHBegzqMs5dnqmGb0Vj8eDO3nvB70oY+BKr9TfOhsqTkmd9ytIUJ8jf2RPtgNlRluV/hdpYb8Q7Y57qz2VHyTFHN7K4AkctF5ozXDJwlRqsIpjsTE9zm3hcaP28JOxu4yMb/jmDTA5fBmrj/YFI1CVHTpx8c7pmWKNaEED9nQ/X0XG5B1xgiCsNDfD3p/NIsQ6jqUVCp2DNm6pU3tOpoq0+5cjvGpsfqbo4ReFngrm0GuGb+TFgsVtsRKdhlo2U3iLY0qgg4EB8Fcu9wK/02dXh/WB0WijX+z4pVmysmQZ7uRyE9bZUEcYb0lulqQe6tdlAF7uDLnOZmbZAQxCK5idceTJk3S1bA1eSmwGwLeZDz04SqKg+SOLvYK8bzS/ZNkFp2lw/wBRSOukCM6wATL6/VtLAcxz4IrR4p5DSGwv97HmZ2XuCXJrn2iVFK7GK2DVPL9cfxNYixETYqZlKCZOk6e8bl3B4KhR1ALzgdfIstnaSjvEqhVSOf7lpNQm3qg00/0yL13I547wZysAMQEOAG8tj4lX2XWjwf6/lVO/yDfrePWhSvxMdC9TbEuNB7VW3eRhBupjCCT5R25Occ46TadFiw2P7y1GPY9Y4VZTcGQo7ltksxCJzF7GoHEtlkDjTGRZ+m1mTXiUVCxDiR8ERx+py5sJKZj6DOeIPOqMaWWHW1Iq1cy8aXp20HN0cBNavXL5vVlmsc1lbjMh5aBwG2a4D819ukf8Dk7I+uf+Xl7yU7dG35ZFGUrTrz+FwLowSCAXfjQ4wjNGy/soHxE1uWfBpCO9Rd5mNR2vhHLcmr1ySo4cMKaDFze5OkD4ynvEqsG23Uf/xdA6BYvHeV9b29V2R5lKRs/Uro3k084dBxWfK2hR9g0P0Fe/n5839DPmQSETF+nE8dU4ovpYIJsxpTqIukM2lLdFx/Z80PMs3icPMqlNbFPyUUaw9XSiyebO37UEbTCyZ2c9VNVGwmrI9BusTj41a5FkyIC3qYKqxRB5UgWRXf5GXkR/qS46a5OdW5C0AH44kXrGAaPJshC6Po+GVtD/IMOmeLUtdR2+JvQ2FcuyHKD5uLYgakdPgBynO8jDIWNn2Cd9cJr3pCPN6Gn5+TcBF94FYWaxgHbnI4cFxAbpSgFLIn9HA+soZQiDkuZDdaGSZ0kwn4wCYlUG4qNCMniGEsI9yyf4w0ZtHN97Mgo7UZOwyQ1814jXz1sKWS0e7zXBok20I3LurKvsA84NYXUMxDPpollt6HJzsGlpT6UcdiB2rmW4un0yT53CLHL60lnSJiNVm2T8v12F+QmItXy0hZA4r0GEKHR2ZONp/l+513xN8+au5UUOALHOJ2Mc6fJz47VzmHKt2KjbMT+Y+nGlXV9xXTcZjD2sryAZ4CoihCh+XLCeCHTutg83LIfRC6gVkuOOvLMc40BcWuine/SMV3yB6UT4PKuzv8JZvBbxq0FXSfKDveNwDlNHuk+kcfK2+piPbJUPa08GQvIlxSnHcLcWtBGFoX3RuFbTQZmvtFzculIWzz4DlSpOu83FaqdnrcMEaZv86Y9xVvJNZvuN/0P7u3qOIQsxpUm6xVbnOTU2jjSL34UUhGN3vyicx4kqqLG+IjKcmviIeIWwqkFiNRgFQIMYxFMaw4/oqv77wUyFTc1kCO8Z31p9rlnXDp7YJoAN3tcRleqs/r+H1lVie7WYUx7wSSzikDFRaNnJA+XzJ1Uz1IXffoeY3GIHoNEnYQ6wirA2rt+3hMfvQjShqNXze8rCwLH52nPGE0ypq8jeNZTJo6m4FLN1C0+IMaeba2jeMDZLyz2g92Rfc+uqd75TQOPunVxMIs4V44gdNbUkYhwP6mfwS3ADa0MQQklyPufru8NLxk5POnbGxLVJo5Z2+yMbAFS8DFs/ddKPzHEz4nmw20xoueRTGyl9fzni9nG+cPld43SRCIMAFKM55M/ZMSPQnDP7MRM4ZwhsM0rJwCIYOu36T5Kl+oh2fpUIK5nUZoT829Ew42NTVSwQI9GllMLIn9m6B/WEXP6MO20HRQWO+No8LCV+wUlpDoPJRdjMDiOypdxv8ADH9J8AiO6Z8A+lpsbLZwgJrt1HqyttDqLPVGpHEkNr0YLKSTApjh8Y9rDaLffifQM05hP4luMK4a5ABQZTGXRLSR0mnv9OT4jinArR1uea1og90TB/hiSLDtb8L99M4Z57jdKzP1YBZxAFcHDqzJIHFg9vXIYOix3olwN6IgE+DzEp+BiOWMCpq+PKS2kG9mnzh/1eo2MNTZiYsjK7ldk7/1rxJy3MwmooG/Evpy7xk/J5JUJDmQoCIozeSV5LbW567EL+psOxrvjvjHO+y/i4aZ5pDPW8hwvaU9QNcrZdAFrXnUmQprpX7znS3UDSuyMDcuZJdszT6IJmNcyQP/A3/kUGdFb5VjYDk5wX5bk99zAh1HYXsBJ+kOAL4bAySrwOnWYNRc9KgB8MgZK1Aipt93hfubnjk64Y8DACNbQINbNoq83f4Lej1xEiT7tvdH32/QwdE11hXPOyfQNV8/U0NHsg5BZILnSAuueylmIKLb77FAVbvY4gbL0Pdt36kwoiBM2G4Wee6WoqOM3EB7VskcKQGZKkF9f3qmVUQ9m09Qtk47V8b372pZfCWuDDYnLN9ffuOumqy/Jb/ld6rx1sAaSm75YLP18eC26IIYAAgyevHDBZbUSNtVAUyCesrhrYtg0Mm/jH1GTUXTrDw12i+RACGRW+chZB2sE7hzMye8eNnVUV0cuCtmD/QMNOk4Gjsfp2E/N9Lcc7mTvy26SRS+80u6opf0sd27W5QJpPmKX4aCLsOpQ0bPuD6KRcmbXooXgZxWJIYRIdgMGnxk78eTw8w8YrO+DvQPPAq8x82zMSh254TMv3DrtB+ZtT07HtNYAmmuZTYCxSrJvnU+gnYOu4Rivlpf6tv5eRC/0K1xFnJDgKDbAV1VyrUo8hoKY6Olsb2qztmTGrKsgnHmSRlg1lcEfd89L+BPAp9LtA1Rs+w0ocG1VxF8ul5PNupzwF0gdkSH7M0yRrvfljmBpdXQ+JyFwEK03jAnjeOsJq01pgS3zyhP3YZ3a55BFOK2cP3h1U6hLZRHADgl2M+yLOT+fs+0SQm/H6q4aNdw4MKoL88CImOuhQ3+KYnexwYrzZtecUUgGoYmMheSzg1BbnRLOqsx+LPDUxaclMiJ3TBl/aZVGPDq2AA9rDuXXoMZVX9wc1NAl2ngrjW05CTtCrn31kAegj0/ZvT8HqPSZEjEPExHJ/95OKOaPdwocLnl2RFdNI/q3PeqGyQN+vniGWS00V+dt+i+WDfEtnX1JmRQNWgs1tzT4+MPsgXd/uUtaprVbzpexy7E66zmKIUv+/+DST+dUGKunHc2GB/Gbp0Jbm97EMy9t1llP8cT7EiGI/aXaZlhT/XPnacO5USN7DvRvoMm3M/cvwIYPjFd+lNyOqWlvAjD0z3m+NVFJr7CNh7hR5pBpmYXVTb7MJcrmUma5kXog734Vf5aFBozlcvxOVXbq7Kjh/9pS882J1tN62gHnO97qwHH5pKfC8SJ99dMeUZVgyNlRZRgSnILc70sNTFavLkTLrni0UlUJQ/dz8RcyjZbs4SXyFFVJD5MF/09KW5WDh5eGj3u6Y5ZWgKg1/vEKeSrqgXaJ8r1MXfnrAXMQtw27zrKqXAKnIdfoFbjMjgGTA0kR3NkvJYfasiHliMn+pNObyGi5a/k4yXWX8Djku2kxoyudxa4PPQQ65moQ99jpm4+j2QJeFY6rVEeH1bkLnBmHkiVeTm1Qm4/mT5xMLCUaYLb5HAzDuTk+5S+T8V0or71hR9dgjfb8fDKy8AKdzo34QCg6vYXmSylkDdL87L1kBqWmFn5k0iibl+iYnrb2hOPYFUpdaji/KM5tCBWYYNSy+JoAgKajcLkQa9eDkTQMwZyMEoEU3XlehSvPqmle0Ukr4VyOtAhglflGjoG4yeZ4h40JlCXMePgh18ukcZWWZNS3OuSkRJvvGPnE2yvBJp1N+iwDxaNqP2+FXtxI9c4AY195hpDmbeNoC47dDGAa5uTjv01BLJY9diqIL5OysotQDTluxEU+oyRDLDPanl9WE34D9FiUnMlDSEjYfuTK0WutE889XnPRVMO8yr/EVu1430bhfJuCQbc2yvaPEB8IwCbSWo6sgjkaaKDFmmWPB8vBSS57ymBhTXg7C1VVWn9s83HQdvL7y8D1wG7yDYrijm3bCUhN8xz4PkGOrCPHOLVCMRgT5PGs8iIFsFI1N2IABnHUkqrIsD8ys1DqzoZCDKmnnbX+1w7djIUmAqAhpTMGWoMQ8oqJv7V2JeoHe5gn8MQz1AiAkzEUDVOgsKBHQ8f/fILOSSF1+383bvcHpyqA3pLheqIgQEPI6HRqw33InWIS4lLqmJh3uYGGqWdwqL4M6v7Z3V1n6TYDC9tlhJb+Z9yA2xQ4/FABklvMS+8yEhaAUaeBcTN+DYj+LS3NjKGm026kSeXuM799CIIWiFpp/or8CjUxYVgPCZJnhAU8Ps1OisC/q5vrB6CC5t9D1y0K9A11Pu1XdYGzX7SYE4+GHWx5S/6ggHcHE1megNWgwOS3j6yMB7Wtm8Mp3tNvu8P6b0ZQ3bFbyWs076zVolohgmMs5NdM7MVksSA7G2ULrEq9H8qbFXTK2Tboz+CGnqXBaY850/2DRswiIO+oUY9wEBoyvjztTbmGMVWJoSKwfiyaWnev1miBwPiygaQ2G2FdQr4yxJEAEPgjZat+vEDrJJ0h4goWYIGgzcI6TYAjCUfGD/9Rfc9jfyDFvGclNHOQFvbIA6IsJCfnmB4t884DSMu4cV5BtwY5JiDg2/YuOkZtpdEQ8qD1NbyAEyMDlY0nJig5tA8Rig4JaHdDbquod6hHyawB1MNaf3aYFIH5lTl9w3sd9Lytt7ybTxjlSC0XsQhed58elTCQCNeopXhDmgTZp+lo7hr6gvs5q2ocpyWvFeJqNzFQsL5R4tGYKqgMCnjiPXgenlpX4+QpRMrUHU9cROcgvWZkeh9baUDHT50V0gbDdPA9XvzLf4REPjYx7Ju5+Uz/2bMSbPmhI8gW3aTgoYfTo5cXznUyyq02XTl2HK0I0Fxe5hhbs8=
Variant 1
DifficultyLevel
710
Question
A boat ramp is pictured below.
The ramp is in the shape of a triangular prism?
What is the volume of the ramp?
Worked Solution
|
|
Volume |
= Ah |
|
= (21×10×0.3)×5 |
|
= 1.5 × 5 |
|
= 7.5 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A boat ramp is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC29_v1.svg 550 vpad
The ramp is in the shape of a triangular prism?
What is the volume of the ramp? |
workedSolution |
|||
|-|-|
|Volume| = $A\large h$|
||= $\bigg( \dfrac{1}{2} \times 10 \times 0.3 \bigg) \times 5$|
||= 1.5 $\times$ 5|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19EKGV7W0OpUGIzsHiEVANYi+qFE5yI3tt9eHuSVrdAoeLXKdX6CgfaaDErTFgaSeWYss86DKN5wF2F+olLonkL1p+v4+5PcmCd/ig42kS+GRs2GTfh0iUNiHoPqUzwxxNj45rPpiAM05j/Ut6Oeyro3mM8i6S812BSEZY2rlX7Xhn0ajXJ164TOqbPi0EY+0r3IpK8PYgTM4iPyromf3Rb9dEZBMrAC7Le3ILNbwq//UUANC3Fyz5hWGUCCpYho1thNXT1zxrJi87msafe5ClPvn/eCwDZ1ukuxhBCUF+AHggkLaGLEYHlhowJ42CQ6Vk7q4Tp06AziQ3rvj8uO/g2jlQa2C9KYZyC56XjaBgFrVTbJaCizoSuRBQ63we7zmMtwLjrKhhydobvDl7A7iXMVeMrb2QubYKDasGRt7WZY30EqCvXN9OdCCr0qjWs3f0bTeKaniHcqpXmhtRVZ5EsRqsKm1yHcNALi6nVHVLTPETKp6CkhCVtVK4BNGrCWLqIHi5d0TNyaZ+2mKJtM50OQ6LVbQyTBf5EOvK11djrQN6zIKAmIxRWzM8wdOZEXrxmqvpb6tx2XMwgfXUrkCzFNvPWP41fjCFZ4QreXWupi0MR179BcZyAYPejMaglW46MIMy0XFE6lW4ftrdBvS30rGHWnxjWj6a/QcN4uTLWfhxU7dOZFYcHJOjvQ8VoeINfPn6yMVD8A4ct9UeG7cTHd189JXKihK7fXHVfLnklGRvYYGUUqgb5ZAkqrWLYAwDUczTQTfqIkfsBOBo89OTvYTfyMTXuG9zPLDSQJvCbXd/qZp+5qWuZZJmcAdWO0i4lHShO/WUK5J57XD4ORK46AYbqG6Xc4JDOqiK6h2HPjmZJ46GAk3/1LTrmk/vWJ8QtlZIvksRrVH+wvMbEU7QX62EKP+W12KHHFjHM0siaX5GWHwnrSmbWoJldCbBCBpvjfudHXQ2b8lqCkYXEm9J/Kj5/ph9AT8+JUGqF1W4zJjofTuH5G3MinQ+INtEo97qNF7vhWdQgitiybRGwxwYGJFBBtarYJwoaDsV2mL8AASdkRgMEK21xgpVOuizw0YF+Lf2hfEeEkw53KQHK768Umc2+J1gqztkdfy9a8rBglYfTiZj6bSqd/6YU2FTKa2dAt5hQmIYMwc7X1B2CmuCZ1HmnwLq/bPV/1aZTmyMecvMkMXOGDCLzktfL/XF81c8Gv3UVeL67luPoUARvl0Y6b4q9NFxRpqukB6aRq1vlVyfnjw9hfnuc7gd0eox9C3G5RYX5vwYJ8x259e+zcQba+9gtNp+UDwXcgFqzVQP3j7oWTyPuBTvjZIwfRahe0bZ6uscULaLfXY6lLcYsU8vwQTwvlAwOBoKoA/Kk3x+ooBCtOYOp0uBGOGIIEtYkgti0CA9K5wT/3uOALp/DQ6waz0tMYNo1xTSDsaQukcx0gv1Jx7FO2v4fXIfxr+epA2gMxmnAUYY6DlBboSAifx9Ftmn6h2kQt3eerWC8RoKsdPQctkvB/0aLkFHE6VKZm6/BkF/pO20sp0oqZ+QOI5yA2gNPcCIx+B3acdBroid99kyWBFc3bDDYlKjx1LHxgTNkv+HT15oYCS7hKsvZ06EO1o8OipZZZgJIHQES/5MxZ25+uST/QNmperGklZV/WlgDvYRRBuY2wjzcmZhUA5gk05D/HwUTwGcChzREr5yqE27jUt2uL75axaWlptwdu0kEfOsMZCmSHu0YIdOYCyyh3sX0aOCnwruLEQ2sEd7gAM5scXR+RxRRzAw2re+jr0VdCyyhajnais0691vmcBRr3IJH56mNZnImUscI+HZVCgqS8ESWsFpJoASUPY1yDWJ57T9+k7CsQHQozAvc2hPLnwuL72LZuYacAzD+GdzlAOK9/aGOwx1Rj4MEfZpkkiEpP2NsFsFJwrh0/U6RNGce/3sJp4Pphq14IKIxuz49oEpDjbTPsgB/lU3AnnSqvHojxTgXtwa/owmE0DyiRTohUcFJnTkpvFqo5MitvfcrBnUrciNmhVTbbARDdrq/1fOUat639gh6nVyQIVpBetJTp1BzgZBkGkBTDvynBd3TXj5tvHjZFt7MNRTjfDmzr3VzXsndVSbtBnD6dMIDctcHPfFPjFtGtNvxAk4qwKdoLH6c6/tEuYwZluHMHd34/euWIWsUMASZlwhih0PgLKvNoLbthPdqDAbRRWITvjnQp8FDyeA3mQW+j0TCZdTmvK7Gny8Bm9X3NvHEoemj341dfU7jD/3O3+0rauedqW//tkBfzhh8MDCAMnnAMdxiXhlpDtedZFuJC0BQKaZO6lRxrT0q427KvsYlwTUQXRkgazvvtv5aY+6zbJEuNhLi05ItW/XL2d3Jt+pJBjfvt9bn6TX3wy9aybapuacZQ6ozeu5iWT4aCjncOcrDW/L349kg5BcGrfiIfXEQiZOrw5IQjK0xJoGSFvZYaLnhtcXkcMuUv+O5VpVjsbWpazvDMRMEqfiihk+pDMz145A6eUfCJFKGsq7vH3LQ3JRYkIyF/eEpuv3aeJYqIL/QAMdMI/iVu2Zs/szaGiL9jQHJk84NeKEGvGCPO7ndACIrb7Em4JD8ZL3ccPrWU9/oocKe1thZ4ES90z8jWSKrWmzdTHqvUJYQiFQBDO8eHvKY7pUEricDe7KfQkd/U2D+OHPJNkmWMAm6wWtLjHKXbc7vqV1U2O2dIxZS9n5FtbFC47IbePGRLx5NoT/aD+QZwztcrGj/XULF6uCwRfO4YwIPp+5hkSC06xfFwqwNhe89KiCT5itYzuOnhcQBIEVLGDW7vIohoy8qjcX6POhst34hiwZzm65sz2m8e8VaG0eYi6mpBepGnf83uaMh1WRxvrrI+pj+2Gi9kUHasgvwCumqDesHGOLKxekNqMfoGogjSA7h1w7qlI++63XWrcK4q5mr4za1FQz+RPparxUfzPcxfHpCDn/AhiOfL8pERk/wMR0GmLLVndl3LITgaLRdS+la+61yAHf+NzpSWe+lQ4byZiD/5MlcXnPbRjJAh14DCeLGo+JLHfGzwwI96zdn/R/x6ctQ33BboeAhO7kQxrCKJ9odT+9zq0QezcwEnpSDwAR8JQOeuD2lQ3PhgRiAabIHeVeiGa7x5yC4wbtJsnIWEK4KdtiCXhLq2KXVyuO+AdbILFHdL6RsRjjdf4cd8Xq/wQULwggXq2/g8T3k63at2qHwkJGQUhVx12fAtsGKPv37NgH/wUXesMaXzhDiKZZQQtGJbcFWT1jy89N7p4a/LhFKhc7EjvHCaaEF6UnI/SKpgXq5g98eHcQfIQJODBtQS2AvS2h5dA3t/ZQJNhID/NRK1guTa0CbVW6SeGltjsd/hS9QWQSKe9/+di80RGuq+rnwhcTXAamGtnuPi24YFuMQoHQxh3preF2261eKtxDMpox8N0NpTkIy1zG/FkKoFqDxff599kX3IKYd4IXPnN8ot8MNf20cwzOS6cOiyd0SmjdnoiHsegyU2O2A9/yBxFJFNLvD/cq7urZGZSYgolzvG6MDf5oKrqPHqEqn/sZbcrx5qOESrVyI012VXuqOpGQMLmIzWZHnIKULDkf4uz/PJvN9EfDmJ84oPO6y9EIgK89H3eHR5dDVuBH/xzYWfgHZ1Hs454uM3zz6AWmsptl+ipHWor6HUE2kfraVdQqq1f/17hs7Br+uq/iB5v9AGJWMAdNhbP2jzmJClXYNgXKzhdJJkRz4M3gg6/DnXKptHQHDHOjcQeG5ww4pqsIDn5Yo+hXB4gQMlt6LALRfon2Ok0N+3yhOcaa5p13urOcE8HR7YJFL4Q3qLSEocO9LKqo13Q8YYOP1WSK8LlUq5BGRdWfpoxt4NOeRPsB8DSdOTj7ChRwAi8hu8fB1vO9wlhl9WyeuQ/VTfBudEBHAEU7Pm6grG6j8d0XmbOm+lDF32skSNsvzPI0oBbaQFd2AhnS+7nPIz8PCI7svuzUvd6qITJbliOIXm0kCkmE4J9pip2Lx2C3i6Dl0DUl9SWwK472wpk3KKS2a9ovNxlNsGerK08zUIfdvC465VOrHhZ0bDeuBwmWmJQglK1/D0scK6LnxrTvkFKb+rKJjKmRJRtxMfAaAW6tl4xNbnmuc426YcY+PFKEOHtGT470vnho9uYjKQQuhcDWXjNwq5YJKneG4vRri+WPHk7TI2Npk+5vks7Snuq5AlWiXxEOgTCF96rhN4rUHnk6gHk2OjJ+//ht7vxuSbS7e/Pl6f3OUiBwTBI+jn+HJKPWncp7RGPPMdEDwfsyq2vXd1Rd1+m8ZfvgnHrhY8Ru9rFHMiAJ5P3eMwghN63P1eAxESjuU+pC8u3rxMBRAKVm/rvDmTUInTS/pwygRbqAd3jEY3m/WvOvaSsU3akmgw6W1CFbNwuuA9rDTItTYWKMzGgRR93QPeQJ+zj9CtJTsNxvUIXL9cXexLyJLEspFFpJNpy7YR+08p6cVEekF8UA70kz2dR74HcpdviR3nsc9DaJJB82fXYcPdWL/vOSOIC8U2acBQCn1rIzibzeBBOdrN/lL2+O5rVxpBYq/V578fo+n1KymltEH5ewwzChIv9MgZkpE2ILQTzGno4q8r+ba5XV3d5s0gGECTe0mn10zs7foDcX4KvNV+lK8ukoQ032UYA8JLG/OWdX4tcRIP6F6H4AQ6DlYvKdS7oHTr6XVei61JXep9/s0anfI6f3+WQ5ilQzG4cepe2ITuw+9IoygEouvYAyMfOTFjlbnL51GMvobz+U1lwXDR4XdSJbUaI4cWobAwOtSGEX5s9eNSCmj6nNfPQ543z+Ozd8YRzuI4l1Q2C5P9DTs3mXFPBo3pnokXJ+bZZ6OgBwlDUUsoIBBInN88f76Swc9rpKJmglmLQUr6KZWXe8pL7kVPhsGenvtVUVFvj9tWof0591mjcoFs3StXnWY/KTVdCqe40Oef/OuX5sHDNLt/fIMCM60W9CPOuSLmpdnchKBM2ccK52ju3dmwtKrPZjeO19k4hXtDEl/WQxrnI6PiTc3Kb9hQpP41Numtja031LJTx40sNIiXpmHGHqpZAdUTdvgFuW315xtbBLAjQ4wLzp7hzbS31kvoRH3XZuVqE7T5ltbpvUd1NHcLDCSsjBRsOkaIqCw3+Zkaif+VMF/x5q3KuEjd9jv7gzx879FrWxOn5qUsA0UvD2FWHUZkYbg6fmfh8cVqbbNu3iX1DAEngzHrcUgEjy+hbGBZ3qRmHvs/+hD0w4Q2GkNxcdoZpYa93GxhR35low2jb7rNNPG2DQzZsv5Maj/bkOCKpPdPLr3P6wXoPRp51wNs3F4zgiD+kPu19oC65C3qf3VvmY/7jmlankfypwaBT1WC8LdF67HSnOYpoOtII+3hwhtHcqp05chUTh2w8cKFPKL3P7MpjmWhKUMvmJPx2/yNUlcVdEyrxo502gq6hCAo5mnRyqfJT0NmY2d5oZjsk+WJGxifYD5eumcm8y3795a3EKoiLbBvPlGE1aR8Js+JBzav6eWFBibHHeW3450suyGX5l2d8NhfZn2K04WHNO7gW7ylaNVZ8XhZB626AHE1UmbJmlrNvCovq3wcgHp4CWVh70Zmhn0urXV961QKJDO4AwPiChXFMlE8XYqqfAcl+6pr/N0OKb/qcTvYNmYqOM6+zp/p1SMaZS5+AiAfTMR0QMmQy1oqaEOEiOLeFluUOVkZBW+mOa52zycT5JuTqbVVJ6ebmtk/VW0hgMDB9rJatFxBNRhx5g7zTsbs6ZMlz7DT1bUpAMWJbDDiQzH0+LYbSTf6wRg5ukwEsZsXVeYQLYmiNZdRAj1z+T87lPnFjJ/UcRa2uyXtg9KhxpyfAPC/pHjAeZrUyc/zSZUC43XYvvpdEmwvDoabUy3WzkN3xDkvUnCvrAcGc85PryuBtm4bVYqEPihqfqJJu/YBBW6lxbDV2XuXZGVEEWK8F3JtgyPeUpk4EsAiferTWIBsFOLwyTMpHU0G8Je+PK33rXP1bhglWBHvOUn0xyGN3juLVNEXgqhDb9e6I/xbO+/wLqXjdqP4ZdV4CT+13FCPOqGMKbo0W8imhheUzmqXt0QdjLHUpyOX98c+AnrVXRyvC9/7wk0KNxkshrjP9+/auOt5tHVGcmwoxqqNHXyvUZdRXgzDwsQ3BC0DzF4V26536koKWHu9NDxnJX3am/bPdrujp9qn8u2sG6ug3Ar/xw/6dMlYusbw6Fe02k65e39kIohfkbiq9WaS8DvDXWZKDzyKXQ9bYjEl7kihGsi06KYRXfu2vDwiusLbMEf1GfxVLNiP9spN8QYeVhTvU4FM1WbW5/Lb+inK+mPjEfuHCYPHBJrKY/BoeSioe7NRQmio6ZZe9UYHio798fYACpX7tDTzgLYd5QOTJ9a88WD/zOeiLvPbkztEIdYIFiuDnp0TnfSrHPFuWalnf4Ebeq+503HQZZX8I3gveguQe8sUMHY9QzK77btiGiU+dIZY4ZmGVhRCWaFZB/LyX4tmKPh0mF9v59P4DTQsMytEY9KGA0CSzMNpbP9xX5Z0F/71up7n1Y1w6lyKVbGWfDwpNr/TOPOyhNu409+I3rUhKqMPWi6KBKUHImsBoJ+m/dq86coKuQKVtkJIqGt513RYEZgQqiPVJzCy5a7LWiRlLiw6jSqB6Pj3moHjUJAfNdSoVe8ZXnGrLoZwApXsyzvoSqhHCHCXfT1UuPzfTXP9ZtsmKK+z+Kc8i2csz/7/5q/1Rd+WRb4Wmd4Xo0OwJOhtfQoexo+dr1vwVmsxA3SjnAbXHFmglfMuBm5ZjFYk9qnsm/2TmzrJIHttPIPgeXOILHegWl6KNMqZFCQcZNay/Kr3G6KDmFe0spzp2pvJU1knxWU3gupPkPWnulAkhqhpNquz8HbDlFb1mcGdTBUzrbZCjWJ7FIxuMfztKughBBzTQewzyAD6CkERRp18rdFiaSdbC42S9euwOR+flyDryq2zMDmuSyxVFXDcY7EAH+IVUiu/F+htXVbN4zU7srkgJ/tFYER3bXGmLAiZPJTYdilw6AeET+u14fyIDGz9dYC/2h2+Gbh1HEKjqgnsrcASoMOZAS2lERHYmixdrgVMSy19SydNR1ls79b7oWlylsr2ZaQyXLZnFtDz14VvTAlQFCE/+jn7Ht6stCmtG5VMbSP6cbeWIDh4Z5D7j9McNxEsAgcQMY2pS3klRPpOMvBMoS8Xm741Qx7I+nt5yvaicPrH6ZlWsXqqJtHF1sP2dzYwpNCLupCufz1I01TdxLf/HOtSjRi+7naBmZC1RX/LAlRNdzb88ioCbl0cWN/+Fn1Vm+dTRBd0vK3KPJmVhBEshHIOfOedjOjxdZXbLuBEd8ryvZGgDcSwl+xDUdTt/HayAjuSoFvhlYKWf2AlFIXOaIV6Zp1Q56WtgCwOSjIM+HzsiVSLxp5b4QaB1Nl1eOhcu1INM+rf+bIV2BCy6P7M9mCwe1mbWYVfgzSSzjaTYYbTASJJyynTzdPy+7bVPEA9BbXEpBqaQIbANv2TNrkCUMXP37ThhK4RvCquGgLdpC2bXXOalTbe3If3ksRUrPCamxUFHN+ghW1I8WE9aoTAvqg7BfdRm+kcz5Ooi44n+H3DibwtGwEG5yE6LVnFvpLPs5wHlhCXejPu+xyqAosMyefKnfYGIirnBy63VP7Rk5sJhIGzLZojAUvgCJaX02qGPkJe0ae2KfSAtlK9KO7rR+/5SAsd2PMI+s9gZV0N+gjy4QprKaGCLVYLy0i66Jw2kxIHERQK8KDSVOI+Ni0pa9px8qB1K2YqrZwMy0D6d26WxIp8zbXhKrEt8gmmaZdXVsZTBl43q3QIUpqkH1nQXHewB7mGOIt0HpmNjmwCiVoUPj09SETSg06+FHTQbZunNAR44BLcWO0hqAhA7GBhyAVQUE9kpjXM1KcoKntu4COgSUmxQ9HIAF+VjAG+WowNuZ5EQE6KTiFXithGvnsRdrGFQ5PJO0hmNZK8Ngf1g/htTm/gNv3IZyp0q/3vFB1QAEcOq1tnUyOxfo+tkzX9fUHHPue8eetv+UAf/K4GsdXexi5hYovqGuikZsSI2xukLAWO1K2LzobwM+45VL9inroMrrTOimaMb9MS2r9CPZUL8tkXaxqQfiD6ZCXeDKkkxfAqRwMpPbQfJsQRp5Lt3nLiebPaH6pVUvaYGLXlTUx+J6Zxip6vs2EVVDGmzbYYy0qQI+GPUkpYP11xCLOgO7tIrMFJU0o1lxJQIHVyDEyMa1aooo1d5RYZ3Nw/eve16SoBe9jXLcjmv8hQ0em9rF5YbQ8juDzz6PV6ESBV8YepNlfFpEeozYalAwCtWH11YqgcamkB1odQI8AHUENC1dFPkTU80IHzq0L9Kx1uoP8oaD2oOpFqHS97JSQmA9XDcZicvElB7bmyVN+ScyC0WTqn0N2D3dOIPy5vF2ob22wDqZVOYzir3corHN6c1MQ0lRzK2onOHBU32MBdoPAhl3pwGdT7Y/rq6gIIrThDlEkrXKFTcCDqJ2jCC5OQgc8OoN8GPeX6XKPllKfSEdthLovD5/ymMndKfHSA5Sd1EuYMj/mIs4tQkpEjmrrzXtwFQak8lYV8I+uV7OzE1MsaCnBcFthp2lK7CRLG9VcVYCpV75AsqFXFlyGNNJ2uEPW6Q6xUow9xQawhU4Eigi9IT/EAAslXC9UjEfbTVCg+Ntr8JI1wQyYQKYySvgDAAQUQV9jrxPhJdYnXr5j4itcL7ii7mzRWVtYKGj5s+pMBfo8RImcYUPxPY1TB5FF1F84b/kGAJzKtHKa1LJcN0JNZ5f8uPRnLv5NCWItSEa1ywc/HDRqa0sZgK56CWgyJUfov6tvdiIghoZg7voGM3sNNQH5rRXSpno7xLgnB4dfoaJJ0mHN7G6NmGl+dPxKUdwwTs4Y3zIpVb1yq6kQSCdEPID4wzOFhe0tLSx/Y6+DqGqpVFuHQWlOgAiptzJhMLs7YVRJx4H51UCl8o1c9V6Z0dYKtIMVJ5kKnrKsSOatc/KxkLiO55ItU3iDi1Jqujxw0zWiDcqKiHs4L8J2uEDMQGbX7/O0pHWGbS1tVVVvESJ6S4Ui8EZHzMcFzCbFoQGpRmrbbUsM7RWdD+aUUxRwPSuLJk4Mc5anp1WFuHGdeShCQ8LDgOci6ESOOWCZP4vIPo/b4hCUXw8XjKZdnspjpP6agaMVo+lbUfDU1uoAE8RdYFBQ51yoAj1ChNtxNFf+hU5rk110B/FKJTkP2YSxFOWSjKzTB4y/7VvwTe4vAr+cRge7J5UrC1yUn7mvcPIMHZCz0lPLeQz4Rv02M7M64/bkBbMAuL07u+YQBAhCJJeMawhrlavQnRaZ8wO42codqLPP/f+381zh0Fy+k4zjzXLA6QmDBk92RHNrn37/3PUMyvUV1rBLPG35l2B9/FaxvRDVzDNbeCE6E5u2w7lsxRCoYsAi/tvxW2HKkohTvvGxayPXras3FdMyouq6pw86Mof/2rmDZSR+hFBWI3l17WVysl4anYAD5btKOcUhzmLnhSrjhNBWfJiMmXALfGrmHosMUKKOm8cpPVY8fjOSYA2AZcQwXNXT7AHaw6ktEsT4wx3FgpsCaFLLZzs/AwDkp55F1SxTrWjQ6IAfY/6OqgE0mkiCtx6gD+KuoLlSkdXfbPsIaorjz697xQsFae3JTYDOHZ8ig4hN5NjBl/7RODPGo0fO09XKEcZz4+8T4u6bD023kO5fOVHrgsePk1vy1mFZypbMh6VSMbSI3oMUUI6lmW99oZo/MyYOAH/VEKJHR0nacxfZbKTiIzdi1ho27r3iMIdEr1CJWHokNGJej6/RT4xxKTilEVBL0oCe99DN9wn1YPARK8Ak0kdNIluPfkNbdvmUErm4G5momPIlZMNNyo3bn9UQLL7BcVuV77sTJk81s0Gl7AafpBYzqZ+HMNhLmTXtxqDlir5hIqox4MU659X+rX8q+LRZiJbAVY7An1v2tTDCm0Ywq9CKKzXUY1BvqKs0V/77k3Hlgbu8RhLPBTdXlF4a65hvqFNdLInwD6oAufrBFlS+k8j+paeUvDmqjCiZ5iOKL4wEaYPkyF5e2X4vRoZ7qPdyilQ6tyLSZsudRqniciIUYdlfxK6R7WfGgCF43nA2JWqEf8LiQTKDC1Mvo5XCj/gywE+aFBVYeRj/r6CBhV9t+4zwjZAvAlEmRZILt9i9g0Db4sJFn3OqQWIWDshQXl2MsuW9BT4+VxRTpMEzjWE81M5JXRasIYaeef4D8pIVoBR0OUXvUcMXP9qQRDqbfACF0kw1O45m9HJ6km9Mohy3Ul6o1V0vIDgNe8Sxqwj80DTGUNjWDyyQWCfj3cV0iHBjsUCAf4ylVf6spbjQtKLpX9CXa8H7CfKDyEkc+uB9KIPEF+R0tfVc2NuMBSYJM1bqOKT8cnslO/Bi4c1aZAWQaZmgLU2fUi3fLv0IB5cJqbFB0dC6UOFC1O8eOwVu6uabx+hAj7x0TUY0QxsT+67ywFEZDdlnQN6Qe/owRwFZP4PS3Zw7oekaoskhUD7zRlcjSmDUj2TsH7WVAsECzbyR95SubHYl7CLFH1yxWPYEDgAYTVkh64j0gbS3NTEWJqaefblyYEyLnJuUcPOD8bGxmN0I06FqUUirqMjbIN/tWcLCyO/FrGPO88g3fMLPGAfqk00ND3NRhQHtfRf8rL3A/p/3qfMxHaSW78yF604ic/U/lbhE+efRrg/NCEuVXyZRR93XzqU6H9covI6R4ue+GrzuFu+JlhQ9IpIekS9FUDn6wsLKDO74cDlcFI8FdxvYh2jnw/mhi2xuL5F9Oz6uD85mbijgpNi6ntVt0d3+u5i4e067t9b20zrWbSLtMA6GQiJ2ZOrqerJZz1/58UXgf2501LxohyTi1HBcaiTRXqfJwK3Hkrhj2rfTrHDAG5Bv3n3a+U7Nz8tF8dTJoHqJMfcPkCztsXYLIYAzqIdZUwtLZYdoOTfauea20+/nBAr51Vh57fjqKpArEKP+v7qZEjR3CbYRws1GnofXj4dBX+xEZw9k0YovvJbR1DnlVTxV/nZj+RkEaPFBylXCJnnJquarZKVmmhAnjwTyBOG65W5+zOPDrEt4xZD3vO0S7K546hAyzvewvnC89pypw6Y6V1qezHG0V213IlxZRNmIdujWYAeNk8Mq3WfS8FXdNgYDHvf+fgHvDcmKEORTr/P2PkAdhV8mOkZU2/pGcgf5Ju40THGEzemKHNmCtsc2nS102+oBaNi1lsbm8vLJkByvs64+R5suFwOI1MsPsiq9G/XDwCoPt+FagWfhBDvCof+uD8kbLpqNPzpyfZZogZ+X1HzHJmyz12nz8p5PmAQ+omIwgxjN6brfV4vs7KBMQsvekTSPNwG0TRt21cHsef2/OR6jBkt3XMDDw+utlbWuRvso2gh4YT8sypRfsjbWv/dFbmEAUZNw4F4CyrRVQJG3OFs4pAGp75pzqXM13BYCxzs3UE3JaAsqZAU6ScaQidzK+0WG5x+T42Mbt54YOMs3ohzUwVB+FAcywN/3vhiAhU42Rx9qlHXYgYQwH3wuDBzliMpnFR0Dg0e/yNjMh4J6lVr2e380aFy9PuYDFTLSi9o4LVd5r1YwIr7z2tUzk0Cguw4t1Dp9XRBmGys8zVUCzPogfkfwWhu2XHIH4/q8TFp6Meix8c6TFKLTzQYUpxix8wJaQ2a0Y3Zvh0SQqA34EFaVN9AUXgaKCG9cfkl+Eli7FnTW14pXbKSRMrsOZNzQvJfyxcwmpY3sNurJq1KiP87G+A0fXc0mWR4pE7mdBAT7ATfSzBfU9zZawHzDPB8ZjqjhmXC5Ls1JPkZdifGV19TDBqykMNPub3KQZJPtiZyx7OwyfyBlve14GuV3UwjZ73gmmuwgJmR8HuXnIS50JNCxGbzV563pMiH6Bo4DViH+BGEOMpO69mIJicGkhDxbgWIf2fy8S7z8mevaW7PEsKLT9qHbSmWoPnoofXd1UuA011WCpUNkmveOZymmWTQc5WTxLEdeY0DnKi5Ah8LWZbsQkJHIl7URiFTbl5fMC1ppU07H5DKadGVrdkvj/oGI3I0WHiddDbJMLC69UjYlYflIXYIxGrvEQhakHwztXpWN0j7SojpfqACxcIf6ITfpt48z/Y8MyPMql+lhCcboyjNjMoLWa6raeaHcZUgnNbRytzCdmGTYC30gEuKYgIN+IuNBylS4SOKF3f0g1bzyl2oJFlhPVD93txq62K0Mw+IxrBgRnFuuxJHi+ZVwQfC7R0AuL5CPLBDJmcg4oQBhAc2AjINnylw4c+zHuV8IDECuEIPI0C+2Mq8aWz9WPNntgze3hDG6RFIlCtp+cVuwrulGqjMDss6fjGmn7rgNJ9Gy/9fszMk5h70cGOmu00oZDlIBJQLLntaMX0iimmTcyKFL76zfAJpzm8QtsUPT7dwMfiiKQQzCXhACuixUXPyHwzSbaY08OFQPWCuQ2fQ9zivZnUwLCpI=
Variant 2
DifficultyLevel
708
Question
A large access ramp is pictured below.
The ramp is in the shape of a triangular prism?
What is the volume of the ramp?
Worked Solution
|
|
Volume |
= Ah |
|
= (21×3×0.7)×1.5 |
|
= 1.05 × 1.5 |
|
= 1.575 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A large access ramp is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC29_v2.svg 350 vpad
The ramp is in the shape of a triangular prism?
What is the volume of the ramp? |
workedSolution |
|||
|-|-|
|Volume| = $A\large h$|
||= $\bigg( \dfrac{1}{2} \times 3 \times 0.7 \bigg) \times 1.5$|
||= 1.05 $\times$ 1.5|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18ugQ0YRLfBdVBZ9RzzVbDu0wYonLPR10b8SF9XNvozrWPNxaAJqGJYxoSXoNpBumBnTBar3TI0blE7mSzStBLAtPIpU8yZJuAgnBfazOs3qcdJoZgCQiwciOWZ/9jRY1vkOuspB0+6TGkrV4B4DTrslp77kFWmTF95kvsm5eS88OvYtq83XQCJf5sdw7QUh9fwBJ6yMYS2Z+ibB/TRtiZpt714Nlx/m2D22nMtAgtFDHmTmC+YqJmDAJfOXQ4fwbsFt8ghdq1uoiJ4WXOPc1UVb3zW5CuN7B/rxfK7D9rPeIevGhfJefjTVN4t6JNA7IgVJPteztCElOf2AWNA+iTumiJGNwca6VQKRvOr39bU6tDkQOrGRxvA7bCUVMduRiEh/0xYnsbCmELbNWURAQ4l4nMpujZebUPOS1/IvSFtu+QS4qfzNjKDMJPYd2ripPuCYQLPZyvIbGkhK5kDeH3lnsTsKz2dGsgD5njZSsYHRkf0ahjiY4gGE/7ZUsg/+UDZ9qTcktCY3pvLSKHvW7ebLBME3KAdGLwFh18IPsU6xDA/Ya5TCr2zr8H7TDK0XOujzjrcIaZjb6aOkSLtYloYxTEm/u5o7zUUCLLYcCHzguAHOcQtwsZjQ82dNiE97glzOslQ99HaGa7fA8Dmkvw8EqZr2N/pVX6Zr89A+26D2SerKdRZsaV+0wl79tOjHECW86AvNnuI5CpRHCHPKtKq6T9sqSR1BSGmZ+C/wwkn51sBv/JEmXMzP550S0RIbfyeiHmJY0L90KsBhem5npDku/5tv4JNotEFx6RsCat5VSR/KeVVvZ1UsKjN5ctkT420F8WiMAdW/g0uKeeMOHM0hk1VYX8cURlIhcgdU2WJcJ37ZhUO+h5J8fMFtv2ZOrjQUYACHNkv1djGJjWSdgCD9bRMX9MCegYzVSfGucjzyNA71tY9qq1OI18eg5tpAh9Dm5RSQP1vxJUJiIriP0c654Uv9HKGIUYKrk/kDWY2Jkbo9kD/3jGb0J11t9BoEPmbpLvPTnvoptB6D/QiU5As7mFNaKLG4mK1PtnN9uk/0FlO60gqSaQn9/UFKixHEm2tSaPjjRqjfSVkh36m18n3kSEHf68VqUQsZjA92ieaKRT69lloIU0HdZbd7oat+Po3YUuAlwWyfGxAJzHuOTScsVYAlNYoKKWVj8K0LQh47NR1chm0JlKu0AEtImSwW5pANvRyTRLIxYMLHSCK2YcEi7KDKCdxVU2QTl1WcOxaRSBuwxE4sJKpsa94xnMUM0hm+KcxzRQuf/IFOj2wxz0xFmp+Yt+yMOhX7evEF01RjP3NcpGGhu0G8b6vn1D/LIioS+8JuBntLXUN51KarBw8atRQyWS8X/Gr/AwZgk2owu/FEpErQ/ZEYHgmb3UIUuQzJOEq1gs/xnV+meIfvw5lT+IUo+OomZ522f6UojJvnL1FVH0AgGdyLNnfKzLbkiVLvIXmOM4fndIv4OqvX/h7lX47xGTTKuHT3V2LZnIgNyILlHXQymBmQNLqjRNap/+6BewOr51ms70dKo4zU17ppNS0SWl04nBlXKws1+jh2aAO96ditgUDjQfbe9r23Yl3Ct6Q89JUFGiUCk0KeuYZbv77EEBSYq9YidBZ6XHNATnH/0KCqRrNZQmoSZQLjYo5wl3hYaJPzAkgX4Vig4wTSkKMCPkOBFPzAxwjisybVkAIXnbL/5ar6zqYXoLum6OWtRCNC6RyB2Lzh0vR99oExIkZLRNnebjbOkg2gbnxEwWLkEm54mBHl+HsvYXf4x2RJs6TYsdHiL9mVfUHMpegNKJ1aVcNyPlHGN5S7L/7/UMo+p7q8XNr5pJ3VPh30LmoUR4hU+ZITeWNOmTXR/st/7hCqoOr64tVxFaHMakag3Z7E+rdFz1fmwtyltKtrlZv4kUp1RsKCdqB0dgOxocbdGsbHEt/y7kRpvok14hEnMsfAAlCwQ6Bz+ilNZ513fJfu2zw1+DQj75pk2zXEwq7T3C9HQhwyKYQIkCJAzgMljxRxR1XtUDDc1zxMLxTnBq9LsxQui541eskJEj7OZnuObMeDdzGCUhIGoPdQyUBX/jjCTQvceBSeWYUj/vRV00khonJFAbg4RKiDqV0wqhag2gauUz4UAwd8DgdrRLWAOPdESHhwJIqq621J5G+ku6RjYTb3qmMhvSFUSHsFlzkcn6G3XmU8AUVgbJ5LF20QOu540o0JewJYl86AdYeTj2KWFTWQ0r/rkpWvih9gzoSKMTArBRSKSyfQxzqwEzlbc+CYS4r0UTqkYqo8eIUPYup3+lH/u4+fnt+mHhPMDirEB7UBfmEVj+sB3kTEiNxm+1+0yJFBOWSjR76SpTfQZbCypLaOkVNaiQHmMMMEJL2mKul5t0tWHnPGaWzhnXFm24ENr+SvzsHl4331w1yho5gk7jo5xXJK64U0vSllnuYDMRraJamTll67Qro+zdMIgGZKUm3k1p823lqJoPgLSLJJjVbBmo7LoaCdZ2FRDPoNX78pccfLjxtmvgN+OyJLuocLYlCE4C3CV9MPTC8JIqocr952B9s88EZAoJPjxWNxvBA2nZgmoCtWZU+54mCwmX8+1LOIZPMAkVtFbZJoeCHKAlXyBEpacd38LTroxw6E8WU4k90pn5WpODTJTeIUTb3smlanPA3VVXB7C7EexAMg4XBQd6lsx0nkr5FhrQC2Rv793my6GjDcZcTQlZ8uRzNL0QgpRjhIhELLkQ20lnp8ual6o8b27WPmhcQvt3nZ+N14Z6zjxRlOcUwS6w1+SRaDoENbpMU0o9Ns2Rj2ufHTxux4dhw4XXIXP2FuMlQylUmju3ZK+N/CWZG+SFVchuBi5ibKifBSBVxFxB6zfccaMrVq5MuTQEnkgVt6bCKbHjVdwq8WJUDX5uT23gFGm48akI214kxdInlYoUu4QfwaGgWIOOmabIGIgDnspr8AMiyCaotzxJHDQ/Kq06tK/whBfzm84cvs6TY4r5sYZNwVAU5kbruId6F4XmlqnAcpXu5ypW/wmdu2/KjNf48eieEsk3/zOlZTDMmzGLuqgyJVRkGKTp0yLCgY42nt925kGI31Rnr0mHEkzObEoj3ZGAnjUG9NDSBGXcqZ7mBbH2uG/OCOwbRhPkkuu7mcwSVdIXeITSeXP8PcODiffOgDwgBikFdDrf0ZUMLMri79KmbDELSi7wg9XTZqZs9ZjJ4IFgeenW8v+j/m84aHcEDi5biG1plQgdZ7s6d3CbKpE9glDf+CbTXhYzrEsz9iJeR1dO/WLTRiMwqSqPWV5QwKT8m+iiM8+uJywHkSBSNqi9s1lCyNYkU1Ia1r79vBa89EyNBoencumPahS5axK1Ky156e8txRzNVAwpWIPUPN+z0OOZsUgk244IHprlx671iX4jzlgMTA0SBck9e04grtpsXR0Mfl6oMOnp/0OCufF3c/KFngD/yxZvb8HSixveHbRVDHLlutgtqAba/KxhPtGcZUstkNM8tBFiQNelvnaIKtqfg2jzP3ISfkliPY+TndPcx3KCJAZpScl0TWlHc8Rd0bxyCnsGkxwJ7CwuSc631WAwj9uqkeiuqIycFSpCDnO8gwhjRK7YqQHi8hCnFUmQ1PGAFaGBxI6xp7+8juNrz0AL8pIxZs5KthvUqn7Fdkp9j2QxtdQv/XVxVyF2sbW6VpcJl5D40LcuvL0WMEW0za2XvgnqiDMIWLHqS1wCxsr+yTeIh1Ea0+NG6NJxNJPq672lJH9GCVX7Ln1clCGM19pLTPJkjW0cFxqjlGlqgPCjUthO+cKijgCU8JJfotI3lyneCVBT+AXe6V9KUgq/tccYZTt1UJxcc/26+zQlLwzNcjsuWmFZR+wAVSlZdFv3vTsmyvMilIFknb9MCLT/pL1T0sFPlhPI2Uk523Bd8Uo2qtZo62//g+btlDIp6lFElvouS26AkHwoFd1Xer7ttQSyptfit3ekdqHdTsETsZzc3YE070/Dcpmr2EKwCdzmq+IVsP+WiHYEafesC90/rKTAAEMiBylN6L6YlZ7gWpwN3lRPvoTA4dIJBxE8CzoRCjO6ot15LgQ0ynggC2PE6aECsQm2HFG33I8Mv5dJUZ2PNAB2PkZzNq9oOEmU+y+kTEdCwil3XFcreIzsSuRzt+sz/aEmOxsPUX9R9OqDuoVl7FAsr9oy86JV3Vi9r4FaSAA2424hxWNxXApbs64WTUhPU4g6y5wfE3mdiMs+RKSq7HltbmAStVjZEVgpc0VzGTqEGgqEBDgxOPR26yAdiHyDx9DGYo1GHyQ3VhqLguHah5J/ELA8lfFugnyj86Jy/CJEc0lds+KD1SU1sMIhlZDTDWRPU2pL5N7IWVHB1tqmYWloHdvB8jbGr+mc5v6McL1Y05cEszUltzt35tITUq1i9C2Bc2Uyaxj3XO3Nry7VFx8OnVuR+csV6JKr+/g+n2XX1zrF64Lsei5lk7uLcrK0nEyzJIQD8x4ZgZUwIZawtewSL+0wFCOZLpvfOUJhJ/vRa3rN6iQv0El4esh78yc7trBWHclO2ww0zv8VNKWj+Qg+PYDrjzlt4yNCfucnwAJbpCQscVaufcAluibafBno0GxT0wyBm7MVBQcZ5hU9RBcnYL6t5mnYHDB3V0HX0n3N5j3eOJJEgN3s7kBdEqvqKcG7LGy2xxtnhb8WhbVT8lUH3weGfikA4B4O2z5rKJ2SpSZMaxPIfFu5Y6YUiPZDyI0IOptTxX5HsDHfo3zaVs3x/3t2Af/WQRzsa1bvAUbXx4QaC9mFUjSLJ6L1Qk6DaRDsuwGl94O2YkUYs344rd2lY2IPwVig2v1x9+me133BGbeocTtyDstAuFCz9CryeEFzh95yWpAb8e+MrwP29xdeE76yM3a8LXrAR0vxU3qmnKzSArpQfq2n+x+aATL+ESugNv0apfDR80C1XQHVhE7R1AqhSXcYafet5/4AZl8uw8aPUt3HGGxZ0A6ohlbrufgEhTH6m1VfWJXY8WV/es8SaPQJo0W3BrKQDYq6gvwL3ifJeb2wUmz60/JzyRC8rlz3IOF2p97e2zNHm04M8vaRYjJ9yGmtYP0norM0Nby97OWUas/Cra/Ozaxgh1TTm3e0vAlOAxn/BGWsMOSmTERzMHHYuxADE87X1eSiJWF3yXMD/EYmBeZk11FuVmSHFIdUMp4YilON5uojrYJgUxIJf1UH5ACOfyqqLYLeQxRCufHPFb5LTfsAC7g+HenQAcMzlG3IswIdRBhzZLpZHn1T0rnbW+0hWzE9HyExv5XsCqlZTAp/nM7j1MGvrRM11SNtTcQJ0Xlc6gUtQXumSFkSO+w1VXAn3s4gCKs4STUgjvlOGX4iQgDC9hADN0NCiY9YuZyEt6xhZCVYLHhurZKbCpjclxQexfokpKtBFBXEXWHsbxjp7wyNHPj2LzL5wMkVpk504veXgvuVXXLJnfqWKzxgZV1+cVWmlEs9pwTgCH8GQtRA9x3epHxG+Sn5f8fBMHoPMVeSUqOPRiwmds69mXQkdErTfdkEibmrNeh6Hz4Kj/ncCyRYSXP+EjDbZ2zA5Xny0JVdF8f4jTlbrEyBkaJMrZi7T9yEo7qO46eTBM1eoFknxGJgMUBxo3LGYJxXtLntkkQ0vuz1dRM9XD+hRqGh35ivz82Lu0vJBBUhKr2yHM1IZV2DnWlfcj7WGsSzPpPLb/qViObFV9WJYwnKTmOLLJB8pPRDDsc5/s9KNrLKcnVw3HbgAWbv6xGNOAq3+0o29zuwpgK1mWTJ2MS9VBVU8x+5lC+gnEMGDeWvBqTBK1G6SOAQoXr/K8wQtjv7qeEKBPTFK7qMgsmCvIag4YqMyAjTAg+5TLe9LUv2eH3zvHvlvhp5WYtakj3US01GsWP5lEZzsFZg3ElCn4Seyl9tQc+RaosxP8JueJIGCLthjJ9HZEtL+31PkPBRCfeB91YLks9kcWhlZmVm0sUrAX0XAqhqeEzFx3RiKP1RBa6gGOEz4BTVPf9JlBWfuESlNIKU4XJRCyhWK0PPXxqxgD8OgT6CRW6FcphruzajEl//8LWHNpn6PqLGGbNtFtbUTXogDYlUOjXBj8pkKY2BmeOgae/OD4eamfYiMhgZ3Z+10Z3EMNiEtDtEDtqAXabb1lRwW+8ZYmNn1SoAOXPsN3EjXWwd3u7N/oYPiV3yy8j5zSjWutKK44OTBBxHiQkQ/BplLttCIA/scYF8pgME6xsxyxeLwrTWXFcC8qqYmO/ez6GwYzt2/eGw29AitvcDEsN4cXWODNqE8WY+dLG41DN0nfSTjgT8lcQooCE6Rjsn/i5HLwydf5FVK1+ETUbbU7rJ5udzCltEZ9Usl6no83kSZ5bdWDNtGZAUgexV2YhVgsUajRs1tEdfupShNFoSmH7tN5BwGY5rFHqeRaVIlCF+B7hUA2R36mqXR+dIun7sF0HDzvuQ9tV475NqDpzrld5sfnz30hz2eK9oknUHIbLh5dQN7ek4/koevBa6zxYfyM4jDUnddCGwqIgBu3Ugb7wLfyPaceCXiGtwPKSm4GxuyfZNR8j9iuhYQ7hYD4hQ7GeG5be3DaxcVxCUn+dJQ7ni+WwyZbH2bsPwn4u6qpEYMeCQzlCXLBNRGsh8hzgJe4UL04ifWDFXCO0BPxoyn+tkvBc/D4iu64VhHHzVA6xdC99DH2r9Il3PCAKhsD/vQLxDVWeOPZc8xtPp/DBdE9v4/pcvXQQ5FGduA/xtd9hJWh6VLO3BtFYgy0/qLW/8ViC3SVjnh5rpYqWKKa7m37XgLERCQ1U1OtUTR7gEyIhpTBh9bJOeWsYDPHaGbWKcoLGUWoDtm6zcuLMu5YIsdt2/3GmMycAPMG8sWsozAtkjwhbYa1+KSNgaws/Ps2Rb7tTeFeaag031nUKWrYHnmuoyKF1GSsGaYVNP78GZ9q3OUyLsAMfJ3vQYjU/s5hh9M6UAOaVFQeYGhlkj+W95GDm8wrofISUQe/Gmtqu9kdn4skZDHM0e5F9+7odsRL+UjRUMGGAiNF0N+XfZVHTkYwqOBchM7eLiY8GnF2pen5mxAQ1y6ix1PzaVtGF7yg8yd9FsQcPvd+2QwAKmu/TAV0qXCdAsoMJO8EF2OISKDIX3aUJDiUbSAgxovvTCmAnDCeGHVpMxWIBZD58EIk49jucG//xeO4wZlXYrAvggzDtaTJ7lG8jX41wCyxyeQoEvsJQlB8Tm7svjTTOKHD67UuIUbhIvacZLghJLAGKh4HwY95nJvq3gDq01yOdR24ExF5h00PJK89gG2q0hNkRTJTndD3baHwUBJVe5E9HewmUmV+Mq+M/m+WgjFyO2SnmMe59UC3GSzerJNVFHFQfCViQWLbE3vthQVGXkABUy5HK7bPCRn9rwTKRrX5cq0T6KFtSZx7uFeCP/hCMYCCb8wRcBCK/6pTFnqXeJpe2MukyI5gsa9otNt/sam7y4uM+k5y+bDh0rJp9JHBT1B9TA2WlQkmIy08uTGQ9eMLmnc25ONfUQOVJtGL+v3lEZcBC1ic7mfy+uj/y8nPjsnVc1LJdjYzqual1h35FLdPGONmenHNmALM9HdY68u8GHyCDH1966/bMEeO4j+C3rCJsWGIX04J6874CXubukJoZPnJi9ffopbD1Zp9tGIcvwaITKQ3YupmbDjbO/rDJvpFyW5aWD/0QHICIri1vhI7jkqbJk0b36+Yk6O6a67qNmBCJ7lAyzuOHJV1yMDTUfv1ZNS45iY58HTtN2P2bpDcCyy+Fg9o/SIpBsh7xNiX8yUvno/BapSKO5MkzZWJ58RmjDVujh1HLcwzuvfF1lQUiqf8nhAnYTBo7x0JM6PMmUaFXq2Zu9okJi0mJykeqEfLMqCocp4vt5mKzAfUPWz+rs/12ygMurA3mk0z1BjhOPzysFug2+8OJotbRTr2aiyAwFtX9CRkx9ZHciCNemghTKhTazuwlptLQdR1HWwl7s2w5m8VttpZomQKxF6oX/zDV6/Ovhe8oiAjflH7PAPHpkUW0wxJz+1wfKl9fQqRLWxBOiJNVBFiBwUWRVc/ZtVv6BpcqGmcQ2pZIKCNqFOCKxqQFGWIjTMd1wNQF5sfkX6mzWnl6h/U8p6WcrOUXJbF0dIR8DJzAV9xa5zFbPYxbJjO1KDSUOSVa1wBEvaImqIIB+RbJjISIciX0KDOWY9VB/d3sbsOqqrfY5pcuY/jnGlhls73GQ3gbXs2YjIdSu9diNwbpNRBkvX8lL2qlCqM1eleuaFlWxCnHcMemIpey7eCovtkOpN4FNStBGoJx6UDS56mD68RZfD1Yo54LiDpvyYtbvaXNwM3+g+CVcoDVm4OKt3EDOZvrFYxpROXKf4O0APbi1IP7vxNuonejfYO0LhQ5E5Hn73YrsGAuzscHVyoAxmyqmnwKJc4m8Ix6bwnodJJTg0IB7jIQ64iW/RmWx4YEM8RFsJb+S5S3PtX5dhNyw9o+E+GjRod+UAauwYWo+HMbv+Bfwd0lIef1a2SIbD6s9yQr7k1wfEXn7j3DNVNSANEq/oZyW/lMxTOBmkyVxkUE2lLFFFDUBx9LntkbpO7Ocu0Qz520UKAQxtj22JeLCu5qrJRRRrYVW/mwQwHTc6aWgNyRWxEik582xrTWfELD4YyKDKTIxglc5qkUpP+8XoFeVR6oMrursRK5qnldKZi2Qvzbs+Yl7nUz/aTzBVO2wtFKaOd6tNbZTq00HzBNqoTWULNObEwTZfOJ2Q5ibyjy+SS92dnY6lmdlU27IOlzQtmY3UOWo+RAquDcLwMUw3azVw2L1f9FBy7R0TekBjWMPe3xWh+q2ZVhtrysjBI+lyd3qRLLzzXNKNFTa2rVS+DmMGW1ofuSDmJ6rnothiiNy26a/cvwXtoTonLxHl+w6FUpS7KsafcQFw7MJntEvXStAXdx3meb0Z0IlHMjaRwafTYcL8kaQ56uTWbcUb4F2257tlZq3D01xI25sd7tKTHCykogu6Xg8s1CDSOSfdmAX4UjFebalm7H0KtInhr5lgH6buzEiaU92NoNhSTAnDe+c4DfBtK44CNJYKV7Sauu1aF3/y6jEpku4J1gYodf4teunJ+kPXth6rzldUhJ+lAoNCf10YXQ+amdO/xLCPJ2YZwZ6u2dptS+1WbLtmtktK3nUP/luP1G2BBfO25xWKFv/6VjNdR+bleLMK6ou9O0FsM43gfA2RtLq3nrB2PCuV2kNE0CllM29Bp4VfcU/95koJzPDgczujgL5b/yN5NzLSNi61PHgJGKfh7fzh2zQqj5PKD5IFijC1wSKAlHODD5ngjeo5qxtM2cyRp+lCPUkk6vj4ijpQF3+sZiPYOAoAtkHd5rcNHyqyZhUCNHbHM4cbrXA7C+r28l4iv9E2sjILZkVEkp2QmgP63kmEkra+ZGuSfq+IrvvLeNcKugN+Rcsq6YxumpZVCX0zM+QZZgzOY5dJinzpd7WwrLribDiWPp7AKO7XIdJuPqEzS5sadZ+RPSNEiUniomhFj7Clj8Mfd+49B60/CucGl7H+aUwGSydidV6tWGH+09UjLSv9bwPe19uztaFrX8IiL+Hfu5P0Rt8tgwguvF6VSdm3NAItzXFY14OV4JJDucQKjfxoLxKlOZnPa9LtSVMC61PxA/n/DN63KxZAMGmBMTVoeDoMv80+TTkcj2D1ELvBV0vl3q2OBOHWRAA6diqa00VUu6GxRssT7QeU0TrL1kirp8qAh0/edQN4u8JAhGOexW+8/xevVk7lYna00PBttHIyj63Fti4hDVWXrx3EXC2BxGSE3ELSh7SM7BZJQppbKvpQ7Kf08eTbUuDtv5j2nsfP81lm+Bmvj1uhwI1ZZah6mmr2XvRjKP/TmXJ4ydq8ZMxkBmycF5/+Jf9NpF9+KIyEGjeJ1vkMaC+IyNk4U+KAuxST5I7CEJpsZ/JaGiBkW02AoYiB28fTh3SVOH2kli1uAn37sPONl9SyRFiZT8htVn8x6J0mfX+6LMAchJZ0bliqmcsbNj5NsKUQCX7SiLBwgd/GnUo9IojAkJ/AkdkxJ1cMEF9WF8PmBTrWj5Vf3dFfSU/TLGPiS6d2vRXL1xnpLS7kk0Ag2s6bg69e/ZB7zrACmpHq90CEBn6xPdVrLd4ufVnIAZkAl4kibRSO8o8ne3UHewgLxtZzvKqgl9BVS79TqUegoij51TEQ/ZMkQgqrRkGn7CmhpdGmz6sIGPQnwfjtSf+D5M+A5FcGk/qGLnDbE/eDcY3VQ5KYIwEIAOQVbZGV0B0g+aXz/O9EPtyiIx4e5t9dY6XU+1nyJIjUdiYB300vua/Zpyhdvt8Hpln/fIYk5IbTPRr1hLZTpcR2FGS9uY+voBWOq748qPkNhisR4c3crtRF7GUjYYHFGlIaADd1Vmal5JgWHCJ6A6NX/vt0LcLoeA6K54UoLskKLIOGt8ZHtd1Sb1Xbjy6xVq30lI6ZcWULd4SxxdbRqLXYCbV4AOWNtAL0rRR24XGODSpdorzemnBgDkT+g0N8pOjO9bGQgN8pFWNkVlor1OybxOQgCCaZvew7+7bxGOZB1ozyBmNsd61n8IzK1xJA7HJXjaO/LkRm+b7Vcc1FDrssqGRICMH9b6RW8CPSw8kT+S26W7lo6OwVZZ/KPp1bTCgWshs6ok24eLbdQAlV3sGpUs0wLnpEYP6zzr4pjqKtMhjOq/rdnbuInF3HWG9pgHU/k2fL6JSX5iqxj+V887FoQxiC96KJZkZPexLfWDbPEnQo5jDZeOWNeEXY9+L1kJpCCJTaV6Akt6GQa0QcabYNu2JiuYfgA7KtG8MAqJVTbOxPfOlCliUpiTAFWLTuPf/H+UwcrAeSBkp1vyw3boU+RoXridDBAzJ8Az7td6FL+KRjAp2NP53n8zOGsOmVzbyoHCWBb5Yg+LlFZ7ytJyI9ix0bQtjD024q0FKg0aficEIoPwGwQyLa4WfXBStPuf/3BPUGk9wdGG4DrhjkJlGAcWoD/fw5yLlR9rhir63gvKHyvr42unEL5eIrJWZDLMsa3UwOWKHsweD0acTHhyD4mJ8OLhj9mjp69xrsxw4faHu/Du5Sk8ZRZJhRiaPagP9eH5z1GwvwFiII5is8betPw37e+Rz1jBRzwi+LKwmrREGoJGAvv2IHqvN4Zan2ufZChH8xmniI0KckXkB+VitZSUQRmYZvsMt3HhCQ7I6OFNpU6Y/j6XLqxbyRoKItnFi35jFbBSGgb8xkjVu95oNZ6Bir1kRuv8ooKOzW+cHkB/ixVSp76mBA64h230dq6BPU3JY7P5/wODPIXT4pHf2N2DBNgf7TYoKUbQFsJa5vyPiNNFj9JXQVn5EheK0nvNk5YpSC0f09uc4uRG+lxvQZlN20NUjNA5iad2IGlZrHDQADm3J7OFgmtzftJ+ORTEPzNhdSyRcpRMMGlsXWhu1LWKPfbd8Vt1N+12qQvETMOhlXvLLChp+044oyCj9fBxtTr4ArIc1Hpph+SA7GHkGYFCM/ZGAlmpX6s96kbB/0re0IQQl+W7UBkUHcYxaZkivafGDkhYV1XPEh+acH/xYxZEG6SHgeD7o/B3LGEtUDVSgNnio8USb41fzA07SNgZfeayjhTNRVw1RKrhPUOCoNe7fEWaX4jtYFZqbhEFGAvz07/Y8VGwFFopyiXqdQGemVUiqAINkjakQ4UqReyDBrt96LFOgOVcJo4EZ74y4h2QS+DJblvggwNRxmDDfrLVEzE2g2Ljrsd8oBJe9f7DWLPJdXdeXTCSgQsR1hXBVj6vlG6TuZw/ZjWo33ILaDP5es7xauHkUWxGxpvRmASC9jQcGcElkkZsCu6d/Rxr8+vzhmdRiqqlOh1AtM+vgfNOlTnlpugdKlFn5cI5cGCNHdNMgdboji5FGFyr6aDXz6vHZVxvDweelCArcQ1Skt0pGQkHWb8uMHNz4vy41GaZgcO8ELcHBqOuNPYWS6EaxfOakG5nI70wrfBl88m8tgQcP8JyQ/JX5JPs7fsNATa7pZmUYogWk6oF0hMx7ehUU/GZ+HSAeZwcyc2SAW/0sA3Cb55gfB5mPQfNYJWcT4b+4i+6brtAIfSBnbpLK+xQPbKSW9O5N2ucmDVUTw+ZU/N7V+8dnheSvB0VyJbBQpfNwEY6RHQwbqYUk0rd0XteM3K3VVgKU8d3eljdKPajExpVTxUMYA99xyXWwrqxsSy5C007NXVgH5HSdWuFlmPvGuAAS/zT2gC3RYr73NIQYYMMb48jSrENS2kQXhlwaDlFsVz5ZuqaXo9gpmATNm8mpIvSjL14ypgRn2c+QaiLm/aNAeRxMcmTqZ+asfy9FEqz+9tq32O5z0nDQCl1PLT7eYMtLkJwAQ84dnUpHdmKxzYyWHzVCZ5Eo7oZOyhccNVu1Uqv92JhyYKPDJwf+saeBOOKz682jt8B5EdBUDVqjtcZxkih0MWScSjkGTZZWe8CG2VznKHmwPGhGN0FyrApcJyEBnV/H9P2Z7Pg7Uw30S0Jhmo8XfMf10Dk9llBSLKZXtKtBkpiuM+0vK9VtnjR99gz/Xtwv3uPpBHMGouJAe4NlFR2lxlBeroNhDoTkdTwZRt8oKFJht9KXfAy8X+UeWC4U8JMRTXCBzxzH0U8upKVIDiaPyapXEk0+K6SvwrcnW/8IkGJCyFPTfVxuLF+Bs+Q==
Variant 3
DifficultyLevel
715
Question
An timber sleeper in the shape of a rectangular prism is to be cut into to 2 equal triangular prisms as pictured below.
What is the volume in cubic centimetres, of one of the triangular prism shaped pieces of timber?
Worked Solution
Using 1 m = 100 cm
|
|
Volume |
= Ah |
|
= (21×100×10)×20 |
|
= 500 × 20 |
|
= 10 000 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An timber sleeper in the shape of a rectangular prism is to be cut into to 2 equal triangular prisms as pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC29_v3_a.svg 450 indent1 vpad
What is the volume in cubic centimetres, of one of the triangular prism shaped pieces of timber?
|
workedSolution | Using 1 m = 100 cm
|||
|-|-|
|Volume| = $A\large h$|
||= $\bigg( \dfrac{1}{2} \times 100 \times 10 \bigg) \times 20$|
||= 500 $\times$ 20|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/akIBeO7hdt+1LCASj7YJiFIj59PTeXgCSXHcGCOJbHk+aJXONpNLNZ0copQbLfwZORvCfjtGDs1NdCi7XlrOkC2JIVMkuYo/f8pBivEc9zXP+K8LAVngnIbXFK9eniJNjTKWqgT2C3t0dPn2DC45pZtp90jQ8x+voUNRBPJzb8xR+c6ysJnx3AphyajNEKCKI7I4lyDa765ry3X0uAAhrH+l9YauySaNYP7rsJ9Ec19lF7bz4ezLf9OQgYoA1mj8fosDbL8BuB/4fv2UFS4Nh1OcQxKoBXKRPDhTHfuIuB43mxsYGq+NEUScTqGnU+P1g5g4W/B/RdLcZKn7WVcx9g3dAcnx6JQlAYw5XBfieb3Sm7+Z9eWtqxcOAFSZoe/8xMcOekpVBxNDnkOEOzojcmHEwSmUd8hMB7C/uLMvPlb8+Ajdf2E6hMVy3F5i6date+br3VH5vOZt9sj1P0qMbHyVphhyOWPfRpiraCMZv9Xk4fOLp8xg2ajGC4DbsJArFXG0s+fhnPhDdtlnuAJqB/pxUjSRmLmxL0YJrWZn/UqKXWLwrxRImxDFOySpZHSrrdHv1a9znk0KO5qF4pX7vAzK2+00C1oe7+OrGgdSwpW4u1c7BepnAyzaV/sTJ6EhQPTDqDL9rgOuJG2VaQMMCMswmIMmIkiOyu0Ep0mdNdy1dmZAi8xq02y0valLXG+dwsgSgi6gWgtRt64v2RlFj3E3q+YeiS9AMmWXYFDqcDApzJ0kLJFhMfmj+EMBjgg3Vcb9GEXUkJg2ylzVSGYOUsZMWVgucpqWGp7rYi+AsBusilG/o751giHuKH0cnCL/U8s3cgQ4/8MFiS/dJyJnZf2ZL84cJUgRRVyXJ0R/86F1JRbj7yGxnkQ/xrf0T7MnmFxVe3rs+EOwfYu/rZ89QJ8kOLObc2+J80KMywMBaq1QNehXE7YPf1XFc9r54zeG77Bqp72JGJUy9DR3Sptsc0sFPt+w3IlngeCIPd2Ze/Jhi0GwiqB5PCG5zuSZX4bagiYqyfjmrLZwdNEIGz/2jT50FlL3DNzLa5g2Mj3OLbKtuzjlpar2G4F5OmxjKarqMkLhos03+qOwf8KeJKRW5h3hdXrkk7SHoI60oRlt6/vN3T9/Q46NNaZx+1Zo144mFgG7yBB2iPELvoyJ18FVKswk0wITrNR2Hroq8FJjYl5Y/zvn9396Qmx9HG4eFWSOmJj00cMN6G7LmzFlkdEIpS4TXkuCTcl1C6QhCnr16h2aOeMDRG/iKPPtZDt7LRr27odjtj5UP2io9GTzxc8+oiMYur3eo4RmtSoQ7ZHhCrMI24F6gRvoYLEgzsi2Te45tF2BATHUKPQw9OMzZhM0nEaAuQ4AyiqZeZHib3yrAqBD3pP5byNJD6w+GCHtIDwVQtVT3DDpN/A59Zjqco2vA6DDznvJtlvUS3OZcb94wxRmgkrkxfd9i1fIpnshGy62/wLdUFI+aFBe4YtDjifURugMWYxqsKHMCl7WxRJP0D8yiS3TQvRKX7fhk1LFFzf4o7RBe6RIKC+TYfHgUKwL+ZZs+lvplWUsBkXEBPRbJZPRPyT8QM4kJ0qrH593hm/5GKDzvMIi0hpSI0Brg+jnGtVPKpzvUIGxzvHo1gZhDZklR8Jm6S7ZSVBFLhSZ0TyXZIJaDDLqWQI8VA7AoB70vwSWaTVXTVpK0S52KYivYF1AlTNpU31CtvCDzuZ6xshvf2tNnoXkb+MbpRjVQjs4NCn+jXNsJmCJno0HXb1nL9wPZlaFhu5CsPhMJhMuTq0YCnaWFnX+VwJm2hyxkpbQrtovHk3OjRNVejUNgT9GuFlzMVu+Mr6SCE2lHmdvRSRjDmXa07c0rwsOp44XRjjnHv/z1f4UQOHRLSSHIXjECmFBvcxOgf1NChDb2IIYzNlt5r7hk5p9esC76L5puZ77OoQ/uqVz8AeLA/jL2jrBDladoI/XdeaY4WSmAb5oP822v6+N4FIQDSZLIOtj83fV/2VDiwARnQh7yl8HgCNVw/CkaiNDxQNTldUgcFyulOkTCW0eRkzTR1mZ1bLuREL2t+AiYYYxf7nzJs70QVwC+b1nNhEUawXTgJ9XP51ZslkOXckDQzdUis6plyzFZcRHlqWFpASL3bGMCcdt2f2SZqAQqysUx6Sm8zBFDaOBUXKrYMOjBLhFhTpsRZpYwEpDWoScQ3fOI3wb+m/OXo1xY2qy1wxR9vKTf6YUk9RBFXdl1TInxFk+aXB99gQCGgwQT30izw0QPu22j4Dv0Fxeq7svf0HsuNtwlLmSH1NuglJVdGUptDFDWb+ephLKEr+MzGKyx3V5s4xPPzWLOuhgSPWlZtWNfJff7nRymdH2MJBxQDBJEa7HWt13xyGYDPcavUwznwM+tsFTsyf/MTd5y1ISJwRNVEX4hApzfg80ksLPothf1otj1uWnWbNV/UkYh2OVfZC0brd95zKjCerWhQrjXwFZ2MBXr9O9lsp/czY28aMi8M9Mv20F7V1t1BkyUxw57tPey4g9pxPC9qNAqkXt4sjLypSoDFzi6uNd8UTql731kRBTTCZHi8Wxt3s6DHLDIbuqwflBtgH8/Oo4g1GMnM5mBGjYkRqWxIRqJP4B5QgGyEQfEnheMCTdMXI+bH1YxifiVKt8iYEr2M3UuZNGHpXbhWflbCzwBclMyQLxs9BTlr5wqod24UgcSP6Op5jHritJ6TieEX7FZRpJ29DWAMoaTN/VnJDTAsX8YQ3CMlkQsrtux3GZ2WswqcYXh5CM/CVvmtvHSkq3A/0fvSURFENWe04uA1IH4pqUJk2iUxo2iFH12OJmrazRO7ED/5W4C4WcDb1aZ2PGmIVKQZRmkbQ9FymCcjwxmz5XiEFfb4FhFIJNUXocwbWvqgvpxwOq9Wo7dlgt4k/H7R84WpRcNHfN+ECVNDdQpp6FfRdPA4aEp/Prfi/QbDqn4GqDXj4nW5/EIs+8lKcrL3yImBvQ4y0J5HyWU0g+h+CY19z2UDF6uYB1P1smxATqCBbMktAN6hjQ4jh58hR6ikl7XIdcRStTo+IK/TQBhS43EgTM5crvsVOiH5nLh+joEIwHRvYQojvoqb0xnqCdJLutpilg8cGODmzm+Izc1nMQ8PyUIckO4qutTgEtp/p/nAYkwR0KcnCPdtlf95yoRFJWWlmBy6FAWCAhxYgdUonvnTQ3JWIApVTPUfY6zRh12EVpcqb9TnmbFOFWKYqQNR52mnyCWjsfdgVw/gXsR2hOzRmXO2QVgQv0qGpsxArY1bqDCmRHthHIz/gchhAqxZs5/mcvKwAtzvWs2CAt6plJ31E7pvoKovbVDJPJG7zyqH9Js8TFK+6z7AmF6sLl9xZuUXEadtFMZOokr+r8+H7JD3TY7jj5acs87A4waqhzy7lLGcyEG/2Q+g9D3g4vjmEcUfR/9j61ujoJJqSo0nwRXZoSPjm+HR1gXLKsRPoQO6qQ026LBp23f2whjcwKOU0YeJ4vETqXexJOupq8dl81Am9k3PyHB9wG5A0vdm5WDKaNbYNXgUWvgtns5Gef+4DWK4RetaMw4xVTCayLa4OI35uikKPHnWUY3HGxP5JfT0/funPbCJRtCpo3j10jWlecbyYIJcQ6kjTu/BN1XHfM55i3OUhY2KBlLb5GjnMifOpx0f35nsBCyYRTbtXbUuOq3Ix+mCb/r0+RB3aryvRZnPNONyzRJ/gKSOI4bJK4F9cPGD5Bd1vnzdUbOv+F9jc4MC792JT89Zngag6LLwfQtMMD6KQZ8aAn1/H3GaFAHWfAFH5UGgllQWgAXef8oHoTGVaJqgtTI88UD8QDa33H8R8mx4TlevKfgBAWeslIqj0bfVpWKVp8Oky0nNgwjsndyPMU6vGbmibP3czQ6MKSZRnA8eWh6h/urBlZ5xJ7bklI/O9mwQf5MdUamVMYjyzSlQSEFDV/8+7Kn12ojK/kBTnDAe+Fbwj991e2ZDy7qOyrmYFwYMOfM10Nr3fb4dmSJ2q1Qh/SQJ5YTaPT//kupHmoMacj7Wlsl+MeIlVoRu0giPikZ3/kwbjKGl4dBo1FkCyYxwDCNbmVf6nKj/e1GWJ2PGKVjEfjBDZtYlpWLQqirCndyY9y1YR2NL6LMuPrgTepFqZ2eVug8phHN1dFas0Cup64K6YRQFsT4TfD36U3bc+WmQcsshOef7pUgYoWT/QwkVb1ZqT4Hpi02VZ9hhfSEMy8J0Ie+QCdbAGrybTaoCB/6kqx47gksvkpgmIpLQjht9I6TNxt5E6tnqHf5wQje9UtYZ2bkVNjSBKA8WCWVBG+PmhNgNIgUjqyzWEp11JBDEQd47Q3P9kDoBVtFD9R6UkcIMXERnwSGfrDWweOBb9BfOlhgBYMjoFYgbKZNuCrCarAsT09SVb7zKkgCTOLx7T7vSmLSWefJWI6HdKE2x41Wm2z/DopMg+3PxWeSxnRpIMaxxt783jgYAu/Z1YLndLSXzV9ak7Z1rUU64I2t1k1JgGxNp3Cp7T5TBLNS0QGxXLmgZIeZmjIUJSdQ+y4wNIPpzeJ04C+fyQm3M2MvFZTDGaCL5NR5R68Q2HOWDwBI6Ws8FRBIMURosg3u17D/BQ6+RhaZIeRUbOnwCXJMgdgZZJwh1znkwg5f0f1DEltU+EeHtNBZY5HmJwq8WkFxwzMegA37wWRSi41fqS36oo99MieCW08trKoXEyIBgVNRZZNAahslNkbdnzqk7MKtyrSQHqTE8yQM0cvMwlUqElJCPPcPyLEldgqysrFun52gvQ2Tmfb3RSwZ8VG75gW9CXALwCKVJp7IaCWFPdbCcYQRaq0pHuvk+40UYljmNzl7J0Hx8Qdcng4tWprPmCFLgTPxidqsdNbYCdWgk9s7MixuBQgFIdZSFFV+jPZ9Bo5sovjkMOp1sQmfMZhab0CZrNOgBudmgLM9ZbFu2LJIzOzAvMLoKJqJc4ApqYZl3s5slJP0xa5/4MRli4vtplbz7JfT5fPy4rm3TNavXz8FLiE+x99VJvYgM45vEArCQiFBsznWe2YFlRRGa2zdJxITiYK9wOpG6zZpssA4QGVUkVGjDgSTGad/0oVpt9UXObskjVkvhFV8TGwFH4XJqSSHG5/BkQs3/GP9efYCx6bUvxMn0pbwpVmE1+MTB/So596hvIOi+U90u9aPUB1jh31GXi1TDkUURkWKnAXP1U0Mez2OuXTAx4lXUqmRp50dlHfPvmgZsrmaeYlpSKNGXSIxUFCSKHDHZw/GcgE50jXZ3OsWVr16FZmzi+BYEJm2ZIDe6qdczLQEPD3NlU7J/Qskgvn9Om8BRl8DUer/I49GV/euA0/I5VN0rDqNBi2CSt9erK66trVQdjfM6oDqqLmGw/BEqk87BRguDYsK+tsA3Ho05SNxzOJRqCPNNJD38xMmNIy0r/cRbzJE8AwWjZxx6MbSV2oWUSKtLh+Gvrttqzy3RyNZFPHpOekpxAK35gioSDdFTW3z4yG7FheC/4NWVJdgQdiEJysbEudDJOc1oymcNSeFaTAvhZZ2KVXoR7wFTUleP/R6t+adDDpWr09CHeaNcnZ8i6lsWx/iiLQKtHfLxg8R/hi3UuuLNwLD7fvSCkESMc4MY449Hfrj06ViX1kJDJ4Q14RRZC0fJq58y+kMGoCS1GwdzFYX5TPLVVLieuMmpu/2xk3JWNwq6iVZeXXBngblAnSMCnFdNIkyi+FG0DcnLL6IjP98ZrmU1Z3C9h5nZjmefDfsxAgL7r9ZRsf8PXqBQEdFT57p5OdioMOZ1JAP3usXu0CmgPzB/W3pI8XtiE9q93KacpH5UkF1zm5VqMD0UsSEc/2alaJWQ0AoLOTDXmDJHGxzk5o9JvBeWqf96yLnlgfigHhTyqIDmCDErr/rDZaJ5J1FFrhe5nAxFY5waq5sQmhgMTc5grudBwxgEn1PsFJzFfFWdedmN2OwTBI2yOB//26lBspZPGhNZB0fF7PjlSEXFohSzU1TFfMMUQwtJFOLuSaTno9Y+bXoMSbvri+cZ+e6ASkAoh7GSjD/nw0usdUWMBRUYznPoA9eDkqRxx7BMcHY0iF+f+Vcn0dGdgraFPxVIXf98UiXVzEogmBZaZMHb0z9kPQ/1dNWJ3wzhfcqKA/FPjjHNPTIpWQo3NxTR7wfDSCMxLkr6yCw3yNsiv+rYky+dj7YxLw/gbZ6l/zrc/1R0tvcRh9QwYV0iVbvjb5L31PcKkDLEUlu8g+c48BhnYqJFfGPII91HNHxvoaefwoFtMCk9kaFPcCXDvSakHyD0Tx2akCJtO8HNf8BankG7uURuuRFLXQ25r/AcpSHeadGt430reJ4v+ZXu4KP3kVFuRgxLKTFFh7N8rpZovHOQ0O3FGkfO9HRmJsjkGObY/D/dc5w82r1YIL/A6bhjUTZ8ZkHuJyWZ2xlEppVmOvFtPHjA9ceSA6ierxYxP8j68+BJq4/rClyVJyh/8ThNnd2M1ys/9BKjLMUaPRu0cV6GfmUJWWcmoBzfzrFj/F/HcF9LsWiP8gqssnK4l8ZPAMjz0qreJvoanErNhZqiqBE/HXrWJeXl3JvymFBqQ+ZosacjspDDyud8fmlcfLRtFD/rRaXV1NUQbNwn0rl5qIl7gPImuzs8TbAVMpu/UllkGZdQPWoFzf/+W89T+uBaHBf5J/Fb1t3+OXYxL3mjeFp4E3mdDowDAHQhRxraFyjhvpKVvEZzYjpQax2ImxCePuUxd9yU8zFEJvwQiDV/ySBAUT807I9FHYP4yHXxk2NIf3pUh/qgX5l3XI9t/6wpRrDMOBgF6PXHUxQYVTnH+lnpDBFzfuN4HCHxbBqTaldFJFfwwtTp5lvdaip7c5oibY2qYV9djDlPYCxly5IjBSMzHRRkr6eCWZOOFW/AzdfnXMrjWYFBYiYVV3NyUYTKhTjHHInzRBMBqutu/BxiC9HQad571BQo5auobMvDHiBvBI3uVlDu8oYiM3yjz52rwtKFkjknzX4VaQWabEqEY+uzEf2rbQsHA5uBAtzKdvZ5s9YT4metDL90R75cenrgsfb/ti+Hf3YGJtuQliiTnPAmXQQfuTXDBiFtzSKeWQ2xYJHi9l5XeGEpEol6x/zMC1PE8GvEhsaRkd6MUX9EY7tf+Iu8agTHNd96bamwE744xqSbg22dK4inSVlBFWwl5aX5QhrTe/cyRrIFXX9++FnEOyt5+B2pTaOsx5DXr1Xpp45/hXyMsgj3i6k6JMyVSkY+tCove5rlkFr6dk5MJqIHNmHg1um7ohAhp6RbmB5GI1wsMiDryUsRyVE/8H6fyZVQMx+iTGqyp2VxFF/+KSA9g3CC8US5jof/uYEMS+O/o7RAMHzSIarEK2Bkgt7ZlL3w88iBj1oU3qn0p7tluyJ9DqLBBSRS8AWIm4WZAXE328iCkcaApsMOHY8/HzQ/HHyE/5AxzQ9KTQt0d/G+J4SnAffHm8Oo/eEO8IAZXf/CwgSWWtGJX9BxYc2BHKB5kRu3BoxItzrG5KCSDVScdTueVFIthh5SS7JTO9TjgHZeABtsObma7zY6UEumEUgzjSvG8GMmSjneAgzcQ5ctZXpD0e9NOY+qcZiW1tCoE/JSCzDV5PqbjkjCwDqGeJQ+BDf5UN5PIKr27ZkowHpRwRwNOgAtl5HzhswaqtZfx2u5X1yd+ptMTkqgjMplppPQ6AV6R1pTIiiQh9zjczeR3qjSDvnUtUSwUGIoxgfkxT76vH60mK1jpeR6iU1AvkEFOEK8a8NzxXaMt2WVSNAY2IPv8fFfDs6h/qy9QMR47stLGtK2axpKHojMJBM8M++Zsr/TARyxIhAwTA9kM0vWzxVXclCkXNMfJdxNS4p/m1959dI7Bf9fy4nYD2jZiWGMJL5bW+9F7DsnwyFQwfm2Lbl2vmUh24WeBDBHuqzWi00HP7t1veOiY57ExsHv7gtg0HQoPv4H2VMIxNzBED6FiwOXJvNbnbVtfVL2vKmhDKV0l52ROLOoEP13b9EhaLtjZkw0e4bdZYyV+Z3X7kR0IGB2ybUfRuJKG7A7UUUqkero6rcfyrX5UE50PyT1emFW55ZyBqGCGuAWXVq97N3PXBtk8iBlUCo/qlQuhxTpzGeHab29DSVyjqf4XbZDeV61tbnryyUZok0FZen4479c7wuzwh3dSIf61VCvlJ1c3qabHEMYg+3Xjrta9SXWXk4EXuFn1SEOiBni30EtlyBXaZht4/qkroDisd5fJWT4ZUNtm3ccLiomIXlMIxsCXjL6Sl6IM/SEzQRX8PCkcg6WeUcpwas0IWY73YFXcNPqz6g1CDAlPfSdhmZX/xJ5ARqSS38Xsio4YT2LcPgWHiy5Qx93ppRibUdewuUpMhuq5y0+4v9OGhBPCB1cy2AmmNsGGJSFCA+J84bod0YSQxzlxnpdjWr8FpFkt1Pr0HHRJlttH1FLDLqY/0bMoGHCTxLl6Le/lDTRGJrHrzBCJPbDKNm/sBplbC/wEOjd1zEuquR387hSPI0yXyyauylEziZEbMHI9Rya2yLEf+KK8uD751eZHuS+wbLivavjM+XjjIjWpOhPPHW4gqm4BDRv10FkCvPUvOfbiWLcsgaICslRjQoeCwfSlLygKlN+zkbgwmH1ToU+DbZ/2pgR5UC6BErQO071yGs3kq4PTCOQxLmmTkEGiPrNKk665J+gwz4GpmHDXU6OYouxEXTqCurDNFfsoMpoRX4jIjxXFy8Y4mGvMy+0I7SAWMZvchQ+vnz7ZFeypG2BHY5vxF8THBQuol3aMi+yawbSQbsIb/ogO6A8ns57mqmAzVcW3VaChy4cCP8Bt7SVY7DmtT136yIeJ/Da6cnuwqU2riqw8M3IZld6mEugVK7ZH1aqKPW/HyfnSDoSlBg+BqZvaZysYptl+Z9iDlob2UWvNoVXYGEcxA7hgTcmmU1YqDkyUA+6Wf6wT4RwXJOqgrfuptHredjWh+19eMIiC8KH/LNMTBdQlUWUOxOb+WmwY10jvYJC4IfAcr3T2GaxrdJ7V5u3OAm+GNKPkGhdHphO2ffVeQwDhOIpzJcG9peogTRQ+8YjEzi2QtJdNTAQmGfM69DasS6rINccBaMLBpPB9Ca/U6aZsJKE3pXBRadNFqbQcZM4upmrAv/NwjeHbcOFHzeldv6m5ub55XkgSWqfeJfwldumZEGmSW9vEZe9CD70QpKjoRL6aOvyCpCkW2bGplGd6BRM6vofsnJY37ebRNmK72XqX9Zv+6SakB0lqu5gwv+MQZ/49MTSE7brEBXYtp1A0OlLWk3F2oWrvYaevvhTFGGaV+DNvv7RRGTdrPF1VqbN3mQbqzDobEka434aAdesJ5nBym8gMpdPeQ2GaL+GTkhF4d3lCD6hJvMnf7TQnmnp2QXquGeMR8I2YgPK3fzi4EzLdkzr8jOdVhRmpnqcDjf1wkpQ67rT7+OnuVeyp9ga0ZQNb4/e2h//yJ3q2CoxVaSdpk5zzN9sx0nLlplIyjYHMxR4a36hd7bXxER0E3DzR8QoWu/dwNWTo8eE9eZ+ivGvr8C6Uj/DcpmyHLm4miGppwu4SSgkdjvkri9B7GsLTFuASKfL6w+BudrTMdP4XodDPnSbJ2OtjUXqxdsbhXt5Llm5TWkzxsrr9AXriJlLMm8ReeHvR1IIis2gOYoKcYSe4RS/6M6kF/DZxVTVB1j72kNAwqLHn1vjbXJYm30Fqlu68dXyQjdpyB8DwCjn+iKw5ARkBLybPTMUdcAsbPkKqrWE+jh4mIPQjDiwaQqcFh71lg1cBXULKohGCA7UXmyW7arrMn2v/WfQDW5Bu+keec23z8ECibw9TTHXGlFWAvnWY8XN/VOAH9HKmY33bedzet9Ynm/uKD7TZMnrYL7MpnXxNSmBR8TtuxDlpatHAjvD7LbFI7g99JIpG9qYVxa7yYQcXu1rtBlBo3ZAIwb6NJ0Jnrqh+P9AEgBD/ajg/r55gvMbP0Wu7RJFpfUcg5DmFtGb3P17HsEdLhaJIwU2o0cqTpersbhKV98HqEsrtcdm/d7ET2m6Mn7o7r0ZCCJA7jIG5AZoPY0i+p7aUFZjph9RFtT3CsR9bdpY9/JkgCWgv9I3dHkYFbAivZPEA1+msq8WKGLYz+vHFVFQTKyTecKeNOZ/5AgrLo1Zmf83mtlwF4/lIw/N28MU3vorO83qJpEjIWIcvWla7vOfVQ9EktGpwjm8aS9Pcn109z2UxhToUNHU7WOhvH3j6o01fwOhjcRBEy6eKgMZKPjx48LGC3F6U4Ec4XU0aTv5ayr7ImSPF2zUxHBC7G85W+yBwdTuGbFmV7GfVl1ObhqYnn3I4DbFQGhhtw4viugSq3PaeBSEJMN3XnV9a3aS1kg2do3S4j0tqq3JDrrhYLro3cJnxWGXkzLsvQNzRqUj3HdWJNQ+t1l8emP/Pyc8gpeZclLqMU/zImoBEIPhVU3MOYXRxV0AQ6NqcXdVMvTW1gdaYy6UJH8Cx0d8BP4QEXTSAsVkjq47JXWFKXHFfT3kF7hDhmDcisaGJkjiLkixVqfMmJnv/f5y1b1A2Ftbemw8uQDiyQYyFdAD6ex4c2JJzZByKfCB/Myf4A/+B/jTwYadtY1FlJ33V/7552oDU4Nd4D/KkAxrMZVIfCAem8ELpiDqej6hzuiSsxr9V6OJoWtxfzSBOWc7pUgvn2trX/ZvayYKmmO4YMOujxL0ojslocUkDVFqaty0gKcRL+bWBk8/1XYK0b5WHeluUfBLVUQ36/+chyz7BPad/JiNTCrhZ0lj/kZSBQrGJqtgHsL3dErVLQTSTCY+ACXuP5Bgh25PG0TgZ6k+LkSvi5EeVNsJ3zSj6pxJpwDs1q29mI2RgmzCrR2T48EGg3s8x/wYbBd4RHE8YOUNcR0RpaNhe9D3qWfe/h27VWYiv8Qp9F7cinq1xNw+0rNCBszYbrbhuIZaRut2I2SinhWrwzo6guri33TrZJqkil9Mbf6p961R+j0iEGQqDcsrT+ktDoflFtppwIJUn+mOBKjce00fglatYUZvz/v/ZkW+bzAtn9+ogBNvmhdNluUIoXT++KPEI0Y+sB7yw7a7FyJPYbUntdw3G8qfL2neV+TWREOhLEFY6FcOdHrKMbcz/doNjW1z/mMBKjuCr0xg4/Pju/pFBb5FXyaISZQ4zri9Slze0xdPbnT/Rcni6IRL8tK7SAEVw3RGCt/+XPHDJyjzdfHpEBQgZ/4R5ZivuriB5Jx1JPLO/6aSFwi+UR57/VyXgJ05zNzbn65iWmeTRj8OUu3VJgCXHHvkSeKT0hGkvkFH0rjI2Fe6SvewCFKzOkcw0X79DuGP8fRYHQriXXzerDJueSliMW/9bncDU5lDLAxAb9R/CNywFgaqOPu3tnYdWtdmXelrY40YKqkMguPFtHCu0Dh+qyE5/GJxiPl62hhHBnrXVNib1txq5wLeROrEjTQiUh/qEpckYAoVZcbe7MYGew9QqHK0tCAkbQcFPZvEuF6C4yRH7dk5A0MpWll0XyvARE1iX7Qe/U6+eOo8OnpURu+EixuNr2EUzABIitfdmT6h/zmO2Lx7KJRVPo90KpeTKaobL3252AEVE1VKdInyF3mbqNlViScyeis7/M9I5IWiDewmDUuLmid2tuwVePs3EhZiSrlCG4oMPMrGOEN0AAIT322nLzviuHuivF4E2thEYaJWk3cyDymcha16DZYtW5lTcnqyD/MGwShZkUnfOqRYRkmc5zUxTRyVtqEsZVoW2zj+uOcT3hgcjTL3GyiOaj8+GBX0dZEUu+Pn/opdFuxeX3HlR+LhX0Cc3cAJGBzuCgAG6SXVUGPRgxoWxOum56T+nxMS/7/8qZphC9tWAs0pQopj11IURXih8J2nwcS1kN0Mis5BKg0NtlDc9jYGxdsQ/ySgowkvRtpmPaP4kWOHiM5bv7W/XmVif5H6Wt9CfJyeIm+HYZ0HRFrQRtvIFnUAc5QSMcz3zbTnGqWb4AjPXqjFNYwx0Xs8PZFpMWhaSWh7GOsrHTajRzXkK6Cbc8BWRm2tE9PmWt3X8hkPymH09IZt+E9X0YZakuObyokBNtWA7u0nfo2nL1mOuCL3lIq2bX4SRRHBDqLds6FzrqTtvjNUGgKeYOmUIb6RfASzGlzwcXRZasTo7ottIOLf6pLSK/Ef0RXkv8RMwhawBpvcISLf6eH5WxMbsD5874U+fefFH3H4O2YPz+O0iw6hARtlHuyWzohc9WWOjjTAEu3IQ5YPcRWm5W08cSHzxiTGQW+n6eVj/tzjQ9tH/FoC4eIs71bT7H4oG1eawg3MTdbF2bnH2vBo557w3BnwmQzjWZwgi/xM56B4jQh7QlLqQTJLqbwWA07NdN4/ub3H38OZo5PP0gqdlocuX85wg1ij7mendsYHLSMm+ZzTL/xqMnHxsNocvIEdB8YPcWaSuBHRtENyULUHmRuOSUmpozNIOtpYoyc80jLIjXENiHdQY2SVxC6N7RINNItr+czj0bD2dmSLKtf79O974QfTZVrQFLDRIhIY4oBXaIg0UCrIIX5EYmgTQ==
Variant 4
DifficultyLevel
710
Question
An timber door wedge is pictured below.
The wedge is in the shape of a triangular prism?
What is the volume of the wedge in cubic centimetres?
Worked Solution
Using 1 cm = 10 mm
|
|
Volume |
= Ah |
|
= (21×10×3)×2.5 |
|
= 15 × 2.5 |
|
= 37.5 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An timber door wedge is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC29_v4.svg 600 indent vpad
The wedge is in the shape of a triangular prism?
What is the volume of the wedge in cubic centimetres?
|
workedSolution | Using 1 cm = 10 mm
|||
|-|-|
|Volume| = $A\large h$|
||= $\bigg( \dfrac{1}{2} \times 10 \times 3 \bigg) \times 2.5$|
||= 15 $\times$ 2.5|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/5Y45ntqq5RBW77M6VkMl876s/BG9DCBt6uxU4aiAD9voepYIqGl7mMVhFfOeKV+MwPY+rQVb3i1c1b5NunmsOmam1zxyJQF1axMUivBz9RrH9+Mb+DRT+8W2MXrhDD8WNm91q/uuONq3g7NDUNhbLZKPa3PJJbR7MBLQkWhFVb+SOCKj/vBVVMwQDb9fwT/5Ur13Nq5CqlnaAv46UWAzJGqsI+aJXR9pGTIyliZuPaxjjOEg1Ol9Lf5hJcaHUAEzz/f+Zo8PHXGwdjnCPNamBpEWLH+rXsPyGZ3zP1gk1rkyXKlZzFTQ4r02XYk97y18TVpsYv8MjtYfP28k1oTR2xH8CeIkbTGyTJIVh9H777U7vEElo0pGgElZtIbPNknyGYcpAxzRUaROVG0yfuCkVW/7hJwxsj7cMoPhqaemc5qOa3E2mUJD96sZMe5THVZr2A+ZZ3zsAz49vF2MND76K4aUK109nEzMChhyvnmRCYW/j4eocR9yMT6IEX9Q1H7E8BdSpcn+GWVW0dp7SIstgmP2f4L4ThCjGGQ5jsEFAyHiICOuz/zYA4rvgycaZIu63vLBmgF0OQaJBK8Z8y/0/gUVz5WB3sVWzO6eCDHYnIWKX3hLkTErdSj0k+dfWovnsLmlC6ZJGe/uyq6549mWBZgCcg0wNgCfbSViZXVtKrN8qCNEQmaRL7MPMNasieE4+tpeoWbNgJuiHzTudNcTWX+RFOs1Nr5L/XhxZrISp1DubXsY3fn99LO8LjAYLWx2aOWFBJOFUhB5/Adz4fU0z+ANMxEXT8p6wcVAR0GiedDR2CGcJICrmkXVg2wZ/vE1TGNceDevIe0HXaGLJai0vkUjdbIQdd0KaKHt8yPfICs0veUFynvjXAkSi1wxC4DvPXQ0PkYl0j7dlOhydGnOpstd3wndShs7thO22rK0EDf7GellLdA2d8WIPOX3LX6VZzDx28X0pj/K/bMHvW0oOmIrN6zH7QJnskfN/ZT1WqcYKOlXebzT2Yib/HRwYBi0/DI1R67W1cgZZUo+PY6X05OGODxcQ88Pz2f9/uD7d+Nv5AU9kN13BG4ujvxilx7cL77jNx3frEMZ5kf2lFJnesnHxLuJIf0B1oRDIUF3WpyoeKrjvE/nImUpyxsz5BulBNdC3y+K3KZTkxZazJJ1PKSdx2T0+F2S1Bbr20YFuGyt6gzqHDj8cxo5fBeEtis+osxKhCVNOn1aYvUOpPc0HcXuzYmAqmY7UHLuG2RhFwaZQk9j2PeFaLTOdgfVMV8o69Afc6jXiJbjDUo+2I/fRP4YdUdpAehbRzHQzad2ZGkeYYwf7Dgep6C+ByMakZWgsaKF4W9Wd28+uKfAtmNVNBBklFtEaDyjRMI7i0UI5+42Vyqh0l7bfVDjGHSBox9EexzFNAH+qN5dGcxYMdLTi3UvJtVQhw+mDjCp2hZClYiVczbemcTk7nDrdEU8448VuYnJyoPS81WDV9xK6Mhz5QQYBGT/I1ZwnyD2meDY85zamtikNK0zGW0LVdQa8b95HhCIRNqq3NA+arELDfwTa73HbBVD2lFrTkySkZ5AAvi2XBbEKRlZi7Cxno4qWEHzkRp5o1ndxjwLoQHR9v/GMGni5LBnTkzMBmDXk2CEEh1ECXINZTH1/TIZQxEXcJ2W7amRl9ob0QHUHPYEBUKWnbNbS53PmyE3Vr5xBShmZxFehCnQH/8HbytCAK0OHnuvnrzaWEHDzOAy6oLzfchrheiBraWXRd+VTM5m0vrKbVRLFz8LvLeFLEo3Z7n1v+C13YwrF+0zjUmpogewYRlKnhe4mPIjV1Ky3ww/tea73p5V8lVXnkHoknSKaCab6nrIiaRTGYn7siuK2/kMDq+tmrfOTkpyav+GRxj+rjNHwoRnPMkFtbBmopPRulrQHLqgNTt1Zv4wYcJK+35Z6uJmq1SJJ3imAP9WbStT8SCJAbtXAYUDm30Gux457Xi+ybNRhLrVnkhHUJGOuUCHVzJuTpyAstcNdYSHUEB8aXzqAfJKvaKf9axLOADllWIrdFfRMTrGFhhMBl5torH7/vl/DcvGCYgxyAoWu8ilpJv4RcPL3M/UsEolWavRcBtHuROtbv1hA9uS/qBZUk/11VOtkXLuqJqmXbLchxfFcF4p8p/hxXZUqRpMx+L12ymds+8rrO+HToiwN7Fp+I0+hjDe2bXDMuD2saFKODgnhvO/W5i50YEVwW2o4c9/oLuck/SWc3PRr8Xdj/6NYauWzZfkXjM3W0hF7OV1dCie6ry8HJdq9r+WPRfTb+s80eUvHIrdO5EwJ/SkpZ4qO6BtrFTu8zX4T8Mbyzt6YdG7hb3zW7baxXg0Kllx0qPkwS+pIP0SPyGbgTOFem+d7WfiEFW4IOjgzfmEI8AvB3b0lynRvipyDiRo2cqz9oZ3QyRJSm336yNp5Oo1zuBs6Xh00qsM6qYhZpi+ZTdwwEl/XZNvHZhVgIAbSV5ZScF8lNBCjeNCkfwb9WcTOe168eGsIDWIt97jlEIOmt4KsyH48uD9ru4xMuRUDEBww8XfrmPLqFQBCS+KfKKQO/b0bwACE2lL0IUDlAB5zaPw8N05z8kmaSbm23uT5zKJvbkJZD53n8PDU2oAhY1PK/sgjhlCcVksTdEYHNCtNiOp92diqIRTnG48EiewgEFcxt3SbMScjDYzFIOVIHzh6/GzljDqi3iDa/iYyNp+kyUdzrixBdwnfWEQ5bRWuylSiKgJjoLiA+9U52v9JmFnEoj96L5cwwo0C35jUaEXBQxnBMVB+ZN8hcaYWpPJrovYN7YqRyPurQfth1HWo/gQMnR3HoV9oFOc60bqJIVAUb6D7V0Sq9Jm6H1VkH4rxWuzUoZ3XwLWrFEDlkqneshglvifoK6IjvkbJRzPNUBX3wIeaUZp/jJv6s1bwjTDKULtMkl7mJpAwUsmJHkF6M9gBAY/pqd2Be+5arvwkTDhwqy787DR6QpbbvJMoWDhSwudJEZ8+42CHDdYDnHCAUh257OOdSLNlJVLr0hZScZtrXv6tkzb53he/B2exM3Vk+lhM+Y++vcDmKIY0xX4z2zp6nw5N3XuwdEbIfSGtxZCe0nO86kr1zQKGJpHGyHY8aDYzfzg1lr09crRUs3F+cwP3yuSONOjx3MfzLKOQoITzSWA2VowjdEXIb+7Q+O0vKufqnAgXctULLrrZQ+9tyTuGPwjtv0CQGWblB6zgY9umwpMO4+zfal0985a/kXTFJyl2s4qopoj04CgthZwWbH02WztcTwfBSTExsbIAAK5KAxdwvUyhVuiT7jNHkBEE0nXpMo/OJ2q1Tuey2HIs3pRlfIUod6+XnkIu5b6g0QMgCVO3PyRyIEceNAfRlXI2R5zcilgPN7+ni4jTlsaS3udR6+HwUdlURkErtEqeU2W4e+FNNLn6KzRz28bPEg3bj91RFFlygqeynXWzyqg2Oo1zdDv8HI2IOfqeX6Crp7xn/0fnC2/atob5QH7QfYLCfncHfJUd6NfZ3+7znPcWJ7d7wBlZfmHVljHNqyrtQA7lwmTt5+DC9qJwadtFTUvX6dr3eX+Bo2dprb7Xj6FqZJ0YlPW7MrlcbItbXjqh/HtpFYUQ7NMCmsRFETsPZeeGpRfyfzV3nlTff9JNIuwRJq04M/2QSwbnH2fuwyMs2yiJK/38JWC8buMb6wlsIHn72za//vCexHS4mF7lDkJyhVu1DXtrRaBf80zswOImlMiNTtOL7TR0Qm1bulZccoW3LOY9vW6926juy/s/x+JDYIqNcCzvvcPhWttoYa5nppFlpJc/uxvBMATCXQyd0mlnY9zwlPw+o/8lOTAV53fjRMLIsMV+E1ikaTQ/tJaw3HUxR4rgp18CUaQJNXPq4jcadIAe0AItAr8wkp61lPhOmPZ+qm57Oub/Dx0uFmlkLcj2jWHxsbd4Qa6Rv//LiZwkpzARF8KHBsUnIqEpeXoa+C+ytp5XEmJ9L2y7ZiY0lqwY37NXe/94NMnyFtbb4/nI8YY7cd+GO8mN5/5LQ0QAxI7yiQYME65Qqxr1uSUcA7Q2txbc278An9f7Qggt+UhWmtsw21YIx0AyNW78d9yM/cLA7gUnyLerT8swptN/E5tPJndmNVX50419CWKuVkkaSoKNovWA55wNpNeVNixFimrChlKb4uP4sdvbFHhx0nbR/zTCG5BQcDyo7wJpss8BHbm1KzEjgCm6UsZYcQ66ZqU+jvdtxE9n8KFp3nUtaIdoSl11nss99bK+kHbVIg4wej/TDGlsTwiGcKUxONDzuDdoUjKMIJUOGuDNcXVifh2D59oWt7XyK+U2cR7fISbVRheZ6GV6tzTpEydn+xhx44BkvJHO8rw+WQv5/eagByjAMLJexNKNxyyQelh/wmkxshFRW44x1giDMK1p+X+t1XSnj1ZSIM39DtyBqULuxifWaSmKsIpKb9P520T0DfY9YP8QMqrVhlCR40idlQvVWgFM32jt6imGFHe9yAblDTtH/5M5yjhYJTRobuCYhu0hyPW13s9QN3NQFwAjpl/By0gqvmuRQR2nG/UKkXAjH5GPKPEeeiBthb495xJ5SZqqSNa2JbpFDWkEkyVRmlHoVZyiv7VJk+jfUtj9THfK2N/jqeHlxZ+DWagjax82bZHVIY5wIJ2KSMo9Ozlp5JoIzZfLjQFINPlP47boykxLz58bl9+bGreq9jrbB2Ag/IxZRonRatNRt5lDiLJlyL0Nlr9nfUhXo6eMYlsVLy5RT244ueOAJgvH1gHsBB6ByYE0ZVMM5gjqHU1I/cwlGYiYF40vFEa3JR+OnuLQXxNM/Lij/XK+/57GXydN/ZhYM/1VdfNBWG7at5XjPGQkyFZXQPGjRlxEQwj4UHA5p/K5RYBB+3+vD+rLfoIqSoFf673fn+9Qjg9kENdNrV8l6wgRE51I7Eh1+BoTHNK2o0yhAJrQ3j3zXqrR0v2ylAxpF3B8CNuqICvakC+L6UXAciY9ndNOTvy0vJbthQ9OTrq6DNs/Jb18+ZSlSV9OFgfKSUXsswacS8ZOTgwaPa+4pToHFYaDJjUVV2HPM4S6PR5G+cS3OO5uS07nG9QQdxJTetm1B5R33ceaYqbkwle6Y7zGTtgo546esqSvri9+YNe3TrHoGitnRP+GBtMcFu88eMsbmonXOaCeiT27jdrKJRpWTpQrKVNfc7oF64aQ0Kn4MXpuEv96J236P7+vHwIo9TYJ1ZU8YqctvFCh1GruTx7wnv2j/pSSynqdnZSCwVjeVYwJ88HDACnhVNuEWte9xODGC2UMJmsfBr8enlXGEbHcwkczbjOsDYxMkdqxdotP8UsVR7J8U31aXZbmvw1mXcG0X7aSnNcDBDYK21POtHimaythX1QDSQbrCI4bB0R4zvoMevz36BNjNiOTJLLZ/28d5CRuSN2sMEhkT3/AMxMQLSpxDjQ8IZeY98t10hXt5+59Wywe+v4aweYBjAlkZ9sOdNvn57d9aJe9shmMnxLXrXde9kYCRo+mxFozgI+7r5g3Rvl2ki0GpiV71j3hokZHkGUqjyG3oZNSiY6iRDkioNZydFy3PM4ryhHY4PQFP0VEtuv2avbtw5ybId5TztViP4coIGzi8a6NgWZNm07ma9NYem7iIsDPiunNuCfSB965fSoAg4yHXm+Pm0I/jN4iGIRE/ONoXJ4K7jW9FFDGlb6Q9YhZcHZ9XwZotnC3iohfUa2CcX7LD1NCELg11hu9BMj3qyIbVyaS+nX5yb10ho9C5+2skDjFjLnyPRAjgJyknwPXXwV5TdhLe0fHxoVH1Jfb+3XVfguygF7kzELQ1wbi6XVPNDGkVyjwb0qjjBhq5WBuyKM7HgA2yJMZtE4O/fGlZ/IZGo1xNlKw0yg+iOodhROomknBnlaSdW5YmhKoj35CR6q5HkTmUCcMBcQwC9VeN3Ps2TwSYDGv7Qp4ft0sA0KE9aKLwdpjXV/AN0cyY2g4vJX8WAOOKk15JQVhCt9Xd58+As4k+42HVjWMd0imdN8UKjfTCS8mOk0qmYMrhDK1zRKkbMdu9pGBd6J54lvOOpGGWsvZ0uyQo+Ff3pryBjYVY+OYAK/8+izKra2t2IXJizTU2wTt7EsWJ7MYwfr0MqY+ylnBi3oDNywnIdQhMOf5HKzkYtbccd/8btRoETK4PZBeUXPwOZGNjs06J20JiQvsrFsFpSaBnMD/rhi1e0iqr3HsijA/38yngRIDm4XjWMMjKx3YikuVBtA0vhMjdhxF9tpsXAAQgBHqw8qFHQF/zsumflKpic5xdZRM+eScWC0WjtiggWwX54gWtPTMc/mY1rREcTsZL66tC0cNIqlKiT9fzUBTunEKpR6uft/WJkVTtKobZ4L6oIKoVjh5Qef2mLn0iVvmD9Ly6J5bqvLe5ZpIGreBdAEK+EPtKTNi6B1/DSXYVFBd+0f8ZZIJ5Mg4VeXjc9Kz6VzzI/TPGRwtjCvzf857GcJb4/Cx3PP8Q/SFw9KItUVqmLDiDgd5JIobffsUhBk7PBX2MrYNFvnOiPyze+z2A9zDx3gUSCllxiCI3/a+Rdvj3ot+NTF0auLcYrA67B15X0U6ezgj11EDLoFHfHgDrWWnDXmgOqW793lLKTRPSNRZzhNYHcmUQx2dBgHrwGa+S+yYPCgZhDGqljD2Vv0RLrMql7ClbvseAddQhFgpiy9M21xof8vlSDkT+vwvsnqEo+7QBKjwbDb0kryqwORFTyzxPKG0DnW5+dV3IkKXsvQOj/eFrqZafu2efNngv+Tz3j344vtbFIj9mnyzpT4QdNIJgxbNeOeHFYc6OhwgnNfnEiRW6w0H1Bx2g/sF1rTIe8MqCJWq20GNXVaiOjEgkoHxKU+801XiXVL5vaHeqJTPSEdo3A2jCxbeiz6sidjvT9ibqwhd/8s5Bjz4RdMOj8eZSKkT+ClxV1an3t6JnrBgvXjsWUmxMb3o0P50c4PNOT1zFRAdrBFQ8VF2hW9yU7m+WVY3fuXQoa9zI8e5C2Z20LitP/5+RWSyvUx+p+z+aeI3SGd7iPR2tOvM+ZdXzbi4K1HKuhdK5a8kxZkZpu9HWFqHpd5q42iUqCM6IevJWKw4lPG+TtXURx4DZHYci4d52+aCc5X212ODHTuynFpOu26hT7Fn3ovhVNcuaqOWVSqZ08Wlh28/lThiJKAXh24EvmpsABfUi3V9vuH5uoRJq7tYSdhfth2jqTH8QB5u/3cnD7S5F6E7USbED6Yv3pFS+NDVhNNnfD500gh0iEwB3Dy2J3/qxfYrtAbLqS7ogsix6lAvwHyfOjsZfuquA4R9BP4dGbdrh7kVxzorrcRYJUT+nec/AYm9D3BWTj7XwD+lYvNPmqmiMJvWJpiLaeF3TgE6JVju0AWr2gIWYr+GDN/LviFsD557toNqexZE9p9e7dYGTY8zRRlsIssnY0W8vUlXxZSFiwC/hmx5eD40FTdomKRoycRxSDe3b4W+nntguUEP/F3XwwxmSBa5RkqyZYZt2N2v+eOhkq5cysKOegdsEvZOVTuCTXgN94hxGmwwQksQDzGi/jSWJlPqmhJmZpnIzTX1kXuSMecGi/FTsK8F28zaiSVMTjtZcsvNrMNyIC88uuPDxhVQXZcA3IkSLUO0R9ZEQXM6+iwhjObvJzqKrEiZIX9YUvVWzIxOAcIAUF8a7OwHrwOUkPFQk6LVDecqcEQpG07a7ptZ1C9zPOB3ju5VhDD0q5HpVKisv0lMUk1PForZ0UxFIppykHH0X7gTiDvrygarUn3eVGQBt7P442X/IXIRor9R4BvILRkVnB8/lHSWRj3Z7kT7ck5u0jUgzs0oxplxKfEhY7QYro5Hb9rXk+MIp6IV/OTtceitxeh1xcMO2kzHJNLSf9UKKgXXzklqJtZByVtwBzR8qmhoOlDkk6TlzhYT46G4M0V3WRR3UoHhQ581i6OSShHm+Wt4kb5QDLQMVV5nATOTXQYBrxbSdy01ZhjLn6JBRua4mfW9CieMjFw/ZIHhaKiU79BZn2vcv2G0QyA0Nc0SmTww5OU38H7Obk38N3XWrp8EnXfp7GlnEfqmgEmTjcWx0DA92QNyhQxZkDlNfVeZmZB9sF0TKlBpG6Z4cWK6ElAw4o7+m/+R2SLuGI0KmOoYqSv48I9R+2nUOPIUW/a9TFIx8SXWaglrmCKjtp/V1qeSpRmlj3szwvyXH4r3aCEBh7F3u4QMNHwgTX7b4BVDWyXqG0vIh+48rKxKqmkx0fZp9XKpYCvgcMaFUgDU6RFVVEZECmCX1yoqHIpASmZHSMktdOvvlC+a9XCIQzBkY5TB3eDxCc6ceAFOa8JeYc7U+JFLXKXoD2B2e3/RsBzSmsD4G/Nuy9f/6IF+kqAqbrAsYItOGat9rynYmxOJXVMw8v487rHOew9IMZce+s2loUkzEIDIjPAWV/zcP3fCd0iRtJNiSZRge+B1dtKBu/9x4YpJQQRxygYf/v31ahbPmfQhLp4elfhjugyMRwjSjOxcFgknUkYPtsAKnUfpmD0siZKQtelUNuhZGELgZUi+BYJSpvlqqRBF1g8yjyOQsnu37e2DJWfEqJVQA4GYn72yFZmiEqWfh8bGX6D/vSxN9roWWm4ABIMLoMa4qIrdpVKzZJwrquQ8sE4vXizM+nWIBE3BhOCYyQPc4xosPH7pxLolvXG4TkrlIfWESqxaq9GLfn6IxbiVbXF7gnMn0xqLucPUWgNBWQwQ8Q8Eiwu2doMyxHw6w7nWPNqung0opnypS8xEqv1qGTqVFkuKmXvLvWpENxLxmDy1EVZt4PBm1hbU6odf0Z90rpnxbl5t0Tbf/w5GcmqjmKN5GjEsYKxvXbJM+XW+lAqgm+YxAlsSmLX3f/COMabvrkjBu1wPmD/8LTEtxgOE62NQCfBmWNs9JKW+wsrW9J++UvcaD/K1pnnt65SxI8EfbgJTe8Dm1n488xHhjXeHsVSqLGk9MU00lN6jCuONherq+NiKq8JIbr0jz+i9t4FP5aWtUbhpp0XWImUXaXLBKDQzn/PXs7MRRZTMW+mhMfIn3zdCsln1p8wJ6rztkjegT0e9KzDKYeWCUE9Yf4oLvz3J/ylcgP38Jy0gBw7b95+UJFu6eBJdMBY6tvYga5oF18UQ6oUJ7JWNGnCLwSbdyo9wc+X11kgLdY/Qc+Y8QbY8AvozvDJRFSKp5ujc3nNoCNEityDG8CkmmMaYwpotU+ReOBLcYEXEXraywVhXZtz9UQn1B2cEZpjdWZs+aEiojJNPIoxx6bmokmos3miCTXc5OFjvd7mx64yYDqSPqKXRGenF+TQBDMauUGwyyGofEf+InmYQ4LecWYqzu6Rxowa8Rj/hwQbMcU38xfz5Lv9/hjOrSAXheT3k23emm2BWGEqT/t7FQm7RixaFkQgbmt9MOaeP8//K3p8XzY3lrj3eq4VqNZqj7g6mqsMbKXQiKETcqUSjGpCbxq1emdQ3nqtt7Cgm8Y7lcPfM7yXIt3zJrRWmGRdGL0V3DxOhibMhdoXGgkMVr/jb6nHmIOP7LokoFcEf+U13rZ4xco9j+3CTtxg+Ys61M81s8p9QIXCvMYG3lA80iaEpgHZJwoMOedTB6l9nJqZzjyJgD91mtoLx1eaOCSoES3KNVUmHrp8MEGek4scuXL41n1L4dclLoCtpwzARpwpy4KEv85APmQux8IHRxbIDpcIwJ4a/feOY3Ddsx2aYv0QujJvuk/O91YDWGvbmFhW1RtlTJcnKNBFmH9lZeaYFpYTO21sMjpeIwzFEmqZY1QFE05tpImSHf7sh8vl1iXhVcypnu+VNs/F7a0Awh9ueCtv67k9doIzb0uDVSq4n1CKglC/XWMAsol5CDHFgu1DAl39M5I0pR+AzrX/og1h/aAUnM28MbH6NkSA7KPjfKTCuHdZS4MjtABkgtbkrtgVQy8Q/yw2lUhNnf2Bp4Tmq5JacxYq1GBh22NMVfT6XmN0SAZkqrhb7W/ZSRAfvxbPcF526EAatiHcM3Ua/5l3Fxvp0i5qmo7A7I1RWpRUL+Wa95WdXQjXnmBpw1++py6n17jbxd/Ir3RR7qpyYtQxPmgBXnJi9r1SK/MBDfdpxNlqhb/hddSMUGjPcZl6ueATNL2EkFL885eB2ojVniemylWnyao7tciiRvcD74ybFVc5nDcsWoJdwaiDfY+2zWJbEb0yXz0vWUlYO6W3ehZGM8Y98Zof9+FT3BVH0hYlzG2pRoh5Qy1TDoly5hSdkmxLqt6CSPergKtKv1GEtAOxyfMuklQ76TVkCOTl2NIrjLo1ElnpmpJnhrovqu5uhhln0TMWSBVEtT50vCET1ddTWKQyJZzWPvFlHIwQB2v6zPsZRiaOQ5EUFDDElKzpnqk+zglMv3PlL61/HAs8DDp4Fo8doZvR2vE8vtSZNKP5c7pHB2d6bHahj6qBb8pcOAGv5PcdV/H9GreFi0GsDcU567K2JgUc+QXC7CacB+/CB/z93Mp9KWE8deZZLt+3GiTshf8zlCqdZmHAPDQdLm9m6UrT3AO2fXPk9BKxUkLp8NFrY5cKJxCOp/6z4o0h1ijnf8Zx1zbXr6bJTwEmWsWIqc+m8Td39Ffl1uqx9clL64PGSe7ZVJsajrpE/afYpK7QJZQ8sDYmQ8UT9vzf+uU9RbbfEuWa9V4goPY1stwrNC8b93ngQjPyCHU8VtjaBblCZlB34ARNO5iGwAGNuDsmSEl6nZ/1NB2PyPgWDv7EZZU27JzsGrpETbaXn8GQM1vQfSbtiwc/SwM5ni1oPf9sZSidmNe9vvhQvavhoGjKbnSY3eMVXtgiugLmpbxXrv24xPtKgomSTmhwQmdFFLFTK7jwh27wUzRWiJKNoxeRq+mkT3c4YdZE/cqOcE0EgfGo4I8SuBUe/uFufV/9kho5+haJEOKu0R01uvlFVu5G80Eafi1ywZJ8n2l3xDks+8Vg7KLlTbjHW6Ti0ngqery1IIeAEfm6Ri1Q0q4ZeMPbnxhJjKKUJBv6JmxJuOvpjT8XWHNsFKtFB2EOdo6auFgP50KMpF8NABMHCwU0C2KjZheBVCWeuoPjntwYA05MxQsLFGSUcRMlqn8a3bEYaeYvxF+6uhxqGqE3MbDDo1zQ5tWJwfZoT6xIs00NrU5vdMe/3Oyk/Z8GMhPOh1wYgB9Mvxk9WRFM9WKxc9+3JxuHVIxIbqQGiZfiPUnObMZ5/OlueoT+Fb9h4ViZBfvymnJjtpYMMHg1/hBkBiWTSNAiJY0Jp9FJpOyvHbwzXFCqm7PaFBenBoyUeQuhJ9e4+asl0gGi+fLW2jo+lTr5/chDp0N07AqqNgqkcUJFesoheKiHFtOY8ui2m/uF5lmDljmbvlZi5UogOswVomsNldWPQUTMkA+SPgRD0dVmrxU9PG+IasTcwcyrvTo3lt3hUfVPm8FO263zw7Wl/rGyv5qmDn/43tSeN6uZJLQKhOcK5O/X6viPW7dVeZtg2yKYvIibYYBG8HWnX+mFYApouf3ZdeKm1michvcO7FAYT3EGlWqQrJW+oJxFoA0Ye5eWCe6WM1+aB04n3pQUqexOhElPWmyxD86V6n8hjnxES/rMZ4nopLbGKqu2i1GT5QU7iu5/CrE2oEZLl5pOimm6mZMeXSbBmEo/O7wMws+irygGTtB8a55ftxK8yxgXLtrVHgOxDrCnzP85+fkGws1k/P0K/CvTfsudzLfzxhj3p8BJVLZAwmWemttKM9aI/X0qWw69RiTMcLHbHSp/azWCW3cWhcPJ/hE2nQqxOHil3XVIxQZz60pIisCHHa0zFWtmd2lckG9SjRJTtkTQs92p5vFFk36lk1BC5q7QL5r96rZ5Mrf7FKc9lI1fFJY2WgOUjr+lQL6Uo4PKRFnXA9QUv7o55Bzf7qNw3Giw/pA6AdPHomaphgYII3sczYX//Sq3HmfB/EQxs1kKVrq1XLC8yh8+5geM1kIbiCAfxWC1GrHcCezrkK7kSvOP+hzl19bb5mpvZR2qmxFnh0v+RvI8Cbv6PSsUn75F20068NmqeEdFA/GVUwgEMG6MaFxD2anM70bDueX+JQAbson1+rWrpZqU5I1uB6pZ1Ydl84EtqI/0+E0BEOSsqDyrcPHaLELL6bCpjjrhQREMpxYZJJvRc8XjhJWs84efo6RRkoxebChFd82yFMFuUDqj0mgrhB05V7myvsoswY+eUpkUzvOdUbWTIjbL6X9BL5MacTMgtpWo9of2Q/SpIHJxBxo1vGq0Fceudy861W+attFY5VskzA+jPSIUNayZ2czrTaO11rCYhugKRAF8KEbEzrnf8uThJLSOvJr2T8SjuBK7mI9UpZWdj7LgU5HROqUEAPLhISIqHPDyuUxCiQQDPNtI5QRNsxPVm1WwXCHesqCPvOszrihgtaVEwihxTb2iIL/fRBDsTTmBQgcZGFTwuHFqL46WpwosUIpfr41MjN0bCOApsXCbHJPYb9vy7fddhbyzU3d+R3aVrJmfI+aE=
Variant 5
DifficultyLevel
712
Question
A rubber access ramp is pictured below.
The access ramp is in the shape of a triangular prism?
What is the volume of the access ramp?
Worked Solution
|
|
Volume |
= Ah |
|
= (21×30×10)×90 |
|
= 150 × 90 |
|
= 13 500 cm3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rubber access ramp is pictured below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC29_v_5.svg 400 indent3 vpad
The access ramp is in the shape of a triangular prism?
What is the volume of the access ramp? |
workedSolution |
|||
|-|-|
|Volume| = $A\large h$|
||= $\bigg( \dfrac{1}{2} \times 30 \times 10 \bigg) \times 90$|
||= 150 $\times$ 90|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers