Algebra, NAPX-E4-CA24 SA
U2FsdGVkX1+uWJPCDjeWnhy/UbpmfbBsf8WlpEMozkJsWHMlWxC4uArVQSIOasG9pQuoYqkmviNcg3WqWMXc2SaBhxnd6TXLbSIA0tuj5GllEPQ6cgTgla/4ZzR27iCsXjb4VtTyMhqhH2+bh0V53mR9sfAKZdQrxXgGUut3ByLasrMN+MhQdMOhZrpmoYd3fZz9NsdWF/tbRRE/A6B8JRnh0igJjWlrDrV0km3ditSkqYrEGupkEL03FrBqgabuNtmXTVxuca1eMOWv3X9R3d77/X4eriJKFgIn/QknhqoT1RFw9UmCtkthibPlePG6Oaov0G2dy5xt1+hMIdxrJ+gijHv6i7W/Z6XzzMGf03GwHktyGJ1uAI/oiR1nQjmPjaEqq9s2k5BcrHD+6yLq/7OSDHv1CnMItTI2J/bp8XiA3Vx+oMDa5ET7iDk/L6wesjHo4IoNmB8A44d6He0kF18y5jFlvoGv9UBIeVZyehdOC53+UA8S3zVejdVBMW8EtQXdkQY98viw57Zkta/h8qly0ZN1cX5f5RibhADnpa+qtpSmyIyqQwSaB59OCghPr3lHvTqp7iWlz8eGmoU2STGGIrvYc4m4x3WdemWhaIPJZPkwjChRKUVPYCXLU5E7sI/ow7DnA+NxHGJCGhf9/K8biDOYTLjLEcOpaLUr5zUhDc7DlrPtMdddHTUn6ULB4E5RuwAn66BrsrwJYO4uWNU7x00mamSWNQRIHbRHrrvEzH2aAnJwITxa7W5k8fU9iWEuaJm/DPAJldPs6v3/uzCDmlD9oDruOxuK3+PzvJeGO/xDBegHaJXLc1eXKwrvYa85ft+A69SygH57h4VMEzagxrn0p0cV0u6ft7HR93fwZi/Zl4jvXLt3HphgOHPDhnDtWV1JSqrJYMMZIkKiL3nfVMaX4FY2Iv081zx1GMS/P8RZoXb/FdyttvWT+lLw72mPNHGDr8sVEAdSwG5BFyioGwuqc3jl/phf3o1UuHhyQYQ65rS54Z13BpdzOlnYm3pbU5ayL8xV9x6ym3unOLut608f4+qxNcAAJ3rW71oMPOEN0uPVcDZ7GU96+9jUtXmFznV5mVW29LNn9HtCId+XKR1CNakmpJy1sr3Qjd4WHzx9x9QEs6+HiOvh6KSJECGmdAbS37BzoSplX8Dfyi52cB3WaBo4Y8N1l/fNNXwBK/h9lg4e074oYpz0L+5awWwA9klFxSOiYoK/wJjmZ9gdrYoDUiYk+7znsXF864tzbSZjQAEOL/Ea9Ehod4O3YJWTPDiNLOSUEt7QZnQfE9LWq7C5lsCT8lnxhdmir0+Ex8uXOXHUSbWzdUzNoH2ncLBsF3DzPonAYhpeuhteeLSEqjv25v9SkFNGUc6wyCNCOrv2EaVNV9puAF08/9qhHf6QbkGkhZjGzNfdorSkU6EU40akNVl00rXBHgr71CCZ7Y9O+YQShKI+yD7j/Unjg6qrAdOmn517nTvJbKM9UOPDm3pGVwjLGLNScJPY4dRUoGW0wu3ZjJVGHFMNhtYi/YZeVFyw0EcXn7ZfA6hqojzkXzGueT3GhysOyAOE7Bloo3HRf0ocsTP+g5EhTQyl3bpQqUFO/Y3dL4GrMNXiVFTFsTa76CsU2e15wbmwYPjdp73CwPDVXRAd7YL3gvG/5MavZmhSWguy6yadJKZ+DKShf6jTN0JQlkE5bLKJhFhkiH6BgOvI4ETG2SVrr+Ld3wst5wJc7w4xgzvKodvZvvE4Gio+Mk+64Xm6FgQC9NOxbi8jUmT8IEj7noyisN+247M3WsTpwBZEsu6Ce8xIEqZxMuS0DpAY8y4KZj+ZAKixmXdxPIby0Y6nWqujAk2WZB5mHcJ8yy56/rCGjkUx/uxluvxOnXJzNmBmFVXnjKzc8h9gcErMe1dHG6Lgm/hfX1Ii2fyUZ4viA+c4HkCgmSM7e+udL2EwP7veEGQfOrQym7053zQN7VbFEdhxFPoREhNttnMjTJnt+OX71fHtYW/caAj+5w+6LLXv3o/I+z5PTS6ZYqUHJWfatlj0Bd4KZBTmRJ0ekZyv1TrR9bL9dNXy8R2hYB3L6YAtgPgJWSqtB/aHFSw5kzlwBB1T2qmQKPIZNRGVt3iEvMs67ZsRdAiyamwqslSm2P9fKEzJRR+cbMVLrFMGIMtDwxD1c7XKyPoWdYMaCOwLeV96K2kgECQ7hIicuzcb6ZSKciR8CsDnq7vDidOVjxx8DmlMmvC2xibp36o1ToKR2KkenrxBbfqZco1T2Ry6qUP4iu9udMvLCsDIdgINXp0IYvW635yjhK7ovZCFHSkw9yj40aMTSaOLDklxove+h4NcMfOTBkCEo9NSLjOOG9w9YAvSO0+7xC0e9X4MFLD4Roh9cbDqpxKxz8sUeY6OE16A8hJBv/1jpkolQYwMupBWb5v6qClJ8Uz2IdMbueIrG7JnIEO2iCEQrIBridJEBbF146XHMSM9GpDXpHF9xYGelcFks93pa3iT5+lmGUQZXJ0lJzd65TKDtWVmKy/GazCPV8u2EMNMQFDiEBmmW0aTg/hqQVlDWC2fDYw+eqza57vezqLLjQuBIbn2hsaeUJ13cdpu0G1jEtDOm0qLBVDBXjudzfPRHpSiL164oJL2CMzH3qOH7amyKTcDDmF56WgNZfKLQVSwZbgV7h663uuLVFOuFIiJCA0BNIRn81gdSW1ptfYgt0aG7acKUjkYTw9ihpDDMHXpbyB7m/4hjsA2VM8HYCB0qVYYmBFIYPv8L1ee011RO3rEQF5YRrQ4Vm8dl7DkVrUklNr6yablaEviB4wMCzUSrHblr1PqxZoZHkepW/S0z7UASgcguGzbGUrp5zh190GfIfyRdi8a6eGjg6w9QWOsM3Z+PqfqEHd1PelHyTFUEHu8OeIxEeXB6SN8iyY37EUkwJc2KHfuQq1r8QXvbBddh376J0rsq4jdizgIH7joq+I/Ot8OEFDgCwY8nJ177GnHyJqUTx0A2/5izXi6ec5iwy6I2BDV+5HO13emxx/kFa84h6xV739geOBoVEQzYiObYKMya9tCrEZaT7CDv2X/hjm4/wNS1UNpbS4dOvkKtv9gU6yCcAFl8iJ0ak+OiZN2TMjMV7jj2qY7iOUw++jF15xbjeEZke8z5/oIccEM2CZclsIISUNoR7ZXPrFYvpiqvIqyW3gqJG8S15FlmjsHfNMMqEK1rat1XdWhpfAi50SNIoW3T7aYvxYrm50Pp1kG61Tb6kL5JmwaLwAhUp2dqRGKtkQKzAST17YfVooSuOhlxf3KzQu/zluUeENc0/4YoZ16mmR24OuSmvzWtan0ZvirMyBDCgpnsUpMamR8gQJ9EjCnP2VpaZ2J1HuCvXFCDDdMibFQmFdKfzdKR2IFt7RDU/DVW4avlPj668qg2Puw6szBBKhoivWrsVA48M9M8vPb4VV4wJNBXGADZ/X18BgHpTlEXKPW5zZlufWuSOOk9CtRoDkA1F7pEuoWSBOZXEVi+RRrDJUticfXXMp3DiceCiVTqkz6qeY4dRH54EML3KvUix9iLCyRfA+CTlHcYj8nN0HXXpgU2qKuY4euaXLQQjH6ekCH4Z1W3/b2C8ws7vHSr+Fks419Rbn/ASbu6Skhct4ECNHDggEWifZFZsCAi6Se/ZN0UOFXq7jdGDzJZhw48EPwlHDZ70gbfAGgkFwaCRZCWhdDWO1LbRdd+lfvbnasPVSvVBKf+hfr7PfaqUtQOdWhyEaT9fF+LdmeZEiIkfqn2XRQJM2y3dXggn7CU//vh3GYFrMAt/ZeU1sl8q7JmyyzF8KOcmu3tcx/Plsa+qCclUPl0TlZ8D5Wvi5ZV4AVb6CA7hHmJoV/OKgCm2izdD+eT4+6T+TO/Y33LgmLASNT27ohGdgKJz8VxhdyQhgSmWHrTe/bnGi/Y6hFJZhH/4tddPrLqx6PvhP/y3tOlZ0bP1Meu2Z0ZN4WyXoYs8IhZKpCoto1z3JRniPlWmqIp/kWvFgznUkdxddk3bNhgnE/Ohyo/F5e1gJovlRr36tJe5+H0qI+OgHJU/BTIDFOr/XQrWiOu5vcfRMcRiWVec6DwEZGTHXA+Sz8gzGUcYKjoAwk+3GuuKsdskzt/PElizmwQqVkZLOY1ZpJf1HVmNSO1OD5Ph1/iWwwV/9ucfhLZg4eraQsASAj4rVHEkc0iCQBEIpGbHK8v4DZjcLh4JJkxVNq8UzU+LuE0ONvDJ7pvCMvYaXSuiSNg+DC2BhCLDfP6y7ZAV883rx56FSVhosVy8T663H7pB53PjPFIE9HaTgtyLRnSrOVYDpclv4dQKu3dEixjOj/muUBIH1pJP3KXOZBNQ1Fsn5vyUrPTtdFTRVJ+jDHZLKSzK4QU28A0GtJ3Z7MUt6nH9PX61bBepRsD0jZdjqA4PwoKxRLluxHaH7GtVCbqbWQL8WB5UVPtInP+I8QHgDBbnjOn530p+CPr45L0ml22qwwi3K2OtX/zbhFy/O05U9HhW1pfKA4CcXOjJZho0X7iCAXPp1BDgqilJ25E3kfmCNBu5MSyplre0wdIcfY8z2LoUZdTLBJXEYvRO3DW+EJuo6CsTMl8kl2At/RMyvDyr6cY8l+shPZVsGo8437+ESzZ1SwISsY5Gp278Nk9N8ULYsZP9QcgetBV+YqyFilmpSNZaQCqbaPV9+KQTXABpRzJ5o46YJ0SFOdwGdgzreVWQMPZdQlNaUC51p+jCvyD7KQuhfhmQvvBJ4xxijPKa36rjVwBHiDcYH4R886RXBtSSb1ZlKWS9CiO/urjVT8ycXGxM2I1SfH5gmmjIHI3XoOphFs83k+IWzdQfsljxUI4/8lKEatr5e2tFKhfJmtSwTdyijZuUqK5zIk/a6HVNQoe00CthyQ0UOjXvAuapzTzRwjkIaHfFjP/UdDQ9ch632fY7PgU5Lwx+rksVBsb9PVEkzSxODq57Ayofqpt3K5SbN9s0lSlhyJ6asFp7kgOwx1qLDNHH6MCp4hzA43pZ9P6wRHj6Cd0pDJQg4pQyPE/LcVWVzLDuKCKriGzZs91CzS0hxrzaH1vt5dj6O/Xnp5v7KUhOKxlJCHkUqLgL8Q1zuvlJ/WIQtMeSfWQQlVX559fzN0b2diTYiLamGDI44wOuM+vFItDZZ3cWTw4w+uFgJzGOKE0BQOfB57VSj6F73Sw1nrXqqXMHJGcgp7nIo17+XtJFVQTBB1MbkaZRV15BcJtwFKFQn+ZNvuLTCBZ09oeL/OYHAZj37FhOwYgkEOpsK2r7c5Lc2pQXJPvClGLsbKCLYr50z1b5x4PYryhKeDpwuqXZqZ9km/f/QxI7Fzq932o7Snu2LzfC9xYbSg6K1PNBR35L/mfrcZw0trPc0LE4ueO81V/GY8W0+BOoou+9onVVwZc8Od83vL7H6XKT1x6PgZfUM+a4qlaGQ+A6z5meKqmUauhRhSeg294S7Rrkk1idm64jkybQS0bOdchGK0FEA9PUiKT9q1IWYFRiwZ8KpznUUK0hTqH9jbElayH3IIrg/oFgIvtgRKV8zrs8iNyelqoxxvC4evWvwIX8gqCjWQJZ/llQ/x0aaykv8Hi4HuErZmKjLu8vZwhaHrpC8QSOEEcQWYKuON4Ywsse9FRrhgxqH9CRn7+3UApqinDq1aQgvTjMdo3/baTZvulaHN6mpLljU+KFXK96VJ0FGiL4hhN44/6QY7KeERXVAIU+YyJfI2BbR94l3yoaKo/yXEAPxlBP0xrjc1FkNs1QYHdDM+DFU0llPGtQJEGFCEGmONK/uiQ7CMWEuentcZPsQfGwkmjhwMhc5daQdHdRosZAjlrzMUXiGd3kcYEMzRuKVjkp9uDADCk1kOldJZ0UqgkchSn0kolfcDtMHGlh77a6tx1uHDD3PsFW1vGkzhiEZ/8GzBimYCvydgLWDTq+btvNpi9634QDU01kzvwzPuqRng32/pf7ZQwG4mpLZsjFe65p0NVLwiSfYOxYTO5cUsPzetXV6LwChs7I9n5anAchyQXdQ9Wkf7g1kZEPZByBs43952L1cZCZy2RkfyZPrhglqm8n5cSKOLdjtRUj4+Bqkc1p/GRh1Id33dLovNPm4x1Zo0ifi0p2TtOTHr1jgOBGQx7CTuT2dYgYxGYD7ljaCP92KOk4VgUmSvQZUxwTxygigl1LQCZazVF2lpKugY02cZEvEdVCRkvv24iG1shkIvAiA2YAjzwcoQWuA13OgBiFC9LzP2jnohVnBxaJ579UwHdHSNI2m2NsIS8mb7jaIg+Dm5gG8Ol+NeBZfPe9Bk8/D+bJ3OLpYUxytWmdFp+1dU4Tpmvvr5Z3+Xdec9U4cXeOZpKOlpWOssxKNmeDrRQIFVaymnkMCdUtw/t0yqxvBn/REJ2odG7c7yn8F8zM/Hv8iNwDB2aqJlWS9NGQB1by2kcetZM5EJZLBb26qQZidml5SXQ7+GHtxEJ+j+Z/VBgWWTxGTOfJ2HWUAO1KnBmzE07f9Z0qjiJJGyPa9kMDzAvVdeuGO3GkSazN4mY4LtJOjnjKVUhBMLPz8wLJ0M+aMeYPpqEDbWTqTY2DT53nPN+NejvQBZcBGQhPn5qnGTEg9d1YbVO92HYp6lL2zYzm3VbJ2LC5twE+tQ3TC0CBwV5Apha5o2mfm70GxpjHbSjfGIVCf9uyFLw+GeDiXEWPXeDHSMi2/H9LaKH1ma3ZIemaA+jvWeZh6v15N1f7BsaTL6rijVo7UN1Osdw37NKCh9dsv2WUpV6B0xxq9MDHIGvSiiBBXx293+1zcd9uhUPX5uj54ng2ZpUUPY6sQCbyzg7mT1/hbEDsKlbEaCDDvWr169URJsgn4cHKi6b1cajaE8pl7VHvY47GJ+z+bFJI3GZJ5EsOPx/k3UX5juJKnj0+V6u4tECWUSqCJXbMcrM4Xku8VNR9L9I69EtwIbhE6/M7p/aUaKsNEqfD/AwFPHJG6ZTTDYR5p/TZG2M9AQvD0umlFzblj52hO7AhoiyQTI2XMm0doZydAJ5ccJzCr//WvOp7jZu3o+HnNkKLjBickggYN2rrl4jcEY7OfSfaSiiXxxzdNxSCLJ6Vo4okiOD51rDKPQ17gArpDW2hho1LzWg5Fkl46Y9rvb972h+3zaAWiuWeKAQsTpEMeqIZfpMx7KKrojc3T2YGAFR075xXVpNpfRX1eaKvkQzANUjIhk/9EYXZqCATbMkUGJn8PDS2sXFATxGCbDNx0wwYgSYWaWvwMAY2pjaH66UhdXzsEHMXl3f26d1ewcXFphIFMeqyzbIHlAV/3L/rUTym/nwoROv8HT2PzODmTa6rEETKcZAIOkKPbZdM8jJSxpylrNHBLiCns6yQxgA7ivabXeRC677HbhxsxvHEPKc7pIVD0MMfdAt9o2p1uom8Mzc2ZsWyMxCdm/onQ7026OPSIqvN54pch1ApvdG00Sbo1PPyW3BZC4Zb11IpEZTor7MyucflNVt4cWjXO3sFxdBny/g3LWs9FfMgFa+LjsZCTNHW3Lu/9J8mzru9mXyyhqRIQ1GOT5s2rsTix69ncYTxqtBdms1WaCzMtukTVcS/cUuHQIJaIKbh1lW8FXwDI82/f1MddRQmoMqN2zGM/3V0pozjXd+hKyWu78ZPL5fazNL/sSbNzv6vC5em7Mm1MUkjfAHrwwnouu7mlBOyDr6xZAzTajQNoM7ejfy+OLwWj/m/lfy/Uo6q3UwFvjfVlADIDmVeqvtzFAKOTTrreltf2ohl90IQG3Zx9zxYv0vjwvkqByswYbLvj6OuwLv0YN5gVkQrnFSWg85znfy3FS8fKeODPVVfQlW+6bzOrQbJb4R7qOTrL1ehAOzMWdAFR2eK3DAWDI11i8aD0MZoG8vc1MA5iUH3hSJPHHeUgO6mnW98IHXI77eyOF7CzUr5UtXq18h8Gx0SAkP4Ybyl2fDnA8QSaGP7Eemj4uf9kOQV6F6DzTg4tH4EejCGzfgQ0dL8vICAlv7/VLUfvxDMAqQdlxqzeGhUltZEaxF8padeNyD2T49BAzH1wlF+nOBWxo4tdKFmGIxIpZLokVhsRc5CSQo+vPDMtHWtJMl4h4eX12ZXQASlF/ug040fWmEk6oy0YnzLX1yesmZZV4ZBMfjjnUu0WUGb+EqDRS4kt3gOqu6fNGi9sm7qjDn70D/IsgG/Gmsu+F7OTekaJUexlY24vQpqhdzrz5x2j4ryrTl8++6ArbvSY4Lz8/NG6IWTHrAuxTz4Hq2SMsiNI7S0+dhM7zG9JaDE2tJGgJXsL6momrifmqEPoxn9GFVRCnnY7J9hsuj4t2AonD6EEvsr1ApUWoamOy3Ur/db2sgQrKa7OYWN7fsjF5V+wYDxqCiSh5rO3KkF9o9zwbJ4LTKuxZ/thpNnJOHL2eLoLo40LsHpbI1ScA/T9ELwM7vtNnIGqxokCp2mYYb/8T8vTFWI4xR9suboOWKCBF6q0y4IQUpp2xmCtZ03B78E3SyIHUhM5jcC3A81ZjB/IvZBF+ifsB2d2cUV7VBPUXRTt9IlxlYPoq0vR8MKZjDtDYwG0svAQVXoERjxA74t26mt390DN+sUluGzdY9uP1JlhQyaPfwoD+Noe7wnDD8QSG8ADSjxbZHuzGdc4h0Q0Ds9dzwNo0UffCjWg62M0EfK3pDaMyq1W5fg7MbZOQ/QckkuwERrzo5M15t01xGs934Gm03r49OGRwmxJGTreHH1pRs7vYuATNRCiJdHZD2Zf6ozuF1NZBVSxSZ88Pxhpp3Z1Y3sAESp3oXsefDOfsgqq3Npc1yLNX7xwgI9Ax2zDbr6YAw7W8/clWmj8TdwETvhHMpyFU+OwYoCFPeEIX2VA/uiFFIFH+ndSWnQUGrWrUBkH9DRAeccLEBya5kCH3WWGJmFiyK8OvMyMxHsEpq1IbDXGDxW59UvBwQcPS0f8VL+GTnjUsSB9cbjJpB8I32b59T7EsHqS+en5AUwIXJ+kzfBT6kGtL+lAGyrZfe8eU07AjHO82/zYPlxXeLeBFhvprVcwg8I/kSMylvP41gscV5WUSkAJMpcMeH0383qxw5EKJ4OI3F/wRo7e+fQCnyciXEBL+rlXTkcV8avyxM7WDFRSijFB/qDTI1DBNh+0FhcC7i4C3SxtY3q9toIXWhNCjIor1ryc1r5HFCkQcP/GIKmkl/nwEB3G0aI7P1snt3K0kHwVFqcaxeuNnni4mR0LhgW+129UxRVwS+S+YuYjDORCUT+vVJGGC9GKcGKM8PvtY1X5M+8BDwebKWksy2MGU9If81TcZm/DziHEN6Jc4Vj7BrGLoJmNYUakt22LB1MsJyQ2SVNH2EGrtM0fe5LwFGW8x7o0dqB0cB5GZV5L5UPLYv4d2n/wsT9qXDRAE4bEMFLhDhZ2qfsWotyJfjHiID3zKRyOPwSfYxkyZMhOVW85MxA2XruHIrhjGf2twwrODc+iL/Q7fj1m19kznEbGQMhsJpX6BafnlmlCnwN8hakFDjhIScaIX3GZJ0XjTaaLVsZzUfBlrktSUUx/pJokbnSOiQyEg3ymaxC6aRz+wzzRi51ghOf0v2mLRekK7jTZ/Ntak9PD+jeDyORDQRM5c5OWFVQXzSEfkjHWL9u3RFjFCPRBiuO+gkBlxxhco2vF3FsqjDn+uAJPkQTQONU7Bq7wcsaArkVUf/eYFLn64g/vPcAObK3RrjAebAnxC0wCJ1PrG8tuLXjCrgK7gsEyYvpQ0MThiitht3zvl2x1kKqS1AsyRFlmNVWcdWt2f/I15J4uyMtrWtqfmZLgOYmCDLuZ4RBr61hxbQd9UYLkItoKs0dM6GPgSnjVs357iYuGrf9yp7/BXw5/CVLaxwNdTGiyeKxPgEG3HLRR1lCh6w4DBAvNCBlIpgG5j79bPb1k2dtZT2ooa/HqvgU+E5iu+IRorp/cpzYc8le6KO7bM3AMzUEhDNgFksNRdGZ2qz+8SZSqsbloRj4Kn6cCHJZ9PVWkxbBpbMsLdrwiK1DvVxXe1+6HDSfkeDeyVJNupVH327FcqJjH33iNoqTjY/Qrn82OObBc8SOK4kI397X5rrHsve4IjJoZUYfDYoEXUKk0NFSPeJ+/VZUKolHASCMFp0eAn4svl+a7ATVMPm1ywlON9ovSO7pSoEwVs/eGRC2VjuTH0M0DisEIy5Px4GwmQGlxi0iYWob/Bo8ANIvMbMv/VmBgFRncqaKazVeQ9ixcEEX160JEzaV0AnqB7zA6cuM8tSuLEv+ZlYsoe6xaJKfZyWwUvR8v8okMw7dzmogp4ObpI4q4rxbvDlzyS05uCj2OpoXDfB3Q8YRwrBWxRkN3nHyNnmKxu6s5KnAlbeNVFJz37AyuvKeqs0z7VqQ2E4Unl/yTwwpNt7xg6LdH2KANR1ZjSi58y3Na9CSKFIW2mQtWXNU5DNdPR43++x0JY+FOU5dLMMXZA8ctadNH3Uphj+AT6E1/xrtfXNUMFEykwoXw/WRNwDioib+EvjwhgJQqYqbpIMMShRBdYWX7v2ToZ7ygtcIPUw1ZtCJFDi6EGEG388MbSJYCq9BCetgmAuvWQFarlBRST/o3+Fl3ev7Y0cbXb5VUeeT/xzoas4DJmiWF7PbDQH81eTD5r4MSdRz2Rtqg9P7XrIFeyJ41oRo6JgEq4IpjiPe3oQ/g5VFVldnEf9WAZeIO1KPUll5IFV0qxboYe/C8bq/M8VGlqbHHUul5x5hjMHfsFA8CTstmxlpA4HjizXGgSQHFE5dU2gQe8Bjcg3pTvopxojwN/C7WQTrmVj6S8GHLtMgoQ66DMj95x1AaFWCZTz4iAXPjwTMIAhIypdvZpCnuNjv0guPmWyzrlSQ2f3SKy4aUUVfuCCXr/wnSuLM5vKGwGeU7+9JqG3MPJN5FYyxRw9Cxxwnat+QKpR6IRu0DEjjEHEmdQp6eTKzdD1MpneuVCeu8cjjs06xd11lBUOcdsgUJ2BX9LkxbPeRQLSjzU1uzx7lYB5pYn37rkUefluFUvwQ23ZSGTd2LRw/ik3fgk8JN+YlGMZwGxQ6E20/XUoHEE3APKfIYHaNHvQi6Xzda31CN8iiXN0cmQe6SV9B8/VBTpl3JqeH93Sf47HMVruwb//X9tQLWWrcR/X/KT6J620zu+ZgQM6eXeT+SPwTtbFCNuhbcg+by5bVKaTkOcCi6dUATb2N6Ns49JVrwNHZEaCypnURTnA3KeTz+bng3+ezeIWXI5ewDQsWDLpSGbdXALUi+fyftd/eDYhPYeoqlfx6Y3+NtF6fbco4c0XBFFXLB/j6avX9P2HCPV7/E5e5idO0etDh39etxNxgBfG656QWntMpxbfbi17Cjgxgdh4NyHFJx/WJQdSQ5Z6pwXcsi56rffaJpPx6FWSFbiJ/QMNX4MqcnFRq/q+H77mNGS87Se7FF+74fxKYzhqUSYTwLTw6zMVJ+BRlnuH2ecnnw8TvEcfG2AhXV+5GZ3eXCmjSdOWt5JZJf78AB7hGSpmpmbWSVDCy1WRY3GXwEJ3ZNJwh7tM3a3qfMJ18eDHaHhjtJjMqCOAddtjAj2OgZtXG+06Uc+ZZAeALl+w4EkE2xkmqwgp1Nle+SzcdswK8GBx4AHylghsivnlWOMBhczwrLoTslJ5Re0JOf82PIqjE3Ux1fMPPEs7SRBtGkj3iqH9XSXr5hjYBSjkDmtsIpD6nEMy0TUO7SJ7P2eaFmS2HS1KvWLoV3NupXtSNdvSMosn3Yceq/9TU/AE4N9x204pciukkvd+uViZ6hBmA2TQYYccGn02/+EGvEH8PBJqJBXKxAS7pATjJSmnb1s5XaufSPbuFenJH46P/h1r6yUMXclsHT3leG6/v9cz+jp2JSfYDuWIKREbf9LXkQmkzYsoDcG5H7qZxjGxzCFJDgvHvaf3mUVPKuCKgwlxTzpX2JlI2UxeBrA1KvLP8xmLodEmsvCrUCbdHEaXvDtUZenIf9nXlDOhC4IqdUP2U9ABIlFdsnwIIfsbmkh0w1i9h8Y/j0Tynfu2Yb8tcD6EOhH0Vf8FaNbCaGEisOb9W7RiGDZ9zGQ5SV2Kardre0pBSs/6rsTKpzxHAN+mvva14kmA0w8+eHsUPr5+aMUgzdQIOM96PNpOjpgrdyJ67VEr6lBuURP9MWJpjyUZtB8CabnKRhXbB6x+DacSORf4fVWXdfnCDBSRCqmMkE2q2MPD0NywkTuxVsiRscP74OJrcxZAdAz3UhHC4nI4xmT3ZyREpdwHbea3+rRTYXS/M3eIUCbWXlxmMyxFW+QZPZe3iUTdHUpJb/zjodY52TuG32+UrjgDCH5xQz6L5yS5C1DfpMqOyA9jjzaqKsUXcvKWFbX3Z9zAihLarC+S0jnrQtnTx9PHJNVHqXLMAppwKLGAE++5YQ5s1mmR6O/rm0X5lCf9UB2USnG0k9kXmsQrZMmKfYfYPRLQHCSSg==
Variant 0
DifficultyLevel
698
Question
Jim and Andy each bought a large order of plums from the farmers' market.
Jim bought three-quarters of the quantity that Andy bought.
The total cost of Jim and Andy's plums was $158.55.
What was the cost of Andy's plums?
Worked Solution
|
|
Let a |
= cost of Andy's plums |
43a |
= cost of Jim's plums |
|
|
a + 43a |
= 158.55 |
47a |
= 158.55 |
∴a |
= 158.55 ÷ 47 |
|
= $90.60 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jim and Andy each bought a large order of plums from the farmers' market.
Jim bought three-quarters of the quantity that Andy bought.
The total cost of Jim and Andy's plums was $158.55.
What was the cost of Andy's plums? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ \large a$ | \= cost of Andy's plums |
| $\dfrac{3}{4} \large a$ | \= cost of Jim's plums |
| | |
| ------------: | ---------- |
| $\large a$ + $\dfrac{3}{4} \large a$ | \= 158.55 |
| $\dfrac{7}{4}\large a$ | \= 158.55 |
| $\therefore \large a$ | \= 158.55 $\div \ \dfrac{7}{4}$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 90.60 | |
U2FsdGVkX19xbEsCAwQFAormaTVK+zmWdSGnJBqVyZpXZABRI8FspZnZ1lW8A+kwGjnhadCfPA6a7uWYSxOxNwJ5Kcr/7u/k1O/SndxqilaqxJ+fGtEbEQ38P0po0RbZ1TqmHpClJ4G8HGaCjBXy0V02K6CJ5TyYE5LNVQVZ83gun4G+fWeNcl/MwVfyDQNFR+bRPX6nuEQTyP5TpMRoYFHJPwTaJHGaQ0m73/eDFIQIvhuaiX19H/RM6Zj1Okpgy6OW5ECHmmJwbPZPWDO/Zac2Mz0iuhZzVij9SU51GZZP16IYl5SjqV+gqvHVw1YpQ7jZAzgwWQFklrDHMKV9HIHXtwhAFmV0l7oLmSqcJX4nkrwAJTmj90mXwJuvEnzrLga0hBlmT9To8GMY4sOxiN/MYg9SXbRSh1BCZKs8e1rBJWZoZcAocwhBKQ/ldpsMw0G4Tu0fvu7TAe4JdOCfojQOpKbhQmz097oeacYW6ODn/Nl0RndC05/9Abg2cUMfuG7pr6lA5aaRVj8y/MsW7ZvStLEeQTq670+32ty9PMtujNK9sOKw31eXS1U43i+O2/8nP3kg/+Rwyn99fheKokpepO2SURqjiWYRsKEQSpsmvQskIBUGyBJa6OfnzLrIg7d+xzel53S+ZEoLgMq5mp159RHd3Jb2QkpA42/qiLLug5XkuOVUpzhRjgUO2CIKIrJILJQX4sJwVeQfWtsBbksuuR4DJOm0H962I8wJyw1QiItZIkG51tnJEEcAPday/i25XZG5ngi1Zf3gBJbH511p+2Lci+bOzPA3h4XQIxtp3UkH8zEnKjSsWRao6/37BOdxGe/1+W5AjpF/9WBiQCH7AuF/C8MBYhh4ET5TCl3zbXMeanbFqJWQc7sq1KHnE55nPcoD1nrUE69K+UK4HUtpxJ1cD6OI96tTFvUG8TYeXEdrEIMroJzub+pV0hcLFoeOErX307kr7a4l7E9Y17r63raSsxN2FJM+T+SwHKkXBSmzxiD9tvYUhI+5/X8LO0hSAKOLEiO2nsk2Oz1P49NLIiq7Qod1d8hy6qUkGHvTf2yLV2T9oPJ71ctWDIJxuyzplSe3pbG1kuVS0pHCCjMhUNaJt7UYge8pN4zshnCmYAc5ZFcIPEgF18choaZS8z0jaqEeCxbDPIL0SFNdwyQ/xxBUXvofCjvvX1wJLUyHlDHwTFHF2tYJA8k1ftgmnGScSPhGBXbJdkMaAPltZGN/2Ida4/Mi0pxz9d36rlR9jUhrMz61HxCyDlNvWtW080Ao0XuKcQBrXhSJIgnQRGfcAYs03Tvn8ZJQpckY+twfRlXa4YYWNg3n8pOlAs20v/6wz+eSvnTw38LJBS8rg8FVVGZyzB9w1YSuMIjJJ6rfmASsOUBFqvM7zt0JG8DtVmpcXtFcKtbzXapOpHupmOSR67PKTk2NqfIXjf251nCHyLiO759TH6jhdFrIO+POo8u+soPNtg1m5kuAqCc81R2tic8Bs35LPeyzFrCaCvNwWriUrkpb8zKRADOFjUUJj+Ts6VwSMSkY5Y5YI0BGPtcvOcVFqd4MuRijCUcJsDuWHMky/Go7HTptUCYvXrEI5C+IIVlktiXokBH99g/N66BzSKtU+gauUEwMMpUx8qmRjt3sI9pSVAotTl98eYzOn8radKFzsPk0Gc0AfyFnqddU2Qn7b29QQdzqyxyTA9KJ1Lc3CwSU2GCl2e5M6wK9peUOCwwFZxjHzQITquMxc6p43CrSvufRMz22SvcV/2jtJ5OaPzpVvwWLZ52qh8LQ2l4gcUrpHpzIzzCnbVJ6yP3NTufyaT8V0FFVFS4RG4PMwWt/Xw4BVdVPX8AeDmTFEGc0WEez0A3QOFdv828b77wg5829XAqS/Csdy/xm9imWp9UZ7UezVXMFk7lx6+S8zO8zyd7BwGxjYuHcPgYhHMjPxzLk9imVHJsE5YnoqH9OE6ecm9eNFJvHrIRVcVD3Wh432TmHuutVVvWB/cP/0F1NQ8RaU0nxIYmdkiDesJbIfdo1vDnpZHQPfhJvcqiEcFNygvovX/x73rhnuUH5NaEOcH+t9HJHhnGUQrXFsU0gkRQ8L8Inf4OLeAyIWflD8B2aWwhNwmGdBb2zSDYS4anJvCe0sfDKUwYCHpD4XWZv9SauA/SNDfz7DKJ853qt8twljxqb/EvSIU23p2qPVelPBJUoaEiAh8wm8Xp0fBHwSl0JijMNylJhcUNoT3K0VJH+zAYpWwKBAgbaXi90Mk9sQowGlwCZVdLtlgp+HrAM5/MInY71x0QuGL6rrVTk0+SO22002RA1Dmx4CXlLS3vjk9HrSpA++fq3WSBghSbX4kD81CO2a0WjRUPDt8YG51RvKRIPdn8X5MxUVqlXYbT3qvZi34k9EL7A0BxtO81mwke8tnwi/Bh/cX4MC1oxX+SbrPJzCGLWHOeQnRNGDBEJnt83J889doGlTROwwA/vAZzml62RzMy6cGFMsArJAdyF2bI2/9q6QmekSz8DA4fw6yAoHxEf83dLhmQRBRYK54TedCzcqqjkgxaAdNfhDACLjSzmRzfwsONGba1fKQXPrXxWRvLvP3eSJzh87TKxrkfHSztSM/65vjug9Q2JCQk1TlfiG3FEYRigClU+1A9f6wjqAskDKiN1g5ib29Il3GciL6SrCCFFONkEJauHWc0x/sRGxCfTjqcutXVhD3E2LPwMAx3D6o+3PWJTJXHGmRo1zFPVeauFslgoHo/OUrCCK9wh/geq3flbe+ON65+QV2gVI9PUiY0eC9GX+huj7rY/j2kBkANICfm0PioGX2xj3lBFeLsezYuJvhjLRsgrVQosJ/76hGk4Osgmld4g3vQCIa6PxSia+reWKSnN1QKg3TonaA1h5iZJFx26h7jYM3AG4jFflNixRWdFtSUkkJb53Gp7nKLLMvYV2+QLUQT4RGNkJ1s11WkZ+lKjimAhNmd3KUItYe03tvn/RuAhGSM2ifW9WTwwt7A6DlIMSTotP2+olqSXFUVCasUMbvbJ7uRapYXAUqXA5izAqOYhiy1zfP62n8awYd7vhUbvg0mKK7gyaI91Rk+U858HTMt4uqwbey+FC3H6ExTYq6YmUWSwmCkDR1XJkymwCaGHV9XPfvw7a0OX2cNxmJK6xi8MLKizM+I+HzUUngpYOyNV/nH4NNUU/7EMRA2teQZtymedNyUPjwjxqa0gbkIVJ81tjCA5FsW7SlaGDk4n8oodEeHKNklS3aGcqI1woeArqqHoMfi9xR+YEmq3uFUw7mKA2ltj1QAxbbo3NMko4ueu5XpUYy9fbWelNssWoZNwna4iCuB57jbCea/wDACiwJLmiyBklcc59ak3YTzyLYC+/p2FwSKDD4mwnxfy5pUJoaXNWy/WABnSA39btKgMJ10b4vniQeWZw3qiFMeGDXAQtfffb7x+TB54Q6C4ic5UxC2cUujRzXjy022sCxBNkb575L/ulGblxOBiUlDJxQC1rI0CSdFvQ+hxVNhGsmi5dlJAU1M/N/w/IqIhjcM3Q9rrXDUcITayFRmglySxYdr15k0w2JgTDvAa+682hhjzs8GtV/+A7CiF6ErSKvvWMgMJkxHhDpe1AWSAUbm7dsyRF6tjRh9X8PHYVM+s1GlAWyaR5QqAb2Y/VqGpt6nzp0H3HqpLsBbskh/PeS/5nXrxPlqyfkMpQusrxq513cdWMH1fwcRHN6V6p6dICYVFW1pNwInqU6au6cjrP8NIld8rSaPi7g8vFUuDzeslOBA02WlfB2tmCulMjgsWmaV2XYflozcbjB/L33SbC0RvCJps1GAae0C79ccazzcOLV5vSXJmL8nSYlLjTaWzxvyG3yRGvaNhBzL3ssqByaCSeKpsPQwZyn5bGmivIqMsQpoVOLfCoVLwFRvTwOZ/GAWvlEW4AIJvT+oxddRLmJlvml+i4gXcDVL/QICkFDQiQavNf3m1Bu8IoP6r6WHvt3yOtPd3m5HGRUJF7tVx0YHB3ZTEIVafDy9sx54DosUXvqmLk0NzPT6rt1hDxCmlpZliQYUcwAFune0TGE8DxmGnL6JuWFMOtDF8bwTeHbVlKDtk4F3x0zFCL78+EPAcwK33XkvKQk/k4WIyRzejbBkibXQiQD06kAkiWOKL+jCbr20UT7995H7qBGaxJ4pZlrRxyIyHds4bpBhj98x53j2dgbzoCzCGcoz5fyhfRq8hS0XkBOx6WLIfdWsnQm+XFg1N8G+i3nauGOlcl6I7ez1UXjl7pLb5H9lEo9HOae9TY+25sV50vsPn1vTCitCL46rosYY6Ti3sTxhrAnKM8FYEqauLs1iVUFRa70xyxJyeaN6nWDfKJI9AACrSD/F791//idis+nD0zwLF5Xn1SghmJhKLGUFF0sk3ebCQoTKfOXpfiWnBlTKICllOBM/L1yraFJtm8eUn+6oG1d9HBKj92LdlszYq6A3EZmZLR89Gqm6Kh3Sfl8WYA+XH6df5wn+jPxG30A9icjj9dwgyEnLF0WfnaAWSjoCkv6ynkK3Oh52LoAc71YsO/cHi3LNCketySnWEVo5hgITvVSdG4DC2E1CwyTHBjv+TSP6icYYhxpyNdOh03QbWeUcG7D7D2DYB9jvOprDkHOgY7RGcRT2jHVzt9gOTIuioYvs2bRIIPn44VtUU8tC2PjQVS9qe/VWF0xzRWd7RwNz/Wf6mEJbKA6kP/NakjhbWRr34XBPBukdQamBF2fQZhdlqatUPWY1tvQzT0d8otQuDsgepgSRbeyRDRyw6eibMnJz+rRaZ2wmZyWIryZ32nZ282zktL0St2wdylHFrm1+TGNyEgOeWsSVglq5ljCT7Rj4f33IO4mJXtyHHNEnNr7KPjTiFk8o7dg2Du3s3+0spHNz9X6ReoFKiiIdl4kNe4zODExtsduQGXMcPsznIxrOn9Hzf6ehBLy3Zb4iFbjtpu5EIwkLJou7tpqwJgkRcRCNvEun/V0vKtsOk2+F0aTZ6QabKqfVvH8LZInGr1McFzUZLZZVBrk7NMoRFICgLMs74hJzSqJp7iO7roDjGOKoUx9e9B9oL/Ap0IerBvdm27d5RZAic0c2OZvZYTNyLJZkTpYtYukjrZ5tvoBTtciXGnQlLWpazYAQwYIk9Sp+FwiDQ5wlybbGyhcyydUxG2O02W1DGoXNkN9puw66VAJjbXszoWcSvRiKo/QON25cFQpus0s5UOZG6PveHJgQR66ek53edyJmiaWBRJRKQuV6RJAAWZotks6QPA6bDneMOhrHO5E0rXrEcJd/qM4zmuqlcq/7Ad3edDdTHUVwibfeZGCxjWoEOkE1mtpiNpq3cZDeotrDh+rZyVqnZiWoV7rkp0Zt1u+turZYD9RuXM/UC0r3PJnl9YWovrmuzErMxGOMV2EL5bzt502XIb2UMKiqtmUEBfkTowl74ZbhHNJmWxu18ArwjN3cFYpS32nLDZFQyc1NX65sUYt2jMBZJmSYz2pVSF2wDogyQhw4wCyzdRTnhpGRWrjMYsJ66NkglEA51/mFF90tcUXN6IZNa0XggXFtmUayWsgwDBmAzSc5RQkOyOtceaPYMRQyRmQRYJuaXuotRSOQLsuxlIDj5ZKW6BtxE5JoXR7Ke/C/Ds/gmSzQxGc1NL/AZ3A4/IJLkRpMJh80/5Cc/pAtIewjviv5yy7Sy0L0yxcdkMQPCETRLzHhxV3yhe3baghM5SrCB6dV1SLN57etmytbmUI0vZep6IHqX/y3IcR3toj6aT00bX8sFQUcpL0WlauObXxPEq0l9iW8LFUaQ74GRyc9/ruZXrfRmdfRhhOxAL/RitxqXfjvqKbFMblhCPnpc23WsXeThsmKGpFQ8cbwEaKNnozhWdLV6uxef+DXzwDAbbDLRxlLfau5er63Ya/K9IxpKsdgivAyzB09AmH0BjwD5Zb0e+6TY9ETWtBHG6EQf9qRdKGJ14U5dX0gEOP0wUiQPx4LR24JFV8qA9zBiAlOhZKqYSW582I6ytQLoIeAxr3PdQZJb7K+WDT1AGJF3Q+LmcuYMVPoTE65FI0BuFX9hM1UzgBPkXZs8aIIE9GQN8G+fpdVxUuc1aqKEy5qG0Ppt6ema5D3zrADFvdWU6vfBMu/vmasi6SBwC5nowcGM7ULcc8lB3KYsQ/VatVclFYGPb9I1lUCclbpSpRNNo6o1spF4yBtqurmPT/occPtNBEM816DBG7bNJ2cEoonrkJKZy7a0jQyWBtgEKQcDIuB9ckQCE0VDDW9loloqsBbqhUbM2pTop9r/AkFDTBHF3kkEn6NFbXi4jVrvaFPkWMA7irRUSMbPrlYTplYo5/wQGuyfAYz+Fpg7cCS96jsXMdheS7Ews+RXHxbn+J6LzL/DdzguEbpWzPOALt69aBKrKUcURJfA20fpwFmAMNoTknrAKzpOTi6ms2cyFxWM5zJGYsc3vFG9YYjCVzTGap8IVRRbW2kG48reiL9GVnOXpkCNQynWWLWtjVtmSylNAs+4nGGMJYtXv3RrLa0WRg4D7igc+78ymemORDzpkS62QRykuTBhUC3xLtE/ISwQS0mDyRQLaB8yI7dES2UVICleSesp9he3jNWfmtLiwQ2iVtcQx7mGfffk/8yzmjOQ/1otHnht8Mfn936fzVa/9byNPvpiGG5Rt474ajlPLaTGHVEQckfrDvp9FaZmRX5pTXa73JhhRd+WK6CzF9OuAWfXjK17z68NKoVsOL4VsJV1EzGa0f1hwiWLCcGWKpN/xcxtyDQGkHiq/K63aF4dPqXYGRi+bbEnX/r9uYHEwNUc2/us/CwgGVYv9nCWQZ4kKRy7detikhFJSHNjxb/aXT9TZ4N5dgl7fXsURdtCVDmrbNn6hXizdbOgt95jucBkYwpVAVNqmhM6xuSbBd5rD6ZVe8h4FX8sY2Yh0Qf8NjfVO1O1Gpxvuka5+Q1i9yosvW4PxOZjL6RhlOcy4Dbchl5MUM/ebfPhHtRa3yDaQjO+3PByl0R8mHx6vzwAunjrZA+wdYCfYh/ih2wdeV40JIdhWvk6nrEdKFiMyLPQLzrAIXgMmuydxgYZ/Omuw/N7cnKtKswu+hZbQ7Afb3bGtneiDAsKj7P6TLj2SZEe3jv0VxkRHGVpBXU8EQIVxr3semddo302qNCmSQYvrwhlx/vQ4MAAPZJ2bIh9ju4OicI0q+IrHcYqSu1iMeOK7BI3plRjIrPqLdJfxDr6iUHu4tyd18K33FalKEFAeaaMED4SxyLGMslTTmJ3Ci5cWsONXdigpHJTXoalS8lyrC3KzxnJkSMbFBXHdjebUfIKTLDgAg9yyQbyDAWcCGKJZdMyBIuS6v12ZzTlBVJpVUqAXt1C0AaFcKvHbgNpwqc9DMNgnFolV5CK0icyj43oxGXHJbH+i2nuxThk2iIHR/HXj96qI0qPxRvdgfKGJD5ctXiS/0t11GvNXiusu8FHR7QhhocDawXVwL4coOeFkrt8loFlYgiu9bi3je3uZg/DsHfYQhaKsxt5SR/IXzHoOsXsPekaisD0Jg/aU4rvrMAlwFgstHwuRZnQa6ffPDTY1JjB9g0yapVv8279QfoQ7ugQEJO5PfBh7xiJ1T1LYUtiI7Dw6m3BfzK8ofujNVUhKWOc+f7TY6AjCUgRTuYWsDwpCy6TD9ZmYsxSuKCIxKRRPuJCqAJhT7w+/VI6Bmf3KIg5OCADoDvNmzsI8lOwvtXUZs0FOzm7S0y5umbVhymE1ibFnZgtU8svL/dlJQElwovzM7Dh6+yowSBzZElTF15NDZ4COcrDhgbG9xKd2JhgYK0kaUZKu10G+VLyq2/lB8zmEXBvDq6lIHhuwLmiRccjmvN7lFElxuVj1pelLdP4c+KhxJsSSBFnx1RpxFWuaNw2mLtXnM9FVE8g813+LxbHV+OfGusmY9mKGa4oQThpkQ37m7YoUnWv5vkKMvr+8RyeUUDMurGJ5SH626JP81BTs8BLUr61aMNF9g8auTNUqKL2+MXB/yeAUkp4JW2PGDiVTq3jG0l3H+Zeic1YW+NsaQrprLB/zVL1Cu4C0OfuWh5AeYeICcmN9xlFhRn4A3aHaEkEdD4k+2LCSxBHxC1J/FdgUEwCoWUND/yIJLmkHAH80DJINdAapM2b6MSs0Xk+0xtDFt1J6pltaV+QFi0juKSQFzjLnDwfXOhaX145JD9NDr3wtD/zkp+naMBhA7oJoqOgwc2rdn4QDN/couOT8K/tFGdIPa5F2QeFFuF0wX26+oL26e2sh1IsNEj1J11xxjdo3AATN/HwDvtJksINiB3e2dvWsAUyDVZ7U1sbG3c0h17R+/KGLx2OGV3o9o/WwfSlpvxia8Q2Qfr2Vavbf1yHxOv+fl2cuiTeU97SOSaoGEG6yFnCztXNDn4fcHXcucrETUGGVcx+Z3ak3I6h6QZoiS6Ho1rD6crriGsui1mBmmSY1AYf/Uz8w1xlfv73zJX/oyblvUeu4jENQdm1wl01eEoD8dEpSw+LI2WfR6mY33MK+qTeAF3ctlGdb+6aICi2nRN/PEL4/ffEGN96HG33ee2TY4UdkGfssz6wBeAlUk6waPTe1glmU0D3+Y1kba2I/d+iR+JO6Wl6IXwZbiRCCUU+ZaliPNYwsrGrHDPkoEsvyyugAwKuBBmf1fNfHYC03WaBp+9i2KsIPEb4QV12RQViR4/usltDxcaNJOwwFOG0B7Kr63QLeAVZpR9fIa+jwDdNoVfHvs2CgPjz/KU2gGRVXtYcqNmxwqwa+eJ5JYYcSSsMsk7e/gUjNi7zt1RjJHCoa8jBiWM26ixleDeK1kEX/FA+g4pT1s3pRQ2tYruWcpwicutKvM97gGgGKtkrHkESgVT0qlU6Qpg4+GZB3KgyiVbgEOgq7/L9neOFyAdKlujidfNHCX1VGPPm4vOWrTXNHK1/wn4xfSGmGXWT+WFgg/Nu6aEqlMW0xAyjRFujkkiSdiQLIEsBbDrGdq3ZbC+oltWGwazLp+dj1O76GsnxsEyyKxXq/CI3xmy8f/QLJzp65cYXY7T1IB6HY26q5pHY6IMSx3mPJE2W1zMWRIwMdu8480RQ/NAs7wwDJGikPq7HjnppmzEPQafvaBPs2M8GHmJyeNmTBgO/4ZOGHxeW04DUbwgdKBgsgB89GAypJl60SbDen33HS7SZ9Izl1aCxzbrgKZzzt9HNyj8VUISlAHKsZo7sBLGawyNN1nxoO0132qa4mLZ2J2AWMKr737u90KoOhQQBLdri9c5adLPN0vDeapZFEx/3zwCZGBcOAetjzW6atZBDpAhjPMWcXVOFZbPC6H4E5ZzZOjCv7bCfOtBtycxEC9pG/XkkhaBrZbtZ6/kaIv73t0mp0LUr3yxm4vbicLp4WbX+oW7I0pfKLSPn5aihc7Ns8JdqJ0Ia3VgRxKZ3vREX7LJxE0M93Ty08vAyL5QHcj68l+M/dsBFXdtatcjBUCAALTNT/QnWBCBzsomkXUPNhagO8iZJGP2hxFTOeBPxnQ0uTXYSg8YfDKvmY0p10B54lAMkAv1K0Fd3cqMJMcJsCpsB8Bcm2D0AonZHRb77/BYcb8vbQ2MHLCEmthKTykK2DgDRA4jFLbPKJET5xZRhOu7qJtp5CMBMw/qwv3knlUcv491y1cRUaWypgswPA9OXxUTcgZoRNtCJVgrKEhP/MuyIW9xWp2qAHk2/upGGIAYzf9EfhE3dRae2fqzRSodivIxfsgdrwcrXfl5jJr959ymwkqCUn2q+LDNQwnbmKo55qa3Lbjl14b/pmjt5qWksjPlZsT0IOTJm5AtTCqwRbNnNu0QHd8l6HIiKiLMl1/f5c61ZLZfJEt8ooHD+wP2vpmLCEoElL9KdrydleMHpkeJwkBE2tprpim/iYIHxhMoUi8AK+upvTwqJTlD6WqZPv3hCdPa050pvb/Vsg6UDTliC+SHbzNQbAuh5TXQg9BNemaVgxBGhbJV52NlxfPEP0A1HnireDSFUDjT3mUKqFX7UU54XwxpvsSHAnvuUmp+eOrKkrRyCNk8IwC8JuOCfx2MI8SgoIWebDZeIG9v8QIPmBCKgxQTw8RLI7lPauBn3qikBe3QWl1UpAGzjnRcPeiQvsxkaqeBUQ1jOqkFtyvYR9S3Kj8anV6ug1GeycHEH2IgsfslRaIySAml95d2AGWWu5Oe2XWFWBc5fDJbUkq8oL8Rp3dBzUpeG6qp2FstatAxkjOwgzgzr0QLBgQN56cSn0ns6A5lOSW6BtPS/cnxsX381fXKUZcFVolXb/dG3i8dVWvDv8JkKfl6vBvgho2lEQc+p2UZV6KbIu81rIqDRJj0QJaYzCbZQEVwZmx772J5m6BPetCsGf7LPHwh6JBBPnDhR36of5inmyAvWbcaEOVppgRkfHXsAElCw7Bqy7K1V5wa4ZdDFpEeFZfU7NKfiogk7UQvLzNEmxEJ4nW0qtXN4dwR1VGqdIe2Ncu9cwrFQdpCBJo8TJu7qqERaNcAjymPJgvHeOyHsLpTOKhYcWTga98hZuVxq8Gd7mbGvLRKyfHGHTkfJFZlRF0H39AyjyGHpMzXke8hWhyseoD/dJrbyn8jkDV/I2ZUL/bfmuXC5shW+h7NmswztJl/86TgZFQBWYQmY0a3xDR6j02x4WI5j2FEJeCIEwQQw46Uh+og3HjP+uR1wZ0itWJifDYk3KV7LK8xnlN8NYgvkpPmGJCyiOTf/0hTiSLaHkOw17gj176/ppveFNBDolKsBpsXo8+W1pITlZkoaZ62FVYGJExAks0aGDx59SWHmDV61sAQEsDh8qdnEz4eRMzBGE7EddyA32C1gpPUjbc7raa6SgictHxMq8RMRop5WlpzRVJQsQGchFrlWwrcEWLKz8H/pXRcU003oVZ49rnCXp8xGlgxCf+WXto/gCezO52hLtM/bKalb9SM6gV7fKP+dK4H+UEXUs8ETEjZeTy4wvCIptJ9YLKA94JAge18FU8DSHiVfMOWM9/WUyi9na/VjdDo3dl97ikhsty1EzUxUbTEs0MXtjC3Lxh2WCu3RSrSvlrEGRSd6OPSGTSbclnc00aVsAS8WvUd80up+EP1791FTsweAKn0VMZwO5Z2AHQAqD/7x8enfaQrBqnxGUMcGUzsJPmBP6a3GX0++aJCbapJbLmNFfuG/+sAoIAG6uD/IehyrXHJiY1wu+iQoanVb4P3E+OSrpbmAvgdVnXB+bK5SmRyEdf8Lfqkpel2kQVobjL3mI1dv1yLpF9+/B96wSVeENAst/zCxGcpS9g/v1bqjJ2kqguDqJ+BrgNK6n2EXbYUBSSKs9cHr1lKIyh5S4u27PmOD7IHvKUGL+unbmqE+1Ie3QNARmpvRjDWchgfePiMiYZThI7C5x0cj2xO4fPDt4XYMKjkSGppqGzJCth510bhCRvixc0fl7idRmyXh89Ni1mIK8DIpP8rqjswDuj0KUmJ8AyOGT67V29sBr/bn16gvqdjX4MD8d5F7wKcHkiUjVR3G44TcpktfTSptJoMs2M5XqzYzrLIpqk58Ay9X380q7xKwGUKZjnxDR9jDUHkLLom/50ZO/pX76AVIIv0SfEjBTUtiN7bE//kykHpQxB8MKrzYdRtFFF+2xdJw1mbWZAfCoSf6jyRoKJnthg2Q3zODQct/snq4aVxxWjGXsBm/p2CHPTFByhKum8hxTiKm7TlgGVNrQG+6xyCFYOkss2d5zbFsUJ88W8hX3lhdUuLQUsCGkEFXMo1piLeZTGu2bDfaKcAGm9wEz/eEH0YFtDcLto5ghu0astTP8ILc40iIBYZSk7UfLFH1NfAtCG77Qx8qxDpcZ6m6BZ0P0OT0UVD3jxCw9JUqy3+TD1PVZjHS6q9OFC7LLE7t/joFK8NjKT8mAPttz7QVQiJ8M+DRb07c7j2RYLY2swdyhov+ViAal354DUoL7e6/sZS/s5+fLAMPJO3Pt948SCC5oxB16zEXYlnUyCqeSUMqYYDmf0CQtZuKFaDQ4rhv9EvnMfs3ElZ4pT+kOLOs07fAKW0bPkVLjhFMxN6lcdqZtvDO0acJIv5aUJRr7Y7dFgDKaEFJW/pQEoQ+vaWwPTd81F38z22pT293JK02CXzt28HXV8I+0PnLbagnuZd0kPxTjrcYD90pHPdWjkGzqKjxpdD2Zj7SF417cV2HqV+o+OdVjHL969aZlSCmYvNxhjFSgr4CNpKLk4FBzCp6SAXnUFvtAV9khwVtJovlI/JENV4+SXoQEINlN2DDhnn3PNa0lteM+6Cs+61JNpVk2AWaL8NIi/qxpzeQTRMbt06+fJz7/WJJW8I3aXwPLQyHP/DuRF7Tw8L3Wkfs7XJ9Zo6gegtf1eCHiVDo6IIoFZ/yoPxxMI4iNYYB614jdshO8pA7SpIvNMerkYHjFCtTVMA1gNxZfHJFeCp4WNrqEg==
Variant 1
DifficultyLevel
701
Question
Bob and Chris each bought a large order of nails from the hardware store.
Bob bought four fifths of the quantity that Chris bought.
The total cost of Bob and Chris's nails was $62.55.
What was the cost of Chris's nails?
Worked Solution
|
|
Let c |
= cost of Chris's nails |
54c |
= cost of Bob's nails |
|
|
c + 54c |
= 62.55 |
59c |
= 62.55 |
∴c |
= 62.55 ÷ 59 |
|
= $34.75 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bob and Chris each bought a large order of nails from the hardware store.
Bob bought four fifths of the quantity that Chris bought.
The total cost of Bob and Chris's nails was $62.55.
What was the cost of Chris's nails? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ \large c$ | \= cost of Chris's nails |
| $\dfrac{4}{5} \large c$ | \= cost of Bob's nails |
| | |
| ------------: | ---------- |
| $\large c$ + $\dfrac{4}{5} \large c$ | \= 62.55 |
| $\dfrac{9}{5}\large c$ | \= 62.55 |
| $\therefore \large c$ | \= 62.55 $\div \ \dfrac{9}{5}$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 34.75 | |
U2FsdGVkX1+01gUJV9+3pEgZWpOaaoateokIpsQmdLV/Sj+QH3/g9wtm9/sW9Hkc++UsX6oSg5n3FOxSlFHBXhS1kJHxXN7Ap5SD17HleJoeG/kXMbKBiYQyYyFBDjPLguYcmbFmSlwCl46m7t1gRRtnJiBFHnUMr0PvfbjgwUkJSQq1FCJ0ZgZ4ulJzZxn/L9wf7K0lSdgQLIBPrYylkIvB2HhadPStVAq58oMglgt6TWRBClqD9KRu2w+HAMOUB/0j3gui5/lW5zsoDboaxo0b37BjtjJdkuE6qyQ9HMFa7AzfcPYoBrXDwdZ3Bf2XhzfcK/w6KVmEh9SoJWQSBg4TP57RxZui1TNBSMWcwrEeb6RnGGhegif1gzABMKIvqUavIfqAc8N8wNq0j26MCXpCTqVwyZlyZzie58MfW9ESDdJCdcVeVxRKPhIW7pYHFVUigShEi+5LDkUdkiYz8+j2ZVyQGGcYmY7O+XHbzqPz/4WCxWM8dpWXNnRV0joyjwMVPHb6GCzSuwHrxRnQkuIG0tEO70th6PbDjyZnW1df7t1HVA2FhUwIHoHPCjz5/nJSIFkR/X5O3qblZ5OZ8lkt9+zwt0C3Akmc59drpgAPiEeRR+7dcWP5NqWiUKQVgJ1IhsKCezw+qY4FT0xfg92MwD5wTWJ1qTS0T3fFn1E4MXKFqCH8M6T7UEpKp2jffG0YjfmmbL1s7T2uqX0cHMJ8SBWc7vgd4Clqgo7OfVkJK16HGNHv3S+9rhPbYWdoeYi6wF9YSxJg68zMIFpP1HXEdou/PCiXg+3UJlOrbRoDcqIEfbgozFeH9luf9MB6Kz4kD3tCFPXUJ9R36/XbKujhRX6oXtC5IAv9CpdlmIBE0FowSfq7yLAmD2GR7LKQJ994Sw5QOYzumFdy3N6a+G9AJxWnxFRaYlZZBsa8wJzPts7HisiHHTLMLsAVtD6YRkQGHudj/HY4hGu9r3i5korOR3TpdLUDiKc1z9GMozSjT+Sc+faZGTeGPHgZYW2FwlasF/n/IECRepOBXzp+kAQRPyZt3skJxxdVk/82xVEULBIZpKJFN51cWnpbtVseBy/y7HKDCvAIRrwQGAgR701Cacn90SaoVIFwWWyG/Kou0PaZMS9Bs4Zd/2ni371Oui8eluJF1A0F46zhesj4ASjV6bMLA357PbbnYKTzLbAv9svBYhC5fDgwCVuDuEtkG6EwmqNKbDLmX7Q2H7oa0OSyaFbjtlmW95Wg9vA/4Y0fvzNRjU/atifoizIBfL7uk7HjgFPFrt06T2o7lCVx6oi0xMIxZwGGAAoUHWbhIWvSNVvtAh/lYIBd/lMOWNCqpgXKGFkZprrBQ/fErhyMqmmbNYk2BvC+HTon7ukySVPbNw7LgK3qlHWhkSmiR/nrdbh3t7H/9T7XtCFoI5oepQ4Dc7BqiJE0SoXV0LacY1TyUkjvwt/v5UDqLxRpV49j0ziUum+R0ri6GwzLt1FO5UbqS0/29/Sww0jjSht0nZyfIzguyV/G/vagCPkvMw1pEMevDrD092NjjT9ureqdzdKJY1l4g/w/Zf1x8kKZVbyUkUXyfIZiBB/Sr1bT+Orso0tChTxQYPuN1aly/P70mKIQlmRvsv4xvKQTv6UZGYEYy8tOluLUxxqqT+TRtnN3jWUbs2S/oWg+OFChN/eSx1WEPddrz2yuQCB9Uq6MpMatv1mUCQj6qDgkKSkmCEuFx8X9IvpAtxM9iRZCkMxMPbQQ92JrN45QOpOeB11yny4vhsjbqvvLnX9igcop5kszlswlEkL9bjf3MXgfUsZfnQvpWgLQ+ryqDkLMHFoZBTdhaVmPiMc+UDxOAzvHBPlWfd/ULf4yfa/EV37dQvXPRgmoRlROEyOuF7Br5TzxBK2vatRvghwOBSMw3pkTD8dVt6WNa7DQaX///iVQMSHqXbtAAD7SWR7bYKIgkRQp5FeJUTo7JpKZSjkD8H9qIow46HLmAXfd7lpGP6dp3xm59ZnmBRS5DC6IUx7AVMGQw/h7r+SK6VVm/nAbKUW/wHPJ+RSsUfFjLqVtd25cQCcfaiKei3EMbN1QF/+wEv5AIKjHka3PdcrGxFdLiuk7H5m0K5gD5H776AsyJtQoW2Rps/1H3PrI+IAPpgECdsUi78XSDFHtKBrYEhye4yHKrYwmUxL23zssMUkHSIdQvHajvehf/PePCbBgbAotgxn3v56TaG+5Mho9wRZTPy0JBdI7I7hI4FaVLcU1Je8Xjy5s2QcvZtMBTPV2d38YML3I0XbIx1GwOQFnx5pwtc1ZdIPXK6k8AGIxWcooxKRTZWsInVtIx+J3wgG87tjX1UeEnMWmKA3o4ck+9qYP2AWKMa5GGUazazuM/u+VpcxAzIza6kOc1nXPDt9ccu5PTEj/U30vhM94o92Y3GjdGlvg9vhb1AjPhQ7m7iPNP/O4pdyautX+6lOsG4NmmHqvp6bD1VIdU9m7IfoGHo3/3AhvXQOcuBjGEzEx2oqv0FNcMdJlKyq6KVQco5l80qe3PcmuV9w6ZN8iDVDQQQEAPh07Bja53eDwz/cOMAn4HzysiBpshUQQVNDEb/CjiwpsllTQoUg2s7JjohrewdwXUNaRjVaOmYd5HqW8Epk8ZGCh2bnRBexGi0b4pW5+QkjYHd0yKTehHKt5HG46W2vAFFFU19UO19zZbF/uYDDVyMHeFZAJausYZeDti9h6EkK+y+ltraIPfrytJa98rsoruD/cGesf8z6Y5LANT0ydzBQkObB9f7N9t4fo8rzyLlRWSyyaJGiwiLOY/j1bPWaRrGnnFoStMUBaKeG6vLYqRSPJujiEzauAiWjiVHr2V7NYv+3RFAUrdpL1bj3D1aqYDqOAhA961gTz5hh4wP5COhVYsOdsRhpZZUPjLa8xjxZUxlLthI0XqTLfnF1hjHgle/NvdpTaZHMS9ScLaDh1AJIMaFeSag4Ohh99G8er99PeKqDuSb9ICawUYZywuNDjNXtqOo9/24EaV7rGWZjEVQD4Tr/XevT3puXqPQhEdBo8xZq8In1ZP2IpUenO4AzUkT/1lmO8eHBtl3DyDkTEQC2iJdQqhiWfq/ktRStSlDM55wCLnx7YGd76DH1zYLMw+GsZUaaiHwPrh+KfSY2tH8zn42WbZ2OfAa3s/t1Y6JCw2d4n5mA0BhOdNrXyEvoUyd0v3KMdCSeTU6lT/RBJAUgY0RZNoYRtN5M+LEZNJx6j34Gw8hT/IV4snkr03vPiAE8ZfWnrbO7XPAoUgEQQDT8AlbdgRyYJPmCYAmo6gyU2OD8jUsMXmpAxd2Fm6aYetasVhTs6F22yolc/pBSNfrnhsJ0DEv41JzBv5GLLVNcnjb0ciprvtEsoSwHHg9Sy0y7TzMRngkA6OD7P7M1YNdJ5Y+OEZ27NqWnBuI9UcgDEckTb9jWk/WCFCWeafol04/Lqb0N7feZcqnjSO/W5pDk845sQUKeZ+p4g3e7u9l5/G0AU55+05TyYbstzggFldkoCKEhYHNZvuiiOiU7Np8KXwNJhJPXE//Bbcd+erL63jbv37yuM77AMBy/9mf8P2uvMcM4kqfFqOxAaVKrz+CTY8BaaDdtuWjOa1yvf1cNqqGNrZG6csMdAsXYIsFXUNvhG2pO95wj4jpMbYvXax8BxnUjAx2fJRVCTGT12qRQQgmDnvuZ+JhX8VRKS+A5kGpbdHTIkocEvgHQRlsl7f3SmdjdaWi3WsX3ziCNk9ZCp0g/T9Z6VrEP0+m2DG/ePydxOB7x6EiuPkktPm7WoMI3SQPJyHs7TWkUlxuo+ONeAZ5K2l0AgPiFM4oOioNXgJA9GAbfl7G43NkoEuK5gLpDMsfGswEhgJ00pXDxLHoLeNnIxhoOClYZmrQ4hKTr+IdpRGP/NpmNsVLOGAZL6/VJgTnLv2bYIXrW0N3d2CmQdv3xeLiZUx73K/xQL8MjrJ3q4hs4sDhdwRY5vlVtKvnuzcv0vk+P0+PF0NGkM0hBKPv3FXCCrZVpVdXK+y6DUR4y+Vpv4WpBfwyPGLfhn4Rg2/iZmWNT9CpKha+Fb9x7i6ZV9od3SKa1Ti6LCv+flhhTTu4dSxB0m+zQUf4FyMEZ9frbv8O/6Vqbwi1bYG2KWtfVWmvPKssh2EF3lo0wDF10YhgBVle42b/c02NiOQxxczVBRbey+VMvQasbjzizeSZ1ktDp9nVPyThaEM4lz3YI4y/zbnjvffPC//vSu3zQnoL4xDDFllk6Q170sYLieiC/sSKyeDN+CyIy7gaHu/WJ6DUzqv5cMs5Iajy/8MBmQtsdWc3MJtx+xc4AYllHJ0InCoMHtOZRxDtF8FseYnbHM7xxsZiLvBK0pffHH1Lr/9tvbz6Hkr5L6v+j7EvZ/YBo2Y5ZAclJl14XuZP6cd6eNS+Zg/DXiHTTKSrP0OGD7yu5CuEUQXMrpXDZvcDuJxgXWGMoCJBbTI6MQOzVggwNDXizYb8PuzVDPbgn9apZCIiQTZqOajKjRi2+z7Wtt+kk5fnaAMIkH7b+b/eDC5JYpbNFIjB64sMCaI5HXOJ1ehP8N3b5TKT1FkWurWrtUYkrSuhD1ggUqK94jKKqoaJgUDk8odmeOXbZkkhyc2zpt0EOo1dyLPdkbklnr5DWOrY/VIzAtnt6vSDtIqmF6gB2p2kPh213ibTuKIdMvcGFhbN3IuRbehFsYC38F9kR22WEMiG/dxzi8uUTsR/erTEjgs3Gd39dJ1sTDQlw/M0m2788gH7Gf6DAZW30GXfYLfmseENY6n35D6VM8G/tBwzpsq+kADTzP0YshngWA2/6YbQ2eVdaceWHQuysTikalTrLE+XY2dL7b18QtyKx72SXKe5FEnuRb29puUG8bcxIfonIg8ei1udCtukBiuQcCQDBhK8sJi037NkVUGwkdn0EVboVoIhprhQfLnewS379fJ6vxNwh/v1m1rYJh4pM8Jf76AEws1vHUfWRxMRB0zOxzEvEJl+ltunMq+xBOIxV3kdeKrxSzmg0HndqRs2G5MBLH4EuK9FkgXa/8tF6hLYdrD4xTfbvR5PWSV1pBiwcr512VUNg6BZRzDl2ab+c+wFYoU2VJLNSh2k/L0nym+st74Sr7jjfw9HOHhdatgNnwZ9Z1HcpxBOEDr5RC1ZX7dWC3IB2wEBCj48ln42CPavbytYQYHjF4+KGCPgdVyBrzNuRJNqCQTs2aJZkpTKfcJEwoHPHqjLFyjI8W/2oKbvrSYNQJSp0HibMDun66XU7a11tL5c7fqWjoTcnfPB0U4nPGj0FzWMfFyOxtL9wQz+bpEHHXFewasZkbtWshU3AjuqoOojohSXMfWP7vREm55mwRjymzrw2WT1QeQLyupX43dQSw2m7uQnp8Ylm/UALhMjalOaMZzblkI86g+4ykmg7r9hnKnskuAYUOlliX2Q2arCsn7z8I+NFEgzIBZBw2Zm0pRwFEuFBRgPESm/rlBYlb1C411LtIVjQgb1U8BRFwaUa0UxMKdCLXyJGaN35YkmXBOZgDm71UgucaUWXsmfl5TNeo8Kc4zKnrWzKfkU3k3aDh158OeHV7nb/HUI2nhu3IfSqct4Uv65hNWbJgloJ/yKcrKW4NGaotFupsnh0DVuvTXz8/DL9rbG9mXMY4NYVOtNg7yxnmK24+C8pioKhn2CdAHA+BL4WI44W/Daz0dCxWjKvQ78yuos/+jguPlvvSKLiKkgdUenLm9ri1i7cSQYDdO57cFfkRCDH2uJdQOuRg8Pw8p6nFW1zod8xKhL58rpGe2ZR6vqm5dX6XEzuvpgccSK6G4AiJVgVs/kUjxszb2DirFxZovN9rLfqiNQkk0HFBDcTnvnMxS5oOeZBpo2zOD3OAYNCAjwi/HjIbWYYsfTBqkhBmL6OVLnNCJWP6MkyakFkp2ywqPms3PLZ5r/hm1ra0u48h8huNMwcT4tRBXJZSMkgBO7xUW75M7MVR5uznIEZTQqPjwghZLKZjszXishwvWCCpCfD/DCWbcxxNnX7OVj+ttTh+nNuLT321KfKvR4W/OG+5MuLWep1qNOv6s4Pd2OnMp/JaaCTRnjBXTxCY91JcVaJUxZjLrSwpSspILzc+fEPiW2ioZgVZexuElPbu8kF2ieBJUPbUx8uidsw2ROSezcFamPpn32hwvH7ytJfB0tgwT+H9DpjQ0AQcI0dkrm119iO+BmbIyhR3yvwwJtz8T0ksvs6RIiG29dpB1zt1u8jIu07ZKv7SlGqWkSY4IQzT7XCfgrHldV792PJ3RyRv8qneodYn0Te9Qs8Z3D1MIRISk6QCmBl/HI4N6L8pdmleWqGGNNLtQufSdVzSbW4cvVtwhjXpJ9tgrVbV1do0/U/OiPCLyFKMtTtS5z9TjwLJauK7HnyaHaXb7ol49XIwTM2RgcZ4RHzkYG3WAqreUolgiF5mBf2i7MtdlZO6Hd7Jxv0Lg2ZekcWpTyYXtaxb44SHX01eyhu4cPpXSuaUROmkyH6N7xSVzcTIeVEg8NKEF56+NkrAn9ddEu1mvOQkLJitGAMiEJ+8Mn/VIRKmtS0bzzXMdrKWjq1tWGXG6Tge6Af2+6BWdgxIydDYJcYs+WeC7gBxS/ddrCYrYwAX19+z1piZehmBLvC1HNjc/aIzU4xMlSwQLk7kIJ8ThS6aS6Wvmr5qDUjAzhMXNuj/c+2ZTUcjbeoWezbyerYeWktYT0XhxPiQ4wBkUnQCNP4RZeGCtOb2e2nofZBnu/W67t2uVNOFT5NYHl/73FvOM1yYen6aX9xeJkr5Z9QbL+PLmmOLlD2IVVrZSmne0ytkZZ/BAtrcK+QymQBReRF93kwSezJ0aEWlRNNx6wZXOvZK1Ri//L/nwrj56jFDAqxoQd2BFWd7EbFvs8qmqPYUwSP/FGDVwag6cwyxfZS4NhIxR3T3sXuBMkTOwf2kTCn2h/8KcD616m3k/VgbmVhK8NkBceQ1b3jmNvgetQus+mMYuaaY57qODPKHgd+axk5djBuzr4aEc88l6c5jKr2GWkAErVt9AIztJ2IMis9USlADTEbpzChE8i6y01/7oHq2ymgrndpY6BYwPu1XHd7NdffUT0q1GhCS4xm7o5a5t79hIxm8J4ww6/oPliUsTrJkQB0Qq7HPmoLMZlUqOW7pIUWBT7mrk5tiCNjYiIYvGDojGv0kSnZAWwI26zZqK8WNr9mFcmrAKQ7h25U0w0PwAEhPgWRPTL6ZUMpI/EN7GuoaZhewjUd2PRRj1dI3JusZtCkJNYHV7flwLShVqxYhmsvYWB0reC37LpCI21kD+udZn4k36odFuzCOA0xBje+76XjCucGv1l0JTxI3gTrrpQ2coL0YRPSGCm7Ed2mDJr0WKafR2qPZWBleSY8jPLOmJmJ+gjGqsaRp3q8esTgh6YV3rgRDhY3nCGx3uzWpgVjw/H1KyMS4mxd4QMXEXL0rd6hahJ2aKOJsbzVbf8mdL3nQ6L9HHyUUhWTNC9ewE8rsDpFkkmQgMdFkfjbE/yiEiEqyYTblo/zBwaYFmbPoYymiTJa6FN9k94WAWiDSPmRCiErpithT8MlOIX10KSrUFnvuuVnzJwgMZfNT8M6QzTu852MhrbPy0/Xo8hj4FdRvGQX47ENO37/VHlqwEUAR5UDPBJSQso5IZeLo0sBBOxL2zLgRth/LXehsvUq0x9+0+M606xgFFlPFPJvcz74e1O/2YMrNSmAqRV/giJkqBv3ECQRx30IH1W/pGHVyRD0RB1CejfFC5P/2sz9XUqLRYgkaVMM6ZbDYt1WcBzgflo81aliNEtWXaRCtWvEjZG+O7DzdYBgEQPbZ83c+4G81R3Lq3qGvNzx3Axw9jLvty0yiblnCQeaejh2FJhKW5HxY/Udi6ZzZ/9015k8RSwScdHNM9Y2XJ/Z1BeFZLwaZQo2V/nq02reHE70PMzIJPDqdrSAv1aUlxaZhYM1ssbHWaRWKGLZpmF8lVk2XDvUFtKvo432fOvhy+PQ3gKANdBJD8tNa4NVsr9b6WicsZkgfCVs0rt/1FMYvBU3paxxW3CJbhe5vHkKKBU6kjhz5caH49PWnP7s++Nc5/4urzuKPPvRvwdZizKEPPZsrZ2vwZqI/SXC5+kgDAHnz0U0hQlk0GhtAClbKipsc631hHhZTvhbdFTXOekc459ryRBzpMXiWTijrXYftgKtmWHjQV7SKqAh4F0TFSeAvRDjlrOuRAR019JB3ThKuV2OO4FsdNFos+3zYrx2lV0lPsFmMq251BroWXh3EvRYkdDgCEe2zY2o4VfkpiZXjEnTH9ou6ROTA2Z9AzUoA8Q5Us1tyGzQ88wVvA7k4YB0s4SiSI0OjknEXjQRED3CxQQLDNF8uRaFahf1vhPaz3ZXBo5yyKBtevbMEEmfBXI554/RjJv5Wno3Pc4t5BNFwdJvJYR1OGduBvQGhBDdA+u0NZBrpV3pCobfNqQ3v8ipryTSKDEBezX+swAqgV7DZ6DLPpexfBCqkJZRgOJtYeJ0g5+qXMrcSTu3gDf/v5YZ6vTbQ8k1vOzg37OA6/x/UUsJHdjWi01+pmuYge3wo/nTj7QHSnd7qqx+KGosQg0V1LocwCQsadBJKoK/7klD6kgCTCMMiUFm2bOqvPYNzpgaMIKWabTzTsmNo/vHeRaHgNUFfFEVQIMBNPTFsYzJACVPAD+iLaSEw3A7tVmc5KnI4iq63yBNrOjCPCmbczrcV2Ya6+Q7jmxzGjz/pa4jTEVGGTjjhjXDWN9kGw7BJ0i95lT4SMdKzLKv7RTx9bo8N5/JKve9M0ZgZOLqxH0RQd94I4yqsfMspHX8z+joJHjiy40Sd6OMPlVvPGo/5CyUY90hHwv0BJ1LRvGr30xcq75B1rCYkW3pJYgI9MjpnYHtlojL+/RNg0S4lQ0y/P7gFAVFTqwSt40UU7KVmRVY7toy4DftgYzFYWaVv8RANznPUR9ajBEgj/yFsNp63CIx5LYULB1Zkq6PqrgoRpjBHYML92vAa9na0sWAxggPOxYTnUDWwavAuutnWky6mehxRHWjCx/3x2VtLSstlP4m+rXRvx+V9vAX6791fMbrK047sKwUrAgcbtQpch7gilVpGfZ60+jkyeCRKLA2YWqpoUFDy4sDh/e9/pHTBq7bSvS8OBOsTOZLk+rtaH0wlrr+3SOJ42sU2YLJU7rgIw0oA3zHxxmfWk1590yIMPWN4i9GpVKOEXwlSHVnLr/QWPCmzo34XtoPj9UUIkLW3WniQQkd/vo2/ngb1EiV7WGMUxpUfGZt6R+42KCuWzgz8fWW+q120+cqJAy7ylhwPXkOqaikldegoilSqRyzsOjm+3oPsfDNVCu9gZCPNleIx3I6rK4Ur9SXXTilpT0WQISAaNG4sJBXuDfrpzZZoA4SCJvYa+HWYKjAFM9zm/Wl5r7Jwc/8QUCze8nO2zr3yy6H3ApXEJ9F8gnCb2uU/MDcsl6+1v6E58QoXQbExszgNZuYPiC84lcM3Wp+1Z+QwYj+z8e/6ubWlVP0blTRxNYUmNMvqfRjt6LDFgUDDQwwjNm40FK8I2Yh8q9k3WzvBLzE6savUGe0cBOb03P+XvDFF6kcuuYu8hSuePhLUI0k1lNQg2HvPHigZTh1cFa4ZFvdDPKSy4bZ5u2miABm/R9OeH80/juOqReKKNOFP8E65G4ulPETB8mxgyW1QfLAv34PMz0s7tLpbBea6yUp6wtRHLm/L1Oo0kJNx7TG2ebG4MCRtTXf7sTcmciXfL9eaO2h3uzvj/R8am98zJYplWP+AUUsH/GEcwyarSURiaovSLkWhMIrdXN+WVfrFL11LtZMjHgleJ3VuufNC2JFIOuqf/fiQMSm3mGNwRDvebKrP17HuHm0JhfX9agK8jOnO9kfHFtdOrC2vrPI847m0uTBJa6p4Izn45d06rDOZvZY/XtcIzyhoaieMlCcHCr9/Poq2hY8gggznPW6wy6xwnUN28FOtCjKzGRnDIrnxDUw8Mg9hHXgWSKIDQDolfmWIh3FtjJ4A6ahimQVIuEW5lkcqHF2IoK7VXaKafVF6rujVuntHW5Z3qfClEL1TyA3xGxzXxk3G1pfE9ul0drez6BoQf5w6ipit5WxaAGv0xJFHpHrBOvLyYv32vJbQ3/tMsBaFVi/GZ7/q2CDkdj9uRWPOIao4YqzRKxlIC/fadBEIpy506z5RACsD1aWfQzfJFVQRplvjJ6/Kwchg9qPK3A4oSSROe9kB+TqnIC4g8bbLGpDpBi9AoeOVWpuudVccbcuRe2LwPqQ/lr1r0OZfbuRoTy0ZNP9G8nJldw7PnHdY72cOIjTk9Wjh9gD4MpGMzysfzE5qAEq44CpqXDchGXFcy2/HebJkkw9aMV612AKRo6tNPNUXKA4vRtk+hKeRRKF8K6JaS3k/4Ct1NkkShdW6+opdavEktXQe0vlWfXMauHYIT+k9ik0yndeG3phZFjGSGhe9A6Zg+Z0UlCVF3fmAXtbot3grgTIG2vUdt+S48M8DS+J4C/tHsD7RxxrKMp1HUv/PCCOUsvpKeoHmsExQcqlb54Oew0F7Lv1Ic60Q59941ehlLCxObNBN7TL+uXHAqDbqXRBR0ZS5SCm5RLaMsWQzIvOb4Kt1PmNOKxBaHRzMl0BBuG0XstvalFIjSv46kja5u3/itNl+cmjNFlJIexm5SpCpjBQ7CgqY3QXDRBvlnRXipmxxckBfhXuGLXeavJY/YGPzR12XCg6QdsMwjkpL/5CT8IeJiBXRi0qz7dj3P8Jj+iV8nhTgT4WR1y4o92kE7wParKUFwI6tyVtW6a1+vqnSBBi/brfLsU9AVKGbHQU0yhB4pW6VMx+QsPQ4xIUnYYcHTJv5sKc0jOjqFKmnCI7iZeLMf/37u/EDuJpkN6VTZqbMolQV968rjLOwTZn/v/eax42UwbLCkIjX7E9cTfZcZJc1AFX2EPciNrRP4x1BDq0cNR6deEkX/4w5O5Mlj4o+LD8wsaVpgEjTEZI70wHp3EXsxwtLaw2IZZIjz5BePNuHEDekVHihPe5nnDjRQhA8Usl3S5KcEPo24dbk6Hne9FRxJ9d9WTMQyzzpYEg41b7S3kr289BcRvqXeORjpzg3YoxI8tsjn0AuifdLIygYi5hmF4aqUJ5RGkbQ3ky10SbjKpUxojyaoQ00MLdh3EsdAy7lEkItUJrRKxNUy+jrNUj+zRWrTILpaoZOUjLSXKBop7/4cJB9eImQL//BP59plJUf4Yn9D8qQYwd6xcDMenejOTq55YJuaGl3d1idistmrNLS/bq7VrqrXWLOSsfMoS+WwFAM507KMsvkUZa6JWZS8JKsjgxZkH0e7WRinLtKKeHs63qi5mimyAfZZt4x/9BFzcdQ2PbSoY2hVId5MeVeQDovUSptMu/58XzfVWobpMNE+ofR1hcKwmMoC8H0NFDeS+zP75QXNeGi1RPiiK1huzwgE+5KEokfFSlohpNkHrXEjooEKTtkBjdlDHPDuIqE3Y0hlunaMRAUZqyPkRlwJ7gs3oYOStUy8KufQJDugySqwlsX9wS6akBzai2wMp14UcojvmzNOKfDAo8ieDI9V4ZUeue+6SfuIEvKT9zLGr6kK71mQocuesxra2gu8ledJH35810Il5SGT3Hz6D6H2zW3xPKsCShQZwfSdnVLu5V0GDPjaa8p7GRPWZlLQkXkgewTZ5mrbDKs4aZpGpX0C46Sf7Pc/oYwxe5eGTF/uwsGJZBt01Hlqip2qIU8vEQg9Rf5zjSmXqGOcgTo8W62tpj+boM/8Ztt7fGLHbWhnarv+JxfapqEG0VXSKZL/7gaFrr6EuBnKwiF16D7I8s+xebq/9DA8UAH73RqB/IEEDYq6dYB6KqUPgOYIrtMCdYb3+s7Er1ONJhjNGk48jH4WS1gJ4PSdQ4u/50PKDKwP4TZT+t9lnb34/dLOB78qDT3Ehw8bNeFPvqYnHKX2Gr07ZIEZ8DYru18vdrAw8COSiaRwoPx3Nu4JyF84xQucb/kZim4hwBBzSIqAbVHB2mngezGPW6FOdPFgBpdG3Wrqjmxejn/8wN34PjhpXnz2ezj0Oukao4CyLlOw0LxnfixHC3z4BzzAng8+dZEdPFZQiEXMVMmhNBkuAvju0k+4MaJ4ykd4g3zwU29R0wLjl2tcTRZEJ8RUIW0XQsvEU9zWncFEea111ps0Z143b2LYKQVPRyKpqiukh/hEjktV67XzYjvtHlvMo+u7nJcqbR9tzwq6oi6AdH3Yr/8myoPaLJIJi+Hx9QinYOrITV6faHdtA20uM6R2DRpd8frEin71v4QPArXAli20jmVQjDSI8Z8y0+AXdAvqGxC9rwDWvCkp9uEiCKuaE1luAblM5eXZv2MfoGWpSDOWyOqmSc9ABgU5TWpyZSB2nqOJTYlLo13E2yTGJpAAeTkWhvUNiH6GCPs09eVUGW3pNtklqVZr0JgECwd4iFCP9vowEKr0nzO/uM5efmkvoLxi40kb8Cwl+WpFFWzpq7proUlUc0rz/Rt6AMLSVDMerqNrTZpDGgw1+Fd48bzWLlOetlKNrx8OPC+e7SRoTpYsq9hIsAzLZnamjA5qs0G0biHBGpjCqtebysyv5J2HOTnRbB887uFmkIdDSbmevC/I+goYZBfU3W/gYJZYMR/uNYkrz1gxrBMIvqVqG1pt1muSRtRQvl4KNjvUdBmMVlw3/e7AjyYd3RlNzBVKukjFxled2K9Rpu9QcviaqHLDgOygTcxg38NE0Iory+ldIUvkJAXrQ/m24hrQJ4MtnIMAb01AVqRBKM1RIHxq70Kfu7d+250+pvgN5/h6zgUoDYYTffrLIH2sBKwBH7ZLA6RpUBl
Variant 2
DifficultyLevel
700
Question
Sally and Greta own adjoining blocks of land.
Sally's land is five-eighths the size of Greta's.
The combined area of Sally and Greta's land is 3380 square metres.
What is the area of Greta's block in square metres?
Worked Solution
|
|
Let g |
= area of Greta's land |
85g |
= area of Sally's land |
|
|
g + 85g |
= 3380 |
813g |
= 3380 |
∴g |
= 3380 ÷ 813 |
|
= 2080 square metres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sally and Greta own adjoining blocks of land.
Sally's land is five-eighths the size of Greta's.
The combined area of Sally and Greta's land is 3380 square metres.
What is the area of Greta's block in square metres? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ \large g$ | \= area of Greta's land |
| $\dfrac{5}{8} \large g$ | \= area of Sally's land |
| | |
| ------------: | ---------- |
| $\large g$ + $\dfrac{5}{8} \large g$ | \= 3380 |
| $\dfrac{13}{8}\large g$ | \= 3380 |
| $\therefore \large g$ | \= 3380 $\div \ \dfrac{13}{8}$ |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2080 | |
U2FsdGVkX1+ILfIAqryO3cJQiwT6lMaDFxNUd+VcMn8OtFG98Pjdxc0HAN21cMg/xyPkNv+NUX4gU1e46WroVYXtblz6ItSn31Je1bRaojI3ee7uTkJt1970uKUZ46TnCEluksxLVjP4dtIg4MVebsr6tmsESgGsgA2NVVZrxWKCRBooh1Wrqh2/l8iAX8+8wi/lpoftd4POJIeTL9pIid/9AXRpq8ywGl3XxJklPZkXVnqMsh85d6viFmO31giRTTsaLAOKxti7kX+t3+UoTUHgUeWWxnoX1FDlt7e2jdm0NWW2CXe2R+mJR9g4Mki22ZotMg8eeWjO/CgTugS7xrZ5Nj3ZLKiFL+xKWE4lJoXR0h7CADushS0xeAX7Bvj5/Ndwsj1qNidcyKYsf8ggjVGiQXzG2VC3aospvYCsl3NUxlBVY6MFtaH1iIzcg7bX6vtsI9nIGABciPOQ1O1YwW89OsiJtxFwHSTxQK8PL1f9X+fQBBN2JynLxJIXhs+Sea6S+PAehwLZMkooCljOrGBQoIyNolcMOCqOclX6uleOLmVKBnP+mYJGDCi9gjjGupoIsiRA9QH1MuwriblOIJQyr0hHm8Ss/IkBF6qMzlzjih5XdbDEGFcWwNOxayzD2l5xcrGm5w6zxyg+t7JGtQNUp515+YOlv6O+jDeZdFDpezGSQwrvvBZ59OgC6eDqwK1MXbmukJGHPLX5P2HhzTNByJPTclVVo5+upbcrQbPWXQf6yjhCOymwv4L0CD3RHQjDH6V1wWdDDehNgDghK4ua/iVxq3j8MuShVqtL8TjtmkwKuVE7i7R+9u3Kiyflby5lFLys+TpuBVU2FC48suYMp9ZujlUiy4NptZnRESAAPE17KTVUxU65mO9Cw2Z2F30rFvtjV2eQoLZ9E/KHtHQLPWx14VX5eaMcssiH+TnzTz6r9eT01xOUKNMp1D7dBTcOrHvc93JSu/3MuigepiyID6KCBN7TWfJG7K2B5cNvcLkuKBv7i1VBE9JoQT6KRj9Y3A9Z+52S5aOMNl0NAeQnNhHYf9dNm0Y66oowmi99vmRHzntjUlMOGb1rrZ6pciz8aMTDIK6TfRCTm6BInvckiavqVsP9LUnDErGA02onJ/Wc/WHPADZd+kwswXgOKja9g+EwZJ9UDC5VPYU15vS8dJHne1TipTFQ4QU/788oip1xFXrfO45cVe7L3dF9zfFJl2LvOHff0k/msOCRMyllVNlUsv+364B1gj+etPZjFRNS0ewZIzjf0V/WBWsQochOeyLGO/FH8E0brf45IgQErRYB/VY4LqpRB5z4fhVSLsF7vc4uovUxSBXi3B//XMUp8T5Z8FDh0zwGdAQTzP5sOWy9PzWQqYO8c3/cxnojUs/8xzi7fl05CIri3jzmYpTu5agYWUJ4zBP57kgrG9SNXb0H2nNeua5v9vVNDF7Ar7gM3M6d35q/eMxK2tZfEMbLP5mo/rI6gqzQ/GY+TAXjPILm1XXFPx5qsLxTJvX8NWxK20Te8MOJnAeEyrQ7lBaUZ1FZcsMKfp2tPhWwgUI0fTZoxOfP57X/QzdrTdCqJgtdz2KAf8CB1SsMHd1RwagNHCpB4fDiI2hIuV/F/5+QLvaeKwCso0+Z73y6SyRUVDaL8dhMwvWxXPXSlKJb/rS+eXA7BRjFjFC+7aLd1KKjOQ6qs14F0Hk0t7ior440UCC0CfzUo6ZaQS0id3uaMoSBQgwQTsHI1KUwz0B3j8Xd1AWTwcbuQ7P6L127qxTZfK6p/JZbbuk0AGNM+A6vPAMRFih+uWSKpGCymTyQzcMtgY4b4iwofk9elTeJgP9V0hWMfIz+J13cvZ5o8ITnjdeUnPaByXm8F72w6rWpGhvuXsfNIm4SxP9eyMcfNOkCxqGzu7PhuDAYCNWMgFbAotCK3TZdzdB7K70yext1QNMYMN63DoWar7bbsbmJuNjXLhk8PyAz3HTAytW5aX6dCGTtReYiMyFn8U2S2e9UZmOcJHHdZ26XddWndnw39HR57uR9+msJpZOMH0c8N7AeMypY8m7GZx7Wef4IXUpKRSOoOVWpmY2zsnjUE3goqX1inlbrBpOfv66NQwTsG+9yYuPSvh2YDOCu1jyk/JSDBnX+ucKdlqouvUz0s/IosvRYI4f7wz+1gLmAjAyfSp3E8qOtogLnTyPVuPPDRYMRdktCZ8FgV/v4RkrgJ9Vt+ug0kKS0tWDoYcmHF5RS2DCjFmldTznKzzyQKvhPnUDZudM6+5CkxNfAoclqcc9SyFj0vEww7HykkQX82Ujkm0NO1US4tShjBdut94+es9vkAokN33yEoVcotTeAU0nWOJ0NEhz/l9XpedGwrVWJJNfOWZJJdbc0edzwfB3uOO5auq8xum9RM1afFuyL78srP2w7/PXgL3jbA1YaX3D+41OIErWIopqDqZ6LiYeRDncn3qbf5NIcZNdEffg6AcQCthEJUEEL0fEatoNsZrGHDLim7QGg5HJ5UjoGE0Y7DCkMLUsLCPcsjg+Fs75uJfrP/6gdD1LVlt9fRthEEQZW825t5yi9t9WB++dsiIKDLXRWbNhyThky/OB21UjM5zJo6A9zmbZlObwJ//uUTGU4HY4evbKnkC1GoffFur6FcmBXeOONTqg7NQ+MhOUWGXxCvWxZKkQqE9nhaWgdfQfmq0habNNGgtHBiOoxv9eaKThf84HVW82X5u7ur1sTasGl44vBgwkALh8Xf3zQ9hJbvpBO06Y78twmfaQ1pU2e0ChyJJNHba9HRLDfU/W5GIkSfk6kNc/iIGKeQHxQeewZFlndfsGLf9a/yYQkXQvvj3qIUvtz79uq4hJ1zlNOdwszf4wHe7Vt5oTrlkYsSVIL8IslSDl9mhEx0hCALP27U6uZDsNojApwwjLoVFlqapWi1SIutcqbpbQ3XWJLgA/M7Wf4i89oGUhaDUrvLGYMvq7rh6DrRT7WcJ8LCKJHMNhnqM978efIUcGg3yakKDBK0VK4EvM9of4sSRWZ6nWp0JiNwasYq8EvqOTSG0UcmEEviJdkdTYsXfVsmbgKcSv5m5/aWZsBh2ZxYZgRfuhAA6+vt7XBpVlOJfqL3FST22U9BwFYycEZd6zvadhLEa1INPtMCbVUOajIV4GMZipNH6W7u7vpUZZwj42VHHDav12ZUJDhLmtODbtRwnLaEUoAT0BH5Y4kewDiLAXPbW3YTpe4qkzVTdplIjz9W8EQRciu3MJGczrcZoSle0Szm0zmWTqk1voTJUyuoMC2k1U2GM0b17s/zpWpKOn1av8W+PbMKQZosHpOcMMvHSYqIwiqq5NL5KTkWVCfnn4+Fbv3r8uDDh9AL3eFvCpYMZi678IVYzG8TyOUpX+bUe4FVpFQeldiEgfNLOfp3t/h03UXIb0NsZIBsjsPZtvMh7J1WmdpY2I6Kf88avgUJAjkvKDa1iJfrN+xFvI3cmATnt7yn90W96Di+ccp0MK5SX0YXF60l2t8aFDFvBRCU8FF9tStcFaQlBHOZLrWZGt94BZZ7qGsedxfmhvR9pbzt0zJoDvBAN6b4/6m8kz0kZEdMYw1epwYMPhAiYX39SNnU5MbFLbcoil4Nvg+IacuzYKPrRn+b77hIxh9/+xzquK0tMSEG6F2AYcN6YGs75CP4loOu6Pnt2pP0QEPG1kt9aKs42NeQ80m/iB9MUwGA1w7f5GsLD278DKWnClkbz1BizQURIyq9TtCo2vbswRLBIx3qL2xUSiDIEAQzCXl1NEGTAdkfwWzlV0pgPJPMB7lqJafNqT+6f9l3CM1ahdeIpMtRhNVPhQP3mswJtbhS7oppbMRXfoIwPhiq/xJ3hsxviTxNH0if6pX5FyV0JYaFlpisoDHRzphF4yeWfSVf1nOPsZ47cgUxCdipq0IiTSiC0HFluEgjHiWzf7KYwQogE9hV05homKLK5UsMtVEXRNsPjG2nAFgeQ5ii/pAOIG/kCiMVW7Kg4xuCFkdEc8QAydu73jSK7HC27kwhsCHVfdamamo+oiXmjpC5gK2d+o4rAF1CBhKJ7cHto8F9xCAW8sikc/Nhzwe3Vpykr0TDNLSV0FPaHDdaCoe5y0r2WVCfKCqENOHKZdNsVlJp/2xZYmwhjckeGvGUpFlNSINupHkBASb65qriwXhFF9Atx5UsNetpspcrWEyOnLgrJ5GmzBAszRh7/XHdjcfLsSSY80qLfch8VLUg1aRTmtKvJ+Hgd0WXNkQsDXxy/MW5oJjjZvux4u2p/uVbRtygvPnyQStbA/3vnQBXxINOl2LS9TgqcpB8D+7RXAkT93mFelI0uNUGTxMJ3ZcPVs74DOp/Fk6iC55N7mfRSY8cM/kJrKRCJFqCYBA29X7Di2cxq1UCUtb52BpFhYmsBg+072xrfAW/OGXZkOco19xpbK0HPgfS4jRF1jRNIvwdhD0ocP0VBLZBNNAAaEFhQE9QE3X/HwrM49AuqH2SXmmzXOWrTGPmPaycyPK1pvYlWPG+MQ0zvHAfPWheCu1h/mWdYGo9ep8cJp2Kg1nG3D0hVu7tbpa4jSY5rIdreUatEgMSUzoyo6VO8mnWt/8QZYs9K/YWcd92uiNGZZlH82bLIU8sGRKJCUscwdVk7515ifuowvxpybfsNdRq3NXm4T/qwm2z5Tm/z/C8rKEqAEeu5UnjrwJ24WJIwgnu+jKkn2u8NIHgVftGknoE817VbYJF+211g7Wl4V35BgCxd6dRSgSBCaqnCBJ2JsrlP076MeXOyCqXWvu2VsI+N0UqfXgfAf6RvQfUkVyikKUbGUhJ2loz5wCiFJPmA+CymcUvgq/+wMuHnZHUFKBxDJGLGW2jBMmTNOnDjRRfO8WW481nA0BSFpD1+4YaXPyqjCUVfnw7Om+Uyr5qupZwFXx/b15gsVNuh3tH69VxuOs4hWa943i6Y+p/VlJX3auM264F/t814pvP3DkfzwgdBDkhW4ewD1sQdNCVHjsd42Lsa5lbPAIc6i4MiPgkMcrt33Avcn11AyxEjQwpQCr4ijB2kYGFn1mZQt/f5ELvjUpXCAj7Bp4FHUqBExU5A8cvxgWJB0Js4xGywDHpAYStyEnKfRja+h1RhWptAAQGQYJg243L7wevmyXUlY/x69AJaUfu1hSN7ByJNsuu1DHDHR99D9MybsD+zwchriPiKGl6opg9i6z29JjQKOwPls7YOGoaJsjhPjtixaIkjvIoFRLZ3KBvrJ+RJedUPjYske0qTwGUfytfB51XGwuZ716gyjr2CvlhAUH4Y182WXjKpMzvzibRVPaxHmb3D3D5J6Xr2IFArn51YLHY6hdvimV8QC6NjHCfcENbZqML4HPpuY76Gjc+tYuC48biSRkKBkxhY2eJ1bXRDrye7O8BiAuIx6K8YORyz3yaPaY5c8zaMvsFWe0imobQ/SGHU7gNuV7Av9QPpaYnksJrAp5adYAON71Wqwl1rXEIfcw3mb3uHRlduXJwhuCe7qQXxFncPevBEL2rSsaVEdJ39gDZjZgpuMKBF9McYFKg0zq1IVOCv1SydsAr5g/4v4YamaIxUxYa6Mn5caHqw5LR9iYsMBUUndtjj/k2YkffKF8h5zxq8q4FUcTVv1BbeeDdaL3fjXwInaHvNXdTmWbh4dKAYkThw/wN8fROWlR604cF6Sc5xo6BcVmKXR6khnGNWxOXIxLyqflO/XuW6TNQSAXIlhqtp3+OaxWgWqbe0n9+6f9NySFAthNE7y7CFrsNSJxCsCBxxBP57sn9clb6pAWapzlz8B7hrQuXBu9tSGXPoO3XuqNgXr36Vh6+HKFjzMYu7zwP6nrL0mQr8JZ5a7jGxVg6zZMrZ+C9d/8mrNYD3PeLRj+ywxUkHZuDDiuN48MYNBP9FMGMYicvz04HrE6Uf4+alULzHSe2M+cKmQi8SiwnJnrieVWvjqxuOzu3NkbSUxRmM44gWkF1FQ8BqsXatJ9ZZiRSK4Dmr51p43HmNG9PmbTy+1icax/QuZISjKGMspxIlqEMEBXQ9BW/fu0RNwQ9JM43XLcDA2+px9VcqeOCnC2xDNUm9zpm9WjdP+GrximufPkkOV2JXi4sdhikcqE/xJJ8wWvFckzFA+/lsrtvigIKpkptko2c2lbB+W+ko1+vgC1sMA2ewfep2iW9IVjzCVcHco0KzFrFIjFGobCO7VJXM4COytKCqJ8A2P/RsEdh9ova60OAJPYDzvhgbG79ZGQh8wqK5CMvsI2TCwmsxYoki96k0GLMMuxqECrUdtVQM5LKCeHFRp/u8KIV2KE2c9S+021GJyd1AuOs0Zf2uABxdjj190jXDr0+8Mi2icZysQAbR6MwkxU1Ao2FSDBvOC4QmokaDRuGgrum1pbuJtasj5Ua4W9ZCLdkycPQ1EcPMyKmmEkPcKdX+o3IKiYdajr1BTIk3Y873tcLFdf5XvAT6bS6FhctUy25FUhJ7QvbwLnsdYU4GSPjUeDnvfdbmkWuwXpOttbHv3eU4UoDW/kdqqVZ78Js0QP2sodBXsehyr8fLBkOfC69ij4mTDozXpv7JjE2AzXYA8JypJjXnxzhI9e+a1044EOxpBDIkQXGqoGnXQkoQ/R0pGi+IVf4tueUMdxf5WoRYlE/dQVpVD/lbAlw2NEstH+beeg7iIdsmFcDam6MRZ0C/kTg1bIN5X8oswalLC3HjMqCwcGqdiJXBJ9FNIF2xN4R3cqchhIAVOKCrQ3vVsXtXi9QbOiyqpOETkXwKqPSdpiA4lkxMAHIGk24W3wfxj7d7LzVyGZp07KfLvhjZd6Mt8HpndwZgK3vOrQH2j7IsQCtT5QaK8Gm6XPXnvnSS+QrYi5BO73nOgERQ2pYI34xmqUajhUN7cbEuuHnzWZt+/Y5lx2OLg9vEIqPrrySkgn8l081CF5ExHhTSF3AJVfDovz+jnScf0VL+P3sac+Bh5Wb/FDQYbQaY2Hhu/1s/ckhH0B+7rKj60PozP5W7fYTKzcy3Vl26qGIl6uxSikiE8YRu3Qh9icnH0U90jhtdMXo0yjTTZk4+ZWc5tt39xwSA0NmcTdv7m12N/2LvT6e0iTxgFPooLyBSfWfyLeEPYxMamDbFTeU0/tPuPNZMOOz5gZ22X+ZSLwBYNzZu+PL8R4HnjUm5cjEkqzuzF/X4Czlt90HJDjnpMqKBmy1YBqtibkuK0Kr3x5/pHD+sYkCj7DAOJ46z/DzNMhig9XAefAaOSyR29pXZ1enEm6t3Y9ETYvVQaEv1Sa3tJtWt74KcPzu1Gd6PSGWUGMNATi2Jk+1kRT9Wd5aYpg9fkT05pi2EKtWdT1Ss2j/MUtwYOU24PJ1IOo6T9JEdghEHRG0Kap11xnwyxEz972o1G9PGGnquTXG/mc7y3eZPcqOCzAqpvWxuJwNbGQJ4go76PyYI8vrG/wvY4EGDAGubFmhNsIrXM51ScSNJqoROCUrE5v4Lr6cqx2DoBNWqr3G0ylN8ud+Xl8R9f+sUbCuKA+BN1bn4NznEFC2tIS5HgQmUXoIxXvngUBWJqlqFPSuSKipZ+N+tDmYFxOGRv8roVIvvzmHux5rQFGhMArOk8MD/Iz8mBp9DRg4b0vHMAY7EffM/HwqhEbjZyhL/c1vYeov5sHRgsj12KhM52M0lTlGS7pLaLT6L8e4d0FLqRkDLpYqzRj7wm3jXBMbr1TErYRsgRTQ5Sh7wjMB0tVuGRsC9ZPs1AK2wxYFtdveVS4EB/QRk/Khp+vp8Mmu/vKXcAmkx14JmNPQ58LD7J0um/orOqDuof4p+hUG8ocKVfMhbpRPBS8SlOjtzyJGdwQecCeXM9QjtII4mwYOmEP1TUpMlKI5ydq+eUA80Vf4fA0DbBwy6rE0QgMPdCZthxdSXC2dWNWkhKYgk4iUDoUckeBe7tvzue6bFv4fsdCrJ9tMZl7ZsRKw9o5B0pXt/3U1rr+hO8qF7nEAxdR1ln6YaoEbFGnCMLdYfTOmYoZJGSl9Tb3YAMk8KkCtW8GqdDf6J8uvPwpEEmoPH0HgtR6A/TTQ3E3d0ZFOdBLhzek/9NBmMU7AEQ0+MYNnwyPU/5a+Wkz6YGcxLXsha0IwpxXF3NRQcv8YmRMjCMtIifl1MFCbpdmH2qYK3MuNOd6Qb/3AmJ0/JNJEsdWX9aUfkdoKcXfZqB8ScTeQ2EJ86ViDoiDH2TUJoCOIiC3ZXBOagfaaf2oXOhaWjjoY+Ihh/poyBooPHDBxTulbhTWhp31LbRgjniEIsm+usj+3upNziJlQssk/jl+XpvSl6sAqB4UF3WJGH73KStH+TG/MnYdCLUPZfub3ItRtGcy3Kctb5VoyxASaFWFOXcplDuc51fxpqCygp3uEncXsA4VEvoeqW4zDnhgby0C+WXAiE/xd2vPBs2ai4qKP7/FVer/ec16eQKGject3gT3jHDsxBME/N7HEIWvNLxaHVKD2omgNbLRLGrJrmwsuKxzTcoHdUY8LPDOXn1BYhnnL0nDw5mjbSWLZlDc7lk0z1IzZ0gv8JzXq4t0AndHZdkWc7AfjE2I/IN084hgxP89+b+EqhG13MBvBZg/RlVAsM4+oZkBtZFVsn2wm8XqngTkVXyZIrDZvmHzbK0MNk++yGg9bY85SNgzQU+TISGIlaM+sX14fP3iY/fN7sCSJxUCld38opaN1+ia/OfvT2IfuPpvX0JKsHsLZkZkIFdbQSb6/iaUepMo1d0sOGzxe6Deq852El3x2gYdI6SaIrpiUixTEFdMW8o230H/ziJXchZdvlWXMdgHCV5tNO4AfT8Yv9BIErOweNwTB/VIZ7ZDIj+jxuedjG/J+0ATfEtjOa7gUPfI2udOOMnj1+gXpjNCSReF81kdb6SXrY7XmkETnfrM+tw2RVB7LJCWucnbosGSOl4DpPWQWR1F3k3F4K+1FbY9PzCddl3u2BluwGxB051OQupgaabr0Ja6Cj9oEll7z0IbTV91M7uLmiaJQR7Zd6VFMsUqftYkR/sSUPTbbwvr7U9/YzQ69Yoz0gj0hqyI3Aubpg6kBicsj/qlLOK5tnrnbNp1Ff+lvPQcHnIvXvU1C4B1NlIYBMa1N7lzF3zn50y6/TD0ZQc1YKNvdg/CebrkYS8ZthASEeL0qVA3j/6SrGoOwalFEH0sWIOGDIwpADnwVzcedE7WCMo2pM7vQtcmYAiz2FcfI4eutqvntjnYnZuBNCHVOeGpiC2cb89fsrDhfwS9G090S2gFLGJLJlmKlh+5kZ+62j+ewuKGWO88wf8eQ1ugNuoWiVTY9iBzu3fsDuCRFxZ5Na2W5km8RClyPHnVDJRxZFCLC8mOoe3lvGLpLZxvDYnSPocULWLqoGyoBR2p+r9qXVmKXxTH8ba9dIz5LfjR7WwYVPqdvh+R4/P14K6kr3eeQ2CXPmdOJgUKGyzTd5MuvWJfpCgduFB7XmgZmkgvE6GrZRMxq/wYnOsvBICB7wZsQJRmQHgbnu+wG6j/1U8eZrbH2AnGTWAY0kETZlA+M2fHg17mi/46s6K8WRKin1PU8b6ygtOI0XUPWm5Ns5926dCiZPqrSQsuidMT3bUNHJrhoz5exSd+b8j9rew/VG4T1nECdCvuyJ8satgVlwg1g2GL81szvCZZVgMhX2Y1Ug9LCqNWCqboKDPvwHU2u5zPvXe5vUN6VXmEZuIyi9P7KT8A71IR5joZM/cFPFATTlRRAPxgtHRspyRA545f8w3N/lulBy+jwWQHw+0zHo1oTq3xQaFUeRc9olGebYlCOfc2bkV/kHlziSdJ/R7fK1yAi2l09p1Rdlb6n+2kwQkjhoSsdIearCvmuYmJ/TsKkJ41BO9O/Kva+xPHydTwXPHMOcBG5yRBNsV4a6v9YqtglMCEGGp1I2OpILEHvM6G2o4XiCTpY72NkFA+dv3Im51GZtWmv5VWJeTOraNYs7lMUuki5w0RHtexkYHBg1Z48lu3WXhVMZ8zr9wp03lRY8nR9rPMSaNJ1bsAOuxMP39MIRop/eWIGdEuGzvgRReinreG9KaFOLUu/sPe4qAWmGqBPYvF2F4ik1M0zK6KPijLEWY4orlcj/a87X3IpnWvY1AGt5NeVa1J2r9EmRFbPcmTV9J1gIHTws8m3ck+y/HyfUQ9hUSkCPlxtelHXJ5U0sF6kZsckkoz6i/v/vS7YZfOjQuipeCFiC8a+OYJ8Y3VJ3rm6wFIMGeYcgx4qqjj3j04mLei/072j3d5J5g/xoSzFsSPh2RerDoBhun7vDVtzUvGo7BzGPsMvkk8D02f/PiRBZE726TaOT3eSIJMqyn1gP3aOPy20pe2gJNC+XDEy2l5O7ooxP47XEod8phBBlLX04GfWLzwYI2FS6pzCmuzFjJq6zqP3KTNrpsY8ADVz+tTJEVK+p3k86qe2/UR2GaKGNbbim2y0uEhARnmBC4UzD9qb8k8FJOErSUrrJmabNjqYD5L+eZUMjO5cqdq8KS2Q9pyHDgZjJ8J7uNrr7c9uBa8lMu2g7645gNZ8Y3gMrrKK0MZD/BQwMpNh39Xx/ZmZD/CI69lb7KFmrd4bC8Vp5vFwrW2wDSBmkcWeJdXEm4CVyOs/7RSG+D4yy9aD8KC1n+d5R79260SCRhrvJauF+rrBEbUSZdi+IwBsr5Ote91x2JJz0Da0axngWi/msLgr6MeOIkel85FBAg9jNxXsntLYit1hNJ3CxU0vuSmV48YvFuWxo0Ll7MlY6MG5xaDpFGMSa/7zmfFm+9uR5g7KBp6kVp21I7K8gqFkA76AIV8yQ/iMp+aEa4Aav6SoDTspBUPOidZfSnd5FK64ytBSeEa/uSUt1r/NZEtFUUdaj/fdyD8gYatvNU7xlTiOWhflU1fycOJWNi46Mkmg6SKm037v2H3SqQ6pkpi6jq+Po6FAGdUNvsM9/eWmKn6visK2VThE9brWG6n7C41OTQ9MhXiVvJBqJZc/txYqL3813hkb2UuERKZULONz5IkpOm9mzXvt+rYCbqd9xUFbCGusNFzQ/tHBuSjU1WlRgc0LcMCVqlik7ceKn4pMgRuQBcAR2kQ6pzJFvcoN1CzUKW4XlRf6cK8Zo49T2WSoioyzpSbI2EW8PKIZYBOFoAlqTUjZbYdjJOqzhBwo6tCxRIs6kQHOoWdwYuzMxTxd8nYjiWoAEDLxMShpJr1TH/pPhYpNwzZgvfOSIseK9shnkF4+UDg8Qpyf53G4vaWArP7hHo7yvVj/rp/RatSVWoZ6D0rranvzsRi9sJE1OMsLc0N4hJzujwu5nfxvoSbSBM7+bylQ2x/Q0nS2/XSrq8EoV/ct0vUy2JiTc3TWTugmE4PuTGeHIbfWmaKpqAGXnnEwUtHvrHv+V+uLGhBOUTsEOHhuYKBVhmRqB9gitNAE7oY1Z+p8ouzcSOTxc2TLwIbafCVzxVyvGvZ4z73IIOFBMiqqRKJ5ve82C86ecwnmLlbNHmDGUnBo8y2qXOTUlrAOYYnXYShwUz4XNQNOZnQF7yXIFYveEBEoNqgAXiVyrD53/+qA834p+3i6P/7l0aUYE+y1zZ95H57Ihfx/MkPvZShVYT1qI4Jwkf8flkoUCuZS635N1aRc3ibSm3SUNayLN2tP2ALPg54m43XHhEsfSoGOFsOEK9rnPVk5owd84E5BTmOP+MaWw0kg1B6IRUSp17563fXOWJBMSHw7n7xEVsoE7gGu1N6Oxn0tABVx7SGf2vZhsyl1srpniT/8Or6UaNzsCRmNlSjfY1XeMJcFl81gt2pdTSPyHw4IZb5atsGaEmMUfqNVqQvsGD537IL2js/h0WzctdEQowRudZFnCuZzgYb5OrBUmejkhWp3T/v2Mc5KvsSqw/swrCG+qQXumBo6zhaQPgjLsaeigbotlAJG9BefioAZzZvoKv0lu7i5TkMRdH15kPp4ejuNnLiW2kQk6P/wLwvwC+2SGLnkGADLYbSydmL/7lD4LsIXpKIrq8FeH5tDgRiPH8onSKCw043KejtQ/2Y0RftyvyXNpi4w9dyqaycCeIGgyqjYpPt/9hgOf2P2dJ5urM/jG8n260kzol1ZV5DRJmTlffu1/UiNkTT6ypIeikEgnYJP2qqIHJdnF95Ytz6NjWOvzfRVA+kaKs/PHjC6yusQ+FSALhx8xA6T5VtuB+MnWLifIyYojAZFOlB4qir3Y4Mm7SQpeHoweAc8DP9iIvFkV5d6bq7h6A3n51hgJZB6A6Pwh7yHzZsy3WkXStSfcrb0nIcLqkZwXVH4DZjhhpiuf22kgilf5PM3TcRqZsSEEPGH94Kr2alYW6A0cC3h4vNhYz/G+ZzZ9voWCw6ZG56xNH5wOw0vm3/IJ2vUjsg7ua2xFJR3QtAtvJ0VDRB2B1eHr1DGUt59PpB6aFrjkr7JqQheMmXvVZ3DRz3/OUIhBoaZUBXUHdwus21cKG+c0RdUbenV5OJbcrQt+mDgw==
Variant 3
DifficultyLevel
694
Question
Bert and Ernie each bought a large order of cookies from the supermarket.
Bert bought two-thirds of the quantity that Ernie bought.
The total cost of Bert and Ernie's cookies was $64.50.
What was the cost of Ernie's cookies?
Worked Solution
|
|
Let e |
= cost of Ernie's cookies |
32e |
= cost of Bert's cookies |
|
|
e + 32e |
= 64.50 |
35e |
= 64.50 |
∴e |
= 64.50 ÷ 35 |
|
= $38.70 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bert and Ernie each bought a large order of cookies from the supermarket.
Bert bought two-thirds of the quantity that Ernie bought.
The total cost of Bert and Ernie's cookies was $64.50.
What was the cost of Ernie's cookies? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ \large e$ | \= cost of Ernie's cookies |
| $\dfrac{2}{3} \large e$ | \= cost of Bert's cookies |
| | |
| ------------: | ---------- |
| $\large e$ + $\dfrac{2}{3} \large e$ | \= 64.50 |
| $\dfrac{5}{3}\large e$ | \= 64.50 |
| $\therefore \large e$ | \= 64.50 $\div \ \dfrac{5}{3}$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 38.70 | |
U2FsdGVkX1+1kCgW44y+tjCBidcEQQhIuj7VawoksXzKV66g9G3qmFEQKhUBLF1oLzmRqiAouxaFGjK9/ZXzVXREBKVFPgqNlEp3WitIRGliV/FDKliMKhdvi8Kg8ZNge4/6zArM8MibG9bBv0NZW7zGH4+tqCyXVJocfbMcg4SvC9ZvTOHSGPpMOL4Kuhef8QfjwGWPSNKtj5LVf/nLzexj9kYgEbB6cA5t689eZ9hF/ZU0RZ7AqRTux697UMYE6BAZkCXNuxcobh1Nb1Q3VBHh/Dg15mJuEftQ2EqucDchgMhfubTc4zqUcLDPC7L3Gt080bbJzIePcYzb4JVUUsFh4Huc5aiYe6eLPmtD9tqjIgQtRMyOZ6l0seIS6kjt+0gOepdM0RREWulDntlfzb6hOZuKWHacq1D9XQfo1eoEbIqHiKKqMgkYNZx1ror/1IZc9zaO1PqTDrl2sUWJnx5tLuTRFCax7e5PD7md5OmewJ1sGaCwJj2AjaNXinbyOCDQlurXLK7+dUANn9G4B1SIp7+OkpzwUCyVTxFKTA8MYWfdYYX1yfFecRYPuX94sqpQXJ+ytimhnFH3YIFXq8OQncPL6Ae5U4BizMUQtINFcq7qbCcivsjz1u0v8WmmK5TFFsUDOhPzeinlh225GHkVipYxSKksfDdlU/zJ1b2Hfm4ius4OXP3pLeYdddmwLw9v9BpqqAzpQr5B9l9aFlK/U/9hgbjTDnrI3+HZfxrXgEsV76Ul//QNDGOoGMgo3I8ViZY2t3eqKW+xM9UQAMIwd4x9S+p9FGidFt8oeSQZ4LwwN82qwtXSH75fx1UTRd1ZhA+FxVObPssM5eba8zUXm+BzfxexvTv+vD5TnFrfOANoKZDxp7MizWMPbAQ5st7XPXvLV9gBniW1bkMDWYsofNkCGDx25OP8zDEIh5bmTCNiix8JtyRDPdhFK2xziqPPDowS01eJ2siOWU6dHTJjvyPA+62kvGlouQLteWQugAJ6kJzBDBzyfQhVqUzCz+GAYVsAewXxHsg6Rezmc0m19vS3CK4Q+/9mZf/HaApezBTSBMkm0RY3amXkJUdUDDm0exGUOTt+/lKmyUWauSTZ6FYZ4hB867VIQxY404uXo9pMDKOMuHk3XaGRgiUVwgsfvY5ay2T50ABZJE9//zXhLUwp6BorwpznNU+Vi+hJoON4Ohgnt0EOK4mK9ScqY39yzdkFvytuiIL93UUeWI11GH+oi64/CM9bzX8NZCBDlJlWYoTA1DOfOrKiu8MnY3iO2C3doH1K6MAvGswlJ2bseq/QRleuNnyiYQIo/vhA2u2iKQUYe4DHbyxG8O4NmvydJGxAvB55W5AnRe02gbeEruKaTEKaNgAmOGggz972iGYwEqLv1D8X65xq0dP0Ix/2OtpGSYapzhv/zs9zPLxdYbIh6765W40A0cEkqXfgSyHC4pQ8K684AkxxzX8CL2ZcWWzZPeAxz8beXxGkv/SURA55J1jb5ES8KaCYN/5oCdVyAxYzMJwsaDeAK0V2aVguI96i0bFfvQ00lWm/0yhPumBbGqkGaP33jctdv4vX+JEtnjhPTSQCgcf/e+RF+ZuytGE54MMrI46Akd1sPvUyGHF9tI4fxSW0NmjY3dX8Wq/R/zRhHrZkp5B6ITL4vU8XBGedoI0By3hnLCf62UtGsLrsMrR0KqMsq7cfB+tzp3NKW50Kog/pTf7ev7BHtK9EOMffC+h31Bw1ipKmVKdp3t2+DO0dDb4HJX/HV6BkwH4356Le5MmZH/LhYYNfLrF9JTIPV3g7naY/t4mBF459ISWNbzu8ZkmVWfjaVeOPPN3+XhIxgc4Twct8PYKppHFtxW2Vpb+u/mr0lvBcul0QKNcmWM2TbPD8rTUoRs3y4j3G+41I+FpIuJLxQPNK7kBX/tes+dhwS1OAmOZ/820JTX9CoZ3PeVR2puJVPTeI90SDPh3yzZrvFTQfS94Eu80/197OjBCcpbNX7VqMwl6llgu/FCvGGCI/HPSoHuT9E3r6OWb5OQnWiUt1Hd2amTusEWlhNA5xOMc5qO796RLI5Mx+LKO0HowadxqAxwYSUVDD4lfQFhve4aVqMbojgSx3ThlucWvvHFD3kmLAI6aN4lOnyVTKmVYkGOBlYFNzIq7R2t7hBfu0LMKY88nuk0g6HWN5TrrBRRb3hsfBGGYYH4uND4F/QtDYQo5eI2V34lZyM+RaST1olqxBa8GYmXE5OMOsALzHjFc3UfnxZQWa06LUaba3Jd2P+GBanJTdAjWywehCR5cUAokIwnnwtu+ry+0aE61ogfGwTLNbm2VYypHznt8IvJdHW6cMgYhloVN/qiPVhLq6L5EmdPX9VQbeibCQ9+tOmH0Ky7MpfGsED4YBmY2ur5L5HKdN5Q4g+GIoVcSYlwiMRpZWsUAcubR9r148UgMt6vXWzxmEko15zeokifgKdx0OwbYPYH7nu4D9TTMTek59dJ5AXYFUWBOKOsDKlPonFO7wJe5Te7aXFNAEdxcKWE9t1ctNxezME6UyHomjDLp3W1Dmr2A0upY6LR1I87FBpZyXmgzmmzfdDBggGMg2HlLMbijnBl8EWVmJ9UqBQ1BY1n42w8ZThURcVtvlmXX4Y7CMXt/AmOwaJU2JW/Sgc98tcmlbUf7iQ34PsQtFdPbzTGsyXOvQHgKOJqyJ26QLahJqXAezaI6WbK23Vq85LqE0YlF4xUaRduv+dpB9CBziCSRxfjiroF2cJSqyVs404RLPxAi9VejfObkFHFGEZ2XFY1M/59NvzHIvx5sgZpyrgd1unuJf317Fd+8+1YCah0McP03dkUxZK+uCgnBgoPRJ9byneZ1acDadQe01HUhLa6UyDUm85G3GBR/V9PPW8Bl1r4yWWLGXLxOk3sOyQiaVEgXldzIojLbIY6XOLgSfgYKyjDFSPuz0UWOyqV6EPZuSob4tWhx6xhRxeiF/i/tGCDrhW0mMkyF/3rvzXc468biIJTLTc7896ZyHzHtFOsn0/bJAByLp/B1aCVqbgIn+TOd3Qdb+8b1WWd/dq+E/EY0TZ+YfoVraajuwQKrlLykj+0hErz7r4nlORRh8j9mAMeKID9OgnwdY8x2cybC7ZidilJ38HFhIA0IYReYqVzn0CjPV/fVqZSPZk9BrXYdk2VNiQ18+gaDXoX/zc+/+1C/CU3QiRikUpCrBfPgjvnFNRho4Ti+c+2DAbPSMQRtefZO/ZJZosEu81+KXDVX03bemlRcI+CizYYI0B78OAgF4G1YBAgwHlopFWGfXXhKuD19dZDcBa5xL2cibf+7jcM8ZlWDDuhhYbIKTL3K3Jr0yISL//cdakvFrAGSwPTdJAOI30Jqvix8hKhZ0iCstwGwuY1p0t5RHNYyOXmB8FbWrbedwXpgGrsjjk0Hdi3HuoA+Y2nO4jXilWj9WukzG9CrJAU0U6vD2rggyMF9DzAu6HoB6OolqOo7NsAC6AHFnp7wZV+Ut5hGSB0X5InbcMGE6rXBdQObyjkBhrwMJgMdkzgQuLiMjAsf1L+rjbV4wBOAq5JtQjWMqD7Jef6jLzeL0OSVyRmFkOv6uB7hMs+LyVFwa2oYcwfagnlLn9vS2tRKBPtbrqXa9H/aewrvTR2BmEzwSYjy+arv0Boc7JBedyolgN/pSWeA4jpFRq7kWm2Rf7GOcm5vrCVTcDHDKDx+XYfz7qf/r6lQ4v+7g7ED0GEIaphEtvP2ztTrBh/BS5TEuxF6c9t7LwL6v6YRIgqIvkUGFqgNWAs0JsnsX3cKaN7zP7x27sXc91djUvUcW7rOjKQhg9eccNzxgEMrUpefhyi6WjaIz3bQLCDhMjWIchJpgp8EqUkCJ3CbyZLDW8flPLgawTv7mn0f+Pqjn1m90GAS9YWhZUbpWHNsFiiJcQVtSGa2J5dIA26pFDRPXIiWcqvCOwYnQgDw2VXdIFjpu1aVvcA6BrTWLSLrQd2b4/7UEmJ0A5svTU33zRZK/bhpa3rOoU6818avPXbRmzjP69hqBDF0vB2ok9gGUD2UmAtn1JQ6LmBKWWBBRkTm1PhHPUzQg8+IMMKbSheukDjdfcpOUT/wrsEqZkSaSEGI4DCsNbCVaOW0i/APKlfBvW9NvEj9Wu1FgTELe+QML/u3HiOvvLuq1ageUNk6xmwMDEKYLnSFzH5vft/3Ew0/wDHf4ebk/+yBbAM5L2FNJyvuelr2MdMmA7XVwZf57GvZNYOdFmQARI0ljf8SF3HE8wvfj08HA/N80ni06lKxfdqoUgNoBys8CJHBZyMcfb/UIwUmZo3hCVjPFBlKxnZ2gn4jiWAt5FBIxWpZvM/Q7R3y63HFdBuBcv2XiNtPnqWUspG6jn5DUKMAGVKdIcpOgLSwRmsQz+HKz1X2CxsRxmL6kOyIp7FBv5LWST0my6aIiaqZ5nBtoxF9pTMzIfbfyKQnh/wMSCEcppNIyLRvY2GaFXowcdk1d2rzKuYBKUTC4k3pROx48zvqonQQGNQnQWcp01VAcrKcR/8qlzzbG7wlXqiddh/8/zy841IoXQrFi3tGL2JNCARY1eVilVQuETO4ht2/XiqjOJ+jfoPGZI8iHB2kAJzKKSPNgDGTnKpic9773riDfR01wlBUIX6cWqbnLfCZ4fn1ihNoAYzz/bbU9A8Mfgr4WIZQBeRWTfHCuoq/EvT5AfulmDHdJCA0m5qpj2sNm2TCIVnr3v2ri6oP2saj0SuFvEs73Lv5ccQBLZuBBVm6J2FOrcCNhgxfq8+Bq5zZIOms9I9D0Y2MxyBL4hhZPMgu9h+3HOVot0wu6VITE9YMdfli6JCdum2/Ftoh53mrkw9YDBA5Ef59MjeAawrggbvbFPAu5YQEXMN0jSdJTFTrBZOFshW3mp9lSmojI6Ri/3DIT/Mz0aMSoxe7XMsaLwlr5xzI6n2lBqJ+Ju+UJK6kM+fvNfrkc1T/9VnE/Qa1Z6KKYZQ/VZuQ+3ZX+78/pb96Xoz16SjFfDnNEBIUY7hmburWI6o/nOvAcZbO4rnaEpdEqzfNQZ0itWX2VVYQVHZ3KFSWd1aEPxiSJuyGu0mvclM2Ei4ithyQ6RCOPIruMS6xw4ZNCq2lhXCtij0v4d2aNwvVH2KEiYr2HRK8st6WiAzTLDE4C+xWlc9ON07OsGYMlY7VZUupJuU0WOTd2bHJHbrWdUcv1MmZSzhpuS86tgidyuQMflFD38XAQnNrqJlColrpV84uRAgDcEg68kFGGZoa8o15OLRMXkezqeOMMH5GMOiB6zgKpz82Pk2Uq9vsMo7/FlbRMFJuu7BIpDE9kxUAL3bNPeRaQPpOhzvFfj8WYlt1/+h44N4AITF6ldfC0Wd0cyX2BSaNvqYPHh2ddHdC149+ELj2GK7Rdwc20cMm7W0tqGnfgfvakHJq8KmaYOJzfFFzvajub16S/8I+TIDvzuIhnZszi5Ai93jjgbn2f/8Nb4KGtBRCatLb9JURF+jeBfpJ4M01O93qvGV8p+SM6K5VCsZdX6DgNidBUwO+Np3hsleNd6cyfLEUVWPhMlJFWg+KuxiR5sUwLIwHKrpQTRE16ezx9wMj6tInd1IS9mMn6v32V3Phf3wgNOhJGSpX6jelNR69rYOH+VJHuuQHO7DnO+GOWYCLHt7I7t5O/6Ssc7HJXmaeboKS/i79TnPvGcylOOJeuLLHsHoqOQee8nQFozT1ye3D9OSpg3vSJgEcSN2eMEqvYpcr94a75cHJ69PPS53xj2veCAiSVtcpnBNekGyxEKs/6YXE+r4GUuQM7sOUKj96IgnTNZg5UIta0uY6tpsnxuujg6Gya9HRZBijXdLtyv1lh3eTonI7NVIJco0agHtKK534sPyqHYjjcqcdGfW/3wlOPrTKXrsrqVAniu6RjMHBAuCgoJlkJkMlfTUIQiNL8x87npLsDHqL8IJO5JhzLfys5oAmxvUbPQBabd7/8eC2M+pb5hGt9V7x0zd4tsBGJf0es1jaXRNFH3mp3Spi7KWuBdgPnneDSkdSdGMS6ui6Po/tVR1PvmIiQS2aEq5VUAB2OA583zOJXryjlyCMSVPZ8FVjTz49oEJVEN7OynTzS4me7HHsxEVHjGiZ1DuH+9/ecCTsRXugngcq/TvroDWGVQmgaeSAp3CWZaIvpPOOxWHU3kgfVvMOGR8htht30pR9mOjU84zAUen0lAdMdLrtvazOVYPt1ws77zH1CEfe+kx8HpvMzLpf7Fbm60HAV5tB4GvJCmbKm0mM1DRedX7P9lxs2WImuEFBvKkeek73TWHDpdxt4EdheW5yhj85RnmsCZMw8hKg4IV5LG+lPoi9hxgo7MrrmEuzVr3srxdVnuNs6kA9gsqqiqQZzaWgE2N1g5iiDVQiYY+4KJbAeeOMsoCiTvxvdC1JfTOnaaeIEtWRyiEL+xv5yiq+eLuPmpQYqE91TXLIE3BKkNIXwdjdaGUKeJ6IMKjKLSW/dHPwjK7dgYbKL3IDmxcD4024nkWiK6gWlyVqvPfcQkt7BbFb5nqnACFSHVpZL6Cjn6bKs+C7LUyd+72Hst4YH1icGuK1qCKP8fBpL1z33FWg8UDET3WiZCanBtbGRPvcFMItkA+zduyxavWL1JT3OYgRZ5ztB49mZ31yRWoVxI5S12d1jkFVJnk6mXtfpFJ6T0Gx+fHpPQk0TDiMzBG01/xS+iu21N+ZIGhg5d/jkTv2yT6TIIkxLC2S3G3tAIOEunXkEQ+GfaZIkgjG+aTh8J6FuXVw9NF7c3k7qUrhe9nNHKm1O563gvCKpv4VaQBI+jGCo75CqNSOJ9wn9MF9YdqzZec6Dp78GB4QieNroqASAUBa7QGLseyXJTItV+OUaMbSAJzGpNUaNN8CjTGLjK3Q20C90Hm397EkJwGrBeFeP86uzP9hwskIW2e57ZOoh0paXEYwwA8vsoHGMQnRoFROYkBpOfL5OLZJIyR8PAvVKirzavmFbcG4m3eOP4HJ/LcPO3hmWWDdeMASHDThzGo1+Ljh5hFyLeJFRhfIsk0Y5bU8MtCR+Gy36RW0jDYWdYZDa8ND3hJKjzx7m/weGt2I/d1TvxxF4neQtPlqR93K55MOE4zMen7mU8EwbKOFSUEH6y10ncjk8ghVh9Y+MCspB8PksNChCyQN+f7Eg85qC/+fsdOzzLqqWGFAKFdVW3u3Kt7KmsVcK8b2J3/1b+2UIV8wJeW1kKBF8vFdz64dnwZlKvqQQ4RQcSPAYVdrxZuiKEsCsXCR5LT+Ejn1Q+hYrLogEzxIUjITxN+qSu2cxKN/9L42185mZ2bQV3p86pS0et0MVjV0Yw4ASds14kdFrsYGDz8VLB53KXXHoHaNwZ0bDbR0r3mlV3FxSvTO+LE+kptI6Oy4r/PLKN4WiR+uJ3vfpGX0LRSem8nNJCYaa/SMhnocmV7XFh0R7NtelXPXf+pk+rW1wb7DyNBFUTc5gtX6nraO3a8xhlTCC9HQoqv8XBwa4i3WdnBNLRcOfTnzd8mufJeq3nAkNlKbrOPbk9M64S3VtxIsfVcXLCTLewDwP/j9AytuGfTvmNWUAOnepYrL+ydQtjRTa8edGzPVCXxUkAk7ye874nANvEz2zGFVXOMpbIVA7b/gHd0detDJtYSJt6bUdDhMCKJbIPVq8Fu0M98pTzYId7CjarjvEVTDk45u2tbbIDCHRwYFtfK4eU7e4RomrPh8iTSpv7lZsjTV2j8P/pD7xINt+IXRKOmM2xcpYxtUiuzeOVzYvKz9Wt0HLZ88Vk03E+0AM0npGPY/ziVU5QxP5XkZtq1WO1LAfFhM0ljH5SJVZLkBIZEqboXH0kYCT/lANu6l4avd0tJ008P8NPYHl+lgfBFKtlGYl15J8PJuir0YFc93L9aZ41WO3gQrHwF0WwamlYpYrpPD8DUYncef8uC5v8XdpX1dL6GmihA5liJUpDCUcLTrxw6ufdamaD9GRS3IVh3EFrsXw+ysDj0QhLLblm2RsjYtuc6Ce5zESZAv9R4ML7SASHavHOSuwdCRIClVFoB+bp1V96e3hOU3KuYsj5rZTlAWjeQgncyiMz6wsDxORIQlgmFBHMmQPDQNAc8C4MKBxTDLLCcAxEmx7GxoDgqRhwyQnllS/P0MaxcMMA9UyfZaWGVfRQvcu3ddx7sw1JbmuT5ul4il+X6piM1vOimzVoB51ptLEktJ11j2Al29LJ4Mtz/bmsWJ9Z2gT2fsy79fzsRWk5ThCWUFSOEHBwWa/DXoi4t0+kNRUKDOENogrvRf2GV+NGvMN7UHfgxqfDLWZ1jATtoSOct04bDRF4MYZua9Wnp51F6t/Vxx42PxmXfhf+23SX3jYR4bUI9B6snaGAHNxU2COdsyuNK3vrvcDnpXpfXytAnbOtzwoKwBJG9keY7zOg8UxrnuKv12Eeo7JUCSEMHXJVjonJAr4u2k0bIcHn3l7BdPygwtHaQU0BcEl1KAbSe2i+FYKaeZ/7rcu73BIEFD4xHT6UWIxkbDnObIDDvrWmIk7Vc3g6r/H3xhOFmUYUHJx3OVkpk+G98Lf7eWSTz/pCxz90/s3VWwMZyUyKuVsZwTuLwy9lhsnnLZVY4PeFRPDgVFxzn3a6h3js+RHKR35qlILEFcI4iXb2FUEcOOBPIvKIUll2y+euj2wrmyB3DFygeKS/sJ/7gwu/IXk+405FRZcZlf3aVKlc5PZH/nrC1LC7qPE2y08Ngm5bd6/oAUkjH2cwKVKQmO5y+yfsRehLESXbOJbTai/NXRdOTfqVZRaB5sRKvr9PF3QJQ86OJ/OWPN/rivmWGWc2web1a8lhp3fat4zvzUg1pmK1UbjzAVPdO392nDthqXA9uJ7v0diLy9zFhR6vTshSG+MYtDhAUt2Y1VwhvgYqKH1He1z+qLHCSesspXFf2lmcDtRROi0pgpHkZlg1Zmn5eEfXJmmqQYKxquLqBgjSdojdskLbGN486dJT6nWoY5ihBSq9MJYiVqGS2PtosyJYo6YeqTUAo4rdi/DHToSsbqtShO8AR/0TUPBeIpt9dE2+0kXntL61vieYrc2f9wby/NpliDOs5bnHt+NfYuItplVZZ+Ga0SSiux7Efr73ZkyPIio7D27p/nR8K6vyWpL+UG5j9+Ubic3FXV//JUKZ0audG3oBe9eTG8M7eXUVZbJRQc1+r99KJ/FNW611Mc+xALxw4KttQnQZhn8vcplZ3xUslq3rXB1Nty6h69SQerPjcCcrOMP56TdrbygT6sz8Fbuq8zJx/n8D2IT0tsVvaNjGXXvdOAGVPtaV0KeI64yz673lqDzgKFyQ75xpCf1up0ny+Fwg1fpUvDXOFnA3NlpMsE6GF12iuGiUsWLXyY0gix5rJ/1zM9YlqJM8G1bHoMzvpTVivhPgaFbMWUC5Shc19hlUcJbIhErBPvzL9BZHaxxAs3N/DlfeMufK9qcT0ag2602Tdi2X9MYC6rA1Fr/6eg9x2yX0ZV19KyGIQn6wULSLY0932J9MZki2yMdWU5x8bI1mFW7OE0ewpslgLhWZTup47ZFMK5+Suc0r9O38s53cJTOSu2Wzp/8xMpcBsjlv7n+CaUwUqGHFLCxetQsMPr87li9mEWoUpw+VZX72F0lz592p34mCHKirFvPXAiMSonzbU9k3G1TFYvrlmm0smXp3ZWLwYE4/tNozJOzHo6M0/c+WK7zp+zbtDwlaLw2gjybQs5/ztWwZYAbzu2ibudyleWAc56VIjAkkHdRVzvfD6YAdPZZbSMGTN/F9+lnlYEpYksvPvogNOyRjYLfxeB70kefznBjtyntrJ7OHxu57JQ+5nA52WA09qrfegJs4Dv19n0ephgHWnUnW0xfhpdyta+C/IY2HKc2iGag+4hcSucJ5AZ3db/CP9P6RNx4Ars9vI8ZvJNrncQfrMzRD0kTtu+9bCR2Es6+x28D3eHwGoisKcHf5dzBsU/DbQp7uQX2V5Sj3U+s907p2o3FJcYmhip3RvscHarcoLJxa8DsCZuvXF3PiVmQKCSlThs5rEyjvzTftHQP1NiPAMSgDjiCrrTustrUm41zLJl843cMlEo2AIZJkOsnaHFlAAN6ddwkKcN/RNjfru6MgrvXkCzdHusPQddBP0/cduK0aEJwW13f7d6DOGslOQ2Jdtz3DsuXKL1E4AtrYApnTZ4yP71nLW3K+aWQvzxHj2qL9Fa5KUOM7KzRwH4HQGCPeolfwWIi6Ww4dcESIZXFJ8knopp4+QMmo3ylgO3/LGVK/UsD04lA5mIf/mNJ5x7ljAzDks52dafggAe6TZzzc9ak2yLHTK7nAYhudt24fRbXqMyUdxNe9/wuUWsODvlUU7yd9ci+lQyprgtGKP6yBIxMmuW8yW3v2edPpO4b+BhuO4rxT6aHe52tKPw25gX+ImJxaBqWSsJySQTWg/KH9lIa8KL9m/KrO7Mj4/6hPMT0ZnhUg4eCYdwo7d44TMrkdlzt/Izow+GKS3b+mQHYSPsaTWWbnOTFC8tNVYSEusEV8i6ioLaDmpm6Rc5COnOBrqQdVSTEuWeW9QcrKO6VzfE8ZFtpZQf0WHP+O6C1p+s6/dlKJLt6RsTigeoHVti/oKBJUkoYLs5PmrhIAUHbDLpOqte5OgF/Vp+Kvj7WawMeqUMnf/PoBzJSOvGqwADGpue0pIqddNHSXXKr32WtWB9skVOX+abZcHo3q+ueB2Ua5BKYazADeT+8Ash0F8f1waRYyFwUsZpfMLdCsAL8jUFuR0Sd90LIXwHT9PsEodXRoH2LX1pFJt1+wT7+KMMtBZ9abvYRUnrrHPFG/+x0bIGisErZiuYI5QvehKrNfYwAe5ptVpVswlu3Oh9CTOlJdO1W45HRjG+7mi4bUy6a+JRI5/rgYlGbCod0vnjYEA6fvb3TrUSbzS1TKI3XL2gR17icnu0byO7gI1FZ9roz0Ff32uuhWu1MH4hkWPL59D8fy9yJh3pdUVyHkS10Tulx/sxrKQTiiHzoaQVGhXhKPXYaOLZDxI1BqMESH6GG102o0JBPxgY6zux8Na63Z+T7wGUEyC4U5yM/aMuNxmOP6rb0KI4EScWmjFWe7st+HxAm5w1f+1kYAbrzyhTkvxBHFe+ZNgMvnvJX6AhG2xr3rUNyFnW3eqDkKPnRpDLwj5/MlpEoo8yLoZHfvTcr9+Td3DMdExTF7wML3MkMXDduz6CvZtDxEKQXT9hQgyySZowbvg0MvNRilqPLjnTgWlNEgNnzmfitteaq0sUZ/U8q5/hhw2w+vkuknMb/MnC5Vew5GwebGii1b4CNd9Z7GHjpLGY8dl9FryXb6KKzkJ6LiAmP26cy4ucsCPnU4/TZhOtqNhCCcVanc0U25PyHU+LzD8EIBK+N5kgx8jt6BFuM98JBgGLXhF4+Z88h45jQNHEcjogU5IRCCu8jmozTAoya5/8gC6PLafbR8oXgschQwiygr3GCChms0FDLovVRXg2pMAgbftHdkMFZHJLvyjPuPljdaFU1NuB3guZUNvvpj3t+wwD93WYcQK8+vqsGfOGWvY+pg5/pt3ZnRi2ygRJN+MBofQZDxuKFGdI6RQbtJW6n6q+omtNegXik0h9OypW09mGbNfuAV+1eUxkLfFt69XaRSZq4eYRjbvy2xusHvTVGaZoqlvloz879dadmVjwaVnoT4Je2hBjCdbM68OMUvIx+KrRoY8eucudtQZLqE2GEvfSDJV/ktBVDg1CKKZdVRizz+XNfCL+cozBPFq0YwTXvYhSWBJlqDcWnjDQIIV0bg1f8FZE3Nk68QdYgZzlss+3lnbv9D3RQHqzzUFE5dFjTctsEuhn3Uag0DEdMr70P0MkxnTVCA99o7xCmBGdhkYazBFDb7gIXH6BXOI5MxMUoi6Db7OUzh4QSljA9Zd1NRDbqHxiu36JoHC4uZm42smkS9TcJhUABohnGkpFj3JpR1GQIOBsF0JkaUnRkNoGQib0nX/eFHofYnA9PxPc9cDhOqD7m9Zdo6IxhEcwNlL4UL3AlOeo38mhxFYjC088zsK0nFcQNzHjhAXaAxRukM1eOR91W5tfZ1QiiWBf28M0Dr4bpMLx3eENaBpCXNBtvCx3poQ6xoh/dT80A3WUpNvCPEvSLC7NR487wgmMAdN/y9syXjzIgEIDebH5SWvh8YrXM1exZbuDcYNB/o6J/Q8zfjI0iGW6D6QrtdZsPa9cf/BfZcIqpsEa56L6tfTD2vrk/Lq8zY2fksJuBCgaZjoebtSZ5LdQ/NwhoxRSvxEdZZSLTpkAvQX8DciI9AgpeHUpyLiGdhSu1iA9dzV/YEviiUdsuumIe9MLrhDauVAuY2cnNfkzgUG6U071OHWKgWBZue9EBnxLzEWe9zoKI2IMruyQ9B34t1XVGn32j/xmGf+nmgFIParRUR0nMtlN7GPhQdRGY2oeryYuT99P12KO6Wb6iOrg4uWmzTpG0DV7Q+wFsBFnU/V4ohU/4urDr4K4gYnncxy1btC3q3RsjWgVYKorX5Fll7kKg5v3biPU=
Variant 4
DifficultyLevel
702
Question
Kramer and Elaine each bought a large order of soup from the soup kitchen.
Kramer bought four-ninths of the quantity that Elaine bought.
The total cost of Kramer and Elaine's soup was $72.93.
What was the cost of Elaine's soup?
Worked Solution
|
|
Let e |
= cost of Elaine's soup |
94e |
= cost of Kramer's soup |
|
|
e + 94e |
= 72.93 |
913e |
= 72.93 |
∴e |
= 72.93 ÷ 913 |
|
= $50.49 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Kramer and Elaine each bought a large order of soup from the soup kitchen.
Kramer bought four-ninths of the quantity that Elaine bought.
The total cost of Kramer and Elaine's soup was $72.93.
What was the cost of Elaine's soup? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ \large e$ | \= cost of Elaine's soup |
| $\dfrac{4}{9} \large e$ | \= cost of Kramer's soup |
| | |
| ------------: | ---------- |
| $\large e$ + $\dfrac{4}{9} \large e$ | \= 72.93 |
| $\dfrac{13}{9}\large e$ | \= 72.93 |
| $\therefore \large e$ | \= 72.93 $\div \ \dfrac{13}{9}$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 50.49 | |
U2FsdGVkX19pJnUxR4v+vMBYBpiYQuKMjSyR7gC6MPGv//xLYqr3aVeUf4yECSpkNtiiOd3BXIZvCN65Y6C0NtsVkQpJ6Tlqp6YZse59EDMAP7idaWyuRkENIl0/dwvissr2bFM4OU7cToJNOTORSYXHBn6dVGTyVz5BtjnW5jdIqBYmNMgnpqEX8d5Vfs3xjGbQo2WTKe1XSjsbG8515S8pCvk6TEIWIUW3DS8OQjoCdE6UyYQcTeOF7WCuHEti3ycuDw0oNEkBS3FoiSPLpX8swu+HJKVKiRU1DLLsLhtPA0WBRbywhez7j5wRhHfknaYKzuHI5ekh3XArprotCTd7G9pb+l8/eEUxXH1EqSCKqOCmsJYMpFsCpuz4pozJaRIIxfoqbeXDFOM/ZMppyjaqVL7GUzQWGEhQQc6BnknCZUtjm2AWI8RFKajk4TL13/iEtop9yv9Q2J3Ru5vQ9H8G9WPYChk6mjEwhB3szPakgf4i6j9HTs9F6NDsj0BRXFTqJjMCxdsnfUAZUDk6AMNUiLSXSmEgnyKNncZqgj2Fd7n5B6lfFxHmamhfmFHl//TIo0H+3LfEBCFT1jQMyAH/AxVOl46rDjJqHGHZEA63a47/If28Zs10ilM7iK04tSX9D6JjzU8ksIethZ9iVjw3GxF5Wa4cEptWYC5LqSQU5VjpxAyuyoXtnzynXulNTvlOZYHIqPk/9sVIkEtlOqb+ZegFygf0l2eo/hQBw3+e0hosMk+XmgvjUWXgxtmH7MThmPNCCizHrFs340pwXItnmh9c49uKF1rMza8TzlBzqPCM8w/Mjw6/tJ1ht+DJPDTP0neVmvKOgK0H2B4odLeAEApl3k+LvOcDPOWt/aU8W5zNUtwrjrFFx4/FKjwOAob4gDuFrPcywOXDzniTIU/2SJc/+4sDZlZLzNlAd4VVdhkNBqWJTbWwUcBmp9lyQXVqXWXiiZSUGTv7iTKTnxYo7veh6btFsEEXVj4+gzKNCOb7i+E6t9QAXI9iye+TKSXFhdfhWSoyBqCfqIoB8wppTyQtUdP++MTtt52aF+xESBqgNLEAMaV5FSjTmFJbY3ZstUryepa/hazpd55J4vQQ4P00XoJeFZOM53JEpRYkDSimMZq329Sdsx47J6i0OcsGM+8DMkG2fuiUnVVTANJNM0/ojr4bcw/rcGEi+baCtEpkJGFbmGvAcOeHvM87vcssmW1IZ0QbvBsauyG52DSDN7TsuNLRC+Paaxj/uObj6F5gJc+tB48V6R19MKCCVuDJE9roV2g4NQNNMuqucGxu0EpsrQEcyQ41mbjeLujdvJlChQhtVT7T6qpRLR2P7G8ytLVBpshuwi6a8FHlUyC9Ep05rKeGlY52vgziYEvS9kZyXrX2kFi5gaOie5rRjfTeStGpMgCo7va3DxKWmelUnNo7nQ9w6+mhR5SWArOPdIl2WvIzEnIkdbaqocwmxDZOF9l5Tnm5lXoG1nG/k6ASLSgunY6vjPNVjMBxKZEVA0rgfZA+KYKN8phtNTJq3EWNg9wpxQ/DnaSDOhrbihCW9yciej8OYtFQoBXw/kMnQu8xdwmyze8JMfAK8EBeoWdF8ABvJtOnoX6Nmwoesn84flPFiZCGl0Svt40sPiNMwBQcc0aqOxGzgsYdXCPLZnGxKPqG0eYeJxML4dYWC3Xg6fLKKw5+mKvKA6K++I7OtbTJeFxhgUS5lA4bKvsDa0frEYK3TZgo7Vyx+QQJZKwx6tA18e4y2zf5g/tJKlBf/YMQAMXdFMMtnRxbP4RcqSePxaMSOJg57vqlYqGYrqf1Y3h3FTIFfzRyflQ4olCGIa//9Mf45E6AWb5m3Cq03k6pY4z2srsm9hXu+dgDYgs5OCzX6POxoHCbNrhu+Nmw3cRodM9UHGkAdHf57Ue06IIL4G59/CpCA5qSLXclCFNxuWsb6Y7GFwhcrEjS3vZmvxW857N1xzIvkeK77BHKrChuJGvAivnzmb8n/LdqzoDZ44G2qpLz++ZG6KaKmLHzJWq0ccls5us9rs3K5BPr2NGIYj0OkOPOwwjEDAIwjEYbQ39OQ3UIGD77g2CCKPUZFoxN8uG8yhhwRpMPWRXy+1r6nwynRS+pvsAChxXKgAGppjAimy32NamJr5D21uVgTDYzl+T22EwtPwVyEXa9nyaLadRDHfGegPZC6PYgTxZt1gD1dFY9glBC9EHrsR206xOsyA3YYLx6fQUl5EVWTXF3Pg9+IM0SZ1tPNExp+k6vWVoRMC1bZgoxNZBAuupzRtqc4n5ekWuAcvfdS+iayjf0thRICCaJ+ZfmWZO73yoj5Y0XlI+B0iJJGjbwgnIjJym/H1ZSYQ+mcU/aGh/qv/7rb3la499X0jiDjrbp8ajX2hBNM2feVaKjhy6k7aX+hAuQznJAMbj13UI4NFSdOBQgVyfvGjnYVexaxaImZjPmuffqo9nPLYvVvx+uMsJ3p08atlgbRPxNlT7EnsHbIlnIsVyVyqSeUHb/eHR/pPopFSIWfWDeB7ymLleLN2wT5OSrQ99i4ttICwpWjr7ejxxz6TfEUEAclmY7VVjOM3Izy+5Qxsb7sLB/e5z2pOgWT2VTYGO3vAOAkNdHc1orAVyePGzxoLJ6ir2O1yrLfZZZM5stUkRurZYrC3MZgamLQOoI6OoebxqWTih/RWX2skyyX5Nm/bNBsSrTOUBzhWSLvzSwKFdt+PnYNtlHb7J0aOlZCqaS7lB8RmLyaHCc/N4IeU6u5DekoidF82V6OF/ZSB6Xk1SSGPY43WmO3O95czcP4BpF5pHdC/XV+sIL3sLpMNO0xJBxZ7nHs+lQGugFCxTo4Nst4g5yb88SWYaprPEuCGE0XmubvMpk2JHlqcAqOYs95TMjL0gc/CqLuavcXRfsrvtolbsDQJhW4CdllMj2pXMdWQxDurmFQnlzWvYK+VJUS5Ax0fkD6cQga3EMF9DSzcYETRV8gj6btnciKn0MAHhWo5lCnPuTX58qO5qB+GAwyTtws/vQF2vXeXEPzEMndY5ico0XUjalQuknr/bL388zqd9FaHVlifzTRbsA3uR8SqCxPw28C5N4armYxMBQQ/JTPfB/p157RAoMXa+aWsp8pToB0sM7gICqNMRclb/wQlzrytW8XZKHxfDqoZFZWtzas1A5avYDZ8QdFIUCONVN0QEM3hkiEiCt6LncYm5THg1HuorGvDzzhrio9TEFeJwXFl541VSArkgWazBw5dn+x8XdUozM1V8SX0td8+UWuRLUEcIwrfFpnAXiLxOx5ZKh0Ssp2glf0YtYN0vkJhmfj+u2rE4tfXootfvHqcHwl3QouapJxcvuCgClYOXYnUhxeQbXlLVzvrkUd9cZr3fX+eb6c41gELYxCgk1fYaU1i+lyAdAIGC7xyIp2KlFegUasinPXHO5pQt+W5KFX3OwaeV2Q6RvaIUmD12x4Ab9MIOQMrTxcAvj1KsE8nUhMrjXevhQmEuaChzP0VLFyHB25QKvonGHqjV7Zf7CkM/B9K3lwHD3IjJqa4F8khpKgwl8xE4qAwmQsok7SV6xKBBzB8zRaWlabgPW9CgzVr07vAPPmhH7pl60oi0szafRRK2+uuBMr60CItLxez3NFi25KerCG0qrVOE1dSbe1UfzqsO+y21brP2Who0y4Pbqrq9QqnLCVaCrcA7Ayxkd4tfFA6uTd9dE8wBMwyqAHhwPX8X6VLcpMs+Un7xBevEpZaf9UgfyCb5WzCQqMfIO8qUrXaxRWohXPxliUricTEA3BWVzaPrJQ9CXRMOpC1yVn3DJnHQss3U8g1k7be7h/1+ICh64aThL/5Lyp4OklXBVnFWz/k1dhNQCGBR+iyc7PJQip7DRcXL0QaKp6TLAh90+7+xd2656O4lAUBaP0GqRyMnqwWh3nwpZ33O7apPMvZxBUeAuzfXxadALIFxbQ3uqSDnEGqN7xiv35bOIPZI3o1fzsBQ5nQMg3co8KXEG4WPpDtLJ0SX1Mn4KH7n4RVGmNMh9/hUxSFO/FqMhPLayf2rFPMJ/1F9Z9EoG9wq+DCQAkBZV+Ie2D5Gh++PpoZoKJJSn3BMOy5sdr3DSOf0Mfrgn2ZUANuEhktIqN1LMuZHaB/J6hxKMrT/m2/34ptaleIWHXYTF4VDm8GnVkP4Q4PvSE/s5tTcUOskmugE8IRrYEilUECiQmjy6L+YpFXPRnSoY7BYt3e8spoItATxDbT6Ki0dw383aWaRE5XjdKWaOSALpxTD501Q46OT+MkO7UkvZ8IULpBX9lqitQWB5lXpFGBFkfeK8PO1iFvf9LkfVCjSX4iOa+IeBfKlrCwz/aedWaIQFIoARkTbJqiehpr0IbODs8znmMnK/ditwjleyIanIgHAtSgpxZQ29Qjn9c6ju6Tuwa0SjwFGe74jz+iDk2qZZPoZzCiKJQadEVA+HWHe9/BBzAtoSVyEpdjLNzV3rq8aCIH0hRvyAe26Ab9a3u2XRfbzX/PU33oxbP93XW2o/X79d/c0p1qY6IzmnLL8EjGc8/0VD4En/WD15rJlC07uhTkQwORn4fIV48r5LdF4lJI/br7NsnzgbIkGu9OTLECooufe7iRTD3LFBhqzpvfzBegiHSKl0hp0ZYpemQXE+DmTGV7RDsiYfrqIUmLhiTHi+d30aTPspj92GJ03FRZKNk8miAdzQKDZwlKFn4z4rz+NvMfaxoxZntRaDXYtK/y0XiJmvFoITxsLOie1MdeqVSEKN8B9di3G5aeqGHk2+hQVFvAjDKDRFbOQV387OeaKHf2RBPStAlNSbdASl3YLuATcRLA5QjRhHIPjMmbU3Aj1I3KBs7iW4k4yZEDq3wg/rTtGVRx1OoudpLC4IAE7ox+9Iim/MHUEXxxrh3xexYBzEhqbsea2h9kTggtN3synwUsZpsH8nV5cAlxy7sq2z3eF7r+JWoJs44sAGbgSNLcvpWWwHLJPoGyJB2zYjiudglOTIT2tYxN8vFXaTmuOjEwLjy1OKWgMXyNrIZXz1/ryYgY414XSih46dkZVhqOp4TzNqC5X34e0Uv3i/VTbucOvlsKuxBubmkriwQacSkMd4kq9nkkg54wnM23rmzvdvvUIybTUBju8lhDgIg8LThfCvkVQvXwLPJaITGnKgnHmqgkL1Us2FTLXAWZBIY9qPOqdACOMDV2/9dHkcmbRucoX70yuf6jfDAhoAfINaB7XEP5yGHbOjQOqDjzHIIxYv+UEETWipGaghG9tVbHc2ZtDD1yDRklwGNsw7Xdjcjd8UypjoE0AVQj+Qmk2/WF/mCQ7DmBFjRtl1EbLAttsmHfFcZQX6fspA1k6dHJkEw7wdvaUZv2sQzCZZegdPKh0WJW0//FV41p6jLm3AE+42EadaGWmZTLwT4ha6qyQMQdVnBDlWgyXF+PBPtP43Sj3A7MAQbs1UclzMG/ZdKyYKKASQhr57UnUMTisz1gdK3q68xgdzjc12xKGzMg9azruoRikvXF95s2lf8/7A7y9zCdvxYMiNW3hNYTNBR78wHvAty3O9J0vzvDhYfUz8C4uB2k5LcF8TD5RzD608z1gQoV0yJ4NJ0bhjGLN4rYySDr9EQyOP2RHkM8nn/4Zi5nUtYO/oYfneWViLpogtnjNDmkAYkumm8LZ4DSNs4G/yfxv+wNnZLeKoKx0iNdx8ttE4J33l+7NP5JY/f1Nzngg1QcY7PIv1vh1aEOC/534Tbpn1CjmZV45hwa3d03/44I5dDIjmpI6gJb28FSnCV+p+PbBPUMjxt972pcaojECof8dTnPui0lIAnNsklxK/orXbnZeDXqjYuPCei8C12sU3M0Ppfesy1cJ8/pW/J/GrnfLTtTQn1F5pd8eR/iqWBy2kWFi3FCkgwkSLkMH7WDuj6+BxhH8wEti49ZrHNKSyOqV7V/iAfO4LdmOAswazRooaEtH5jVXROnS+LirfV5r1J0SWXSyzGF7y9aQkZosafVmWzRfZ6XdnLsx6vAxrg672JwBEtRJrfpv/EXmZIs1zhdEYfthjYShoZmf8EZTIVrfYVDKSSEJMvW48w6nd3dNG4ugR9aZK1r9NwwzMIM2y7Hxblbo0ER1lAO7m9/gvMtlZ5xQVjoRTV1Wic8DQMIPKxzpdDrk+D2mTGPgcGU52q/gP4BvJAjl4DVyQpH6DWsldQIRClmuI2Pj/BkO8r5f5n4vWLXDORWdGZrGfuDPnbFe627T8XUV1yv1NStKMxcg1W/75XIG5axj/uvcFbrg3Gjdlm5i8+HOqEFNHZZXtl7AgTsaJIjWNlPhaPEPiMbc838I6TEoV5iBEJjjhBoMpMQ2y9rXuwullx1VuaIMY86OrsAuwCuJtMATTHVhsXH9NfsE4kHU6t6sIVmkMwAsEClREsq3EozMgltKstbZwNAf1Leg2XsLAYhoCtPP6bgIN+BgPk7U53Wu6FLhkoh4fprskFcy2MjHkn5zL2Kb/cIlKDLLL1JKpvOHgVvFFVmnWGemMP9eGuD7NTLFKcTybTnKzozm+oASd3oXDUyPFq6EgpsggBfCrXgHi+nQdFGXKPTtSyw8VrFfsLMuUuN9CB9gYT+TPDQz1RkARIJGeg60bKcHJuh0LGbXZtHqWnYW+3oVL2/cTDkU+Vi7syezZGJMptLuNKy0GLfe3ETbxcVOv3vgpvRUEZvBFAIm4XfHbfLKwr32RXVyV8Be4AI+chZ+2CeJfNnUAgi+uF/HVcDlEaZ4HlGTSdfH42yrzDd6mSs0R+hBaUR1l/jB85pnqgVFpvZ6V9V8qd9icdP02xh6owWFYqXiUwe7vfevhwJxbtcV1wxzC/oxZbeDyRXJ//YX/b/APEXISJy7aWpX2c3Pc3TsVFZq5aVJ6gIhF2eo2Bm4jAFsIZkHlCqHwlj8yEjzRFz1v+p69Ao3dDihO6TMEJyirWv8mjyAtbLUdgQOFwqw5v4tyv9gTFqzMLJ3+sLijqCovbi3byjfQG3vUS3n3eMW3frvBFfFypTMLInjI+A/ZBwwbEMfZo+crL7bO4yiBpxkoXyj4W8Ja2aGoRUD1ZfqGfMRP438KEzZZn1XKDLC3Y1CinJbc63RdRHu0Sr/rDBMz2QkCkHluxng7oRrju8bDexsGwiEJFfYpk1w+/u4VUkRnb/FfpBmpbUKBMB+rs3Ia45gEpVRAkvQxuHB90+15v/6S51eqWYiRkur3nYWIlclvWjWg+OR6nD57hLVLkfrYwDcL9ksiwPFuC7f8kBf4X5/eNeQI+kEVNWhPz0wjl+QajoSIFDVZR848FQip6KETJj3RIMZ9he3aZqx0LrMqemUGVXrBoIIEO8DTGcH+4n62I93+ts7kZznu2PO/HOUGp0FN5qUgT0bpK2SW4C1+vfpY7mmaAtgMHBVYgXJUtyYBAtU/eJ4EZpbwsKQdihKq4KXmmUYjylVRUV6jftMHR48p2A5qkMEDhAOV/9SBjz3Beq7cw0e3Q9ecVbLa1d5yCIbw8IMv8g2Av+trMc+J73L10/CK2XVAauaDrG1NYa82a39/or3b3xCxN7PkHxNOl+R/iyjkVhndoUaLwy/I12Dg+Ovl5BQ4aVZveCnIuYoZY0YOOH95Jmx0SShIRN10w3kofCHh+sBdU7QvslX7m6evITR9L8jkU2l5QlSxWOo2qAKB7Bz0Yc9SBLc/we27a1ZUDCNMVBivvGCktg/U9cVQoBpF7B8NX/XvsGew7sxGmIjzpMN0OKfy1EnzMbRze6ozyp5BPoHT7+f2L46IWvd99qh6Envqz3jAjvmB1UT0oyZpRvWGHywTDiUn4rvOR2Gmkwzq6crTHSHkS9R0VAIrUxr7A82uG+hM8ZjI/TwtPvw80DAEKwIfGB6RKEPXz5B22i+HMYp3rTY9MIDXfx2rYe57Hz1mIEY3XOY4WlB2GVQIE7myxbi3s6ezYkH7/X0/puzYuOBHxtDCwbqUHFffHika4qifUUfotdfVIZwMyN9BF0XS33fP1VuaGmMmc1D68ck0lfFruyaRNV5mn7UFKdigdImM0TyZNraZgJ/qN5G/CblTo1l4IuqWvtgA6hkponS6vxoT8WTgQzrKaAurx+6G04urRVvSDGXZBT9Bg7E9/CH89lfSYUAjp9LzlzxJZC5l6Ph0988rqyUAvPnQKVp5Mqjqp9j2u5qT/nrCNqRcG1GipiNBaDEXVeQg9cWe5svAgpGHN1fI3em3vc8dOWImqkxz7R1we5VME8bajInBWUK6ON4WuFwdRPzBsRcCsowEjvhKhdWjPYMN3dgnq9ohKBI6566rgrvuNmYbIc8FNqU1Jd78spFiKlPmR8vU5eRwG9/glg2xgJIQid+p0Pyw5r59tyN5WI/52sXSYpJNjf/EzqeX83TfHswgjws/59L+LXhL35g10tmIxV3994HcHmYyoJuC/BJAizpAVaIahaF0IS4j7l6fD6h7JjwhhP2TQtXDatJWod9SV+qlsNt3tMmuqUQmhyoG7AbmliEFHIn4q847eZ7ETVk9ualOba6881WRnH0ATphgOXExgar7vUMpGchOaFxSJjsPBJe8m8yJ5ntlIjR1rt5dcCYDtFidUhR94aG0hsKSaIqnNi8HsxlPbE4GFTYT09gtkuY43M1nW6I99GCn1ioBSONmfR/gzGGfW+lvLg7DA6RkE/qSQodJ3cWf6+cQA/z90DeRvQe0GVPw3BqqB0huKU/fWwUclJdcvu2AYmXuCujqup4dkkRxaY64T5c904Tqp3Nq2cC+zFXQTNrh3b4E8VdVHa8zosnvY+T/JghsFLdpKX24qGmfrDn6YjEF1Fwyia1NZGfFz7XVZlam93/BohWPCCMbm0aXjbz4tk2CsERy8gFaQVLJCW97khZP4qX9Rpwpv45dcuhzPgMUIRLEvrjud+/iPcDIx2TrfebuwhSGUFD4V2fGHxm/MO/H0+NTMRpDvwfEFnG3rP95BkoOt+yPOKfws8dTDu7sr4G2q2roSJi27u6puMis2sq5kWkTabiL3RUBayNTWD+FMZ6aRPgf1wbviG77dSFdRcpnZK/EH+HGXkms6SnYcj4wjz3fENCuMhPrWLKtFwnoGgIdufo7VMO4P6wNp9QZVAr+AeA0vhLWgJYH24YANZeZgqyMTvFhPbF2IilDuJc+FYD9TcfTxzTQxH+mF2TrXMBYdtBUWN06zfvcbmVkC+Lp1B9X6dFZSyrWIS/gqvemoOlDdjHV8VBF9VlZWr8t0RXouBcHHH5ZrNxUi1BMITQA2CUp3mPDCvJ9IlzBeCgrIuD0iRLyEoZ4F0KW5Se0bTR0nml67fmKx1KvxeeFF+Ws0ZLNM+/xsuL9ctO8nZCsDd8FRQS8OTwBtkUWE8WwEbJw0wZxApfNd6ty8kSMyvPL1Hw2b/0LAayUgF7bp0UY7ky8pPiSmk41DnF1+CSCwLtx8PGSOntxFj6Ks2+v2dKLx6lj4E6fQPy68XzHHzp3uZt8npnpJoqcyfqNAny+7tYNLlLkf0819YFQDu/5Fxel+5owZ5A5WD5XLV/pGMRuMu/e2+WdJO9v94qkL8Dz2X6UxBAFLhcy9yJ82w2qGIT+UGXzkKy9p7Jm1wovrpblsPnhzTWVTlzu5/rWzx3QMPG+8IBE8ZAT+ZfzkBW9Gw6KnEfW0q5DRoQkfmpt8Ct4KGf+SOZybCHW7XBhm4Ukje9xar1Muzg76DN5PP1JL+CVLC96zIZjZZeDvWDpuUB9j5sIZiGquzxa1Z1lixu9aJ02BiXTo0OQ14BlbzSrQC6ERSBJ2C0xvGOEu/UfL5GS2+GKL0TvpAmI1giWiRk2aJzk0ljdgVsqxXpMG2MpyP5yia2PYox4mhysW3zMAXEB4NlADWeQh9JIulC9K+XmG5ZmZwA0V7qlhWfuZaBC6PP/Wh3Nyla63Ry2qCSyPtCRbpGgbuVA8eiJnusanCJLd/ZXXYd/oMEzhzprtMOR5da+RhSxWg3Z7RT2l6wm9fcK6/vY1uzlDcGc7DzoijR1yb6QheeGbPTiVjYX+uCV5fzVLRTbgEEKExG1hccbvYQTzjP7egtA7sGC5C0/Wet6j6fhpZTZsGiH68NtGUXthmsdmGW6X7koWcN6PL4JUOilNgHbBnxqX/nLIMmOodv1ihoPmSILJ4xmLv4L0hsXnAbhZZF6LH3o1aKTryFzGrNoTeS2LlMC8CGHE1FRmfFZOy4s5lvFgRcnW/L+QIlkAHzf8HOtxE/QwIJpGB5sBLY4AJGfgBTwWb2Q8bSl8tvacf9b6jMlO41B0UwokHkQAcX2LaOymVkbUOUyjDQ42hytf6CzNIh0m0L3WfdQfTsWiWPCwaQuVDBL7/YuC3Er3aqp7YqJC/o5EmqG90m7fTOfQK4OFO4CdMStoCEUBn09Vjm1Zr0d5Rjp9CzdFyz87/omxEbAfjVg2jOAPCe2O1VNmZz9vVUGI0EpeFRWft1neCF/UBfX27+sLACcFo2ihRSETF3uaccqFcaOO1Sdu9Xz6zvncbZqsb69Gz4dSE2AKtUKgJDhAcI+6lJpxpJTWuciYuApCjnQKbvR9srfNYfiFMtYTiIaHCKfQ7O0z7EyogPrS4Lgz+39zXXCmSTfavwAjpZJgvA6ITRrU5swT9hY0NuCrxUqDq44pR9lcOxiOUl4lZ4nVoRKHu05ETdxSC0njz+peSinynva+x507gqyk8JS3ggpVgsPWfWnZA1X/MMYmXGRND/DSmz21vkOg5N0R4gnTNCfcYcR7+5J8GlFQDJVOlJoFRWd9zGefQnxqvq/Rr0Ot0RgKqL2RIRGf1F6QsAje/I8T7Nroh4yFB07YNlmssRw8k2uvOICZIps77o/wxPFFgAxbRt/nklwdr+ZSL/+SQ1fF5ENgqdy0RqZE8aoaEBPS0ZPXwLKAhPbHyx+XuiiFu5Za4870JSQGVvgCJ5FuXkYqVjFxojGJOgoVwGWXJDToAb6jQO24XetgmCHczA6qRK7O3MO7CjLQYE4nzV56e/5fq+w6f9mpFUA8qeGc8T87YWSUXMjBFQEaFaXc1tw0CkIPZYGLW+uBCd66FzBO8MWCJzOqi+OAPWIv+e9NezSQYGiUsdeXkU47hI02L+1VAL4luinpOBSN2WrB7WBvRjGiv2AshdzsRXpa2wmS/n6HV996P+zlmkwmrUd4nPRCSWJ0S39IXDzqkYDOx6ROh7taAKoy7uorZCb0MTLLfenZc+GscvLD0Yq8V2BZoW7t+PvwI9a3y8ogkf1TzCfxWiPLTIXXzZBB+4vE9Teu+Iu8n2+bF9olfo1MHS/bxKJ+BvCaOmpHJY71U9Fa/Mvwz0Hwz09VlVAvYgqbA4jBhTXaJCFCCkmo+uAQkAJoRbpXur107gnJc5m3oXaWgRBiiJU/tLFkAzCqPmFRZ9dddP+4cp8ydvaT9B96u0whR+UTQUeDGoglG88e7qh9vw1r2GeKcfNQJW97IM2NLbYpidJf7qAUgekJYwoEy+xBGdSiHLJ9EIGwwllVcNvX566X3H9y3R5cG2ckxcCVx7t5l/fGhmGDi5jUrF3Nr69uCMN5CRfS2dPmWFtbLe54HrZx//3pHCsa5/Llrh9yTY4jBzeApsK8P6a/TmrmkaLmgk/5k7XGIIl85ZQX9LiTW4yM6TAXwa7QUnqz82xnARjV2XnjotMRFKhwWu21GVLH5TL9m+wJ9+XTSlVs+tbof28hp+gLAMBDKLzXAS5KwbGvbLWoDtTYySJo4aGItqzQ7pDmN2sYmB918FO8l9gwQ0XGm4E2h/auSk+7Ab6e0ThZdCpFJ3nDg48/a4p8kFhNLrNJuwCRogK0KKD5n3P3lWS1SL/BTNLJe8pPwhCY7lsZ4tduh7qAptxllgSi2HevTkfaeqK1m1Cs0DKUtT/XGA24JzeO+d6n4iiSVJ+JLe3xfW+JMOOrD7R49sV+0MqXtnoc/6Ci/3TyruXszo1jaWTeq4im+whk9s6gx/ra43bEBjR50sM86uTgc3Q9ZBHs6opIBJPwh7H1PC39NjqeKpXotJJphoSmZPKNjPODtYWUvDg2PLn++phPilDsNNFIcRpvazJ9wJfSdLzCakgb4RJk0wdTvKLkNrWG+ITUv9gZFhkBiyva1JNQtt+l/Pn+PNrIlDpHdtbqxOh1d2qwEnaXsD/L+R0vNFaLw2uJpcqOfEnzslPtY8zMGan/3djxP2h5jwxZef3NwFjYPsoibKivPhXfIbW6XRuwhAlLeppKIUl4RptvK3WoL2irVrT34F+IJCt1EPjauvZMHWLPoMzqBZwUN8DrWaJt05ws+AB+FJFFiJ/k2ZyisvjU//byOf6vqV326FBShrzmtcY7ElUdLve7noUBLAakmDcW9JnRZ6osbvZVJEl2zYE7OVKSiAwllAx5/s/gIy5GUEOUuE2s6+wVS2Et/j1PtXD35/mpXfGfEStJCJdjPV/xS2/kDT7USketZHnzUdDhowfHDZzSYNQXmgepwuC9VOxf6i5vBI6rGTMJ2EOhPRf6GYErNN3scrUBtT2HzfMY1Y6vVBsSoVn+JW4JQ7kyqdzbCtejapH/jBVWFM93ugUzy0kkNmPjKHZ0u0Ya5hpc5SxOG07vnFpsUFW0edz5RMK
Variant 5
DifficultyLevel
698
Question
April and May buy their coffee beans from the local cafe.
Last month, April bought three-eighths of the quantity of coffee beans that May bought.
The total cost of April and May's coffee beans last month was $107.80.
What was the cost of May's coffee beans over this time?
Worked Solution
|
|
Let m |
= cost of May's coffee beans |
83m |
= cost of April's coffee beans |
|
|
m + 83m |
= 107.80 |
811m |
= 107.80 |
∴m |
= 107.80 ÷ 811 |
|
= $78.40 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | April and May buy their coffee beans from the local cafe.
Last month, April bought three-eighths of the quantity of coffee beans that May bought.
The total cost of April and May's coffee beans last month was $107.80.
What was the cost of May's coffee beans over this time? |
workedSolution |
| | |
| ------------: | ---------- |
| Let $\ \large m$ | \= cost of May's coffee beans |
| $\dfrac{3}{8} \large m$ | \= cost of April's coffee beans |
| | |
| ------------: | ---------- |
| $\large m$ + $\dfrac{3}{8} \large m$ | \= 107.80 |
| $\dfrac{11}{8}\large m$ | \= 107.80 |
| $\therefore \large m$ | \= 107.80 $\div \ \dfrac{11}{8}$ |
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 78.40 | |