Number, NAPX-E4-NC18
Question
45 × ? = 27
Which fraction makes the number sentence correct?
Worked Solution
By testing each option:
|
|
45 ×53 |
= 59×5×3 |
? |
= {{{correctAnswer}}} |
U2FsdGVkX1/ARun8vXPMHiMKtehgvnlgh0XWXeYdVQuSVGhUHHgGOQim4WhC7y2p8Z9Dibs2CLJFfTouSTMNr8dQrVomhqDdLOl6MI4ylyAuGqsDA7JDBHrdjEsmwKH9EkeZymfCxng2JGcr6SutT2lFH/6LPf6BlPk/67cX5jTwbQDivuJAoKXcUKDIISy45bR3XA/GKD1BXH9SRIYp9SrYkH91FN6Q5xZ7Yc43sF9fCwq40vZjoA+/GgT4x5YMHYFx/Bl6ubewXJHXwfJRA11lYwYhU5FzCua0UkrnIMZZ2LQfgKCMOXhboJw7f1ryN7LowpHTwKkTHXKbDoT9WT6XI4ZlXefybHb3USS7qsdIwWQh6ijNL333o2omMdLiYe7c4TL9aBMT00C7vCqTP+4nsfMECAyxsHQPqkqta9Q5INNY2MvL2ydn/TP3Eo0HM5Ewf/iByiEZPczO7nmWrb1kR5HiNCHwY9RdrEezGGmyAM/lBGS7CDVqnpQOpSZIoc58JYgUCMSY30KJN5ECN208kmPX2RKOLov+V+M6XG3wUNv2dyYAYrzVx0XzBmwMIrI+nfQdoeLanuvRny4PC8sayVDe+n4BR9U3Zjg4ME6Gv/Jslzdu02S1/1KEbvrvxLDHdZ73OOpnsLSkw363CE5Pgyo9BMkzSIr6DzJJYgXR3JCrb1od/H9p0WuFYADuik1zHr1MFoqbIXzBTQbos68BJFyYa/AbIX9zU1rEjW+VdPBsEbx8f0ZCEBf0Ivm8mNzmrE+mm9T9LfLIg8lDCjl9I4c5YaPuyuFJn0k4ZmgxPhx2Zw6Hiu76d6zMjbQQDvLyTbaYx9daui64Qf0m79knxtM+mZ68C3IlL19Fk7vX0Mu401AeRaHlqvxmtbCUAmlXt8SmoiSr544hqygfmchZEh+E/V/WX2AZ8baTRU0WINNaHWdXf3L88kNQCcmtnIzGCERL3lk+19G5KI5FW7/53ZwZb+Vcpr7SF9fP/ge7zF27+Q6s0ge14HrOGR9W49FQTwIBo8mhdyk7lJMvf0Qt7wYtL17QQUubSqfvu3lp93Ah9NlRZCqDblZF/kLx8GAWwrl4zEGeYZLWWtWbw/WU5zk+dCbnKPCdTDs34cxJokvFNVg9MCATrx9XHpR6Vkrde6X36cLdvAv4tBXdVFClDOogKkmBjQVkLjNiLzgiPIRPdv1BPZGC7g4xOqjKzGr3DPkO8cOmY3AqyyKKQel5g/8Aw2mp8FwY9orIqG37bvdQccLGPKwkOvpbADC7+bChao2hUHb6Lfi4+nfFNPXrngUvd7VtOWoI3hu7ZcRtuiTkTbIayxdfq+ZZq2cOOp+N5Y3hEk0nPMVa/U84sR8nWF80/SUCFxz0bttCr03pn8W2/X3FAqcU1qxIUhrLfIqDDT/iNF0Kq847w5PKOy1h4EBcVAYCuEt1ia8J2TkmkXa6P6Z4fKVfcznlPZLj0zY1Yu7uDCDPoUbv1mI3rSldvDywEttjy5vcV5KafrGmkKSf0/3ns2Qc4S3XAOcIEKzkz9wIPFqwl0iaKkRufLFuPVCpkFzXh/xhkW6D2MMMsmejBcgDJANPGeRbJ/KJJNLRf9nDNOjlhoweVqhWs88DBfNFkzBsVxgcTBrvqp3T5PpD4jfgiLHm2lC45VmE0XvSy8uNJEO0KPY0QaH1fDG2qhNaPl4FKbteDSPQiE+RGAlC6re61fFBAwMfHH7TRBLcryleJr57aNRVg3K/zvKOGoviYA9jK71LjbhrfciWPaox+79BjFKKbsbIO5e8cSxD67id4FidXu5wiVxHKPMXV2XjQ81jfFHN8LyMpdjGK3gDR3edmTZeQTn4wPn0a9ipznwJu8DhldsSg8VuDC5stzCoT2tJ0wy2C7dQLdsWy/Aguuy+j3SAR8CR4rQp2+NC45T432Gf8CsOwB6tQ5Hd2JWKoT12U9ngc2eI7A/9/lSNmTgyP5l7vz7ic5aUJFOxRSgN8qIqYCMZsJhlDUTWP70Y/VviB47lbbzqfyCOQFplIQ6QLlVa+WmRINYPx7nh9vScHbvuvqGmtnfCLNheDA5YLty/EvJACDt2XdPKSx63ZiNpYd8H8ziheWoueg4O0kqdzyXpXYoE959umvEqBGnizl79An2MdOCU9sfyU3Zg++jA6xpN/avMgjQMEgxYp064I6RkspYrL6sSgxzDDWmJPxe5pPb4QocdEk6vujQ81284m2yxjKp2rR0Vz7xMaqhBruZK80eGaU3b7HdWICyLzdPSMg/L9tt9mGbvyhGIbNIBzBTQRovjEZ8pIgU8BYoL7/ShoZuZCvrdUMER5hfiU19i1+9MsXJ13DL49SO8yFfUzeqz0dSradn+8iGjXOTfco2Z8i7UfyGlMVUm6j7WDzSKPQu86cdEpSO69+Uxe5/tahVMxkBkRytX8TWMLW/14cDu82ka8cODBpO50ViMC3hD3wcGGWgdmN8sbHSzB3naVtONCKVsPOTXM2SeefA+YVAWF728JfjuTevFKV7WCA7yyGXN6ooUYW1v2nBVipjfr04aDtRGgaZwa6k500Zpks9UaR+lsu3ei8k0zexDt4RU9+JJMTIxl10hqLaSnia1LAnoAS/Tg4lio0HrQr2AVCHYbhcNTgyRGNGFZMvjB6dDX6j9aj/qXU8xSOnBN+8usQbYisZA8bTE4+GM6nHGeJ4wjVEEoca0ocJqRoW5qNuR5rw3ZcvflMK6U0C3GCeq3oRVwOEUYgba1t1osnSQXVbPi7txp3nnn7RARqMEiAeXl9XAkTZ3OoOWS9O4dozQQQWLuEMxZzDnTaxJroxTIv0Cynu6Z2Mig8fLBvUk58z9NIqXk2tiBareXZFXeX2/kpmWM6spOkHdLQQRgSIvyQ85zTcY6TZDXBjcdMqr9rWD6s7ibLKG1tEO7Kl9/QM1EPDmOgglLE5Go107qdzew2kaXDWXYYyIfJhAklbvvKljQmGG52Gqz65lTO/ioWcTIoOy0s74sc021d4Hbms2l/AuDCcujRWN6nKe5LDMhTJdbXmX92zLcaPTFQQ8/4Y0jQyTF4bDqeiw1KI6c48/lfid5zO64C5KZe64PvK4di+7Rt//a89Dj2qcFJ9qmll5ByKYh3/qHd3jtnUnHgf+TfcJ39PwdBucWLy41AxZy+FfNTjUtyfXF7AUipjgbSt9J5hRPxxw/rkNqnM1pxQ7dI9SRqOdpngpihfOK1KusDUUvhwwy8NatxB1ThpJ30Z0M4pTJNuRf32R0BYOdtrEmFZZGX/TweXlgcphS4U6YR77n2f6Il+gUBFs4D+eg9klL70Z7GbFP5de7jCJqu+q23MCzgmF4DdO6DCegmwGgIrIX+HFTF3iNVMJ0T6E3Y8ZQaiBf2v8Ea4rpa9qSgMqqqSgkdwzRGpeKMZictnW5HLO+6YxjehcXOhpL92iowroT1keg6o7GVkVhQ2NmXsDUywq86OecPVhC8vMRDEvbxsbn/ZJ0OsGYMbHdDq7Jc4dPj8kfxiNfwg/P3tP/uDMODT+PDM4yPnKooJjRTsBWPATh0FcthzYKfjAzmb7IyEXGfcQXsOddwhSmiLc7mq0G/K/UWceOUpBuxNny1FWaFivNuk3/kKX56EeyBsCtBnJUzui0BNPkU3CGMcGddRMMGbFIkaltYkZ5u4mSDOL2Ux9osuqemnNAl8OIQv2GYG6PiqlBB7BWyAvkPSb+vtCBRqC0xv/CMk9aQ0MnvbExwTUM2xYUfiPcCWy/wwB8XTIQn7RDaVWejlmgzcGdPmCamOxJuKEAwe5zpbMOfLaOeJUYURrHeYbKHCBf6hO5UqLUJ/n4MBedTzTZPvLuzzBW0Jd53qhZtj3So6VKDfD5KH6wYk5Q6lG3x7bQ3ZKc2CHgb9VyDGM9QqbtR4803VsJ5WaD4wj5dxD+q7Y+4/ArbRt5X2Uz06sBHwWqKKy6NwrJhwD63Uk4pP6HEqCdKyjB3c80gCfhb0JsomMGVM7ZDYvk3tSckRpgvRJiZH6V/5hD4BlDEGJK7nu56NDjaT86VBouAGIVl0+oUIM9z6/Hkr0B+FFsoL5FZtiOeBlJA3EZstE0l82rXCQOTHSr1D3DlBARUz5kw4ZvdiYLiZohNeggzng791ipkyI0+DK0lvbIgaxAsJoB1x/67MBWKilHOI+SCcoZ+wHSOBVmw8BbFrFGxY+K3RM4R2G9cghhaCFqJeEpOc594NHiErUojORGd+GKUV5GsRLv98tApIctPm1wjcGNtKDAEn8qdZBMSjzXhrBgGnSq5roZFLYaHhHAyo/tiCgvC++DSk7n4TbOzmsj5WTERUMuCksYJ4qrvc1lYAAVYFfTS6xTGwOrMLP/XrVhsJ2RwNTeYaC5Cly8ztPIu1qXgr99P9CcaNMvfNPOcJ89T5tnOK29JitzO4wNwSudjbBu9qhtc9uNeIfKCf7hkc3EIa0s3yNmvhvK2vwe2DdGVnXR4rSvZPH86YrgqvAfG3vBSAt/KfYLuTf1d5vDxi3LpbVPf4+W5prqN9OkAINwamIUDYNj/z9NOaCuFK0zGMoH6cb0VtMHcJ4rmWNOJ+0H/o4uSQa0HVnhGXTPuNW5iybuXaULbZMfJsS9xDe2Asl5loTwRDIHw6zWVBTXb5dKyeaDw32jNL2YJV+RKY2HtMdmY6gEoiFgfNNQtvHzKra2Pdx7WxeZwn6h+3YppOYtCsondj5CD0wYlhuizUaeDCTWFjFnkaPCRSwqRed1V5K1sLebUNyTlpqXqz1ZcnPDcAVMUTI5/npvBLtGaFmSKT/fro/bv0jng3Hwqbpt8ug++6nPHMPQmmuwKqK8NYSxbrCc3JoitcMhffluewSyAb9nyR42vJbKuuK8xIfFML8dpq1dqWF7ihUQyEfdGia/klUdCbrhQhn6ewfT5O6JbfcJF0I70fRdr+VqILz42udJcjIWPSavnwQmIZXXmWtm8/DCU+318ir2HH1bJiNWI7Gu/1M14fnN+nGJcrCReoN69639g5LE/VJd51AH1Ze39L2fQAphJfhRP1ZPwtQWMOwbJoX+C7iZ4sut8VbvKVziJ6s9GkYlScOWJ7BgGUYGU4SOtzuRik8h9pLwwB08C1ylacPqiH4zzqR+Wu8w0gLyzCPx3lVOz86BKBhSReSGsCaZl2JoKNQYRvw65bcD8WiyDWWun79dpI529yPyxD7npj5JqHHLT3a8romWRwwlpEfiDBOX6o9abCXe44eKgm4UkOpb2E3wbr/aBBinMX79vrtnkh03tnYyJZZ1HpmQgxewTGa2w9h8OdlYCjXsB19HtNyRTVq9fptvlSpShddEoE3vMJGBW31PYu1NmZSB7zRs0ndifM/yVeuDZrXrlwT/Yk+3FRYhlj6hCFsiOco8SecvXJKMLQ1VOdZYkDhEo2VeyGLaqhLp0blm9ndZGbiTlV27YPu4UAcjEg9x+8Kyrx+6mvIvFQQbQJUypT17uzWpgf4i9AMayjK77fRKGrgQojeGjF6y9W7cOsOwhTkcUhqaE19Q3HMzBbl8bfZMiFqGF0gN1vIIA8si5WYVJdahFyL/kzE8RLoVm+aKydDmxfmepnJ3x/PWdXpLC6lpCxTPRXaT7A6itOnEBmoAZCtII24Mx6GCTbYjHU4LcTT3LyMFbtQiJi+KbnPZbxkHAJm8Sm9A/CiawFu19YFO13HjyvSD2CslqvYDoKEsOZiUxQdNrV0TSImbjyN4D6BAuI3ORgbk/X6LkaQVds0tbM6RqobWtLxeulunQGIPZj5sbeuJCBmJd/vgAqjW8vzbvKWiLAutjOdljTblcAJ0N32cPfHnGhRFHNo5uzvm4a9sUkslL2Eq4+Dw7umsGc2ZMblYMfd8FUhnzZW/+QpZyNixfpxZEyzZPnmINjRP6xbK8yGUUCLvSXezS0eLO9fexsynIx+MRbDskB8F1oIXpXnpNIvnifH6RMAUV38NKetkktFo+/WABfxphb+9ySHz3c8tj3SXvH4WeKC7AYsVquIAExMDUXXLmA4+tuR39WpbCDeJ22ASh3SO/5bZQfy62nICOjQ7AFqVFPDHScsmV4f9T6NQZv2pO6LLQXrq2pWYYTbLgm5xPkto/XG0LqOJSwquq9OiMxcAD7daQCdld3WRJv4cUAlewq0dlnAH9rVq3jFYgeK0KJ3ImkrTByGsHy2sSG+k/46+D65MOK8GR/RrselkBuYrrEs4tifjiFnzEOTkc3qUqvJa6mxFGdk9WUph9d8MxwZSaNo6TH3uein7dIgKDQDJfqw3oJZV6BHeIcrG2ZfnTMADs7k9JXvciMSXADglFz9Cf5vGtRfAMxYqKmXuhByewOYL4Q7I6Cam/Qh6stvGCh7Q7fxQRypUGULox1Z0HpLyy9wTnroUfWHMMR0oJrsraDUWN362bkuxR31Y7gQSP1hnn21ruAqqVNuSCWeR6PMAAjbOfy/Udd4vcEc5Urn+55DViP3xPSLbkjS2IwGCfTsJ0m5l1c6fXUjOzLHIBpCaOrON4omb8pASJj15/ygutQ0RKg1N5m1zhjg18qHNWFT6Ya6G+/N8NJmoLSuM9ilDpQhcr1tsm+GNXHb43OhigoRrf80RUzY3kRVfR7/IQofQ/xSK3KI+3wf2bBc703FuybApanrwqZIEUznSiOzTT25ixkRjhI+hoAmcQvKHnondHKmR7wy+LV5PLDRUpHNdwlL2I1JQ42BQLYjDLfHvHwcGfySERkk67SqOh76iI80dcqFsj/DtyQT8VScyms3FiVfChJayrWZK+F0zNKI+PvxefLKW5rRx8FQ4E9A05WLBebf1tVHr/0fT9g+jMro9vpZbVUT9rTObis6l/QteyEFM748HdjxXn8bHYX1B4mL05W/o6/q+hZDlJqcdNawy1r3PKOUVLuPzE8TPTCYKeNyAUkX4d1RgdaRoQWBAk0d8I8Sk6/1dig0piH+pafgg/JVhfbKlJbSAwNNYOKytnBrSCB8MBYFXTACk6h4dnc0Jk5fGITRtHi1EI+Foads8CVywtY2qc8YMVNBogb5idVE2BWrwWNRXqxRbuCBYD1KTeThLAoPGNmSghwhdwDwEbxOGlcJ4HvE0VVioO+PfsFV1iknViJlNJvjKxUT0kkSQz/pTHNmj6kezckA1kGS1h5xmRYdc1SsnwTyg1SHxBeQYXjv3HUbNmFFLq6eYh3A/aRGBrvtQ0sOH5LxL5nHLSQCnEkMX+ZLM25Of09mIQajBTnEtxYS5InktvsgZ3JRjnuYSLS1XP0fEzMEb++KvHiafPAfoY14b14MbFQ9BHtw6eoDxSRj95T6j0qmW+q6Yf2gTCdO07V1x5cb0/tDR4sMtWYVraRtu/5hGkEiUW1eUvNRTHGS7q/bDtPSQ3YAc14O+kcEr63pPp6GPT8hqaCGm2p1ecxTF7KbtrhEGIc6JZsjc/CZC9g3ZgPJ5ksTDoRo43VI3Eczkz7BI9Gvt7QSnmpcX589uWBxVIrRBONXltHkG+dF0EuP++Z+y394Lel7g1udU2oYw5fTM7uALZiOyfG6AapA2ACjQLpXQ3JjC4dNMj6/FNjAIAyPYbN3oSrG8vQdbHH5PlnKWBtk9iKdHarR94mm/z07FS8AadyKpOjkehIUOnAuswadnjvwPvt99J7FtNyLeSZULrf/lxtgZnvsgvUI+zMEUtCHu6Jy1PHY3RcFjZYC3XvRtRdbphFHkl6wty21B8HwnucbLAOJTm9MJe0O96a+BPHW1B/hUO1PKuz7Dhy9AY1zYT4g7t7HdK8p3VJzLsz3aoR9Z4WAuBgYyk7IrL/lLYHPlQpu8iHwZLyWfdpfNN34MVi42AiHgmSLDCS+p3E05tv2PUQI2/Q5HUF54VpMTbcl+4z3ph+OLzmIzTT3UCkXjfEI5SrIUs0/T51ZxliZbMapmFmK42EZndD4/WarFuflnD2Kyd0dQb++zfxTTNHEbA/OZkPm0W9r+zH+GNyDNqWGnAIHryW4cg7+vRsqoJNCjksqLGoGNDr6IaKrTezB7rW8RddjMNas6fRrDDmG7CfFFrgyKHkbPLCBdN0TRWfrKtvHfU7eICUUvMteGzAXVqKEpQN4PUcyHR8tEeAE5a7ALM2DKNnbZmyOEFtIuJqL8C+WuPBrvPRewwHtiER6HQMtSwWcoohx8ZruhUHgsqk4UtUJJNhU4j8jQ3ot1//1pZeG8LFZ2+cDCxfF9CuMoTUWk94k+hxyfiPbbwaxuvJY8xaW3L9UGb1Jc3N7JLpUWGsdnWgpd/cKHdL23xRUfXZ5sOOAg64qVu38hAbDs/WFRT4NRk3ywZvbOmPpbfnB1ipqFc0xSw9k6uCDaQhsRX7R/GbaIFstgl1NfI3xm8NPBlpBfHtlsPL+414KpLoN1b5OBcVq5TMIj0bL2G0K0AFk9kBSCgLCE+FVrRy1U3ZJyWFYFEvm1ne30fv2Q7pvY7iKZEWZzJHvcZmK1vevT+tQF2OcXq76mqesGy7L9gaUMBMjOTJBEsLNO+Qb+a97UHT6LnhaifsR+8IPoSCGXNo8JwOF0UtAptBW9h+5i7OCeD7iLUPjSqpUXKRTB+q5ueWZ/Makb9Xnnxjcn1XkHitIhUxTrsUDFiAGSv+vkxAEpUzpuEeWNK3TO11FdnRH0hAzM7PSKx7gkOOvuHb63tVMjFxjP7kvw+TU76tGjXH7ZvMwFCE0C6HLQg4PiS3s7q+XMD67W6X1aOP1esqbA8EbEUxIDoiTrOons2fGX2A3qSrN4UO38q9JhugBOo4Iz3A2Hb0QzDLQSc4GuouRjKXh/GR61SyCMDOwTEOoR6LpOSeR/ZyZTZP2WZdN5tsvNTYnZ8F9PX6INnPaP0G7nRsMse7sv9VdrQ541dpuvYO56yveQpAP5rUvOmsnZlgVCDkrV1/ad5817DM4NN+FjnlzsuSQiqhLxfVf7WiwyVvTCdki2z6+hsbYVlaUGeozXRK0qQwXZ29ovP56wKsQtTUe52VMeQjs+fdEniu50K+ZBQ1v9tzehl5yc9i7yc5OgbHb2hXqDO5Rrt9FQRHPlppCCGQmz1fE4Pohi1wAoq3UFq1nfdWXkFwz2yefgJ8fvIk9RHD6ImQrFO/nICxg6yFObQmUWm865cTumOEVEM5SsW1BIBQ9rPYn9iwkcVg0DkP7QLr6RKrYQNSsJNM7fwoNDv5DDXjObQ70WLfcIgf7B7OK0EUwMRaoU6tbCAOuuxh8g6kARQPAiJJx5jix0g4NGQEQNAKbBXoQZjQ7jf7ED5PG0hhC7oRHR4x2blv2Y2M/yzSkuqV2CWmo5g5IbYKPyRA0QEShmB8jZLDzd64/FNo4NZHrOODQx2tgtMOILnL47eCGUPN8R2LgnSbAX53FzodNjNjL/dw0DlSe4eqsR13eRcTnLow/pdPwE8m6EQY+wYhES8gZ6y9wO+w7WR919au7m7q5y+jmGtG9y55Zy6CmSYWwMCznrTwPeGXjs+lCD9GoX7uE0RYv/NavHLqPOWlezrR+gZHqUjMpMU/pNbcBFCRobreAuS+wnMvEoiPYOkuHnPSOe37weNuIp3PMbHCHGWProLcXYRmq4lR52AC9D+Qt8RsexTTfW0shH3IRgZcnyj3Pjjh2miyRJ0huZG3pdf7QVSV4W/MMXs68pfbY9ExmB8LQWbA7NAoyE86wcBLr8H3A4WyH+Uz2o/WYd4Qvmu8Nhn/KMQOG5I9MA7oT2jwPXQAbNO3cE7SZ9oZ+NqyidWVDv1LZNPlfedF2bDbClr3utQhtxHK4NFXY6hc973NCtDLfV/GBOSwIaVPjN8YFVvBX+oTjZUpWOEZr/6nsnMYW5qQO+eVB41FLiv3DhljSMyk5eHwYRZTaWVAU/SGk8UqJ1GYlPG/IqV8qBkrRk+Jlo0nC3CO7F9S1zhVL0f2YiMr4u1+/VR57JgelLezGEpJ4ySiu6Z3d1jXdn54KfYpHqcZuFlhF8B2aBaxnT9532uPaVWbyyn0AaJ7jm/lm9MkFcHyv+dQ1DwGDUJAsMorcGqwEnNQuaaBpCKYur1lYlMSkQWKA+UTNAACqOW16dc4lhL3UL/XF7wx7ybTy6pgWHWEPkjOVcWfnm/FA6ioHvAqvPiHZ8oq1Gf+3ayjDZh0kRXwBXIxyVyAJ5EgpBFhQW74HELxIL7tapjViYi3jCBjKXg3FFqyys+AU852oGyqWbMVy8Vy70PxXKpm7d11ogd7XFCl/nrsIy5cp1zzBFUIZsVmH+19UwJ3rj8UjamFlL3W5I1+vWtJQYvVPvAXNtsceFRL9lwpnFn1aI/s+toxCtfd8BrQGjUHQgXJuz0Tt0t7Q5YbIDT+PyqOK3/luNtVevFy7Ljizz26gnRba0kPVD4S0xCgxU080WIv9kL6YKfKCBUIPHWH1ySZ4r3S6hKnylKdY9bATgMJIVZEtSRj2oevS57zVtQN1Vf9Seyj87CziSFKxJoT+qfXE6QWrbpU73TuHNNmOr9DCy2DJJLtbu9S0CdqKCm1TrLJmk6urBpNH6iT4re73+YUMqVOPsc3jo1CzjWNsORBJYd9YxTq2e9kqm8dnKCMkZfwzk4jTLLM5St/fgDynn0ZlQJOMF040Gd9BIfsCRvFZFAwn84nmqJbvjUJFJV/gDhvtfMfGNrMRHwdc+0cGXS7OnLPdywc4PKOqRTgm1IYRr7wdPntGl5iuDmg+o3v37qs8YNy1QeQaapDNTpxdvU2OrmoeRaad7P+2KsBfCWWsJfEgAw18uAkresE6nMLpqQg8F3fT4Ob+EdELQSThoS5twyKW5JPlJJQIapEDpRRCdl1QtAYVMbZU87NLz2bCJjO2I5KECaLqIvoGO/7NohQ8pfAuld6TIophZPcGb3xWdB4JkZPd0JcAWXRhhnZPDxQsKL0nKB31skGv4Sj/Gi4AHvhwmRRymYDK1+9A0HsTGjGTNKf22Ark6drUuJA0WNTe2+XdoLx9xdkrE+smAapBWdBSeameYuhKnaKXWZq/5BZulAWRXzGKp9RbMtef7E8y37+eK44YQrrGnWf5Wl+SE0vBcBm6Q+pBRo4P2w5e02pFOvBsQ8k3nKfSMxgnINjkC3alkRbcR9vJ0C7N8oTVzdGugGIZkoLzHz04Mqx0GK9JEIz7YMGUlZeJUlJ2SOOUDe+9c2hHovf1e6YrQTL2obNOGtqbIbMsksPXssww7mkHnPHMNvbrPnHgT2ghCukcFDdY1xcZSzUBaMagV9w7BeDQRLRTcagfE5Ab1kjT+unR8YH4qqnjd7ev07b9aKVTirUwxJFhrPUj3hk6IlSl4Gxn8CNnN17F7UsEiY3mQC73GtZBX6fLGdfi3In5nQUDlIvn49JQIPtTrbxz8NhkoZYsYMoqu7eCBeOzMWqk1oSOoNRA1y9WingBX1EJUADRUTpvUXZgCWUfFhRRTN7Ha2HcG+YjVsYRS+Kow0WR/ugSzNYGJ3FIsW4l9HGyYdxwJn93xKdQx5r+xKAhY9ajVpeVD0n5ySjQbq8ESQItBlain3ACZuW6oA3M3xAsdRLuG2Ws1GOVSEnzX77ieE+57YR/AsO/9AShb0S0qU3Ish+Rdq3+z2vqOZirT2sG9Pz6GWprysPgpP/BtHuxtcp3FtoQpdOl7BDyegnlaMbLHGmhRf+deYrCGYIj7F6+AaJqH2hIcxCtmwE2KWXpBBbErpIcXwTp8XW70BX/Aywlv2QKZRzYFaRQVSBdnFNb75NpItEDIsdn9yFHgAiaXtck9IRU1USPl+tZdLcFfkYVrqrhCKVqerx4pU33KKFtlcqiFtmV8uFzqA1LcdwrHMANBBXNx9XJ7/JBktjt5j1bM01Lj4mM3JyMgb9izj85LHLUuSnbtuw8c2rHIk53doe6amsjsGpXgjMt0jKjNKK5aO5xu+tptjZWnrRXAGihp3iPa3fqSNus54s9apKxxSowDNWH5RimKFRTwTNJ3ODgsw/b0BIeajL6w/12fDo3l2pIY24X0ZTzcGnuKDAebN8B/0qVEnHNvTJML+hoEUdsDru2wxh3nheAyUqjXGNJ7Kl7KXuO9d9162iP/xkbtPBPFeVYaE+LqduByWHRHCnyKQI3iKHJhA44sfnokI7KkE1zLwYg2/x5rMcTWMg7Ing3MqJFQG41IHYHHJnYqiK45QcM2GPXRKeIMsPRpAPZLxXX+Q34zwhRJcpCWVqtaHw00tufySArCWNLWUudgyi3uqesBZ8+kSwTtHtCEdhHcfcL0tzdCnLWz5nOHLvVCB85Qv1T8qaFbsYRQf8nlN3WASKWF/ubkt488zCoRNfwe6drS9SQV/dd+NZmojqCfp0QsKpxMlxekVP4kh55oq9VUJVHwVe1R+HX3Z5IzhhBCg+DcwTfofAdHXQtm2b36l5a9csjSrORtlUWQeJCJFfymt66GE7dgBU1+YtXcqOnhTdMYocyLlKY1MG2sDQ9VJ0mcT8x1jdgo/W1XHLDPyQ8nrRUJnan9VWOn/WAUVCp4+81/sGRkxP6P9rjXIYHtnVoqsW7DEfGP0omKIsT41DlD4avj7kCrYuJY1tRLgFQelE71pfokOaLiSOvChR+KTkdUOX6KRANDSR5GzPZbA72JF9F290VAA8egKWqJoqzTl7RQ+Sm8TSIaGO3QtOS+W7lFkNFyJiS26BiYyTSK2OrhhMGfT3sr+xxLvziDrl0jwwaPPTEJYEsjM3N3i8+VQGRT6I1FnzvnANsP63MEz8VooeK+bJ0bf9mHffmQ5JC7xg3XyupcbwDRSjUfyX9E822kE6VZVvQuGLFFpdhhiUmm/wrmvAfLSvO1icLy3dOSMNhNMIGZFM+5hKC0B1Oec8Uug6rFOXVVPc1qiJIBMRjyx8vP3t3PrYj0ijURYjsSW+r2UbsEJ8I9/anolU4JjWMS4kd4oqVl4BkTPMPH3y+3zx+nhbMQ/hHJiEzFKXKf9D1CIeysUCsLXH6J0ja0E9TRIR7P7p31teW9Sp2jl3Jd4ue4caYIZ4+H86JZjxBLJfy3tNS39AWrq7r/E8IyMde5Y104uTT4sliTddcRDGO9AzPULAvjLXc3vvyz0HlDfSOHiz9IO+1p+asoCkQ1igNjn7AW/kD1fQHbApja8wqJI8BiNItAbBamhCnt6Fow4D62dREAGYEyetMxGy7eDo8xkK8GcJcQwsqaD2ZLMOWSIIGkVBIyAH2JoFJTmqzJlCGA0f7eVMV/wsrjDIkuo87xdvj5Gcb2Jv67vuZKRCqdj93AfZjikw7OhxW58CxQ0OBqIGUUUoxvreoYH4tABBkU0oBTU9x6DoVqYdWJMqBrvTfSYWo093WkCvD6IMBOzUCoCHd/+Y7IhmhMacG7SFuC1lgI14bGBA4Zu/VuKHMN0Ga6xidLgcGi4w/I8wktO/wxMg2FzYK5tJk+cHBeNdMHcQZig5M1z0SJ3HwwY3P+2RP8Cp7sUC4rh1fdTy6mhikxo/8mF8BRAGEoz7FBo0/2twjoiwxcsZ2qd8x9+8Ojb+O4kxdUPMYf+77nGqv55yJDganKWvXVtKA9VTRClArCvUEPlEnpzQmuVEZ+IvG1pso1Ta5pHzFnZmQkFfqCLAJB7Tp2WtcdYiqbQiLmYwKuELNu9nRQBy8bY+HlW8pV4sdTwxsiAf3UhRlNHR8T0lOFXsLfJynK4/i3HuiJkssjmAo87lneTTP6kLz8xAoiF/DzVKZ81O2GZmcsiQYYHO2yogb9XDINwhdFN9BdW5fz7PQviNs4owoY3E5xFLqA6u+WY1qf3sC6anRHRbz1MIDbQJLwisjnXu2+5MCBc7718JZw5tWYmy/AXjRRidPczJOwuRE/4h6w8fjZqd+u9vzncS7pmCP62wB4P5KtJP0q3F6usFAF3jlzPO8ZM7XOXAAvbw1U7RacvolL1xoUE50IJ2/O72kuEmqaMx4QkgMLdMRq+cb/UrP6kko9JqC4xUC93ExS5wnuNnOzLDcdmgdMGJu47PXuUqX9+kvmfSZWoz6cimm7xs+kQ3w8LkwnwAfLu7HTYNqpq51MnoI6ejI2FkznhbAxznwi8GtcY/ZzQ8NtCDL5212incNlDIFKYK7+LN/RrkA28kLtD1CSO0NLl5yKv/nUGh0w59mf5DbkoNHxZ07Uq+jBy1Y0cu3TKWDGIXZ/oaR9smO7fMZa1NDeVeNr2dUwqhZ4o1A3zHlvnzsLwco4cA8XwlgldHgKQ+Y+Ia43oIOyNj0m0+SDOpOYKgNLR5GZFIPov/FwN3Ybq54LW2j8qrvIm4ZQU0YxQzWNXb4AUllwOYXI1n+KRdHhb/ORbcmRVCXxLNdUj17RFa2OD5lVKAqjZcHfi5JSKZKBihRJx1grVUuZ01o7dDoMWWNngMGOtUC8xTiiyjrjUGPDRYu8G0k4QI7ikgbGoL0pWtTH+h9Jpst2+d9zObb6GBj0/dDfmuJ64C674vWNatYEnwnB2t8Fp/LuIDjonZIjheo/qSb485dHMTdQlxdmzqYLIHQmuNNXXYCI3amL9iqiTWJcmP0fvYN3SYQleb5aoXQ0pN+mWTn12u7EPqGf8TawWvuEVtcUZUtxCQl8AdIQbCJ+DU44/Wmo7fkZPK/ZMHk/l5vUS+fAhSp5RvIBOMtMFcPGvc866GgPNKJpC2gDYszD8CLiJOcfANkfP+QuENln7GI1PUtxGtDqsBmEfhwYpG+pngndPg0YNat06/zTPUW8Kcp2QqLuHaxs0vJNQoVXH/HIRY9gKp2K/5QD/lGOZzlwFG2kPtI6j9msHA3doCGJR129UIJdMbzukHkKzY7a16NErLoTmbwIrybhblCE4OSH72oF9+4dJZeb5/grEpMnj3djFpcd2c/qGKdu6CCjwqpDuh11p1VOUqQDjugLiEzv3PqAVBMBYsJnV+YLgY8rDEL9FIVd71vkaIhFSk5VVYNZdTpcrqln9plcdM2qbV5X7YueweGKVnpKCBswxwNctfbtHuYMyO/rwjy0i8aNoF6zWFdYEyxyg2MaMpcNjSkEr6wZ3WmVkVrgx5cuvVBAwdfwupya17geX77NgB945r12basbgTUhOiydUzP/8MAbNiJu7M5sySyIkoQBCxw+qbNx6cE1E4pm2ATb59N/qqZ9D849h8jS9EHaj/qfYf107GLia9V/eAyuBY3wFnpFU/qR8bBcxQaCndnVVVuQRuBdHleKIFl8yZtnkn8wzBGGJtJubyJ9aumJt+Liqe4HY69MrVWjWWT0v5MFlBClFKuUyJEmy/SspuRoooxHFJraNq8bcPQXCnBB8uC8b+C3FFKn6BsHPh7LvoyDHqK48B/lKCLVHUKDA21fxcqH+1yY/bU7Ts+vB89DlhRkWbk1oUwtLW0g5gt6QbR8UIFgCrLhLq70jY/hqbeXoxdQqoDKHElnYEKhtn/7D1UaaQujikwWgf5/a7G8fJMTiOZYhKPk15MMxtHPJOLMpD5+1nzrnqs0Ava5NndslxPr/M6aPqqJRkPcwo0rLW0Ocazzy77AJw9kL2mYze+29E8Vv44hh3+ro8tWHh3m7zOCEtxSbnujKKc4PUSj55hq2ByDQuIF+IEw1ch7xPJyHpoSM3R0u8/4gJLEDBQ8W/XVr3ZBqApJugcEXbChWmYDCd8qxznBDXffXNuQhaeVPpffu2mdJudbCxmnrMYp0lEBqbgAiluEfZLWwGmBWeRXmUVifLP
Variant 0
DifficultyLevel
675
Question
45 × ? = 27
Which fraction makes the number sentence correct?
Worked Solution
By testing each option:
|
|
45 ×53 |
= 59×5×3 |
? |
= 53 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers