Measurement, NAPX-F3-CA32 SA U2FsdGVkX1/aFZhqbgcGzLQou2YXUIFcbAjv6VxyXmQGLg5BFuhkjxTEzhdXx0CWwJHZpVlcCgjpnzjVUVU+yhgTwxGoB3ca1uBH6U6wDN28OxcsjyYuPUw2yu6dMNvtTj+sglCip26uJU/UyASdXC0bucIaONsbIFn/k5RbOhcTXCCYPSGvlXcPwCPDQ5I25i0m8uQljlVSZRovSB7fX3e5YLc/1P7NQZl4FgmN/S6hQNcx9jwlEgItTR1lfmAV7U13isexllXIBt2GUbBxERv/BUFcGa7u4veG2DxbPW3MaRNzIqt9so04SpCSn9RbASksGT4v287mHfE72g2hrEQ4qOxerlh6sV11/j2qyKmBlcCdN+ksL2/s20JJpvjc6Q+fJdm0OxYWGP58gzLeP4LZ/Fn9AZduPiA8wHfmfLqZErLTTeXU+aqnoo1cowdAMmFnyfAn45cNHu9V79rMQ/hp4shwq/MMPje7fOvcF4WuDuVTgeY37rl23hh7jfSfQBD6qTuMITQ5uPsrjp/rObWbw0qsP2WJ8JWD6Op+Opr84OkgQSRfoMWgCWnhkdYLdH82GQxIR8Ae+NcIDyHIJn37c8vj35jeSNeYjuZyB+wJSKZvJOujWdQUiLwumdqj4ZVNC52lFAP5VaYwaizOC7f3R+ilEguqzOP71snJpHnueT5ouUgQYQCuwdaAXNtXHSi+rCc3TA1j2u+zi00lC4aolDk5TkvBecUt9TuvVv3gtWKf79tyxa/mWfHainMNPtEo7qknALq6h+NPeWoMkGrvXiRu7VH/HgvVc0AMz/gRTj1dn0tb8s/RyyA/YBWwR1v8iUiAaGnKlakoz0ry9qwBanIgyud803aKsZDZvJdv2dUpSh89tSB1OopJ5bTPP/y02n/JLuytQaWPMigJqmD67JN07C3bhQY8CSl53FM/fs40Oq4YvrhUw/bMhVwkI+L+57SvZqyjeXn4Beea6bAEG4uJeTWwE7zG67fia3QDUdanPQSqMEilVSZ6Fmcf1nSTWWYOA6tkdzGApA10LGn6HjAyADp14Sq1ojqDF5jTrAe4IGFbdCXZ42C2mH6crVlnm6Pcjcf3ZeI1Eh5LvQxWryru3iSr0ieh0TFMQScXClNPiKWzskgHdDNkWHjcRN88O9R92c9+I1GtcXNTunJv+xMkLp2cyPGsDY673aigRlYzhm4jAQGjC+vtff6oW250WNMGYqDo8YkkZKT+9KisVU9XtMXJ3MiJefSv51uGRj024xr+ECHI25+YJx8SAdolQJjvKvpMzI0s/agwLEN9ckaWM45VTp59cpR7zVwiTnau1gcM2N7JyvI5hJ/OhWNlYNaEsQSphz3DhfkhTupfASyb5VasvL5mrx73CAixNh9Psj1UjSTftrJQ7qOZ4nF8XwR6LHZQIBdQuVQQIo3IVy1QKrxHeZWsw/sm/rqGPynCN4JjjGlBQrj6aufXKgDTdFVPxpVKPHPZQF9lAl3MFo/z1JimeYrEhQ3CA1olLXIWOCrjxpeK2qd5bDuPnFiLaSIbXfq7uI//BsTzdCO0wLTvkIX0ctjfvG0B3LJic96q2vaZuPaVwyQEVj7rjd3p3gbn6jczCj8oHvD6jHeQMlwJv3P6PvpJK+xLDZmBjlHT4cve/Cm78Hu8ENNnRGLPy4be+aM8JXpnanxlwfCw/pfRqVLg0TOwHi/3gh7tLATHA5kqoCi+GLb5iljYPyMpmSn/ednULvLgfr/J5lXog8VEwNUpEq9r98XgMYU5kTBBRey4t/LNv26GjgMKiULWWIgEjAJNxNQT/SH1gjdKhejMUPmWlql1suCRFHJqp6Q3QQCT51xfzl3aAwTdOpcZ8R38C9OeFt78KNT+O+qXAGudzT4LVd+fQv3gmCopX1gJOVEducE4jrWBXp96jRiqjfzY2sSnRD2uSNg+6OYLgVIQwofcIpnsAveUeghJPCo2eIBUbpMR7UTCSAbhjsxbmcF6npTHjfxsJZfBVY9OCel/6r6Kai8O96l5v7Jh+z+8GnRmPWiAaD7B+QzRH+WrrSSdh5aQmWbJemTABLg6oNmbni9Xx6ci1TteJdg1wAkKfTQRdD0R5VqidYoaDWWKmon2sF20uVHroMdyIoua8mshRKPikNJ1hgi1Pj4LEE2R31ppgaTUP2h5BD0KRV1WyXQh1WHv0tY0vaBkUyTrjqs+s78R/n+JCZBASd1RMgSPrFv9mVGJn4bINpWrDYHPyY7QEXYhrOGNmY0MZSmR5qq1+Ws6P1M8+ICUhB8lYXdoyJAbh8XFDzS3K2cVWtOGbnZuTObv5axPnprXq+TAnpFTdQkJ2FuB+6i5JJ9EER1y5PpBkaBmEDPgG+Cc2i23oeKR3y4MaeIv8aQn70ZBaZ3HXk4QdXO7JXWcu3Sv7MqNMDTVsOoKyXSuBv9fyGoRalWUiOn9SvtHnIad8AfzbPH+nSbjNGlzHFgTEM7GsPIMpC/HWPwqypQKM05q/RsrtlyBq47TarDubZjbq1wnz9Buy8cpmwpeERcoCRGmn/rkq70nZg7pdxlI33jYluU+xEpt+QMxwiUgarNjGoFMhk7qrDvVkbJ3Cw12geD0g4SGmJaeCCbfIvj5aivwo7SxqPU7/6Cckk6JUvFEdmzFe746bTBa050ROj3KpBGeekto5+Ga/E8CE7DLeZ20K/N0NUxhkYdJMPXyaUR7X6ORe9ssK7WLnWCGt/ld3bArMySO814gr3O9hyMzsphJB4cwBBPbU90K/FsJUrGsP8465O3k1XyeWFnL114XMSZK0xFZ6yI+PLbWVw1pfYBkY/ZGyxJXBlE99HA8/6TW4sy82X8jX0p1S2Qe2SZylGh/xJcHINCX/Z/I+H1apQp063QXV7Nt0WoE+NBBTzCdPV5tO45Wjsqr7JEncXM3qgR6SX42wdfZKREgSM4qQTuBv1XqR0X58YAW+Socbji1XrnDydp51rR9BbM41W5XFMUamYye8HE7QVsL31FqFyZeJoaULsY0ao86pUQZQbVHRVPk2ZkH89JN1mROMn370/YvylH14X+2Z+e3F+C3B55EkmnY0SE1mJ3htSm2cc7SBjaXNL9HxPXJRaXz8Qkemq3yt1J1IlPlCcnC+hV55OnHJ/ESjW2GIuKzDYJTgV9amJRwMawWULhGaYTE3U+eUlPtaDqZN+aA2jsh/vHDRNTekj9QD3Coxivz167L7aqJbPFlAMzA6XskOzzflZRQS/cfvy2vh38aoMrrC/BEYz3NBXocE/3BV3I24yEqm5Yysi0DixptWpJbf26AWGbUeWOZy5fKn1w+GDAMuNMWm1nPvWnSC6jPZsQuP+LhdIDUinnzr5YyMGZ1R5p0akTJNsLec0AL32JlL7srahlK9B7RITBGE6cIDek+OCtWHrvR5Bxwh09C3SeZNGbaOhrXKLD9ECqsJvp8cCPA4xB3sRvCij0qSSiQDtZZe3IUdxF10T4xpDeeuaqDTrBYwTmmqSWiuvPIz0NBO3cj9iw5GchWxNBkK15WJZSmiHgcz5CBzrIisIK6CS2FVriBr0gAMzb3ijZHxVj091FO+HW1ubqmnI5zZ3KOCSakR/pCuafNdwbvrX7UFjazY+8hhDos/+nEs+KIgHhOWMeNZwp4FWg4FZn9H3NhMNLdwGeLXjb1OP/GqMgnJpdnYACjKSnUVnqnek/q0WwFxPw3gMndOOPydwGDlDMUx44H89q7ZNyNgEAxiQO2Kk9FYOUExOsUrssaxNGU2nQzOR2tUmCOZKZXrNsLiC4fbE3i6f/Qxee32uglpcihwxjd642vQFD2/k9uwzZflK1+s+iDrQGt17AwCjj2o4PrR3Oe/ty3NNVddCcNUf/wp9F7omk7jI+jp+SyO5FLlbYFQg6Mkyrd/JN+4Ph6thR5hsrwOt5oRBoh8ypz1uFMvJ7XdCVaLgDt0OHuLYaVeOK3NdJWJ487RJKEONUYjAjlNaJypBECoBPtqNeSjz1nxpaM7RmCIeN7yTtJ1rOF3Rd3CSX3st7ltK6rQJEJHR38RR0BMElx6f7DW5LiwY95J4RmmNIK8LgY/ob9ldA8JbEoEo3nXp39Uu90crWrb/YO2kvL26wgUuP3hq/1vDRlz1zYud29cwyHY57AjI0ZJlmRBUt9F5nOa/hxA1+4i8qt71ngQBKrHhjcf4U9I886yfV2GKk/NOI1rvG5K42S9dXkYsCbjfFby/cyP5PBo/eewB0Mj3kWCKf1M8kCLf7P+TSXLKnmplmQp2B35ojXAZ+2ihdTjt5631kGF2sNSqVF9tFc3o55yamtCxgVSa8ud1oUehMEWVlKUFSzDiLpdxDKDqE3dU/RUO5yh5Ri5D0glUGirKMT5JPtbDzuK3g0sKi/VsRho3yF3p3EfVTo/omemCgKOUgHBKaF0vZyBrP23MbQfZYqF6XQGG423QqlTSWA22ugExEIdlIp5/nIrgADmZ/y++1P9oretwOHQc7Ah2GSZI47MMhxJEOOp+4Tg/+yz3q4+CQg4o2JHDtf5+uYg+szluQANb3BKRf8vNbaKf3UMhyq+k54/uFAgx2LlsdVjfVmvIdTRhiZX6QDigGHTKkAEdd4FuzHY4coY6jw9mdKFOm6/0Br6e7DLDSS5d6GI73Kilomr3TgNSPfAGv1Lwgcw+eGAESLVQr9TCj+IWC1LUKOMo9grWFC/MpabucUI9jZtEcODmQdCtYBERRGpPumKbxRD5nMhEeRsmfkpHPxlrGWSEWNRXuOUP6HvN3Do++vWuNcW/teAfxt3kJIQ57dcbET2oZTshYzRVkp0zbqZaAplFw4J3VMQNjIdqPQgN2+wUW27MNersl/yUX9kxhfG/CY3/9znk2p35M40HAV9Qu9mSdvUdmaAnR2AVjHzrr4uIhDu7yqy1dhje2w2fzA5240dTRYNXZzg3hJPIV36aZ/soWOPjlEBTdx3DubRRm2d5qXoPI2Y5lzQsEyE4T5I6qWpC8vIdruc5Zc5yTR9yVzaHIgzr7Jir8nipxMyr0pwZN4YJzTjWVpWI0on6cXFA4KChjmARa31UmPCR3rZkUIoPAaBAW33O+x4WqucQw9n4P0RJxHBijsVjtj/rZ1p4txNr2qIE8MofUALtLFb8Xi4L47jjbVuTaiUPb49MHeNruhKNjl0/fK5se4n2S7vobYbvn6qTw0S+bFkPhU8LBLMTi8L/tSj19Xcq7BITtYWmPjXtK1f6Fdf9gbEflPiK/QEzNUy8sUj7BAdm5Iqnb0R3IZNac/zPCeSaGg/LeDMUxJI+R9EGZ6d7jMLN1oWGbx00LnfvIO3nhbP90084j4elKcptJf/PF2gxa8vRyALRHfMB+pFwsGC0llyctmwrOxqI6WPXWxXnS07L21KjHVlj/IiL5UqXCeFrdDeBcRg/9a7GV+YegmOOKG2yQiiii9wY6FeXotA4xyoVdxa/OiO6cjTBsKFGlkAJO/C7tz/rgQeMGiX4WeK2vK9Znkmj6conKkIsYYnA0qXvlamYeeun9H6ejnWBy3E1PnNzoi3WQK3T6gHJ84QJY0NdJ5uSZGlJ7Avt/qwcEWjRmfDlvX/oYmJCHVhrKGPWkzGmMS7k5dCwPw3WPfQ34xeXp8wnOrfhxg9ItaPPZRsqjay5kGnoyHtk2O4UDZjAaqlpEpcF9hpccAWyk0ZOCBI6s/noTIjlPlWY7DPJz9OjySPX4D4HIFz2gq4XaMHsnE/e4/6L18LbDdf9tpqTxemL85QUBRLoZpG/qEbsEgULl6C0lq8QoDGjHdD4X7/lyd8Ptej4cOu39/sjn71q7+qLvdcpE29SmQIxSo0FwHhrJGbFK35OGwjhKPYzSX32tGlt7eLzsDnYy5MVaeOPes4Iksg2ktTVHeW5TJOwSwr1yJL1i2MtoWqQaqv+bDnKjW/py0a96Oh1XKwC9hmsaak3wLtjttSkKy2BfZRdNKbv2kSxGkUJj+kYXguaaVwuDUYLQ18s8yDZgPQuNHuxs+SjktVKVT5sSJxWT7ZNeezFHgmt0/eMeDtZWgx7JpHnyJPV+aofcxEdaidwfn/UVcImJKMYKIAWdoYLzG8yapJHtl7UNAqY91SYMeDFZIOV2wD/Qj0Y3SWV89i5ZDk+IWsFjI3gCPDzWeWLH3CT3qDNmZb5A+Y5NyAe7MTpE1EBzmPkaAlqjxXgTTGQR3m4Tvk0AZl30i/LhWSmyhru5JTy7nGxNkCmj+QOI+bhHrnB8kq5pVSGTrPC0ZDto1HqXtDqJbmcwJC/CqmEyaKw3tYAwtcTwib4H08XDGLndZk1nXAm19BGU/taorG7/Oe/5GUAuQnQ9n0VxVo65qINra2qSB/waLiySSCoKSug1xAAKsxi7qEAGilRnTRw+1/RVAxHXz5Xm+bNDu6dBforXk7maWFUDs/ovtUhR9mSSKCE01ulCKTcsJRnVkzEC4yXybRm7skyPAEXEKTBu2f2pBxXQHjN5Ndl7L6ETwC/j5fl9D8h5DT9/tGawjC4qKaQM6FraV/rvKMbG33VIvOGZj8J+ImbsRRo1o0mQZn7FvSIoXXMFw2W+0D5lG7++rFZHvDmPy3UiMSPeXc4G6cHd/JHzaZnufIM7ew4syvCmcA1YmxbAZSIieXQTsHQH6uX/YelG4Vew5gF7+A1MiLZ1mqn/UcmBfcV+ZtzquB8VEZKRB0r6DtoqG9D6+jt933ZKabbSt7ClIY9UXEUNcl/CucqC+wdtOj9p2RG+LU2XhErnbSKwO2qBgva4es/q+xlBcjnwpd9eRcUGF7MbBYibJlDk41eudLw0N4ZvoW7CLqbcdgANHpDSg0sBI9Nm5KwR8mE9O3udqkvAmRm7AHjU+eNCCYmIhWuA9GV563Yt+bTTVJkLDifwAG7pFL4GdcioOxOu6hJBxhVgf35YXmiczTd4K9kldAE3Why+JqzUE7yemxZDmUHIfGZo8brIJrtdmMTvMh6xYYLrjQfcNgAHe47JYFHwBBYa2eaNkOtpJoqX0lQCD0gL7rm2LuEC5g8axf7Aa9AaTZY80mRpW3Z6D8kODv5E0Amv9sjE7oOZjAqirL0dP8Zph0Oa3Su6rtrNlAxk2Kt4YJjUMAfzGNePP3Yqt8X/w4Dfn7glf6zhjWE416wXs8LBnD2SggdtxOhY2ROinHSRQkT4SOvxicl+mrsPT/DStnDebmim+/35K7tkCN8eGHfI+TCDmbEXpBeyPMwhiuV1kNKEv1Z8+VRf+xc1WyXqKw414A8codUsLozGGcIBzRDPTu2m8tuIiqLrxWQ03cjTiwXqu24E7/v+j554Ilw+hdFIDC03PXDywSM//qhEaBj6c1OJr8FpkAMnD6syMGOYuY2hj8MN0NzfJ4zYiwTBbDRDTV2TpNfH9yu97pr9lKiZF+7UmThtGX1uR7f8hyYj2aPGuOUUDjVyk5Rde1/jetcxWa66GyqMcRUpo1bBYxT4zZMR45upPLLRXPFVkHBszw2b6RgeUr6wgc4IZmWn153F+CzHKz0zuiav5FpVYkEv4KJ41wkEARyK55vlArkRO61RIIioOKAHxqfkgwQeOwC3rUBczZAFHK5SAPhAG2W+P8dhVKrVMuiox+YhdNVbasHioyaXBjiRMIZsW1RK0gWnqKh6vkCIh8aIPP//toRrQx1i8pr1PB4Ign553AWA0NyOpMkuTF9WUpd19/1yJ/1DGTpqA8jIttwhbz4c8Rr5ludTxErZ1JWF8dUYxBIJxEapnV6Phrwgl6+HL0Sbi/wNcZGg2b3HHarMlB5zCQdicilj7mQsC1nKRVIDbnPr/LXHFUCNZXbwiBFHixb+DleNPsn4Z8GpLJLkqEEgVpaJKr534QLcsMJ32gFSZOgOx56BFcmhFPHEyQ/Zsv3yf2tHw4PH1V+qMq/Z55MR3b3FtYcd58+g4u1l7J3FRLZkPr9Ij82CtppM2EJNdTADVD4YBJICOjhhxTbaVhLHRKpiC+BN3y00RP7kgvbIKhXgawM+Wxe2v7sGPVC0xbCsyV9aP3VMgtFU/y2upRv4Md+tqh8oNQ3TYafl8av47VYo8MFUvfT2017KL8IBR2nRokpv4lwLNPJ9OqH3LGbD3ejQvR4E2POv0dhqW/+54hYaT10vTnQ3ImvV60kwFJzZmlNGGxMmS/SMFv8RKSQ6qT7lJIxENpVKQ3QiEr3kTZ1YYhO69ZBTgNYaLa3VaKha/7wQDgazurIXk9ZUj2EbqhEUdqRLAnxQSnF/CBfW8FEuCdBR3M0Tf7Y0vQDqFzBupqIMbCr3tAp9hDbbr5ODjU/No2MV1/8sIogQXWWOnMZUqI3PMb7Sm4mzFea+fOUwlhwBeoIqXhSfq9RYKHGaLo+ur1eJD4MMULni5PbQgB9IMorpMsAdIT16lRdK0CU6UXVZaSDO6SGP2BaaU3flK8inN7E/iNIIzNFV77+phm2aO9KHPP6N83t0PF8isqXWPCejnAjBJBRGJVVcobEmBDiui5SZjDQEmvHV8Fi7IJbJJi5vFjNtngjULwm058SHIull61ZCFvsWfHBqN2f3RHDt+Zq3XHj3fupK4ubhxJ2ZGN2kNpvc77SZ+DqFcKFvxAn40+rh8pH4Vm9s6G9xMQc7icNurCNXvBcX9ZTM284KZKWsEKsDPHQ08NoqZYoxl9J2XelgVbErBMW8BVA+KNV9T8F/RiQYPtLgaB4ZWnusCuFExheJEBpFWV4e+YwBPcmIxIBa+7XYyj0ZEB7WcKxth+1Zsf314GnE2mRyjEMaKxsNECFFeLS9jcIscltAmv2aWl/jCUj14l/3ccs/UmUtSlctRc6spIMchijBMFDve3AbCNJW7jw1hXg7GWBX4aCVnQ14WsTcZQE1N+HzmqCwvTTH/sFtNS47U9Lwie/+X3de9
Variant 0 DifficultyLevel 718
Question
A square has an area of 196 square centimetres.
What is the perimeter?
Worked Solution
Let x \large x x = length of 1 side
x \large x x 2 ^2 2
= 196
x \large x x
= 196 \sqrt{196} 1 9 6
= 14 cm
∴ \therefore ∴ Perimeter
= 4 × \times × 14
= 56 cm
Question Type Answer Box
Variables Variable name Variable value question A square has an area of 196 square centimetres.
What is the perimeter?
workedSolution sm_nogap Let $\large x$ = length of 1 side
|||
|-:|-|
|$\large x$$^2$|= 196|
|$\large x$|= $\sqrt{196}$|
||= 14 cm|
|||
|-:|-|
|$\therefore$ Perimeter|= 4 $\times$ 14|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 56
U2FsdGVkX1+hbRW30y7Sc4CTIDSv0O/t1oKtxuxk5/KewOk2geW7UlK6U7J1/f1SYjXKV9JWAWcwYjfm9VXNX4NKIxrAxK/oTAnxfiVpjjTuEIbgRrk9ppD8gbvNpZt8Er3BdB5yRdKnhMjJQmVNBVZQtQy/ZhfUq085x7UGgmz4/ElN/M2AzgOqeJVwh8TBdaTfJsUcK8n7WYJ/nov4/f6pMHyitLX16UEu2QUCf29I+27m+VcHcyZzY8cbhqfP4cJHBALU/6pFYXQcoF130XWAPiiT7iTRM4TSuoIdJHjUi2xq3GF5A8hjbrbY63Z+kP3iBOdkI4IeTXTvaOmGGFpVom96AYDkzbOhO+BAbcz9OWhbpe2X3baEZLDFgPA/0bBuIvPRONhIEZ5Ijd9ERiWpQ39wWa00AsDtY+u6s1iQ01O1GoeXywJYrHCJZh/PZivW2ziQy4dzrlFTwJBJa1Mvlyt5ZWZVg4aacXMYfqkY9RqHd33YLOdZXxuArFYg12Y4IF3Y6lJ2f+JtR/2fcf0Dm2UFPXIXpRsIEQj0XlaR2f9b092jxdEGo2lb0JYitsWXzBXsn8QA5CKOP3AUOR0kiol1SB8sxV/Ud4WDaLGax2YGCPwrzzr5r0TEETlGaUnDTok/d/j28rTixxeCUXVull0uiEZIS3LhB1+hVbKG1P5+Tx+NceATKu2f9XwgsMqeXHQwVtVGLnIqGKjOR8X+eS5EMXEDasU/PGc6MgcKd5s9vC0x3K1faWm2rk9wSJoi7ikb7lpa2TGURGItflB3ueuuBWcWX1VqG6tvCeVL1AEvrq8aX0zA9VkNxqgBh1xiqkASCurhQ8qbQiPlwZgkZYJvd/m/7e+5+3SbGawX+SOhY2hjTfChnzGYpbV+cAz3fUAUfKuwcFRodKNntcNLjE+TYUcfarvAnVnQLLDBP6JCkywNz+7xj1Jvgy5MtDxKydD/ZMSJXw19PzUCMZmLfOkPcGFYVIE0tEez4GHoKjnkibaeUT3BLRSvTuM8lbFW/thLpt13tTv1Cwyuyuw0L0cNvH4mNxbupWkrGP8C+v+rq6kA9DwIok08JSFoU11j5JuYq95xR7IFrVUOr0fL3oGlwXbeBBpxfpp3cRY72Uz2t3E9PhplBamrUDC6fsntN3m8mVoik59/Af6xLxfi2VYPtjjbRoJTogPOuuro6G/wrgN+DVo4ACCx85JRaR3qtjhjfxroOUdADo9onS995ZK6A+ru8ZAMbkVaNhYMqjGlIGGgtfQ1XtOetWb0sa9rzj88zaB2Ggqcc961TFuQ5+6vGuRctsXSAmzS6evaBmUwtDCsqqT2BJJPV3lS+v2VWwBihcIVI1L28TTAtOXKqMxCXEvoWxEvp23qLgVqpuWI/p7tysIvSG/VV10S7JP7Wekp8Hki6eCyRoyYGAb45ZE0K1hnoEbZPKeXpqbP7rE7G2c1al3Tyk6sxRVOgxpUHoZF4wWv/NHzNJMmz9ADQkY+wevHLYGQjFUZbyDe2Cq7gWs0gaMsJCNv95dsmws794z4jCY1+jhjdI7DwcjKNMHAerd9JX41t3F10dqsWRIlCyrdl1DxLkFYgmH79F8kO6Ccm1S2Aw/OIA85JS+gE/alsOW5+rmRl1sXUjTkP6BqLpbyX+ZM/Cx9//kGLWOdovM4bwn8ZQIG6j7Y68YyyZEKKhsaKB2DUcv0T9BENsBNdjrgn0PSoMxY0XBBVF9/g76vR+Sr/TGO/bGk40qks0Gxg4O6IjeY6VRDtkoVqH0ZoJbumwsctMmUs/FSnfUgmYxV8w/9zaFootXmbQoyyu2g7RXCDclwRuwCssPk0Qsg/lAN8aROyyrM6TVOtW0DFXIWIJQOKAOH42KqT6Z13EgyTWLGHP/eHnXRebi7MeFWC9cPeFAg4DkpUDFnkHI5mOWEUXUwY8a5ywgfnwD3UOR1mvTx0MQ06A7KoJaESa14gAmt0IdLffcHj8cKg3MHL16x7s57vGfEoydRejHwloy99sMjyZ4De0jMf1zEkm0yYjX7VLH40udmJ/u6Wq3WTchD4raIdY+h0h9eGHfOvh75K8p0rdpUnqiy1qWV/UOwFt+5sJhUwxgCbeyVFLNgMRLeEGT5GgOJC0ap5N03uodJW8Ck5B5w/b04Hz7Ng3JLhCG9TzElEB6epIgrAJqX58CTyPqh6WG913UdLmSGpDv63pcxD59UFCPl1L/zUq2B/tmWxuhtK5eUmrQmh2JASR67mHL3z79LHeJUAY57s77QhTLYBRPaWKG/yrVis3BtQk8I18u4m95C6FXafjbgkkoODH3xGZh8SKnpIw0D+0m6QjoQRDXbn88dwwGSn5KHZQ34V6T8P4uhmjU73d4ykxQ2upFa0Ddu1+w1qw04jy53FT2CejbaPCpvmninpC3ojxjEHQebqqr9D9uAvlitIulyngQdMQUMldTxRpFOWSP8Ni36S2qmAKynetEqB/yCdlnYucdw8rjNTanxbT3S3OT7uk4AcTSs+zrNMUXqqT843S3qVmnhPQ3uBbSfcGmvYeOud15FYDw4Kw78b0w68BL1xiouERsMdcEiLcV12UX755vOW+y/T0N7YZSJU6aUgTgcqLaTLNBmEzJazeDl6YdaTzjW8UEVM9sKVu/iowMrZDpN5mivMEsY+X9v8CtLcdYiuB1bDlEwxigc49WQ0dy2ON/TiQn0KsqphMBKR/uJUWklwvcG/b4sbKVtKwxos7nWGBghqWp+0bpUv989V85r+fzI4KFiicF9uRM8/a7P2dVCWJqX1z/MXKO9iyOefGvqGby/43WG1C17CazJVkPxvP6IOBxaFOPm7p9hsUHfw3beXy82RcdAocj4obMAcisd2m6lAN0bkcJBSElZLd/0hUiTlJnIK26XGw5DTYx0cCXHXEmejgWNeHpllA3fPXWnveqQO9k+HhUanRc+WItQR7ER3D6KZYj1JSuBg4+UJu+WIqrqvOY8WR69fvqgQATmt0G0lydJ21CijAT9J9yYf3orx5XNE8GbmgEgzHM/e3uxYm3N+lYdzrfu/L+vvNKg53hL7L4RoVQLCqPdfCIUNecU3qUWRCwWRooJCH++RBziguaZjkpwEc5Hk8aeeqYNxhaAxxq+oaNrBtG0vh4vqTVzWGdd1JGS+s6W4k3l9H7hmWbCfDM0bwFzISGPzgQE15dsMUpLFaUaaNj20gCjsbpzen2CvH/X0fV1oZwmy0xrShILQ0E1dQBkCNwOfGzqP3+7vQUOC8Wb65z0Rkhnn80BOKc1IfqVZYOczNpjpL4kaidMRSQHc6/TftbLyImdjwunpoQFsgEj3VrForTsVymfP6TMsID4w0i6N9CHYHuVeJKXOk4AotjQAkz9w9XQnQyRWpQHzr/i5M5jL34lPipb6uEWxYDsRYle2PV5C+P+Ge9iMSemr4wBWG31JRTtdQlo59+B16e7YXB5bV8z/4HIebb1b7EzfVrulXFaL8aVj4RSHvl6YxJchc17qMmpe3ItnIitAG2S5ycg9YV8OIcg84ByD7ZrBs2TMhAhwyA0MGYvXQ+ZeYsNK6pacZ6s5TPbDX8TlxJ4t71CUurMaq5xC+ydgIqR0IbJcSqh9RCRyfkbCXizgGq7J6HyeZQeg+Sohv6P2Jf7Uci2L5AE4eQNfCAdq1pkMAUkrODEbJDej1WwJXnTB9g6LAbFEDeSUtiJKA+lXcg56ftLzmv0DoklavtvQ/MNFediW2CrqyS5J5+IWDGni0/V0WuewCvcanCTo7ImNSlcxf1FlTOrs/lzfAkuB9V2WtH190WgTuk/4IkK75J9uEe4JcE4InX3pKe5V+xGbQxiONzv/wIRTYr6Q6j04Wxm19VO18/dnk2tnkml6Mo9O3Y7SxBF1xD0yoWCxX+Ta7IqouRfrlD3yWNwnkftIFdor/tk/xJwb5nXM0qKEoMWeVuj76QNAadao23uq8mQJ6qODQhQOBYc7ErAlG6oDA2x9H/5MusSePrCE/dhOK7cPbXkKBW7DN8eZZXxhFf7KxGBZcbyXReUAOHItJyzgUMXr5glV6W1OSX5mmBhCY68eB1YrBKoOXI/ULDE+bWCB1dRwDCAls8FxX74b1gXIrmswc0DhQCRujW6AIps/DYKKBSNM5ymU/fH4crh5lWB3eNc24FrflKHvbnE2Q2zJOPGLv1N3GQ0UP56OTD7LoOmHCvhRNcUhoVGpWG/Y6qJ8v7fFZiiCH1vWCTuwXfv1TOnfpZo4Z8REnSDz6vlemNtqylPmfnjc0hEp+DbSZ/vJ0kaLLBpeBTvRK2D06u9SA1gmTumEqEZgSkNr3wWnH+X8Ao0P5x4/cJgn4Q1hLb2HOAltT0Sa68NQ8QmFQYOXaAGNph57rHvyki8IKN31he7gvTGLw+knGL9mQ2lBzhFf0SbxcjRA943LQEICKf049XROrCKJS7dHGbjIqV56y5iyrHwVQ8U7JehiCiiDJ2tZiL4/IfZ1w/GIAzRBaZNBsfGBWtZPgTKENOpMhN+Kx4YJ+n02UoMgHDOVVLctDJ9sjrlVjwjtcmKq96QMVZQYeNlvWRF6WnKfnh9LcVclluZ8UdCMDTbJ/o7R9wD0RTcyWVgp33vziuivmB4PfN+k9iCrnFyCmZoRr7FgoMxgj7edf4HwWFRHm/DIAInDjm9xYivwwVeLu3OFl0qwJF0ZU8KQrx3xyPovDeOPaMc7bPoSNbsOko7zv6NBJJVQRAMydHgs/gnVpnhaN5F+iW617Bvb+yUR/6bPSxwNOmvg4330fThHjVv7b2TPYTuQRxP/q+isemV9ZRDmXURkZ91rTFv4hoje/1/WEAMpfhiuRmRBHXL+QBEvUUovKRmEb4mlJhsgk/ZSmNhdUySkNxQ0R9LP6shChOyJOg9iJL3/lw4XrRsG74Gr4HQ3vrjRek38q2DwXGhV11GOIonuMx1MkcqV2ybywPJ+b/wqyoDxxlivJdAvbh3Dib+DO4nZQ2XASTxLnwxcm7LeFhrEru9rHoAB4CRbuZJ9nwN0fwwYd5PwBTzXAcRuP3vqHgDUxjz63hV07a2qaXuQ9AmnlsCoYyju3yIHmNwL6CpvSmuyD8Mjir2f66iJrRkMDjRUbHtT49M6ATukhJKjvgL9f1Jxb7NMUrHBEUBlz0Xdk4Ox/sMODPKzQLZPDPBgvtbYsVmTRxa/woWzquNJuHZAMS99efZI83SklZR3Uj3YZgnaWJy0GcsuBlnHuZK4sG7VVif4vTm6/oOOzZt959Zdx+hqCMYhkhXmrvKU1FWsRIIAfY61FR5qfTi9cjX+kQJ/akvClHkmEUzHkJkqtCfm5sHFSkQvLoYseHbvqZQnt0hJsdZeYqiJIDbrZMj2PZCtYEbzcVvPNQ81PbMqW4f6/bSyuv4OpK9z8jIFv1uMLuMS7oQNjwwM0tRkrI68mKtDvReL86dqAvRIHnrcTqMTo+QneeMuU7vXtg0dwLQWRUELw2UqOgNdwjbOUiGZgux7RlpJriFRDxnPX9g9PUKYmyetxgCjmhIq2Zv5deTm23TXvIxO4Fn410+07O4/naDEoQi/a79AJz1vV1bsX2rq4PC+8pPqbKs7YLughoOp6/AtcandxFA/XAaUtgs/VzbQnuAdzKHQ3GF9CBb35erL14K8KD9GhmsgsP5R1DB73mOyDvc7B3HWNKejjWDGoT7LaD4mjptXUphWUcSblqUlgP0hLovwKA8vB1RCiMp5WKoBx1EhcY4QhIwUxKzXYnxNOupDhvyy7L99Ydk7O+ECpPvIM4Xd4RMlybITnsBYIKaWxL+q/xzYrXv9GKsP2fxqeRpY2/UAU6hSvcbnnAjntb3VrBXsKAvaP7/BxaRoepyZrF+SrXz7TJ72CvLqZ7AqgfTeb3TGnkTz7d+dVwwvIdLR2CJBNnS0Mb09Cg4yboJPpN0bkPv0/FKXfcucCcvoqQrFFEcpkBH5SOQ4lZVsK3yVfG09Ilvh8vPkmPdlUwmLXK8AmcuOhHZKo5cAQ2a2lie40uwnAVVibKKkFSIhfAytDW+iCd0g7x0eMcb4berLu2GAr3+OA2rRgNNrok+U+1on9vJpb0b5bnwG3GQTgVnfUsBJjAlR2Fmd9aqNiCfCmDA+jPFOXlIUxNLKdKg56RNTIz5PKKN6Wfarckr9Ax6uI4gMMy0j2cXjamYw5ZKl/MhiakO0xSMsTGxOQQYeX6beip+l6f+/eDB40k5hFUdjXCr1CptI8aZtZUC1xzWWqJqnVy36RRRzpwsT9IbI6hdpTs1cm9RsnmbNouVpmPD4fs4F4WTLUkPq+yYRdM8sSNSYaxCqwJMR6RupFz5Fy6hvvuGKpnB8/ytZmsJaWMBvEAeZhQjZp0aedeLbFOlL7AhnHjcO0yFGnkiXC6UJan6WjxkfUiucHe0OGrbCyv+xz7zMHEKoHUx7aw2F6uEgdjX8L6TMjrn2Gakg+TJY0CQZ2e0ja7nuDqqSedfTRCzdbt+g/PX620QLTfec9vx+3DSMvtLXjuiAM0zDhgFPS6TMCcpdWQ/LKbmZ87xAnRz0CTlT/jnhY9wfUxZBvGpBwXSCdNII33I+F5ldQre3tFAUxyQfJNODo8M/KD7WCMWSuUMlDmqlTcR/6G5xEM7pIjblqIHTLAKy2kH+uiErKYmy7uzT8Uakxid1MbsZCjDHVLwdxLbfnrR1QPfV6XzCaUmA1MOiCt/9Bgl3JyMdVyyDCVL7+5x+cjkPxpaNPU2AGu7lKrcbhtMQY3tyTCiFgig3NDMoCr0CbzrjmBRL+kbg7j1hVetLCC9TYbzBh+w4h2mKLMlS7qN6m0l94DN9Yy41EhP050gJKR054r+LgXnekee4A0BkQbLruKJMUIgOZ+YGj1eoOldn2jkrU2HNnPTfvxvoW8PMDlwEKh6IzjBecfK4Evh3hU2Sc1owngDEZ2H+FwFn0rF2RiUoEArqzgMGyhbBSvtCkWRfNo3cX6gjCBYSSh4TRG1Sv5CLmlNyC68Ty6XlnMcXowaBquJDyGjO06ayoaCZJaB7X/ICat/TnRdnF5ouWnmJ7xiH87wq4YSJZjtb4zMLwT1DbmOISSbxspXxxpZhwNwWSgC09/WKml55ammWx4Ya8JxsVLZXQ6OOf8gzRe2KCLw6rOJlWTxz57FC40H0UZVY75NQI76lKu5AjL2Z5AdL6Jx75Ma03gPPVcZLXzjghj2gi9EU2jFw1cBBd+i1zWrjc59WNLlBrBZ3EE9650F6lMSixofif596OuOwY2/RVg3f2FfG1JRTYEM9R9Hfc+k60p7DcLsDuqK54onpNqylbtuu4jXC/+hiK0DQkt1l6TxED8f6xUFb2jumR9HZ6KNg9s2BE9AHUcu9+ugVtGbwVB6bIb1UCkUvOROqDyg1dmNfoWqAYJ0P6yYHXikc5O5nCwAjamG/9I1+yxsvDIrsGtNHxtKK/k4bs2ka25IwojmDXK8vcwL4XdGAQgZaAFXgAfymZCo9Ba3Ych1QnrBNMFlMobtMOxvkAk+qCdwfYFeHs8Zw/hk1zJzMa/oMIeEJd928PChTkN9KXAhVVOYQe13kru5ZawW4L2ciKMrAqjn3XR2RVIudB1Cdt6gNVsoCpcTLtgTOID0G7WneP30eiLjVKyhSruOpyqnn0/asC1+H1CU472c3tY8KeU0liO0rcLqmA3W91P8+KhRBGpDbBbDaBDKtfOTfR8B8gqg0MfjpPC1qDgNR7keYMehcFI5WIsQ/XCkTKeZIgoYlwjVMjZFrIvVVVT+rIqBJXxq5Gext5oAHqEh8P2HWrnW701p3fvWpBbjc05wTjB9//+uPImIP+LdhwLaukJdJF56FFLzI0IQUbaXlID1+yAWAPlTu9CnNg4B57hwBesepeGE44cxoSqUheVyGJuWh3uuQVNf0cKt4D6qpJjyAubqQHH775m0mpcy9ZvuJ3sy21AdCSn8iCuGrxyjc3NtafNw6UbQQZyFhMsnxFF07W4VpfxqmukWJ/fuhiVviXs3RndxYb/qgh/T7uduBtp0ZJ8e8NLoLslgf8wkfM2q1MBdOCU1Iq0CTFdaVJQonXFAS2dO19Ww5DLi35sh1+ln54fUZetuHfoUgqC8SxYkqVc0hd2VN78FL3sJqu5SafSQ32iT9zG8g7Z/yT8wJxO4Ap3JRPws5jszT8CNU/r8uA5VJbpkfG+1VxwlHsK79qa4+yOmHP7zRWayq2yXfftsGEwtLJIVcH7T7mQAPt7PEc6SbBsPK24H0b5FLBmy8Yq5lJEbvSARlbN8BLMFwwVC6Bdrb8uMaCT74eTKzGOBR9/Pk45syltFVssYo55ayhx0Te1sK/Q7uGtgPZPpFeL5heCSd4FLghk15BXiEOPzeGw39MzxJHTG7F9yV1KarctK6Ei03OMjIo2E1VyYpP9ulSAEwdEHCWJYpQt2RfvC7aq3t7YaT7wgx8giwAs/cG2N167g6qHL1NOT2rJsXYsC8ApLLzw7IL8a2/+HAhJI20P0p84p3b7z1zkYFPdFhWDNpdZxkOqSNSwqaqcxOwf6Kx5WY6VCxDXkfUUfhubPifFfWiIBCnuDZ+Lu95aoCnXORxqRK8FCpIC1OtgEig/S9Um/FxZXY0mzPVqcHH5EYTV1ppT+QB+lmyEwA+7zBnbeLVUWw4/Zg9CO8LOj0T5EIX6K+K18z+wEshcQ7LABGpmcJGfjRb01Z6B5+a9WTs0RbXTUSioaUIntM2LkxMDwSJqCUEgIM/36isUe9FgjqST6c6lCTvfKZC6wdMIQfn2n6So5y8a7uGhWN9fzsXD+6q4lMGOKaSdUIMQ8KftzE0Xyi9VrK6NzwZDrvnG1kOXZGhyT8hF3O1AUZtkNT6y5+Na8DdQHaMHHU5P/yPA7bBXCQFGvDIt+dsYlfiz3
Variant 1 DifficultyLevel 718
Question
A square has an area of 225 square centimetres.
What is the perimeter?
Worked Solution
Let x \large x x = length of 1 side
x \large x x 2 ^2 2
= 225
x \large x x
= 225 \sqrt{225} 2 2 5
= 15 cm
∴ \therefore ∴ Perimeter
= 4 × \times × 15
= 60 cm
Question Type Answer Box
Variables Variable name Variable value question A square has an area of 225 square centimetres.
What is the perimeter?
workedSolution sm_nogap Let $\large x$ = length of 1 side
|||
|-:|-|
|$\large x$$^2$|= 225|
|$\large x$|= $\sqrt{225}$|
||= 15 cm|
|||
|-:|-|
|$\therefore$ Perimeter|= 4 $\times$ 15|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 60
U2FsdGVkX19rA3CWVpb+1O/914j9TYfbpwVyE4us5wyMu/TBAByy2280Hn92KhJH+SV27pwixQBANOO4qhSqWxQWnFYWz/kpCtSId7EJhEiIoMYCMtH270seNOGcP5ddoCjwS4E12t/Asb5zmJ09NT7NP503bHYH9pq8AuwTbkSf2z/LwDThjwfj1yuprJj+fUA0Uwsv27TjrNc6abjLjJGJZtJw5/DnoskC4Sb8OkZL8rzwX8LRBymlzjaJn82aZYr3g6eFTMmk04tIz3Ilk4vzktgUXfIQVt3G6zQfQ5IanbNcOhvDGNPzPEH0RpGGUDqWHLdWjH/r6cgkxgOQhF61V+xGwep9MRez2HaxRB77ZoBHYC6k173avbZfRfELsorpGpfwLvXcyUMxWaPzEYuj9dAVf6exDC0h7tUNgByNLX8FUWoIyIXAgEG36mclMJeQIaaSzLZXESpVmJt22EpCy2plw1JBW3Po04sjO0otawEvZ5WuVGHvUo4ynob2NVYZ09X1TYw5T9RTRz+AuQ/5I7MkR5/h4H8QeQh6MGWmhTTThC8G/zAT434HujUqjYx0Yk4tvWVYqrv3tZQlgKxjvbox9sZlFc5nA/RFRvLGcvbSZPBKDDqmqBRYphpZdO+SL8qOZ5ewQnwmlZKiozDVBAjtdOekBQOU0RgAFJ+CnDCv6ejJlE1y34bbpJJZ2OIBLdt3YIay7g6VmokPa+1Mk8JBIEoTpqd1gkv/Mv15PIfH5k8nrlA5EDXnTzZMvzQIYQAQUyYV0owMEUOfnkY61SYq+1g+mWH8vCuosIt7JIL+hoFt3K9O+c65pNgGUH+wMjKkRmJXIVgVZ/CbcTMLKCGrhjBW/fPmnVofR8IrMzzDeETvY75Omjdr0mxCjE923K+jNy49ngaEacv2CU+26UxB8BM0x7r6rkd9ia8T9JRkl9NB2IjQAM7eslcwIHqaE/RuUE8k6CqesmxNLLrPhl3qX4D55BQ/DW+E9aVi35unJKJF7AjgWS5ZpJSiTFm18lFwR6o83C05zhnAv7+J3rcvaboDerGQ+sMgPm1QzgUcjdml/PZ1p8XRSFY631EFdZuL2F/9JdV2acYshIQTomO9LJydj3gXmvzSHXONzCL8naHezpcRxz8xzimdndgX2ujLACi0WRZbjnyT+V/MDBS63CL69OnvOGUK/HH0nr+bzYaQDH1xX1eBYGfopNh0mLK4VAhbLcLambUyHG5kBbigmfvphDNAjS8L9DfK5V6FB+DJj+QZu3pcRhFf8nLXJ6S4eDIEWJrbw/f4ssrXhucIAPr/Zlt12X9/QajE0zAnxz1QnCsvwt5juEEl1KbGEnsBytyJIp0wloMV1KlrcTCf0PPuJLf+9d7TdzFjxuqis567wQt2oDSnVsjEOsum0PbIgpvtJUG5TYu+TJYZJyZ12pMxlxaUuxNJWY8liun2pbVDQxPwx5NKCZUgsqARA3YHYZaHHKgBY9vM5810+K5L/yUmln1NGBF9O+uJXUw3dvTk0ppuEXiJ/X7Ag7nb5hpMXL72khvqD+I2lZCad3iS1MGzDaERat1WTfVvhswRbb06XHwFY5Gj9q+LzWGAfh49h8Uc0FVbr4cmSd/qLX3Y5T430tSzk0x9JIVksmptzzGSXH12JfJxkpxhsOMlg47ovKnkaNekcjb9l0CY5Ztgt4D/Xp3Ie8b5BYm6cUVVZNgvMCTfhUr3hZDjrxJv/6qm6tQRaHp896oUPQmZH4waPyZAVCmKYTt/DdnPPS2CyJS3cJvJNuo39zMAU//dVhnijAsMhvsLOL3hZDPNkzkVx8N0KYsInLoXUzPomETHfB1YwH+roL+F9odlt1uxgtcJHxEXlIXcriE9cd01c52l5+/o99mdT28QMBKnizdGtpiyl63p+SOn++a1eP98DjhoOWCyaVAPg6++fJYnNzfWaN7DD/Jq5HHc+58U/IB0tK89xVIk9OaYefq9Xnj2PFyhZsMj/ivzqc6bGLHkUVnZEOcY9TqAgP+wN2NWjUDluDIrcIuq0BcVIA3o9m+PJfPSkmVB62UDn8BZiy701ccKh2zVdzFvSgEY1YxJYJoBp1QEnuF1y96RK1k/rJWqSpq3ZezPagJzTbYi8h7pemLxUPDuH0V95qDnEwPY2VsTr70Li2O7DUJyu3wkq7GoCU7v0qWglDd2xZqPNGP/hAtN+wUo3RMV3fUCsG9ldEsyY6TdAmI0NAmbmlTL5NirbWQm4ZO1cNsYZsp4DQQgst9mGwd4N1fYVI+ExVIDod3rR3slh9cy7IYQFYA/2eNBBpJnL6X7K0qRua+cuPlokR1M+el6O1pUbewmlO3LS9c21PU5UTSnNLG35BZViv3nHJAUO7UtBLWsKKBR7Xz3f0InMsM6sz5FbNakETxSTB2JE0BsNlc0+LShn8W5Kn9zN8+1JTz7YJn+rZN9/5rIAvvxBhZFxBWuC+5lY2wmO7m5Z/lGgtqBPPAem2w/0VbAj97gHYu7jnF+kmtV1QlI7gIWaqgP/YLwLglkLHyxytmL8gfHbd3lIkKiPrjO2BUzw6p/JKxOI7CSoSzY3XGB4CcZfJjKuKzUMX+Q4OKdt19WeMtEFdeU2WdFb8KKWPSlNkPPiRDBv5GU5o3HsVCoYrLnd2p8xNiLuTV3LM7mGwYIpx1eQ3Td8wkb0WJpFptK/BfuxA5yFMppeXgwOkevFD+XffHEiAkQW3FrjP2E/3maneQsO2q9N9tFd1KYNwdiQ2enNTPbZZw656tBl3WiNtjH2y736VTsJcP6OdlAoEQlppfOGe5gvlS0io9GyOdi4yNsEgUD/Sa5cIMnEZfabtMi1pk/OZ4bz/NXy6O8sxNhyLjuuqOyA8kPaV+Ba/dwaG5+g3YDhobb/XR3yU3Db86H8KgFW9ApJv6TOKULRzB36TK+r78lMemvszCaYp/owS/h9gq9urzrhHamvBjDyGfSLhUCdcBp7IXhIev49W+Nx/8csQe58+84gYX7sd6u5h3w2ZvHMRrl28KXYlEAi08A+SS2XlGNAkW2DQATgujQV8JwDeSxpz0Af/pqjUVUzaAkyJyZQt78+qVqsvLq6Dw2NkeA0t/3qWOUT7C8voDoEYc/dFMnMGZx1sV59AvvuwbZ6uq/01u80BTxWAEMTM84UYrVSve/iMNv6hV5nGlfEPcfmxa48BNaPu3CN8dDmiGEc361cFTZLMm6l43uGJV6STgiSSAor57Iknrz8bwVoSADhM8coqDZHVeNSV7endNAg43UiRZhfrXNplhdS4gh2P1znGxeLdM+vlRasOJ04hg+zTdo4pgsxGV/7DXmdZ1JhNNvu3Tm/3GwKkGB2/Ra+7ZQ8MBMfylBx/AZgKGmpqjPhz8wdXRdNjdJxfR5TPdamiRfBGGV1JNqcy9gRjzM/7/OoOEwvncqM0mdfMin2YNmjLcE9n1jowoV2HI0s0zLLdHzDPuY2fFTqQjjvFFx2WWqKa0dcdwktuMoC7Ni0euHBA0WAnZsAxtm6PRcTMJ8WlfeX3x6vrV6mAWn7a330akl7dUqglEL3nqVFQvplNcvWbOtdsOn0+ri/s16lGgYG1JMjsQJWMu+3t+VCrz/WFkPy4WbyHAC9U+eHmjiWJiSIuouNyNuT0dYX2mW0f6ulNWPN/PQta283qd+oDP/bUxdzypnT6gOwD+bUPJeSV/s0HJ/5skttk+J/D67THLkSe3GUEHUpYx1ixpA6xPgTM6lGAROcJIHZgnZWFMpnJNPRQUW9YODmKGa/W0qvXPuvPcn8hrezaYcijfRKliJzuv+RcsPxx/p6ygCoysdVbSMElp54c3C0dciFB3xr2nbLICFIlzM5M5HiL8OvtkvMBeoMNeRr8TV+fAWiRxUT1wutNzWYTxPartxm2w/dnojc+cuVjmXP/yGD83qcOcdQCt4IQQJVrNwnk3VtyRB6l//Rjgo/EKKYcAMq1zlW32iRPiZ8iFeKzjcWeajsWDk71Ebuy3WKySaCXblUk7r2R5lm/gfiBkoaC0HEyC4hgH0LXNoBjzcrDbbkTPcqiiHzvb4U8sSHOifZqQl6sfkK/dws8o0QUyU+Vr0FSyKgfQdO7UImXnb9RKeJz5og4xA51Gcuf+27u1r++wqvZan5oeBMtytqo50QiFBiNWTVoGz6I81AukOBJI2CFDM8p8786MQk+FLhHi7F0G4cLj0ksnaHzTfyAOV08fnrepXKGivcECW4BS7y3WK/S0Ift1aIi6PJ8T/rONsllJqb3p/a/lEzQlRRE8eVRFPXHFpLNCAsP4OnvLX4LGh4T5rDTWh4QNAwDFHfSfCy3mtwH67Iry7HOMxsY8vZTTs1NHihiGhsgDCBgtOvMGh1Hk0R6ta7RCcE/jKemXEAYf2mwkC8BYwjBrHs/+rzhxbXrcIdMhx3srCuQYNvwTQxlMrtE63OznRpebjVN+SSZvtfRQ6l3cq3ySLdG+nTFedrmk2pS4X/zI2kWTx1l3hQr79+FUqYTCl1UK0icJsvWD9ohl9I0ZLKGiKHe3TKgBhF1nwUVmO8QN5TSvwCAtzbGOr5PQ0OvVTsEUrgCFEKpFCehVoDtZ3Qw3QTdgw1eavsX6hv63ezirvsGMFgx3B1fYbEY6jx0G/Cn6vt961Z2cFPXFqum6kCKs6lEuUzxK+frMxQZOYQEPS5KujAlpl3qz/a35+rvMx6PTAsjkfgXuaq4zDazA7yELkPh+k1XNGr1fqkxL2vP+MqlnCZz1Ce/Ev5Y5SOG3Y2bVCi3WZFYlY/OCF828zwQnpEeNpC+6QTqx+L5k8/+pIHXCLqcWB2sjulj52BkPgQ0CoNP0kcXf8sQZK4YicPXbg/nXvf287bOzDhzdEvF3yYxqa4ofwe9a/kS73OFJmb8DpG3zz0m2XwHm1mnHHJqmjKjc02CYqmqqvSFXihzomKEjQ6StwiKbczS8qDcEtv2w1Wlzm8bPxxm/pkyf3xj+gZByoLoFUoxZRZNWhoQzz/GrzpZldiKfSHnJ6zabDKNLzNFGHOw6/qmdgcUoMNexsL/Y4VYqY6BuV4utMX34r8RSB8x2hZyGl3KkkA3VLAQMzpFREnBgfb2iGPJMXECc1iJQjavKhIjbih/H3Zo6L0wfXKYmMq2zSme2UlggCM2VK7XOKokOS1MTgzUe+2Nv4ah9p68eSI9WQcCSLHNx4NJvAs1Fzirmm1fPuek7YPOtqbGgy4YmUiXPaGMNbEI+7sxLMmRpKWBXVRwfP0gAjAcFPwJubLk24Dt3eQM0xi51VdkLvFRf/I1xz9TCBMMOhFGD15ztp2pB9QM77jKK6rczWB7v0fL2FJ3zuRCZlTqiRMj4Jo+pTucBjaiK85liU6hvMfCro1wui1uoTsvFyXjZo82nJqwizMdbCd2o9Zrs52vYQ6CBla8NWv145gLOyB49wLraa8HDNDcApOLcTGp7lghkGhm4x7EAk+8ybJLi8AmUmHy0RTGRSgATsgQ81hB+i+KEvUK1eVdx5q6OHUdF0yz7vvGpfcPSWoLHUWQ18ujkjpmV3iRFfjYq6QThAjfTaxpgxDZz6rMcXLxE2Sss5UDsSg1AcjhTOH7mBdsJeKgRrOPZNgwDZ43P/u3K4epLdwQgnbI2txUKRzD9l078UozpsA+7yWSS+rafKuBy5qdde+Sa5wuKew/V0gureKRE7nEw1f6U65GrbLbZBBCn9QURpCSbUo6HzhMLpVqsvb9iglVHyafS7n1PtFz8v325h+1AxwK2rq1lAMOY1bJq4TrWeTsRcbdVmusYvTVi77nWekiLwkdd2BGX+zAJv05ZA+lCfVKaC1gnBF7CfXS5jkZvKccvrRGFLCCnKTcSvVrI6ks4QwpvJ6l/9lK2aDxOw8NCg/FqhMsDHVqvFDlkOrBCkrBDk6HfbHdOvzinKARgcy6eQ1DQR3NOoe4VD60grxAyABS4c6zAIHTk6KDUWdbDpiha0qYcP23bMUrNWpAESxhtvPS9ljYhma7ayDTeD5xGIe4wvzqNr8pn6MgvcaDHiBuZICoZ3/BOFj0mpCRVL08v3LSKfNg3RmoxmrKqfP8zH0NGES3118NO4vh9vw9z40QrZ98c/a2M9xDxx3wC4HweMQFwdUeBvfA39pl8Scbi+BlK6S97HEWTD4IdToIImordpU588YV5tGQrijmbjkty3I0Od83GeXOwGQCxiYtagcriehKxcDn5KT7wv9m7ckLbAvInNpeLJfUgJX0VxGNyNc/FHIB/EpoFrWk9G16hqQbfYE8f90+WmvhfTqbn07HaWzxX0nKV3fJ/awmjlJSngwdJSIdoCENaafTlHr8206dLmtXw04kCGrjeZgoP6WZti8rhHTlOXq9Gq8c3LIRFgTTPGJ6aEagxRcbgGCyXEcFhmo5mtXAGViZIuWr4VuYlJADd/U2B1vboLxpqeY9jPphvPZQobrYDWhvMxFfh3CaXk9xTrnbQGMvqduVwysZn9MGzz3Uz4Yz5ADY+ndvJsv3C7t731uNxNh9OqFhGkOaSC+0P64Ecib5BFFbug2AGP2duhQbAl2xQEb4rfRaaIG93Du7EvPRNybwMPfbAxpiLgdknp0GutuS0/YYrSoQS14ppkiAOXgr7FVc3N5AS1/uK7Q1DDl/3U17BmV1ERtBI+y9jhRtrKRtSCb1Sagjwj3HoXSBzb0XdqWOT886KJdqpNtl8aTAZ+OaHlG7+RFzKQl/SQ4kIt1uOQNUu9s94NWypeXGWFxE/t29IklkvBSIocv7EeARBkAjeyi79vIASVaExUi3eq2ifvEbXgvWU0m36dHHeNtcylEYZozKYHwoEaA0r88iUkvzbOGoIbq2jF0Dn1P8wiDK2biOiW0MX7iTFgVxu9PWFJ8lz+mCHapb+oY38+M/rhHbYIsAS0GnlMvW+kpFq+c2m49Vk8EHiV+/n39EMZRAC1r2gHTvHP5eniVlfAT/Hsfg63oVfPWQP2DB6VsM8xpWbksu3nhGbUzgRNhiPGmAykB+z/TpzmNxjAKmr3uv3jg1F3S5fvnGJa8glgmGiVFIpmRO3xaaMWNvotA7Hhb+FCjyJ8QumJ/evpA37hn7P/5fJ88ATbhBcL0R6BMAVyMn8armjr6Etyj/pVlimLJg43Wfc6G1dcgCa4fDGyfFcu2zF9cm4IMeI8cIKKjMTYnRHj1isXfVrZZTQi+uH+041jxZs0cnukt1UkkQ97BJ0S8hcst3CwCCYMIf+PGJ07byx+iHQ+4wxlOXIVdFiZMk0XwBNiUVGmG4m7EyP8f07c/p9ii9oYQar85y2k/3/06R5RvAqwgg6skIHaw8/OVfiKv7+HZ7FysCIEnU0LKoDP5xi1u9amUeSAJzHrlYXXJbWOWAnD+S9vWo3T6v3IlFIV1t35i1GWoxM6VSyevIko63S1f7hgjIuTh6WKMXcUD8PZOi92OhwOEtHtKjpiYe1vzMsTdznfQGoDi8XP5Smz0uzUNZrZdcSNAfZafH6g6xgtZuq+wBqwbmep1+MKBl1EVa0waI4UPjWSdThgUjlCk6+oV6RSoqYY/n1udY82ivaKqk/U4G+xqwprs/3Q/wmnaTFRjgBhrgYOp3fUNzLIgANCylysix3Gge24szyfpBMSlB5Qli7kC5eu/As/RXFpkISCvVL2H8gLX+Xda4AbtPKj25AKLQ0dszRbWl6+lYCkOeNDw9sjZ2ogKDcSFxTA0LUIhVQcgVqGEWYRfDRlB5MHIgxRsK9eqBylqr2ZpAdolquSKnBN/fZR0Wyu4Nk/rW2VLrfwg/0N9xHd96eFgiPw97+pOhBlbg4SAbDHkW+jGKDAueBXGp6JzXAz8iqwmpIG44Gb0HrO/CtpnycquZQfjZinmTWGbf/KN1EGkOvfxl8OTmyfBWUy6ocDPoJFdDiB0935uMUkqMljvGXOCvsCUV5ftEIFrs//rPdiJDr+P2iFhQlVpCH7sQ4FXEJITVUAvgjprpLvy3GUfrlueIiIWWfZ4Uie8eWL1ug5GE+wzDj1k6VG+XNBGsFTSz5tDQ0OR+qgkAGONjpFcvzRi7CXTp+P7tjb7cjO/5dj0YmgR3MxWxB/rLExv2lDaygsz1NVGu+DdWbYJnvitBavPztMsveJbkQB0SbE+dBrWWOz1mVGR7zeO34gsNhNGkGO0dmbq+oiRnkHDFnFn6yHNw2YJozuzcDOiAYes+d5DteU/JzmvhwOSGcJNVLCn0Cee3IUkB3MyYaIWv2Min4lEJQXEEtCgGqI9kg/8dP8YxUaVCNMxPZaeDwmf4QCE/44PXHGOJ8b4ADn7SVd5B52g0ud/ri0RJJGTIyXTG+xKK45ZITxvNAdzkAOg8ZqkYGDKjyzO21bOl5Xju+aXqD/eoeJmxjQPd+z6VYWLcnrFvRz+CtUQzrDskQxh1p9l5UE2s9ndsYnnCXtr+QF0eXKJtaOdz5YXoNlY9kcjwL7vWn2b/a+PC6+07OldMp7qw4ZRf3lsXmdT3LrrRtkqEGLCKXf4GzMuCUNGEa5rFDTncBUuizzfUr/QnfZ1MT1mAdwqq1GUscwDs2Q4csh2vamwZngHQII2119rBK2kT+zJiiiUHxJ1+u4MBgfDmTAeaoGDTJljNBxMgyLYm83qb17KDare/E0SXJrBn1JPBU+g9FsSubQOWBQpYA08ezlOj/55n4qp4uDBrLU5M93l5Ia6guE/FpRp/Umx68Tsd5Ub+DHXXnNKy6BU9bqUaGJx0YYfzy4gSPN7n8uCfZmZQ/uIe+6fR8JcVEWbde5J6zujtxM81OoGKTL5C2waBB6bO98PKBpHmY+DD8E6ktIdaIM5+7es06jZJW9GmKnMPnHSitp0Hz+HQzOC97fjUPcSK9QzXWpxdHUHyFUVACHlmzkhXHJ/Bla
Variant 2 DifficultyLevel 718
Question
A square has an area of 576 square centimetres.
What is the perimeter?
Worked Solution
Let x \large x x = length of 1 side
x \large x x 2 ^2 2
= 576
x \large x x
= 576 \sqrt{576} 5 7 6
= 24 cm
∴ \therefore ∴ Perimeter
= 4 × \times × 24
= 96 cm
Question Type Answer Box
Variables Variable name Variable value question A square has an area of 576 square centimetres.
What is the perimeter?
workedSolution sm_nogap Let $\large x$ = length of 1 side
|||
|-:|-|
|$\large x$$^2$|= 576|
|$\large x$|= $\sqrt{576}$|
||= 24 cm|
|||
|-:|-|
|$\therefore$ Perimeter|= 4 $\times$ 24|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 96
U2FsdGVkX1833RdOz0W4SuhXJrPWihGf3NagUbkw33UxNcryk11tv86Le77LIz4ifH4a6vmqJ3maLQvrA7V7IemKjOXtXcZmCVKWpTbFxrEGmlBc6/qme8k3qgYoPu8b+6v/H0Fj+K2c1DbsQY44+5LNigJlFBtePOUM1dMWk4vnbWjay+/TPc4t4chZ3EhNy0r6sFKtCDXvxeSjOmgGWzCPwTMfZyQ4CZqsnwuRvARVlgGii6pBVTZlIHKtfUEhC8lM0qtT5QBq5AVK9ijRDYT2Hwf0QE3t0GI6etTfeqJ9pYFjV8gQ9coFgDGCuQVBtogXVe8kYSj39b9DzOb32NyJptMJM9dFPQBZGfqws7czAn4/7boUj90hMOqkecXRcCHnNnadNKiA7Bd+Tyknk3OBg4OdechZaas+uKRroj9KCKlBI0SU75r9iEk+klZu+cBjJNR9ejQ3sWXu3pVbMzmOLA6P/+dwf0HqV9FoOoa0RsxWYCBIBKDYkTrEjzoa5PXMgJImi01l+m9FYuCq+JCqwv3dTf4I9OVO0evuuezumPcy+sErQB6ybqwhvObduda+H2NsL2puWgJDISjfCRZ8Wx+u3yeVi77kpWTeRkbhctBJI+edu9XBxFTMD2CkGdL62DTJv/Kc5KDQKqTYqHLTj9ZkgfzSzO1Cs7nUzu1aWhvdYTrSBWfV+CJgvnQr3OQA2Fn3H8L/MVvC5uH9Ay5GcIx9lVbm/7AY7Pd/SE/T/Yrg9t/B7znjKm8hBaQbxbahMketd6ftIiWFi956E/xlzfY7fZw4lB+ITPnofyO0d7gn5A013OTOK30C/FoyFCHAvabxuwE4hE7JHwC3qT+4Z+2UdaR7MeEHhsCDLe92c0FDHokkq3GV2PaP+krpi4m9OLjTM6oHPIL945JF4igGhj3Arp42mD7Qet94JzWQBctxHDKHVXr9dp0FtPMMd+oSHH8cTnVShkDgQvn/aApnIf7suQ8+7oT1vhqs4sEa0DMnvFX0WuD/1WYts9P+59pS2TEaRbnXwrr865WdX1goqHmj+rmTmcCqDjB1LylepqVEEIsrgDty/hIV2YbbrD1n4IG/d3UMz9TUe0M0hyo2um36zTV1d/oz8SsVO5XMqf7Bdr/srjNHEdOOQXtIRmwIs2hK4XXfQeAelnCt4uMwxQbz3jCa6e83wFB30SXpJ0QPdxjE/d6bd3BvbgcNBYckEvJ0Gr4LsHFDgPlE+6IaOA0T95ZT6HmbFA/F7Bex71lVsfNh0+MW5YXxsxWNpW5uVhf8OkJxJF9spNXwhvi0KxR5b5SIGOwE+WCYzLs+qWUUmrTKB5HRg8IF5jP9aRi2dqf1kguZoO20cM+Hv5uBX5mjF3XVtIEI0or7ZJoMPLa4D8+wyhVxGTSCD4cHZ79quf+0z8rW3x5Z8veYmS4VyV1qIOcYgEPmWuGkk52AG4+xvv/T7ljd0niQS5Q+ZR74baKO06eifZjcdkQFJRyy5Cy2vR8tgmI41sHylQkY8L9SJ+PWmQVlvKKeiZ0jvXU2D0o20FY4azhMlQ74/F9dVBYMB1fAIzE6KgE3GJAuwuw/D9NWbyap0ZFLgYzbmiivZu65tkp62BqS7IAznZ0qbpQJ2CJ7iDy2r9Di1guW1f3+GiPhIXmK82WeKwKUdwGFP/0d5L5p3dKah4WTYsA3NMFg2+pwFcc0Jjz4m+nAot3wpyNYqtxX3dbf5lVZE4P2r4t3gB26PmPLQJPtzotFHjfv6S/C0mhm/IRCcBQD4SRn96uGhqA6ThAA4cqwVeuqUb5pJGsQyHkekRDNlBvdWzmhs/FxAQQ/z7ztAXed1SuJHjv/zpOoY4A188HDEpMUN0iTG+aIbOzynZLxqjy46fm6xElWTH/aS88/pOMakN7IEUrettFC0+TKCYrZJvKQJCF3ROtSYdaNxyDzODQkgx5gWFgCurLBh8UGZOORu8XNoBXSRzFXSNzs17XzwWW7Hwlt3g2Vms2ONB/2iSN6LACozvmTJcVkWD59sy54VGIYML2jLlvzLE7M/HNDCaR9gG3wOYHNUmipOwZUb9wJqivkT+LwgllWf03+RH/ZKIePGYJ9G6OvbRDcZwRYkrqWhMQAD833yOEAH4/Fv0L6sRGMsCOislxkvFNvQvoU/BFrg8eeU1/E+Lpm5Uyu4lgT73lwpm6HoQtWtvAX9A/xKaScmOAG/yGYM2BqQ9yB+kGtgEIYbiRyK+HeuMwP+KzibOaKYf1i3n2tVXyVrENq6snuoHqxzOxmIOvDZ0w9hDki5LmoSOay1Pzqef/lPPeJHMdixh+6HjlUhjVYKFm3g9RhY106yhgH2A1P+94A4E2+6NTenqvHGfTeUYRQSZ3wU6cK5gQFUIunrwfk4fgRFQOGILY+AbmI7J1h5xruDvagtPN4cI4shIV1Pcjo8q1x1YA53x6nGYihIrXcNkj6uNp/sAeH0ma0IPs80v9+JyZ290dhoIrOpuCt3xOZ0+6RZfFph464/5b2yyjhoDAKFqt+7HG47oBLsfKd6qpA+P88VvSu02brXdxDJgrFNBh6PTovcJGwR7huaz7jtnyZkUzTqlRQ7jL/4o1SXoaWyekhf0PiBNmlP4bvyDeysqhHkkeTwbC1D8YVyU00kmOOh0Hk4KHyfVJD/ldHraw/huu47Ou4sxiGQioYhbg208O0kYFIyXfKUQaCT1/KeZpR16LWdQPLSeSahrXUy31QVdG8ZNkfLeo0fmN+eN4xgIcrDubSVOD6r+9j0f+hh3+FiUgNNnWjyYkh5lOiPFTQOwCiYtA2Rkbe3uDXktpnuFGuU1x0Z7iNht7YrV7V+t7pkKVr04B5cgCkfwHGWTgR4tm+CZsuXYKPVa/24weN8kYKu4iFyPVPxvbfJS2FouuzGpti7DDuGElO/I5oge7ilHfKs8yo8V9fQG2u8SrlGM2nrLTXu2+6EU3Y07vULKuFvyzW3sItMBdJeVAxsn6F2ona/TlqGFIz2H3nR0w1najxi32icQxbd4Q4yctBAOB/wIawIsWh8ahY/bE6b+KP5WG6AOwQkwNhjgIHu91z8lSKcKZFAeXNCi/QzvnI1gGx/C1fDhxtJuNAEIlhC9Xyof0yWex4hC+YTl+SBTku6GO++biADaFDMERb3zYdqr02qDsOceD/srA5qzuN1MgrLNTW7qDDGdWSekJBA7pSDsbaBAiTIg6jAEqddqI6Z1/9C8j6JvS0KFIV3IEGvc9plVeyQcE1+RdIFxW9gxXk+LCMMDSMnWbjbhXQR2JS2s6NdD6ZETNuoQkFA52ycFwKHJbMO3c7QoQKR/s4zRcvFGQQ8O173xSeBIDeTQkNVa1XmzjMGT5pYjn1LktB3icqrGoyJGIuCWdRJ+rIU97kL20p3JzV560fTIDWTpARB8of41OxYWHeQZtxZOYE6MDawSczEAPVuhruMGBgEwyfBOZosTGvn7y6DvG7y4tjwKT7NjJGuCyNFxC0wxA+Zou7QtKAjdriYw+gvyWMNR4382a0a4aDTO7Uvr9MVpJdensNXTgYpnf9Kt9K5bLry6ShWyiCxP16yOO6mYLSl+O//UGrtPPiRWvtXD69hPzKBAFd55Ies6MXSu0lcLoKVbjdXm/FVV9QHKDDVQ/fub/Tj/n43CPbLRLRbXz66QeaGka83DnSSMpKAT08lIFR7vpTIHT5BYHzRRlizvWmEXZZQ98vwC3wrkD0QQxJXJnak+iVAtbQCYSghviq33vDfO10/m9IU1PS1wudt2oJIm39+tsgj0f2S9xu37lQw67cGtVZnUAYpLTtSoyzT3kQHnIyUbRSZ0JM0mx+7KvTwwszAy67EncsB8fmqBx8qxkTX8Bj+nZAZqmceKDmg1XLdQUA3k1ulwWbePdOZT9QJo5XmSjl9YsOivUV/s280rJwgGEYZt4X4BFgBl/rrCwr6fd0lnP6VJjstMmeNCkm4s17bGKjvout4paLTaYpB1XXDqTPo9sG5x5XDmVu4Lz7wskjEb4NmJroCATdUjxjEbHjkr0PjsN8bVAxupUBB4UPyvPtdJYp4Ntf5hSu+nnn/QggkMsH1k4BbqU/j4TLf2Vfp1Ks+W29z/OzzRxOwpvJzwqcFGg/5hBiLEWqOVa2chzvhW5coCR4SWxcF3Ye/QlydUUlyemejV31Ftt4svGGIFdKsvAh+Tew1OMf9pqoz8/2gJpAU2HXRF1qEiN/SKiwtg/iyQTpbphdAjGvZ2ZWps6cBn/YJZRQZ8lglB67bczjCqVd/MIpxJ9czgnR72v+pHVfp9Bop+4BFUiWZPLFRX1sy9WSOuGnkjZrmoJMalv12sxLoB0VghhvSDs+6lDc57gdjIPlVL2fh9ZYSGH1witj5Bgw6DNGTLsMEeQD9ZE7Vn4yOYNhrinaJX3ozcafHQdjXtD8x8H7btmkACce0pgr68+6+MO+HCBeZgtF4/HC+6x+V1iNFmfeuDUdJlPrLh3O9//BskNXNVd4ZzPzIoCXA/0kr+yYl7jXzs+jOr6tDSyjfWpqAWsW8dkkUnYl3TGbCjheUMsiAJwRNCY7dkyzGeLk0X51Zz1DV8g6vVO5ctOJt8YTzPNiOsZZxZWV1zVIbaA9aC+Jr4xIcgDvQDAvs3SgFr6BejkKUQSYVhXJqF3zqQaETN39TETqDhlp0x8H13z5wjC2VjPDJZVaIMVds5zbX3dUFQYQOGsxtXY22nOCCCspwUfqnhSiSFC0V/Wfn1vkoqrd92c8q92h/zt0Tt4BMy4NlwcZ69EZjT8T1kONmHpB3jcNtaXWVvtDqlGsEQYwx7HI5yInkuaB2uJ+yh7nNIvLA7+MtPzlLxXEC08Tys1QIhSLQjU6fhPbwuoz+VViwjJJxas/h4zqvEnanpf/AV1HqMN2JPAbwGiJOAMWs1A8Vhz2jnB9aKmQvB4A4KvfFGZhzJ6Mhuf59fnZyr+guRo/Papx9llGx8SRWVXUQk6fWryn5X38EUJmseUmA8bRaQ6jnr+HBZTUQP0OCCUzyq1lQJQIlJcNPuDAe0RIC9tYUIek7iq+CV++vLlYtZkrLqu+WDbYXRQE8QN4SnbjC6nlO0wcPi/9ZXVsaofm3Am/aBMZgfD6MU8Cp4NoB82kZXxGhPSEkvIqkZGjqd955Pq0KxT90IMV13MKL+L6J/1AwJIWu2mczs2Jb2/8yaeVWHXdSvHNixVJHW2hWHwFJkCLLcpuSdds5eFVjPfGXHVCyzBiGrK/mz0Led6W0Uox5KvfNXsyP1cW/FvrxWDLPFruQpMIgIjIh0ykN0sLlx7httXrRnFY5DMaBatSMLyvo9aciOdb6Vi7Oqg3k3jVTAkG+T63YxMrpg8ecpUCJ4xAqHLc7xxHqBV9dxdbMpo/kAPtqtejfbHpRkBpaaytOQKbqtq4VlLFYmK2pmBprvSsS6aoq+wOuM1KewhpsPJoXOmVibWQN+2irHmbvrrsA0mG5FHm6Kq2iH4ZI0MIdNepe1j/QGY1A2Js/iq7vDucHWnsy/eumtAnbBAC0AHTRRRHCcPTPEjNX11BcZC8AIu79QsQv+nslRExdsEiXyrIKADoIYegMGBSc5CMn8LerE0Q1CYY4SIRu3nFohNyFfZcDJMxK6vN0agR5G7KHfWB/XRhyTDv/22sEw3WxSD1PQ3KY10gwBsnhgTgLW1vDOp7xuxaGPXJDa1vZh+nYH+Vu7cODIjeJbS/LpnDb8pytAr4id6JzehP0UNVvGWXHbuBmGRBkSX8oOMRL33BTUJyuQXjaoL3lRyu3yQWOxePkTwp9c5O35Re0/OGHSUg11hV6ngf4u4WuSzlSIar1WQwMP81XIF/JbjfFzIC0L6ClPLAupz0wjS90bZBoWGWK6ntpZvJbjLRuO4H9b1mry4b0/yOwWZK5ujfNTs3fFr43OgZYMgaAiAzJUTHFF0O7soVm1lmQ85GTSyLNk0AFk/vaJz+I/TfDO6vpoeVCh8DpUpGI2nm0hVbsPqixodN/jt6NFUGgWSGlwxAs0yKThGC7K6aBExe8HSW8iwX0DC4u9tIgmOkOmOOTwsUFBj3qVSM9rGwBQ7c90LnfH3SDcQZrMp1nRAVT3sjX/BqG5uNDruRKbnjAjglzr2KZwjy048qwLq7c+4ypcheVzZuhIxKSD19/INKxtFXcSktWYf3HWTiK7UgDekqiJjdaS+IhSqLWofIT636ANrLX81WjNAdnKs6Znb0qVPbHP31iJRGq0a0zR3TNj8vrLyEW6zafdAKxgxsQ9jWdXUpFXEyWizOocoWb5S+PQ3Vzs82gOctNZyUrIaQB6A7GUwMNRxZwiZ2Xs9TILMH/tTo2BXFJ6504GFUQ9iK5pUovudJizNleeuX1pr1SE/83yB2as4dp10ywIsGvX39ONBbvIBqCBZS7puVR5opUsaDGKOz2RepZ1rYM76XSIudaGO+v1pGffsQ8bwFP/jyNa6jUAfzdUDPlzcbt7PWsSQvmg9e5sCkFVhEY6oFDH9LC8qN8/1eNuzmCV3NGa7+KM5w0HMLp/Ozuo6A9VCMHofxIkWCfet83HCCVAtaxg4ZaMa/R/W0HNtunuanFo/bg0mLqBhTVwidVVsq7PKqcGibvDWUN/W7Efxh9TtJCzRWac5QGW4n/QZfNiFsy7khPb117pLp5Q/LOqRwnDJmwynBx6lUpM3d9Oigbg6HXs+yiT8KoOsWP3rMIV5eJOrwgQPQ/iZSHgF1lL1yMsYF8awk0Rj15wRy/ozM6//ha5XqgF4tozbxOdgbWjpHaDmtVbuqkw+pW4RiAMwkuomadPtjgKguwVOg99GZNESciViSjo6t3Txmr2WxbA2VCfm3EI+eeesAicHmt75PqBSfk6CCxEP0xjsAlHMIs/23y7Gp30z+LVYrjBXzr1KpxiaLJOlUdzlA+mbybgpZFTwFNY8XG+cFH9UhcZRTAwpheFjcgVuuVS0obS/umAXcRKJzG4Dt/9Er5hgTsEupc4stEMqCWqsFmdwLPXqwBdpcBO6OjbHoKGf2lJFFlDvLTr4b/Aec2IBEYBRt1Q1VelSq0CSRWNh5y3MCebNJ/dW/FqCTKp4piLast7oM4PNEvYN7ZyGDJThPRf3d/XA1sCBB07rMSDImpVKZSbSNenZJytF5mxdyX2SN9OUFa+KDE+HZSHZJxunjTE65r/gKp1/iHEm3UhnB6hU524oD/kguHTqdSIZVQbLbpXQKj9qf9rUXMtz5YUzlGf7x/NgtjKvpR0ciRmaIwaNKHU/amdUdtHLvJX2bqCp7AGk9Uk8djU6dGIAE3NQKUltigejzANug2upW5AzoJ2uko8jCveFIgVILMkHIjbuR2kfIJ90LX7VaiCZIBzTw7RYzuSna47xPHOe578Dj47nvIIYw2CpEU0Hd0DiBGvf73gu6Dho9xYYFRgtUBjpdlDAdH3TgMZYgin/q1Iq53/E/iVSpDcLGyGe6dSVp1ezapK62atcsd632AP/tH6yd6OVq8INvyYy0/aBgvI37gHrZJbh8OnPOxxJgqbV+M3wys6kyki6COVyZvyY3ueQXu2yxfSpCxd7kWH7N8/cboH4gIkmpTRidgHmyVckJ0Z7mP3GdYT5qEPS/scsrXHIstSoFPwbSi3pSSMWNvfJC/7W9RJwMIEcGT0yw31BkQDd1oG2Uoexh85d/P4OkrIoioyd7WaO1fS1psPceAPaHahDLfFYGaAfquyOslW2vvhb7hAsfvahaBX4iothLQ05cr/VtnnXKL1Crxfrq9LUxocaKmc5hrG0Z7xhcSAWAsToWt/193E6vgam1EOp7vMFnnbuzZyVgs207WvkSVZ5dkHfdtPOLqAeclYo/CrAunF1JbRRpEq6PcgsfqCS3QmXAE94laivAIZ+njtI9fGwK4GJaU4twZvWzqfpftTCy0Uj2y+B1nY0wdPnTmx4/xMolSOq6aTp3Qahr9+SaYk2W7UICVN2XSk8N/xo5qdsM2Lka34B3brCpHxQSOoKLaDa95+a24ghHE3YYdBrwH6oSEuShr6LNE4CUI0saO+sa8+5f1eQ6YbDGhD79pSlNPNBN49JtHRygd0RpcxStXZep5dnC32CWWY4K25fFNGVJj6bMBIwBU8bAW6jGKhOFBN9Iqu0SZp1whfFFOsFIbXWkkfgvNu5i7aobvGgf5awOO046+cMIcG0muPCyewImZiGQ07tEpZwjSoDypkHFY0IvhIzr3x+ahjKqHXPlbBk031XTI01x/5eR0menChUM0hsdhWahFP91clC45XfjHapjWOQVu6mCV3wZR33XhXKunOQscyB94cVuNB3dDAeLWduOoyGnLdvI3pcCMO1dCZ0VVtCk+JTo/LdZB1AYX1lF/ghT+Y8lp2/NnftDuZ1+UsX7HVO3BXQV4CTqHFQm1HIo8vT3XWqp/fdtT/b7cfNfHMx2IgobeWYk2V+xlJCmgLgsOqC0bt7xnBPzwx+Fwp7rlTtZ0tnysvkgTrJ4jxbnjxejhmZnhu61QN1ZOAFMUWjdxq2RGPc7eqwAYb5KzStnr/YyzXmS4IyH+Ku0aO3YgNy3GoVvErhe9+1nT4EPyQmbqDV/BcvnpJmDEUFyHA+Lws334ZeWAmQ0YCg9lp76UwJfypAj5+R5IPtmDZaKKFR178OAnXAEwKStPwqZAzX8GkZ49aE0Vpra8HohSkz/sR0gdWjjU6UMYQLvaN9hndYJOg7vht9GIV4pmsaAfm2p6NF3vMxTKBpG6cEnApRZWcha9JxSW1F2nFlXhmTSh+9u4oMMWjC7bkxqhIQr1jhLoTwZ+Hmg9AZt0cnRa5xPf4fFCiCdPOAOgqypaJ7xmdToInm5wZcPd+2ALI/2nJZ7bdv3VUMt90Cdf7khjLhzoC7aQT/JyeIX1NUmF5Y/
Variant 3 DifficultyLevel 718
Question
A square has an area of 324 square centimetres.
What is the perimeter?
Worked Solution
Let x \large x x = length of 1 side
x \large x x 2 ^2 2
= 324
x \large x x
= 324 \sqrt{324} 3 2 4
= 18 cm
∴ \therefore ∴ Perimeter
= 4 × \times × 18
= 72 cm
Question Type Answer Box
Variables Variable name Variable value question A square has an area of 324 square centimetres.
What is the perimeter?
workedSolution sm_nogap Let $\large x$ = length of 1 side
|||
|-:|-|
|$\large x$$^2$|= 324|
|$\large x$|= $\sqrt{324}$|
||= 18 cm|
|||
|-:|-|
|$\therefore$ Perimeter|= 4 $\times$ 18|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 72
U2FsdGVkX18zVVvzXF4blKjt/3/CuP1oQRjEPD0RBRXCvWQVxX+dBespxQax9DpR/9o9SBthF9uDhLB1sAIMw2lr1CCjw/vNqLaGpXmSt8Sfuo0iu/2bCdNS0L2ARfJT56eI8cXs1HcurAcFJUeE18lJvo7yiu0qwP5Q4nBFGUgptHpPBri9WghptRvhK6EyQVeg9dcnd3ZyLwh51/+xTwIVTrEy2FahI4GzMoVtJaOSoZrocFJj5YHsUx5iQIVvLpOH9Ivp/A3jcCfVwL3fVK7v8OAW21Gd7rgYB4gm5aRYx0rjO41kcMH4OuUWo30E3uphkE3mUlaFhNAFx87EDT4zrWlRdSWPPe5xgfr9TlTqnIlUukTsdxt2z7qP/bmUBiCllZ7EETCm2Fa9ChG+2GCLrs09xDrZU2RMH4lme7r0qOEHo97OgetzjMfLOOwyG0SGONlPXLG93aBkejvkQjsO+kkB23yiZMmwRi1ZncGG5UVyWYm/+hlyZOzwz3Raj4NR1cqGnHPIuOQfX3QPkWhMuBsK2qfUxAg6WZnvSrKrTDh5uP7zKzKHThxbLpSUgbaQOedOXHcrJ43qkQiXnruFwQWsfq7BdrumySnz1yI1OgmetN5iO1NI6l7AoGh/Dn+HZFZFqKn9JWLITK/ALINcmIZWzElsA4TF2MFGGi7AQ749+ODMKMYCs4yO7XhJ1z4jwNqmcqiXpKwFr1s/OGOxYuBC6sTuwhUGcGlIrHUBS8MkReJN9Tz1CKcqKCn8T0hGPw54Q+JGMjX2x6e2tCAhWlNBTMGens+o+eMwtuD0T0zF5p+2vOijd/NErG7zqvFSJW9WgxPj0e714/65rMS3/oKAb4ZqqODzz8shXt4By83dFAd6kDSKSUbNqNrVFzmR/MqOWMb9WJauvDEAQ1LBm/ChBfPd1T1+DvtMpLwZGww/e5Zbfnk8heG6IDbjNnCiAFSFyY/3i3YsddnidK0WKEeHsVbU68tPYNHfoJHO4pk4bEMZaGexhNUhbP52v+vLYhm0uI/MUQe5tkuZLB/67v7Wvha9Ok5hGJULSDGJVagMFynY1XUFCpYZ9FYYm7KEi+yyybB2qEqrH8tWKxvwVNpqfqV/gxhdgWX4sUDQFDN92yAFTmo5FYTnOrfHrRy6nc/6O+zzrSTEHg4KX2jXxv5OUsOD2Cp7iCwpqnvV1/+sywzmurVXDQ28tAfa2a9rAN8rJrMeaBM8sdd6TXvkRW70xgS5LgvQVjKP/HfCL2kNy1HDvXYHofvF1gypAx7M5aDyHXgUQmHngtwckdwr8dwfcw0NLhahUG3EMZUAHKe2BJ6ZHkTJnGfXkdqIqMsVTmMK+n5D4BBDgFtPF3S27wZZh0kSyhlmVMknEP1W0D8PzVw39eqfKGFXde2onWYIdZmv2VsroP5jwlWuO0v74B6VEVHHjM7lFHAQ/xJMlrymw/AUCDkNmHNgkJr3Aus23HnODkofmSvjFFnnei6nMJf13Txsrx2nfD4T2334sZ85Mqf1u9ZY9LeSzo51ds1Xj1u+zCzxq/jMjQyAZkcOxsnrZLX7fNKVYBWYhovu3wqV4nK8EYytd0CtzTwT0ql8bJxtj/dbfu+sppSrMmny5YmB6UuAhh/OVoxSI/Llwplfgc1uPQgqT3lprl4TMzaq4OsL0knk22JngQrc4qndiWFrKlAGPI+TqumNWZYzMq5SjtC0lxxxcTQ9k7Sd1XdC1slnbh+vmTkHqFqh29WScajqvmKp+yq+TPm2OpAHxbnFFAHJH65gTabcP+btGi0GnZggMALUHkOcIosYzd22r++1gYN/OaStDFLZ/Kf2EY4AiK3Wc6KWSPiZt/yP3vJLsFeCOZF8/Tt4Ead5gh/X2b/rH85C/wGtbtV94z/uj9OJvrgX4nF2tclSkw/OABUKT1DjsYVBPbBOb21MvTrjj+wsZo7liercOKfc4Y+Li+5OtYXvSqU0Q3WJvkWpvxyKXs8SEcGb8GvoIH8gYz4EyjIYiaAR3rqWq2DiZvBbwjcfL4DU96C2Nq4C6eAfmoDY7WhYC2N3dAFtWjNYmj4Rl2wNCimdfTwO5jI2lxvVbUhoG2Do8DCEszZUuTzXPe/9oB6m2ufyiHHY4pvQRgX0lrvQb6mP3LZ3DjYCEPVMvUqV9T4hy91WSzC33v0I1/bxVz1XieTJL3CxX8ncDRWfJXysBgLjRbovpgmpcho5Zz5P2TEu7jm6gWulVLoo9D2K1LitDNLI1ntzcTVmUuTKQ7jBgK1WPsuYrNr7taUPVp7gUrYoi6A73amUncl1xzKG4SLXmU94Tdjc7qSataD3nlGirifiqXfAkBCP2TubIsSyGvQC7zBZNcwH+hnZ4j0Mr4F+rw256mtz/KV3Vsu/yb8qFw0p5LwfOmWFhbWH6moGIL0w2VpZF571FhjYoE778PdLYmOd+92uxS4aHq3GPCVZ7/kgOPnae9xPUkXp5/RO0tv7yMAS8K1BiuUAWm0IshV8LPdHE4eRgKe0urG+3dvUi9evet6x2w8aLeYtw5dvseAqxorhDp9mCXEqPjh6wGFCD/AVs4k+NbsDm06ckUZYl3CZSTZl0CltDFONb4F5WDTELD6Zy3mG4aF9ZOGZOgfNbcMSwVpk/kBKfQIPgCuVlXtiyE6xXMqB3BHMFmDjcc3S0B9GtHpmq72pbTyi0sZtEomChit14+IbtfgKHfQb+SUe/24JYO9Wg6Wx7mMbCxKwzmeCKbB8Smo/Qjz5Iy5UiK/KiZH3VF6fzl+VOUAlHsqVYC8Fp/I71W9l5hhRSPGwqIMXYo106ypgM11T1h+oYdBfvHD0paICNy2DhByfRRXLO+xvw7WzopH+ZYVZn3bbY46Mx3YB+iRFgFHwqlnXVDZBhh8CywiAU9QtGGj8sSpogaLw82bMDOTSWB9kYKsUcRyKwvyWU2uUNSN3aNz/oaAYnTGuWCcm2HOuhEZsRbvABB+0BOY7Vlk0j98AMH3SjO3gs6Bt5ze72Bz+zuxHHFAfMMIwkvFJEXNAtLQh6JE3ZsGEWteZW5+qb2jx7LGmXFnEsMw+kwFsgecTiIq9LbvwoSKWwSnvO1pl6QXZjtNmrPDVXXYvGRbvQVu1sFJanxGvDEApBe4sje+sxGiFNUbKsHUfAjfylZw2fHpXwC6qvxNwtNy6uusP5RA40AV0cwhdQMVgu08KTotzkPmP7m/1CREWcZpxWf6ag4hyYBEsWeUOTDUE+Jpn5QEL2phtxR5e5oVeqNO2QvdTylF5WAFtekkLdsFSZGbXvY+IGk5pnh/dbCrU9SkROQOQ1ATlGRYkqtxBMWQbVp+vb4WVltf+bw9eICIu8ILwd0eWcLSXJVd0no4BPdLwckATo/OEmiSZeo9wDMMmp/yLn1aXz5roTcQVda4o8vCOL9Wf8ESfdz7k+aeen5HR+ZOCEK0UkYEHynHPRcnF6/MyxjTw6X9ZrO44AuPKC6+gsbW3iH/YXflO/81pBUqw9laLPcSUPyGE2wuEo7xfCVZtgEx4ex8OUm9C586uQyIGsQi2mSRkxpEwGVulS45BIZD6m2oj1KGdYxCewlHoeFhDua7dPlTpzl6q6XzqfnWpHw9NrrD/+ZQIEwalJIm/C/brmXLqPpcqZnDe91+H2vFxAd0jNIpqzVeZG2l5egBDtmWK3l6RBUflWcskvrgdC+7el4J4OBjQ4L+VAfeeIYoWJW0qhjK4czEf2eTIgDT9sQIwQpBx2wKhwvD2eiOLhUSs8CTGTZOsOwbVf3+qV/TL3pZHxSIToxqyjWF+DKkJ8dBuDbhSgx8cRym865c6h9bhgdPTJJAhFMYvVZepymd3Siih9CFrZXWPhjWEX51HXry8OwAA5X1au+8BFw6aDUFMSyYbNPA+/iuYezoXzImh60YVP3g9lGDQ+4N2/gjWiiZNbtPFzEWRTde0Z5YLWfMsFiCBQdA9UTo8I+v230OaUpGRrkRK06xRJmKcJXmtb1wz1MCDolYKp8xU6WnXu71twU+BnZYQlJGqSw4ZoXFnnLKykIcr/CRMTA/kcpOdQhEIsbnUB7vt6AAeAKTwQruRixV/b4pc5BL7c6DiePfwNHqpsORQbcvINaiQi7wQhr7SpFYn9yKWciJlGMv991hcbtHM/XhdxYuGtuOxn+1ENU9JuhSncIvLDYKTNhZZ+ZyFDy0Wkg2sQ7zCAK57ofkCEYnkLO63/0xlCA6/acGMZSU+142cKSH5eGLvYEsitRPxlVUHuMrDWN3jGY548JV7JVQou+qOBARVnIVo8rKdc++IH0chgG50PB19ZIcykufUu6wijTrbY+MI+21+NQXCqN2PijJM4sKvsdKaNcMBLkpbLlazCC3ClCnEaVKr+bXHPzOLDcl8AEPXFy9AZ1j2gLemCrwphVYhMq2NVUsnF7Q4tcO+XrWqykFJo+uG43hxTrepL5GnRV2UMgehTU1Ddm3mXKlc8N4ZqwknVgZRYDgzidgxyaiQzzXd8ckO7neOh6R9COEV9pqqmGNRi1WDeIgBZGKB2yiBnbBm0zbCU5ka3ZuBUM2wOIxrUa8ohTc5V/0a7krYPHT+3oRLMigBSr8ykOXF0C0rOX+UazjyIZi3tRXc8AmCG6yk/+EdTDCvPO2/u1KsFpfyUe4JnTeNjpdjrx2EPPaJRW82sVgnUhUIQgCLGj/8k4x0IXZnclZZ19R17rJCjc5epGXjJ9h31SSdx0aMA3np6EYIVdWlIiZnjRdkqp6wouIDZjp5eZ36J6VGIaHe7OsQWRGM39WKgd3yyX7C4Tcc1mIeQnb11cy9Iny3/rGdctRHX9ioDM+IgbZ8AV47JsQfLtgthr+5Yv9GMJbOuW13T0IDea22oKdx6xFKT3KXeE2Ocmk9B6zkiibxoGVTmwqveeVjtqEHApWM55T7uXU45jTJsZ1p9wqzgItb4n2c6/eB7tpq+vICfhU9aAEdMBQvtZ/Nhm+5uHlgF9o6R+OHCS/o9UG14nTTMwc4c+I/dnhkTETscl0doyzfAXnh5GAXi8efeQgsET/TCrOix4qKtHcXrwR6bvO2oQKRP+D7WOdUUCeMOTJ6zduUjiUnQ+LJOA1LgiFrt4fhw2lnvjtwsdfTPQP2LMqy17YPy+YwbfVL4Fg6Hwwox3fcKSrNZPM2abKHW9bmhtoIUMcQsTqBlQq0ofS3OAQfhoKk659075VJzaavCBLmbcuze7tOkuMmLc0HODu6xgg2ZdLWmqbCStZOgGW8uqEDblm9nacBJPbIiQsBaJu9Gswxj4sF3GhyYbgpoIYy6vzB2iicmlDZb3x3ZQT6TxZtKJbz6OfIkhIbf2pVoXl0VYokKc8qdN4Ph+qdWKayhQYhh5q4Iq/pnJAUGU9DEXVD1kt0++yZSoL5OcZnYD8dB9BUqPZmfodbHRVxErMFHPQFEtf8Nzv8jthcp57e113C6Oz8eOq2Md+sAOhFg8eH8YXTJt4BgHj101fHchOf3RyayyGg7SAqrWERPvyfHWpx7EHtofYvuxcyrDDax4VnEMg4KD46qOlswU4AxEO8TnNWI95c2n6DvZ4P/kJSYa1TNnDc/hdv8wqPuRcJTsE6nBsDtFhMfAGcC3rl89QqU8XktrdJD6ZHy9o1hgcwSmDeOzw7H+tejXLtjcqrmUKq7r+1ckc7EZxGBakKtttjwZVbtpZBvMiVvu38gWZ6pXE263zIr/fxIi6uTaDxOg3aKcUwmGDL0FhlH0wUH2UxGziUGoU+ztJknL8tNgfr43Ej6WpyUWCrIyQ1TAmvuooU/V0vBc0b2yFPVOATCcVmfM3Vn9VvXUbQNuuyr2EyaXeAKO/00FQGdZg0/AuoMpLF/K7Ly78O0ZydQsK7WOQiVd6peGpDaGLwmEcM4rW1MbG5ZgNn3Bb1cI703Q+iZ/B+IpLAMfwozN6T/rBziuL5ZC3UknMIqwY3lIr/qOGTjpc4HOgdF899zJNX8ZW7m57MARcD3xrpza1mO6QFhR41MOEoyDQvGn0uKkFv2CZfeKFUB/RNHZz+s2C75UYDT8lq5MzJmwnuvVsoJ7AiqzckQz4tEVjXMUfZnN0TdR3DyhFd/nWsRQhwAsuGvq4S6Qp7QCwTRd1kYTiHKTXk7fXjQeIREzmTUlfT+G5kLGvhGU328ZMN/8Qi+82I45GS+FqQWye/Jls2LzhKfy5pkXlsWIJe7csqRo5BF4Rk43N0SFbw7nofuq9GVczjUr6VpYvU69DnZKkZWc1B5nRZKeWd9guLox7pw2PZFhb82tnnhhQRJYaaBWWNHbwzDbg9taFjXhZ6218HPHewNlilWJ+XLSDuu31GDFAcw4OurfozAZ/Yg4daeLcs87Yur/vX+CSzXVE8e4vuiASwYSAS45v7ni+GjOVv6LUukahHJAM0w5qcinDnXwmQg+zA/jDDHuDwLh2/hJT7SfUz56Q9ZZ73Z1MYb44y6bQfcF/VnPdhSHvH+uDGNjDNxeu5yCXeFkNlFCvZK8jrRMiMHv52CK2byWWFfPU8RF1RM3hDY1PJrabHl0odtKgtNwgnZxlvjxLMClq0LtruAzU9SQEMWhmR3b6HEWoV02TcVrcs12/4cSTcf4qwg2KScomfnnxMiFBv6utM3QTGYkbnjUaKxrIXwxBppC+OC4f3dBIGaxgP4dOdz+2Q+4eBlxYdRSodmfC/uN+HNB+cqy2sBGEHDHdkBkqf2/pfv9BR9SNP8vZIgv10l17+PSD0hScKPD/4tp5DK7eBq4b3O8sQo86Frcg6DnEKrz3mzrSSaKnqmnpvNLapM0ZfrPNEuksXKJLc9tjYMOjCIhqKnvLLh43Ne+3AeG01wIuGaOMjK8bsPSM0nUEM7Wj9ogV8GYvHfuemLrC+vwFzxNC2+ujgiQ17PX3XRzYpx3gv3sL8pfdJUEYTPvNMe4Fs4ThruXLwnGnPbEp7UNcHmqYr2H8nbhLcTO7XlUw5t86lVjOErmcjH3qpJeEOQJyGrIGgiMr0Um1yyjQiskslVxGnh0O4k9f3IzJr6rv7+qJVWr163V6MQ4W920c0eTouf3TxKPr8BXHc4iv+YkCIxhku4wpqp/r20u7alV67YnQaKZAvj5XJDyA9jA34o0LYIQICyygaUFZZIvTSvkQL1HTOWNa3FXPbWk4uH7kxXMZti5hh2H6flIvy0yCGs61Zy3KHdgTpABXgnWRSokDRT4456L0xxNnIsEEjm76MqT5UOuBZI/niOKvRAkU3ZD413XwcVYTgyMLp2QWpBkCqNdf9KgJyyS9jkXACKFKqymNE29ErSsYBTI4kYnBHVXmA5uPqQognjZMUyUU2EhfDZYNaymxsfBq3xch3bAxInslKSm43Tm+UD9aL2cQQmDpWMU4eLOUZwf0nqUsm7Yklkq1pJ7+2tpprDndcnchlbpwL9M70jRwhFRskCvq71eliNjoPDeCMnSyk8SHfIkD5OixiEHvg9qDCeP7EwsZT/i3CH3J9MJaNW/V05jpls+JbHirWQk2PJyc+wosScSLKeoedfmD3M5NC+HLcTpNJ6VhtZPIH42hjOcExGkcGtnyrd7s/dq2f+wtMP3tm28hJCseeRD/aqKM49Dr68HXUcsGR33lAO1EUPia4QGG4LZp/qPmkVy0WKtywNeMBticoWGaYtQiHC/IQPafFdQA+09Z2eRDCk9Xa2j7NCv7pCET+sP3cmo/9ssrbbFrHVnRFZr9lDJWhytt+p4t8uS+Lq8OM/XKhoWbZauE1l9QMVWQ55e+dMR7BRa1932f67PoGXSEj5voQbS4hxzklZqSf5SGTYZFW4N3x4fbF/tfxWCBaIMFSBSVY/p7yt4JV/kjmqQ6fjPxXyhQ+MCtc8vniWwmyOGvRvG086vRF6af1SU17LQboxBianVBmMZ4NSuv8KMbnGc3S5Os9iAjoMmHDqxOJt880aIhQiOkvOGdPEExCEC1Y4evpo4e1GsPJE4mddWyX9Hch8atQkKgEfii42v5D8B1cgHQtmo+Om9QFmhKL/ANb5EhgIWaV1EESyErHNmQj5rfP9/NSZoi5lF3WrryZ/RkbC0bveGR0ypgSnwOgdoNbG87CVZk0phAc/1of9IasYUq+t4Jo5BYQs20inaz8pyqMGqJouM8uOQOkgDKhkfSKDxfO3Nt4vXrGEYRYg/PueNNYA+KtxpHQ2xe2XayA0vxURE9SoUELAz3C4ZJ70IZIYfbJh6Zj9JvGZfs+4F2eWsScxhEK+ar7DYxi7JIQxTCO4a2t853dByQgbhAMalQPF87pvypNy/n06MNX1Xoq8l0d/zCo1uaiXztz64secSOt4JMmQ9hhgiSdUtpzWJqjfiH8UQkw3PaLXIN2LQlsnHGclXwW653GzTl7NPk3P5yz6cdQ2qQU6nqj64BAwAgQyAtyUh8WktStQ/LK9KfOy8OrOXA+klInu2gdP5ATXq0kMzF9FftNn6qgHZar7Z3bjrC68ljPqoXTf2eBKF9PhFgni7Vpu9AB63z+xsKKXQcTmx2CdLKEc1SJCx0IgC+9pZCsdTkfrealfpZ5+GruHmY8IEN/EbZ4U/zFeHb5Hkm4UXM4afoSowdaAUQMcsbtqfirkNpmoECjziNGXLmMCu9IFRnIeXppSPxfS3y2Sk90Pjl9FkUjl3+VgNVXtx+12ciM+BQven6jNgQtVwOKvRsq1uh+WIqHZDOAwhCktmIgx8ym9QMX29qGurnPMqOyucxNnJwYKI0tC6ewAiFk4wYmKBIRL9aIvraqTVPZV/ifAZgLBGUxI4n4X2wbRi1N2mOOTxn8Elkfe2A1Idum8MM70othxmZHMZhM1qw3TzE7zKiZSOnrh3nBVC9ajW90mO83HYizQHSQWSoTsomD8Ks/LEKnr6Xyl5vrdlvgKLN5JgsOqBFT6pveica/EtclT10i8oGR/EsE1HzO7mRUJfMX3/4=
Variant 4 DifficultyLevel 729
Question
A square has an area of 1.44 square metres.
What is the perimeter?
Worked Solution
Let x \large x x = length of 1 side
x \large x x 2 ^2 2
= 1.44
x \large x x
= 1.44 \sqrt{1.44} 1 . 4 4
= 1.2 m
∴ \therefore ∴ Perimeter
= 4 × \times × 1.2
= 4.8 m
Question Type Answer Box
Variables Variable name Variable value question A square has an area of 1.44 square metres.
What is the perimeter?
workedSolution sm_nogap Let $\large x$ = length of 1 side
|||
|-:|-|
|$\large x$$^2$|= 1.44|
|$\large x$|= $\sqrt{1.44}$|
||= 1.2 m|
|||
|-:|-|
|$\therefore$ Perimeter|= 4 $\times$ 1.2|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 4.8
U2FsdGVkX1+kP86mEnareYpWoihdPXJFMhiqDnyssYXfif1MoaKlhReg0WpDl6GUmnYzMtGNP2DwiFDovsKGq/DyV0G+/CvDDDnku8777o0NhrN0dqbV4SL6CrJdf2ffRqipvs+HWYbuBv7KGJvc6uxvCMsJjlUMnDl75c54ki5bAIq2SWPyvX5UhOUE8W3TsbNmGMFTELwH7YIXUCg13BxK9Ji1AAruW5Be3vECraCdLvFJw7uhYpsRmZf55VlBtPq/q2WqCRwzSPKdi63FLg9kRgQADl1d9RRUBzyHlyqMEsMwQnUco40dEQit8bO4lHMSaTqDymBHF1wpUFJlpYoQ8CMfFqfz3NmpwmPzlEF1Q7C2O+F8EXzIj9ljW7SAn9qqCVPVJe5Z8EjH7XqZ2yldc08bgagPOoIFuG+HDM0Ga1nHPctEJ0JCltEYakQ4dQCS1G7raVF8hnqWgNG8JUlcRjHEhXX23N6KrkDpeJVWwOuw/kAIY7qWKMlbh0f2suroEyXldfl/C4UEHeasPb2LFIJtAFthX4+K2YpK1btiQ43Jr40dm3YqvmbuYDA0uPuE2rEtx4EHwpRx5F2uDDFU7oY8BphJS0g3EQd8wRK7y4jrw2eZVrqwsTkj4YOT9R3FjQN3hyaeJ++jkFThsei3vtywnVlxv9dI+twSCcAoFZR4W0/DddPAmhitG7vmO0oUaxlSEcHK1ij4blL0UL2R3XeTcIilTWVJMDwZBoogO6pDvkcg0avEd5cXJSXpUKigMcrt5RDuMH8uhwCXwz+3ipHVdToqrAJH474HPEwIj+cP2pqBFIu2oKA7IMXHpFMDKwBhzMX8zs9KMV3ONqIMcIsQ/1moWnjGDWgvtf6EplGOQGqonY/OWQ/p5RQou/8F0na0uYGTwZ2QWFgpAl+x1xEYqm5na1YHfIkZyZtg+1ef8w38YhKwj7+wFPQsAbc1kUwyjoJWEMGrqEC76Pidsa0+65AIZw5d3stJSxrzfqm4AE4dMqkRirQXfBcBZLp56q1MdF8qNGdMpzC6yHg9pO8zLY3vQNivphHsqKQ+DQj3jT9LsVUvhw3KQ1VGv2oeFFDhsOpHRmnCW5Qzi5UzCVQ3GgJph9s043iZ9Gm9A4+0bpKGeFJdO97z1SbTSsA6rGfkOxRtu+ysXPKiTEZyqVilMjN8Mmsi9kBe2cWnb1ne0/RuO1KTRkv3NWM5Ju4D8uRx3RSgN5gAJxUqnGj6Qo+bm4K2SqtXkFzc12kkOSb8B8WV7xy0i9EY9VdUAsPfdoBIF8fGMYEkFy1Kcb6vjmgCpdiYhBwvo+CxXuOGjVuU6hHLiRDfOKd0JwMgPFJA+Qicu17I26ngn6dp8hMUgkC/2mrK4JeFdzxWrfDDgapEjMJRziGKWySKBDCB4p3MUXptUXHMX+o3NRMD+bl59+N7vufgVDZJTQDwsbFq9KtSpyfs5a7vjDYNhOYilkFUkcZkGpJsMJ7EcGVhfUw0wec+RD9sl/yw4crSFLrn/wwmkvwVsydXqeag6A/oiZGqtRrmmFApQhEDbOaXBG9yWJsUpqyIx6gUmix1Dag5/EXTIdm9MaceviOthfIdtnsLrS0/38gQhwVOkvUyN/wI1Stq6Cb12ZC1pw9RJ1lbRkptvgEmixOqeWo3lNdrfn0qq69W6ss7GTgoCJqeJghZ+23CnnFfZIMP5CPacgFRNaUHXyD13r31EhCPbp1rxdppj6IQ+Fzm3YMu4CrVyCq/qT0QBl7IlIiTOZSkAG8ri82k4csCvVCrYKRCLizDAsIv1kIf9KOIdd7dSfqRYV6M5ygjBoaCar1ir5BEafJj4UCkYRgasMu8l786SbQoGBt2RPz8Xrpuw+loFzZlWHVfzjE2ictJuyt2Hiz1lIBPh2/fVg6iRU8ROaZFes63SZW5WSWB6M6dvUccUBAdM+kGLHFu1KxKWS4YkKxxY6X/chSbHugyqEP9MQyafwA1+bghlMdGz/JsFyT06fqqrtB3ozctutPCU/vPu0SkIkzUBWJ8eQO5FgO5MpDDuHIZwWANpKfQ2JvZU3/N5qt+cKWRPr18v+itbrNJmwx4rzcpXrYEBTnVI7bIMKv3bf3QLJ508FqdclwlkhzjMii3DJdM8VMGB7Ip+B0dvZ+NEVrGMLWPHQ2qKyRlPIoq2xEcRSgozSQBaLCpHib0Z2FXlZHuVMOpGWBCoTS/QTxUEBSjPq3YDgw0G9FHcYyMI1J8EzqPbxAViTV9atJ+sR1Q9Tn1OcjfTKGT072puLacKWMTwTxB/bEK1nu1juaJpSV9s4z+GFrMC6dEm+OcjUk8W94N9bDsTGBGSy9/yQ8ixh99aquQnPmDgTLoEzLtEH2+KmyS8S3yKJLh0CRc994vYpHisys0S4pqAqVgdjzSGISYi0CDq17R7TPhYZ9KnX06IUtwsYI5ALugOuBJ2fCbU18nvGgXcDQOC/7pKHuN3TVSwJY3mI1rnbMddwW88it2gFYcYUHcBlcUfKqnyDW94THOOnLCrER7EAc8tnaXEtXEv4wW7FY6URqXnIWz/K+UMNgrmHZm0YqTzJ87J91j4cRUCpzLdh0jtRAcLtw67uK1XUcI1sppvTco/KVfdjihMnwIQgxZ8Hwz0RuPf36Ad/shxG7msPcCKs7Pj+V9o2uFlmTAffovLEH5ePjScwgp7WrbuFkVavj0YBMAazGD2l3Pqn+cj9idaG57Mk1MwrwEZujpg3rmlGEy0SfSVl1exXNhHuc8/sPm7Dj74FrUC888M9tvndE897/k/6+4ZrlIMliWMEYR/aTpFllnTNnumT3GlamDApt9CWz/vcJ1n42P65COveDAJ4nfIX7NHN9NxLUWxZ73s6EWH8MOs2lPNPztBnD322ZF2LvRCCVhOv6ja/J+YGMqW09sdoeUIdwEr7TkJidoFHOuW7GZT+l9cdjvBhxN/utUZZLj7JAz5wLCzjFV2NsF9JnurpwVuD+G2M9hcqbaexUCa13mBUT/8fivpsA0TF0ZGJtorij9tq42eq9aEC4FUTDTqYAzrKitOZNdo/AYo0rw0LkX5lg/UzgQU3KH/suErF7S9FVCj2twlQAR6yGez9u7slhYVER6kqFH7Jt4gBp9OLjOK3FRr/tuZodenWje6HjQ+/GZViOwGi6WZvdtJsRZCAqqe0mp+T0oqENSBHCAcb5iVw8rO3g7l1LXp9XcamLgoh46pAkyAfS1Sf8RVkBsOzvmVEvC/OyrXYAFOGTM4MftGLh0ct2ssrD6r/yNm6+JAjFrhTl4Ua+Ok9gwrYBWHyT/ruSvDsTC3oXmWACI5n+VIBS9AP5bkncLcFM87MK8MOlpIc9e/h8HgNOKf/t+DDknkc6H07+P/ucflCoien5GJ/VKuHaP4tiSBUZl2qJz8WhJOKg1B7VdP5uYsjxAWsap7O9cjFu4CWNnAQhodGpYu+Pl2z1z7ur5OtNS/oTiZNNVWmvIcyYMlzZFoKveBNp7V3kXdIXqfRnBM2bNpLepo0mR7iuaxABLgmaLchHnfIKfqBfQL+H30P0SAPhVH+cv006idBKyTmYwD2+ArF+s7lcJQ2hIMjFAxNmPGh820fgp9YS8M9H8xuaScDL0wHQBCl/ouaDRYiFZKr97BHfjG9Ri1/cWYHbkplsEID1NwZV3Xx5IMm8Quk711gTMVc28wFkb10aGNCUV4aDmZNKRcMffGb2ld1dim2m8MfdKHfAQdqYK0Ur+1yi00Kp4HJjwpVWBYW8sOJq5EabR1xwkZu5dTwHCqiopNugpNpQrhL7x97eAnk0ATNcckhI9AjTMYXJsWmcFOBcGEWkFTuEelA16fYouq/o07Gj5nNf4e0lbBo/mjFYQCX54+zUqfsm80YDskIJKDV01vRYuFe/HM8zjm5YgoO2dqSf6tkNLpavhl7GoMy0oFZVHb82D3CvpgeP+NFsMwU9R9SE93nfx6FRwSG08WJNHgNOhrR3AEqYnSoRR4T1qGAn99mt2vZ2DCI3vYIAwTAtW2qGykfpcFcX9ViR/pkoIcFHRWsFUZDMIC3C691E1dCLHqw41UKyssIrIJQO4HYPZptyH90tuZ+smjq3mlY4O4NVSah9BbXDALMds9UFRNFczD5a07+cKSw3lu+2ouL16iDYMVc3FBa/scUI8PIkujipxijpNRwGW+pCIZ2/f0nUwOj6dFpOCTGKApG6He4gu00h/pgIj97oHKZs83/9g9bxshj5RdKe1PrqrbHwFBmMdlWY8fAAK/mvmpYUAIOJG5+tXQa8YArIrxoVW06Ntm7H21ubDKwNq5HSwtOLnLDv64ymbr/OUFPXa/FiqUzP54+N9cDj2G4PmLSgFBXrJIrex42RhGlRKh+QeoBH5y9WbYa51JLeKvCAbjyRrRH+NmPlzbPHxHIOX+uvd3JUwg5K4alb3A2yAS+yGfULH0daeP3akTXWXaEfAyF+uGNifN294G97eNGHlnUoE6PJjm+vlNWeZDakNWP0P4Tydj77snfKh3q11yB7OjMWMefx9oxuVF6nBmdD4DeOBN0xc5niqOC+QmUWAmYWD3AoINXUmUNUFTSTqCbi86yZe8WOiLv7Tt6Cf0w2f8vNGTD7lehGD9RYvGSkSai5Tlhdp/8Z9U4j7jy4rgHHjQfiw+U5gDVhC4KZfQ3nf2QB2k7zp45zSGEg+1iRrAC8dBoCiBIJv2FVMqYjJVrO8C+pS753vu/4Dl/q/kZHnKKtYxWrwqoQwvhycBgIQESZx5dyocLx6xd4X/fgWkghY2uZAxjLTr20XJUszRsd8/BeS/NY9qNgQOdPTWg2A9f6YkanOOH2Vasuv4I8GyKcEHmlUbwlUy7IBUGo6q9bn6/gXr7S06eXcnP6wWWnTEsQsQmeuhtV2N8a3IxFm4op6SxqOub3dbijEGOe9yi4KULiYXncME4hDn62NirxC/Fd58+J+i+gfQNdkTOq/+vGmqargvPX3djkZ+oVZPWIL7ap8Pw2hRTDJkdPiQt9x1sN09Z0ikfK6myuKlr+SODHM35RuXW7FcEZ4sv4oV6VrkMEl8nwkIZOktrVclOGPwshKDu69vMra/63b/K7W8Mma4mpcsSAv3VsPL2DFzoNLqkVeYNPRS69x1qPO+AdqxemU+SRa8pxT8OuDND+Tr4oMAMLXi3p0xfKE63OuWi4HdKKKSXRBazgCv6b/FGfziVlDBgWARrcyLzVYb3jijbN0dtssVCSblaiZBjfclVoLxoFFqpluBWcewzN1HyRJJZCBfCHagPUo6jgTrvrI/LlFMYnJvyJSbPlrczPReH5ZPjmNnKY+w2pYQPuaZHU2wz9a8z6uSXkg9zpwYqanvBIZoowT8qw3sI94JRMtVDA5MbUMN485AY96qtErb9QQrsFzlG6d6xfC+JC5zzDld1oizgCee/HZV61RbEFelYVrRe9eEZcHUL3Rf0ROvLUnZbloyS29bPHkXK4gTjIcFaykew9v82dBybEd3C/bq74nWVDUqE9dlAqVd6qUnpvuUgVBuK+pM+9mNfSKo9YVyTDrmGk9H4CuDGKVNRK/B0KBDrSzu84jxa5AGVZGOzuxbiInh8ZV+14338vkylTO+sK64TVElJwGj++yZ3AkKQZb0tb506R4T/kYaS1cOEyjKSulWB9JNCOlUnIr46mRQEePsJ3aUgl3jT39x80Vecn0kTp4zMJsA9PpNGNyKgYoYttvJMWZeCoZyWnOWmU8QcrKqk1bA4F11qq2MHbeuP1VO8GYzs3NVqKTFopUOGbEtuIWXCfB9Ns//EeEETM3UyyoOmxrZM+H7JFpEWhviY/yTn5ki5KJ8CQarxmVyc6mCH7t+T2dBmOhmkUgfcey9MUlHudGp2a7IKnnnSH6BwVmqX/mPi2iKi2UysZaodd1axh9H16ErYn1YcwXITjQdG1ITS+GHTjNqRE2YvOvOiQkw0U0UuZuRRFyWuz2XJOjZpY+uBa7uIr3UbHNFMG+onOWOm/N40T0oEw4GSJyl0Io1oO0dWvcpKHO6x8ZekNlTJdx3s1Wc6u3eK4ZjP7jKHnlJ7zku1Q2ev0FfWrtoLZWXfOQGDs1GASurtfMPzyhIy2A5xXB1iqdfeUaFcTHJjnhMC34rtvXr+RgyOHwHEm9KmO8Wez/P8zahPx0fs4RlskH0TltIObai+UYq8ZwjFSORouWZXZWVru88/Yd52ee+P8cYKW0vgjBs4vCx1TQtcEQHsNzhD/a40R4lLJiBJizq0OCri1PWhRkW2VD93qvc1NqUPc5jAkab3fK8y81D8/eCR60u1TeH2j2Q4t7odTDFH24iCafWazFB8ZjVbII4QT36IZilJcpPIi/E9SOW810JgBzIw/pF8aNXNxEtX+TSD1fz1xHXKYZTgHwsyFdT/waYV6KP+3as44WNF8bMWBz/opd1g8DhJ/6aYZ93MdkTVH9S12txxGOoEJJUW36k0KTm6yWn1IGQE+/pTuzr/UxH9eru9ta63yk9310oTxSk+ET2BXcx5o+3XshV1XBUGNPDDhDj9Q6ozCwg6QJiHLZhUnV64A+t/uaaY1nubaJX5FnVo1kQ4M2dtzM9DMEzQPUE6qXdn1zxsn0AxqkQxnswInkRFWUcPz9VuXCDan7fif0c3iQjhfuf6pC+DgKEsReaEjasjpUVWBasrui/+tvHgoTtz2BFi4nGpICpZNs1dFvW42lkaCJNp/ITKQ+pTJtwphm08GOkFqsP1qERcDnNFX+Wk/dgIaz+ZkJhq2u8otkKyqVlDVXHL79SijKOe+YbOrYvaeCRP1NShiCxRHC8tEooZrfynLR+tlcdYNpVvL9/WtE6abWLZTrpHbBzY9nilUwkzbgWsB4O7wnSQcAK6FnLQTZDsknDNQe4XlHcHZ5dwHQJ0uF5WkqD8n5a20IY0h/i9FUYgaU7EGSmMSiTtvksZOAkpsM9BxxcYmD4mWNZxddZquN/wbLybISXGG6iL0dWUeSlQB8K+lkoIaBtQZkWLRESKa+a1P5ZvmHpizZIDp/y3nYACJLcceGsP4zNah0k0Wx+qU/TOUeJ85JklxeHH32esmXCF9uUgkiCoxV4aIBCFEfxHI5ObpCN+7tR9DUqQz/RqwlKVUoWmgzLegtuw2UOAQPr5F29eS5u6zCWrxPeN0UfEYH3zDMKlFPs5mdxdeveIcQetxJOVXbWpGoAAicLlZyhqTEPzxFdK9Ywkf7/qf7JrQy+M1fBQzZOPH5aZprp/t5Rwi409K8YFTHG6gPJ+sAoUxQhXk5p8lG3eSM91Kzf2BlsW3nAMsSh5vp4XyUHYOt0QQbTj3i2LAonpsIUeEMZyABqjnrY8IFTxMNe0AXZ9SDRS2+iczFEOj+cmMUWg3I2SZ2aTBwmo8HYA7Q1VKkBft2U+eX+mYO7PrDALhKKQ8Twox3aGlaT6hi8b52l2/qrQ8t/OKSQtucK9lhHqJ+p7nRN6zBHZN2o2kwnWHWsJgqJuqfrAMj2elNlInMj3Q6jksi79lp28qtL1UO/L+1KiHYjr5gbZvFG+EHfD4vJ5BBBtwlwveFCsO2BurRpiWqPSbZT3zMsf8JicTcnDJHqr6Rwo4SMxsb2AZFWKVn7uT4sa4hoerMWNv05/JVlcs0+EX/A/AdlewIdoG2B1NJF97WsUjnRyfi6psS+xihbgrg08lqXCQHC3lLCyloYOmTyh9v7OVxq+uwEKpzl5QlDq1u5Nxlnnk9l6ug66bs28eXDkAkggzjkv3YnEqZ3nUFnWkOY2ysXgQWxtRogh6C46weKUCqU93rgiiMzogqAYNiU2VH+agNOm3kOhr6shF4GxIJrRV1j2f2079KqYM4fo1rCVcOgFqMzgfbG5/8P+kVyO0CyX97Uy/bznOMWaA/eMx0QKd6NEqNhwZVS6Dy1jlxg9q46LMaN7ormaR8VfLlo+1oxCuay5JtcvI6KPO6NDyzDz+CmnjlM6YFP2WUAVjY5Sf3Roc1k+UXkqV40shK1ZPUJRlxFOZ0Se3i3604SWO8IcVw5sj3MQpKFM2yJE0zwbbNpjrBMzSxgqgUwCCD8AWk0sP0Kfe6f2PEBUSKRhQznZb2VlEHogtniJ20koabWioGZvE7IyrdrZ6vgZva1A8gq/Guy8AiUNgnLAHGwsDmeA/I0DWaXOwuBSIppA1HmTRssTpgCQM2GNrJA4b28gyV+uK5Ra98Q3D3avrOxpgXBmluvX4S/a4bNz+10FiDd/MnGkpZO0MI2Nqjvz7fQDWRSUcalhzfdxsoKvGHzEaDvg2SH7ej194tynaDqNavMv9j57zIbpXItl2urv5t11EA0jvDLPrc8Pil9GMx6rkJASeWSWHSCI3DeKQ6RkliSz2LqrOdp72VQRP+FCkvOTVNCFSVwMl4lOL5JbieaS+y+VW7/9irhl+yRmZHMm5Pca45SBqw7fjxpE2K6EgLw6JM6eMXZsX9yeSt8OW/7xVgpAFmbCoBruv2qYjLU8mOrYk6IZ2PNPVHklnjYIyLQDB5zcH6g3F8R1I5cajGgcV9O3AAh67z52sl+uZEKC1OZX10MnlyCVSskvi/mH11Cq8zWEV/kQWJirkLoT7HgkMd83/Jc625OHLPI6pqNIkrYWMigUIaz8KjBcTlMYc7+9LARJPBX0D33uuMSTg5AvSm8w8jD9CBu0AF5AYpEiKvB8Ug8k2kJiIfpL+Y1VKl3Apmiol1QJpYVjtZDqQssc8k82BVrKUs2+RsOIoBTYowrYSikBSiJtMno1BY/lf75K6fqbaoJBB+BezL7WK/AeAt//ZrQ4fdQddr4RiSG+zDPyx9VN87KbyXXep/rejH1s5gLokq7nkXTgNL4mXmtHB8KUXGrBvW4bPl9GZi1qLGgWTDG8j9+GyUFkY2mzbTBczIs6mmA1C0SgRRA8RYHNxa9XGl78TC4W2yCMrN4NM8W3w=
Variant 5 DifficultyLevel 726
Question
A square has an area of 3.61 square metres.
What is the perimeter?
Worked Solution
Let x \large x x = length of 1 side
x \large x x 2 ^2 2
= 3.61
x \large x x
= 3.61 \sqrt{3.61} 3 . 6 1
= 1.9 m
∴ \therefore ∴ Perimeter
= 4 × \times × 1.9
= 7.6 m
Question Type Answer Box
Variables Variable name Variable value question A square has an area of 3.61 square metres.
What is the perimeter?
workedSolution sm_nogap Let $\large x$ = length of 1 side
|||
|-:|-|
|$\large x$$^2$|= 3.61|
|$\large x$|= $\sqrt{3.61}$|
||= 1.9 m|
|||
|-:|-|
|$\therefore$ Perimeter|= 4 $\times$ 1.9|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 7.6