Geometry, NAPX-H4-NC06, NAPX-H3-NC11
U2FsdGVkX18IeiS0D3ZMM7Cs/9Kf5L6IqS+5nZA/teo7kQWHZW5l1i2LV2CQsZWJTWeESSe1ARwqzpVNXmYxcqS7VDIUIZy9wofgymRmOKjelJroIkMINVUcFCWzY0e6hiodS6AQ9f1qOyVkLG4aHn/88+USJYKdbUWKCU4cMekU2vmGaOc6IPyzFzdNPuBzE0znVTpo64PGbhjrvMi/rrnm/v1H70O5KMyw88eXvNHYDmOj0oTZSswYAkQbbAUGdKoViUnKeCFZCo1aRU6W4BlzdhvbrKbJKNhN3bzlOFuWYZb71TvYNT8v/hkoY2Fwy2QrRhJV3NjcTZjQ1PLuOf77PG4y89QJTKS2ZKL0piowR10Uf65SF7+pPCzHqXlunCDiiTd2rEVIHpVe2z9b8deP4Kj0o9IJG/TaWDRIm/sf132pbpYMlVODs4JNE9N8j4qEWj9dRdCKVWg20LXxcnRA+83KJEhdclhV0hI6UAUw4Dqe3LNQUNPQmlGG+4aLJ5Ob3n1DkaSslGlTjje8+c8e0e2HyCLuy6d4sbIhmPZEi5yJ94JeyskQ74y3YAxbBLeY2jj8VLtxfVFjqXlnU87yMIxkx4e8dwwI63mNTL5iWbZ32Rz0m2RUqSOCqNIwm2RJLe4XWvsjTAm2wRoUoIGI3AyRUmZav5+dWrhlE9E/Iokz0D0mCCnjxPKeDaDoDjJcm0wtQ6Ulzr6AhnQxhPkQmhM5HDtTVLFF5r4t0X7leGo790oT1amziakuI79Ut2T7oAhsvFSmQAsi7k4+gZAgQyucWqK5WD2ei20u5aix/7mvwBvTzz0eEas76onyiqdM28zPdL3yXl0vCz3o76/wO8gQbhWm+s3cnbbsxTai7SBD71A8GKcQ1PU7Z0CFfjWKKlIMxiUlhQrMNDyKw7QXfUWuV5W/BmGa3KV/P1sSweSgEpZFh5vOQTHzYoYOs7Z1Kq9dXpQOaSyT9ScDgxfpqv9uVSO68B3quZ2zJFKSzzpMBfLDoIxx/sxRp+XnoXGpB01j16z5Feet9UCqUAitz3o1a1/zPcf9TQcwMkBgFeMpxntOFnDLPC71TJRI/I2HPL5NbFEW9WUN3nBI6Uq3P7gKP42RSr1FCZiYAt8MPek7bAkLkgs9IjJKKNOeOWKuIzKKAo8lhiwPh7Wj4tYsQN+0vU32aiioQ7koxN+8KL/DFsc8cm+bcSmR5ST8/MWYpfSMVIGAbu0pmTRdlWPgEheBTtMYLfYq06Z2WlWAYJ5Jnw76tD3Ihvumtsbc8Fk1ExrENtwbECctQ4oaYhCbEdeZMjO22uhGH2W2Y4cqKJ75VKBEpGQO1N/CJFoFa6Iss+VOW/Q+GVd0hTG2d7CzeS7pUoDECIV/NofH4lxjMdb/Z+i1+/d5vvHX+gPUxO2XPiBuRzutpBGfi/DMi9Fza2jCcr/tmRZc6PWrX7t2z/0iLjoEwomt6QvE/HCxSKgMdgWjC65/yNwiV30vEDaBkKrzkc/ofIr92SlItUt1YLemWhXoWXsV8RfyMb1IOqf3+Uqlcsl76PX75ebLEUgIZzgAzQ+iaDfjK5i1SaGY8avu3IU6TxJ5G4fmL8eNDUdXedQjRYN6oBK/Hlal9tIaTPG8of+tLSDp/y22XHaz0ukyr1xNHZGSmnqzfGMZXgQW9aaGYVRkNUryN7f0hTBN/gvnbo1K8IENurOJmtMp9b3AxSaRJpmSyQrBPnFvrHMU3VnlSOOSGBxF+2STsX7tBd3AQr+qvCSteNy6c1Nk1FoTyvxoRyrtlTJzCi+lSCg1uW/h/ZF2QtXBRSPiRNLLtQtyaEyY/V69+2cAC+6g0wfEc0mPaofMexZBgU7fcxieoUOimKVmOjlPe5BQpWQhiRnyhh0EASn4hA5F50BU1d+OFIihviWD+uePa3MAZXzl55+hMpOpodGTnterD2j+tGG2v2/bUzvd2w5VS1tIWsO3m/rtNIq0poP5KA16cTO4HLfPO4wFw6yUwXm0Me8gfXCFzxIH1RJNEAUqQu2AU2jtSRfoOqRie2zq71cEoMEAH9iHl0n+KGBJGrlkrItjBTXa1FRNChL+TMYNYTI3WJTpAMog95mAA1MyogzUJMwO0FCcUvZXJWCubUYnAd8k+/fZVOYt/N2HE20nAW3y0/m0ecwxe5e59k3Vn0m3vBLUKNMB3wezPOd3I9Apd6i8LX64KFp0Ohq9JpKMqtgblC7eE+sg79lZ2aRhUVXvulN0hh+MfkNa/flOWJ6foNxjRw5cinM9iAhhKfrNoApiPcyMLqY5I8we2t0vfNnci50fYNw9gHYKIdqQgY0t1BrM8aFYnDTL6cdx8ToJq2ST4lmaLNJMsRsE2hW8ZE65WxikaGyxL1oTrP1gSesUuerxmvQyYR2hHmHpE9wKWNxPA9/obKcgIgK/BQx+FKH3oh85gwxRHjLBSS/VoEtgY2risn5AVu2joyvvvhEqih5kmxxtwhzG7tD3yN9ti+r5mEkAEd1YwB9+3yfGKdbckdKcX2Ky8QRgJUHcDES0vb5SJQaWlEiobZZtDO04e0o7Y2qw2Rp+CQ9j0IUGAc5CPNzzVXX4bieS9ze508z+3Kg6nE0RtFd4zF4uIeQU8s+0uZD9rk34O+Z9cE4uPZ00ktumGJJ3y/MgHktDOzpNmlnvjk8wSKpvH0a8uccOJQTgd0EEp3BmFaJaLf+5MhuyqDECzXKBS+YLMp0c31B86n48R/SNDxm9Mu9LumgoYbti6yEqzqQPggPgHbrQdEOnchhcD62WhhITdI8P0RaLCmv+3K7hEI9vQW1/lg9hCXQhqxOCXa5DQh8mffn+Qv/Cncmi5dEtlYGFcQuzcQk4d+oyY8SStvDGSMzsH/827NMGGw5BZzdZ9L/iyW3nlT1eCG8l+0ivm/+zqE8+3yaI9JrySEe3xRwkNGKfzFDHEgs5IIx3Hvz2mNWlKjyS0wIahweBYoHKA8JVf01wrwA9SkG80KGlTt5GsdR6cP+PX9fKbnC88unK6IBOBpEM1/xBMF2ASvfJXhszSaOy3lssgW85mFaOrIsjq+aXUnm1XjIQgRVlvSgixyGMcy7iVB1DZ3hCUkUpL4xeJW04XTt1O/buqOna3hgSY9b77dgfQ2+NzGYe7NKjiTMBjaHUFobajfOqGl0w/O0340zS0jXAher5hrEdvd0Q8YgGg+NuSpLUx3xo9LH7q64ejS2tvmQgESbztJgCzQrq+yM/R92VhaWr64Eqr+CeDW7D5KQXglDifm9wO9Fo9anZFL/onmswABmXQKAEi1XWGpGN623/SSXXnZ/REbe36FXDklVK9AuKLVYdvCaORT5SCIHEx+6w9MsB+a/0rLSwMoPKubSDB5u4rVwXZGOts3sMq5t8sX3STGhjHnQMr+oNnThC1Kom+EXeU6GVnOriAzuwG9PoV3SyoG5pavbPTcEPklp8uh6r9JRhtWWcCsiRp7Goxr9fPR8XIADf7Eb2Xh+GpjdeHfzWrJcAnszMeaM3AW5Jz/FhSRPKg3dyk2rgFK6RT8L5IhCAGL2KAPOKtbk+CGXLPs0RyJw3l/tiXrNBc24A34/MHfDxNR+yCaHmH6x4Wbcy6oWVuyFfbU8fpAs/AgT/G3PiaHfQY2KazbIf8Y3UFvsJJCc4wHuMJSlk4H+VvCe3W2AYBjpdSRIH0w/hWTt31rc+dP0puB8q+WMKDQ2xLF64eJgtO7QyQKE9kLzTHRwZCci7vbKwlWqV3jNfHQPowzM6DGQk579TkWrY50gRH4q3zZ6VFGserMaNy81XDEm/a46hIk3i8eW+3AM6j21EeH3S0Nu7nFittkp0YWjb86uRKm3e7Cbhbk+kUy0giR84WKArHGy4/ASVoxYHijx3E5xqH3tGvP9zh3f9hX7a03H4i15AVQ+pJga0I05+wU4HTDdm9VuK4DHKes2S5mydF0pjRTkMtIFFPS92KWwTBTIzUDl+w1PH5w/fL7DwTiFs1lGoBhabBTIRtnTz6+0GHoRNRF6DmaPpKh+3j2bJOxYbwRRl+YspAdxxpURX7Plj7YgPfeUfyC4RwCK64v/Gmd5I/FM7couIGkUcduIWuTKnNbf1Vr/oXw69qlz9KBIls86xRs0+/RpyGBsbowlyCXzpUJE9HGrtwaTHE+qjRzgEyOF1d+BNwbOSumdQPvRwCzQdCim35D+TucvUX1CrDvSgHCHenlccSdJgn/KIJ/oR2lH4kkQgZHuep054DHicJ0t/eVzKY2xQARfQv59R6EmXMHTBiO+1ExT+2CTi50EZ393EEC/kqzYRty3vfB4pj3COLsnXRs6T+QZTOKT6eIbHHgD4D9NRbFZF9LjOkwv/1QHq+ZnWKrZ5S2NVTtG2N4N8h2LhEWAyxDcWPDFaELJaGXbgcKWWYkKJQfylVlAdREtnYWSt2ARnVpitLVc3+EN+4344Slx7uSowk5ItKyzDnzdYJieTMuCe6LycZqDkbMKU54uBV0EY5dL9V9cj3WV/dL5c9J6CAlPA5vtFP+ToZ2hBDSAVdx811hWGJPBDkWWm3etOT2dY/qECKXmVPrSDz86QnzrmdkJ1QxIt8Bb80gsfS94D/3SR5p3pdRWDUtz/YQUjC+K9P3PJ0GoI9xU96AArBSFZBDBTeN/qUmYmu52OyqFwV4btyItrvBlGjHs6h94iYN2JtapmbNz2OC6e+L24N0a0/1z6Ztl2jNtrQGf1hQxiyc68P3Izny8tyw3VrRBL+AN7CmveUKxFwQ2HXsAv86BWIb3wMAqu+jiYckv6poQCsaYsyG4y+cN/BZjSHspRTl3MPM2HTGZhD3m1+QbUB7q/0OAfos3W4eII0bVEuj4W5vuNl9AdNwE8D7fwmYO22rcSrgO/B5qUQ0aAvsPXleFELzxnUUkG7Hi6ShhnrTBQuGeD73uerDZIs6Wd44V1cNT3G56lsFIer2tb2O35hjYRahdPq9J1vbf4Bay8oz8NwyJZMuz3Ps/SVOf30fa0Emka0tDyOU4qX14IcLjVkHpc6yEr4bnQ07ZTYn1XYGb/lQdS7N6T8PQnmM0GPO4YYH/l1Tpw/sfWtXZZxxCB5XMI3QupzrbFlvOhSjuAm8+txgqOjwqc0k+LQCvy32Lfv5nicaJEE9QvWpOB3LHS5xoNX7MjZJk7xHOuCif/ZOTrrnVJkCY0musm8qidlsrpFIe76czZbWRvUgzRiWS40N0qtzj9wpIu7CUUbH512YUn6eYW2BPulBm9Y/6sSOJBlw3oL3EgSY+AirkBhtJhhakTcWUcyfShK60=
Variant 0
DifficultyLevel
537
Question
Wally drew the net of a rectangular prism.
One of the prism's faces is drawn incorrectly.
Which face did Wally draw incorrectly?
Worked Solution
Side A is drawn incorrectly. It should be
the same width as side B.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Wally drew the net of a rectangular prism.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-NC06.svg 200 indent vpad
One of the prism's faces is drawn incorrectly.
Which face did Wally draw incorrectly? |
workedSolution | Side {{{correctAnswer}}} is drawn incorrectly. It should be
the same width as side $B$. |
correctAnswer | |
Answers
U2FsdGVkX18OGreQfdr0PlXW/qrtSoZsFTAHJxQjVoqg+EZ3pSd5IyY3OQEkF36cyUwPktl8DiTUfqNgGxv3DYnEV6QzSL5LlX9aIMZcsSO2nGdm5ZY9174xCZnAbwlaFiVtn9CcB4haKjdMtHKXqv65GGZBiF1A8xupjsFShVaF30joPAQ/shjsYymAN5icGLcsqOc1SYVPE5h0whx02BwbR4hHtNBB3nTMcgvdWLIuy0pHcf1rBiUCFIN19HLOjpAXUgkJl75aVAnHQ0zVd+U6DOutThNcnnVCzzGjSEXx0zLZL9lEnFF9BsCDseTexndsOycg9J78LrBgsxvub/8bocvtvaUErLhjsbWcnH9ai+f387k7M/ped6hdHLCB7cLcshE3EHL7OCqdMbDOht1joH2S53o1t4vMnPWluP8tQFJ+d11HEZOnUa1QW0ZJZDNaoaqqJq4KqUyfV6hbcLVZNhjU8FmipO/PGQ/ssdFPqhO4i3VyEtsT2ey8d40aZfh/LuU3z8pSnpBSa8Liy53rxLx1iJpkMJYlO+ig6riPJxwv49LDGS8NXC4Da1zLv1NeGn4ZpBcVJCjcELDasDKkkUwkXA4xrJjGe0xo0kn3hz/FTK1DNXPJgprTAhCsgyIfio3WFYGDKZIwIoaJTPhRiSPV82Y8J3Jz3KJBl4JC+ZJk1lORWpl+VAoJ8C90drRKe+tBmSOYj83t9g/zU1Yr3R6Z3HzCcmrPT079rQFHdvwPwvMd/+W3ubcDQuJ45RLXdnEMtP8AmeTVxwvODqCrmQOCn+GNsUQMj8fBPDxhwsb6+wVsD8jS+EUnLrNitUPJHtqWFHLstA05m7W5DLg9iHdCVLb1ubCFAmUy0m9Mn5QYE1J3jh+NJ2GrV5zc+a8agTfWxBfcduD/8WzZ6mS+x+5yI6oxj2QR4mIcluK28w5dJDR81mESUY2Z9GqbbJ+4xGZ191X0WFW8/NDf9ZHQh5DY/0/tJKgrW8dU3rqJSaV9mNNRngige1D2xekUiEP1DFjvKQOZEv1UeSCd6icdim68yYB/zuyfiv3+Ar7g5aLdYRRQOzSyBqxbfuwUNxyQ4XxrhlTIj42aUhQ/0HqJicZ+cCkAV/xhrHZYvCMsHjEhQ77mPOiuDAdLu0MJlkP/LcEUQChitup+xn0hqIsxPdnjtqNCKMSqCxd/LiGrXMRvqMUB33XtHzu03+jIEFmY1HORMWEo7g9cXSxIWyNPZafXjwfSBAAik2FAmq7JwEmicEYU5cHjKYP06lEarB08Iduw4jSyoyfvMdzHKjaEGSXDb9kMHWFch0hG2jtwyq2s/DRyJjET42l3YkjgnnNvOLrgZ9qarO8TlgiRbvuO2r+elPBOFmzpOmW+i1gdZR7LqLVOMg2OZIxSky81RE6tuQRR4NlQKECGhUB3sSPdZTnU5M3Gc9PzBgFXP3NRjUfPKRF2gOdht+bGztShgoNrsfe3pRh6twbbFCdP5Wn5Dci4IPyS+s9H9xTxfa09wg6QXaDv8nUEASgOGZ5+fBgnUKOPfhPKXwiFYSQwGM6sVERDLt252cOymN94ev2LLXOZs/dHh/kVQ9k1Zt5DBJyeuAdm+5EAz+Vr9OPXe9WOjb1uIA8TEXxcCP74ICEhesgiTb00U4lj6qPcWWPEHBcuUC1qzMFfJbL86By0zv4vbKP/n8LZX1wLdBtvWRNl13bkf7M7filnrn7zgMT76zQpg575mHRWDQ9KGURKrgzORIiRIum0+wCvNRF4ubETqBKhKueXgA+H/JYqaw0DehwgycwzXJbo6uy8ra5X2FxusH9uB94KhSXzrwIpRbUroiUBFrnIq9D0qqzGv5RH2nI9dva4NfxVxk2jqAbSVBydZDyWt0fS1bNaAhEqmEgP+2iwuLtpR7knUH1aGPYug21BBeDLcpVh3v4lDDWJMFtzFv6vvYMNs9BlNcaM9PoIow/DG1MAp0c7Mp4G3OzCb31U/icPo6ZJhie4Z0j1+M2ERNWVvbYPv5buebalXEZISABR3pdccLcLsgFycWdx3/Jb6iCZkXZHCNN21K5I+wjie43mRQodIvjSd5uN6DlqvxYMAdkaCwvBAPShGYvObZQGqZgMiOEgS2/Y3f4qVSTQOg5OLrPSSAdQH+2OudRnKkoxz/t/jUNiX9l9Psd1Z3zKWa3rfMSw2DqUT0vG4MmenXJluitZ+6y+3cpDajN0yOXQQ7A3bBuJt+9faSg9MvjH+O0RZAiDJkxikdHP+N4jMUIQ2X95zoLUSF4UD31F9PKSXXSqQApCTJhFJ5Bjsx0T6JlyO9qOcJGpMiABAm4WjWttqEaNjio6FP+zrj+wTrG6kQVdXc+ksHhkZvID+Uf7iP22MFHhWLKTMKCCPcTkn51B9XS/gSbTV12wmveBOfaxNswjAeLbZ5EQXUGdsw9S6gK/0QEO156p5MgAgL4TxYYoYEa0G3gqqysy6AWpAIHwWlSC+dPRql/uJEoHTJ4cbsGk58NF0KycxVCgy418IAxrLOeG5GFfh3HnuIHX63ZVuboYxSY1gvLKCTI/RUWV3Ie6bJ0aFmkyHRizyJzT+AUQzaVArf3fW1w355egPzvm90Sz2k9p7YPtJFDgmFufbBm4/4DRxKEY1wYD13b3zBxmvZMvhdwH3+mDJWIHtu7QFpO1bs/SIDwNhq+bWKuTAl+Q5Cbp1sVb1u75eTGshRXGFqi4YvtHE/ZjW9PGo5EO/nD2d/Ee7OUubJLeWHeDCk+rJ8CUAJO/MaxZYBuxYnvIj2Kuv/ntE926JCiXn6kkqlPH3UP9UWdS9zVs3YuFyxawsQzvIwRmoi6a5VKD9Sh5csEhi5y23vqTHAlw1GVvMV167OA6GsY3+rUexjxdjBFvD69p5RwitQPid2xju6Mm+ucjuqyKa1Mk4EjbFIO2iysSfNJ9CFmw0zhmkFDbqfdWxb362HNBnyiB+prZ165Wg9pxh2QvzMZYiZr1429+N40C8GXn2BcvPKXxtxb7EKiqpUYV4X4Nx8u8Wd6CKdfVS8gCfc8rVriBYA+VARvbSpKdizEV/NLq0VTj/3OZW+8GfWWxR1jIloP8+61w0fM1lLYvJvEBiuij7AccifXcG5bTR1UUaJHOBasYwL/tf5RffikCk1UAxMYLanEbzIuQeLQeQ21k0IVvM2R5mm8XZ3fAVl0TuWvLCXh4iGa1g2w1ZEoprhMjFuGpDIpMOT6CWQVmqvN1JRLuLDQcB+GxYcNdeMFW9scaghzwRU5LONMjg+/CaTExeAS6tXtzjF4qv+x8YddOASk7W1Gh/zqhU7pboPpglN193BWllUpGyDX5smcQK/JIdSdRm5GWU7Hdh/aS9M59betAfe5NG45uwlk3eXIaJkgHeRAjfrAW6d6Ak4p00YAW8LACptWqO7aB0qEQLaNr0J6FS80NDz0lmsWKysj3tgCHHEd5kcUJUiaD50J2HEazywaYpK56VfLd7lv8xLWUyX8L0hop3TyY349XIl7jFv4zRQ30XkQBalMjP00TjTcpZVU5vupB+3q71of0MEbxj6/FfB0yRP3N2ULiKI/qGZOKFGzESV8yONsKTOkE0RHAfTkx0puTqpGxiKvf/dtuTWilMcO9n+ljk3ezl8CngoxZiJt8V3GrvqHPw8oXwoDudWUlpTU6jMW7tjpUW0liesb20ApABhTwcf/5Bo5nYV8Arq2RW2JsaS410u/rGpBxW6TO04JmKRzs5WzI/Fi07xx06e8oFU0kNss21/gxFnB/k+VtEWrSoplMfRX0no1pujYbuoMMox5WCqaN6gmJeFvQziICv0yZxejmnFNZ3Q/vpyhQpzqCO6FtVT/d3YkcYhPns/XwpoLNj7qovsxKFagMDh0ehx3BAXlngSr4QEmgz3A9oQeyb9weXCvIHlVDlQaDEivrogfSaW2hOVCOc19To4GFFI+0B2uAkyE6x0R7PVZCAj/H7+6tH6KxNGS4ARvy0Cb6EuAw+/sibJosmGsvO+WYSUVDGkTBexFPYrVM0G88U8kk6Od4Y8TPerJyV0XyX/rxNXxGtIm6gZI9YtNcbFN2hZP+7J3jYVgKIqLBmJxzy17TkUqJ+b6z3wGmzJDrkh6yXKt+11SABu8GJqBSEvtFVDBYbhTr2hri5dDclDuYC9qe2+ouNsLIiAH0PeRM/SLZZds9pu8m5QUE7rxpihgXJOa6tdhFYLo31cf++bjFdLfHs7jqGah0C+UP03xq5alFhEBnQpsVLh6rizRrVwgEfkOi21803Sk9pJNUi5VfHTW7UWNKKHOIdRK9ZcxM3l5YjxpfM0Id2PoZhXWyI710P4ywSxOaNGPH4NGEz/GRCFjEJ51ssg4F7/IwY2+Gkz0DrjwvW7PwMWKZNR527HyyDtac7+rMSNUqKXqte/s0U4gRPFjhyHqF07IDF2QoIASnSAtF8IIYqrPTHltSaNaA+qvEDhj6KGVWJSh1pk6Q4zUuxsWFF6927rvDOjJMhTfMiqeYjmhpkL+WDSJBRs1SMv3F7YJMSmiNpJs6xrB+rMHiHzDiEh4bvbECCtoafesH4pmf1tvX3nfPdc4+ophNdeonDEgWXGsuaSZfL3rnJ7sL7tNjye7iaJomOTTKJqEgVul7jmga1eckccQiYH8IFbOUHZSvLibhBAvNykxsNNwUCMmiOo7AqXZM+sftt2UEcH/StGXtlnFYD5abVbsKtKXyqBWyWdpmmWDnT8dBvyUORsbmJLRv9AzroFsLxUdd2zkaZj462zMd+hd+oLnc6zEAd2uvwDjIKUCteKxlJJGR/jBOIwHcB6WidgF88/43bIcW+9l6Jt1u3wVTxB5IbaLH/lJ0W05CcYnGpfYUUcIGLEBxS6hz/5hd6fJDCWhtfZorJiSaLNf3cxRHWOr9jmK0Dw6CgiCN0W0+fBadzQPvgZ1AFAqJ/bvw622t0jJ71vibI+vgYZ0tRG6dnyFIuLwohdakxe5ahOiE4KEB730xWx1iRR5MV+88VmnxAibGtXZu5WO772dEUZJVNy3zwgzet/ZXg0AlwTF/SfQpgaeY7I4zzqUzi1hmiG0vorOdiHUCcwn+ynPLqvXbr07jL5HSGc4FJ/nEr7NzmObvtYb8rPpLPWOkLjC+9kHphuPuhh7DryGnj6HIQ86yILrNVY3jYOjjKNcmbJ1xAraX0GHEIAp839yp96e1phg7JZ9DlCl8fdKi/Jn0UftPpnThzBHRuwry35KvjxWXnH8ydpeY0Z2pQUOvpQ28LQeWmm6E4UxMxXfDKeaCt+q7QMerKhoAl0mJL2cjDk7S7wy/7vAEKK2cc0zV+dAK+DNrmwYpxsGqQXX1H3YI2Djej8/sROog9Ihm41fyfd3pCQLLv8ga1lN8tx1Tz/ujnlipZEmH30om1Bmct1AxM7Fu0YGNYxGzTcgQ885U2nsKen8/9xjI8+zYXZkL2qnGX09RZhQMOGrEdCLVc6rlBQvHAMxq3wON28crMzDYiof1kkEnkiGaZbW+tx0aI5WYdDO4WTnCfPJi2mZ6lE+gVonUo3bjcAsndguOx8+2dHqVTo1+DKtbxKFCZ84SYEfrep6CSLYcpVsCghoGLLfFH2t+Bga6i0rLraCERIWYMFZig86RPiYYweT/cpRNXj8Nd2zxiKxBEcmslLULTwnMFYPwb0tNW8MmnHYHRLC2ccmIC9yP+m8KA/0lrhw5s9Ly2kD5yRaTMFCXm85rbcQe3E2+5v8Ly2UvYEQxL1VafL5eyx0twqjhK6F4Dr85ND0PRsBm34gFcMxvxfQLtGkB+SxhmAqZzurBsA9eE4cmK69Z+oiPx49SVYdNUo9ZZf+IMGPGCSs2LDv3OVR3I8A6SOMcPlsf/mTwYmbPEzsd0PSw1EfO3Yr8Nx5XLzwN3OD6yX70jaM0O1Q4RjGhB3c55V4yjHLdRwZvlL0sm5iOeVfQvERNkf9o4c/9iXtkOtctpEaYjfuUmf4K3lUwwT/u7jShrnFxkUdXw3ZomxzTPrTLEKRxnxFVi6Yc6znkYTL3S1H56aNMtTZtAoE8pQ3MkKe5Wk9JjoMy9PZaWeL8HNS3vJRdBqjvgsQwYbcV3sMstijQxirmvhtNyh9OKUk23vJ6WFQOMaIJvYSZPGh8pZgcXz3niPCVt6O4/Qg29VjGPx6oBTSuz9CFkVc/0M4nLfLzwzR9SzhTn7oq7BxYR2Tuvnh3chJbb9qznBZICMujEprhGAvRWa6ztOE6N5Rl9Wb4MvRH/f1f8oNXB2kjnFV4DMwtOAAO0xx6whwmSmVaNr9xzOOFzTYDfHEDUyv2Can+mx0bGNCoUiYvw+xpae+b7/DAmk8yF2fE28ZBwO6xamzc+e1JyOj04w5tFEdd4510py2OdqMhNcG6pLi8EQHSFWJV
Variant 1
DifficultyLevel
539
Question
Bryson drew the net of a rectangular prism.
One of the prism's faces is drawn incorrectly.
Which face did Bryson draw incorrectly?
Worked Solution
Side C is drawn incorrectly. The height of C should be equal to the width of side B.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bryson drew the net of a rectangular prism.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-H4-NC06_NAPX-H3-NC11_v5.svg 280 indent vpad
One of the prism's faces is drawn incorrectly.
Which face did Bryson draw incorrectly? |
workedSolution | Side {{{correctAnswer}}} is drawn incorrectly. The height of $C$ should be equal to the width of side $B$. |
correctAnswer | |
Answers
U2FsdGVkX1/o7q5PaQVQtsxtQM2ayBs01CsUkoRRtaBNgdLf7f0eG4skbx37zr7XTt89YbXMzaytZCtszaqRtazHptnIqE/YkdlI6dfQy5w7E2WGR1WsqZ0eDAbarcNJ2S+mGvaQeL3kLdWV2xiYMBznew7+5QurqEP+oumK2KhDNJhihyBD/hgNFHOJgTTpnAH0xGZxrHnDagjEhHL86Gfc44phlHnih5vNBTAO2rL3RzAHVHCbVTLk3HRloeZ6teaXhZQI0QlaVrSf8Zok8cXfdQ+LpFGOjz4rmeae/E/veemPDyS+yiPKO14V5n/gHdFJgBTz/0cU47pK+Xno4b97fvHj9n2ciBFgA3JjoCymBg28LAFyvNAY2OsjrcID2eSgViXabNNuymwT+hcvZxUo2iDxLzsUI6MtFT1vlgT68X74ajZ53M6ABjtWF8F5+NF4OpcK0XB+mMhcR0sfMFHE3bArUGDbST+Np42NMXcMceIOde1vQAcZsmh7tybKBe+HpNJ9A1hh9ej3cWEjtMMHRCcudF7SAf+MWgK0JUpK56VZcAVgIalWYbb0dXVg15EPt9JNKgy50TVqxHk8j7okiwkrzwnSlX/r6JqyaOMiVHaSCT4RkOxsUkpYTZsoT4RySF270wPtQPGvMfMEUrDJCFtBf9LF/Az0ifKYeSyJu1qtVGWzBTiKPRLSzywLibN+hwxtA7Q8idh0S/FvFREYzdRQglHZ5HVC/rFYUqu4STGIuO1P0MSkyj3vJosaQ0EldGIM2bjwMrk6bFC8uX2w8VAd1jola0PV58gBXZbniR7nVvAntbAMq9UzRgnodkP0ZyINepmYC5BYsOPWn7sAKjA6EMHatK367uLdV7SVxzSxiS1cPbpT85AXAMB0Kce2r//5/TROy65Lb2JV19466TB+0JrkxCzcTjHNe4Ts037cK/a7Y8Ulx393xk6rZ0wg9ygX1QfTV5X6IyW8FP6tcGYSzQAfl5+Vcy+XxusZO36N33jQ6GfCPJU1Jwkgp+5LHQg+B2ETJE1MdnarIu590b9MPKgNprG8hd07uxEsusTUvHKY49e9wO0ZQReWLX6o86kqBGYiUfOvGx3ecXye7NJvVVRtyweFLtq4TVBMiGCHiSronR5XQgGXO/f2FGbOFYC8IC4g1w5t5J5dch/vuMZvMjoQ5AFkKKP7pz5URgULYL4RerJ1eF/wCFWBECT2WVBINNwQOQzicx8ssEfrsxXWHLkrrEfA0qOTi7Vl0RFIoxrDagPjMF7I+V9KzDJ/SteYCe4bNKzdIr72ECBWJXS39PutkG58THXvYPJENsurs7nb0MmtLFBySlfCXWPFwCIORZlmT3r2UmyV67aILtXoGPNEgmOOieU5GXHnLJYopjxjAjqNlM3SVV9z+6gLmMIPht7ZYKSj2Jlsz3dgK/dzXlsgU2uXvBu9V5mbagNSjarFQRuY3Hc7TNXx5x1Pv0K/zWt2AcL/WsP8itKcTb1vO23k8sixh6v6YToVSDwB0m0LpWyEKCU/q/0uEHmwGtjIpPhXU/8Y32IFVv1x5QUXdgGPJkoA167tI2sq98buG0n4YQglR2hEqBm3m3nGdXNsXkfOKcUqb/r+4UMtjN7tOiAcN3M1rg16t05Wgy8anKhET3VFPVT/6iJ8HO1NCwDWy882wB1edpvXpUa/o12Yu5uqPM9LKYxHQJAhIE6YgjGXZ+26vT9JkVm6Gm12rChMA4x4oOjZF3GaG9w42jY/VwJ7O7nqHEVu8h6DBf4Ask8NCBEo/KyYABgNvCgwoUOBE565o3sIwqrRI20jUEQy3Q4LK/exQUh4ZeZ96Fdyg0l7N4e+EIHze/QTq5mdyopGUfgeQmbkWDnJ8fK0ElhZGsuTDXx1rZ+VJH7NvhVAFz5ndzz9myV3PPV3Ewv8ELTDT/qeTDk/48eMT+AKg/2G1u3EsJg1cgbqohHggp7dSRPICBoSbqIBtNK/IY8OrBxWGOuyq6+f1nxiN++vCVDfXUmGhbiDFaF1qbwHmZbdEv9r4gUmgERer08/7WHA8AEcKM1xFfdb1bjX/cbJgA5HC+Klgl2sP/3hWPkoeezlWnpTZlZvzpVSgN81h1fkTH76np4mR3hBU1qhuJs6yRTC02QzQEwsgyAiSXUSatM30sEHqNqE1DNLVxWvQLPPcCeIT+jE+BeXA5ohUwUK7hdSDbpv4PK37/m7y5bmU0CrkxxaboebI1D894C+A1IqL8ziRPkrNrM9j9Ebc3fr7Q45LqnJjssTbUum0dPMoAMtfpYj5oPMFGDiQMzOjHL8fg7+YQLmvUFpBhYS1psdrt7EQCUAu7nBsbff/jH8RVq0JUe9IFm4KYvw01zYPQW1PA2Wd+uss/FqZ2/wJNBbbkuLXltwHIHXIT+G3rr9Rl3Vcm4IEPSCdRXrTG+cNDT6PHWlI1DAaGrktibwYCCq8nDiwT9qqDiZAjWvJ6Ha72InKC+lQxS/H0vqYq0o97ZxVB7oF22ZLUeJPhACC9qkw/VX3UmJKiCDizy6uJWGBXGeW6qBYUKdRUIuA5ZgOfqSArENLNCfmLytiDelEc0psHuWLo3AvmI25i6gQYV4Y/weBjQhtzNbJ6+AnL24gL7FpFZN+I9Ou4qAJZWqIF2udwMUO8FlFB1iSGdokpZlfTUiutKrRfM3RpFWQ0tNQq+bUqvuV4JzK+rj+1lxaEaOxB2rxYJ9qZc6zsnOexKrD1FURoWzEw0BLc+EXRwZvROu4Wt3knl0TChrsfrNpEue68bRMBSH4GVzIF/kfD8T8VD29Ds73Xa/LVQImPht3/748YuiSrmMRzWHrRuT05OWXRpYyFfjm44qm0IzJ4hzkWih9S7LVeUogHcAxrT5CnonUkPe1EmjPivZoMa/C0V+NVvSMJaw2f566x3dP/6wxaqNe17k3VaVz8spSfvBJUAKftT8aKHiPuoLNwkl19+yndgUer8upnAFL3BLr4+sGqPLES9K9OTTMJrUXsfgk5U7sVXQEb6E1qGvJZeffhWLUmspeT1fz65QMCYIIfALx5tblOPVBTXhTKXr70dRyHiObsF/x0oZJOvY5RhLmKhdB3D/kKGKhdJjvyC7VLlsicszyObGhAb++5RXd0DILwNg4+PoCePyJiBqZRyMN0LeBsKxWXRJtjKfcC33jSauvy18xkvzZKIYx/ITxSBPr9xCxLARcFqR6NjcXfgVR2j51I5v4ZrffRbB7Dc6Sz+pjYI+gKsCm8JEuiJ69MdQXc5GAV9pF34HxxLt4lrnp6MSV/epQ9FyCIIoOAc/ow9ZipyJVF1C9vVJ/ZYZ7H+P8q75otvhBvrrh3J33Zg+pz7IO43+acTfnsI58fTYWmvaWULyLEspRH5EumLAliO5wPdT1uoMKjrM/8gFY40CpSmhqlMhqLcWT+sj2rfU9pFqVvGJiZQFjsHpz0K97W/HFM40CpbwR6HxdwtLoNyVgLKEirtMxMFhNn3LvfQUJtCmUMBzkrFB0wXzwvajSdBHzNYvQe13x68Qi30FAa01jFV8E4dDcIe/OXmHqfJC1gTN/Q8i/0GyQNiZZrSozA5oef/GAxveODwIsNxh49foZapDsaLV6CEAhr/avxAvnFQ3GxkWra5fPNcBR0nHowlXlRRyNVg+uWUey9uwyJ5q/cI/jBX8l36mUrdQsmc2UDO5Z1esOKG6wrAD/IfBQ2pXNu2p1xeg5KIVce98o27PuFt3Jq0uIC5Thhgi7FALtu/Tx85O/VSsA7v/D8x4echLlmk5pOmadcdxA12osG3qJo9zg5jdC9i/r+kHDonKDFVrKXqCVBkfRuk7DXt/nH8nOcMNcw944gLWxuZ4FsR4weJoevQBQ4Tg2+xDOFKOi1gwaPtVykMcSTFx3FP0zs5/lN2ckKbpi9iFUktzwOygPBZeKbkFt3TrlNztvQZ0Xq6CFauR4h+nP6poZDenaAk4nNEmTFzZSv7hceFLt6k5lLgt4YvFJhVIDRjH/yoVkN6yGESEezV3Mo1DmBFXT+O3a6XSSNfETRtxTDfbtdKeDJWMLmaHcLrg0LoLXSsKqF+P49VZ50b532cI0xP7L+6fuUUTHSSGj2Dmd9pAnmXAy3VxYtyqfAY1WpurIWkr+ZSBilPSB/Dz3Wf+miUyOnEVh/xSFjZiFe30jIkWOfRY1AIiGCrs6Kyp/bQvJHOdqXfTaVayNcjC7oQ+b+FiEQD3PI/rN4Z7HE26NedfbGfzo3+nyxFLnxkShu7Ud8onhLi/A6ORXYmPhRMpbP8csuZRrMINMxPCdemaUG26Loc05Pu5G95NfSboB1OpDG/u7qobbvX5bPcZYerkUF0tnUPhKcFBwKuzOz3GBy6OyswfqsVnzR968dR+o6bh54B0KHGGQ9CIfPzzUf4iBnrdbi250fpEnlY28Y279uztr+Na55IGIM7B8qTYcYOA2H4hyLGBjg4nffwL9fC9UayuDC3BmJpWzwHFH36z9+M8XwvlcnzxTIcUydlCclLFuy4pPb+R/3kesw7GYtTKY9vunhs1Td5O1ZFWAQPkGG8kyJKFGK4gDbEYEV2UGz6BH7bu9EsrMARFh4062qgoP58JSTIxLgbTSuexXyv2l6wGmLlXlaviIrAUVzy2IYCPVxulV17nJ/0IJ3F4UxpdCIU8I4iJQoUlGrGPXXoYf1HMfNWNq+teR/osbo8OGcjv+gp4SevhRSdFewunYoCUwsHDqq8q0gt0aThZb34fme+PbEmA1vxVh00VBnSa7I7r+O1cKhiyHGIY1tzCDHg5nqiszW9qvwnVwID+tqCHBl4XJqQjxc34yRkms/BuZg5sBoYVxPiVw4wXH2dVbig1yEbNaP6oagrJNEtNvZCC1NMLa4hYL3lx9e75NS0qqVNxMJeG3aq4Bf6I2G3Dls/IyL0LNw/tTvAbw770SfQQyoZiToWzPd/AXiRn4To0mF6s6dWNep/k9e4s0M1W1mG4gb0OeoEspIW55fntezDa7SyXRC240KsOD0pmxWb1LvKofYe7RXxyizNkvKNreaucQIWB5b7iFrKJcYglKET6zhKILf48blytd4z6wh7dv/ZaquDIZN+EK5gRroOPYBujgs0xNSWLUwoyuMkOb+dtgt3i/BsZq7DQ6PgWhzucuToevxqcvIeMloPaFn4o+9GFbSYz/PO1LkQSaesFmYuB/4+c4W4yXmSucFITzqy3k5KGtOrWOkLclQ1ZaVfCzLBuRetwm6zWky5Es0RcerFOHX7WUwsnb6Uu4pieDzb99QNDqUKYUdQ/s7spi7X7Tlq8TaY8VHfgqCRAwfyqSPeqYBED740MQYdVKHQKokULYNN4pKTehG2KtqfEOEFI2A6V+mv1rtn06OV8Ls2sBjiw/dTaMXT8X2VefQAo5zE2r/kGKXjb93yFSIo/DWwiZ0cap7wCIlgX+vptEzDUlcmyZQ7TMRjmGEZ/urbPpQxoDsfBtyFsy4L2jTNVd02gTxXnZuby3x6N+Kg3k5gCXhkzC6XJUxw+k22H5wGk0Lw1/rZhTR4cFZHbae5nHmeyQxVbKIdOGQ7qDJoCwCqWwF2dmd7pbk8wxubnmL+vxhXMWqMvrSuNyzUuin25DJHxpqlMjWv6AkSuB93Pci9tvteaX+fNevuDuNM8OKpF7RLFmyS0eBfyhDmdiqwCsw2aNRpC4u1v0XkW+G2XaZxZ45IaHRmnYVmmBLYzJQTbz0q+2HaHblp6Sg7o/qlK5j0AJVt/qVh6ClLWkKnaxviKYJfm8HF7xzqsGWgs91Cqbap5/3+//PDkQ3o6XAgUpAEzykAfZ49OwhEIaM3YENoFy0Y1x4YbJd3tiHN3++4RqZXD2wgycm5qNQ/w4xH/1+Cu9dX0Qr3oLXCsIf97v0zXtOj8Q1e7LH5ocaFEHDWH8gdbgf5iu4DD2hLK3VtngvGRIqcmrbXTMjElaiZT6lO1Y/m6xBzMqCDR698shAzQqGd4J0z3EKL+GtRwriNJIWsXO+v1e8UjNcGxbZdKv2gwyxoKp69Ox/hw62IE2qKfOBVKHWHONKyL2BnpyIJ64bQaYZr+x14zexr5hDpXB6XW0abDWi3G/Uge9XkzUZdzTUPUIQFYoeGOZP1YnI1DAmzqYDpG2tb+lc0KNs94N5ASbkYyNykzsKRPoejVjJbihJzmzH0/niIyG0ackiC7Et0mBfk5I9sWrmw4F7uK2UW/WWLkHKoDiUDNXa9/wsJJ9Tr4a4RMrT+hkLY71pYgill1BtrJwu6IylzUQSwsztUMoqy5CaaKtEW99oD+DPI1Lam8EHLWlSpZbnLUuRX8tprTOXDeafdlC3unB9acEDlTNEsE5yRS/u7IZzHa30pt3e9pUW30NVQdupUkPnpH3rHj3zcqeuxzMofH
Variant 2
DifficultyLevel
541
Question
Gretchen drew the net of a triangular prism.
One of the prism's faces is drawn incorrectly.
Which face did Gretchen draw incorrectly?
Worked Solution
Side B is drawn incorrectly. The height of B should be equal to the slant length of D.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gretchen drew the net of a triangular prism.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-H4-NC06_NAPX-H3-NC11_v4.svg 300 indent vpad
One of the prism's faces is drawn incorrectly.
Which face did Gretchen draw incorrectly? |
workedSolution | Side {{{correctAnswer}}} is drawn incorrectly. The height of $B$ should be equal to the slant length of $D$. |
correctAnswer | |
Answers
U2FsdGVkX1+obCFOcoXcR7JWmSIrBUpxNbr10iIILEcLkgEeHMiHFGiUkcd13SV6UCXMOrY7G5pNFxeW96qjhhSXnBKnwX5JV6jVIzw5WrxvPXZd+/Cp7k9xZ1yHITHbBVtAFYHgHHoxDD753nQSwFOlUWAmIRYfVTCDfr7zO9kv1vVsQIhQrE0UevTdHiri/fTzs2FQYu9Az7xr9NTuxM8eTYLKy2ebB/lQpdih+oyuu/ENggg+1/K8ah0sal2uddX8gouzq8kA/KoNFZXlE5XqLybXv7GWeFB4q9bONOO1QitLs/5IDXYExhkEFuwiBh6e5l2x1K8Neg9/nIo/mgDPI0u5BJ4r9J4VnCNk/ukR2BQWhWHZSJHF2eKvt6Cv38co1GIPJiRULLm+Xo+W4HwCPj1rDihogNtigTYjJSpma0R5rrT3rBNsEkhLNePJGMQWEqlf72rGBSv9ftDFJbYYUp0FEKfLcW5oU2XI5zV3ByEw9LThkwa/VKAmzGUKeTaG0Exuzo0MW9PeXdns0v8KnAZ37mKDEcEEM3k+z9zmcMYY9sAw4Tox5d0UfQAR5KxjEF7cBh4vavY7HvOA/vqidLz1lMFAl/hqVY+fMD4kDSEJR3AIYAJ0nCGyT521fNfvfVDdhEUzox9R8/HKi6LPD1eUhyalRZ40Q2EPjf61KkxXEq6IHu5ZD+aS8mnfM3quQ9CYuRvap97TpAOjNXeSZnTAKqUTMqPaWuti5N4E3b52moEgmcPMNK2GXqGRxxfFsAlcgOFqNlRJiGah5Mv2rfimQKx5Hc94Bp/Byz/OScoXIcXOVHefCyDrDR9VAVQZl9aiQOsoc4ZzKBTprTPvtb+aWlYon2j02wGM29PsSAitUJvyJDQUMClMYAimCldS15UgtuUycrfvW4ybNPF8DOxpuYbchTYIOI4cF011UbFt0G9TyTzva3UBqMxoXR3ARxU4HAKUmhbGaZ8BY7ae2IqCuaIbcdjPa5meeAcMS359JwwAg0Cou/IZBB8CTcVhbCf+QW+d3ZaB9/Eg+kWGU/+9Wm+vJZ5nscjQbuDOVuPT2NV5gFt6AP5L3JgZ8TvqhXkDRqBIIykb4mUWFjANBqEtiRJJMSCUTzQzz5IKmo/SbowyxdUzznqhtZQMVNbI1CIZI82QhwoXbbiW2h4fUxK3UcC+Gi7K4Fd6vo9Gq32PVD1j1ajGPvTurup3oPipMCRYCgxYrrkBMVdE9VNtkglAtApiKfxhl1Hk1EMgQZydhSrbe724RnxOGlOYRZzyCbFuRTlAXiyYTl1KpHZ+D/cSxFLcDPvw6vG0bptyTaVfhAhREWL8g7WT2lc+406D7ucEQg7+RLy6CpwlJB0Lt7aDelBNPy9RXLyFlo2ebXotQDr6xq1mwkWXmGruKr0O1S/8CMMxfCAnQtzIVA8Vj/Rjy9Dm9nTP/TLNYbCkxVM8TirZV4eRa7kmQKA8ZOH69Dq+4U3B/qKpHp5ha1LXwx4aNbi0gfM4iM0G/0kjuGtuIo2BwFdmyUCCVl1F0Y2JUqvL4y+XXbA1SiGV86xYi7xV13sLb9FFcP/EBNjOJAc8cD8NdcVkXarRqdJqdcJUYoWACSld3LE9vxfHaXUKfnPmbzHRmVV9SyTu7Qag0lOcOwfhErEohCV1axrVaCI0bhNU4wfA5rjhPoeasUBiG/1QuVpTB8Wvj7VWR+nkhuPW9NNsY3+Ou3P6uh2y8QvVuoEtZsUqnsZ85U846XEylZXwKugwLpacwiY6h1PC4WhjcHaV3YlKrQglwAM4JWtvC9pk3fLmKPTfvIFr6EPwGp+UxA+534frDdbDFYTBuamP4ukd+NFOJSehsNCJYqIHts9E1DctziUUWVhKiXUpVPUPWTZxxJI0iJO/nDnSX6wRHZZmKITcJWqbPAW53/Os9AgoaohaO9djmys4I64Ey1fuxjXGUgcxPg7Qc+L/ib8L8dcdVGoAWVx0vFrwiNQVO85BZ0N6+OIDwa6oQdowJFf24pNhxPqQee3U0wBpa+9AK+YZVt56bgDRxIIf41iF40cg29D+yGgd+YvNRHbGLnbjN5N8xQvSEurMp499hYbDKYelMmgCFK9UKwwby4PJh3so+39LB4nQ8Q1Y6Xw52Z//QcXwK7o/PWoFgGsbFlHp27NPxbG45Ovg6Js3YJBhkijXNptuBu4g0rZ8wy2oP09qF2YYg5a0QOpl8C1EFtvYpYpyMcMhYIpyqEhKV7peU6NH9G0B3Wjz5Y2/1Yn72MCzGWbivl4Y2vNR9e4pvLCkvA7Om8HrI03PdZvz8BXlkYutTzLHEFkmtm8ZARoCc64xApeglB+D0HkZJ7tU6ngwCYHZPgoJirjdNrqX07N1BxCUvUQ/hJYccsXJ/nKmYra/qJ5a0zTxpTxk9dEQntI6i3lzjfGQRG7binDSgvesw1Xg7IsPOdzwdz0aik5ovNPM2WqczNeKFTpJVJzlO3aIT31X3AugGlJZEQZPHhE57wusfT5YgJe0V4OgQ75t0ryllWh2bsWIIaz0YN/ViVdnGn3YkcJafKFV6b6BcEZaA27kEU0me7/OWkBRuP0ZYq7ozgDU6fWeffZPI9KIa2n3dNnH5GEa9v2qaerE61+EUoeZAXBO0o2AUW2KOJsF1Jj2bmfFu/W2xW3/giSHF4QAIjK0b68/5xphanvaGep11oF5ezUYF+hRs2QHkiTseDeJLQeg7UQQcEOcP9KKpXWcEXLXj+GupuAU07Dd9cj5aWofzwsbyVb1i9zYrxNc+w/dywR5ZmuOQHmNNEsAGTbwnECRE9KqCfNUlkKB56p/wmsyVEj9DM8/IjL08Ve6OTWibPlHvglAbBCNhmJv4Bwn+24ghGn5f54QHzGBByQYH8eaXkXDoQ8fHrPfy9yRmZELlULpu1kEBnhKRxGezwTCIUzvLxkCp87dJmJCuIR9DrR1SXjnoz7JMuun0s6G+m3GoqB9XajOTwBZ4q1wxoDbnwtfOXHh0mi25fORO0HRGGHNn9ohjmQ+KjKuNwD+sMxZeAlm+xMR6Ph3qj3jNKPMfLEGPIruCxr5KWjy0HOiaLxoz8JCLxsY4Q2T47swZhc6odmnE2aI81UeIRC/qoiEMtrNCWPQfhIzhvZKRyvhLf5B+9nK8QbGqmKP9KYkD7itJSZigzHIPG1bfctW2DOVsL0RtKWpNnn/7ZQby2Td3oBaFGpbJ94eFlXCMTnxfsiQeg+0suubYLffO/Z5CFwBgwKsc71tznTGz5EuPje1sQqt0NOQ/pmmMsJ8pPgeWZrd4Lbh6Qr7QAYmMrXdqcGfL8pBCqEeF8Je4iDOPsUMN6tfY5BdUL3PTp6qg2YnADXDftY2yHsBd4qIucRHhAfv5phm5ScjQeUzLN+fq5QrL/8HKeromFVhSpLgqLZSg/Wl7ZF31W5xXhk+DEu6F8n/KzCjVvR5zGfUp4sfpBZPxtdQqYNnNQrIbtvS7mL9o7FQuasWnmwc/LCxbN533qy1bIe9SBgU9wniZ0tU2XN+2ZSKDCIMr187R+QtyHVwnK5cc9vEWQYEL/PkKqHBRETd7KEz30YgwHgZRV+8fKF2hrJU1S9SVLPHsKKL+nbzUuR+1gzBQKoWIUib52458WIzRbgt4hmsDxAMhg2ER1addWGHFaMbEYpS8SCGqi+liGKug/+5d6NoEuxgYCdy1xkYGsJI+uSv2B6M/m2fjLmZK/p0t+cIY4JO56y86HxzYHxkKLd7iUp727zkfvKR1Lz8wYpe0zJrChGA9OzaoE77KEGqUN3BeZcyzGRGxx0ROk9FGt80zkEiJn/S3UaWzPg8KLD49wWCHRunf5RSUlijTVTlv7cvxVO9tF1weKgnHPM1ko6X3rKYKyxKpNK0dB/WdJ7MAvApS6m6XNuceuo/gq1j/SDMHmYff2Qh/WIa9gFLpy8oGI2F2jE/hvUbnpDqPBeovmXbsUOwOkpqmmlDoeTNfMeTJlRiqbVh5pa9fApcZE+cesp04R3Y1TdI0S2oqkG+CJL6pyHA4E9Cpyr46yrNRMho4RxajBnYknjSmCfJGvVWYRN8CT5DOQSKPK7wRnu1AJ8AYNnN3d2fl85DclrXAqaogxKppIXTvEggMJssb0yJgZ9v29QiK2/CC6jGXJI5OodPYhm/KmaTpBumHSVST8xSUu1dqena7Mk9g4vsS7eN3EIMNsbxNq6efRFZgHsgpI4sRGoUu7SsrtlNZCg2LG6jRUIDZAR2Pw23gLES9NYPLJVBeW1M1PTuWgpKb5ZKhU/rYfiM/fDGFfkjAeEvSN5u0DKy7gr4ap/reI4W8o7ngrmUePcKZJVQ5kd0joiHaTEaGhcLrTTunscCKCqXVzaCqYbAK/sNofxtyg8mkNaNXq5lIgEFJ0X0N77MNeWDJsLTYTRRPUy6c2deaYVttR2EUuKty+SNi0STK9eBNd+ILzDwGNfeehPjZVgMao6N++HnXaeKs4fZr1UnfxnKnUbkCBszRtd0l41fhkkaBRbe+pMLdH87oMvtU8QUUWAQShDWBcn29kTHC3ypb6enFS/is6nCGkpbJSi8zdXdEJNbaUEFweL9m2bW4qpJ4qV8hMzBNJ2+OM5r8Iuxf25VAdAXXMZxPZn22hKStbWEx3IQ+FDfJ4UlQ3bm0O9qSGjKJkqtk7WDhR/HYZHwzO8ztY7WEwodRNUGaWyqfY145qlA++AN3I28AOd0XWmrZjw6rbDKawXEfuVkThHqIIZr/8OZBBrW0CGeHnqEb4DSSVsyhn9WqLW0qzI22YruXOTvKMFioxIfsgnlusJHBQmlkPiHUi5V/qRdYop2FjBQweCU8mJyAFfZef+DnD3Bee1dOTWWMjqyrLsrPa7SpW0ycDCpGIGWOqymaSo/aW0pt83N9lSp88Bltzh9I4VUYPQTIG9uIvYUOLdwf2dDwrYCjZI+QHONYN4dBxo7MWcasU8UnD28Ew9n80QKOJvqgzcPtADK1TiibMTc3dL8uGgw3Ar7lnoB/HvNWXLfCoQ29xmmnS2XDup6t4Qve3arxSnrm5AaYBLGXn1GMjfjtw0q9YNBpGyOsvf4DSRSueWFNbeEk9zIhYeHmNeIVmGAI9bPJi7lHeeaPHpPV1YZKpnlQ+I96hjLkF8/yyH+Aupqb+lo92lGZujoh7vya/quYH55KXLx5nAUiY5hsLJ9lwd5t4iz4+NiqatwDWSH9hh/BbZWeDe+W1yNvBvSoyCA7SUZsz0Nt1u2CEXoLvIOeCTw7ylt6/SSDl4uBFxaWdRHlraSmbWtnC/pnEQqkrgmdNaWYMavtvPVxKzI4BVPtVUqoccqJvIk2ELkLP5PVVV+QDVnS/QNjhOE25XwS/poeTM6roreZiFMoN1IUidUrKJWKcsM82V5iv14ViYFE5QyIy8Dev9/gU+kqRdgZS2HdrIDHyuUQoxRz/7s+hbdiWy/z/7VGSKtQfiRZJzshgHG7FBu8SKwlojzcZeSxqVlUjUULiCB4NgMY0s6XnIXRKnuaaHfXPYjRBiT1qN95qwLrCzuxdCcvndxBoeIUMkh66DOnDEpLGBVbUAzSE07MfAm3EypgTusJ86UM/s1/tTMzZHa3ulDN13fVYjLwJr6X/YbwC0lF2e6tV4mSSWop2+TJZANB0G42uGGFBh5lNsXMjbPOCq7k9tmonfKDkeGlXtTkx5TDTmRAD7Hzlo7wTAcHl4rQpfqyQJVHxxtHRyI6+btr1X0spK322p7n3UYufvilqdFShvOsTbmuf8wmaFdTC07uGKeAakkk0pFLcJ3GXlHfANVClk1AOlXopxU8Jvza8duC/o90XXJBKtEhf6rnYAVBPQc12JjnP//7P8slohu3cYJ7SSXNo4zir5PciTtOKxMfLSVEckCQHbRAb87+8c4pEtKckjcHXKYN0xVdVTTPUfpW/FFr2Rt3Do0NySQsXwmYqtF7K3vrkxNFMz3IO/+9vF3DhkXK7oHV+6ZKWrUIT/gQBCpo1aC6FXQbDEDYEZUHMc+w0Kb0h5kx8FJVfXErMNCsX9OtwY85+dP/JYa4EuuUurC3MyaatRF/N6naPQTjsUR1VNlwl0kjoEKudmKRpdkFkbvWX25xTlJltgaDR/XQRj4p8rYaSJVqtZ+u4HyXKaXoxK506opFdNyrsC5roeyaCWLFaz38HltAt3yhrupndLWSkF1uYKWvKvt/B5n8T+eJaOon6FZdiXRcp9aaotpDa8hTu3yLnusmX3j71s0QbhVLkhaAKP3qEzEaXSDBRb01b2LZEoEX0BYyiXGLoAuMEgk1yIYL+d+OGcrTPdxl/YXlN54BtXYnYge+DSCgxHXoKkfBS2l3exRlSKYPw0FE7YlgSc2qMQkXVSkuNtazFkX4b0uej4VjcpHAGlgKohaD19P
Variant 3
DifficultyLevel
543
Question
Wendy drew the net of a rectangular prism.
One of the prism's faces is drawn incorrectly.
Which face did Wendy draw incorrectly?
Worked Solution
Side B is drawn incorrectly. The dimensions of side B should be the same as side D.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Wendy drew the net of a rectangular prism.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-H4-NC06_NAPX-H3-NC11_v3a.svg 200 indent vpad
One of the prism's faces is drawn incorrectly.
Which face did Wendy draw incorrectly? |
workedSolution | Side {{{correctAnswer}}} is drawn incorrectly. The dimensions of side $B$ should be the same as side $D$. |
correctAnswer | |
Answers
U2FsdGVkX1/jA2L+avLweJX3yhNnEKS1B5YZ0QiKNkNkyc8GEP9eOBEwQeAVGKdy//i90oxM/Egjo+wPJURb5/edlSjTe/ehgQJbq8ss6vXUfivsSMFNFuFGYqsNq5vOAikhsT6908W6yw5fDeJVzgl6YU6pb4uVAekdScWUDKdfWEaiRnCBPBj0b/wxAoof4oUamoTL2L959Y2zwTh8Ii7VAchI1cm7GsTTlNhXyJ2KspMlGREH+b/jg8pQzIzqZoYluIR9hTVD+6CNX8C5L+GVGun+FIa6+7TJOaMRaZ6ubtY4PAcsBxaSmVMwP8dGdJN+fUpm9HTCUdBEzFPk8990VmXNMHWZhGwMt7d48REztwpoDnNWuBcZo2JrlMSi6AfevA6Jqrfe0Ne8F8OztgrIXHyetp0k2cToNH2xvU83SdG67JAAQfvVLU5dIG7cMH+HOzB66fpe8mb9GGOn+u/icrWWCH/pDTXlP6LKnxeTq07U3+LEBdPEmYAxoBoEFmPFNWTcQlRkvmsbitPYhcBdB1zVYjZ8wT4vuLGai0X2Z2KvaXf89lcyvqc9VVr2jXW14yaiPhIekjqdwQ/fqGUwiIFYtjYbBwhG62IVogezMj9NOBqCr4JnqOfOpjsb/OWM55yZTuOwAAp9hWMhkcqjA2iT/J5hTmv/+6peCmTz6SUy0GGwy+EoNWMlbeTvks1JKvYz8arLJhiPCLBikw2LAnwt4JZCXX/IAB2Itm0WAodEuU28OTwi7K2rpzYdyNLzuQbLpR+9Wb5jUYDitNHqQV2D2GUbH6ixrRJh538vb19gOIat3RclLiFNQDoSxHqB78bdM2AEBdy8iWh/GzCgOVThR8Zqu62aEEsdCBwaYg2SPltlq2NwAS8NT3o3/mkb3fU6mAJHjeKRejvRdVht/1818pw1nR9Ac0/ePYxTlmwQDfhPnq5eExLhjHo6Lzud013RqhjdUto34tVS6iPqg8TLnnbGjWtZbdTuHrBSpI2fIcDXvZgJSPS0zGpm+couM85/F0Sr4OutVfyYMiHApIsl1Bi+zZwP4cXrfTGUY5zz3Y+eW8qBjlUqVSG+/bQt+s18OKi03v5+aOfEtmd0sAhMKZnZAjl6+ZwcXjcIniUlUz6xZsF+ZkSVleZjHsFiFnVQaXB2J2UYa+gUeQwinRTaB+hOcLMXZxEbhmufkybKv/xHwS0fmhedVGqO1RLMpFs/J2VUkB4h9o0mdvuj3WwA4ZC127yZnzRS5bCNeFLxiQJ8+MFcWOYofWQuq1E3A7An+jCxiZJAQWpKSaSBym3pXNRc5bS5qet+Yml9v0jfh2Mb6KEZfwOP6dFqtlp+hLFm1lTXp57Tr9WUV1r/I8zGIa/wxX7ejO0zCZWmmDbtWQRsYVHG/gf2wcrHqXhOd4Umwd/XGwjg6DgNsSyD2BPxkIhfGYSA339UTwBKKjp4w6s8KoUUkgt/b+NpG2NetreEnHbyhEQHU3+Y/9cBaWeAFz73hLC3T57LaC8DutpsQFa7yPdl3d4h07UqycXYk69CiFcPVdpDuLZD1jAeKFL2K+vkGLoQgbF0vV4lTg1mDr3EuPT8MSBwfPBeH1VBklOdAl6WhavxJFxRDhLhjG3CZCCSjNoJgcSoOc8ryxWesskHQrpSGnlf815cpcp89Ze2PjiBulflw20PRNDlPy7nXus8bwHrJzbBdS8OQhXgrpCYLmEW430UiUHhycn+rDDsXVaHfuvRpO267UOQv5l03StfGnkozg329Re8DBu/lMwwAUBHYd6jO3ab88R88RlHw1d2gZT1ISD3sKec0kkWVlD4Hn9EoDCJ2k0aJrBcOB7ulakQ3vpdJ+A4clNs9s0s/HVEZeJmmeAlJISDc7wQ+zzI9GS+tDMRiCNPmmnu7i2WvJ38TESiEx0n3cjtgCd10Bm3uotfi1y+U0qO3p4fMxoqIMqSBGeCE7E15/m+0S5P48UzHSDxjPhTzRa0OmBA79MFxkh24HHqtxA218nMgjtLAUKQBxarQzAA3a9Wc0rdrfprCnqV2+m83DT7qToyr0Pcoq6QlQUG6DPP605YIi+v8k34IVOUDWZo3NqvwpvaMQPPRNgY/C+mgixAIpH8bSNlfumnH4LQdccTvPfqwTeq/Z0nitQnc7bkho7VT9CS0f/0Bn1cCwxC5QjWtEVEmJarcTj7VfAlIyeLAHcVpsTEY5OdXnAx/5gtlMyDZJLBRCoYLE3yGiekhyq3IXNCPdDqSXn37BcMc/3VS0UhSOtOhYxPnZnrfZxdwfjWTDRsZ+r69QQEYVibYyPwDlei0Rub9zGaxaR9zVY2o3hHRScVM2o+svnn0eCFSjJflJ7LZn/N7gvLSoyd98l9+xm3ckz1aWAF74/zGJLIc325hMf1b3e3aqHFZ1Br30bnBgz2gA/ulkadKHGranrmgJC8yJAAf4wpDqQaxVTX53i32QmyS/XGW0HjocAEaGG96hCnTw2qFnh8Q3PvyZr1sHhfIpjMhku4HpbffwKl0ETihZCeG07PKP9UwE9VFQECnehHPhsvQZbqSZ9OvM2muP0Ah9gxgNnBA8/qX0a5BeXtLygnhNQ5w/gImfjIEbqBDUb2p1jzVNm2fw2z+rU8CiZQ8HwvDDLrSE28Tm5U96FRPxJ1ucWqRk+fn2iH/0qJXUEjEkgDSY9kpy3g8V0z4GCJhCfxpvpL6r5lUSb651/XJzW4TO3ajoQay//OJwgoUlhdZMnuOAnhHbXZz3k1ssk5+x9BGnJiYd1bPcKrbdIIlwEN04krOU94C7GaG6k03mvfl/K23W/rghAIJwGhXpSd1vXzSB5Unb5GIhYv8qt1m/OPrwQccea9/IIrziVA1fuVVfK4CJiaKsafDxZzQPtsS5LF8bkL5BKrPI4ikpX3ig2ru0Ju7vg1z9ULdSu5cR3rzklJhIa5ZBOQtkzSHDKz0jsrQr3YjqPfoejppoaDG0zvjezEW54Vwhx3C4SllIeM3YASSzVjkwjNMAF0Lpw9DvaLjyOD1tGLxnVMVuTF6Jgj64W3Z5krREYBeCjcKO3fHfhShV32JMEirULN98ACmY8gju6alrQ8fXwr53gHauSjB8YdF+j/bBIN/Lu+cvBoDkx78ZbKGni72QpsbJu5gHpDO/X82malt+49PvCyNT4YkzSKbu16ikifImOYO8QCZ6ur233QGQbSnqHQou0Fr231RZ5zRdu68jScvmY9qLQvFIFBtu++C2khVQ1r7flp2hp4XrC21YPLlGLz8czgoaS6BcG2WsoXofxU1xx7aOsD8SNGn7Ih5elv3A5Xc2/lgeM4dT4zGwA+W5CqGMwDBoCfDjeIPv2FBXma4BWzzLHuod05U8x7Kinnw5G/+1MEN+3edwX5HIsspVOVTaChqqVIcxJ0ztpuc6MU6yzjkMBZ0Bt6Xv+5sQs5RuqgFPpNv2Dn+ysyZmhIA9UtWwinwknc/Zszmj4kSVba38AhYTm8HTePwIGFaxyvL8N4itntpvVa+21OBaBn/PliWY+0yfdVezN49hINnvKrTS21Q7ta+8b1ePZI4zE1mgES/UnUhGtFDKkfbfbyvF9f3edyoqUtpy34/ExI6CpSNRGRmH/S/UMKEDpnGPAf2q/xd+4vJbiT2m2MDrWSxQlfFfo6zTq+SVZtVgHAVjqGQwb9JS/4Hlnx615rZSbPIg5H1z4armIinxMZm17BBzvhiC3UbuVAkElwYfECjg4/R23Ec/aZhQmplLU4XuKy4bvFhcWhcqemB7FEQQNWLmQZN+bJCWMB44vOxa2Y9+/ra4Uwp0Ihd5U+2FzV/M9oKK0+YAsBwUotmyShkN9qCXvXA/xCaKJNCBOfLnQSxx+31R06sz8p3L4xymSQ8hp/6oMGG72F1dgmGnHB5d6+nkOQI/t29c6HDxcFKBXc4bjTkwH0bi5cOJpPa7VWGD2k7BIaSSBW1Xn9qviHWwi2NHcqit6j3X3zYH1LC6gxxI3SnkdcAfjXbZLiuh1Vf73JKBxo1Tzwh885IQzMoYC0nKJWdUp4kqMzWKbUwfidqx/dQDn3YjcRocgpfv3/97L5lQh15NhfnKma144IWfS+Tiu3glWB5NPrg1a4pZ1wDpg2CbRKq+l9yqT3II9D/eEF9eazv/NeIviVAyh07OH/9UXxBu4/rjXgOvuwa7CNYBCVr379d6q0vXLbWSivFjoLMxpu4cCpgDPNogZKdRPss4UIrwG3i7H40H5frqBQtpCsQ+vrzEi5y0WtUjD5zM+srNwgBw9zXhL7/+/eYeWhFB+OJ706yjhosmw0E8WTCagoZZoMT1lCqD3afhncI23ptiH4tm2xVO/Rj0BkDFO34GkeQ6bsRl0lp4hgKsfewIZ6glODc1BRTt6SFAM5Lv9121RETEYSUu4+TAT6uDlAoVqiviP/7CKMk0BiAJDkQmeQSRt+dLwdn783n0a2VoV95y51q+R1OZTTsLh4xg8AceXMnrFYmTbEhGPgeHKg9P/GLt8KUja4xe2PO8A6rlafo/mYoVzgBac7PJECvjTCHh2+7KYmqaOjy2PBmw0EkDJfz3ro9Kpl8Hqo8iZ2bYgMBDXE2SpKRgNIQjvTqnJZYiie3IyBqTZDL0++7XPLSnTw8XAedngFQPDzlmIneUpa0Zxmltej0/573Si/AA6V4baacajCt5KT20mVLiEiVjY+n5rHtSsqRtHt4HWtJ49lH2r2bOSwrF9mlLfXF7nAmO1HEtaFCBBD1ABxzpxQPYYScxsPJ3mEZiuoNBadkbF5pOFOFCp8IJxRuv3gEeY6iqlu2OIvNWlTY0wlXQQXjbjWrK1aAurlmSy18cs/gU+soYkVnM2lmm+f7htmJxDWBfCauLTonruARYEVHBndGkipEKlf3AZOnel8aiTtnmdYTGSuhbF98yLCD7dMrciMSRNHmuME2kc7zbH02RjfqvGDMliR/pgBVolu1sE6djfo9AWMEK9zxGZrSd8ezKJZhTok69iQTfOgyrVhjyemeLoDmK9n8R7mf6iuy5bJIJUktmXBmRUHqeT0DPPJnM0p+wt2OTfemY8lod+fd0LzY9OrVsK+KO3FpSaGt2B1HdFtR8lcdzoG3iZtt0VqXl4zUF+zKiA3uDdTbZP7wmRr2+DmUCCQ4P8Y9O3CX+aEHMG2Rtm3SfwZlCDd1rcDVFGFhD5JC3Tc2aKkhnh8L/ErbUruHxI9pWPLDxkXSriD6Mnlv+J08m9l0rSd2/ct9JfLH1I4LbPzPzo7Hr2aamyH4OY7JSR20vQnqKDrwIT7eY+Rw8o1VFbLPHKrGdeu9U95JZV7OI7t8rt42MhaRJIp4eiFHZhFj+SoaMpBSAIC8SSb5zNykZFzS6Us7yfCk6JG5iP2aG0kzrhF8ol9eb82RVbbVZyf1aiwG591RFL84zsp8T9X9fXAixU37j6RZ4LYNh99Ije+/YUCK+rsGe/ocZbrXxyjnHDbmBdYPXUid8GUpZmSyh+zhbo0ihQbSeDI6s8T7/1FwLzzOPoyCKfsUNaPLne4zrthaIuM+uXhNWJA//uWh5X8JD7QJDNXBmAlEMpJNJtE9pl+d+xtexa0H4GTdI7itQRQ4SlagrPSlOKaeUI0ubF4NUJsL4FnAN1L2uBO/MNBY8U4K0Iaaa7UdbZ/V25zocHDIlw1bOce9ts=
Variant 4
DifficultyLevel
545
Question
Ken drew the net of a rectangular prism.
One of the prism's faces is drawn incorrectly.
Which face did draw Ken incorrectly?
Worked Solution
Side A is drawn incorrectly. It should have the same dimensions as side D.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ken drew the net of a rectangular prism.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-H4-NC06_NAPX-H3-NC11_v2.svg 200 indent vpad
One of the prism's faces is drawn incorrectly.
Which face did draw Ken incorrectly? |
workedSolution | Side {{{correctAnswer}}} is drawn incorrectly. It should have the same dimensions as side $D$. |
correctAnswer | |
Answers
U2FsdGVkX19j6eiOKJyGpWgYJycJZVV99EZDenKVSg9oXp+AbQSX9cBl2KT0IcdT6F6YKWUUm0C1ZNafsb+0tZRuBZqwl5JNy6lm/jQTafdpAdHbil/jptYVeiBTUVnKMP0TyQtCnxoEGFgnKmSLu9Xb/oJWdwSPXON5F1tNWKlBDn0/9QQscs+HNDXy+MowpvZvyntsxytqD13Jl+FiZm9/m+ua3E/l4bEQW9uFDGRj30Bvi/l4DvsC1FFLo83rJfgyYQyyURS4QRdkQHJm8SUSTLDffAEZBmvSPNkXCE1MdheT78AHv1xx2wmWzp4R9BfTY7km081Dw4DI+nPGF8zM25NUNfii8Np9eTQqy9TnvGZAxfofc5c684TSSBkL9BAIKpjkJrEsci9cuDKSIAUArx+owCjHtBphH66haCIwT2p2/4jYF9wwrmCBeeZQLlWrBr79kiOpeMGf9Y25v3IkeyDAM9RRilWGOqTdDjEp4ql/THuUYUfYD0CxN8JPYiM6igvGxumtPCL0sa1X+VBV8YiyAll16GAW8lYvoQSH0Hg40CN2sZRFyErxGeXcGOwVf0x4vgzpJdvfaV9ZRAuS0YUz9DP73bD+IOdwOnTsCEjUnWZvTABw9m2viHiY81GZ7qnXM5qrQ59hDZDaiUXbL/NVXSktYsCaX1FjLbGjLu8TCBNWfu7qLGKRkzO2CqKONq74TFttnRLbbfddr7+jOYwp8fdIyaceZSsCkNLf5FN5xiqVSwRVWEoT1/l4rSPEs3QuH2rfkLM3XPLU4fjDm8rYvwvcgG37IV6sX9/bVChBO7ntbxwQpQuBIV4aic/T5CLfgUdSFReUiOvvW5ivb9462XS5QbIeZNQooXd9J/P+wEZkvW/rQ1N4QcmeOgC5qzt9cnOkDTNqWH8DRrUGOzIMf3cGfDvzl7GrnhLby4xl1+BDIejn9C3RDp1YrlXhUOlP3EbmrrvkvMTu2JQZTcKq59ci3ePsY6UYmzVWvciyYzV00ZuiBw2NmvxzwLLDz58qQzK8gYEvlYCNG/QsRtofF6O5wgEBqd/OZGVvtfuvHB+9sBlXsLsgQvNIGG89y88FEvi9SXxTbbNEhZQTGENM3SM5u1w6Y0vh6f0J4csjeQF3nvrrns/R2WdcaMPmUwWZag7sleNUgwEJAwSFM7XtG24qbEDb/P5MaqUZlGEImVvh9NhpUU0aox7KLaJarCXMlsNB9NvjJyCpqJNIFyMLsSU8QA+TbDUVsX6Ba8muk+RjDAHlrjm6m2bubPh9nzVA0+JN4E8hoIMGVv9IHDSKISo9dyvPstUfMrcXpd3t+++/mUVJG1gM4aICBdeAgOFn+H3asjkAJBUrUiY9oNFIx0yyDL+oEYLmruYwaBkIt4xXpAOboyk997gruyGFnghGdtoZJ6t01EuogRD2e9bk5p0vU442LOb8BBVk6HEvfemQF7ehGCKZgQcjp+cBGp0eBHSudhDZDFeOCQgw0KbhHEMc5Z3/fTWckaXIiq674v2dkdyacu7IQFyd9kR/xQy7t/teMbWyxfTeSXoW7mD8tbavpUrBxCk+iPFTaevQsDNxsWv+4MwKNRkFsMNLMYbVV0oqcBb6q9a4pCUggLfKhElBDcRfQyZL+LRl+mfLl/AW6z7Nc6+ELJ52A41b08lpRjdQJ4qw4kmPMhRUgPI20AQ34tR5q9fhtc1WO5t3c4a0kA2i1QdDFP9yLnq/ab8h971KpBKOHqxFNkClucfi7SXYZQsM2V2HO9iYcF3hcyM8NAMe/t5Cgd4UtLgl7V7vLSvNOveE9w/8KM8cvcrghJiyEe9EVAO1vqlJUroBe92ZW6LeJU1sSxhMDDCjTAjs96WHoGSyHioOzhmcuuWAPXChZkopnYYPAAYyc2LVLW7eNkeIvYI3YlsSMKRAKkWLZavsi05XTKYmygJQHA2ckHsBtVkQmTEF8d5TtaELDegfxhwmDHJ254Myg2C0E2c7QFVXX3JcsiXygBj/OAqc1CKxON8d42Cw0AZFPwtFiahauk8srQ6LxJrkJjgk9r/E85D//yS/znLp7+I80xULB7fuSRYt9E+QJsNfVpv2aiMgbcU9wXuiukMfGxT2yiurEm7VjwV7Hd3vHP2FyHQxdc1thO7TDHQPsximFng5eM8vQYRIZeWGnPDdH2JwDyVu+jIpuDHBatVm/9Zl/VLUbb6SleSb6XwzHMVFaYIGisXeQPESNVMDNDEmUTovEsmU0FLGI1hx1rTdl65F1RsnFY/rw/a0ZAvBCbkCkdH0dvZXW7MsOm4MClAzZ4ldvlRaxBM2TX44YXsUzRpt4Ua6IH8pZgmP8AzBx+d1okTQmY9Idm6L4c2XWoNhYX510aeLuvrqlUDBmPu4Yq6GI040HttLU0r1zT7Yf6KoBJuQcRBun5aVlwgqAeGQXfSBSPAKUJ8TNUWWl/v+QwFHScqBhbRj/F652x4Jyi/CdPurwxLidk7ApJ7/PiZfvIqI8qzMGfKKuX2LTfjDNHy9W0CBosf9wEIcOhX+0hopsaNuIY9h8nMpXo4zLgMv9/A7Hzp0iyM9UxSTdSWgKpUHAJdqD4u/4BU+gphmc4HLFNJqrA0FqcBcH7h3qTorbhhcb0RB3Vr0gUEZxkJFnazpMHkBlvI2YfLRFqs/iMyUnCtNkZ9Ubv5hKiQYfYyrtz0hvLyfP+cUxdjJWIJ9HbbLOTwmHaNvmXqMnRts1SJHkbadC7lhRqqV8f6Mgxp3MI0GSiuYA96IhbhntOWvdjh3EuBe27fxXfSA7ehcvbS5HmjiFpn4L7/UwD9vCrSinnv7KeM+H2xxTFWd+PpFX4gdZG7HUTKEsF6e7MzMJxRhC7+5O7Zw0GDQekBzUy9lSwuMk/zLDhBt0DZmTiqZpvh/9I6TpPKOpbb2KxYl1xff89zratyA5gDLJy2/QrkUpA941We7xFdWK2YIkkfwlMHDwDbiKhsHpd5n3VDu2v2VePyjI82zmZ/xUysbLvxiGmH0bx5yEdABEm7Sol67Hc2pz3dOZS/YJbq6ossEwyWKtfDAbUsC/T3nU5xhCNxQmtqV8Vtu3ip3mfgQSv7K34JZheCdx9ss3BU6CMxsWVJW/Erf5Y0zZNIteSFdwnAMaKMtZpxw48LVQ3KXgGIoYm/L0iTtn9UUsPnjnRgDgWb0R98+uUq8kEk/r0eJ08kM7EfT48RSasMAIr30MSgFEjDazvIe0M0ofk6WuAFKz/8aUJ6CXNaaOIVJDvljal22OlTHFHTbSV5WOxF/Di9gMjoH36uuJe0IkvGXnvDf9hzaMI2cWwHFvzWFsmmJhWpZ2RIcqax8bMdRWxZqWAV/rAekKilQhFWSv+Mc2f8sSwzE9/g6LSI1rGtermlbCf7SPvHrXMfvd+9CSinqE+QBdUq5+sl735mTBQ5eMa57zNg6q+DpO5rdaTyzvmbllxFfmeyalvSFVT4dLNar2iq9gXNEV0Fy1to0fVEvv7jJvA8HkfIZVoUzU+7zMTteqAlxycjAmMYl0zbEOfAGOIYpPgfSuXELIEFcxZun9CQq00nf4oYG/TlOb4Xern2t/8FF4b6FoRLVr0e3aJrD/cZwWIAsrlePr9IBWK2Emk23CyLotG1dixFaXALnC43+xflMeUuNg0TOZwRdKwmZySJ6AI0eurTY5OCpLMZ7AinF4cXlgTCKseYmPM1j2GrjO+SaZJOeHj3I9NOG/0vcaxaUzHkr395Hta8j5SkoFChZmEGKq/pmkaG7DwjgsL2DYV4bHgRX5mnPFbel7lA4JhZBh8zvMqEQ/G8drcBlO8WPZMyCFuXibnwUm8N18n8Jy3X8D1G9VrIQsuTc/lxtXgYZeW+SrTJU1+vYau89WNVz4zmLH5Z5f2CA6zej0Zwe19APxTyAcvBOjthPOxiC+T1MRlveI26EVbfO0X6Uk850mUATjb5/asvbTu2rFdNWZl4zahbbiUKMBuxYirkHOwwX9lh+GCtRwdNuUJwHvCl6Sdnhr05YFoGdXX/k5BQYcxjSvfPKrHOgCzjON4ZmkdjaR4ogKoGBXG1jxAbbZ2bELqY+t7gL5qJ2sFwvPSM0dVrKhz0hf9kRx6QzUzuqZjP3bH3u0VpPY43tc2LRteRypEZwGXKtzUbT0AkJ/6s/ov0UVBeHm4/65iDKgAdr/6rnB0v4/h4+8nXAp1v13QA2DTQdZi2tqkLWCdiDUGbvDFNekeT7VySH8CaLvlrHChdnOCwubBpIEeZU4L/OLEnOVl+i+9MVvTG5nJUp/KEAsjDqmpPmFwzR7SpczwB08+k+c4kZf7ugKfIB1lgRFfHsmCayOmPC19bcYu6Ml7lqqTfVfgiOViuW3kBaay2WopF7wmrbNtndwlklP66pCDIgsdHednYAiFvZYJ3YjkSIbyYVHYeyU5VB7FcyNPSe14Mqix/Anr8rMQR1Bo9T3bUPr8I4eQzyA/G3TwqUwcvuL7mlNPj1jzhTbS0arv/3G8d31bd3QsKaezmUMMgQ2QZSRbmbb2XShOqI3MZ8xBjCQcpcPX8KTvYUA41jeTMViCKeF1kL2pbR56/40gc5rwCdz6fjwQ07DjpfL99tK4rVkgXRg35Z75H1SCQqGAZQAh0j8TRZAlY0dwPNvcC6EpqAccEH+oVNyPAOMIg/4k8b63VLnxjSy13Hg157fGQqU2BspG3xu4kiKL3EwCsUOWfnBlanO5yPTUidiboi2dqzhN9DS7158D9kto31MNZaoGUvcFhz+UqL7OxYgpogr6BdMap5VnC5PYs1EmzOJx+nQ18g0cnAbCwYP9TK5mRnVGOj++fNvKijnwcdkZnxSTBJHvqH2OSEUOhrzhbwQT1yasJLnpZJI1DCRD9IP28OPWz/UF3UGKEWBadDso/Zlzs9B+Ug1NBBp65Kyh035win6bL51TzHpnF8xbb3IsWYXWcl/8wm6Ka0KKKvVKxjryIMBMqrz2P72NBVqDApMJs996B54SJ9PrAOrVAAh6uMnANMxDaaCnoC1k5ywQEfr/7J2dkWL27xECaqQ39+veTfNduqaryAVRwKNVeoGFxPJxTtu+UTR/qYYHuVb8U+/5eQI/aiaayCS8kYdxLkPTogKR1EZF98xFWwunZQesT6NpVjVHRlI3e/S/RiiP0ZlDuQy2jSI9sPw6GWiND2nNs35ORAAKBZh2/ebWWfmbJaE2hSjQfsDiY3PyIgQUSbONOPU0Q1rk7vGAF6PsYFzaOGfxnxK+KyStIZifU8zWjsg4gZSJdlAUhyi0l7uUZAjhHiras4Oi/fyM6xSFtE/oxaQkWtSmKeNn6mIYqgbbdA/RUY3OMVI179be2b7GcD53bkqvcqojQBZXxfz8SQbEoWshgCnGyKci/O9dRAiUfZJkr2M2u6erWG6xs1WfjgzWtJmw3VJTF/jSDGfxoGIie8lm32gRNzVgwOLa+aKtlxFtotIIqHYEnPeDAoBoCim5GzIQIrZ3zohQECrlTEmtq+P0YxJ8yDVEGt4fSlC71Go1UpaOFohZ/hjImuBcmTi0kIOcNY3neECTBWbcx8GVa1FqORZcqQmcKHn7R4KdKOw74Emez17czyRjW2oyQ81OFt51Zse/2D3PvzJHgcd01WqH+sZlC8ct8zivLm4KZpH6HLS1dvohxGbw52JYFrMoviZ86iqu0igJyVoBetr15HRGHdwONi2CtAvonJUC0uuRK3MhGG8GoQPcu9gOXJr9/bTov+ye+OkExd4Z3NYToxKhOyGgBHTM7+Ym3Bi3omu6pVSxfZoExhNMLUbApGZjgiDFqGMvVXyruoOtzwWCyjl8Lh7Nt4vMlCtRS+4ryjtlFLBNkkQ4fTw/gh+x+2mKGvflUniDdmy9Sa7rGD+HhPX0FJcWjJcLtaK8plGruLkREX1A/h9IS5xKL5ou4NeiBSr3nHC/eqwEMZsZKdWzO1/0tik3egdhuhYAyUO897l+quLBIDmwYf5FefEhJgBiv0CNEbLZgOauSet+7Z8PPeye3NFH+Y2zrtZYB86cL+1y6Lbt1aZIiFWoqtKe/MCL/4qDW8MY8WccKvxTX+5hdl/oopqGKw9W+t9aIbZsm6tBnjzbLqZUYHRnrIYCYhv/gyEnnnb+Y48ADvfm82HLxBt6vJ07OTOopoDz0UD4pHI4W02S9Jiikq32s9WLazYrSBpqQTA9AGGB2NkSanxNdMmuX0uTwgC8uKKrYmcGdhLyLpRyGBgKtgW59v6+qTAeceuQk/X3K3QxlF4amitPFO0n+w2TVxrraK1NBvq/cGiOKTn3zFHYdtbKiIeiPq8/LuWOA3PWFhIZIHnEJTwkwgY/BfOKJdpXP/Vmc2gRH7E2GA8DxLPX/7HH/H0kzpR03vYX4=
Variant 5
DifficultyLevel
547
Question
Betty drew the net of a triangular prism.
One of the prism's faces is drawn incorrectly.
Which face did Betty draw incorrectly?
Worked Solution
Side B is drawn incorrectly. The height of side B should be equal to the slant length of side A.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Betty drew the net of a triangular prism.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-H4-NC06_NAPX-H3-NC11_v1.svg 300 indent vpad
One of the prism's faces is drawn incorrectly.
Which face did Betty draw incorrectly? |
workedSolution | Side {{{correctAnswer}}} is drawn incorrectly. The height of side $B$ should be equal to the slant length of side $A$. |
correctAnswer | |
Answers