20203
Question
{{name}} is filling a {{number1}}-litre {{container}} with {{content}}.
If {{name}} pours {{number2}} of {{content}} into the {{container}}, what percentage of the {{container}}'s full capacity remains available for more {{content}}?
Worked Solution
Fraction left = number1number3 = {{frac}}
∴ Percentage remaining
|
= {{frac}} × 100 |
= {{{correctAnswer}}} |
U2FsdGVkX1/FzXYQQPBKOOOks8l4cDnuggqRtanygAm/DCb78vCO3VwY8LQSZyNkUBDbJG5LgHcnJrq57iplh8lx0j42UpqswOS8R5myB5PhRLjDUyLlr92stn31Cjto/2Se3BYPnMDpVnkAOyDg8+0TRpALK8yHF1dbG1bweZBcDtp1TXWODrOHmGCXkV8Etpl0+sdl0RKDSL1h9CCuYY6OZGy4naxMQgHZqe2N2BqhpHKPg14zqw1uXkyP1huXHWT6XnoivTJ7AsYUcs054Pb2IVbSyZM/0HwbVEaMj5IPbvo7/PlixdcEgDmQeMQv2kt6gsCyxJnOZFIs5MIMjs964Vvv8eEmhTcsVU1XV7ksMnl+Fs2iQKKOmNeHdBwmfiJ1pDJSst+oJu1gP2izB+xKmOhPcjcEZXgOVp5InBO4vMGTReg0+urnXFIZ6ivNvxzJqhlW1WWP8wTL3MqrFLz6qSDbEfrWGQVIv/0zbXpVchPYhSCcQJCoBkCktZ+6IPuDCzXk7/LejoK0Oq5cc2HhzXHpEhLyK+drCuYtw3+WxWx7hlQ3WRuoKRz6GChgmNLHMXNDVfsgPbIZqBMQuyvM7qkUgGRF4kW9yLc7dDsvo7ZcoclbJ6HOlPifKLmjw4mA2tVM5uKw9rqlCFlIqYjB4IVGc7WEZhYe7SCm01YYHQTFgsCV7AFsbaONIqwL6WQ5rZQAVoIBuGwuw8aPojjFBgTWZLn/eOzUHatg7dot1MjyW/GP3Y5ocXEBM1paOb/d9oz2KjZ9EEd9JG6MHbonFVacFwkYEy7AtZTTRIjIzgYlVf3e2wgDj4TUct3W1jI7W46rhRe7ECYZ+bEAsKC4CP6KuV94UqBz/BdL6PXyhxM3a5JEQK8TvQwc8d1KGPS6kH+ZC2k2kKZFmJIjfSRupEVlmn0IEpMYCuaYyKBWA5ED0OeFkEtwYnEIvSAeuJwk4AStAL/0dMqUe9c86KROs3lfcrazLLfmtMHpwSiWpejL0vyjBPj2PkXD+9C5UsM34s020ShvBQI3mIzgrf9Ct1148NyGlILCPkT8yNe7f/Ez+/Bj02SAoLD/XjFf6+AUcJEzsHnJotDp58URSdTDFNza61sO5eLolJ7mrL8hznegrpxTRcDXlq/4jEFxhACeJYinJGSM0q8tP1UR8DVg2JszIubkJ0o/QAJ8HbAshMSMkyll44xBFgs31xZnN8hhFb9uo7kahJWtojqKrm9Alr5e/iUOH5aDTLbINErUuTuiujOICDwr3Qf//TRwaVALQOv3NfG0yqsMEKN4+D6CcPf06V/OpSo39ih1DjyqWNNqwZxzOFK1bPiR/TTOXkm0WSS8L8dMJt8kQj95YkZ1TeSWV5I5Roy1YuatVzIRZDVbPmLKw1VcbcvijB6g8w5wC6+cflNHeOgNH836Pjr69VMnvTFIGIrqSHfcwKZU6fL/Ta54hl6gKyujQlXlRJvhT/NxnB+WS8wEHQg2IjDAo9swsGVjH2M3u74m9ICgZ96zu2rPudVuIyv5GAl0wt4Rm6X3jCcG2avQcaLplbx3a6EkOAzqneckc+QqzVBtNb8geqfAh6JdDG4E34MSwfMIZvdA6faKpS68gYcaJCj7YMocdhMIlR4QAcLTt63zBMcScVSRkNnoKQsgefh8QWXvd3Tq7LFQv+LG1YFXQl+kxI8ukFLOM9ixLW8FfWTBJmlYZLia5KOxBputuMtWLJLQpVohdjgnod8sBPqgt0HO9C0nQzjxI0Loo0HvU54Hwtdy8kmf3WFfknjlZTpk+wazq4wQDqxWv8ytXw80WQBwvtbtqcbzM0RvrBluazvlKmdiSlNOFSx+LoeXfc4Ou8n3pw1L7SjYDoO89kau9JaFRmySe4odnjQ5+UBScr1IVRyTRwMWEq/sifht0kT2Jys4KDXSRJH29QuT97fMrLSCUeyuAfyn3zTIDiOrhtze54jJldYuqL2YMLkZuNjG2Og5dqMH2dTrbLdWed8mO7wSABwnuJ5cqcE4D5INBnngeouLifUfcwnaMIxOIREsc1CYcvbn9YphmfrP3nh9XsF7un0MypoY/nG2bs9IRlQpmkqUA8IigzCQxjE+3+I+DJA3JbWMRz1SGipCT/Ewg/uOPwgF+4Qr3P9TEzyaRnIbITiWhLiAzi11LtuOUinKlkpjU7o+yZ/oJg6fIR9D2cLgQ1igo1VuUhjJEtm4XDzWTDxcBvjF8V7A0P/LCyhHjImMdz8dpAufwwD7PyHg6o6kxnD6ca6aw0qGguJ+zbpDSOj+Fv+aeXpOCU/mEMStw78hMnkhx2fIE0WvekuI0EY3mAPV6OFUjyXo/igPdbKNLlLjabEHrdM/4s5skim0p6kMvlBlIe2GvHusWJlu5OKBUOu7hmYcovxnMympUmOOwLP2pBtRk6AotwI8vIRF9qlWRalLt2RFL1CNbzjn0XIBISZC4oyRZF1bws7JBorFTtI4amCGA2q7cp2LGOsgVQiaGYOATuOEYEaqxbDbPiMMlqxTpzHNeeDf2DKJ7LMqnfDDWP2uxX+4O02lsKruEnJoDMtg0DUADAlvKOnUA+jFG26nkz1eYCK+uDQO1PhWbmbTfsSN9YINLVZKsuw3YKhF7iTZ58khBPim94Mfs1y5q7ovQGoBzEKFSCEkRObefuTF88RVHiDJ5HAcnv07dXUvpl6baOwULsx9hfiOeyXsOGVqlHr2FdHPVMlR/s4WJuVfepwU5FI5/BjXSAr0FvlbefNdmFmkFVWLwouFMN1hcDDL7STvQqJ5p6qggnvtcXlWfuOj+uF14pzJvxstpmujYgqlyTTrpzvGrto8BHD/wPJOpEu1hx44yuiaLpI4xaCBfR1wIwSmSWf+S3TMPX6j0hXRvJLP/eioHdvG2UvV9vyB6XpW1xGUuptRbM+r2rWtyuatJoepfrhoosGa2o5lWTJmBaF2KJpg95SeVloSMxyivBA13RnU97ns5xo2hKxQjtp5cNmUlSEJ42Do8dTFTUttf83T0ibQEn/7NIRkYiiYKnwycy8x++xpAK9zx+EwTaGBFZOyHE0bmm00MuRb1efsPkVRTuiI1Fsru7uH4Mmk8hXbPpGmOptS7PM/XXxOzJmt/oO9ewmz+jofqhvB2yTZoi5QcqJfDo4n5kOTwoF9bb519z4aIEbwSKuwSJ0vrYKD6Cp2SuyvBDhLuxOxYkus/nnbasNCPz2QoukF9Ujlfk4xdarJUt/L4RFeRHNLBwCTIQcjq2py6L4WZQ52glPvqMUj5zTblftUAGgh7soZhMTJ6fViJ8Jtmj8PmUOOK6WwlbT+fvRVD/Z1VDRFVOLF23210zKteyHqHUwZACf+r/aU+G1IDUiW04f+Jm2T7nT6ZRyPy0nTzlWL65UHdGqetf/axTFs54O9i0E9YOcN+RWA4ooWw+q0CS3i2etGppBhm03Gyf5cz0QQJYleFXdVphZc5xEyE88nYteF9dYgL6YvUoJXbKYJDkT66jh/m1LsEl1Q3RHb35NdYCdtzoM7E2Yl8C1T71CAu2V1NA/iFzGTJx8MwyQC/mTTKTzeabvWP/k9JJAI02OaINAhRc0Vi68i3FXH1XqotJnrjAUP7JC98KOjL8QRs5u8PlGeC6Knz+XfpYLg/NpoJstuEX2M/6N3JycTnfLwboBBQhcMbcR1Ar7SXcLiejv9kW0wHaUmSLBJWLAOhQ38oPWvUy/ov+dcF0tls8dkKMQvU0+Mh3tD9XV/3m1216EJxJWJTq5Og/K+EPa02W73xRcHZRJLe1N9oOeXyM35aV6tTtTcKxmImw98bOf+A7YoUFTw3X7H/W7p/GGBZpLJznLo7vlKwz6DvvvTiAN+BW8DYvlYodNKm49N2kSZnb4KPyQ8HvwVEfE1O+58cNvKJ1qFqHvlWQrdXpJ2zLIXB8YSImO4qWgVD9+gATWs3AgAX97YJsna8zZfL36JP8+CzU/JZkCmpx/sZUorPZL1kVyjvg6sQ74rrxKfgpTWGQpr6OwULHE37hKNGMkgqf1lsKh/kqqwt1PoZpzAHoqHjYFZJ0dXuR2YuYvVO+sxdBHTQUfk/zd+C3a/GhEfJKsXrEscvclAKUzZ7B6xyXc2wKDRaGPpV1okh4vnp0gMy9Empt66G6p3sL7ruyHAwPgon2Wp8c/ayYDzcumX9far21AlLFiD+azZZK43OQLtwHrDLsJH0offl8LUptl4zgwoKv7ubJi9F9bckviiV+k378tbX7Tqw5uQ+nxcvQR0RunKgiIhfQFsH44BFMBHgH1H5hAsJaEkwiFx2KMPaRNnyWkq9zMJhjQXlIh5sO44h+Ox+d9UXtFXCN6VzeyemQ1pqOsVlWRaQq8gEPcVD2Pet8ZWKXHofKOxTBli8YzcPKzKtC6JoF7SF5GggWUqHvwZpa4SxBiGYIvEoc/VfcU6A995MOv1YPNeDVNkxP0gQh3gU2kldqoaLlLJnts64GI5dkcaWPoJ3zOxu1kTcfZ2CaGNtXZEtXT37LKsENReWjF6XBu3Tsod12C6nijtjOyJXGLr1oDAC7tgd5UZFbO+2GBtXX803f+9RNOry+mWYfbOsTuVdfl/++MhOqDkJlKO7bcaedrLt3u9SdQf1N6FwdlamQq8oQw9bd+bf5t/sgrH+HgPrbIq6ZgsTqokaTm4vkvCeH9CjTV58cKiAxq77ARz4o9EIi9vL8pK8pTXznm0liWKa8MwfmkdFhu7QmhaFOI8Uw8BxD3wEDDAH1bdUnkWikIpWZcfPZFqEiPTkUX/lvK+Wj8siFK60GnjxOYud1uzqu0wX3tVD5R/+ObeCGMQI1T65GuQAmS4skem29V7nQuIZ7UFbMg492R3ij5RIjPQk2Tg1PMFvnD3a2C7mXHv7hSwtRTSk0vMsSSite2tUhuPzVzOpW2SkrWtux+d3+bdYgm4CGjMn+B1x9rQwr0z5jZERo8qivReaNh6AOS9dSTDwfNbXy9I9clKz8btZL8kkXM3mf9k/ku+WhrbzNM5FjA45Jy2VDkheDjvjbW6ssDlpNFH7+e9fCZCFsVIr5RYlVOsbloC28TbvJL0PSHgc9rL4oU7ygxWcqskRKXxMlvtRkpmP/aQ2HtsDTfIVmln8GeMu18+NFTG4DqV9UzwA61VdDRRMGxZ4s4KpT9Vs1wiqHbf6TqNieCVjHVngv+FO1F76QYHg8fA04YylkoYpNpOGw3nkUn066gE7QZ2Cab91k5PcpSS3SAgQzxazkBtOKxdsr48G3mewy2RbCcoKRHMf5NLp56y5zkCOPxXECDQstpkg7jQ02gjbqG/b28lHzKkvvV/pglfZIEgMxkxcIcNOn0iXIomfhJ7SN+K8TcKNIv23WizwzawRoALcXWS+/S46W8mcsB4xHOx/tROecl3fbPpPXqpYHGw+HD2XomTOkS2nJmlsgo/20O0RJAtjfSx28YXxSe8M5O/crhQcmghE33Sr1nSpeoE3aG7dtnq3ZMZUQ/TbE8qCcAlXtDfWmpjBBemhqKAdwHScY0yrr8w67zBAWsUJ6oMmwkJLkKa3vtpE/AXDQ58w5Bsdhi8giqLkGzPRwpMv6N7HFtf52HeY+g3qwACdVzHo/7pCIw0NnWB0+X2gntYmK9LqXEXOyCZGzbWpKI2imX7leJba/y5mCyok1yTJTB2SqYewT8mJoBsz2lOY/KY80hjRq5drNIo6BnQ4vl8r6gAP+kBKlZjbaNgDhiznnRphwcf2jjmpzHuqMRt5fiYw2VWKTkEN5pG8KPFD+t1n0kptPl2BlE5Aw/+a4n9jRq2piMa+B5ubHip+xPAVfY+MU5+/mDLAxJ+CmO+ukY1fdwaT4dIdCrQzzha9mThnC0zq5/P1J34888HpXsJQ4KPeOgwUBIqpfDKRHGLgnSuN14+LHHWS4EeVVeKdYmk3NzwRCltLs/77v83+tSN5MZeBFgq9Wt8fxJBVRk1dbo/cYd6Q02rRNnc8NSCmuTK+6AaAUFKnKwOgFqfr9sFcY0iWKJjRJSKXrQsOqx86PcCEGN5Hp9aALB2IkotSNbFlB/K2JkCjirTrX6v9FAUKc2TE26muSIriPn34AvmmmzNAzbZKfUwlwrhpe3EYAyogcpUihrM3RYv3LDiiGJR1D5IEJOIsdpzUUIEzMf52/1nJyGqtlGxTRWyf4lzXH7XCxlVcV+akcl/X9JCHuwYhY+m4ARH6AiCl6m1Ft+CuPZII3p9/ZLSHspJ+ZvqftK5vFReNhrhC4s58p9YgSzUs2Xv9PWDnyDG9lvk+r7nVJBeRVGOchlpdQGWoro48LCDqvfo9dCiRrKg8MAOAt4MYx2b+ntWMYiXQDry/LUJi9ZOxTPdFBFtJv3fcjJb4Sjg4FPjO4RHzbwm8lJjqGCVS+43R/GvITHbPJVp7C9D+QiYofS6P+stYRVaXVkAq9W0ylFWXU2PKaMcRARDzUUYMPROFDg7BZhA2mCZ80wEjuZGdJsuLk/tMETEcJf3+JC41uczM7t2oWiPB+EeKl4OHqyLKaQfJcSHeKv4+jwayUMNteDlf/6htfCoVLJrYlJZK9Oa/oA/6PQXDoihGaEef21D6i0x4kMpnPEs4AbyYyI0MTEB84IWeY8k1WtmLLsVO9TyQzYSg8al0ydSrfCC0bFX0/gjaGg+3nxtMjkZM7xvxHoH75GWSu882o6T+QH0ISowTFNfyH6k6sHYpy1uhigBKWUVU6CxAf1elKqHrUS0wE2J0naUGDCalMNkS0CiwTOrGj9euGqL7y6x7SsFIWiHqMyEm2wa18riDTSWPUWqPH83D9ya5t0prSkzdZZxuX8ME2QloOfEb5Z5g8JLpHgxU1QLf5D+N8Ap/eKx7dv4qIdaWRgCKcoV01KcHay11dIkRvtqKlp27D84VyDRKbTqu6Vdud4lORJZbSco88kmTlOhrmD6Olt1Vsgcvw/tCsdm6lXjQ0IFfKQ/aWDFPSk5lW8sIZjPlas3Ke6HcOVYjPR2k+tbllZERGTBhAfaHcgYzvJSfxpPvL7el49fmPDgrqNcbg/LudB1Q20A6SIbXe7iEgz08go4CTuCxVzUVZtIYNl84Y0Z2gCB9bJ4BfvisrzWtGd2RRh9nYLzcjTCGgzKdBfvBuRD3Ff9Ai/Ifpf3eEm82kvBfgw3UgGqs1jeGCLsEUO/LIEllHPTzfnHZhRYYaHde1EcsrRiZrPkpF/9WyVypr0z2UPoKnv0ppFLharFCW7s/dK4ds7z7eoit/DMI2Yd9ZPqblmV3eHTQKHg4YCf4vjAhV1+buzAdIIcMgEnk16TNf1HeDQI1X8EZ/XDIyw9CgrrcewD47KjzqjIGNZMjnxfgQw1eO//L6I6JzoIcZpvIPAtkxDPntWadAyPY+/nfCsLw4+8kpfS0FwEzRxkNvk6BywQqD0uL6YdORcj6PxOIq7lj2y47bNTbUqlNokn2PPSzUbz2lhglF63b8OI+OKNn29G7OnNuG0mHOVtIv9xL+YFAGz9B/ggvCqEzBdcMMPAg7/gjKn3b1SAC+5xHSCjxJDxWpfj6oJoZy5tIK+trsoHWYQypvDwlyEoCxD/z3CckBdPoYnO/nqR89UrhMXA4zasETSQXfACCWzC9nEeIa6mPPMw65JkG+7fa+cfnJWs6144GhPJ78kFC4bUgmbTEcM1RoEMQa3iWtMyfHcUmBuQS2gXXkoUTlQ8KRB5mBczUD+a/9EHyLq2mGWR9eezqjlUx+rK1phOpDfV8Qp4zQXK5v6+cYUbzX0SVUd0z/68e99N1Sig0ZOsRaHDZUdy/I0bBAZhz+bsgQG6QerTj9C3g3bHUoMKZDIeT5ESLl02vyekwu/ZbCKELfbdW7uIn1wKcTVQ0Q5ZUVMMTgxzhxg28yWBrdxAHvj/Q5Q07IZT4SwPO78SdsIcDXdvzcld+gD+jjkrApgsKOPzkEuDLLLSxZJ6Fdxo0UXwl8iIyJJFwuHy+7oX39+h1CV+MJMWqLn7rVhZ2bBJoqGlH1gbkPDdY+JLwBEOeUTQw33xJ94jpY8uJuhmrXGTwLAEULvhZvatygdpz/uAF42qizWsQ9pXP7WGvrDtpCMMBFNP6ptCYUdGNtlhdJyDO7RRZ0KA0KuNW0H3UsHoBylI0FAoLqkoQCExuxavP8wnyOnVZf71JYNwUTH+7h7fOmYavTkxNPdQMQIlomqGlu63dJsX11at/f95UducAMrcWkjY7RyJLG/LFB+aG8oRo5oKXlMG4AkTYujP3I2WS/jpMY3T1G+tM+fKwI9ZO+OGQZtT5TSNNQO3WBlWtST3IWw1ADDTmrrjH6f2aSsDpu8TdiwWGhkKJVeOtH8qNT1kjQqIn+Ebz3MwQqcfslChd6sviC598PryXJxdDclSjNvyPekUxtnHYrTCrYbNbJ31t7Aejl6KQ5kwSOpPg5AJLT2mT4Rfhj40WSox7lFPecB1l3A8u9CsU7SxuFM0fAJqUw==
Variant 0
DifficultyLevel
553
Question
Richard is filling a 1.5-litre jug with cordial.
If Richard pours 1 litre of cordial into the jug, what percentage of the jug's full capacity remains available for more cordial?
Worked Solution
Fraction left = 1.50.5 = 31
∴ Percentage remaining
|
= 31 × 100 |
= 33.3% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number1 | |
container | |
content | |
number2 | |
number3 | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX1/CGStX5ll17AvBEP6ou0Vy+PxVo01SK1An5zojL5KSjzMHVs/DyC9VxZGiI2NNfXuUCQKqSa8Qcpab/5dNyZMK/UKzsQ2bqJYldBsG9+Q9tmDyde606mgKkD/+ywkMFfdqgHmjMapXLmqFvz7Fp7JwXDTTNS8WMwD1hqRZ4PD8CWGEcgF0PEWg0VGaZiajQhtnYJ0zL9E1gL5uMwtWJCmwpeX9fwDyIlOGSbdpanW2BgjgBoSsLva/cDpeGPT7ycak/LbsFJamQmA1tLWFoMVQ4rYZEB1REMMyH2fhkk7uCpP6hHp+dFLdhISU4BMjYXuuogs//go5KqexazHoRgJJYhPZdTatfy+xicrsvVFwSKOmJspOfO2VBqBCXhT2uDf5U/n8Ne51tvvZYV2FolZptnuHJE261v7xFGPi52kwiRv56zJi0ZYU1XAZ7NFBtatpKlLAQCYZl5LMqwrxlfrQ8JheNI5IxmvoOu3vSYfzSqyU8U0VGLHUwa/peLTW2QlMrufutOm7rwh9dfEkwFDzMO35oqHrSOjKaBHFeg2iqlTU/4gcr0na/klb1zbQk51ujWJ3lphpzjwDKICIVodMlfqw8wKwoHNT3tqzAgr7IwNIgOzZUqNaLvcu+aHjnFP+4gkWBaC06cbug0PbJsJGwu9VlYj8+v4v9hqm4Dhv6MiPyctM1SR4h3tjwQ5jvVmIzJQbkGp8qVutBKt6S+jQ0mIq+BhNbwAuxrZzMg7OEIgE1OB9M/E3DAcNfFj+pF7Zo3lwrXmGEX7eFKlgEmNL+XFX5EsU4psVJSZePZt6UilpS4U+Mf4Hjf/vt3Y38pC0ocBWK/cjtPSd49XHhZPfeUyj3PtHjti1CjdVUesdFg9b1E4DZLHTfNzN7XKwvebVIxpnWDG1jJWRP/9d13VvOjcfEFV64k4KSMSBISotWUouiTCQKK9IdLdm9haMgBIrB9fGz03scxpWFHNRyPwgG8juJGYJ+s1KmPf89muO0FpRnCIiS6rkjRKl08oJ3lK2hnLW9ojhAmB/xI5KQoANN7J5908eEUDZR2HW4smzJRAmi4jXYYwhCU5+PAfY0S9dAuZvK4yifRwkQMOlrSGHMQiGPEaEnz2SKJHWnnIVh6y1zJ8dSvz9yWoT02KrwUnQ9KnaIeRwdBpOMz/I56ALZbvQMJ0AzFWhGpS9rYLmuWswwxoQWEgYMe4qx29OGO3rIH55r1Fx11y8TObgGvrX+VQmUEkmTqOtQzz1S+MW9B19UZ+c3JDLGxb+EKAVRLSZ6K0jorDeM3fPKrmfvyyMfDPCBtGjdWeb/m3JKyidVqZ7Bfm7o9aUtgOqdUzB+h3AohLda7gGAPf3Cy1rPJEJRhRCDMjMIVaF1DOsddfjavCaKts47aOByDJk7t4dtodnn+drE+LtEPPtXYzeC7Jzj7LgYrZUItqcQ/zI+rIvtagSEsN16K/BF3e40nR9N+ceqQ+kNCXUfKVOtcNhCpzBHzA3mCo0arqueCMcG/V/OdDp+3Mw+BU/LGdCbHDFoBxgs3kxZPRXADs6ZfMLDl/0ed0ENMQ/ELwAADk9YZFS7yyhrPd8/zi/e9n0qggldZvNX/YbJDI27Hp1jXVFNZi0ELtgS+pPUma9frA/UyKZ2X9nUnPE7Yx6KaYaQapnP5XRMkZjl7aDWnCKP+SFbqiVhKMrFPEO7vyD8wFI2M1hLGGEvQ1gjVgkDuWjjv/hGItuT0qgwjssJqGQrk2T10YLtKSGufCmS0WH6VkkXA/jNLVuYIZ+g2f0YSKNUnHUxg1pui9MOQn6sS8CfLO/aUOJKgZ9GFOK8MpvYkdqIqTMfjoRr6jVMC8vthtoEvs0Dq3WauR5dk2m0x7o0PLo5MhEgiItPeNNxVEu2EgGZaihxzZYf8DfILfhMbN+8T0L+cQrZBXwi0o/A0Jup/G4nU5Wvizz/OAEiXlvqiSE59mRCWYw0E1eZBZmDKahO23IMU98Gc1wGkOw7a64NOKPgrt/9rWWUbc/OCvQbTwbcO79idGfYx4gtsSf6HG1HZOPPNywCW/7Ho1d2G8IO/PRJEEIbkbJgLupOCL7RuxiARB7NTo6SUOoFG5iHkyC6yw7nHQMpWsQdPYVG0E9rfIwvEkXVf7ewNhVx6BT+m7gQ8b6m3FW4996auxMdVG9gaOCOde+IfF8f1kGX7SExSx1dO9LGqrdSdBNa6OOExgvDhbqKL3ubeQs5NWkNh5q3Dwy2jMnY45CRZbNHyEedlW9xF5abLLieqxt0qpmv5F4CrKK87t0Gn8m2PPe5IoA06tazZZd15BK9eSTYPpmbAyu+Lj/nRn69V7C8Evg2z11lSKEtoQacx1SkQO7HWM8vizJqoGYbn//4igEiGiCEGkFdf8XTustMKzvaeWTRUVGX3K4gZHM/wl7jEKI7Lp/Sd979QYBk5v4ZNjl26PwzJkt4FChGCXMd2fOKKqyllWEaaBs7I+9si4nwdr24yGrkvUvrJWpz/LxG2nCXPKKhfdj2dMI1MPHVsJJQ3dCKd2m9qUFtW+KiXRNsVJcKZiISFOMZwC7AmkfbCgDzPju0ZsIrhS/u3/THEPcIz72O+gf9Z8nRZ4V8OGhEYCGIEMKzKIa0Li9hpp+JMglxXgcXfBcdoN2FkEl7i4stJxvn1MUztz/20X18PvBad2lyozZk0pEj98JMGi9i2Jj4wsRy64nKROWkZr8RTIKN+u2zPd3PIyCx9Uh3Keb8wsjkDJCL11C0Ki8ZhO/KKsxxnYHc+Us6bTeL6n/Y6YOabTvYjyT5bbY+ox5B2dGwoUM8ENtlYyPeJNybCsU8QANjRJHPSogjl/x8VDtM/DgChGx7nm/jOaRcUMewcWOSNGCLHGZO2ydSLT0AVEqrqwik1spfSpYQjlhFOLq5rYEMYi+qSIrIqFw8nXNY2ibyGEEIPWVCWm8JRSq/eE/HEt5C1iuUhSQXrlWsBEPtjU180d0Ts4PwwWHn+LKD6SFLVZ4O7pp7LONSIJIacytw7HSP0utUgXd7bzJOuNDiPuUWlMpHW4IhL/gPC1vP2R1ro80igzFEw0Fks5FXq7bDwt8WHu7VPuEwNYTdpg/YE1DTXZbfkd1puNlGm5fCZJEWJHBMwsHFqQQuKUTBYO58H7o0Z8qYUpmo6SJB/SHbPJbjNGWuGfvft8kqiUN15w+PebHgDdvwNPkN7jyiv/jsdq5LmZG1x26fxccUInGDVzgE3dX1ki7wAn0oPlaoVkR7rFu2pT8wfHl5eg7YFkgcFAReQcmuhf3PYqwHQ38bc29Ht1oVNBSf+1uIPplVWZt/dUWiF2kOkWcyaYS9qwD/wv4p2KgTL21tiEys5yEWbwAsCHOU45kNb/sAI1aAwx/ePfwokn7bCxpEcPN7aU3iZVAxPiwa2iQ857spRpPK1A33GlA1W/LaCV0OzrTQjcdr69IStu9SasKuNHxcd51XeLDsGFk7C8A4FKaEUihsHGPc/1//w/Yvd/D9jRluKitKS3bc+oeqZGP0v7saKAvc0fAL2zp0INIHa/ZFIthFhzksG32NZgteF6o0e+xu6j8VQOLTj3W7Kgu//eG72S6rdRxA5OBGp9+5mzJc5bn8u0Am1ab624XyGRWdvbj2vB60ncEAh5ZHTo4YQyzPkbzXibTm6bDv7udiuclyr9hIj+Oz0uds6PxjoBfhWsKaXOuad8bpojSHTydQpmwklKJ8jUz8YkPPd+gcV7Ai+EHGbjrOissqS5YNmjybTmIiSOPPXWmrtVLQVTq1xhN8jqKxh7IEJBDL8J97ojehI34gNF5sYYp4/zvN93lRfzJsGr8QW6a8QTOVu+QcVt1VSQV4Jutc5Sj9kVhej/iWHS7lmG0N9TJ4nM4brnKvpSw7OCgQkVkdUsT5A9zk40mFFA5l0hds23sAlVefilhcrlcjZdNc8vxEnF/gQhiaKSBz5sYIQkllIDmFjhIcpwW4qQpZvTgapUQoNjIrMPvDvV6rBuro/nK32NyfmBv4K7xuC84G2ExICvmW3O/sUrVnD926duGdc8k9fbRxzq2zl/zvw1McRxLHShV4oi3S7J+QdzV1TgbBcZctpMXC+gecrgTsd/xQvt/9ZkmFgmfB7YKY3IKyNNUE5EVqjg6udmoU5XHlv/3V78VFYAq6TJZmrDetiyd4DI2ClYfXIAL+VBHFQa5ow+8fAoBuqneXZWglVLWvCbmaaAD4N7w4n9vb14XoZChJFFY2rjDdmu5rQfjPc0qofb53YziVCBKMqjPcuD0Rkbt89mhypgB1f+fzNSQcbi5uO35Gq8gu3EeBAP+cNgsEQrOu5noUQ1XS8918+i4q53gqXgAiOHjP7t3F1CPh0+DVDv8yicIIEGxQqsgwLuv6RNla1BEbj0Xhg6souQH0bHH6CVrgVxS2VNs6lL/f+SGnBC4x0HQ8h80gE7lXuzl7ByPPeT92DBhQHdYYODyzO32oOiiKX+ABopdHBh02EBMB2/mGsE2AwitPqsTFtexOxncdoE3lCWxnZZn937j5nHEh/PFDTVMKCcJbMs1rfKnEoKwgS7Wg05AEbzFL6SqENigY3cVlRddMA98uLThQkEHUC1e1UNcv5MfpaCGJ74wdIocVWV8T8XxJK07d58qxCkNN1VGtsCNgiHPmeUxcJhG9sBh1ZHubEV1IuQzlxfs6VTXvVbU6dq/B8JMk5cEK+9BerCruJZiLgHe9duD2cYOLWnnPDcBtnQKpUtEQdkmDaJBeK5yQrhljS5pCSQx9qvyEslxrMoE2hdDC+CILsbU5IqjhSsQzhrQOaVaMLAJwMte17Z/zCFrLVYrSZYx6yhRKZI0HYwWxT6lLKzmuI+LD+GtKOHyO80UwBAoO+HHQtXMidXLzSoFMSZsMyWm2FcSrqSEuY4ZTgmg8EKkx9kwM/rVxL3XLBn3OSHpMX6goEqCm2b2OF2rFE88Ze3RDsgpvXUkSIlwFE/WhZrt1HE2PBXbik0HajtbbT0kpIlZVgYZrApKl5+uLy/D2fcAo0OT2LBmAdnk1gAHnSpJ8d+scCQt36Qr7fiBpZdRAq/fPDX1u1ma+aTK4OQDt2GJF4KERQX7SZ2Oa/fRJqUDh5YmJSQGjPNRKUO7bY0Os04Bn0XrXLMNx7gcqTUXuPgMWNh/fetz0tVYcadB2cmhL/iD/6T9z1yYnJJFwkXgDsWGjO6m63/EXqFY2/gQwNiWOyzxfWf8kse0ip3W9gDdB8XJFE9zcYXldgw6ORY8fSrSMBuIR4L/MYLgFBc8RXnBwVWwo2lReOPdi1729XL5j87Xshxu9kPpcITCi3oJjvG7kTBDCa9hvsWsTHCOqk4rhWNTrRNP1bEavbVqsmJVyQAgKHpRKj8jIojDEnHbE5BPqc1v0p13JcTVK0JZGMCgkEPGKfPJVcyU5EyJlFPPlSmll4zYEgu+kQbb+FY5I6n77Y/y/gJT6+TMsfzq68zlU4LugMqeQ5zKAho6xMG3BR3QTk2TZsfhsTWiv5apFkJxXer13imrpGRPXiDZgUNtkkG6E9sMMvj3ceqHQeuhhG/eyUHYbotQwT4ggbSE5Bo2H5uCBeR4g10YUcZmAjDfUK0kEJDIcDeRl31RAHy3XN9MOoRYlH3sBmZz36FAroaJ1TtsC+57LwIiMVyljYryfFkXwAEnN808dCvE2fjVEpj7TZUDM9hLCDHv6NgR8bLWwdSpFas5uxrkRVgeWFG1YMpYaGPTyGnLsxZPmpyfBqWL28asWcjssbital5A4V9Xi6/eck5bVZVH8HPQgYpjz7Q6ixqV4WEvYUKKAQF1Pz9/108XGEUCSOCCA+dpw/wIrFCRXWyRsuiqFI+5C150ykHoG3NMG7/ggkk49JQUqxPm0S609qg8UO8+48OHAGVuG774QbCLq/XdrfE7uk/3ZDOUyFRHMkqJ/sakBb82rtX+75gw2OSeZBYLbxVwX+o+fyGdzkHKYlWhzgaTwC/x4OY1xbcxqO8wNd6kqFViHlZIZmb6IXS0wTv31V+Fy+k1I4vGJMjhnpHPRr+HPLrRGQacBYkepvsmcOnx4seziqexjf0ObMxYar1BpWRIM9LLqOGrxkDfiDl90HHJJpeSb6Ot2ieEZPs7aMhaRC+Ttm2a2zF2HNg7d83wH+8Zvnm1u8wYaQUjjkcU9OM1mCeNmhl4U5mmiKzfwWlLt/3SwRR1Jh+KxsCerZPHfTrwBEq0cU0O7lNcu/LxulFoVAIFI0sGXWCuMU0WzICxT1DpxP5mgCzkflKyz+LTzlZ7G6LlDclyF8/yyo1GHUI1cMVb4ZQkGWxT9Z0O0VvsoLWDcwVSRB//kHItPDRZV7E2Az5y5dh8/s+OxYY3fPy97uSmaW5cxnInzlGTWOtQ0z08exxDEd/wrqoDfcKhgp9ezd6NnrCTb3qE2CI0+XHATOMAJeutC4c8lV5jv2m2qN2wCsvJFfQuP/7YYGeQ6wQsbrzYA5D1WUHbm2yOKt4G4JAzqBatmcTaszIMoBXMqZJBTFZQfMEYgNeYsqW/Xp/PsIQDgcRnPAVajOSiRpkeoizdLYbZfU+AVRmfZvxs6d/25v5i4vBeAje7Sr6TlEPISbi+4H+xc2+wX/A36wdGkeZChrSL39GtuVsSwl44TJgIWEEcRhDEljX8t5H1gGk0CYrHtBnoTnB7CJs0ehhqs+Nnm0ac/E4Vd6TCJZT5sULzoX7gdFsS7rQuN25gQdO8AZgiFr2wUQN3krNHONFij1ecjTedjSr27fxxX+ZAsLrq5+AmjvDD/T/Op+YAchpFENhzB9yyTkipK/hr4JP9oVWVsaYhvVvUmFVjsPIptcN4yt+SBC22ObTHpaKDEhc2yN+6y6JSfqlJvwnk9FAl7clwTTYmgz4NJ/7AjGgLRcey2HB9n6Bd0tuEBfeFxqzI16Xq4CbH6a1uqRx5U/IwFFp1UOqYA7w7LoImNUKqOV3/rGuielpl4uVjqTtry6vbLEkFPDPThxIAMjDhhPSzLl8TlO/HUEH3sZ8wgvxso2rqDp45ZFwHwa3oLfiBN3BAT35p0gLdxl9H4HKOII9wrndBXEcDpBgwBQQZahN34LuLsIRm+/7egu4MiYl3yNQu1apUlDuPId+FN1SmrORNyZpEsfANSGbpRpYhj+6sxuo9yWOTLpp/HSK1eT41jBLgRX/CmyfM6w29TOPY/XZVytQ6wMJbnlSaBlcvupQM+BPs1C++ojkmd+GM6kS8bE8fTOaNEMqujfL07ghS1HvSlJLlOlsNfpFQXgUrTg5D9L+UUuTo3qbI0d/1K1S0jpG3NXPynQ+X+cx1+XdwOhtNmlEAlm4b8iGykNDHSTkZfU9rQ2vuBPJ7ex0yJaxYPIJLK4JJLPMBeyopdLFVEKfvq7CMgYIjI7JFKxDb8U3ODgw6OOO1pBFa8Z4m/rd6D5RyLqI4qKTDikEPK3wqgacIe2OVUi1AnJrbO6zevWQfW6p9ApPlkCLYflAJ8+J4c2N85tBoUfyGz9GfJVnH/k4oSXlLLgBp75N7VQ1DGTOjszTSofcKtA23FZ3OpPh3CBN/4CfTWGcaJH7MscpbSZ6023YYSRnwTdGytDOeSf2xwrYF4LMvAwgsZ5KIitD0TQ7wyd8Ou4e0E8LSFvGB3oZ9XjHvp3zPDQQpkQEqIRTaIBMrS3la9h7lUCSbR8TC9dC/e/1x9JPiASVor4BgsCcCzZMkOCiMcY2wFcBt83dFt5K681NulHpfOTrf49C9IjYjiJHAfp6IXwXy0HBftBk0mJ4LKfzpJMUgYi0lnlc9Uzlv6tK8CyN3FooEJ7wTZDWc4om706LIAm6TK32O/bWiIQGEUYchgf7Q2LDrRDpVf0/A6Nluc/0JNd6LFDXxVVCt2WbKb4iUgn1ESTZPEE7a6iTumXlC/rvaRZnFPXahq6JKCVUqhZRxCM0IcyoA/hwSz/hL9qs1Ee0tkBJcB2BLJhcinoDapJhofvCnoqg6TMOqU4X5hRHhJSi5FrJ+dTwejKP/xBaUgzvCmRHdqDscfk50+t7P5qO/SiNODO6sXWFHBaTtQQv76Z3oJpKSSldfJWFZS0ZuZkjL5AupFGE73/iyMvpiAbxC5NmgwP33+ADKwP4/wHACExXgiraKlKaF6keMc3PuexAlPrPMUnCIOdeAU0eSBusQYbOHZ23q/3ODhd/NudHsiyvolbKYIyeCpwM8oJnhyD/Wr1B+29h1X+yGBzLrcR8F7FCRvFA11f+GDH0ipxIeSVKqmWsylzBlvfQm8e6eO4sdHsPpTcUiCJ92ZBmryUlzn4xfVnX7ZTX6EkVZfyhvp/+TpFC+9aIXahhcVxZRpT3v+EXOag4dwx22BjE=
Variant 1
DifficultyLevel
553
Question
Sally-Anne is filling a 15-litre jerry can with water.
If Sally-Anne pours 6 litres of water into the jerry can, what percentage of the jerry can's full capacity remains available for more water?
Worked Solution
Fraction left = 159 = 53
∴ Percentage remaining
|
= 53 × 100 |
= 60% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number1 | |
container | |
content | |
number2 | |
number3 | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX1+4z/QC5guBT4+kAGI/LDTipae5r0qcFkNsUSX9lvoqbqjn/yB/5ByOR6QzzpF/UhOD1VscwNzW+AichyylS/BQftvgpql0xBFQ9Mf4oTQ+A8GqA4yYKIY3Si9MVxVYh8P33Qv7ofKM3bZdRpEHDnDPU2mZvSOb+ehGxz0vE35vR5074fM7KcLQp2h1JF/wZgCx/pTkRaraV5SqPAWWozJ0aq814yzRx8H2VCvQqrUTljxr87Mm0/vTXd+uFLan0nYTGCVOcbIur9eEPK4vV+aTDTCY1ZFbQ3MDsPPH8lMXosN7no8l4Owv1FpYwyG4Qmo9+HqGiLa6h/0Pb6zNj/e/5WbxxVdrEgti+R2rveRtzMGTguIVFU3N3rW22OI7jp/wZKYCKksnSWd0zJZ+hS5YX1aBDm4Op97xzzrWBL35AFuUzdwAciQylNY7ciTzRhxSjjsWwx0MO3yjAQ72hT8b57B2CHebj0yiL7+Demgtyd4M1dOzClYX+19ke4vWJaY6CdBLeSiOUvYqv26BcQRl5/dbi3NPmkc6dKGrN2Rezxo20WR9dvUXYFvbxFXouWef7dGiayu9FiWfUk8XwIOH3SxPJ2giA2QkUnzC1iyFN/GR1xs6TBSXdkyMQvnV+CMsPuQmFR8ni07uNLF5BlDSWfqzOlUq9tR6reSHoVlwl7OQYmyMLhRhF2CswZuvC9BEVM1qRtwZCBf1oWIhpp7SErfGKRrIGufsTMSBw7o6QRuWWW1yngkXxiCPHe2+t15bleO9quWWL//QZHfkjcGMeIUH8tsyQ6nCRmY3g06w1nVDD4uWV5qbi8TLxEWN2YmzUgHRad+OfCcRyae0KBtT7owFItQ6QatLn/V+q9PWHN9XDYZRalmCxWGrMKzP/KsXbz/XWRbMxP5ALSkatYsEAOprPmD0j218xBVVxn2Dfus7Vj4xpTK8XDvsVHdoML38f7PXICqnmHYdblIDSkv7Ef1c+Yv68Kp7xUwH+HgesEmsPhgqfYRbIv6TMeJ4kFXxurzTpWcI8LIPDF1bDxSmVveo5D2fI8Vgmsk6CBVuru0CGJloix3gy2twRvL3M6iK6/dyV43KRS2wse+fHgSSkcdkFqfrGXHmlMfIMb+niiUw2ohb/yBV75/451ykKZZ0jvXW2b6NmyJCww6YH6sl5x41nq7ytZ81aiZCNJIhzQj8QG7bHzmpi4HkJjvppF9tekqC8taMgncoNCEFS1lP+GqzNJH1JOD21Kz9Wn2pxq+xifj10RDr4ajDFtCg5F1RKp9I1xElKtGymxEImo2/aYTlXcIkmdUUInlJfIr3dc0pda/SM0k2zij2VfzeuGNirpluC2AQIwAYk1WudTVwwu3ttA0A3c3GE+QeTn8ZKx3zx1mk9T5r7hE+9jr1mikG0diwcuLonRnW20CqI0N84qa43FYBi+h/RWpJPv6kX1nlEEHAYwdxnfozBXbhXZEeg/8jO2sMA//rTrsT0Qk5EykNleOUsuNKr0ZYO1j8dhUcMkzg/qrI7TjqGOx7ki7mbOCOH+IM6QjZlcwBji5gAuiZpSKA5DyPnbCIfz4+Fj3SlSs+6833p4VY614Rfa7gVKbq6kMFPOFWLGSlXOhLg+L5Ezu7BGGRhaTVA8MZVMfCp/XAUq44KIF+0cYbaX954chUIq458VfJCMGyCZ62kK36x4bt0sVgSyjPM3DgYox6sN1jN6TqUPWU+/ZGBlssvBpWuuY/nbk788GPrAns1AEpzg6Ga5ILsHAGUHc9jqHFAY7e/tlWDiHNnHeGSwAi12HRtN2Fhug6YSRWyGtlIfZjqu5bt1Jtcxdrz/6sHZV6glUIdq+POWt6uRfWME4nkrpQ4YGPBk3ouFfJM76BVpKN4xbBwoFL10LzLjTla7TMtJrqTVMH+AYZ1Cl3Fun8Z7vG6ouxLCoSO8Ww3bxqDvXUSszFeealDeNO2nYVoHpdP7NrDswyrOQ8BqMBfyLDcRV+ESotl9580RCxRBFo2Ra3KgOhrjND1bwqaXgNaDLArtUo2F+8iWJXPKvuzbD4r+CkIM5eUWMlP8U9oucFc8n/bSuO5Wl8TEfVHkd1XtKG/t6H5GAR13lfoBB7w72m0y6e8pqVeXHGZxMdd5pQ8TOUGI466cQlZjmmlyF/X9yNwsFgn68+6sFEAalPot4ZJ2XZi9CjCQrG+fxT62nw3lPHcuN3KQmq4RNO1t3YPmw0W3wKKo7vig/BEj2bJqiibU9iqYJRDhp5UfmJp4IvaRYStHbPNbVbgORPGmYMhA9IiTmkvE4rgjVYdYLy7+deWT3+O6dBBX2f9I88ECnuczPRwZVobAjckcRvxcTXHBL78Fvk7NrXmVWn8yhv94Y0RyXoIuF5/iwPcuhzTGQfuq3O6clUQ5YruVi+Ch2+wKVOa7CXMSQU48nwjULqZNXeBQ53MP45CJwWVjwTkVdQSjn214MG2hTBzjlLwEV1nEkfxRL3qekgLjx5h9iPguOxENlzhNBNb0huzStBqpSBNu4+jrb1q+UKvoutqzemqz3ytdYj6jkUrC19RLKQDF2z8kvlLTrNm6TBGI6aS9NS5ew7TK0HxawumyBzn3svQ3t0AH1IYlTInZXPIAKzDSRORH7HCcVT2ImKurEi5EAvsBHzJxm9rcYXxELA/7WuCHcx15anl5weO0Rc0Z0FdbMTa+r8V2QqWvCy3jzoKJHl77l1cjpKGh93hS8hiZXaMeSybYYqngkXVipacc5hanFG1J+FLeFEs69w0fuWbICbDZAfca4DA9EvA6vbIP+4tcvgQwOJ0P9awE4/gUQiHQaysdaZpHJE4eRaAR1sbmvfrj/CijtwM4O7fYP2JF1t5drooPqnkh4H4zunMvXKWf7evAOf3g8sSmIDSnzLdgt42p13MYbEhcHZg4B9iu2ZIGNZk4/HNI6B0d09MNALH3jyeFGc/WUUo3q4PqkAup7MUIwPOwekMlHk+pqfEUTfqdr/ycOFn4b2EWg00f2b3b6J6j1s76p2euGqJM0cJFUt9SbA4VSR6ImXdYqnZlBAb3sJ+NT2ThFa6ghqUeAAmjGRkC7m4lNteRkk0oUo/DxC4FP2T34laCAP8YJ2j7VZJ0TVrT7FOoj9f5UBGoWFimIgWCeWM42+2GFN/VHsE243P4ReQETFAwAvfFG0/4iUZKRTvD8YF6WVGfLrS5Mj1uQq7PeR8gSjxCVvWNgbyiV3szY6rNOexugI+Phi650O2uqyWzyhcUl5lxRatKopfsew0N4XbyvWDkWhs3qoZ4XtmDQIGQu4sOUpLUyJ8fnIDED0gX3iOVEa6w+fm4d5uFFKNiBoGFr00XhFZglW1cmVBWUZmbCNpmWOxIH4+gnZKzdVW/99KacDIR2zsgd/t1q5iQohVoVqkP0ydjohVwwhNJHnoJkpumeA6DxW45CMPRXwXM1AOtx1iHUURck6mcuqQk+qjo7eQfHyeBDfbj2UipRT+BDSuPOce1F+3fVswvy6C/qkwhq1B2VzNLW4e6PI1cQDTD68TXhHKrU+d0uxeSHRgc8yo4bztT71L8fIYvsKQCTk1JlhytBJNFK8+rpEfD5tYa1/7AU3yF5/wNlG9HfEKau+1/XzTbUyK4k6CE673xp7OW5QMIxw5tin1RdpVPp+wyu3J5Ql85qm2SsboHAFL6b1HtkKzXO872579XQr1gfWs8dufp9nYiu85jgsFbZB0xqZD10Yhk83XXA0PEUMOYTicokyaLcqpTlS9crYV6kw7X+k+Q83D2zT8oI4NV6U8qig24MhHjWdMZ1l/zahXuWs25yk3f1zykfxytATr0qabSeJfp4ilJzh9GWCxC/r8gop3PWxsDK2SmRWng13DjKeEnYzB+Ol77+88BGaOiQwQ4xZU9heBcwinGSx9Vi+QvEfM6SMv5tbCj2hb1roJ/VhYgpM33I9Un0Zz/x/MsrpEgx1RC017u7dJaTpK4OVgm50H9L1cTfzD16vtFH8xuM92lanPb1zTYwhOqY+RQiFYtu4Qu+IPCrT5pkgV9JeBIIpb8GvF7BqTXRsgXO+qrlVJKKzitTieiIKjCCFb+dAZNDnNcqiE5HZznZ8/3ocig9nApIohGf0L62Ju/v9elBVpgnUxnuQFdsjfV7rlq4x42AsKlcnXKBkDRqr4QI2lor46CqNq601LozXgkX5uKP37RnBH9P5/zRwsLm8F3YwxHx8mMIwUtUxAg/Cybd9CClB1tWhfdt1ktFHUbLVtB6sPYj3l9sgmoojCxghTVtzRzgF3+01xPcqwrNLx7Aa9V5R1j0qSrpfIMIcdux2SOKZG01zFce0SkkHn4YgWhV8J6u0c0OjQmXYrfEgYmTvlZUa7GmpYcBInmSCdCxRzXsS6jJkOg/9BpDNONVJXjGxGKQHZEf/iwF42PClJzNyJvrpcZL8Qr5WE0FXJIdg8mANjMAecV0OoDWafSIOe+pmL1kfh6EhsVrI4mZkMhWtoZNj0LONp2C4SUbZQPgw5FAie29jkRzkgC+RWhZbmkxGJn+ytlOyp8hopYz/a5lEuHEhH6MTR/dXOj45qk7lFOw/kvXIm/9kW7w0VDDPc9VihDI/E1xNxtpkzluANuNBQVGfztc4vtBxY/TFfzJ2L5uGJj7WmX++6KxGOra+1mdYigPiSWWuvip73NpI5tmMh6Rq0Gq1kQeCI/nbXidrcn55AnORpjFhlmLHb05Fe1A9W3eaYPTYyhZ73K8UZBU7nCj6MU1bbFGfL7bsmKVfG2IjsTE+c36k0yngOduEqxK1JoaBgAKns7hGxCjpEwj1hlgn0hPQ8G09HKhahi4gShM6A2ShCPaQTGxILHeRc9XC3qeu0f2ct5yb6csBbov3j2mWbKoMZsW1Dc45B/KOF8Cwf/21FB1FgEZr30iI1g3q8DeKZ1Jn3axpvYB2+GhZK9DvzFUqPVqfPMYC85EWWQISuQkSWx2HknMSuNaE7a2nAX8ych1BNJM2WisUeVATUN/kCk79llGivNT9w+R+e3eEWAVfFSGm0jRyjKioTeQ58oYzZ9jd6OmK/mhYLg0B7MUlqTrqn/Vg8IO0JzArOOqIFJ76P2d2947+8EUgvy5AhxoBjh02TXfKLZ+FTesTBM5V8PKz0dIgcyI5vspxDuYB3u4F9d7gyGYhjdZp+y4bnnUa9mG0CCfsUwXhAFhGqI6jI8ZQvD74MlHJFly0P4Qbwp4WPGqdZkusSTSN5gVmEsxsJAbLVbSb63TgzaN44xnTiRYra2YZH6yqfjR2UVBLEEN7PdcctBJOcXZzSf1WyhoJ0h0udy/bof9MDK8c9nt1cDzXs7eoQMimYNq9oYjLgcQ4hT5anfSunBMvDh5WARKRlcP68YnRCF+hqnnkuykWpn4KR+I+B36nQeiJEAjtVUCb0eOpEjB/DKn2+WakKnJrT/ukyihF6EZEQUgd8PuU04f2USSwyZ22atvBgtE0Rdk9d75eqfuP0cQYVXcR9xr1CKimubwlLulGC28qKT8E0OgM+xF8boiU4B+3+Y6NeMqd6ASfpGzhNsi1NR8+0Q4XD/kOmVlDrexAAYncdvJ9LbPIEF4XLidrsIHodr1SmlW4Ks1KLOjU3US0/ZEa6ETlPKr1eJoQbCTuNWCsZJBgWqHTu1JK/7aCBGm8ecFUikZvnje3/hB4l3QEXCImxOqVehv9M75AYcFTUoN9nnQOO/v8uxHoJRtO8WZC17SAA1p5kassILEQ7tdqLOs4VqEsdtsAYXxKJQbjk7G60xUDUlTwhlR65Dg9O6fEXZm4ekciJg5I0T2ukIvmOQZLta30cev3579Jv6UIqmehAi60JOUuMp487Jo5Tbry6Z6YLt+drBDF8u5gw0q9gb0p5AIk7hL6uQdWZ/K7YsyjHOk1h1E29tl+r4k5eDipVhXqHc57hUHh30Kmn/hli5k4LYmJaVZoqPyZ8JP7RvTxD4samR90LQw3UFQjbryJomUZwMp4S7qbMczzF9fs+cn+TJYPvLLNU7bNg3PjeUZ88NvrryJwGHg0nM9fwPOZNaY1WrU7qRpFe+cHeaZEr9zYELep27K7eYZoC6l+i+UW1OA28qbhiBtGaWxDy0AK7hn+U4Tq4eDKBlFfDKXETh5bGm/iljq++KFrhQQgULkICKCY+ZXR0pcPtc0h6qJ8d31C6871dgLzX9KleEPnX7PGP77+3EXP62SHcFSEbhBClmHzOf6quUM4vh/WjBSHr5yjnMJ4zCIRtHihcXJOwNAXZuDFHzs5jUSrgGqz2ruqII+3Nbw0gYNavN8YVEWvtXpCRzVOMllxucHw2zpDwJlNA7eUEeQnqazLD1wC8PE/LtRrmtiBmiabu5Pv7iBZGdbaqkucJ1SHGHkV7fHAHe57povAFHbfMIgULYxwAJADbgLzYKX+fM2GoDe4pXGl6RBX4kF0SWGUxvc8q1TeI+3FxPCbK0/4Bd5dfKZ4VAF5/+6mw+XnN1NTC+fAEWs5y389brvkpYWN2KU2xgnWpO5n6lWhAToH3Up75F/+sI36deja204x/tsY8M8ZJ4SLpw5omag3cwYTA/Woh3w3BfxEPB6EZMqJaWp8caomAtLePJqvRjyYRM15qyoV7zGZMaRa4CeTk7GvKSHItC18vhZ1UdvAJ5R8bKR0otmlOF/paFouqujCd3+VPZE/fLrQGje/tFaqm31Im5Jdaz/CJdLmnjp2l4DaPcZr/bhqfDmitYusARxtnoUTtV2TyphcI8H0DCNQC+xKKkXLTNIti6u9XQVEvVaGI5pWmfPT+Lb8QTpStGCt9HPYkrM4Pn6/+L66kTEWI4AOlR3zCuy3+DIlPdaFp6ZTwzqZvFgUastZHmxiCkC/Ibjk4IxsgkM08yHgsPhNTTk/5FqYTYCB1oc0pyG1rmxHWACi7O2jisXWcytpuk11tluHSCmzrUyl5tYedJq3Sl9paT/OtgV3lOCFez1Rzj/6VewjRoK5mIBLt5x1KK1JekoTXitSiiDKAR5nZwWOrvZINlkZbvoAX6FfRDXAxeREn8vM/ckEeE/9MW1l8W2Jki/rTZGN/2/odQu3Z14l8LpihDfiNvnjj62mLXjSaY4cP0z1DSoLPFN0sNc/EyO29LWogCldHPhZ3NIotM8ioCuhZ6+9aAXt3vT2RuAdcpgbJR2SoH1EpnNwxXS79yUJxf+OoiDoyXQt1kcXfEufVrRNDWSIgeTNfjNCIISK1cziU0zKchF+10D5VVTEfzA9Sg/YGJLPOO2wbLqQZ/LL2aRlRK6kQqkj7K5o6xDnPZFxXUK3+yfOMJvYqtm4FjuUqcMnh76CtjWmXk6XerVR2zPgVGh+t2tKxtOv8TtgTyJMzUCQEm7ONiqpLb3tLSR35/xGD9/4/7Z54xenvBbA2eNRlIdnPV2bigY8bxRHantMpc7h7qD/ULM2w98ORaYjKA8kpNh8KLcrPlqOV3IAiXkfpLB7DPsPibGSiEB3q6XFEa3egd7hSMj9HnZuQoNcwZ9Koo6SpsJz8YLlntIzo2d+D+sJIg/ka4BjWnnbYk3MaMdKU7ffKcv8xi3txbscFmh6HdQNOtpC9yRM0mihWCLtD79zweaM20vZwgYZPJmqFAY7mwGSDBA1DJPBl6v3SXM+76L4NDr7RFCvwAJW1ZdiUrI7NNmd+ZoPP51VLjoYUWuybvWgoWT1N3elDngB1OHx5L5O6vFUjqqGtKl5vGWGdTIYzBSIwJjxU8Qc0d/u3AGREDVv33yjWR6v855FNiso17Ot8jNYVNKauLebCOzBEDY8QrsdDERTeqwBORETd8XKTKfZEAtBfmZbIA/Ctk6RBbb4BhXA9B9pOgbunpmogVhdIE51np3AwqerhrTbyyJ/aZxUFHB/T2dGjbQPlTMnYsnX4Yzg4adbLtBX/lgaLe7t6LI06WIF9V06Y3jIAAelnmsX6FJVSNNNENfQg6qFk5plaYtLE+PdlrBnVkoAlDgVCCTdwk9dYshpZeQ8MOqPi53rkDFVtLnS2dJVHLUdRGCMA94JkgzR1FKvg2hZ0cJe8FdmNL+XML/AIlAeAwStwotiX4gztK55ZLwJL7kaB7wfDkkoxRGfe+pRQF0j9lvRep+/cFbruyCkGX8/c41Y9J+oy3JKMXG/sKhkQjEJA4/dYSP8Yn5FR3XhtIAI/K8+J8Pov/tlcx0mKevkiCDB54Cti30vec+WioYx8XxC4I+OGyx/ltWyXTgyqOe3K+4gX4fDPOWOP8KVrQJH5PLJ1BrGCDTSvFaTXkIGERVwQwhhfe2+UacVWLgnzmvkKBaXZzp8I1sSihzE
Variant 2
DifficultyLevel
553
Question
Byron is filling a 6-litre petrol can with petrol.
If Byron pours 4 litres of petrol into the petrol can, what percentage of the petrol can's full capacity remains available for more petrol?
Worked Solution
Fraction left = 62 = 31
∴ Percentage remaining
|
= 31 × 100 |
= 33.3% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number1 | |
container | |
content | |
number2 | |
number3 | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX1/Izr/8jjBUCKt2e548Ns1MHrH3KfIZeX+w7+rjYRmMYevlT+JNdeeDE5gLLfgjElDMwdUgy6UnguQE0HfvpHzl8dts/QIQqPBUyKg000ATO3WxJeYsrtHhiEqyBu2Y4ifhbHTNiUBi6EPMQ/rVuVc6/AgmDeg2U3hozDcOtSBsyIrbhqoBir95819Upu7HlAh1070i16ho0ZGp5Gm0gM4KO1/Gk3ca3teyo2zl74DWOZq09+k8NI7JJLYZQT6sR2UEM3XVW2PA1Sp6wveAbMsnffwO0JvwkkVd3TIMpUBZJAc5rfYmte846nQDxL2eSZw4Uquo7bgNDxSlSeAMfT/VzKHYdHPBFU/TtHmrdwPPI0zvFxuRmeG3j5G4j7DUezzzpECb9FTeDMXfA4DWzRia3dkaiLW86OiISaLOC0KfQY0UNb5JXw6KMwAjqeYrwxRb6aN+OLslVUYrEn8KoL+YFWSHJkDlHol4YJDMUFYTZLvlldMAmMxn2yxveW/LttBfpJvNcRbsvKDz4+L5Pvn4t7jJaoF1M6wr4jGFik3K2GCnFc+S7XXT6sMPyssYEjXH4Gf0rlrishSNd8LbC83tP5aHK77ForI3rRT6rcZbAwRuqyqN9k0t5I1870Id4PlQjrFrvl6EK5fxMSt3KZndfQdukD7is5rUcTgeThYPM0kxPux0taMdMsE1RjDl7dVG70w8dwg/ldKmsgXY7gS/tZjKGMP5wihb6wVYeBM+6W409tMKL23ao9ZWOGzK0/nzoxfjKvVNmv87omb0ijBbQ/442n1rm3aTCAnMq6qXBPp+D33gok+tTzi6pl/pxj42/aqikml4vhhJVmNYzmW8C5LK1cfcZDLdJA54tFFj+e+a1kMVvcw0I4pXy02fL5Jrcjg9+VcoIhTTwfOpWDNB0GtvcWs4xZHvbZbckUt3KYPJupYzt4bn6wxruwY1LGp+Ujg8SDyHGrolVEUMkPqKKg8tOxvfRL1D9KZPJmHGtt7KzXLYl2juQ+WXL+HGgie/Cjq5GC1qrjdvfYLaL+YXqa0CkrWgRvrrJQ7c7YwopoxTpskufTalah1ahD5kO4ao7uqv+g491/My8Rd4iK98VxEkesAY/zPAXrKbmqhCUdWw6XpwarZ5P1TuEjEjl8xgTkSJOqGG5cUDKFopFjEUiHBmqtJvhltmATCm/qtkpn1ClDtNd1a7UDBMBoVUIhRX/dV2fThUBHWTZNoCoDA0pJdOD3wUScGr2su2ewDzX1IlRanlLUp3n3NkVUGi1rxap+SpEjSeneymJlxqYNPLQlqXT7kvlaiY1O3j15ZYQTCw1n2KtBchM8e8Po4q1ikZbfq+UoxNKXGYOtnO1ANda+WD0rhTm+x4Lo3JdhQHXMskT7uKokl6JzsJeQOGZZmT8y+qkMWqTYT5rekQzB3PcBptsuyjOS1fKLQobSD7X2o0VuLm26l1R+hB/FHlucMJ/t/kItg0JL0nCHNnc7hXuKsG4cLK2kSGdUT4GwNtdWFGfO69nMgYIcn+7BiA+SjJteEwFIq9k4oLygQpQfi3EdbknriQZIq1iralrO1CP8nCcuyDsvja7t0q1Ra5zs+QY2LehPhwCn1iDKREx1RjPfnOpknEYcR/BoxCBJXcNFrDewwxOV4YKN1ayj2ofpY0CN60AM/qtcz55ngcmODGyFQ3v5RdoudRpJD73NOf/WnDC3LV75D0wOhQbgAUFr3rDDXvj1OEuZWQtC8SoEgKBAmZCQVCtSRdm7YkBToJn8cL0orqswf0qywLTuKrEEOka+GEfGMrX2gKWlFvJML9w9Yvt+ZKYQdEPiSR6F8RifiFsa0LW27vW8mtP8yRY/wcFo7EAtDFNLzdLNOqDz0z/d1ydz2CxbaV+y2SBNcl234YFB30DUaM/CIqiXp23jhY3SqB1NC/z/uxv2T6GcWkdkz87+ce+2SGmc0jVpaQ8yjAb7TDGMxP4beCMZpBJLkPhU8immGd0quhtQdKlB8Is1KZOrFZSYuzc4ggjXSqvuwrpnK1spdIx+qgRaE02Z/XQcHtURTFzuCQAR6684JWJ9WJBVcP+6fF6InsM02F96Imk/kf6Rzj1vgOWX7r7dDBUQ6i3FfnLgVxulxkulHfgxilzxEFYrHAmZ0w6g15wNGsOcDdCSAwpuTvh10GXngXt8sQr3VumrmgpzPoZk7U8JPy/vaKx6iGFyAinnxFxdFWpM/LCyJ1uXt8czpSPyEGBZl7J/ERWcXSlc+paNjP7gSmLw80vOoXxdUMVCpCH9YmvHig0vb5t0vW4dB0ydei6Me9AtIVS46YEs1Z/V011TGnnSNmuU46V92QFMxisgN0XWaJxe/Z87B7ytXjRdk2jeh7H2IUrNQaQRqgrWmxE59/vTvE/GWiKpjsedlqM6XL2/gRBafqocLcrkHQU3p7wpYhJkJ+6wmRrvSKDpwsEqSA7ZgydkRTf4qlgFGhQQcJAC760431W4vyd9R9Xl6Wwi5XTZDUW9Y0HwyEjnaAWRIlj9yc7CPEfHInb9OCxcZziVcAbvgg0fWuYtQtwI27u/1bBIsW1fkAz9OHtyCksCF6QtDK7CHNEY9pr/rty7p21EOKEcgcCTbzek2VvtEXEL7s271WwmEgiYVSlwOfDsp8d+pK2OOXAMkz26J+bqEcJERNGWiiSYxxWY/pjdMnIATa6n8V6+/CSvbwZAB9RD6/NEoDwYiSjb2CTw7vE0sBNbLRIxIDMwH5cTMJpC3qmGMhu/RO9Vtd0kpRF0cm+D14+eWSLdRzJgGjGwxX0hvPOg24XMQHZ5OzfBMsW26eFvHSUXhd16/OEiCC0yYp+fu661tOa6YQVATxIEVaPC9XK41x24+4C037Gxv2DCo3aXMnKyC6/irKUJvJocYj1eSwvgKPhemvCI/VufAuGs8NST2OCCH2k/fLsHkNF5Vnab60SrUlqqiT+/CMob1TRciuwHKuerZRT2HPXydjnQVk9iSxJWANVNTr3vgcyaClSr/pTykovTINFJKLCPYb/Br+PU4RE/qabb/xeMGfDVT/S9KDk6Sq2vf9RrWCT8If9nSQCraURtAcKycd42kRKPOkt7/mipWCo2Us7+Shn+oeaDMKq5Bi+rrownp2FBB2ae9kSc2HMgPdLQbn5+TjbtqeCyQUNN1tuJZ8uVaU5GLYdC2ObDgU5iq7VId7uXULt6jqZjjUpTAgaSt7u70Aq0QR8OE4bBlCnNnbib8y/m+EwxB6U3JUgvtM/s2XYLd6qKGefL+2yHp0Rr2lZc+tK57ZrJgiDLnPZetpRuHlnoyjsU0v845wBlodvdbSIpUAabTHVytV+eyBTQ0jKCwkDUJUzXXuKHJo5YVQlMdPvHzVYZaTql3WecnfVu7pO0d/szgU0p4PMlJHbsQq1W/mS0DMH7Aenz5kN5N+Kp4CeSOMFbk85cptmHjqMJKZMgVHE+QnwNYsf6+wt5qMS+pUVhHD/23uffkTeZUoUikzC8ls6VrcDWyf0Yc3mKgCvFAHp+RfzUEgaBsNjFAcCGr4se0FxcgbjhzD7dQfeIHwUtsE8HH6oyI+PLoJz0SC96uxP1mIb8h6gW2Mr9wjkwp6eFPY1eAP4hE+oij54YtB5jikGG9s9zk5kvqg9JmNSZB+T9Ww6TqibTXXnM/Qaqa4JL4WHHXtJ2HtB/vmdMF490/J3k1c2tJBFARYuBqk5DueI4VyGSgUteAjPPvHqXBKH3tnnaNb8IVU3/EOxNkmG5H/rdCGYsAqelhh8hKYL+rKnASfk/qC9kEYOk/cldYUTiOBWfVSN1tWz8VuZu52hQ6tDCUb4qtnqhNvDFby2rKG5tAx701ENM992ZJvqpkiaDSMT67RjZqdJ+fM9F4uZxT835bLSTFEOQqKMD6SeELLSjAvVPY6DHLj3R2oTr587mnoE6QVVp6FJoDewW1qjEBkYVZLDgOqXLakT4oKwbnpFsUn6j4jpvvx70pxaJM0NXDCI81jZRyYBJhRIJQOSTtN6YgeGH+35eRf1iU+5rigjEF31cTeo/KeqlCRp4kbR6cdaE5ty2ZlW8Df9XBFJiD2i1TF30QaM4s3h7psDgmgeqODMYBYwfIUbxiOLCnS7IU6xfgqMDghmy8fqrbEZ1A9RyG3+pqFIFa7RTBctLFpS5jLIgFjA6QiJSLAD1DhUCyyiriQrogC+Uilk6s4wJsS1/ydOtGwgPgExeK5CI4zHgJG8iCUDMOpGisazQYwDwuTs6fiuTaSiQqlpTpuhl2sG7MTDfOuhLzZpdKQCMdKVLkaT01QSdYa6tzipilww27YVKQD8IkcUYhlX2KCnG8lHqqM1EvDxkxHs4/j7NWvStdr13t7wcOvomv8VPbyYNQ2e3k8s/wK0LDu+1BK3ojBQY4Nx0L8pqNigYtv91Q3uP14o1jDY7vhTkUhAGBdayr/Ic/H7f78So/5qhP8pTipxuUuSPnba19Ehhvf7q4xBistvl60yS3J1TsKHoo8mUYltg1VOgkqP2vz/uqIbjaff2++/UWTJl7UGfgausQat0V1mxOIpXU8ueFOnsQDoo5j4ajJOpGi2MBhLf8zpqOskMBb07uU3E7n1YeDiTWu3/adXJ1odCsIuJbgZumZ/m0Kd/TCMKjgIyk/+406q1ozaBqVftFqMDzPwb4mkJJOar6ENjZSz408ckEmvTGikKta/MDBZYXL9dGupeMS2kqofi/BfiCV7aS/UrIwnSc69dR6szl6oylqvJb7GI5f0ad2VOtTKg/uHTBLIFgdZdS8UokwOnMr8GPewfFlu2tAvxp1I9UMSlJUF4j0NP9pw0xbuqMGhWtuW7WLeDeyTQGgARfZjrfz4MEdLsh/6Cy3uuNOPyktYgCCGxTVC3qHgh55UguzBXBGkWKdYFUYkkg2YmpEOTLb/AbusjPuV4sDBIY39RSZCd1eFe0kaTLB34Mls2K3FDpBKv0WpwLr4UPueWy5AtdWLVIkaK9JVfCDO+gW7bMLkHeQVz40Mz895cZ9RM9RCIeLxS3FJe/yzA2+jdze8KYWXPMG4ScM1b9E9Pry8DVHQf5hL4Q3ZceDhEItSJZ9BkZRY1/RThc4wx4r4nCMQfUEfcSD5RvehIhy/qazYIKJDr5tBxCcBsAKnoegQ4YzxOLFhld1NE/75iyM/pM2WKXx50PKtP+eqe+gobswnIVUPNekALeIA+Grf6hn4KqNjHrpcVluh+rQ4Jsdy3NG8tptwgo5sh2tINlVjysBtRlBbae2akEQLcF0JhMpXCKeCE7yFuV97a4Appffq1WNgRWv1tq6QkfpvTxkXCs4qsJtS4X78mzfYxqyIHkW2Wz5O5q/XVgI5PPO6BePGXUfAQ53Nlp8pql5Bt+CnNyn6Pqy91ZquKXDQhSMQrc4aLeLdWFLoORIJFYIj+yVC6uvaJ3DEFAXYgHvuUarYrn8dAy96DRaHD8i+cKCHt9LiF0VEv7i9Y6jGQymds2n9Ky/U4shNFS3/ubm/x/ZNRic24pwGnEnkjklLV1poUFflE0s4enQ3PlMxsMaOako7u3jhsFlT7izryrVpdc56VpGKPg9vTq+AvaNgMOrz1xBPTYMR1ZwxSCKz+LrQonD+xfUl4ARthxVnIaw9cgOCILS8WeQe9+ZzppRSL90u8irZdSSWHGxj4bSWtBSaJE2GUiuoh4GD3ovQTOL4pdZtZ3LS6ui6q7oVdcsizfH+9kvvJHSPrcqcuU+SzkcWlWGgEjyh1pPX9rXIW/Obz86/AUvAwR4HXYVxfIBoJQ4/1kWeZqByrJ4qISlWmKupsR/QfBxiTVx4UoVfaYotnc3kiF2dzqXO6uKBM2f9f2feczUL703/JELspXx2mhx+C0Olv+1oL9W4jpeLfS+IuU0kA0h7lvUmGsFAThb7DhzmHJT21XGdbZcWBUrhigHnGa/2AvzaKnnzvTbTS8UghulYhioYrrQOJl6nCo1HdAT77Zc5W7+AwXVdmWirGsTG/QPifj4H+dVdOxEMh3DiPQnJdMT+toE/2kX3QUkR7B2MzFBYmxcjISM/PGeJqvVwcoROkaOnCZ5/ADX2PeJa/ZL+Q6E14x0HHkmD5VuBiSKnmgO7Q0YPzt0zq5+Sc0Jdf7uGBbLnvEPjrGnVOvWGWzbv2JC2QPu0/NCx3coMd2IoYWjQooqWCl8KXSyKLG55nzH+com0trs7HcJyV+J0pvjXIGu1jBS5d2W+ZP5JW4NdPPLFIxIXiMQ+G6p8ktKJj/Cs9oKY/ggI8QpZMrmeZ5pGVETORyhpObWC5Z7eVobbJFESXeHxVYULaKCRIYHXdi3P7Q5L2Y2alsVBd5D6iS97wafvrff7asG2Virl8Q8fpWU4tWiT5wKXwF1pyD6PsbAEFEkxwpHYNEYNCJs3VbfIx3YlcIZ0cjxtgj6BCVoJVsM33TkXNNvVqQYHQtuzTs8P1C05we5B4AppD3bKcOZErf9g1gAaZj7g6E40/P+T0/71d6dhQ+hIweyp474XNHGXPb9jnL59fivVK6czswpfQH5DZP8JdaV6Qq5Hb9Zep6bZwsnSZml9tkTDxnLP+tB8vYDnCu4FSETl9A8MA0t02IqAb52/eLlK5q8lN+B809UFdPh9U4PKJtcnK0rQT2fV6kklld3Pel6dzcAMcULrtdYQlDvS/5V3o4KzVzvkAK8y8D1NglSi97yNWKN9yygxE1kCEIK2fnNsCsQeLG0Punp8wXoguMyWsU9yN/wddUy5F0h/EoUreHT7SOBin3d2QbGvIFz4XZ4k9TO3cctQFfjwfcEdKrDo4QC8WnNwwnmSWiwnH4C9kIJIC5tVbRZI4DKhCC0Wki6R2kI09DYp/rfX56Y+Mx4u31XRsabLEFRiqpxULP7rp4d2LE+cNMF3GfcH290+iNfxFWPGEwejka/ITupVw/RMKo+mcwmlWF6xpvBKGbYaAZ8QF6+jg+1NkHxF3cHGPy4sQfT4hBaCzddkJ+GQ5CByjcyiAOq2wtqEsEcJTGuMTGI7jk73/SOTcTyvWsKkhss/L+Dl2xxm357+5jaAAf/bhqbSBLrqb589SehkZ/yp2o/zR0cXn1lxrJcADCtEQbpAfsfC7UVYiY0i9srD8G+lGoonT0cfsSCeaHBdrwIB8dUP1E37D0NtTL08pIzoi3USayaxxgGHzYRW8pl9mBUykfbuA1lTXTMLGMuNToat2FfulS6On8r5DbAnsH5KkRP2Ud/1Get5A7OitRtbQELd9Asz2lcx1PQYCHl4w4koGoojC8pzNOh7X4fE3PdCsMgpbyGcFLXNIJuXgL00PMQLPmnqGf5n0z3DVoct0SnK8n2ajHY85Omjdoi2oCHRKSyY72w4FGn9cEKVtztPfwDoqYgoY9xlkn4ynLEwVFMG61pEwQCVnn5fmzM9XAk1hrsoyHGBruEMCBTVx0uIRugR1v+OikOn/U+0rhVsC/duJIsoTvEo3TYRufclnEKYRZKSh8gECpE1N74mDFa0FH+T3Hr9da+8zOwek5gjbpNS/Iwi0p4lImMvu6Wd1rzOt+A+Y+FLk8Q7j/Tau9WZQsZnkwLqXGdDxNahbLMvTe89MzaBZlaW9TYZsgEUyesdUBgHKFY0IhmoQGIv0OlJjKoA/zFz3RsRRr9hJ7FRbyZj/Silj2WllCQ2l/VVYQMjxvisVQBhQLvJ7JbV2TZ7d8tKla00IvOCE7WpTZgNKHTfR2O5bGIKEY6iL4oibuaTUm8WYMch5p5s+YbQEESs+tVSenTLVagTyEsToKzmLk2KOFWUGow93XyDuFbSbor+Mr4ZcYk/ES+/NnkzYqoMGuW7P0QuxqcB8t94D8UAFo0T2JaYb2iofwBfdnoiVTGmPe9IeWXmTNVK/Ut5K6AHeOXgd0zhTOVmHCFraaTP2/NR7ffATo/W5DuNVENjaVddsWVbQolOC4Nb6jU9G8CoDMR4oO9SspK+3HmIhrP6f7q6VpoxnOf+YlCSGu1kXg82sJ68mTeGpFzuiTAaTfz3Va6uG+cbcuS73i21nmsKfR97ehRLAVxL+BKooL70p5Ipb8Evkue+ytK/KgKmPKvbO/b53ba+GP/aBLcy95Y96TslQfB/208HWHSMykDoNglKlsvOGyuPaCDRm6NjXsMYmcOjeWkUIwFTRdPT59Bky6PrWj4Kj3ziyPv8Ks5ARxLTSzfCIuLfDWYRLlYdfe9JoZhrfGY7/r8sB30T1KIC9OCt37D7SCB7Xatt2qPw1avnjdzcaG1EUDcPBWZ+P8NzQzkVymRznMkqPmQp0Hc2TbPPAEkKhmVvh7yiYkdLq33NPoPK7ZX8ydo8ZrUXuCK0+cFiuSrsvTqkFLGtXIeZLw=
Variant 3
DifficultyLevel
553
Question
Kevin is filling a 12-litre jerry can with water.
If Kevin pours 4 litres of water into the jerry can, what percentage of the jerry can's full capacity remains available for more water?
Worked Solution
Fraction left = 128 = 32
∴ Percentage remaining
|
= 32 × 100 |
= 66.7% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number1 | |
container | |
content | |
number2 | |
number3 | |
frac | |
correctAnswer | |
Answers
U2FsdGVkX1/7I8pCbw49osAf1vRR8IT3M0oMNCuuwXgfcnYLzjrsc66bCQY2LGsjdRBR3TU0EuGisjc8GQyL5c/JjL7a2bNzaGOmY8DCSgBA3iWWraexlOfPreXiOGFseikb6yZpbIVdCb51T7ac9lIOLjnJQEeCD6wLlMPjrFDcMgJHf+yAAJPNBIOssCQcAo6oQ683D0XGAOHEN88rR76cmahyUt4Lyna/8dhxvUZlGT0m1FM2fvxh0+Vr9rdgOPfjab/FE3q0Eex0NFb8M8m0rta8gOKVwNYcAKq+G5cZ3RpPaPQ1CZI/fCa3nz1iFCYze6EmMvode6MJUlNzCLXXioZaWi7YJDG1Z++31IzBtYs2x+jxvIpXWvF+37TJIvWy/n6oaCx120vL4I55eO3ZRc83mVDauN1Ge22we9jAEnyof5usd9nJCUiuRPEWZdcq6RqCLra/WgDzDvVNSoso/RfhQ7vN6lhIQOF9GGs3C4gstN4vvXrWP8V7BQwzc8Tx9imXhnfY9lgzom+i3+pXHBiZ0YLOBpqXSkArFl29XWpOG/Gl1O+qroAhJuNdTTLesR2qoB2qVVQ0R7oFS9cqr0lR6nAjeLZt5CEGnWis+RzTrX76UQIcTeYg3Pekp1ED6zP89vImCYW2AWDMDpuAbH1xwMnpR8eNOi4wFz2NSRBdIGQpOSi5iLZ+g1D2pz9a2zituVWXJOqwyKD2At6h1G1nQ/Qrf3wIafgfE7a6Bcy7gzq3pvKSB75miqhn4+vv+c1QWx1q0+nsoeERlyZUNt79hKzs4ub/SGlOoaBtrTXVw9IiKeL4VcyutZ8eQaOds5NOevYa7ZWdpXp7Qj1Q4YbtmEyPjRR1gFcoRxjJ653cx+VwhAhn0dQvUxm+vNpuLT05r9fTYV79gDOP1ng218WMbysWqzspRwH/64/wIw8yJdAl0PYmPipABkwHUZGQy5ke1Fqib24zzQUsNDumE/gMnmtVgo7XppJqph+nw34gF1YTTMtP7RqJP/mtR4NrL4VhIUUFAWFog+KCXBeDarp2hEn+PYPpxKrm7UDLOJ4NRj8X9wbshKjy2iX7y3jBG1KtOWMdHxTjvZfQ0UhQROhxn+mR47f3+uvXO98s1F0+JN5X5nHwgHlP9XXGnPSYkExffM3F0NU4s6fWzPTZSq8yHwdW76VYgpu4orMzJre9gm+Ival7HplqS4UOhAwGmeLvOcG9zpsBpsNaMDn9EfO1Guc8/4g8/78dkVgVsfoZ9kE75KIUs6JlddQoH6hnt5/Ljan5hNIisVCU8+VirVXOm/K3BeV85PpsCAy5awh4g/tC6ivvWK5Evm7c+ZfoHwea7vtH1/H+JnVFjfCsORojlZO3vMSFK/VwpojQbl/kJrqqXWPbqOJHVh4DZsOJtQGe2WzcNPEsr+LpwcrkAQudX50bb9QIkJ6Q5Vd1xbDnn5BhLfC5uzkFIbq5nRncgTb9MIlq9V8oPdQkfbDZkSYPybO4e6L3zYZCkpSIWx8jPvtUQ7vUWcClcHtXPq6NaTlgtG2tWArbbOqtw8VIEFa7bQ1b+P2aDdxQpWZ5ZXFfcSLkPczziu4if9TtdL0g8AyW4KtsGe2z28IUNr7Vtu2dAPw0yJEy8aQQQwqQNchu361POOETb2MsiQpJE5K8YLlDorhdP08P1e8YjFIeECMFRzTMnUN60PeVPxx+uE/QubCeB2zL+BiqaG7G5xB9nJNUub74QdUBEd18Es7SbMl5jpDMHjRueHA0W30EKRNblD6sAE6YtXUZyNHsAmITGV7Phmz1u7wffWinj3ucNxfUvJPjolsNDTVvSe084JoioYh/wXSmUWkCUJ56Kr3G7xXsoKwKgKEL34I6fz1ZTxIIL66OCV+HklqUrLT+wqaNFjF1DJFBMIcyBjqSxH5V4sHBzsB445YFCthdw5XEOAmLJobDQmpHgMJ8OpOtlpVLQcoNt2k5DDgdHzZ5Fl4x18C8roQ7H7l6LZ0aJH9QstglNzZ7F9cC/JfKhIXIHp766JOO0VQg1Sw0Ts38enwUOfjYXWvxYhxmnl/HlVTM8yS+YQEvwYCYI0uAEJKlm4BMBsE5PS6PVDOIUcS/ljD+u2+RJrrvoF7eBzRxRJzjNhweKlfjKXAw9PKR8qLX80r5YTkptFdosKWU/SqkoUNqSjvUefQKpXaJ2MsD5xF6KSZ2CJMNQZXBkynbp+NIwpnF4MvJHQSMHRmo+VMX2+mRnxQQ48Y1/6QUZzQF5QGfrIVpAZR5sVCGVmMrRg2fKoAyOhbNqd6Yzwgg0AmFes99r1uW7pP9avNlFKjdwtSEp48BfHNhKw/P97Ia5V+ORZ9TCM9NsqpyXgHyu0BdO0TWzKUON2ydOKoNSiuB48sjv71KfRp3ZJGyksvDUlKFG/E4fQphrm5pNrc2diNzJKI4zxSJ2SA4bnyOdh+LkyA0/WCbCTI0LJ+xv3N92oY31tCM9zdKvZ1SgPbNsGfLv8RrK3BDYgTNuUyuZ8IiFWrc+6uMmH8Jey8iGKw9dIqFyLWEeSRnPkZTp9MZCdIDueoIuUJmMwSxC89t/8aEpikPP1LE5cj6quQPErxN87nV5tUMG2BWLkvSMZcGqX76TXj7Gl/YyyDT83qPuUX3ChvvWybaxCJbNYZrrutr/de4PV2zuuxU5569qZhb1x4C1KoOiGSXozcCd1nnqQaF018Dz7fNXv55xUFE0ic2MJl7nZohcRWkozL9xYV534pq7apzZcfGKM6dqxCOZtVVSm14UyTuTuAbUzOCWiI3wsobsSSNQIs1mcmoH18nUE/cEFbxew6MB1EirS8SN+RquPkcih72NDsewBNGWhGiwre4q2yDlloFKRDZ+/2FyeN3u25mYeViV4D3gaBrRM8IfLybLELp+PQcQu2VtzBmNVPXeL+KyGrgb1D9iywL6LXhiu/FkvbDzfwDVDDgsgiDseUMlMiahJXRbP1t3e57tHrF+ldZXv/VGGev3GvGrq1iWqlkm03sR0lrhzZcNm2kJi9tdK61UnJyKssPG+nhwt8IhCz5lHDC7iAXfwdJCAtt1y07gHntvxV86G53lxulzJRGWTRGJO7tRX6WBawyKG4+KatFhze1YGxJ4jSUVTzP7pWC6/FYJoFuxGRDZdadyLuewdlwm/E/09T3I14AgEkHcM/YSq9H1NknwkyJmMDhqr2ztK8oICwrjJOhJRDEatIQgi1dC91xWaSsTluaqvLjuQSvSPAh/qroFla1sB4qEzQ+BF+j07t665MUqZlu9BwS0MWDuUZ57ZMd3zZONgZhYMawgNEtss/ho5uPsOg+agj2ng887smA7DqetHQ8N7ko86qv6K6MLMnDZVNAYIjNj4iPR3n9HOUdeYBivLeovadrG+ccvexzsjm/bsm9Cu2eL/3wRJIW8wNmsJjcW2Fcmv20FR41Ep777Pk14XyMtrtC1TTxxmd0eraoFVOKysp5PwKIiAWOmmzdoAVCL1HNXVZ3ltfl0O9WuiTFvsLuBb2mJCp2p00QNjGIMOdntwUc5Weev+JNM7adTB+GFGavl+hI+GY7kKvU4NCs+ceE2y3LNUnDfMdf0u+TEwZV8fa72Z7BSx8dtH766ddviE3T2t/F0Fb33h62/r4PqSPYUx+BDRjW1sd2veLNRnvlTmob6ImwmIBdcDqP6A8bExDe4Q4AbxIXVUuIw896SGn5vb7/Jn0ns5xCAWHvlPf1/nVsYhXHywQOgxTRqNo5n+KQEah89q4xhuUcNO7ccWd/3ZHZZNLD3uh+emJpIUZ3+k54QfBSItZk3dG7T39A7379WlaeCc2zurz1QMDvml3j2Ks7ZOVNvemaiZi5QBH2kciNSawRqGQ2jkw+6kUvTYfNINHdVcyp+oPjW/qURWtABwMfYTBAYTtWaBnGMnSQamu0W05YOSFPGBixUc9TgzeaZljUKTF+vlp3ttfd6qQhmhyud7ZuBFKYGiXeclLIHAqRj46HB5oEnkcyYfxCJCypKqQ659Z84SnCyeQgdNmSgiVtBE4C/NxuldxJ8QoqZzXV8hE/lVHaMAinEzijeIIlKFTGqZ7sf8F047UEB20JfYcls/DSQv7v+Q0PLMU4vfvG3VeotRe+fOU02JlgbvHsGFY13WP3cG9grtOnD5vgfqHgCgrOQMO1wWr3Hs19e1AWJwiZgfbTV69Dmn2wAf5BcvE1E/EPOOQ5bSnXHbz1Nqx6oAl3xhb52vP0y6gtcKGlaBwMbJZrONccreFqzQ4UE4Avi9Akd05geTHAIrnMptIqiH9UflysEMVjHlJGyqNe7eZiXjFLV3ZQ+QBPq+E7ZwodEZb6QZ1nhqowa4MmT/PkdS9vHyFO9kdINIIH23pCcFUKowigcPnNuIJTapR9kjCbv+SF3OKEZlmEZMcvuckiTNqA3bfaRuH6DoeMBhxChJun3dSQfDnUlnoF3QEX568HyK33UfX+2MWt8jpGaVNpWnqMcpS49j6NKfVHmKLB7PHLbhHkh4FiCvMu8ZbihyS5up7y/cXad3Dn8dSxBdoRc8xfFJTNczF/Yokw509qsUUp8H5ncxKBYI2kngUv996noQZNkj2YglUGirh7S7/Ss860nVO1Oj3DFDs5m0Jp5SRd9IVaRb5HphLsy8Q5WsdlU4QeudMwFatPyg0JkiFCUn1OK82JmwNdE81La/6HX9jRg8EZX+NyM48XM5DKc35Je5RGHIxPo1SDX4Ppj8F7JVzchcRPtN7qHGRdCZBTWtBFecitTgT1LI7KbVEofeN57m4+V75UqbyDZ+deEErEmEYljH1XuvNKcN9r71zKCKPak0zmIRqWQzJtpjaYbys6GXE0E029sZgxnc8mBeodbKZd0tOVLaWqPIqAbXIborxuqvBgrUEiB0SK0c0/pX3b4ZNnxOKo+7N5zVbexTBrdD6qpEfmwbMKq//I4nIwLK3VNAlOcGrXbi2g6axDom06KzfG9TGDHSDjhA6g0jNIOhnw/fJceTgHA+iZqGC3691YCWinttpabx14VmwcYQYI5DszdDd/FcKWG8GVb00lzo5gJRxZ5iz1pifhJ/aNSDURy76RfU03Y9yCW8hb/2y80ZN7FiHoZp8wosBbtXxB68uuSoPKGOAFsHUpXAvdTbVMVU9z6bwVvc2sMWP1Rk1O9eXzwSu17WCQePyDRwPW5pguRwhkHdJjHeOcvQ3jzcDX95r/TVSDjzFxZ9NLlON6vXJ2t+iCA3CoTpkqTT+DWYBQWynZoaecf0pclotjcXocDDBwWZ/nBRmSlphQMQicgOtE/o4uQ7RZ/2c573iVopqr/lv8j9j2o455EffS34I9rzpXLulhyoeFJgxqmnLwxx4pws8omlYTo9gqkSo/KpwbiBogSE3LoHQc1ZLJSRH8niPpjNYGCqp0fNJNkPfj2WclCoUsE4+gW30au/oKQmRJHv5Yx1gA1BX7dmoEbjaeL88ccrhCH7Az7w47e9j//GHNTw3OPnkHn+qwAMCLcZkT65T8F7/5p5umE7WGVxVUbtt1BRI0AGzdS2uMjqDJKdn/F944BAYzO1JjoLs4dhgnv4B3NOqIOY5exfup4f9EsgM2gr4XY5lNThSQzDUD4xZIE0RtZMXXTeX7gIIXEwfAlcE5mJerYHWDsSGJPTyEMclLlajljeV21ILLCb1UYfU0fCnWrMWVktULTqx7EWWEqYTkFkzPIdmU1jYEckFLgwK1xHYeF19HiTIq201FLGXKd2qxGSEsUqT1iGuD0yNU0CSxziCplB8AEHTp9Ru/D/4imQ3ya3Mn5f2X+J5zQy4WddIK2gGml4IwX/PBkBM+dO0nPPQ5UJZwLDTxWuatiIixSgK5vdKsjqi0BSsmxGiaNaD1klTO6OtUa4YeIV2gH333o6gXzoXVctyH0Orw8egX3BzIg12GlznwUaMy/MtsJA2s9V/Xs4mOE1+eIrFGKnYvODLWkpZCrPpQg1icZk618zFqsoe98w+HRWHw9j+WXIoj6PKG1xngU/QteLA+ED+K4d1zZxjmKZwwaErHumRnoVKUL91xLt0Dnj/x/YGfa1ZW4xONNv1igPinVrOUDSd0LH35OODogRqW5taIxElZyoWieXaJOI9AiYcxQEofPjWw6XAF+/1idffuVRybRk0uFjBVqrS9gzdQyovlt/DJR6YIXJFbWq2aE4n7yJSrD0vo5W+q2aEhyfL8HENZxOHThPdSQK5gRwwTBzeskEZgNN00BtF8in8a4FiBCYVb9px7/eBHvAavKTDcLARNU0j4auLwwhi/mFrMwVvdjRgfQv1W7nFiOYJbEzojx1nfAI8+CYpNlyOYAee+13yjWDvPYWi00DOsp9VoEucUdKc24uPvPgVTxzEWi41YrjChZhIIsVVfOc/rYeA5HFDljFY9k+dMiFujUJi2Gu5QhgUFP5qWLyEb8fpKeM06gWVZeOKZ+bzEsuk8Pr5EFtGBNVVCqhjddQaDKKmWTF0V6CbROMyhGT7KkqFX0hTGkWU1Om+WWfTqZpvOzR5vThE870O6wo3dZ34LyeoBKvwW0pnkVYZOOtIILbPaY4MmByYge/amzNLeMGeaBrvaEFO2PiIjmZO5OSUXKplevYHaYFQj9zFWf8+JJrU8gqjqXEy/llSe8+0Dy6Ilczg065q+DJ9mPK+qB8GkqS6M2lFJDq3EXn64tfcK7W7lz5ViMtfJfiweI+AH/W/SoLuY42nseJ5X4QDWlP0hYOLmoC3nikjxBxLEP86qD1IPN8w8dpOLki9igyzTz9FfD+nNIA9HRNUw+M+tfv8qn7X32xegPGZAxxGUDFsGJdim+qIwEMrkgoGKWLfqdw+nUf4hmlklBSm26LOjNqn3M+SIXq2FHnpb9k+ALeFgLkZSWGZ91VgcqDMI8Pn6sfsDCBnpNalRq7ApI476kMDYOMGr/xzZFn+l2i+zccEg1z2Sw5s5zw9KR7D5sTGjhfvPzYWVgSLYPSs9T07C4XXfA/BQgsBTO04Nd+c+8gWmHgEYx5w1/rZbWLrxcnNaD5P/WbGmXJB3EHasUBJbPgrymLFuOcBToOa0DUA6hj3GfgTA3aJZWdoY309wZpsSZVvwyRk3sfO2lSV7X+UoM0eVCg1LpEFkW4LwcNmEg6cQ1QT9bRM8gsjyNIkzq0e0++jS07kWvYgoe7enl41ZpGPNPfZkrCjFNFvJUHaWzzyVGnaplLveDPknBEXbIQnAZUCUkhKv3xqGlhypJ2xOBmmjEJKdktsNcWgqSgDGMQPwa4qE0bDYKzgkf1WCiuKgBz3JjVeK1iRq+9+PYiKSxqejG+NUh6p1M6tPztCB2IVnHyY2JfYhBz/XF99Vq/Zv70fXaFMkRGN6Rdxi0FISm6gBK1UdMbyArCDSR6/9gXZdSsKx5wc9n3neDd604/C5HF9NNCqsy9QtJ9fD2XSZ2IC/+XwgJpGundMJwMOrrh2RZ8tzh8Cs9BVp1bWeeH9EbV04ScImlKzG1GktMtOH04NPFETAV2qPvAH16LvIoAAMb5U6jBf4NyMM6bTCvJ9skD7SlwZRsTp0Ywr7V65DRuJFqsQgtTLPci+Wz9THWOGO4ynX6Na7iUfFOA35hl1lHazg0+4y+mKhb/EqxZQIZHUtLEzidrr92moYtS3XGTEGursOqambZWVO+Ykby6yYc9yUrM9bKFbWCued9WawtEtlXiUEn9rGHzxBPVgtCzva3K9pEmNxFetCmSClr81pfWCDZHYkuaEMTAraxg5ckhB7ryrZjbT7pRNwl0Q/8aZ5cV8CTCLKDaqRhQaaHmJ+NUPrSeU4vOQ71qy8W8Ug4FIaWl2m+EX98Sz6Lf2TU7peQeC+f5px9D4jfdRIMyGv/8w0IUwuEp6D795M345dbcJdIEWtPnVa3AcF16sUY2dypFhrn/eTP31ioXXCJ77ne6z0cy2D6xhPKnp/MAAGlGw1VjSShbKeMpvaQBYJkbGgmwaLTMKAsXZCbIg0B8GAtmnooB6cdm+Bp9TzAODskahxyf/eT57Yi8Ms1WZ90BY68/4CQtl6px3ycT0cbjxB2VLw6CEq5LYd4f9n3SSau47AUHijYZHaoDd6TxrOe22KgXBSDrYzaRNIp9eis4jXSw9Q/fjssAKAaDxYBVmKekTaRIhMwyOFCmdzqQxuYCRTKoUfTJigxwLWrA/hfTtPAocqeW/5kJHsDdQU2Rr7es9zxttcXB7vfRLPACbEpNAsxeIcFh7faX5qdGrgY67eTFRk1bMAQXVTHwLL8rs2q7XTRVdUFC0yNcMADzWwz/xPIK60LWb9XFxb7eDpCUC3MmnGCMY9wwyHnHwFEByGhyplGleurkE1ILUYifkNwCkHYPhoRrjQfSlZ6M8gqzCUMjOjsy24OVfsvIZN6IRYRi+tCA==
Variant 4
DifficultyLevel
553
Question
Marty is filling a 15-litre container with liquid chlorine.
If Marty pours 12 litres of liquid chlorine into the container, what percentage of the container's full capacity remains available for more liquid chlorine?
Worked Solution
Fraction left = 153 = 51
∴ Percentage remaining
|
= 51 × 100 |
= 20% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
number1 | |
container | |
content | |
number2 | |
number3 | |
frac | |
correctAnswer | |
Answers