Algebra, NAPX-G4-NC24
U2FsdGVkX1+RE/Vwl7FgtlW1ZWVl6mGSaW4qWeN8D7VSioYupA8l/ngz/Svy1mqgV1Y0EnNgYCo1U3QnZbAitjmptm8MEvds5ZlloadHUkmKBJ3oB7diLqIeima+CZugDx5jKWDsLbAzLrnGEBgLPb6kifzKE/72LJv37ZEMVA3TpOkQH/bZFpHnTK+6wBuOYbCOD856OGFBL6s9yZ6Mots1fDbzuYTyJXWntQD6U4VruAvbwz4YnylB/6QmY89JwXJA9nMgQOIeahCGxj+Ze6OmtQXmt4TvUMDKdcj3FcFPyMOvsX0ErKKnYsUpTsvlmViwHOfHOecKJzN4D98iGeqjCRb1MbP9sp7QTvUxaMn0mOC87uRYllYN7dDoq5R9NobVttUfzkIuhNa91T9c/SULNrV+sj+SSVzEMGHy0cZQ9IFy5b1I6541aLxa3AHRSGdsBVr0ev5qPGtyF6NZh95TLUV0YSQaCaMOVukDcLbbuFWLwghWhejAG05E/oOXZChITjsTywBOTxOu9J+5TuisFvv8uSIeH0DsczY6sPXWTJ+Aqz5wx0KTBKFikFwCkU470qoUEPf4fobCQej8I9wym7L5rfxJMSPv1QqsnARPVKa2MPl+1rF/DqQCKFkr1Qca179/C9jSqbbvI6hERID1TdQixPgLN+gRtTPOumOcCAr374dB8G1iVWj64trUz/H6Un0TaWQqwbrrfD6swf3bc84OAa8GlmsozAK7AFAyM8bzAoO6aGpDktEhGcv6g88t0idRDZKVMerv6dOlyysjcjsoV8+x4aMXV+1cwsoIHLzHEs+ys29oF9P9CNa9H9YSCItcroZM3FWKD8GokQu/LrWqHmlJOdRL/LYz9Rm17I/VDGWcNzu5V1Z88nJVQnXqv2FPDja5FM1NH3daEzzI56cVS9/4h80GYcdA77JZ7+OuEbrhBW9Mp9ykPMmzwVYzJHy2vYLfqjpVs+U/OQ6EXPkRP0Z6xdfAHB6rKgShovHmwN3777Ch4XNiCbp/VkOzxiuYvTUjMEt9ash12qw2QOgTcgjEIc8tMeSi01nDIYl0dVAwBup0GcJ/svC0CVqm+Whi8JIZ+HxkBiZPXvSFL8FL92zPB6DYIsFgNRJ/7Tp6I/i/kBFRdbS4aNk/2so3ZaX0i4VT6KWq5EuMz01gDDUBDL8WIHqtjesuH06EZ9GJqgN9R5YvplUwFJwnc4/OYAa2+mYOorao8l5as6Tk36wSeezFRhBmZjqftXBAbImMFVLG6nqX/6xUnLl1eS9BYhvNUvDH7GCBZpmHhcz+Fp+Or8yX0+REB6ls6bdlX2pwmraZKOAneRZnFq+jxbFM+tv7ZT2c46/R0gGtK+f30MCe0lD+3hhDbZ6zRNh34JmVH9slXLoEv7x/cSkQqBATBYCSqfKt1HndqEESX2M59hOvd3y0jC9IeFRsYIvpzbVLAvUuPp14D3AIEqzfjt4ddErQ5eDEiqvj9VAsSo0T2BiW3yZu0497Xw1Prht/oYSsEUc/U9+y5g9HWipfbhkuXz3xfXGZLoPh1+ge/n+raT2V6u7cMqRrYsMfskndOosEbl4XCqrTiZArxz1ylxRhZKEZx8KKJAcgCSBDPHsi/L4u/LsqkMN6y1N//ENyg5L5wE+sjGRP8NGPaqeaPmvbdJZIlIjn0gny07u/DfAwr8/XEbrJuZgs32Fu5u3dswduC3F51hqBocTKD0S1fr0RNsaGucbXcZtwHhjn6INr/zDDJSMZlKKu800rBzY9lFCxRIWvzD1gu6IKyuw9Dq5rfdqsQmCJYPbOPkdRo3jMeXoEhzEXn5sURoy9S6xELdptIQOvZiFbgcgTs/0G06cgtBaWJi7jG9baqC7mSkXa+MzI7EMH/GHYQuGm1Fp7TrEeVK+ZxPN0b2s5QI78ob6XtHblS+LYtIEEoLmYaXZWZwWQvdAoMgl64LcIkF6/Pb1R9xq6QFRMhTxI0jsCp08FwkcRKh8LRmboo2mYKNx1GsSAl1BAOIqXpUkhn5Kn6SkYM7lejGoNUlc71KJ0B6NHJflDyweW4LNwJoHqwIvR9SHNJxjEFlQdQFrMbYU5UW0rYJqaEOCGDIMOHh2S6m+bPtK99ZOMIAiXUK8LuPxz2uCrb11oE3zgEvZRUrp0SjmnuE80sb4l91vO49Fqto/H+DyFRfoZtwzp19VqYYYohIiqA5KNkoyoOniF6jeUm6gT5eg+lxvWjBNceN5Hu9l4DbZ1Dz/cDQf4Ij9sbDqXXK4PvJsnlzsCRrbJkpNRZesVXA9/1wOlPt+9llIBOEyCzOrfO8Rsd3dFHzvyqJpr1liOB34blnyEQxGDHuUz2PDsX5Wt17JM/+IVHTuiSPBwATcp3idKnnzm/yBuBjl8VtfDinfq6HlDig2yKoWllKMRof6z7z6boS3qBuPWPlYLCl+Ej1jywIrb4Mv43erXFbVYNZofDelXwG2GFK00Gyd2wZRF5ivzxrv0PnXqyjScABoECU6/+ZcjDu0Pye0CtuQuExE6mzruWAKN8G8rsMECcPb3x0RbxGc9zaJx3Dvy8nSY8SdzuFkkJyXzWCtDnuy3tDP8dBF28E0ZBc/UH3EnGFqH6FEcJ9Muakt6tGa00hCPKqBOagqgXPljg6Xkyd04WEOTWhnpPg+1fkolx+RIaS/Z0ANlEEEcobKC+drRVMrvmK1hoAKb5uN9bm35gnTJIFNzqzlqzuxT0FoH1oCxkiS5ORZdcKc3VXnSFgxoCNPYyrYnXxTOalmNkTp5hgoXYgEbgy1RFnsLC8DuTqQWzrKrLMWQ8BV2N8t6ckj/Imkn23ybq3e7BrGaqrXR668IWZLn5OjlcfH3H9UiQs87xc1dTlsT1CvNZIfRNgLXqsdF7SPF62dcm4IpQEb86nP3JlwLEYTMsXp8Jdqk+LMiSIVT/9asFpxW9byOK0WksnEHs+uh19tv2wyeS2fN2w5nUxiKQTCBfdglwVXhImrf4TVwBc2XDpMQ6QIkBVyjgRrFJH7zAh8R7EnKqhPzS56Fbhorgk9YEf+XGtkSgsOR/nrfa8axhuP2PqNqjwiOMC77r+QbUNOSI6w7//APfriTjKSus96F6F2puG/xMxQGksahr2guBECzjozQ9HzS29LhKDCVmnPITTj4K+zkZHuWbn12cBubhb+EcJchlaPM8RQUknkeb/2TLrC++vYj8ZkJlzQwSa96we2EGdzlNaGTYjAdyLBgI9+fZ/NwMU6mAGDszpRoLuwRMaG5bGVMA0c7wl5uF6sUEgASrdJLz2BLEkOm7GSX9ziYB6PEltvZVta6vA7GJSS4YGm8xx2RQJHmKkuW0RTVsa/Vcjl+8Hmg7x3tjKfJIlupT3fJ0ClbONdsf7JfSiP9yg9H2OUfiuVme7x/0ZgkX4no6aOvdVJI+P3M4r6hwpJlkwQs2ebQOotex/DGIq0rntTMfjKTCFESSYiJDZrkeiY7j5rovCU/pu1KwkyD5m79618ifqpGJSVf6bAczkraOqMSliGiw4P3uhddpvSezA6y8xF+EoIOwx59mwBy7BrcFZqFKx2j0RBjuaiyE6US68+vDEtLodr9sloGONzsllHZTbivCW35GujPEPTxYnZd2c8Vq0rveQffPb7Ka23Ldheoz4rZBPwFAxNtVS+ZynFVx6YkNTFNvIsjOloXeAspw6sI2AAWKPCqF74+KFhAHe4skeRPrnCxbZ6/qEJEMDhuJIVMiv3WI+Nl0fiyx+QbDMRdabpuFB61G3gsfpvo+nfpIwJ7LEfvAUZ5Lz0em9uxYQJQjgs3p656LSEHqSsB5ZSyclikpX/lRB3iycIxByFrVpGlB9mM3nQUsbxDYQusD4Hvv98ljTFe8XVTOwbK6z9fMpsoi5g1Bz+ViRH9PTRQjWuKA0zT9utq6KL6ATEIr19U6p4cnohKHIqdEvSwbLjzOmWaijKpKEKt8KNelNTTqiKA7jWGhUCU/z2KQ8mCLtKetmWM50AA6RpoQTJKezTBY3bylD9LmUJ5YKJLmCbErK90utHg4niU5ZApeCPmKP+opp363+1YN4YtAPNrHXuJFV401UhGk46kvO/ANwRHrO6LYD6I0wyjT+9jpGjz5Qc79KUG7qt2dgNdfdHCuFXl+cgE6XBXmfpwfr+edWjstGC85iyGNtkVNhL+nDOYde5/eUoOzst0TEyoKSotqRvKL1SjJ8MixvZnpog76FOi140ImFbHmm+Rx6IzXjb4jocBBL9ZcFact202u5olt6w4vtLp3NBgubYmNy/ASl9WoHMKzTzusxeF16vp3Sw5RhwNoUKt1psTnQ/KigWvRa0hMcm9bRC9XEE6ZbuqbG1B1Y3EQ+znyzP3IxEyV9G0sj4llix8BJWleY+y7HpZ8mDiGGTs9x8KVTyaPDUWgoaRKYBvpJnxZpohfFLCBlcPe5nMR3glUpiZ/QMGZc2CufV74dbdw994m9hqKshIoSt3RScqPJtRr3biOmJV3h8++IqTdeY5PcfZ2ZzEi7fZX1jgCl2ZXSMRctVk9eR+d3RB2lHafMKCM+9NjDVIXwATD8Vpgi/ghR4ji5bAR7HhfuT4+TrEES0ZxbnaPE/7GMvk+aRMTeJGGJ0bnuPd5fkYDvya6LWvuJilh9X1i1jBPSazcqOPpPpnzn/qK3M8XL7NF6s2/QMpHyXNZA5Kvb79/8+bCeRWAAie7nG5+0n+r//NCiY2MnjtfIBFDFWCEsocTSgS0P/+opjQl04o3e6/caG6RZZY/IcrwZI2fXH+uJJCdhN8/UvqTV9xsHvNmtjzWfMzfmCljel8ECH0bXkLfREK6dmtYEbLKqfEUGObcjKpFARvmhsEOSgXCoNPkRuWxBiHPKSuT3gqTjTosGYyXXKY5CMCKndzbd1h/8BW9ePvwpwW7e/wN6d0KgM+11RGdEF8Tn4cfuIrm7dDLntS5zRzMDE3fP6gbzkHZm4d6rO2JvFn6Q0SvKQ6FCbRPjm5a5i00cWLr2ltCdT03cuvaJyGgCFm4C+62tB2hpV07OEbe+ksX/zrKrc8yO4l0YbONgTl4dlkL4MGp1KuyUgrXNdQeRNt1rY+hZPlKjo7HXOU130I4WTGmK+VPbiECzvMnPXXkyQiWhDYj1AzMlnnh+rK8jmCXK3pgWOtvTNGPpoZoDq7qMAKSjpDcZb5Sl5FtPkmpdia1smv7k4WGAsjdojxb++aTd/rAO88ZuV7wdf7xCWfbYhNiCRmLkKLaIGU6D/hsWZI3Oh1opW3gfxJdYAlUs204N9eMVzVb0SjF68BRAQdjjPQ+4OeCAewbfR2cDZ0DsUrdw6l7S2SQl1eOHq0gQhhEoSWUyju1mr3CnOvuReweLwGoDDzcgKAnJ8DvQn2quNjqX6WvhwGsk6GprciFIRaDsurr3et7gofcok9V4oDzlKpiLZKCPL1MjWFH9tTICKP8pHjLJ7EXAAweaCE+AO+3rdrCO1LKdNXy74yV6GOZQ8lwG6ndhRdcEl00NhXkp9lKhX8KJsvqNxAy99pQOrhLcblCF3vjSjhYF6op3QQeFs9zihohfliPWcZ1b8mZnb4Y+QhK+aj6ABapMH4Ve42futa22oaU3r6XWKLUYqVFlc1Wz1FayBIuYqKAYE/wS4sNkXdycsOHLmYvqE7ZWfuo/jiz+MGl7rsIDyOlYNumBJ/4IPl77l8uAtIo25BvH9nFHtCkUSUor5WC6rTazR9Vhda01bJGqptOKihvy/A4TPnztNzOMRH25JZF2h9ObFVg2uw1iHwY6mpmofLQsFcNbVuNEwlkfrGYlHMd1/YBb5E4Pn5Oo7B1fgJtjvC+7SGiU4ps1LhnICw7HUyDRktJczmLW4/RW8cjQtJEvf0s/e6mO+VLf+6DsRbdeTBtPtERiOSS6YadFa9R1Hw0fsG3/dRKg3zmKV0oxrbOr8yzul/MnSfD6UEmox8R45N79CKnv3D5ihNtHUXS5tM/Mvzdpwlz0P/y34SoxxMSxCb+4Z66Z11EPO6tKCuCIwzCw55/eSFBCroOizoV7d6CBfKNBWvcxz7NzFB9fALHMRJUCrfHWdW4Z1wReB5kOwUor0DPH9WuQTlDjVraqF5aEp+PRVxISZL2xhXI/GYVBnVWhNX05bMLQhL5Bo4hPg+qN/ycXCVdTg6jyAK+UJFmS2JLdPnpxFKWePy6Xzpkh5Ls6Uz9CRFqQoA6L/tQOByc6uagtcql4nN92IjKJuZaaE7RbUNrMGTBWQ54k62FfcTGkp7pxSY3lrGWYPbJu+fube50ULu8XLdeoi173adklrGzjoh2Us+wfrCHR0uvUi5Yr8S/KrcjtuD3rZpKWWEZzk2G/FsnAWjcc2F3fiPBVlaD27IjNxuvgyrS+uagOeNzeQ0i4yQ8jNAdzXCNSjurUZ/12YByZeNd7IUmzVFQtBF4RRWCRDsvjXzMM2VbF/q7aLkcgdEcSJKSLk8xtbIjDkpO4wgJKGvnXgadkMVHucXZwVaoScq6NA2mqSHfm7DTNLZVozAY0iiZ8w3ropbeG9rHhX8NoO4eO0uDK7EDyRNO9oOYCfgEpSj+uzRrHG25JvW511Doj+kKpgRV7RJ3MuwZXR9dMYDCHXH0W1og1K+vK6cXNQ5Rx6VInFA+kj/fR1rJAL7Qg6dIdn2ZGFUhqjXR6eMFPTjjCqPoa6tQHa3T7KWqVgS5DrQC4i5G/SUGJ+43vaiYjp8GiHkWQDIalu+OmqT8ZDhDqjFjMTlc8htqwOQD4u9bJRtc8bBoOAA6xo8OjYxMOUr4x+DqXCKaflKovTeV6vF9HfmZ6OKkBiRlHXPnEbziJ8n0e1LRv3HaBU/57FM7qqY+lAECLqyOXlJur3tuk4cr1Uxj0a8roDdd3q9hq9AKaJqQx3oIXhs4HTW4BaeaXor1ilBQwsATMKUL70JHhr3u6re0m42ZRnbcCsrkzUktwOY5r2dRLfrSbcfseE0vtCGSmTX/VW17bZUOfmoLGbNan9jcSttyYLtszFjvooMHaEn2lKWOApNCv+7ZqnS/5eEqzx3jfep/Xkqqt2wgN4M44cwYEHFMkZ2dAv4Mqm7tEZLJdD7dXTCyzTvYpRnS1ALKb3wVh6MIg+lLHvh9FoAhWTYdemhIfdcs6jTtXQwYLb2JmwJm+Dp84Exn48TKYyqKzhHY2UwIqB1uRCCbUodUPwE6YaSfDgmQTTfIQVt31UV5C6XiRSjHUjl4WILm45NoMvR+pykDNCZRhuvU0muaEPFa6ig3SWS5v9oiwF+ukAApLSY4lLGSQ5iYeh+5sDh55HAoHN24QMt1klObAXp7EXGYrniaH+DdfUo45p2ffMXHP69IpWiDhZHcY+KKEo+kncBFKZCKPu06VxTVlSlomizAibJruaLDYk8+HtXMuY+ZOSYC0mgLawaJy0pSbFVoUup7k597ovCP1cczHj2+4Oz5sjByxFIVZeAT6xWn0lHVBZrmIuTlKhBesV1017QM1QctWMXtw4NCtcqxFfRyJX/IBhSnX9w9T1tSOozXzstNchwkcBSJhew/TCo2NIlshfX9cYKuR+FGsuZ2oWjR30BEUDJS+MaqhibayrqkMa4AlWbi2g8h+8SQr/b3qY0G5Zh9720vW6VCmgjAXd67UskVXj5cq5vVCFlKl8t+Ex9CM+jLCVud2MvUZJ5SZWIsCjujBT79w3oVXH/qp52yG8vtPYrjLdX+werDOE6xKi8MK5HKnU3VG0HYOLKxn2CwffNzSFfl5tAtrf1X9fIZAnqa/WWJiWWpESEnb28W8iXhknGBRwnq7zsxOpZorxqzxiDlxGVHZafymduVpq849WlYB7Scht6Y6/e2sPMTLiT4d1bEfk7V1bCXToSY53NEjfFeOD8P1UJh4KNK2e2CCeVEv2p+1b3+NEuQKsBeIILgboAO84uqSP8Unq+sVGY+q0eZ2rvHDfVLGE+8Mc2We5/6y5YqXWJJfbBl85fnvxgduFjaiGL4oOAXVWGBZ96eitA4keZf4Knr06u2AR5K1QFWLoVW/ouEb+iFUkllWCMkwY79v1713UQbGU+f8C7uqbJvdoJYP/G6p2l7i3TXhfuUu/OjmJPQi1MB2e14+wa0QfeCeZkbikIMVVQTXFQEfMkNN4S61pjIB5fkwSyIYjOyosX4MMEPwXaL90xc+5coyxgU9PHSzXdnghsqvEih3QS7h1gV4jg3wRboIuHg3Vbx5dyoy63/YIoXWNzKCVG78ZCr86z2KPEROKRs3D+Tb8p+/CTZr3hyUrRGOK/4HxhT5Y/NOx59sn8mzmob/lDMkVgFHt/BMNL/R66WhPRznR3sfttBQ6vyAQMS3cGIYeTj4302ZKo3vxEQrjMpxrh9QxXBsITh+orEdqgHL/SyJBwEYHlQDKXsHaW+3GaT+TaZvK181aHtuq2HqxqTjElV4mb94aiY/u/K4SREz4v94UNgKWj1sWEdRw2wQ4Dmh2+CKQdHE68l9JoOlEcnN7RAq/CI6Ij0ECzsKqN+BzT227TxzZBLJSXlAPy/KYoX9RElKIjb8iQcCPrF5BG8S9t2/nml1nascKzqa4QdQRKGeCzSU1A6qfDBKo942t4o+loysBwi7QRcPUBZ3EqWi48oWjzLdWWULnGg2anlxJ+WcRQiSD4kretd3P1TdfA20P98sWAjDrjjM1qnSILvx6er68sQhodCSU2ASEQpbfQ+VNzTbzJHZNWVkYud89tK/3fSO3B+JtY4xtfWTdjH2d0YQErO46fIYGfMQES0jD1o0arRG95zNUr9sBFqWesAvvgYqcC3dIxErenwj9tfvS06tWwkkMb76IWkj3TXmc/9ENvniCNgj+GjKc8BPY0+prFAaFnnN+GzX+mcowOu/5pxSkNjjOa/fopjwqsi4xh46yBETt7T+I/uOnbPymKjdBXIRSXUaQuGhljPrToMtA9I5VTpW5Z+ywwZZs5RJWHN1RbMuM1awyF1GcMBUn0TMAuIFTPXzQDZlwBu+xPqER7eweJbKtxdLecDuLINMoAbkwKbEXyP9dUqDDk1qKmmL/DkP4ztW+CC4hz7WWpv0IOAtqteT16xJYCbez7NDeqN78ZgCSKj9BzMLAOtTx12Po6IsfiJI95ZpodOGNixMkVVlmUzccc5ZV3NZmQ6U2OBodANzmBTR9DEH3NQTKb3PVRQGat1Szk4KzgUa3UO70Bble7QCg5m6O9v8pfJAWJZD4wL9AySS6MbOyUPU8Dco9pmS9gjva1jvAFiSx992i+nVt1ttDoYouC3dC6B+qNs9eOU+gNaEoPrwwf0ku+G6HEUtatcHzDqxIewBBF8Q2XnvVAKVyo1QQIKW6JHskrSsLcptIqyrGkJqXGQIGQWZuoyoyl0ipeCsrj3Mfsvb48o07jkLMD6GP67QkNXkwBcg23ccvEJUnpoXTSlg3mMY9iCLWMHcxW4WLLaDms2/CEKEA09Yofp2ceuz90BgFUoIQAbW97aM6v4CYCHrkGiAQevUmumaCgwmH2ZDPm9YjtYPgx17q9EonirjeGDzkt8jUJbBNQCiijXjXn08xVG/gzZDcQYOwbj1rvWrtRqNjYrMoBj0OWcZ2/DnGxROB5qULLh7YEoTvnhAmmW+JPme4K3FM3TWaZGH7Q7DcIKCt8bqhO+VcZvkDh9Rz9cgxbN/8YPyFCKZedHK15Durb/FqHUFdYYIjSQrKPiAYu3tIbRfyrZiVOgRuK02DmZhLPEn1fcUDWtgMmw4tC/bMQsLmEGLN8b6ocAmFQZZMKJ9YWvV/HHuqTUonOVmZSivDd2wv9uYB0no+Y9lP/etHGQe4691hI3dvYuW78joHbp1TzAOL8pmfySmN9un8NmC694xNE/P8+BpfVajg2jPwgN8F3ws3KwzI1sRd6YpjvJoXcC332+7g26SlqrOTjxD/Oh+MrwDV1l0hKBi6HQFHVqIl6Sp5J5keaJGrYaSWkybg6NqKzTZcxi0kmdQvgw7qL23GIfaMyoa9Yl4IP04pSfa1aLtmehWDpAKMkfL2IOpArJxlX+IxRLfDLymqq0+zz07ZxA++ZZ7N7p9CHTT9r2gIEDOayXjVyanJLdMxnWsbGfEPR5elCzT+I7z1X0gzUsmZLSOV5qO/ZSopWBkWKQ05MC7mOlQD55ImSqL5Amh/qzY79F1i0iFdDh2StTwioEajburPS6KmTSxcRCdCasK+JuCWYICuzoKDPBUIj+OSsw6+7AmRAZHOEkAP/LHmkjLD8ytSkiSCXQDCFIi4Q0wIx5fBAlY+1+teasEuXWU5F05q9RSDuiCPEbuXJ1IA3D/m5b4L1PVxTR/RYst/fgzH8d/VLrgWNI4UvPWg/U35ppLemwYoNtuGUwYrFPzPY5r0joCippyS9tNoI/4zm5lSKzYbHsuaCuiXnWCHhKGiPy34QHN9Mup4cBGMZFRbyzBzk7vtqsmqOjTWGckdqm6HTSXqrvebrBSxy7m2Z7S7IrLeWR3odhw7u6Swe7CUYJb62h4+LZImADxmblS5NT/WNpQu7A8WzO2mqAla5HXCvBaUaGen0JFedektcRUSfLtFDhn/HySYV7zxGBP7zU5kJii96Sm69VsKjCC23UGxexSiUJ0M4hSxJZs/+svz8fDpeKo3W3w/5/yaL1w8eQO8sUgPwtjnaiqtvr/VBXzKejSfPK0Zz2SnCzWviSH3v2J6i4Q1DIf758t8IpW0/TkhGADHHc7C64nCiRXi4SXCakdgvgdKBjZntymF4WEHJsXDhGv1hOE9gUhwDRhQZVNQI1fq6oiiE7wfk/mSSljiosAvESOaXz2zpRju9L2kY6dXbizlX7ff4AkwkZPH8USEOclFBVLnR5LVBE4d9QgmPefZb7ulRbYPUXjL7gxOR8kemLCo95SP9wghyaFODj8qQVQyVJfRJc2z/E8+eAZHjWwt+0ypRPRblYLwxi8KpruzPpw7SBmb2HGtyPujUHkep2Z5qUNt/A5Gm70R8DE95J6zCSZmgOd8ASacYVk0NOrT+7qdOsGNz1thY2Mjs2kOa98U0I9H8ggr858T2eh2sI0seHtVjMtPPZMm04KOXBF8CiWZr4r8u5hQ4ZtLzp++AyvDHrbP8ucud1q1lqYCLRiis+BCIDUL5TE3Cq2wL5EFswGrmA+r9Hv58nlCjrlUiiTHOvVXAQzTFBVMEawI8CrQ11O6cFd8Hm36uBCL2RAcvu6qINqrz70cZPqN9llAwsH/bueDGFRt9Cf/h4J6f/cpZpkS8Y3+MOlQxz/L4NDp1qIO+2hDpn/zmd+pGnRQYB3P3T4kOZFqFnt3giqWhLifzV8cwnWAaFu1AEaGTvpeZib3o87RdR5Kfjaxc6C6uRtEMIY6XdYbxer1qXRljK89HKZi133RdzBFXZ5Fgc0JMLfee2nLsySb/3D7QPCrS7yil7on1O3N9w3HHp0xTENFAl6ZnskiCjTSkW5wUnJCqhXf3Ih3AyuuYemZ49G5YYRuLn57whCuIKhqeFOOpeYLkxgnuQJtiBipFMyxWaRIfGjpDCf1/WkV4KrzLFZY/5XzcBF2Ufz8WfS/ep60yrixRYmipu/qKQgoxgEz3lgAonPaULix/T++8ESM3zI7R18j7Wt4WSl0UlA4Zz8lzAp1XNzF9mYz7Flj8+YogTkRUH5UG0TiOT96670DwsgmxOHhMK8A4DoT1wtNiVyMW/oBamfutv3ndQjAzI2YrBzRhFlWD5Q7vIh3xxppRkXPQcl8h/+CobzicgI72x3v+3Nh/ZOJfcvIUrikp9rFJ+mGR8OUutotHBTboCLHd6T2U4aiI2ZTPn5inxanpgFaKkzbBzIH271mh6bzDTCvZqFhEl+AHfxakGZ1L2siTWgi6DfYnsUimiH+GDmEnKbL1+45Tc+WTKEWwGOD1QXa/xxhc6q8l/7cwRyEaz+ywmjHzn2BGGAQWkFfFy9XkF8zwbTKPBg+g9GHiD3vc0PPBxA0laCrwznTiGAXwLq3hlW70LnUsdKA9yvR4JX0ZI0cNPeOIlPmstI6U1UU92nhHCm4vRVqAmlcMoyU5Fp/mrGNiwYT4naOln3iOEjmCZ7WT7t1iDt4l7VXGZtVmdHfFJHC9TFmc3OKogUi8RhEQrKiFHGxOr0nFPqGt149j87luIeZEGT9ZgziXDwIVjfN50v/NRIa/6FVX8wcaG350tCeXRcVqT9+feqjl0llDK9YGz+GZLgdTdqn/5BPhRwSlIKQRgMqzquapkZzdsLVa3lpnkBrlRrL5H9optyxpMsmaFhmFutsQfb4V5JAFyFoDKNM8NQ0MBqOMCZ6vL19F1z473BUi7tC5OU1hlbv4mCPjFDrIJf6ErfVmvGNHmDhazVAshdNsDbKMY3XfcuXUTtzkBNQqs15p4sGKIl6fwykbmOvqbN+Gmg0prboMu1QU1XbDCnC2LQmYDo8kMc6QYegUhO8foTkDzCGLVicjPU9ydY7y7aM8seVa2KmiRkO/7FYxif6PQdX5GyEbdhtst3i/jy+dAy3hxnXwL8+z+h1X3ivQEQt/rXV40cWbBYqEplqhxaiDulgvVhBJzMLMmv+IQcvvnKiw7s5qvfX6PBugsrRd4G+buy/8TaFI+nTSkaXCKGnGkjd68YFNbsKwDnyjarrmjZWMThP7SItn5+/rwJ5RWDcBey0+oCmrttbcyO9YLc3MsU46wfA6h/RpYcitcpLkfFZ/nWUUvFWGpPRMa9opOuTYZICZHxuHGyZkoUvj5mhyXQ5K5KKMaAmBy0ePTsQGAsNIzji3Y5foQfy6lGZDzGRZKyIkk8al9kfRvmzSnUc6bssX3o9tHWbbKxz/SdBlbGF2ZedAHx2Y0PPZx85a2Ym3MVaDzOJkqthhj4GCCX2rs9RXV0Vcn0WZltXTSRoYkwUDs1vRisgWrreIG2G0QJHNS5VseNMTFQuFQo1KpZSre/otcLowJgssxHxu66ZFyT5cbyceW2SUAG7y7FM8Ji1bV+5+00tvCF0AY84nRmu5pYgvOcg5n+FobT1XnrZKTyQQ8RMXSjQbFuvcl1bcXaTVLKvMEAqlw1JYUzZGyGdaU5mTAg1dJGy2TXgCguiYvjsUNe57CbKymbDVvhdJDH1nRyFz6r44pAASpUcEC8uVbpMGAJcFlAyxT7N3p23erf4AwsNfWyL5p1XaaeVRyOB5mjY+btYthvAhmcWpGjD1MmIxf14PyM/v2ejKGxNnL1hrs+cLrng0m21t+29azL+cdySGptyVxxs0B8qG+Dec4VSKwpGknJWm8CVzrD+uhIyyrlyxpN1rRhX0DKEDCdPwSmrCp47IoXViNfjiG/kO9TysD2W4HUnFHPrZG9T7cAIp5RLm1P3PuwJ9xJ6cfRHTm0Qoyc4IXlDuNV3xEk+c1Xkzlt77siPNKZTc2kfcFdwfih0TkYwKfB6unAYdZVdzmHJ+Tz+3+m997y30f3nLlQo3fbzWzJiX9oXSGQDvtpCdBaWzfKxFcb5p074hvVKEW926VrZ3k8Hjd0dfB1eQqmm0m5l1ciA8daXnTHA2xG5I09aN+KosGUq8X2xc/kCYpPJQypcDlBTSrGN6+Jrv8DKSwBKJ1UOoGPUyYFiASEMj+mJu+aioMV+v2XMXPN6tDOBYNSiN9DGs4eQj3UqVNIATxmVxXF2uDAd4vRKtmjTLp6dO9wSuELyFD7qf5MxmOWzCfN2CvhdlU6jGsmILCdD7pPYutUUTyVqU+Je/I8O37gaLnrDCfv1AGgmu7vngQJq0X4vwKi0L8DfSq4wNJZg+SbCHfrq5wawIc63QChht1h3JYLvYuyjA/Ay0ckoW3wvq/9oWxuiTwMRtaA9EA/GVFjA+prOAIkbTgH4fjmFpfKLbJnKJQm2BbwsHnVUKRe8lol0cGH2Qgb/Zp+R4BUCFg6u/xkEuy4itr+tPqwPbNH6aN+S3kVMldgf0v2pCQ5eVgLG7V7omCHWTTs0/YCTW+0WEbM2JsdFcxaFRM5potnufcYIZBiPQ7vidnAqwnO1yuB8hDq3pH6ReJmF1cvSqllj/HcUhwdkcxflxz7BTVfNoASEy9Rp2C4Pcb+zuHvb8ztgsoT7FD88kI4sx8S7evmLC2p5+2N7av6SM31iwaJ6M4eOa22ZfNqMcdRyNngbirww+NsDEjOyCJT7WbV8wpcE0adnq5EBSeDfa2McZZhn3gBpA2XcBNbSxp7b74XoGPoBsNLzxMoI8IdshW0rTyVFzlKO7OvlEjXspMtQOCU5y9LPaIX6vzS36mU5dR2A3PnJ7o/v8SZd5biBsizWlospIp/oDe2CVTKT4e8lJAQs6kHbh1nMc7FB7yK9YksF4N4N4NGHZV3GHI1U9bfirgylE/RtZ97/qwoQo4YaZ40lKXJcEAbKStj5rlblVtBe6YteH4331zHPGGOK7ZlSPxbeX6IAnFezT0Ioi1q/E47uw7tiYUjZfs+KIdC7NUtYJ9oDjUqZSktvdLyUrHIGo3O1tC8bXWHRxa8KYW7A3fCFpmkhAEglLblesO3B5McHGok6mugboySqh8SQSCFSj1z46LcG2dmqi//+vZxZQ1+Waq5CVWpQnGzagrfrRYD08QQCIk3AIuVg8yGUlPnGX9t8Ae0+tIlLltLAEIFZu1usivi0IdpdO00+xs2bm4Kvtrfi57aiNptXmzFIE7CYobwskFr6RD+T3d46WTQlIS6GGFpt795NDW93FnbLE1tIJQWSJxcttVr8gI+AwtjDTSi93iHL7C92zb33TZK0mGS6vmOhyI4l1rNxDeNgM1I5DFTMPmMbHy7pWKUeuWNACkfidnq594sOfYmt7eqtsv312hMdqzZ0R125zGHx7QxAwuzNWeiKKq7wEu0x893Dv9qyB0LkKqm6T5lsW3s3DAiyU03WSr98di9l4T7h16Kp/8cbbgGuoSGb+CG2jswnqkqFlC3tJTweb/0xyxlbvI6MhCOjEL5dZyVr2K7/wXmLCwAChkdT7+JTkolarvxBj1P11fpB1NCZwQCQ06dmUwM/IWIxx4Fe1PH8QOSAdh9/hGP+W/IUCcGmNuDv1zohzE8L55/y5nJ+Po2NYyGJzgQAGW5Jtwsl5ZR/Eo4NyXRWJJTYyxbCrzRn4f2WhETc9xtiLDkeIjRry57i7Uw5JhRODIHUY7PfJyWddsuVRuHbNhFWmwKicsdmILBZcyWQZOl0SJyl0oSuydeDmyBCySLlo9dX/L2tLYHjqrbbe4keQYWFkMYwab+lDma7JkCqybthjiKqOYIbblD668PUYtnhgml/xhF7RoYPn0O0c/ZDu8MK5fn5+1HeV/MnJSeXXx6po5EosXQMMp5PETscEgiElOs7SV1OEkB5/00e8NtC6efGf3iInqpaTJbCv5PFjGJQDO9iZhG44xpuY/qyFu5KbQmWfcMb38VaGlQOfTrp5MFQnDArh9eXLbsVlKsIALyc+pZuIOxQd7F3GiQCoq38+TBQnJVK5C/zIzJznmJ8rq3oNLfTay0OLaGKbyCo6AsoQQsJgmIWGnW3Y53iDA1DKfiDsSPEgjzrEOXYBo9NPEhIDgKkXKlnnGEnEgTW5A8tnG/aQ/4vN0/3JjHtkMmO125Z6DCwcGA4ngDwwaKNZxaBCOf8juXGwY1oEpcBvEZwFPYqUt2Q0hAGqn4slYLj0yKazsagtcJRoVTvPalH4Xt1Hnpf9Wie7UqoO7Tq09QOrkFZBahAdutBnU51tiGqXdBX5OLZW1ubMQtz52frSsCF3FU64QwUThBV9UF/Z5sifaKOlTjEFgcOOiAcuKWs0CSTOWsU6Jk4RRxIbRD7PCpuI5gD4taHN/NYQkIJapkguXr2oUNSuy9rKXbbpIRK6aDTAizL4nqRYgya9Oa7pni6ghj/KNaGT8JHNXOzpRVOYt+vA66R1KFvmDOjE2Eqov1trKUsXEdly9q7d3XJ1u1yOC60UPiLXwUMCgIbGAH9FGuZvUgFMswrxRKI+4VVVOtbELrpjtLkiNc2oP9Mzdui/+TtFKm3zc7iSjXiD5ko2qKoYEZak8eczLm9NpPpqvFGc96dVKaLmBz2lR95zGbh2PtVuDUGpaXXZb69pbsXHio6uzZjpMncFA8YGNsx7nyAQVt0nxZZ56AkAlhGk59tDPIxW+G2Yg6iyx3z7aOE1qC1wwKKomvFV9f1LM6+j1gCmOjOT0i/tbok7psHG2TM1JLyIIQAHUKDWsfsC4g28tyK87HBTG2h9NQ0hiOkVAED5qCENwRNKFIfJk4ZYAAwxsR+vF8WDzBko+kVw3sZ+feBy0qBCq0qRTEna9QOFZ7OEY8HBlef9+B37jqJIm3v2ATzGZX7s5oV/jmCyewPuAq9dSwQjerpSl/dHEXDU22uki1ZWXZFfesEwaidu7YSB4gGipXrowxax+UXOHmgkANnz2mTiEgZKTEBRwH34RRT8eqgh5wcYI2MhZxYTrrgVyJG38lFn9cUvkQKqIIBHwLUeuHdgf1l+xUzkZeJTkdAkEEwZ8IGIJ0nhDezleoriFbTQmNGnL/ZAbD1hazhuIyGIDxYzMjW3G58+QECR1oBE0MLl1A2M3+kfWGG8Hgb/Ro7xu9HTzHv3F0BuT+XIMsr6R/1P4nsEAxfGkow7iXpzTrVRz4UeO2ngBbxyKjaPpp4VuxFSLFPiVFDly+YpdHIxNDeAJO6rsV0wbPfE6NvGXmVo3+Y0ABz5e+TXnz+rx/TPgts6tVxpBd/1ZZtkXghLiBjLSJMCH2y6iP6NpBD5ocuKzi9TZbEx80BoALZlG6tx5AG5KUj/sZbPczbP9nIv0o711CY4C9mYC9qX/0sjcUACVnFtppnBWwqEZZmOBh85YytODqgJdyNRBPiYiNupS+6J+tnK52V1XrtSTZveE1RidpENsmUQgTymSClWt/qGUs9o1Fle5g3vwT5ZaVJ/vUeqxSRS018HhLm9Q4WwL6jsNwcUH4KsWTpWH2XL8+wEcmivIbB28oOMPhHz8UlXyv2X7pDVE7hXxU3KdKAsva19mZwYxOMaGDEnDIZwu7Z0Y44PNhKd/1nlocCYMKIjVbRNQGg7tjrgAcmVMt4jDXsiGSQ4WCVB6N1VEgj28CFMxqyo1KSWQFzwdgcsfD+ICRxIB7lAHHW9Mxi0i0uyjDJBk7/xJtDDzzHNtm/RFxdFo/JammF3uVlCcaOP/+fkYfoUW1opM8ZBb3h4XAneNhqcmelN1AwyBuHydGfMi8Vi/oc+EPDQM3y13WFemVDOJ0eT6CGcweu2ObACJGECkk9Sqw6OXtZ4bbp6kmBXLndyOLFOdRzB21xW7FygYYm+LZvMnZzE1/XLsOOF4xXj6E/DiL9zhc6IJkaBOiNJCM2tVJ85By1KG6NmvJV2PHZeapps17/sLcmQO7wYXkwR7owQT7mfOJmHGrycPL1Hfl0ywmV3f/crGNfjzFoH3liVvJD33LLsYV2bmwTCul6VQMKDEaEcAn5WmfIbWcktZVty2QUOEwSHFi4slL8FrXf/Mv1zlW5xPUlk7JFH578qoeB1eXejyAeEGrZ76ijob2NdVqtYl3ZOlbBxO+90mrcvBlD3FlDyAGa2bITBM3yoTRG6c6eHlk3j9ZsYFlKVopSV2W0mthdn82v9FnbBMpndxwQBzA9Mj3wVeyabzwh2ZLa0HmICPZf5ZnSVtc/SaxCWfaSNTvpMfrFCKix2lqXUkGAXMOgkvbEmeZL4oLCfDoMXh5xvDM3Xr7LPcMg3dfKskqCNGT+p8oItSVNEclCr734Jg/6E2pUQpnQaYzVq9FI+1wJTjnUTMoD3VrqqELyJ+dLqgUjsNjS9JoeAuOdUIMqsTeEl342E4JkHEuf9kIVKojcp3hIIlccKy9E9ky2fvbKW2rYoIF2lyK6k6Y5s5/6FmVscJJIMEJrVscWHyXJtv2Dv/gj9OpofnTpuis/U4q9NRNFQrQRe812oZwayrygJMTB2ODQX/DB9tULgZ53JiYkY1PGxFYVmkHVCFK8+hDebjEAS95bN2tn9cwxgmBfIxAeq7/wEd9p5xfGdP6t85+kcoZ4XbLiiDckEQY520b3YGKgvKJclt9ilQLxvaMk2zaR7S9X93wsPPasd/QUCFsIQ2ptlUmMZ4cI7W9YrRLSO5Z0jfR0TVFyVMUTE0QF6/Tewm2KBuXW3HhjbhogtN8T8tuO6Fwv5a72EQLWHfC5GL35lXwFmRZVJk+fCjS8AahoEvXdw9WglvSNp1AhoX2M2jwWehDsmE/dQCKU3G4yLzcGkfagKwu5e6BWo7/+0iCwgueIYM4xAMYKybhdnGVijw9NvyIGqBzex23kow3SRaDfK70QKNaO547lVKK4SbEU7uHaHDkY15WMWlzTLbj1pVKpZ8+q7UNYcBAjKmp1aS9OA/3epX2LspuXkNl0UhsGMrHQEhlTrBAuVNy8+dLwFspfJtRkIvxhJNUG5ce5i0dxYrJuT9SBdum0RtksZ8Bj/OWLGCiHg4KtNg0sK1Dpl5Dl+NmbtcVmC3VYkHgRfSjtytPgKdaykT6dNyaPu9IFx3hhOK3sVr0Vla/DXXzRBpFfhiLlb4RzeHZsGpvMFBLCvmuShricpL1G322ol6II1ICxhlAJOkqLQeIO5MeBhH7vhjJTZfsa5i9iCtdqlZjEPjBtp02qKPrJ0cNVK7GO3mUnpwhQShuwFsnn2bp0gQ7JiLqfW2j38SgStnyYHbjXbtA3PpJO0xqhY2yfpaUhEZsCtYXYpZthAjwJv/9Utyk/w1JTdLYoiwtHGG7+RWMEv8BkCx9sC6NXf94JPSfrYrznFoPM7LS2wU1961vBXVkgDFX6izcIEmCwpM2yHWyDNgAZaRkwGnGw1+ZdM0Xd6OQ2J369wdN+tO9XfqTBnxu3s17EuPkWhH+QMQF2HvROONnXPOkbzT4cPbWbI+wCYR0oC2Wh5cVyvVmSCaqDAn9BJlM0RwB7ijuuAmzWOpm9pxYk7LHuRTLmTE12LbBB2MUQuM/9oN/DhuRvyEF78nFjfwix2ZmxApPX3Z/USOn+gIHfMSVe+bpPdpVdpNJ9apsp3yK0mveYgft4lc+pd1JoimtnoXCaFgfD0pVp0GHmAyVrASxD4p2+P+DQKD0ZvuccvLHkbeFRmRbVy1ZFoKfR43mDWbCWxuOD6Jpx6iSIf8McukWjQwz0dcFvFrC20mWuYDJrBVOpa3xC2oz1v3JMU9kyb3msqQ/FhYyG1/B1gvvU8dqcwpyF7J4EwacYpuWknVTqriiuiVvaMg5yBCDOjEpJ76f8VOSo+cM8ucywP8+50YMPgz71gZr+nIiLCwHAdnyBjw1x9F0Z4GrQzeMeX3/yg1cjqOqMULz3KFDhiX3GApVkiQ83mgkphLFXdDpiK7wbt5/xrwr1Hs598H82Olr5t504IfQj8iKIGMP70DRiu46aYTPIlAVmpTv9GFnZw6RwQCSCwKKIODcQlnbpnw9LkWrF1tXRTvjCAHfbfeGeh/h3MMtQjw9jRa7pD6kOdGRzfBgWpbVzVNoULBIX7qfRR4N/HTPXB5rprOOlO/A32VAe4k52TIsBVOGQi8w+YGqGi24EKSBqtwcdO+EgpbxF69NPEEiRGnM9Wy62sUgnHCVZDYCrMk9X97+OVuezjEgQ9mDgYHY+uv6kuMafHZDApfrKI0s5jqy0YJ/BHYQJfK8a0EkBg9bTIFMqq4z7vJqwZ55WjxYVIBjUlalNeJoYWonFNuAlT/BTQBOL+PCTRfO8xc9VES6ehD40Ynp61ACv3vaXbEuN73b0Fy5woDtopx96j1+iYSS7UoGkFqcQs9urYpAxEwBQqcTvuFNUYAKZXUT3ZYcIMEwb8dLrd+3wqyh3H9xmYxhGenEXYzmW6ZXyBl+buyVf2Wde91HzhbjZIoR/IFzo4t5xRsL50cvDrrHWQ4/UVAAXDJeT/23G5O1wE41lq48LRqqElubAfjYp5YepGWV7cEYmLmc8Wcwjao46IipnfgZRINQ3SZqDlfa50K89dnvLmfwSnLw6DWjB/5ZSYaf/KLfGwu0Ju8cna7MKp6F1h1swtF9FSzS68wqISctl+ymLQb/0BYFKnh8vOhoKdjjZnaidwfjK/MF5pYguYF5zTlCHlP9kTMpWaSqUQNFfuYzapzx5k8ckyC4+mBj21H1M7bNSx0WYGeWcjr4PoxM9QsvThXdjOomg8VLpr4ITHfcDJ+Gs9+rduTRHDL2iMLJrE9U+0GFPdcyF1oIEpHJm4hrt69Law02aKQYhHMJuqI+OgAq+jAjfODCEsIll8Ug19rFkgSY7KftUD5FuNJAkBhigofPzJj8E8BSaUJVVriUxOCyygEMdQ+IFHxrqW5mDbLXXoXFRl0m89kM8ipXSAWGuadGQGR4LQb+yylTlAE4hCXsBG5B5yCJ+tt9GWI58Gwar7j0HuoYM79Z6B8fUZwsp9Rqdi6GoUooehriZdHUVW9p4ZCXXBGwiAmyLBXTV6/ddxqwLx/8V7D5jFfZterLINrHjpuYUDhQqBV0Qo7BfpXsQcRgjgJe0QapMOGkryownI5fv/T4ECpHS8FQo3jCCxLa6Zc0u2y9/jeQzq6kfOepa5zFHhsLVA70ZtRcx1bMexAK1QBuLP+FE+CS1vzQ//GeEnC6o2cALcoTYBprJKfqvblR8jAPuO/6NfHRtAo4RG7g986k/EQwSViyYNYTxwTC3XU3iT8srwTk0wVMSAokK1mlEwTt/W8HUvLWe0ayZJMR+HgKdgS5bdRXgt/cC79WYJ8EYhv4DE8LYTdqwU8WaA2PeIJLMMqfv+CkVaJ17I+AqjwLRELlPG1Z1cKWpWfb+9jDFC79O+NP+aRYRgsqqt+Kifp+XXKp0DGdk+kBuLILHVIc5b1Q+bRd9SCrhsj2XS4ARQQlurjaNYctXmC43qsMpW96TRcKMzTtqr8o0URNuOsIeHe8Y4w8SuiwmnvGBihjOAM3RqxyYR9mWYmkymozVxlKO1uK/gUYWWEcBhBAFt7gfYijv+3X3AoayW5ADuR74xeIuSQFH6ylpK9dZQuL1y6LR16KqF1goPqa2Q8Sh3/iEFBWa6KrnjyQSY
Variant 0
DifficultyLevel
652
Question
Harley solved the following equation:
4x + 3 = 12
Which of the following could be two lines of her solution?
Worked Solution
|
|
4x + 3 |
= 12 |
4x |
= 9 |
x |
= 49 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Harley solved the following equation:
$4\large x$ + 3 = 12
Which of the following could be two lines of her solution? |
workedSolution |
| | |
| -------------: | ---------- |
| $4\large x$ + 3 | \= 12 |
| $4\large x$ | \= 9 |
| $\large x$| \= $\dfrac{9}{4}$ |
|
correctAnswer |
| | |
| ------------: | ---------- |
| $4\large x$ | \= 9 |
| $\large x$ | \= $\dfrac{9}{4}$ |
|
Answers
Is Correct? | Answer |
x |
|
|
4x |
= 15 |
x |
= 415 |
|
x |
|
|
4x |
= 15 |
x |
= 154 |
|
✓ |
|
|
4x |
= 9 |
x |
= 49 |
|
x |
|
|
4x |
= 9 |
x |
= 94 |
|
U2FsdGVkX1/kkvWdjoCzdK89GJduLP/xZ0TmIlgt9GRFdo8VppnctLsIWbh237OPgYD5ZswcL/7XMVhMha0d+I1T3McS1cTVGJjTio9GUQJw84ILpnaGNxSZhN+QuS0QxUkUDAEF1QIs/ihLDRlRhiZ9gEzNIpBxgMBxK7qPD3EJpFA/whg8BKz9SjizPJdKtJTFNgCRUEzYb2zaQtjA1IqfbJ6jm4dkQooR+ilNzb/ixou9Tpob29GCtgvS1XpdPkMBR0lNVJFrWMTw+PdOxC3+G9KhE69+z8RslXyqFynbrW4jvMvoT19mNhWaPwb6BVa4nOhhJJIC6goLgFUbY3Vmab/o+IeThb/rTnkDq0cRtlBFQ4RKZvnS/jazo2twM3uA0w1yFkZzh5ov3GB2v4usZkm8kj4hWIlQu/h12aDLrikkXWc9rioYEnv5LDxhSVJAGU64gzn+fqa7HCevevWxWwvVMgnGLJlTvNSgbS3HdIk976hQLmwAhffzHw3SxnWWqtfPygy0XdBFQW8R970VTikJAMsXTRrsNCs3qzamaR+8oXNenWOY5yjPpVjMTWZDfgeJjB1tRgbpJfKT5iJBVeUC2jOYuyRNmffRzp8bK1F53uyJWdvYyoauVLa7btn0D3yNPYcQmRYeomGazRd/21ytSMSmbjko5hhQOlJ8eGtPuLEfPd4yqmAkd0agQJGQrm/fRqgVUs4pNTOjkGEhyhD3QYo2w5TAbVZOqu7mK7gka2NlUMYwh+ArQAAYWv0xw+HCw9JzXh3LBI0ggco71zmv04DlHtXYjaVs8X0mCUe1KmZCMgvbwQcXMNwvnqk4tfD7bo8OKCWMdjVYWYFzFIOq4q3XPxod4A/Up6kPb/RWIdjTrKRDDjUhhDjPjpuAzaPFgtO7QMqmd6a0P8+KONiIq65haUPdyMMMkSeE1Jdrh+JEOQR4aHv40cEIPrHSec8liJE5zq/Sa8Xqx8rsU4e3/F0xxMeuJE8iVBOmagoXjpTrd6lKzzhgS0HQN36nA8vMPv9DOWSGlLZtN54cwFvBNtuQZ8slVpzWqYE9brDsQ5FYFzdv5ssIQcePUye6Iu6jy7JoOeAaHp0dc0r9nUoEDliFFDmduzzvsTp0mh4zGnGqTQ7k5IQrekWVyTyCGH+ckYrFtSPEq8801/8UcA+hgN6rleIndgfUDY8iDBT/WFxp/xeD6g/RjT5ZKVTa/1qvVb7lJnKlsNCz+9lIVMX0ox1vyPbrhSykWxJERe1x0VYGD8wNnvYN3oF33GVVcwY/0Yjv6o1CpBQaNzqP/IB/VJ8SSKpko1TbuZN9CTUOUtabsItkf8Fb1GH4WvHEYZYqJ2/rFuCalHCDIdEMXa281xOmuMESSO3lVZ1wMyP4LpJa3xHGu9w8FkdMcnwCxOKFAFv/+OfMSMlIQWJY6Ja3ErUAFliwQaGnyKYBWINbZHRrzC6D2OW/cpIBxNwmwn0NUMOiDhF7+Spp6PKQ3u/BpiyxlQ9YLjpc3xLwcI05YwCjGmQoFANQw2n17XP3af9/fCuI2/pm2LkKCyFE3TKx26dZjAC/rmt+Kf9Fa99mTfuVDe9EFoYmZ932DPbjdV4lqml7kFXi6a3m6GrKAOTk8ncq6O8smLbet6+sE3l7Re6DSaHs8A2VMR96SZHdsHrWSeTaZuC/TFNeslGJNHD+ISy+IVPpG78D8i3ztKAisFQhHFxGFqRJtzpFkbiVFdkfnNYeL49ZXZP0FGld25UsfBLVAV2diPBvDxCphc/cFQ5v1eC5buabON4dbW1cSHDbA/kP0IFHQV2IwGqQ5W/JIUNwudaJ2HoUomAe/sDEwG+Pp+Zu5sZD0kbaJmzriijz1GwJd97XJ4ye3WiaPQo3xIzwwp1+dE0SoFh4p4PODNCcfhwJOQjwZYN+pcomd3KO6MXN9FQ4fBzPnTotMrd8rTBALacvKJHl9JK6bThdYjd3oqdRHaCp33DxVQGaGVV4N9h+PQdE1FA/gNloE0llhgzWCkhdfVPkP+cPSDeuEuZ7YLrpgMH6aUB1kMRo3l2EAOCraGa22+VvtdsC/xsiUa2JcOIPNwkZRI/iZF5kXrEbdXsLKQUrEa43/vmvsmPMafEdiQtAcODW5WR5St6DJs1wwzGGS8bPy/X7vfMF1J5prZsF2eArp37EhPVgYrIdMSY5JHSic7zIU8QsIE8a1e0wCV9vhi7kHOWew5JtshNHCorJqn7hnto17lj9TvqflE5kca/lwwMZIzzSVVSoT/ZerYdmegSHL1Q45zgI1S5jbopQAyPTtArD9mI39gtm9SwVz9k5XkAXaeXrV7myXrPLOLINYVnV6zUap3gt7Y2X4ewamKYhupiyxy01Wrummf0nN3+5lP/FW8KPsWz0NFllbJLOspbHX6rMxBjn/Um0LK+2Npu/nIS4TsJNpOvTcE7ap2790/Hbx+3YmqZ1JzXC2Vp5E2Mlfc67kD8l/pZtDv9nkhMiZXL7xzxxDgOX15fe3K35envA3CfAF06p1INMUZ8iL+217SsypyXlcvGdk9HFHSozX2k6WkM3tG5G9WJlxzGZD4LuOWjEnqt40bkcJqoSEtBhMMEl4kWCD5UFyftnOuX+sVYPbwWYmQ/nMZdjmbXWYGstV6kocfvKb7Waok51CyGwjzcxzL6i27LBqDiKJKL8Wc743sXWOqTvQa8ookCYUlmOPU3nCCJMhncccszRUkuomjV0inx4sinKhMGzyccFtfRAzP3HDtCa147mmcKoeFNBFaIWvrht0PNBfg6f+g6ln1EK2i/rAIJqFbs6sL/+WSISRJmtUUHZ6dulyvimVe+f5gVz/RcF5elM3E/h9aGXxmkQf0/ID2RnTARMici+gqbkzvw00LpxqNLNUUCSlNq3NsZbfBFzH0zEqmHUOLDPQjFhGULxQ0sLUHcGrn8kUxzKz8HXS9uVAPUIzYOtyEosAzEJwGzG1jRTliafwfEcnyyJrOYi9u6ZzvP2hyOQf4J9cWYDUOGjySUQoICwh2OCUwYmaMz6Ujv0ATxtGWGuYBccirGewNB/k7Sr9LnN9rYEYPhEHh/0znALjcg/V4tnguc4j4q5gqNi9Dhf49MhggEG2Ro+KlCVSpszqMGe9/YuSeRgAifed9t+yfqX+ynoDU/kxeKSpoY/9LpmaQj+2fJi64sNMFF77E4o/8Pi5nzrrlxfYgnij6deEHNhTBomJXMrcuNCoAe3ZblWRKjK+VFqv8amOLiNdQmlhPON+ZdlwHgoxcpRsTXXp3tiqzkJKDMDbc9T1UZXz/C+XewhLH2VMpcT/d+nlafmbXuP1k789SlJof4JYyd3a9evIfph9ot1vYnw5hTKoVR3d2TpftekgToZqw0jZO/H4yaq8p8pqzvu2rYUoFc+V4uPGE6v7shMVDa2FecmqBDncVuaDH9xmnhfiSoqnnjLYS7SjBGcbj8B9IYkUFl2ZEkMMpPVk0NfEER9iqC3Z3P5rXmt24MxGf+6bfMktFBYFZwATR2e0e+/fmVb/kd9qTN6vM1Hj6xFtT0hoL1UtG214dP0emzk7lS96bOfF+rEX1OlkcnVnG0MelGm8QEybaLmnQCUxvLAwI5ND1czKLj5zPoYGu5OGoPU1WXb3j5FTB842pzEf9kbo1jXq3iDfutKzF28YGv9tYeXvcZZ1OhliaWEJNQIBGQJH7QO9mynTsgVAgI5cMxdJlRfQgeaKt6TWVrJfp7at44yYJNlGyUJBWTa+w/CF1A2UH3ySw8p+8VikVk/jBHztXviLs9Pd0VffCbBSd0Qw236Vk8FYCtReVGrMMwwUmJMkx88mGWkDALoxXnPw3bmKJO1ZU9XwtapooWtU5lV0cbz0x+2mZc2nRc6w0H720aJ4XLjZr52sS2sHEq9kSIfHU0E9Cgyoipe0J9z3nXo0zjrgmh8ySp24qbcU1M9pC33ppot+uUP0y46MdjWemdx5zFzqq5FEuzbtl5E61h6vnNu5xtxP50Rsv1O3LYCzgBP8ssrAu1LRB4yCuwrq3EguMyoOVFVbKj5yaixq3ZJGYSQmB4715oNjnZDnjXCm0B8mS+6vrnyTqtTrPCggGdvOViXpEqgUwhleRPDVd0mJ0Ha6qAoHKRSfgjarqd/Ybkc1WsgiQ/jrBpWFe1PuCiOztnEeqnQiqVv5kccdLlP2se8LY6TMvBFx5nLSVWhBQbi8T/73DwTeAjGFFXUi+WhEdyUftO53J9wd3zx2mvnKUU6hVYDCsyOnw7UL+AVwNxcvoF0l+5GgsLA61fuxr1ARwENOiDXmssYsRn45WPvpaUy+vka9HysQpJnQ7WJr0mAK5AKRf+y5R+kymCdu2SJsOkBSNGlOBAjqv7ZcADRJamVwiLnhbx6rFXj4favph3OxB0PojuIR04esdZiCN4zcpjFVOI5VaCXdzzk9wOts0YTWC0W1rps9CifNIXVObsK+qCbU9zaqqX+z3DOz+WZHTiRt3H5N9h94cbfTQIPUN0HlgNnoIkmLyb761uDfecyz2wgS0gLRkJ7TRWJEdmqgT0OsQTnLrGm4O6f95Hg8HPS2Odc3vTM8+MzXFSOeDUJj8LSQUrBv2u7pVsc3BtL93fpD1m+dMNSDnArMHcB8sLW4rXiV6oxeMQyDqfqTfYgDu0cYnn1Q5ofM+qj2dF2J2ftiAiIGanmyGzEpYdLXoxAFOAYpKTr4td9UtGk9Y9N0sIc4Ll16Zh+gl3VcWKACo9WSzSl18hH8j/ldcEQjAChu25pEU9YfhWiZENL5pqdRlz9N8Xw2YkdEJe5dBB+HP6EMXwzy5/fMpWpWw/+dyU1d4X+d8ZaMKRTvrQuzqYrIAqxkmipqTmkl2Z9IeFnQJ7V/PcYzo9DhOWIj0T6lrCBDPCjvqnh3cUFy1rogJPfRXyZUjyAdvlI876895xTtKoBwqGS1Jwl7fjpydRqwCs5DkDiZ3uakhJEnYF6FO7zjhLEcU+/Fgu5b98IjGsht8Vl0/QEqSAHCtTwXj0gcNnP3Dd2NYnfBJE05jCGVo06JiJMVg9+ovPR0mCK1wG+PAW5iH6eIdeG08zI95j5nkMR8tKavsC684LyYLUSOZolgpZKt4n4ng5wSaJ0PbNecvlL3DRWKvwbm0gE2Yf2IeJvwNW+704PY3DlZr7GkFzVLOU2sAl7hd8xCUmJSyvKR/lECwmMGygG1YLkuC2624IeMwdLjBQuBbxqWaR+xfQUkuOMqBQ+sdOSilElpGqhr50sZTgqeP4lp8hP3FWQVfHR0CjYf76u6neF9l5KItO3Pvz+rZ0wtIoATm/siUgGFSlB6nEOs3V03/6aQLZ7OK1nCMGeZHHde2W8t01Ca8Ef+OtEDPV9fosoBabzz0QCyPrDX0E0k1mzxMYT0Bp7nYFDtYOUEdDhnZlXmd3DUAuTLCFAbVSLDIEJLWRQIysRdIWyqa8UgTTzLpNxsh72PXrOGYyCQ8DQ8wlB6vKXgWT5sMvuD+Y6K257JnLbqPi+bZiHJbymje/hyf7tZOkx4QZqxz78cEy+2gW5/DDoXp1VOOF7AFrAVdq9DNcmsjQHpZ2HWOP8JmCCgkF7LajF0Um4q7IKDtIQL80lHidXA3oBZDDTX7EIUlTGniO2g84EZq8wpiAX26lPEOQPwmQrBMtdtpUY8SVOJAncSqQGhpTienig1itbc4yk9Q8A9jxlWxYWQw0Jp+PVA5jYBybkk2X5P8Tofs7djHp7zxbb1Jv4a7H+jWNxsPdjEEHrXPM0uxylKiy2HpvP6PfweFAVZ1HC90NzMDjxwVvNMvVfH+un+eTEQmhcHiHhb9DH3antOAn2F0MsYthZ40fLywFB5UMFZJxA5D5YzaNzQJI2HTxDFNKxeLmFv2I9YldO/m/6n6Gp3s8nNdV7vYAkjiqAw01TmJFcSd9WjEzOClDzphHBkwhpDwY+uwTbzf8xhx60EdkPODaPPx4kGXhZKbYYP1EdSNv2R61Y1psUlhjVQ9C5QUWgOjXiKtflpZV277W3T3yzrOHz9sOKuFz9GKTAiBtcPkVidFR4RNKnsJPA7uBmjQ4WeBaWRoBLjDklcmka+fLgKmRQj9HXLnCo93Olj/8Y/2mtwnS1FY4PNiBEJ6/DDv3lJVSdzxPWY3y0lXhPKsCOdoATVC+NYgxIttvP08qX8UGQoNENc6wyRb3bBVdJG03gKvWxJfaFsa81uifxinqbWpk5zaW37g2hHTkfixBV2Sb2F3iLax9PG4qyLwl2psagrSMdMxXKAN0S0bRCz5reJ7dnNm3gLkG0+YEKgUD0gvrJ8/VWrktkwch8GQ2g8vh8Xn1GUnG1tWu9LChRIS8ArZswae8Vvh/aJg8kgsyF/e0l+gMpC4WooCAT6BkLYF29U1bmhJrSZRk+UGNHxgizLLWkzNHBklJ93jdmW5vtXiHhpvV6z+6VkwZQqwKEtvw7klo3RTif+Yr9E4ZhBw8FEbgWLl9oslaWdrhaVVdPoBa88xBkCq86X0Sq8Eo2Kt2S5XjeSCGIUhoAbh0z1cW1Uh54ZUcsntzh1oXFfp0g4JKbvkK1fX+YWSdqXpi7H8DEl8kwkcthLzHexnRVbYtDpyJu8c+euhBTX3FILAPpFEcmixwM8fxw5uwesJNV5H2YWdfX/QkIFlZJ+OEQe9CxtKgfxh0+kUbJFd4R5Ry80jXXJJHDhnSIfotxIy0q+72RbJaMk5RnPg1ojuRGAbr1qU7I5LFFhi9jbYJ85ac+q1h5BdzUUIvWl7cBUm2LqKDNFrd+tvIxBZI2oCUnrTvwuruRayTY8ZwJxIDzhHcqQg9au6j9jp6pCVqcVnBCkm9Xf+tWuUTR5cqXVZ0pfs2t9wBo0Q9XGnh3pHvLn6gNrK90+/EsgDplpf0M0ezezvh5bPRVWayO1w/+vCCv5SPXhaBx+Jzny4FofsbI0mFUnmRb1e/F0xyJl4BrA3nEGhHFpiIxmF4r14E+F1PEO5KljZCcXlXAPj0q9lmYcM1pTGmaZ5pT9AIRVlxOGijryYWb4U9Tvwav4OLGFTSOveWSAO1uSfBsOW3KEjhNkfV1QwChac+d3/Qth4ebtypvbK4+YwvHUaxnoXtA0ZIzDSvs2Z212om/dP8C6jOAUTjACrW+78dMy4xdM7ut6yX3Ow6wGx7KAro1NPPMlzh8ZvRDPvf1+3XZ/7A6GztENWR9EmdlkLNgtjrlkmL9GgNwg12i1VJDQKZ1jnxz5LOrikDkVWb3Hd0LmNL3hBOyQAU1eL9bodJ+eL+0GpLXucq1VazlPmzNFyHeBjvzSPAH2urcKS9eVGF/BUFMxrVWczfJ2mc3hQhLRK4uWu2FdluflnoerLwVjmFaV5Qz6KPIYfXT6/rcJwDgnw04UewlxDdSDXA18rFBcMmeHV15ISWSBAFLKju3LVeaHKY7m1EzDS6lM9bOnW/ziaY6SGZ8JaPnjcuMgaRSqCOWIOj94Ezef3j7IR5PA7jxoW2QMmJ4uZUN94N9sEriaCQQYICZu0myH85QXLVwX3vzxLwSc3cu08HPZCLvyWyCXFAd8Z5CnPkFIDg3Rng4il8pk2QZjiEWV5b427a9dSnvJAk42AGP0pOsOEJOiOB0sv24QaEZlV9d3PMSIbFFmJtUVOh6z/I9BFQntUoffF2dTpKwJYeJ4rCbHOsMr/7qNoYHK3Jcjfi+LwxxdKHs6h6fiX37exwb94kiOgQyjXq0O0FNflRqL3r0qoPZADhU1xar0fXxYloXPz12nUmAF+xMeBVgDLKjxjZZwHroc3s4KJpMx/HhIW8j18RqHcSzDz9qIO/QevtMDOo+8s9a3ejI9VBuzgogwnxGnshW9jYBVKsH7E1neejGD8MYkiWenVCV5XxQg6UI9fP4UaUvdz9CQPZ7eQlT4+HCp+urafH+Kg+0HGSs2lKV+3jATgXleZNVpb8aNmnEwTA65xSzEBd82BA8Niu5m/yQgCcqobGJIZuP6Ms5kt9WDDqIJ44kGpsu0vrV2NHTWZ/kvVYztrBvpVq5SSMtP6v9j5WtX2BElxFcgGiKPz/LCG+2vKe4aouPFI+A7WW+6nh9FM+H5TKCX/V0q8LFpYqd8qlGI0C4jvRZPXpaebVIkBZRjw+4uenvzZUqLwoik0/SAdm5/6LcDvDOO9pUx4Mnrv8Hc0IYeGMCeoQBOQklDIUjGjwuDKilyR1Tmzkn6PQgix+y06E019hIV6RGnfBS/Z7WmaRXz8+1XOLEO78KErG7LoUuEQpJ1Rqf3hUVFnOtxIcETumV24d8EhhI2jGIpmjIEBjQ45EN5pwz7UO+X8//7QrQOOaTl/ELNg/SWvywquLA7mI4UoqI4mh3B85Dkw0osUGcYIuH5TtQnDOgbmBef1/iaQHIuTj39KL8u6Xm1yvC7/h8yh40ZBAeqbzFv+XGPt71Gi8jSSbV1Ddh+wURISf59MBJvR9wBZC8SXTmKS+sv50aM3Q/dai/Yv/2xxaA2Vi7YlZPw6Ke2TfKjJcofWRUtPmrq59EYh/wBFV6gCUgdO/aynSJhsA05XRwacriRx79wB2YAS3u4iBChLZ42aMdoWonNtgizW+o7PkqUzsIFKhKSKCdxBqLfIfzd7fOVOrUpq7Y+BmOu+zc0PNmzy/wjiCrk73fyBrSnQJgl5V1MYAKmzYeFMEI9sZsZTY72MBml5DMtk2SuwS7EqjAMdhWqSv4VvrKnUK6rz5uq+8MR3mdNGtS75apFiEVP8CqQwgJU7L5GMOBsLM2/tbUDY5f1EozCTRdFONeLLAKB48WO3LI6XZuCZ2vMDBLZb5ouiNcAqvkRV+CV+o63niZG9Z0b/SAalgGNps+rkxRopzS6tPpwc/khpxm2hyYFUxsr78KTM1XqEVtNMulG0Gxoh8dHgJQqyARVaFDRw1R24toBQMuxZ+0xkqCZpWExwcUnbFqBRUJPOATIu75xFbczjTmUqS0gAVKDDkKiwG/WtxZi1nMF5fq8QlWosqsYCaEo1l5uS0/ajExt1hTZlm2DlSzhffBLhJNdrCpFxwQDJUyx/U5+iRFAJkiUHlegj9TkZvBV7Ph+k1iYdoG5Mm/2WkmrdJyCPC04N05jgTnM9T5OsRn5l4b+tzAfczNVaEkDaSaPrzLYcAdqSNsGsYjW3rMkyJVgJten76vCDJDEje8d3cxlW2gv+yxDIKGgBPa+VBHzclY/jkLZrpztck61ygWvpCKT+few3HUjQnhITyx4+zYuBw5MnPW64USBDdSuxpLQ6zlM6U74BqW7vGHO/Sse004so4376LDrrSL5AU7DTiC3FUvypYG4ZyKB7TBcs3uU2iRlpQkjBO9JM6qfbBQN9q01B//PLTHlUdl0Gq4Ez6dv+C1qcyxGERAc5HhxsC8VApk2pna57ff1M5GYOVS43EKEJo6N3DpEgeLw5OYDXsIb/jDOhL31tfJb7JTZwXQox3HHKL1Mf2eo2tLhIzb3XI+2ctbZvNFgoqUPvgoRo7kBOTVFQrMc9vvd3xnvWREL4VzcaoQngtVSWJo8OqowA6EL+qtmX05fBG8Tq0c+FrBZOhV9UjYFnXRmDEL8AzGIRVqOd8+JUgMQ3BC/tTqOBAcpHxXaDvDCG+FEA38V63ledOcvVElQeEecjzQLGmTB7Bh6Cqaf9Ft2bCNhHbnCfr/F/pnjjKnJbHHvMX4PRqA9Qxv3aHU0b3YHNMUAdsyRWE/XbRxrwFaCCMcZXgwWGEQxSdDjWpbAHnFTiP3FnmOCb4rcSAt3RudXOYxuSjcqK5u3RZ8uhKuotoFkdnJKgG5OzTOH58wxoJeuU48BRZGFHzc5/ma3oIn9qiVT3h9e8PvPYWxzFK/04ld2wPBZ3rJfEQLDezwtgkWio2QITYo/TlKM2+YX+AvMKJSkstbfnIUwr4XmduZikEFW0Z7oF9KaEWsPT7JqNwqlAppdxfqmdA12WheDYEFUmce1k0sy5HabsO+pM75xPfdFGwGI2BjFkoDavXKjsisyxvAZJTcgi2X5l5mZ2z455dVUUBNClf6W9FUwtO2FuL5Txpz4dFFm+Qs4yiQW32ZxldiSdu0hEwfKd8ZLPwkzJ5/8yKr21MyPF7g3DRNvJN5osvn/cHdgznmIbSQG8wPfPyoXDwl8+RHyCPOHiDpC84khtctiicRax8mJBh1yIOJ0/tqIP4vV2kIsTOtELQ8cLvFH65selo/ZbEqKyMuJWeNhGWsLKZEqe4Y+NZ6IejiNKllJ1AmdDaqL/tdL6kcKaM0QABAFt8FAGz8EE1huI7VFHJ9qLWFzqD2gLal8eVbYg12H3kw+sN8eCCuwu600Sk6umdGfFsc8W6YVu5CyfwdrYZVlN7cpbHq0ZZO3hjwWpmyqnYi1JauFr/80XcPRJMVGXaZi5RSuZReCJwqBJruh2W+tjMsUAwt8kR+A9RZfc3ouztPaVm+P6mVxOL3Ht5ogTtnsUhwhOtL7j9faxpzmeTwm3T7xEJRbwu8QCNKTk3y72jmp3+R8codYnVlkUfJWSCS+sGjfNSsABc4lV33NMZkhUHlawyLiq/nXLMEInNmNrTZTapUY4z8fHG3c5GE+qbhuj47f+TcdGj4FcxKQKQn4TzxLbuht8NjsgpYhQiUaNqhO/EUP31coQRdAVC3N2edMfjJSl1IWeJvxhhTnb6BRabkF7PP+uDm/gJTXE59EOgzZTdwrjbnPHN18ud10duyxqpmjoTrkMrjDvf927HwmgshyljdONWbtGMtjPDTnyAAWgeJYZMEYB00pRmCo5NotKJpRl9m82hs4iHlvAQfSgfZYHrS+9qrs20iVxhgjoQ2Oz5SEpbymRepJNWjpDRge2k2tY7tgRgufAkV0Ljk/59qU7nM6s4gMTUhQMvZULF3DRoCldW0g95btd5svDgrKU9CS6bIs/vY1suftrO83rr6i28dPG7oAOOmt6xBLTGxbtVkQivHHlZmAwX2dMnngvh9U3bVsVrC6S9BmZoQ4lXkISeY/6elOGSfFpcPGoyLKAINn4YqthMHxtl4nDk8sAuoMYWAWeuBPBUJ7cyiSah96tcl6yIDCUtlmNqYreZAH1XjAnzWdGOlBxkGzAnNoQafKSVkk1pj4kGQsYA3MbmGLl7TdrI6r34VvmmDpuLjBHMG/o5ZKAdgM9yK7JQEaJ8s0FrrC1f41Hb8iDzFj9+dqij3Lw1Lispb47JNHJOAlS5KjFtD6JCsekigN99jqRUYWcxBXh1Ag7o6DiRxpAsnx2w8fmkzmOrS7bePX+zDQBLXSLzDwb6pfAFe6CB5Gs6JptwXIhGn/6sKwJY91a+fS+4wIgYMxwozQKYRr+oHy8UWxUHNCUB+MfZMRZIU0e0oGJNwKF03/u3u/96KHPSlaJ9u/a/pVG9amRs2S6Sc0CI6r0Ld6kuOfV6Rp3+jthxJDsHkTNm231XhJeZtgqnlbkv3s7wLMonhppUm0/8bQCY3K3PF6NlPMjk7rWQBFhNOUkkBOCeA0vLL7smQFgxkI2BOTKtOCluEyx+Qjq7Bh4YTkt/Kb8sWq9YQfUwSTeWVCqI+Mw9FDxX5a4hRdxNDDa+PqIPgIIZGXbdciBs+xaEdDb8aaISvO4wxrSeXMSorq/E7XGFHXOqBeU7RZWe6h8EL8/gpIDXPdwi8gW+KFf3KWxZpZwpRd8yeKBF9QQj1lptgD2zHx/3foHn6XyrgBbrcyeByOZI9R2+xAJkNlip0GR/GADKN7SHozboConj38udyWsGL6/kKhfruty4LensO8xkAfH5nQDuX2wZX0w6CLFyTf8fg0iDsIBC64rpwfg8ZPyzmWXGvOs6ySPovDqUrxNr5EyAEBWJErlozKW970TwoN09VQd35CZoxCOI3wcmQ5WkBm28H2GHhyPCDSfj4TflRi2RtVYP6k1C1G9XTQXdmIAfn5Bd7LM4YWoJKRGCMFWcMiB1NnLEDS3OexCZ2TUAjKbUns/sJl4lnx9I1J2lqT2dooEYxmEY1uWUY69LSDIX9ceCIl0B4r+PqrVzDwP6mFFsALVlkQPFeB/JyMLScBUBEYdlX0oOWFOiBriJUZo3t9gSOxQK17dGCBCzsb3GlP+IkB1LumTPSt63hmh/QKzEz8Xok3wHqTEBt2BogRHReHg1ZeWZvAqAghUygphLRYPQdOYFPhAuggQnzomSPJLlF3Neku2D9VLZLSlCqqr6JXdOrOMlMQCJkmYs8rJqkZy3IutbPSnwxKrJIvK7HDuzBHDcJiCQjVOBfathN5J5mEGDv2HoMaCjXUVQ59i1OE44qLigei39TJUf/73oHJJdSKCa9eO2CE6EHMb9GBPDSQM3GumuRz5Np/l2YnaLeYlil2oiakp103MuHx07CqPWUD+Uykd3btNNGBD3rAl+s70bKNLBpXk5DDwFXVUhDKj6yz0NMJICv6u/O7mJXOboOb8uJ+s5lAYJEQ37Xx6A8sGkRuAPP3MGPl8GxkL3AolIm6xJMRlDVRVlxNrLNPHlmV4+yWT5vEUD6E9ZWTBOG/YJ7Q2BDHAKmPOiHggvfMYb6B49qp5wD5c7dAErNsUzC4eAGhBp/0kP1i5vno2l5MC0psL8PJ0gA/Zwwj3mw+UPeqWUghsy+f2iplubRsczrz/0pxN8NCgJ5MVXrVb/jg0O8OCsUULxoj7LgLUH/V088HB/+iKP4fAW3sZ4CaomnkTk0+mZMq5807Lw/7ruecZKQ+Uy6NAP/5+Uy/D5OoN+HVXoTEtFDFwzQsRbJ0zvCdYQi6iSzdXr/y5p/N098AsfBsMJapKef4NUvererTaknO/+7NUCdvUA06KQ8xsS5zN7xVBwy8U3xWGJBR5nA6UtqucN/mAxE5v84I1ns8+RUXo1dSuRqRQ4h0Rum7pzkWnbmsBgIOKlI9lkTBvXtXrjCGaVzNPTSRhOiJMMhBZZ05OPEoj+AZiwiUaljqKXtmOQmGPh2ptR5KKX3/ryKzKDPVopm4SC6cuOxwG5xBTTheogwAdqr0kwiXUdd7OIaRU8iVX1EXgYEx0369yUWmREBVY/boSsO3HsPeen+IJCK00QbHdyLAZZ2lwbobZRJQcgoOqwrWMvIQYzI8qVjT3+jpIs/GaHhKuhKb7f6Zx2M4mCQlvI1uEX/3sU5a/pL7A8O/ENgB1DbMV7xulwfcwnNvJ2aLmBSoScqOv9LP8W/r4jmf46Ddp6XloKmaev3ZWBw1I5HkeIlTSb2uWevnnW+jfl/nRdXYOWyp2YclbrSSvQbcJ4uuqLGFxxI4lbjjiFOCyXPQdBYPslD3bqkVa/5iY+3Jq8dDKe6dbu+QDUj60sxDz2i6oQecBjqtMC39RFQKn2AioH3sRaO7Iq6kcUjGBXedpwGhNvA1tC/yz3q3cbjxx1JS0W1LTgF2BLG2rvNJLM6VlReAaFQmAzaZ25d9CQwpONObiEnCScn/1RdYXlLhgQC99S88TPJ2OPcCiT0MOLRwa0jxyS3eXrBx0mFDnHpQvicXLs6KHOnAoKOkciw6sfSyiVgHoT2moGR5jossKuKRCihSfMWVXfTanpMkC1Eu/1FUbmJrzb3kKyhOX+FihbDIwBmHiHw7NFLeElrFitP/ZvodCMukcc7aPDE+zHVWmHFhQicVxI4koaSNFyhvNHwR19tvHjMYFQKf9A3UW7mW3EP2+2EggLHaLOgGxNMfyDKvsxmzNSNakK2MFR+/5tgDPfGqIeFMAl4o/YuUP3X8i8r+vxzetTYC2IQ6yN+n4EN5wDiuC5jFKeNgBvSb4IYfzLyNbSp05gpcMXNEIIy4huWUTU/zblNm+MYdRDua4DkCTZswsilm1KjAx5H/HxdKpXP83NjRjBOLctp2/9tFPdA/GGboALDEqwZNQFfDO2l7cELlJJSqUbsgPBLxpPmAY80Hw65f/JLHzluS0aCpCmwMFbnOdYg4E3aMJGOO9ggxDpjrEjmZrSB6c46Ab2+Sf+lS9U5t7kVo1WQ31DSXl55n1c2RrHnGTnNMvKyEnohGiuELkbXR+SLeLOWezLgqlnddaUJm3IpQJKtXKYtdem1tiaBWyvzCQibqE2ClvQvX6dEHRU2bUPsVLlpOoU7a2T0QIu8NMlIJc2EjE/Y+RdXyeYxHZN/ZpkM4VE5IuKCVqjM+4yK/aISO+Gr6wJG8ayPHWoJWa4F5STbn9hH73ivSiwWjGzDYKmmzMec7tMff1NzM4P9RjP2AvIfQBBE+XTmKBJhWdWtwo1JIb7nE5JRLmdC7KoQ/Cpp2SAAe+Yv6gUOHUbkP3nWWcEkvA/zHHx/j39lALNEr8WQ3hM48F+cnxdqigV6GfSOQ3X8I3iwqwPvTGwtBGBmqLRYA3MqEld4OysXRxSiEXojvU9cUmojRXaYCCwfFr0NegiDIZV7oLkrS2Xl9FDYoxGzEO3HQFkVmz4A3r2m3ZhSXHh38V3fwqh+GfQsd8dHMIV61TyVA7GljF6rGumauyQvq44oTeeQk8lgLscG+494LGSVyZVBKIdY9NEqfBNOrNucw0qVGYoUrCyG+QD8yZPuc+Xn0C6ZsTDOAqz+so8vTEsRxPXI+rHT/Skz3EH2Fy1ODnYR/1cX1bMxXv/l4hG0/e8BuIghIpTX2/nQ2afwvNWbt7HfYbdWJ0LbD6aAoLSu1ddYwkmP2f24bRs4X6h1VM1KtB0JOOfLYws6vsEQieSs5t77DucAph1CWRpE/y39VPq3yQz4s5+tw5RiV9JXE9FSvVEgKXZr1guiEVWJ9fPDcbz47zp4CRtbVhQ53HjcTRC6pMDS5U0dmr8QTl5dLtQbHUl2/UBYaomiqH2cC2nUbnxgqzzPt/JQo4EJdVe5bjTxN9NQfCnUOcmiciWczYpMTwXBzM7Gzzx3Eb5MiFGGbJR7X5+J/97bMc6+csIRsUwFixfv4Z4VFp+7oV01/83v300fb1u6WEsIVy5jmE1XjW59ChIsSckQzpGLAnCmtSkq0EYpI7B1yPZqb+o4s+KOnf8lRV1aw/iWIhTjEdmnt98KIk0wUVzwP2PcNNKOT0yNgmKoA7iENG1+g9BzLwBYCX1AOTwvjmtPi0/rR3FgLb/YZ9Ut8Q8c4xHeDy0nlwyAnxkwl0jcEUFmH3OTUvKJcRFltw8gZZ+oX/hwQFxWvV/OT8w0I2z7vxlgVFCjIT23qldGX1CyRU+KcPKBdW5kcAGPbclm2Agcwu613fFK2/W1rv/IXE/8zIvTJZIQxrfBX2yet1EUpaMkX1MUL7Gb95iD+Dx+A+Qy3ybi0Vjh7vOCJ1wwcS6vRyGgHHWG5yjkd+LoeAzS4qGBnucFxj8VzXBB70QP2HKOMFTCx/olNS1ZxkcUvSYnaEgSr6Lw5leOUbcH6Qa/2GHkSTT6w3+NXOkMyqea7H4cGw05d7Kp8ybk5UxWdQi4qDHft1KEDYOS7Me9W6cXlJ/vw+Ti6CZh3BjWeUqUkRz8OFMLB00mjkxTS3qaTkYzzyDGWi7iI5/P0Unf2nWIJPc4Fl2xZnQt5S+WaEsymKM4Mta5SEbgR5Qq//On24zkooxZ3dQtOyXQoO4za6pcBCFauhsTB1ak+XYCkZIvV0ZOGsRUueF3aCNnnOAc6FwjiYmNr3VCrXDmEtfB2bKfKDR4mPUXja0Ib4PcahVpdcvy4MPgW54ddip3XnvbJr5yOvgE77nqhqIKgBVdX8ZXfRLBReobS8Sy93yG5oXb4eeDhlPM1pKVvDQEyvdkYasegTkd5/PDR3OM/vWA+/bOUdJyCSH2PCLkTQvhOX0SXx3ZXVzo5iOuzhe7KqdoZb+B/5iPZ9DxR2wtB64SCJ7p7OahMZ6Sx+Qw7KbIbKq0xrq9tCDv9gYxOPEphRkFmixsXkxDK29Hyq4JRhZ56eGNHxVFtgshLOWfuSebPJPqpbqhFi9c+NcrD/LAX6220mAo8x8OYwfnE+auUshQrsOB4JFZDuIJ2G6xAWheNrl/Gnq0aLG43ch43GvuH3bHyFVrgJhiAtGqh6AmUfJI1M5trGFk9wj52oxgruqqC+lX8jjrE0bSuiCW+bhqJqyQ5HO+lv6u2bGc3obP78qN9jsnilOUhJ6Q3X99sZSlBt8OOxQCwrx+ZWFnsJPGJvShFLMU8lp84l6bDJOfttuG1H5nlxlhM6Ul4QhZMwwYgs4ohlFN03JpjvKSRZ9T5lhFF0qEPpyq336ze2AiYj7N/FRDYQy7P/wlqMcqHOPqfssLhvVF3lZYPEScNWUf2Lsn3ceD3lyZuZgJm7h/QaCVZSAV97V24AJfm0PHktaiBvFHEeZxg/3ig78VEBGDZfDM7jZrpYE/tGeTTi5OMGRBTA+0C7e1TWYMznnlMycR7SvrqaszOZn5jsIw4HsfML8hcJ3njgyAGvRe1famraVy8VKdgSRIifP482N8T35aUorwssdigCkyPelwiJucNG7bWEa7gmK/K6vtI8EVZjLb0c7T1CbMW/dl7QiZHL2xIdOxktuxG3VIWpPkDWyIi7H5ccCINFFYn1qShUlTB9/V2o/5601/x1hCvic1ccRrzsbrX7L5Q3lLLI1cYZ5KS1rGGz1J5xatw9EkJbKSxe1xeAoByGGbyKi8jtLIybfBfCDpx7+AH+2dwONaSs5CJoNu8FacAqZp/9nvAeRqGH4Ya+f+j5BY/x1QwJ30xBrcMsj1CovaAyFb6lb0yTnTU/PyNyoNvWDu8isBbSLgbv+GDYQFcgLlrrKwB+2jElMIWDlIIaU+xNgUqro8fC7CNGWoXK6Fus5ZYDH3B36cNEF10kFaVy9KX9fIt10+6X31ldfYZKnJFjLZ6vB8LErqF1tBD68jANP7M8oe/69SgLPA7Sh3VTdqpWymTKGInrA+qjfhGYuB7As4qaXWQpqlfWMhcf1+lf1KBSo3dEcQoWmzNzhnJJMqwsHqIotJIlHGECmEwNQys0cB0ZL6w71zxi6hDRRaLkzf584rO8PXCAMwKOf2q67t7DyKspVSXuI40nlVlBMbxJTtIv4Mqis76zpaGsgztPQBwXmDcL37geS7W6XKZLYj9lRTR6B5BfRc1NRI3/4Bx2J1fD2yvBY6tPAp48741666kHtZg2DlmdGdK6uPuIiKp7Hso64EwJalSI0DQwEeqETQnwZXUAgZmisuc8iKHROC6xOb66EDUoEzgD8W5RFF7dVkTeBggI9wFMZdsLF4MivcW9f2pl9WhXd6q/zLdt+CBkbyZSu1WPvS6CKyAnktn3wD+FR/Pao44cZzJdkCTHmiRryJxKqtgKvfO+Cj4J2qT7mzodbWlNVqTCpRtHEDqGwzuA67dSn4Dd52p4o6hxIidnxsN01vPP45CRfiET0ztgV1nqrH9XMj9RSd34kWUvwah5yR0txqZsq3XHa77cTgAvhY/wawMNuFQapZ+GwYnZNQ154p1s5+tD27oipLkJziELTwr5qLPY+Auw3ZzwjC4KigU853cKTDeLbtNyEu0lDJv+ax51tJvv1djdmlQ6Jof2X1jMsJZlpm+SiiUgOSnVlHZYlJrcsBYklQgMAYk5cyU0qCIEDVbuOysgvbMeyro1He9RHt2zYkZcZIgW0pwoKx2qwg/HnJr+KJtICY0WqYuNNNaq/oVpZJtk0eCXjOsqGTFygs5JzJHYb8Itq9roPfDVxhpaAYscWEMQbXmuJjwS6UFZc4cuc4CNWwtBBkQBLEv5NDywkr79/uF9HpuQFu7sWCaWYwBPY9vS7+UWHc5qj+0MYfK1iEvnQisZqQuu41LCkJceW8lJWyDbdFDs3VQJrqlyCIlzo0HfCNA5m4QUWU8AcRY1WeIp8hlXjNlkG/6Hudw9RK48rSvx2pYsR44NETa5f0zVuhNicwjrLLlEDlLRr9HPkRvd1yFjYVbzH7r3vBm8d12Iqj8e3CNvzBmLX1ASMROTsrOKHYzkwTY4Va3PDXCuW+DTHDSMBb64Svlix5gCia6+E5iOPOQZ/ViXG8zgn1BCan7EAVaxRrJPHp0En6E5Jq/ZSa8JvzrW6Wu2aaxM5Z7RVWsDu9Fz+HibDvc1H56zxU60Ws3Bkn0H7PaWuIhgSkJN+e67ioGWLMkNHKtbBHdG8xVy9tSIqEyvYY4zl6NZabTMDvAuRQM+GHSc9v1dPz0LL69SUyWvP0voI/Py/Z9jSTxdFsLfeoDXOksTE6W5OVM53/CSQPSMIrGj8Uj0rAc1VA3leJuUu+IXe/MdMwu3VEqj6onekSEst2eQf3WfHJ3p6ls8vqBXCbbsegLm2dAtPoEpBqBFnhT3IIFGBoxFiSjt6QKUmp4jPTOFZi6Is7CzPbvywY2uJBp2j0G1XxQfcvaOCNOtFS85Um4+Y3MYbB5kT9g4fPumEYIiv/ER7RquIPrdgIKzyHHjPYUSSNIE6crhptEJO4UxffgcyiBX/a3T6I74JVNxh0a5B7Hnw7eDSv4UJXtwMr2RzzQRXYVZaw0DC8OUIfWYMnZvF6/pbx4PhspYkL0F55RHxi4p8N/jtVPYi1kQqKNcUDSuqqf/f4Qz5N7nttNptDVu6Jzalio0DRIDt/PtdyyUNcPMD+T5ypUHnK1hf/Q3a5UrA/HWu17oMd13Uu+x0z+Ap45wQHSG+/VQQpRP1aH3KCJzBXUh3/KE4JqWtJT1z94ozX2Hv3cA8PGsDVamWdqfsraNpiEkbbhG02JB41Y24puoaxOHYvZs+I2yomi1YIAYUji4xD6A5+DN8HHRUl/g0OIu6PVKTV+i8ekfwfZTivBkOZ/RVgut8DnkcQI47w22gmc0T3G4gx+8ALxGqDeFO5yerslJCgRcT+23GhRRP677PvinDhzjmMF2/I6nX+Ixlrse6d/aGcojV46DQnekYakkZB5YIuT3ITdPSFxMgQ1uU0uru/a2TiCGZ9i4NUnfWi9XZDxuw0cZIpiOSIPjD5LB0KVPw7sbLwkHx8Eq+DgYtIwYqrxD3Iyiwek6KCjdosm7IutwsYUea+DfyGpEE/+v3jwd6FzNHfoMKS4vSNym7EH9YliIgcEOCI8Ors+qFaaHsnGqVeVHS3QtZ8Jp1cTTauTdsOMXGftjASm3eDkTguz+iDFSdp09OIB3R2Ix+bCKBpXAKXcFiRLTHyDMWd3IazNSXiFIcnjmUDhTGYHmnf91/2QAn92MP5INKbcgT6y9Ee1QcWXLISMXGMPqWnRFAAvbD97fK44DsDNu83p9ZfFBLL/uGKol5K5CKqX30qaQwfl5FSBjxX9idjztcNs03db+PsrAwfq9PwIjGKKxRjOoipHT4GwjpUzH8g9pVrMW0R8FKXImhZkAhnSM3QFT4gvg13kCPJJsPXCqhUYgZN30HI62t2LCFf0EK3eIYh30DJkW6j9K7EJeoYF3AQ9OhqBkUCOgIoIyCTMF18Y3AWkLkJNPQVpfsMe05kB8dG7UEgK+tU9s6HyIkQnm4xv3mcM2yUnR4uvCWuZc7BZYu2Uj7MklIVh8lmnw7DFr7kV3Wy3T0j/b7ykw8K+4BdsMokObO3xPCCGbT7Luq84lSHtM9UUWgBQTV9EvcJ7F5r1X1W/J2ms9OVXncSHuB3OlBkTUkUo2BOEDGbawezMs09TfdxP8CGWBasxXDrZbNoAz+DDJWRvuQp4QWQKo0ipLjudtPID0rOrBw3XCgO68JZXx5ABfB/1BofOcQrHeheWq+zmK5kj4U1Ls80isLHEVKj5umQ5NjaqNVA1n0K6cf+Dr0Ri6Udi80kQ3n/ELudNTpM7AFzVNL8qaNzlQaZnQQq5UUNIqsNqOLrxLGqAEb2vFjeYErIbpxATTAOHrjr23o99eGtjJXdfrSdLxa5cFROHQQst08G4EM4giu6k5ba5gG2GRtsCnDRtJ1KWUWh8vGtECnScdVaiMzMuHEm7tRV/xLWzBnbDFDpIhDpbwo466BEnLrOOZ61lIa0nx7m4PzeSGCUpooAWUtoPD+D8EjEvDRos7E7NBOJgJbClHzph+d2D4Tm1Pkwxngp/esNWYyQE7LcxyE7FdulsZ5LPpbMGT5TypABnhqYHCPBLu/ZCatl/qj64n+yFGs4B7WgL6A5DN3lMc6gUF5aLBWqs2pfNijjOkoG/l0heC6KxpDrrRWsxO9Tqh7HMyXO0PhMXoniRayVr+k/1ms0/Q9qBO3NQrEbyqJldoPXdaaZAzjo84OemOrT9C09NhUA0J7MDgsJ0qLi2ITg4is/7u/cCwUlCprKjbR9WuhUOARFJePwZpD+6Z9NdIBpNi/YUqNWtQt41XvPJbhvGQFk/qGczB5CO9QanXTS+Tid6IjhPu0z0yWGeqWFJRo4zlXF/TaF6mrNHlaca3B2ZZ1PKWlPdYDylHOCRp4HpDDkpFi0RfgxipgWHZDBRNZkwdZkh+GD75mP1J0d05pkR/50dJ+AL84MhM2ydGVnxth0i2JhMRv606r4SuJf2Hic2C6bV4Q/qVBqKiTiQmiMrb+P4tH3uagLrUdMBOCEeZN21KUDsNXEkuASBx8zSdJ08z6+H9lpOHmPykKo5IZTIAO1BYII4tTAbta9akYdowy2IIbmbMf7zg/OctOyySKpKYEh6dhSnsgkMkvnhx3W/a8m+IqPxVemNRXbHzp9ebeS5TgfHL6ySLlcVdqEpGt/Ql6SDeRWs9TcJl423lAVjU/2glnuLZvqbnAvxRmU/GpGC+4vqJpMR6wHexzCyXpCKhKNz/rI4FS0SzEKdq6FZoX97rZZQqQhtj0o5wNGMS4wcDzuQlJl8j+A2pfpfW0K+hVHln2lGfuqQUsNEun67Uxi0MLv/KHOoARAp7wcs7xB+5FW9J+lLAIYQjcX5Tt4MI+tXYo+4Qte57SDBmFhtATBvG9H4eezlaYmUr3qy4zclmCFciiBXBRbum0RpO5vt5cPl3qnMWxgVTqFHnwfpb6fU9j1ApF/g6fdmm9B1MalVrYei0Cc7lPTpoNU3FpXLQrKQRuZaTOftSWZFMnXpVSXZDbmr8ahc6LY+3XAlq+EqiHeQzZvay4AFYZE+0l7kqqME7ecLNl4SikHxfdLwQgoBtglgCmdnaKcbUV/PKsV3VcB4zCOeB0S8ecL4Z2UiHkz8ssVIBZAC9QDuMPqGWOSMcLAeTOc3I+Rcxxz8w==
Variant 1
DifficultyLevel
652
Question
Charli solved the following equation:
3x + 8 = 15
Which of the following could be two lines of her solution?
Worked Solution
|
|
3x + 8 |
= 15 |
3x |
= 7 |
x |
= 37 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Charli solved the following equation:
$3\large x$ + 8 = 15
Which of the following could be two lines of her solution? |
workedSolution |
| | |
| -------------: | ---------- |
| $3\large x$ + 8 | \= 15 |
| $3\large x$ | \= 7 |
| $\large x$| \= $\dfrac{7}{3}$ |
|
correctAnswer |
| | |
| ------------: | ---------- |
| $3\large x$ | \= 7 |
| $\large x$ | \= $\dfrac{7}{3}$ |
|
Answers
Is Correct? | Answer |
x |
|
|
3x |
= 23 |
x |
= 323 |
|
x |
|
|
3x |
= 23 |
x |
= 323 |
|
x |
|
|
3x |
= 7 |
x |
= 73 |
|
✓ |
|
|
3x |
= 7 |
x |
= 37 |
|
U2FsdGVkX19DsV2UudutRmGLKzGO9r9zLRFMNUfSdDKXjV6isaOudWrMmwcqa3E4bMEm+qdCm4g4K4EkoY9nyI00OetvD1bA9NHb2TvysP28snWnLScyEu1PnoHvaW6bCoLPN3HUmyYiEMDUp/9Lc9PZKikm9Sy9oTNyLFUxp9b+QUYvAty3vbnvfTf20PWB7DVOCOfA5+0MI+boh7XOlovOj+LVcSj+9JE8lLAKzMnb5sRtf+Rqf2fm5uaKyJQG5j3WCMApi9k7knP2MQ1tY2MSPtGsRxarNxPVbamNYusqM2dNTNfjRSQvSN18Dky1R0muKP1hyBBNQ6ROUEaivP0vdsfiUF9cD29JBIpDwZoLHmEvhsHoUQIye2y71qeX8XtTs29/xogRrQll60En+PK5N1hArWqdqeXFFi3aKF5tHFdpdNKXRFvpkJKlSf8RylnbeGPHW2vkxieqoF9Cyj3AfYm7R2NBlt30eyuALpWniC5v56YZObbnCj1hYbPj8Ei/0stbTzb3tudnHWYPYrhwHAlltqaoZCzSI7JNLCex0YqsbTv7LhxY0lyOCMoxZjdDLPzIXFnXfHddxG1VvmoorAjr/hgNYs45yzVzKOcC2Z8i4CVdoWS+Y63/IlsrEEqdU4kJC2X0PaLbw8W0UF9TKadfFlCsuuVxZikrHmMBwDxrYNMnC9zONUiqEWV6e4sbLaz1F/IGkGp21jdIy9sUXWUUnA3Gtt1G2KHcERSU1SlGqiTR8fUeht0e6YDUEdxH2uvgnsHpN1XPqPMtKFqBD6OitZTQeTlS3xBYcABIa/DuaSO+lTXHA3Z3ZpA46fXCTAQuVtcX3jHKWXxlrp89tvLBsZ/WJSWebQinbMhdqXg+ZH1ofF5M5cHrDbzpQO6iF6VezU4V1DIePQI6CBmjNezwaLL3U2rOGy3XI3HJdR61UyO7N+Bkicr4bq9xrHroU1hpWuhhslcTjEVv8qAoQO57WmNhYODyvZ74zIiJSDyS1a0kQDJKVzWb99oIgYmln945CPUpRrKqyyGVxmnPpT7LL7BRp97r8iJ0/6Q2P89LmKtBAjwYDNf/irGmYmXjXZiz5g4MaL0hGVvmK/RwYHb5tkll8DXH3Ok5RXNgVlOrtYMYv7xJF612bmESMR1EP/nssm8aYTwR744Bat3OJGeSmBJxTClx46hkuhy1joTZGttFQrFdJ5oeZk5IG+UQuadbsNZ67Kw6S56IGUxHzuDBFoS5yid5IwxWNETLC09tzlAXD+yXosFEFFzzIo2OmSNr5kuz2Yiqs94OypOlFh5C2S+hNcsd8IpmGXJ0n9NYOYq7WYbz01UZa+GtaBjGsADDOXC8fPgX7wjSE9Em6m+MAKBrp+jgiS8ybTt4Prqux9qhO05zKPGlBUvsQBoHaLgdSshdGufP8jBUMkv6FXmY7FaEMnpL9IQY52eAsri5yl5s94DhhPJnAFV0lSDil/cB5vCNnRPjHXDTj7wUXklVv84DivjKWyJ9GZTgbZRb5kzRT6xnOsOTcPwZoED41/TFjyAIeWtWt+48VMf3KFOkExavIl/yHzL1qJKrlsUsTIw2xaqU1anoYrgNLEcytW0124Bx/rbqCKV+HLC4SqLO5D0y6rCyKEaFPy6CUVvxFb0nnH0v5Q5c0bpmPoZsud0OZZZCDMie4YDxsn4Xjpw5IIFc3WxUUWprPnvZhdS6myJrS3i7JU+GRo7DKNgv1f53a8YuDbAlUm3hymrry3ADRT3DRjGxrPyFQz/5kakbZ7UryNThj9y/8iaYo+cDvNByIQWR7SqyTWblOgAscBPVLN1mZHeBDhqya5p1IaUYBGSOBJYUmyL9/cgAQkrQYraAi9DeYzv9J2wT0/u+Ea6MlvkbhzzgC6I9BteZr0TNEHVzmZhXHhK5u8b9o+nT/idN78SG0cO3Uvoe/uKK2olAhyQxbLSXV1mrPNnLUSY4qVkkL9zHVpqbtvNuw1RWiY95lzJX+p24Cx1BblcWJ2Q+lFnWjRwgTFTDTMLcTvAuTpwAG4aPzyPJENXJyhhHbuQxyKW/ymnHNP8DVSQSXsIy/64Fo65SK8S9ol3JOVd6dZG36fHmc9xgLbp9wCoo1w1+sYKVsBf5e/fgQrw1Z6fdqAo5tXUPBlx5x68b3VpERo3c9odzZL5UIGoTDIHYiS4C3agzHfTc/ZQRmyF0hJkpGPbYM+jctLUrqvrUQYmNYJuU4T8kFVnrhMeqM4RNM5fcTnQfXAk5s2opavdtM/A8tQ4nl7Ioy70RIIbFaUitaluSOPj6bai8ljl/ZDhJlIFyewkfA6eCUErzsg8dm7uk4pWkZEIclq6tIhr6OVjt8e22hVZnLfJGdU4Lc7wse0ptqv5i1Vv0kotFfPjWLMmCd1gPJTco6EXbIYwLC8q84FuFQE0Glxp86UviTp9bZNuSlKPkiA9YbV9eNEKWYl7Rpivw1aB89al8Kx0P4p2S0luix/XlGHcdusegyGugXgN68UPFvO1RO8taQv3xBYUZmU4c4WS/W0uwOgRof9EeVM3K3q9cGQcwr7KEHMfxR+tghlAXMltDZ998YECdiZNsEjQigzBXaHOuCN8eArBl/YLtq3bQqloO9/iUYinAQIkzVfYN8WL0W6L4lqVMR8KPk+k9k25aP0yVVFO4yF52cxL99OU2VUnCQw9X+vT9v+UZKh5CBCxajf8hRHQa1hqeSMWnOJy5O3xaTJmojO86v+T+M4Qr50Mb1LYymlM6EUPltp7mGnK62w9oq3y5PjDKoLaEG9qd2yVP9XiPSPRIeaUYe6RAY/YWesaxsJP+n2A7+6biUbsIq8UcFjyJfKs72Kj1kPgU/QI45D8NtPr+mWgSbym07ADhIi6fx90hqufMn3b6qj/1X0OSRqWt34QRzh6L42iYu+b4srF2tIxumapnCVmeL73UnCtT+URMqywgS745ZRayFlT7R4Hh1Bkoku645zI1uWz7JMzVd90knNeqCxzuUFvkvV1/e8lNW0lYEDHqrRPO3TTO7nGzMjGs9vwzfU4fXWZwGV9KslOsND+BhSl83xwBNW3i9cCuUTamha5SL1ye1mJwMwdwf9u9YDW+b56OpJkIQFOO8NsEqQN5GY7HcqV4ziCqcBQ0+rMM/VqyGHgl/ySBbAeblP/KDxtuH5WjO6kOe9ncbWEnlCRtfcaMLP/22By55acVKAOn1Npn8C2u8M6uwV0Ma2K8kjNcdywCXpAGtCOEg7GMYAKe5f4KRBzrsTTtvKwJsUAeqywX2BTYBCFJs547bBj17+D7q83c7TeZx4BtijMn4hjiORS349E/ajab9JHqNVbZRFbshZBiXfwdyi/ZjOhrrv5Q0PjPRVy8c9/KEvhGEk+Uf/DAZbHXzaWWL5Z0Go+Ezes+wMWs7+3vIrEAd3mWfmeSZ4S7YIrtv9ivGU3JYGmimh1XWTOD2sIQP5mI1j0omzyu/MVO8/rlKQQdiyZC+2rMQeejnYcK78GS/RV1EmqNVRrDH245RbWJDI1GbeZWqYf6+Y/ncRpDGX/19VSxc8WQKprcPRuAE3J8FNk+gBeTcDuQ2jn7K7utqrAQo6q2hJdJZCDxaOPPnD7Ub0MkxSBZi3IDhYfn5J2k3L0ztKv8JcUYgSBSlmRJm09otsElZ2rn3fv27uKTM24nL/8+gAMINWlptsD+SRZXj4ANXKYWNfY1ubHvzoVd19A/ska29jzVXX/kGatbKUzlzRdCiEt6kOpa2bAo4dPXORugPVGmfP17tUlSczHaObxarwtS3AWCY/33P9W1fKVRVvLFTjfOKdM0i9CYiT3mPRrNJ/toQ+s2SkRiRQ0wRbN969tz1t0MdjFnCS3V/aIu+F1E8XCXdvUlIuTFGLQ9oiBSWFSXeT7xA3yT49xxIoRuRuBewcsgwmE8QIZUpQM7T4R6GozR7O/T2ykz2E4TeafXUGbSM4UBC01aQ9/mKpA0XQfU79ie4pNVHnHbU1QgGFIgjoBHzxxHTHB+VMDaZffpx6OsEXw0rjmjIqzT8Je6WYPZ8yBY++UYGzMqiV5HBF0q7WfB6SeL9wqkW694SQBQ+GuG0d463W9CKeJhBT4QA3MKMn3Ln1hR03WSLO2wb8fcVbxlKyeVqkbddS1AozsdmDyogSSw94zvP4xLHbHl3uY2cwJhfnHpelgvICdEkSjSKt7CQUDUFRNdYyAy+Utd4dvFQJJD5li2UitMOZhYR/SJYMva8bUv8o4jgbccwd348LXc01BdtoRsI1kntzp0SOjEGA0zDgjE1SvoIP2KquvhWV3OaYNfWhfmYZZIR/bwllvKRtxOQZECIlI2cZZw1JM7EvtwG55tX2c9BIknUIedhEimRcs/6XGssbFmjBXxG1Bo7VdU83/Lsw4b6eLl/c4W+BlWiup7sJrNvOfWxoDyrsn9cDcTiQocYQZckEpEJSECDhv3anJTy9pNTkZtl/T1nIU28SwRt5EkuNq2qkX5wc1LpJFdwqJu82qZZ3Kx5UAeJw5e/nBKxsXvbkNziTc+27K5Ex7rggkVo8Yhk17t0+XTqZCJ5tC5j3frFAZAMTNMx2fkLSt99bDKy1lU2YkB3UsJolUvWpx6t8IIbQdcuud3wrxPOrKqjd50MwzBcrraTKRXHAu8wazwcOFi5K4/7MKi8wMNM5jmpRIxTwSg8HEteVhYc8hIkBAj1kqWjvtrLDZqmnVK9oZxiWouTZ+Do4MH6u6hR6MUGoMxEl0pvo9bev5wvAD9pemXBGDDPFghRoXnGAmYxfzom1zmgPrfy2EIfwlGCIjR6nc2SnpuoGRA5gB6RpPCu3gQnm/1Lmz+jYL5UUZCR/yHoNCVbfF+ZA93/98Aem4n7MuVveVc5oM5ISOeGCcdvMmGHIVIuKCrfZ7x08syrkehL966XSPs0bDByj7WWoOLLxGh0CjQde/diRmS7n+AjxEsxA9pYBZTFDpOes5cXrDUdyUQwFFCynilRn+nJzuxvkE5xQOFaZuHQKoAdiFn1BGDtXeLRL9o9xACkLtu6v+kkofs/q3F2HAJTcd+DzscLcsVG/PXvowBZspNWi6NG2BzlHTSSQke2i1kZZGW73jR/ONrcQSnbsCy5I3feF81WsucsctaC8D3CaIk0EIlEAc0BX1ziubgv9GRcrgSt+iYa5L2DRUHhXL5/vLK6RnIXslfwSVkl3FzsPYlbYIlF8qEUFgzet4I4ddnZ8GrkaaukYKiu1qaN0Dc/YSoC48ZcQ+eHGCG1QckdTmJh0fycJ6dsKKBWNjIdqV+sRpdexDB4hLrZ2z4Q68CUVUJPQRtuGScYNgJ0vOnbCFjWv/rZaK+9Ya8hz+oyggPeQY0vBhFwHbVmWgc4q7yWAmfN2bwF9Eo5HiKbii1a0ukqANjZ5HLLqFnaroAoCusb55kIACM0b3HoJatrbCJFrHsC4jfleG2mM9Ge1OUQcYlmxzJdVm0QO4YsCYW3nlfrfqufwvlpqP9RoHXCF1FH/pF5KYToxw6FIxT95934mNJKh1RC8Y8gjp0P2PqQN4qGo90zCd6lIXM4Um8OPwsK9B1iMbfHvpFcofBN4naZpe8nMgy+7NW7xtzMYiYHOyhYkGoS/bFPoUeCkg8xaBgycyvnO7CSjV7V/3UHCWycoPcHzzwTYpc9z+7QiYlD5fU9zLtMzGr185IBnSs+9W9ggN8T5OBO4xpNE3kIMHJp4HLhbTUqalyXuKx2LNxO7hfiXuOBp6YiC4VrN0Oqbuw1veYq9GJ4AA01+ilh8B9/CmEuVwlNGLSOaFVdn94uls+5cuJkqP027PuqRT7LDOYMAxJfQQna+r1dlz2FzCWGwIjIyzwkLLg1vnZNEWqCAba+FgDOdbfbEfarmJ7sfIXQWzm0cKGp3+i/9gp9oEeHwoh78xJTwY5nSub7zh+74u6J+9V7Fuom6yaqK8/iDEeEeOzw/93mDwWMxNWglowkTVfoxm7ECh4GyOuTdC09owuVZrqe6KJ1FHi+bFdY8NSHlRNNUFWXPamE8Da8zyT+65KnGekvCF6UwBDU5rfPFktiWZ5RBPrSLuSNSmW8WK+80Jp9Use94bSoNWhKZhVq/BVNfLgTLCru4DysmHhhNMkHcSSA/udJsY7VORbqcw5SSDAgjvnBhp471GZs6zmZqWGhwf11nwMgl2ZusEdrKkthFhszYIFVbEbsO9Ey9Wd/52Uw8uBB9VjPxrkM1cY7MN8K77kP9DlW3rblH+WJThFWQysB8bsaOC7z/6gsIKa5lEhLz5GeCtaoiU+E2kSjHKlQbh0hyM0d1PXoczq9Aev9WuRnGCMP7V2CSKwPH/e8PVIik2VtZWrlKutfJvYsDui/rB+LGV48I2YPMdGIz7q9Qh1VLFKSiJjudW49XylOoAn65r3ZfwLbaH+mQKNKx4+xcp9gv+oE+aYhdozyBQMl5spvbxuzucsWqPsuTFRuQhHp5faNgMG8fPCTBTp6tXuONcCcXtI3jrt/KcniAT/odGCXIV/ILjwgw4ACGCUQNFjCwGFxz0x/f8YvGmMFb/CdJPz8B6Y4/gKzbq5FijLUKlfUbxWpyN/n/aqCQQD1hVJlHcbAgm5k0N3qnhbRlV8X9hBqr3lOjQSJYd5s5IhK2nm8Q4VAeFgRrtGL0EAg8dAEfu4fLfAdYOKTHE9tyVqGH0CDBqs6IXsVpb5WWWleavQfnxMq8QQT4dCdPoZp0Ud4B5AoOLkOUQYCpupcNWj8xo3TN8QPuFuxq5plFS4eAgb8uIyr+zzoDkTIFKcFZIAmm9ocJRTtgr5h6mUmhZQFAOKwZMD9PQ7VrMmQLUAAgGiJyKjLYLg2tDrORsHCr9WCwLqbyawfkNE12AG7joUaA8243684ZKKmxB3PnaMGZt1MvhRBnZN7rW2Lg2Z0eziCMJt86wkCr0YtUzmlPPXwDQy0iZNbBTfOV43x70P5SZLEVfrNUuTolX4b2k79x5POYBjnuC496lDCWEXi8HphNb/2nF+UKXkG2P4h0mswH7K2+nct901ByVC2PTy4w92hguj16uTfS04ZFLp/aZjfIho2CahJiqibcCxALf0C430/3PysP16sY4lvl51huh+bUfUDpoeuePDA6tEbcCKGq0rygbp1T60mWgcCa5gTY7Zcmxfn3//xsQ7U6LEutpCTVS9kStC7A9yNX5BFOxOhL2lQV+5IgLSUGNMFfZ4El2+f7cBkPWZ2HfB8QpukaCWBU1IAqk56TwcOzAViqrsXkZRSUnuQS8MtXizk6lucHEBOPFKh/1M7eRCsOXgy+BJ2yE1LiZhQ1D81Vlvp7p3Z9/W0O7khULTCBqVDFIf7Mo1pSP8Zt1HlAMUcZxn02AK7fgaYhMSQpxfnFfixCFTu39FQl3SSJuM7HEn1y3TjtnPUIttrKhMdF1KIRAe3f/RZUoLt1/KdC25sSUyOckca06UdHtzdmECT2JBPI9sQhkB8MJWhbHq0zlZgSl4zJVWjZoyX+QHbugyax9Tw3HfD4+Bd9ULLzcJG+/CLbaT+NwGCmXfQzkFGlPhMpSArijCcFYqokhfkF0v1CqiRI1cvJQjTaA06cDbhmajUoGWVoB84yT3WG08jf6ZOR5qQ751m8vrea+36jKCs3xnvxhCKNA7bWis8zNnZCNCHUHqiierG7mW22Sh6l8IupTCxKHlMB+LUqRSx3OEOHHlFPOPqNKFIoKlIKcAGpDzPWPZaGn9EHLpOUZ9bfklDkO9n7jGBihvo0/A0B/E+0DCM9x6CSQf9QfX87vDPmaAhnwMTSJpsYNYydAYg2aiAQqzkAWXoVY8RE4kzETa2ZdO9fyJLfAGHlPg0dQK3S6PScSxMWGQRAKHEZ/HXDmXN09ehd+DX6o+LCtcwALx6bwTb4zH8EBRyIvqyRXTGU5/ZWXFK7Y9UOC+3xnuUrtE2RUxtPapApuMKDtEssU7MAyNFVYX9P12Moj6zfmsp6Pg+m/QtXksaXHUl/tWN1DpNE9onyUxSG2TgWsEnQgY9f6TMWWBR3eHyQhPH0+Dx0GGZPoy9VdEKzgtGgdowDYvRPyUT6beelQTywqDJLK8Dxa3E2WsQ9cFztXV4+VBSSl2HmYkURGoxEYZenzsMErjUJyYIs4fu33LbB6auGV/E4hj6378aKU/0FGowk8nMXFJJQ4DaLtKMoRH4qUiNNlOMrzqyp5A+iN6J/9SnTcZOzPYmGbJ3GROorhxuYla1atbyQHmFNyS/VfBNP25R4a0udCwFW9XlPn8HHBpuWbj+EIOahfTH4VE9NUeYaudqFUWrjxgQaZVTEd1gv7M0ZqEb1DBR8e7VvRrHpUUTMt6EEBJjaYA3N0y1TvL06vDVKrv1+abZ1cCS96nM1qZSz0+a0lpu2F/5xCihVMJUTpV9p+OYqeNQQe8VRJh/rHDFhdDLRULun6yL1EDIuHHOu0bYMWYLZMZppPun6sOyqh2IrvU77+1BjteVoKp3PwV/d83Dj3DDNUjb+cynh3TKvQIJyIM6oQ9v9CxCdhXi2tu+j9gcNKshMqlYkuVLEFXNG9QHS7OAsRM51tZgAiNAlfF55l4fsjRi1Mkaxsi8JkH34DeYgqhVX4z6AqJEqGlnxyAu7G1bJbX0B13EdEbycdz3TpxrF4HwqJc+JbflbUlROU0hkbKDyNGbE7krwiWtqBlHQXRkOWymVYZOWjq79edfHFZyKIwLip14055/F6qmCPIJVQ5QIY265+fBD/EJOj7TEsSrQsYE7taJKja1uHZKJnKvQlflRZRArhotHsBuaCbOEnbFwUm/Y++5N1mXxTlP5kBsbECJmzoQwtXPPSeY1L35bZTsYTzlZgdxAgMW1woflldecgMqkgoZWmw0uu8y+iIiVuFY4anWMEehR3NDt5dN3B49Icwjs+PZ6PcK0m+5IrMi4Dr4ruJOc6yxpbMpWfgQHtcsi1Y3wrYtVsxW6pRuFG25KpYuqaqqGMiLb5ycSL7Ujt0UxuSgwAmwhZ0e3JcmbiRHkdcoCSDus7IMyQgv5R5UfDzL/DSGEkWs986YcWY1cr+/msePdrAbyJcG8h9YfcFRzZ0Gw7xCAUOeuGAtjouZLpIUY7BAJHgAaN/BgsWLmq8ONcBlrq+5DHc03MkFVmmzDQ8IFRsYboOVpEGoKOiXMU4LJW+5fJtNYcTPmYUkZAwnM/G+aSoPNz3YkiMdRJWBpLvHmPzTgQcZvb4DihyO4c/fVOcWho89/9Dfww7GrP21Em16z/vqChNayy1zgXlzGbmshwmZDa6IqAprk5xff2wszrD+ek4diy4kUwqL/l/jN2Xw+LdGh8uCW20VHZH/8PYUZkuRVcnZ4E1m2Pu7HtNpWb6ZCqamtDP4g2mAwjracjIpGp4aySi/j36OG1stKo/8oMf/wuIeKpPAqpee1+wYgWoykQCbbKaD3ig5+tWHGVEnTIT00luJfzRTaHbvGHqy6DOAmBAGv34RZrb16HLWs/zXw2adeB7euTNwqiq7TWyKHuHjLk5TiOOUAsDY2VETYE2XohxRt1lTz4TsH+W5W3FQid3S/jy676onQO1KWduzjZhN3QH2HG99gFgNG0QiNf7dw5YFvX0FsHDOp73LdcHhGdY2mxm+WmcWTAA2fKRiwpnERrGYALy0Jp2PE4GIeKgnneF91M2tvMj3yMl5gzwffEjp0plKLlGaJbdyQ6f8yfZETJqhu2gZjID4IJVjR4R0vzKYaxxYFmYCLGFCgZjRSvrFLuA0NpZSVPPX6tr40yIITWg3OIvp0sxFqH44ullEi8MgIJZErz4P/Vku7qCFAgTjKv2X43e7osbC6hMUm+DJsTUr1en5meJVixhKClm03lYt5Iim16g9LLUGcwxb+WXWDQyiY7PqA2Wjmoq1PMNdvU0xO9kDPE1n4oR/oa+JM1kcXZBkNRzFkWngdGRvoJJCUR5cMUmuPsZaotsASFZJbng43sqzeKI9berS3OB8ZxMTO7xt3rf9Owg+DcYwe9vU7vLvGc0EMUArIZSUfgoIyzW/IpaZOTuLSEdvCxjbvyQLyVe4Ua2S+XMVbSODJ9d7PF2e//JkXI14+VdD/0LsOr0gl/CHHvblFE01YvYgy1v0F+u1AV25HFtXChL54hUr2nDG21MYb6dBUlcZR5bffgwK9FC4wtaWFqZYgHR4EqpYkrW4fOyTMYOHZkyWrjlI5IdaunyX6fpOQ3ObtnzaeX5PLI1pwRfMCurpaSiCthUsvIZTgOfprtZBNr6ZjIkehN+Moww/ZrheQXJit1FzO+k0bAs3sTLlg5vnHBwt5fm7kyDx3Jrv1j2qHKClteV6sDpedmdf2D9qg04oq7DyWDA+haaxaOZhLOm1DsI5DOFgGWjiAJR/P51uXRIV7nEc3n1c1kVdxmgnJIpEkI5LQ7CEKJ+oi+XhM66DnTGTAYZf5RcmRmsx/gMqWjZ1STNmHuCfu4iYhfNec+KIIy2KHuBjdM8KWPFDoJgj4H1X7dUcEm/Wvn1fn18TYEiJuwnhGd5zMm6bMbpzQs/ubpiaz+XtEfjRAYwjrjv+V63Kf5VVGW4k36s0s2WvvIQWxHsX6OaPIzoUBiC8AMrD3mOGpRPq5IrXi9jZFUp7ITWdZH6bgXWSrHfBJXBE6HZCJpcFWX5lRq++FAPtjHhBKmZFBsO8OYF05WTQff6nDk6vLWWgn1N21rMK8FoV076axDXPqpYAYPe0vtQcFoCoUNaraKG4++UhYXAcuoHEtvHzalBENBE3uVYFeghE/1hfyWI2qV4jujAzuxqP4mz6gMb+iSekII/v+NzW2Yc9ppVWsBO0VwxnZaWZq4PYLQVFVxlpE9BCnpJsnpf5xOt0Z9AfGRbgwK7k7J9tpM5DMdDFVnCAFhgimpcc02GIFx56BdypuqjRUOOPsSkJ0upfolT7djOQwAtuW/7lvfsX9YngJlepc01GcsuuWrno+SmO5Qa3UJvi03d3/Blsonh4NrilPo6DPX6hEsPKGkY4vEuBB3eLFkmuu6nnWGSDCFHRFb+bFb7wFTIoHARFhm0yxag1g1FC5cP0qmz/0Cxfg+lasEWkaaQBMxeKmeIEitrL9w3/tIR6G/5NmpZbL9s4dk6e8aUziy1+EKUeCAG517RHEw5w1BHMKs5VOap+sXZh1N3560+LcBdrVV1lRcLNsqQ731NIsj0GY4arfi69tLGuZ2j43uh4blSrI/r8XUHskef8eLL6WSZwCNFoCcDvFYbkGyMgMt6qc51N5T2uOZl3A5SNw4l/5JFJg82ld80bNBnaevM7OBL0cxqlv6HT8GxqIcd1GFm/7ic47xQmYBMUIJmeXNZVvitWCHhRpZqAa93XGr0C2NuOPxIWoGuiT+jP42cuj+cXcY8208n9aW1pj9j88j3NgJWp2miG+LtRSKi+RiVS9JnpTTK12z+21oKJspGL2WHc+vQH1lvNfPWTF4d+hVOsFa/RVZ7fuLTbWCJkO47ai21wBQTn2uy3TSbLv1PBLIj/02IP2lmO39z5EKVXRsSKMEjURIK7udcBeWzuIiPlXRCYX2il1o/x//H9pIVuI3uTky6a0ViItROF4ib7eiOa2zbGUfRJMl3wJbzJmB+GERufuNG/FqbMMUO5X9lh1iVbTsOAMEyeBlvikzfDeacVnSLwbCLkCGqkbq5tNldFeQBaLMH7Igta51HSrGAJlTdOrz5xTIzKYvhZ7/4pkNdr3eR9XMyJyhJK8qLZj9idCuzlAHsFO2e2yffOfP89/d5nu3XcYKbGq8euOyU/nho+UAr21C3GqHChlApSn1DEoWy9oFZr0qczkYY5635IdiuB02vZKIc9kRiMGvIsLynICGgeyZSlWTBvBV8AATn124oOMd5z1y5aiFACIWuGpmlkDcQjrD6hXGI8Q121wSVhId5VXvPYBC6HPv8xsZexTfTqvReJFTCliEKN82AkbEgZHy4jgH/3A/ePrMjd9RkICx0WzjGCvLD2Od/SOjggKEH69tt4DGQpRABhFB9wiTmIGmEaR063lrDDqAmG7iGeHg+61drU/zv9VIwdifG6yvXMX2vHBEbamGqe3a6xJ+oRKnsVh9hSqq3R0sWASHKuAJ7MHsThQuWtmV6ynUpCzM3IQhb69efpyqeHmhxfeSgvhvRtuUdgC6M5/XZrggKAnv3Xb7AWg0FJv5Wh6LaSG/BRbqpIoGF35gi+IvwXIUDo5hl7aHWdSeo0KMJu3+Ptv90PxqajOEarExTMsm1brrmSde9rdTbDvdQLPCW6xnMQrAr/xNUOSSXsALuhigvPS8vwScFeEX9oww7s1IgD0XhIRB8bmXKKb3a5ESMkYpeMgscJf7eNRcdszeqv2dqgyuNeA0EE8+iil+XTPRDTmwhWGUXK9t0B1CmRN67F9t02WQVAjJ1PSHqsSDpKzc5gJ9N90YITleplvUerWy+qYPMu3+EobLH7Iq612hpnol7zy3kqJWqS9yZyHqzqD4YFlzQnMtNwBb6YmAPoJvIl+9QSznmwrFJk0Kvf+0H0VBTMGj346no3RHl1G3tMtb7Lv0CEUTpAjakpl+MCAzTcuQ5iMVIdyI5yl7BCFr9+wu61hKMNxpF0/+pX1q5DPbUUxLAoa0uZDW6RRgurROr8NsaWMVVL3d0tRstjxkpceIjIPTeFmJ4b4/o+vfWHXc2sra7gdyb586N/JTkGLQYPdQRNjwknih6zfkJUjjhMKEiv+cZLxeA7+rrE6CPB7oPXKHo4m6JWUNcba7SH8KPsTBbIaXDNxbW+G0iKk+iRgVvXyAdhoURJX3hIGKWHoL8p4UHgSwZboFsRbGs5tqK74VIVeJf/YAu0cZhQui+vXyFuAA94wb4gxN3qhN6h/ve6H5zvaPZEXTMO2lExbuyur3JCpZbNdrYMaknmpD10QFvO7zPtr5fCyZppi5SyKvT5fDNdVBOKhF4ftJgt3K9XhfaVBPWaBIbyNSSIRO4Lky4yp/lMC9zjxb3LbwHGz5R0LDEjA2QDLn86DYjuRhJDAaM1HdVgsEwkjVqR1awsG6+WzXGPy0zFvcxLApydkb81+pRv/kDy9xPGrlviCKuCiZntTMdfvtaSDzR6spii8KWpapRkxQ+vIoHsZk2An1W6/gUv0p4YBHICzaZ3brFVSg/62DU4tIArT4fWThH+OwRTKGUxPxqhhlllzGGo/nnqrNb1yjwklIGxwUTBNFg+PHARYqcNHRuGXUlfvid2lSQIxE74T4THPSLJKVPgt1KDFewZUlCRr1BYnVaDcjMgH34ZRlm7alWSO0Act7FrL3ULUkoOtspwJi0Rc3tq7x3txpnziZwoWu/QuE+AedSnrbWK7U7u9JJ8dGJOwGcoSfwSI3XGybnP/ccUVY+Gdr9Ts4bbq0tWE3XF0/8ilrFk9SsTxiXQpOrUajM/2iqzD/7BQ7G1sBFIYbMpHfm07ViW3fB8zZ3cXCEOIUwzBM7BCmaYn3NWqVXuqA9/SJH6KuU3qdqnaSduICQJNDhaSE4Ye4/XUMd69yLlUU3YVB6CcXNjB/eLNn0sfgS5rmOVhg++ht0EcdfaLSop62OwMKsglAkPi/OB0kx6qCgimI3DzOxWtyGX4DMhmiWdKkjENFbXRHuw1Dj+rkVSmGWZl8BILszFSHM/QzfCk0qXs3XSi3tH/o/1XWh9f+8a0q2M74GUbSpe84+KDODtAAS8VnDtKvgG2kn5Lu0FqhfvnvAv4Llz2tudeWcJOgKjJslVc1OkSNrJiJRnDIIWV5uiCq35Smgjxk7F++946SAh/r0FdIlZmeQlwDEPl0j03/QVgmpFN2t9dF6hnSr4OARVJTpaHr43WG02EuV7wRFCaGjTZSBpPJrTrUylgzglhA2vt1sx5T2TJJPlXsKOeRwR9+5QQbk6yKuhf4dGurv0xo0EzbOpjH0kU229vl/N45VQutuQXnEVIKY1o9cTeR9NFgYhE8K/1poLwA9ZWVfaRBQHwDF3UhoMeU6uMpOuDPbwYBdI0DT/B0xI0Otr4JaBZxQeEsmsp0YPPqG66UtJ/fIVaJSXbwilWpZXgsfpy2Y8e/OrQfJiKibjsTe4kHsQ7+KLesTDxTwxu647Si4ccxLC0YZ5uFA3IbeWayxBH8696+aiHluWvYFbfrv+uq1GCwpWBBb+4jq16aFejaGnAgNjuDmCObWSLeEOO/g8vuoksGUvmBJJr6yEhkHtRCgMb0IRXk/qQvyl51LkjS+PTh877u6Va2oybF8G3ADmNqbLNGoVqV3W6XmLqb3UL3mamlFYfGdV/Bj8HIBOY4pw58YPHLIt4Ui+BnOcnivWXDGVAM5TUaj5OQA3SGHOMJs1d6Mx2xPUBziPzoTDnBlUMC3oBnzMv4l2V7KV6VkZ15bulVhXYYYjgYqDCk9ib/GIlLTP5PWa0522zikuVVqVgid7Db52KHYFnKj3IjXlwOdpq9hjni5URCtjs5bfJvlizSJ0OJc6dpWwy3J2iFGF/qc4lTic7P7bnyxmg40NWn37VkYA5kRSWM7zl4iCg2cYCFlKjW7838kaIzcCzSTYwh2sD3EVXlWjloZxOs89u70E6kssoKK4nsji2qo624mCppXOsVgZ2v1nD0sR8uVXhCFbzmEDTbYC7H6KjyqkhxWlnWsUV9zfcKGYAnHKo6gr9/LkPBUggZ11srvL0zb1wjhOLUkCNjEIlTlJzUyFOEk7sYxtj4BNw28FyALOJ0XgsMRc9CPB1mS+IV3krw80Rkpt6jRHFjr1i8HpQPCmM4IITfCbgK/kfWwQiiXZ5QgdAYmfT8z0BclG2PTsP2MNIL6jgBoSoroMW2P/SuTyxp3m4KCC03juHKKOiWFMmC7S/ESVAH6smRJzjAcA7HiWmhKVKqtTzjkd5kCGvAezjr9hJIYBjM7QYgkeIv8aZPRek8Qecmr51cHXvMml1PmY6SxTDXguDlOEVXEA3RO40mR8DUW2yfifY/V0mEYcty45StVF01f1m9QScBL3nTCXhGEiXcrLsu4e9AbRPUVx7k31NhrkLErrZitBH7HvcVU7aaeuOeeQSfu1+YEARXxHFOBWnvGO5UQ9ZKUUUI/X3wo84H8Y21UaAfkRHJ9cFSd3bWrfIl05PkaVWQQ6A+m/yCl82eVPoGo9HkPN9dAY+CE5pVxRFt3gHWxRKfWwSUX4qBsmUPbcBLxSHUPxpF2OW2WAMxbDV5MDZUo3xUytH8MORZ157EOUDnY3p/ZOgpQfGPEFYoy8u/E15r6WNTLkC69rPMkL2+bLd0Flcbnlg5/FOxAA3eUwGSt1yaQxc/o3nLcE5T1HNStd36bbu0xFo8BBl5wxK2ZmKs4+j/gocNgAuTiJiJt9KS+hGmXub7loTC+z+ROlbBzrqZTUhgyn/n6HEqaLXRec0Wp8Fg0XyP6u9ySDmlJ7l4ffUg7ohqGJ+sN3ugA44+EXGK8ZVFqwp0wc+A4ZOEfAux0Mq/dGC9tEVvrdyTAFzSiFivhXmUAepJdAZFOU2zRf52lCjmwuvgxaP7Be9m6vhkZQocpy9ECfmnakbhhufOmc0soiDTT5nkSeh7veb8pVsvdZhR9oADkjXP6IJZFIbDgldBAITM5R73YlnGtI6J8lGrB50q39JTacGM43dESHseKRgvquxvOsfnMGEOzTbFx8mCFOJo8rBTYx7Yf82sIGCfkwsdQ1zWESMhDz/x5kB9FtTnnwNplbhKj172q+kNfWLc2jNXLRf8t+YNeWyYAtZNewmtUKApaDkT5jJSeiZW36Lu45Awdj/CadGyORYIE/47Or0ABoNlgiuK778cYLWgWFB52TlEYcNp31nxhgtpd3sGYIV+waj29P639NhfzjTZvV3cALKOk8I5LETEqrh7JkV5aHg+kU7gIZnfSF0yompeo2ba7xldL3ZBkxVtJY5BkLsqvwj1nnZdUkO6lgrmvGHuBZAfIxjEBSbpmGR+igB/kcNVJUebuWTIToJe2MbykiORIKohQpcmWjZbaWih/TiLJhkUJcQhvpawE37EY4Oee5GkacT1i5GmNAAWwexI590MBOWma8bvb25Eyb6bUcWaBIdITxhYuDTedMJQ4R/E8KoAnXv1U1AmykHNmhxHIQ6VdBGps3LDVUmol7sgAqYDqd0v5UOKP3qaUJ+J+o8ehEB7E0RNCTKV90YT5AvzlzNAYRBMcBb7igZVKIOdr1+s2XSENLFzRaXvuq+zG5mSnAj3JHrzp5wKGA5OFOMHNL9sj1RGXEImtpCQUR1oCLJ1IFm6PGKGEAD2HzFrXRORab/ymrc2bU8iTM3MjGQznDcd3Oi0ID00CplADaqO3pXqS8QYgYEGVNpd/6VStlNHiVj3Q1cvcG0eYjPVes5QjP0neeK4cODQkjVYvPZkteuw8KXZz9GXxDb9uQXUANJp9slBPBgFt795YDWb5tifWJQer32KJrbAWPrXNRAyyMM/AeqiMrImeGEQIQ7ict8GX3DEOq0zGPrr3th4oi6Im0AEBK+AMiUN0cLj89lHvIjx/f4kbLKRWX9eyk93GC13GWrxgZ6j36x2L3sjRDTWEhnkmA8euSpcYcpC4wSe0iyQCXhOly52SLZbnCYrN/I/sN+Vp0/Nyf6T3QjzRa5m5cT85O+82x3aD/Yeu7bR0uSL3FhpA9JShK6PIhCQWLgwgPczw5hvRv1LfRJN9YKV+u03uyPBVfES2F2TpsmoYwtUH3exCiPMdF2br5o2wMpzoqAMiTc5XWUKS0hXXDR2siWC6+i6Az+Y8mEFAgB6lB75ybUBhLPYnujCOe2tx5p16+EFAOwDnQB6ecpA70I8/UEqXxuE7L0k9vtBsTSRHb8REOkXA8Ya9wzPw/xojOv2zIjJap7DLHto0c7mSHBKa4eM5yw6sL23iH6yUzgqdw228CfZgoQfaVp/CGhTAmrIbU9/CqpIv6/OIJ91pjMlGEvos8ZB52qA0OW/5DRbzm2VrUkQyY+6lTtGvI9h+q0Kd2cIek30ZWEcytHfGHPeuOnVxkFOrPow4/Dr66vPaUmnYJy5Vd8Z8mrldiaecnXJapoovtHtbeHFjcsj3ssSN1iOeiyhV8yInWPCBKceySN/yOx4J7KtaidjTpKP995+mVSU8niztShu0pNBVdmzIZrHYGtscETBJaMYDLiXABwxmaf+LSYOqC/PqOIMaVCCU54HrcdKAoO/oYbsn1o/78rgW8r4pVYAIqCXn/1i2ga9WurX4TDtOnfJ7CXziwYSjU8SYimFcK4JcGm0r+bGIPZ8Awv39lYJ5UX5wOgDEtRhs+7OE0SseJsl44quBSU5S5Oljd552gXztncvm6KBPgz2zXdPTNJI7Vzxke86GTlFaRZcVKbcoQMiNJ8nR0+/gPsMzTDs/TBJNmC5O+fMBvi3yFMI695FSyWl5jOeUQfCFVqsx9FNnTJydiMgjKWRU9CQRLKuYTH/p5BujZdNebkMo/KJl0tzs1h2qMdSOPAUoQaKSsz5Mx7e/dSeSOY64UdDi73buzWs2tNHGXd7qe9HepVSZ5L99/drLw2ScgjMAVg0RCi6FcKJysBW6U27VrNk7B4YA5+bG5rMVIkSkYudQ7AovLBbxRqjPdxsUv7e6uUUdzuN2L8/SRJbsVj4yMFx3iEi9cHX/J7Vsf7CUC9TE3IAmjsCukONhlcZy15J/XAVCvslQuC4tF7SnY81wqdkfzWItmNWMCSNsVrH1qNk+vEKGdkxrgVL9ztmGq+HpAFOgKHv1zRrtt0Iqy1/ne0KtVAs5uhdsMM4AKusNKvC9rgzyDMiguq+NsO9p3XbQjL/1BbpvlOk2At/aZCzeyP3+hqpxNDXCNoHv2JRN4ertbfSCj4n4isGA+mHIC/AiMEGvR3b0AFzxeLu8RSAyMX0su4B2bzLqhY+5oTmLzrBfoNRPEMXf+EPbjayldD/hmDxnknrpsGrEP5D/Sh4tjHH2lFtx3SNkqC2d1FBkf4Bj8OAr7zzuZxlhlZDYiSLUOcTKTgX8aoOarssUkHE9mdEYtXGtMaJjy5AZieFodD3Inly2KGtpMReYXWck4NuwYmvOWV4TkM8d9SdaP0ihtXiLf3CmVnncYFAbQGjZubtEDyFBNMb+e1N9bIfMiCsNfCNbjLvFL6ang0mapvfsxtD2UlpQBGnToKdOkZosYjfQI4OIUMR+FF1uMUIsQKZtPqAlQKM/NkUC/2/WtMFD/HIDCJgvI2FNdIdBHczW0/kDi1Cnq0zY9V1+GrWfk93ZT6RrOUbtt/gNKSnDLJphTHmc3YUcd0nxykPk2n2DfD13sciHILEoXtgG17G299yy5yh40MzMnqqbLEU5GHON7pSqmYtjU0xtmpZhyJC3RKICi5z8C7NKIyQv5nvCh8/RlCrcQX0MLERLdwQsqV+O1jQNg02/hmumKBG0p4uVOTyg3CmUlUzG0thUKgAvjfSU7eKiS6jY0VFmlUZw4WXh1yVBwNTpSa9UV8GLI5nU0iCX5tGLeguFscSGEadFFGNnDU8+RL962suzBVl4DLiMwBCZG7TGpg3sAXE1Cly9RKOQqoWCw/j4n8jraWhXMZAGEVLNyO1jB2ID9sHqMuqBKozAALEW5loYnJgJyTiHHlq5Owx4EBN8cioTPnvHsHlmRbF9Vq1Qvv6aya5UbNDnI88YdQylr+jiMzXXH8EtPJ1nlqNoY6LoBKhY2Y7SgoUFiW+nDCZaocBDTGuyAx4194JZFKKW/Q2ednyykqKMKIZ6dvbHbBv9ZC/MlzdxjT9apaZ+OuxxwDkCzKPiMx2Rn29v7k6REu9g1N83ULEVE9CBTWDgqnuct/3epR/vOeRrdrrI5ydTh05xEqBs4E3FdTzo/UszDtrPNL9C7tLYHrwK6Xnur3HW27iSGC8MQbRGWOlgiwzblPXGEoM96MRFKf6FEssaM8+KdE8z37/mKxEpXGCW7sf17zSDkJeAt++h+5mZq1/dpdTu8PtjWpUWQ48cdE3ov1b28RM2eMnZ+mPun4S1ZwcBcoX5zUo/qMgPubUvcOu0l8SJApU50HRercbga8EOsL77UlY+N/fkruWkfTWGa75//jtnKdjtSzno6O0sA1SE1/BftOZwHnud3TZTRDD7om07YGT0KPLBhYgt9XIPcqSu4tBD5Ueq8mYTwmelUffjN73IYIj4Qi+bkNJa6E8PC8rUwRQwJ3bjJ3diYrEHjg5T5xOi8I82MbjWaucoNE46wPYdNEcee6aVKBcZqeXQvab36UW+syTlQ1RsHlEXp8ROk7vw+d80eQQydzjYzBiYUNq8j9swabS/3hNQTHhq4o7EsvDZ4EQEIRanQBr1QhE+pviyNW1b8T0Lhlj60PZBmX0pB8pMPl7SSY8keul4/eBGBEFqcY6Naxi34a84D/4eaYPkCuCCuGzjmwbWmldU6YQoFgDRCm0KrvspNoCTICCg0C2KBODRByFEZ2lDf205gSynp4IYT8QLnmiULo5oneV1G4lklskFu9BNhh7uIRRw1cgO3wkHZUKcHT2MTcPjNLstgrea5kVrNYG6MTDlgpFN3tq2vcmMGaaC04WTq1yNPOJ3a8Axm30lvxNRGvXdW5Md1+N2AxjKSp0yU7yHWivQBOWFVG9xqgFTTkqEuYBssUOpHfMjQUHdD3LmZ9OZ87NB4/ujcml4+bxpqTp89dKnnVL6c0lThkZplXlOce4hm/j9E/9LSDZaR1nd2pNF1D8aYq2Ll9WSJgeXy2XB4RVGaNc1rk+P/TrlwFmhNH8O+G4KIRFy9d3EAYz46aV+X17A9It7G19kSaK01InSQ3MSm8hQ1wqg9L+HQ5gOcOpwhWSf9XCw/5R6+xoWzA2ONfdKMMBpdiypkQLpyEyDYQl27cNFmYZx74yzYzWPFtOX5UnelocoXg9JpRsshGAp2rAO7T3Rchh/pFvua1vc1UXOMHUMJCAg3BXFEthV9U/bLFnAgXtpg4P17Oa1WXRGOiHgNzF6mVPQvp5g3QVKwP/hrQQNk2kInUMWI3pnDM905E0HWA6QFhODW1BEps68P864f7E+B6gv0Deih2IEoX4CGox7YWe4QL9vJeDwHJi4ImISDMvPyYibGO+QfSLdZT53ARECWXC5m+OqFfGSvfmW8DE/c9vtXK08u4LpKbrMfFe5L9r4PDq8BXLyDc1+Hxp55ahgLFyZDQh2+OTqmoVffOlWYHc6Fsgym3/+ClKMEQaTbUjS9d4uMQ7Ln8utcSjhnmoYs+IgaDQxck2yazUFuUIbVIyEhhseOQAbrsQ5ZYY9ow7szNXX9f5eG9N0BqfFSK1v376UHmUqtcxZN5MF9yx5IjhtYufHqw5enG1g6kHruYk4jp4Dl9lj6kdHjwAi/O9jAq+FX9ooIKZeF/52dQSffRvfcWGh76aDGkpYDHHgivUclZLpjIjUFusolVlval7t/98NHCZEVSdygBPqDX4jIGcKsjflfHqVCl6E8zPJGcvz2EKZa2QmRMXwCwQMfoRQmR6WO0ApiRk6D16wsCnZJyQ/YZ6tDh2spuIh/YTALHQ0jVh4vpuSIptBZDqsuQbOjRSril5tiv8kaqtpC2/zVmaPp5ogehtMbYbT5b90UXO5UYO2jvfZt+KSOY9uc7/CKbPzONN4FxEIHxiIJOqga8WZKO8vjLT0IbSUWzUhl4u87Gm3yc5CdCYgTLWetYX2wiyIX9lNa6OHwRApRKfAdC/gIWt5EsR5WpcxlQ7lBabCw0kbOol+1JyzdMyEG0zUIiClRFz7H8Kx4kFPkP32vKYkdF+MUa2eFqs7B5cqe4AFbgMjQpqypgtFGwC8SWmT9HFZQILJQHHu7/jAxSlAyE1km/2lrbEJ6bQytLRajZNFjY6LBzgg2isuT+AULIRTwOjyWpujPpeoxldFnVFGjPab4V6zUIM5E1m0tO3HYAH2SCXwf/nEgpH/7ROmxgnQ/newlgKEAnkgFjWNDocDZPPv8LvN3z14I1Mb8dO1Tc50VRtxJwdyrEyXHr96xXdoQGMciHk+RcvTSJgiljdX0kf1rGoQJYUOt7UNBcieG5KpcYA+4HJAwN0W6uvsPbU3M7xd5j8xM8ibncQlgTsbclFnNMBk4snJK3x1vh3YXyJJBVLSnJVnNUc+F47i8gDk/Rd+GR/rygDIprYAyTBFu5WqFNkjYwyvdQy51ttTQ25xzi65DLCS/ciquOHJOJWlfIqQhcxhTDSivvNzxOtutApKLs0CfQmSR8hmoVIp+daPkzQsFe2Q+VCzxJlRWxFDFZlHLVr+r46DT3dJfEyAQcd8KaWah8iQlCnX5tzYabfuUVd9u1tkjNHJUl3/TXjsrRngBMs11DiLatW1s+P5Xu8UQqgdFfF+nFj5V1Nj/xcp4WtncnwLNiVR329A6gX1T27Xi6saf9xWAMxJ5WuSXzlAlOQi1sEszUWHDOU1+B/+M/dkDbv4hQAjekI0aWkSBxjqU8oDFA66+y/I882+DQXXEzFQ8A1tEd5c1bdDJnP5QTdktzDfH+TJcZpRUEvuq7V8/8vDh4XWN3QrbuC7LoWSGWX16lRRRIPIJ9kgXtMNQsG0IQhu0rNMNYKIcTOjcughayMjAgyL8ZodKR3g3tBd7BBcwnaCpvizMSP2KtC7MLmk0NaF68NdWOihn8KktmgDIg0zR81A5zRaMbkMxYru5gR8DdLlPubt1Uh6FRQ+/V8x8P6y6kt6GS4VO2Ulkt2bapO0QK4GBJxcOn4r5wge4ipozHn1Qq18pb+xi5BBNLwTAMGLlD1MkO5b8ZXgukyP6sZETL7WpyAjazpvXOrqrxNIEvmbFCb6/vKiz5X5/rGQZJAf7/PGTY93llkCWURFZr2Yo9hzBnmBYgF4dog1No3Y+rUQCToRHJxbXmJc18GEZ7ITBVtUedK7c4ytSRYJnI4CGZ8g+MZRtXMUZErZ00han507GAYxzw0f8s4mWRwbHDATYCZSjnkCEexDnyEL301ACVbgR8r3JecYeT0MK6viigeOBbBa1DtX5QZ+us+QvqyZdeovPoS1rcb2FoakMeXmf1T2+Vmt9MC7qhMLnsmm7x4FreA8t+2rYI5R+VlqwvPdlI1gNPkGmrO5ZE2xrXyqz98y1NOlaV5Ppu8zWIC7cx60X2ZiWqQVloUhpEsBeKHUmJxLGZfEWGJffRcEUASm8Noj+GHvONXFO6FK5LIBvqrQ6hrNiDPi2XqlYzehyLExVGB+C0ObvN3mvjhfc4iIa1S2zfpd7RD5A0zy6MUxolhTG521+Jh+/TXLAGYvmt6jut5Kak8OQoAQmV/pBGdEtqOy9f86e/BX+VY005g0PbMAWJcXtQkhdJXgDEO27Md0v5BULqhvZeRdhaDt3xP+46kMXPvxpX+/6+/yELL7Zb8ZaaBK7l2j4yK6YJxnpUfBktynbEet9OKx+rvJySwpT5dMgOJTJUOTiF7L2FwZ4DS5nBLZ33wiKbGCFMSn7QE+wn5sLa8C28/rOAuk4Kqk+i1n53I3lgnr77InR5k2kVKQ0k3nrMquCl1BqZ7RWEM5JeJNkDwWzGpLyayGCthC68NWiemGhIjh1J1C+/FsNJ+cGt1NYCuXd5dpmSlbbmQm7KlhRtEsO4Sh9OwU3qsYly/7zUiPdNAjUt10X/U9W/xkWZ0gt3gOOP83dkPKlsZlSJDSSfTGDbYiuIsm6jXFfbKlETyEt09uNYURRg1VqABw3ZzwPo4teCT8ZiUjLGigzXliKrhCOY+oNqtwGTmSYlOBMPLhDBjtfJqK5BlUovO/GgYQOrVkIHANLcKGIHwaPxs2sygdL4cq1HiqT1PcSUmoPYptbb0uq2E1BT3cuhzih7fpxBR+6oWg8VkMv8NraKvvqoBnGgPTbXTAAVNhzS7znaDTOp/qhbHMpPFCaudP7iOr5QTVaCZCkfw6wXORHZAqub0iC/VkoJwpw7jiCLC9EgOTKyeg1t8dkA4A/LHMGDCKxeRPmdN/+A17//Ip+rcs3K5ZPK8j1VYfJMlHVUoTFTxrqtOwpE++OGsZs7Oej+NVyzLEY5bZGYUkAkQ3pI65Uip3Ub149/Ghoo67JVyn7B/1TAm8pJZffGRM2szBl6GoT4X7nIpg4i/O6SpDVioEiUoXdAM2Gi3xNxFauFXTMq1YkFyUA62+hlAYYWRQv7ndI07xcrc/KHiKJcqOsxAV8RB0nAkLRm4B0aa6bW/8vS53bepiDa58YA+cJ90vFKeSIGCh5Bvn7Alsopmg6mV9EBJOYGgvFQkDvB5ciTS5xzNKUV80hhNf/+lh4mBDRWX7R70PJf86qFcz8lc52JJUbRb5mQSH6pfZeK2q46bTmF7JfYt/nvfFaCJab+ctyRLI8SiQx/3pxTVc11zRZkgKg5kYcBcj0qNwLTDV5aBAFrq4/a9oEsvxa9HjQnaH8qf8hCbd7v+vMnQ4TnbL0x4hWtnzS+sjzE2yMsikX5T9mOyYuRlGNPb6iNFmEP2yXJ/Fyk6NSQQo+3EI7sDDutyv1Nnnrkbqbd7d4nvUrJdlZoPS6wnvbeB5AQwmzVaotL3Ni2oV2AbG8xbdqWWyoREeJgZOEGTx/nJaSIh5lnt1l59brfhIABQz1dPoflu4DcnbyZquNuUcd3snWiR+5MHGOQHOciz9stMLRxjiHfCEnAb31ZoMz6pVhQwOWrOSYuJn1uraEvHb1dTwQo2L49y4PSrlNrvxt9Chx6V5TJ74RQdhvEKZajfzJfHT/pt2oy7/rOlYRmWDY0biM5QdNWTdgUC+jkVkK7y4NBWmcA+Q1OScGGBMlysD0Fs6voIavrQMMcanX69CU0siqnas1fut6bmkEI6smSXQbWLtcMPb6OFvB71HLHMZh5DXne4wjekVTblvSjFA40WnnEuqI07o05byqFX61rOSEhCzz5gR3TqqRFQK9sNlbUmIDXwycDjBmFlxPBx4JzJDzv35R5Xm7yL3fSrFcJ+3psJilz4dk4RKaDZLc6NMQUSUpaNvgcjnxk0BVsyi+FuA9ALc0kUf7eiWoPQa/q5gQVJXxLO+qoHN6TV6p7uk9ah8s9d0vj1Jd+iqustfxj4RWJTB2je5nBFTqxtbId3E0cjY73A7khxoJjr9yyp+DqnliYS+xrPrUpe7/DJJ9lfRXh7X5TfNWPuBr44zsiiZBlDhkJLv82rxO9uDOGzZwI+vtl8dU/VqcTHSAF6JISjYwQi2Rd1aV/jrIRkPOpkDUi7fLJhLukck90Q8FvOV2vhFvesQr5P1Po6UREEk7zfF9UxRhxOgFfEmOxLLhnWRJdysccNYRW46zsBqeSPjmU3HkX6gB3iFJ3j68+T3VxCi+DOw86YMMmica5OeKxquFIUFzyUriSb9/DIdSCVaVTYmTD9t+gz80/cKPX1BzUa7xkl0qK05gKkMRu7RA4ff+Bgp4DQNEJEMv9cbAfkesCJkrFOAUmd0UxHFNNtKi4MfR6jsq9ByPB0tMoxg5PI3KqHTOVxBazy2Te5ccz5vNbe7XTdm9OVhZtD+A4nPvf2NxVRVDFLqPq4VDKrcJ4m82VZDU4IKQkTdt63vKSlUrPcujhSFRa3hJcDV82jm/C4ptuWHjVitSL3+trHemTveIBbhOs61WcrLSDG8WSm+4Vn+vwtGKWAGTeu1or2iCwBnpcHORpj8Esc212MEBnUD4oJJYsUHNpuWysmPfI2bEcLBiwp248V63nptbNToieALU+K03bq1tEAQZB8+ukXnuCx1iqSnmoa5c7rsqay+GgOgLBIb2T+oyltIRGwY7E9/60cyTp+mt5bB5t/3CVRxuHR9BwdF448yaI11gc2z7ePpXCOI108Ij9I1QtwFjRMtZvDI/J0eUjHQQQB3z7v4uwApn+I9VL54
Variant 2
DifficultyLevel
650
Question
Blinky solved the following equation:
2x − 7 = 4
Which of the following could be two lines of her solution?
Worked Solution
|
|
2x − 7 |
= 4 |
2x |
= 11 |
x |
= 211 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blinky solved the following equation:
$2\large x$ $-$ 7 = 4
Which of the following could be two lines of her solution? |
workedSolution |
| | |
| -------------: | ---------- |
| $2\large x$ $-$ 7 | \= 4 |
| $2\large x$ | \= 11 |
| $\large x$| \= $\dfrac{11}{2}$ |
|
correctAnswer |
| | |
| ------------: | ---------- |
| $2\large x$ | \= 11 |
| $\large x$ | \= $\dfrac{11}{2}$ |
|
Answers
Is Correct? | Answer |
✓ |
|
|
2x |
= 11 |
x |
= 211 |
|
x |
|
|
2x |
= 11 |
x |
= 112 |
|
x |
|
|
2x |
= − 3 |
x |
= − 23 |
|
x |
|
|
2x |
= − 3 |
x |
= − 32 |
|
U2FsdGVkX1/nny73V6YzqF7x5BSRE0V8ijbNeNdxMmRZp/35vofoiiyXjhTOwkMD3R7jd6LcOOfmRy80HDWFDpz+00yf5PFPohsYbk1mHuGBeykYNm36rCzz+5OiqrdnZmW5g8RC4cseEL/yh7mNFI89HKS7DoeKVtPYQL+1SvVkz96OLP6GAO18DSLG1aUUOpFTC6WU+Ocun/THUdI5Ps8Hbvx+N7Cl8cf5ny18Z5sPaairx6OgAkz8SH1WShycamJLtenw0t37NWDa17rozIZXtldgPyIXCgJIYhSBwMngoev8bZ/7PEyq8ZGsgHI+z1a2mSbDPF36PWjawtTGEoVV2+GfABTSlveLMvy8HS/QduX8dvvGSgo6eJOVfqVj7s5UcSUzDDKk+rc34qsy5bLLLkBRCmFX/537+yQ5AhodlcpoC8bLpTe1HDA4WTKkgfNRv07R+rLeXsSlGJas4+Y0myf9iNSLlMPOR70Bx5W8G/htICoh6ZGNWIIiIluHlm5xIosYEmQ4xyHrbOPPvtihlFgwCRhFohu7yhoebfUaO+tMsf5LbQBpvSKHtRQbk4RjiNzC5qq/5rFVA1KP89uhgjk8RqsOri87un7dAm0vLUnvKwSBYK9RGTsHgYrFpCSnJp3ayTP9Q4Mi7TfiyzH0C6rvKuano0ykRYPOiaBFlpXL6tr3t4xo0SPEry22mbDeU9hQ4iLQHnESk5AFvZHbJbgjQwO752WUs/+MmL4NtMzKYF0jhxKxKPoVM/lKEPBDUOLVa9JZ1bJvEdTCcVi5USjYQTsIEyoOympzzUrrOtfFo0CGF4+dEFz57nPktu/D3GiizxwfTCNqUBZkFSOFX2kPr8LKmpY282xBXukudYxWovAFBYj0tX/D7GwMzYqzl/1i6CaDJ9SVQ3h3HiyEGfvpmz8cTCwZFS9evIZe+inWIM91ROjxGGUtxDlrpYymBz40aRAmJNXQucSe9x/Jo/w3egWQEH0hmXVeTreBak/3n+QVi5fAdNJw+N8svQiRQ8HXkCayaS9aFU+eDkIMX5znFvjjC2OS3XRmRUNDgk58av1/kwDULlmO+8t2aQsl6CKAEd/9WKQC1ornUQ8TulWnYq3FHOlzfUqs3dO/+PC05drjS5QpJr/EBg9nVbC5OcVPumQbwbEmodo9pxGlRHcYK8cOOHBQODDjgavkHP0izwpJ04MQBHcRBRHpKG0jNWIZfVY+d0rPKmAFlvzvFncyPvilrSk8sOAJrALmi7pP+bjfw4WuTM3y0dR/mYnFED8By4hhNnf9uTrF3lQ3TuceCWYGHLTVujEqGQvkzMU3ANGrYm6PxNV+gLBx8GMQK1d/BfFKnxH3zglRDDhmPCFon6BNJw1RU2qjFM+FKG0FCdIlOb2V604P1BzVVo+XTrA9x3AfwUo+4z4rYSQPrvI3cB687/nbHq131gMHtGmTLagRcAJGPrgYGlE+7Eot2Vzgg8RGDrNopLitu3/7Kx8khAq8gOovayuR2ETyXZREaMavSWV6Ztc6tFq0mU1tpDTg2Ovb3gbaUCOPzvm8N2GhhgtZhXl+nM5fNKX1ezuD46l9mdINsscNpbtGlJAdSPI07VO6jzid4IfTpzYd1THqjH6C1BeTxz1nRHf8MSCFJuSHqP4lUVcGZIbcKwPkdvEQ9rmBw9QYhzAtd9IdLlL5fBWpSxrEc/Ap5gm9W21nUNJh3Q16fkKr64adD38yVehq4LEfoI3A3Kp39L77Bjvcfj6ARq9GEgE1GJCsiZ2GdvpjpxljmCEIQ2Ot2Xo/P9Wts5N9VsYGH8ytVd+ZwTBNV76JW7FJTVCJymQx16wXu2p2G39fxYKoB9g0V5RdRFNxcvmygP/YCMPVPO4+KGtHiXps4ueiHtZCF6nAD/MBXerLqxalYuBwlG5ir7GNn3NgmKVJHvjHulxFv5UXbImvKd0ymLDNeP9cgsmK7eZYA/Y4M9afq7Z4VrwfTnWIhX4Vf0rdWWP7FQXbTBTxyO1QSzelnmnBaL2eSqHQevURkB2BgQGbJ44GPF0ZtTDRJnAthrfcO73OIkXiDLhD/OK+nYhHCP4M/OnFyaWB1cCqf/FmYX7OTtDF/DH4NGt6ymC/vMqvY3i1IHsdPfP17tn3HbthPmVLSl84jd5Mo3aphX/XVKpxavLUTQ+Qi8jEpjuvgBc5hfxUpyKo1vxNOKzy3Mv8Ql2t9QkeqsirqJKICXFiWFc/p0nwaRqivO/ReHa1QyYZrN6MPWhMNZDikmkUUdYK4Bwd102rLWaBbA4s0BuARkN99IBgNbiWbsMlVS+iVX6ZPZHIjvJcIjNTMlyW2s1LfMk/D4Mn6dk+aROfCPpqRbwdsz0dvdOiTVkg+EttCVw779Y8/mup5PqliTGoVb3quR1aQ+KlD0eaJeJPiW7F4WGvyqhHAa613ynKp89XPpEf3XiPd8AA3ghTl5NHILOjtiOtQ6rNHQZYpbJtYR4ZG5uHDnyQsJ+csl7EQiDPV2+I1iU0d/OjyMTynXE7iaT1LUeE5XNLpGSG3/0H57MaXrj/G+RPZ+c85iRqnNaWqstNBrJwJp7Q6zLNSbFs9fWb9aAF4G0qhnkgYliXIT7tcnS1JDhRskRx8OtPZld7q6jBE2extEe7nxH88skWksWJ1vhh7FiOnoF4PFkL0gD5cLxzJcb1fulA4aLN3NJTaRv7Bcq2RZmt1oVB1AIiMARsVj3VSedb7LUnb228KWF36MttUV/KsYDmJWr7QasSPdIG+1aNRX73wkFVk5kPSZ8pi0+xtfAh36JY1SZhnph4acOqSNHMsUoPjdMNXN23p7rcXBOKHTbIP/GD7UU+VRkoDs82ssMYnxMZBj+aLduNsJiSjf10A81AjJvrrPuYg4Ql+bsUsidNt23lYO4zBwVtobptWz9LYgjlJC9HXgl6sftHlqhS9dgOU96v1VoH25SBS/WytjWRplq4BiunyvjbnFavZvsH1hkP1iPLSU4yz2W9zCf9rZxQO1DcTQvECom2JgWGgi0bHcdeCtilKSuhdOEpWGTYT+8raSaC6eQRr2GfAaFRvWnETcav0cTnrk3IyRXclVx4/Nj2fCf/gqAGMHbc2gfPXUCnIMB02tIq3Oqg208Rg62UuYL9DT3MXjTwabw4xYSOb57g0qpsaKXG77+RddOK1CbRdxIuqjRk4E94+uNaaBbSXpUwfIpTY+YhOakIXUPsM4msXfxH4xqKhZ+ApuuDWatL+agyKUG5QSmezRdBsQtne36CVi94flj/16Jxv9fizo5ayab04ER0kHDbZf+QwnsTitqf5XtKsi1c6OBVB1hmtcssDE2WZsdzILamGn731Lh54UDhJLTMlTfXnFueZnAa9ykN0rj7dSI0ZE7KiWqNt864xIMuASTLKIyExxaUjUhkN1dScviX5KLeKH0SnjIUDdpFIm6xisAX6mgyyr3G7WTjVdSmUc0IC5FvKF1Ko1B6SkeJPJ/ELZSfMJhl4Z/OfiJcV5lTzR4hAH1mtvFwQh1eJarTKFWUYe1b56F/3+6Cb5Rbr2PdhoyW/djSb1sPJx3bbLPnCHnwskZJU51kjJDXpF+S4s3LGeAPOnNVIi791mHICX8OSEhEruxAmOsPRetxLZKawD7DM5rPCMPfWynUoVPQMTlczQghlrtb4ihSnJGsVSNyXzSJPtmaWZAvqzo+OEJQNnPVg0W0qf18imh3Stxavpb2psrAGcfoDmFFlKwZzmDOhLJAnreCrfIiz79lszf4++Uv0cy/byYp6zhOHvqzbo9/gOE5r7DbRnL3KLUhPHq5BM14MqjQ86CqRqtc8BPwXqX+fPTNDF4jBtvEUw6xuYf0gCsl4RIEgHMujT2yC7zUmDn/QKsLNFoHUCMdamt7Lkek3WKOTbYSfz2xH8WJsht11n2mRq2mK53IYuFRQWt0y4kUhlUG3hlTiMq3rVDI7cbCxQkltDTAfQj30iEG+eEaeJL15B4RzlS8OCVACMV0UjSHEJRf2aoMud0RqeuBc8dboXkoUEtEuwOMBftdU0YVBTgIwWYxMjgf6YqUmQCwTnzXUp4aWOx73XpaleHgpuU40n+6oRgn85STWjy1YblF7RBLapWoH/XWLLuQrfMNvJ6iq8MPq+LcWuWnvpoUlLmm2V8if04eUtbz0F6nOy3xaYBQvsPATKEWJQTUHVkxrlmkVN1doKd38pzNcs/ipUykCSb7aSiBgygMCFaJcRoRDid2issqDdChZNb7DAFxpL892k0HZUXXpJLiDLlZcT3WyKml+n1KGknimi9b1aNWKfuqXVeDGWP3yZaJtxAIwUaD9LFkc86N9rsbn/198uIDTK4p88nATDPfZAGJMigSDTICMkpmcmha/b3C9RL2x5AddPYWyJdMe2qCtxYiPPrPOtyWZSccuM4Qt4YcqrAZkxaDITg5NhNq8ytmdfmIIfPmTTdBJsCMerVhuizaznnzbvbSXo1+Umi0pXt31uk7rWPSnWtHDOedM6Cbr/iw+FSzA2WPo1bQldC8SLHt4X5e+IzIB1z4IJA+yZIJW4aDEAYfyvoClYxMYNVyA6QVbPCPbrU/ycxXjXa0fS8g3zThFQOyr+vkAJi7uN+PHVpQuGv3fbLn5FYaJfwZ+Kqdv/i5yFGKG2zsjC0wLVmxN03BWMeGVUUrmr0IFxKKIZHWJHJJULOLS13Eo0yagaEUHThU23u9p6N2BN2flsv1f4nQ/pOeNg+Meio+iDTgANSwoYJokte5yqQ+0Jw24+7z5Zs9HdawIiEXgDKo2XqkYKNKpM7ldXl7CtUvxKvOEU3IagzLmvqplzDJfqJX3RJlbjAtpDApuEHZc+sADzbu+lp7XiQ+3nqkdWQHROaagJgN5oK82gMR/Mv8V6Kz9ZQe5egHdRZM+di+t1udBHmDJPgyeY1JtJDzxs3NYLVE1L7eM61pH0zP2i70qzetV2Fs+m2/YaVhFqBAZL9hy8DBc9CpMhtXO84Y5vWrV1oMUeCtt0QDiTcsbb8gMgwl8ayclumw6bAbqSndX14Udkcb8MDBaoU1VQGFyDXV0fNYYQM6dMseMC3e4TZ05k/feEG1fC9/qgR8bPGfnzpiLAQVLqDbxOdLcdLItYrrqgBHUbrqQurNP7ntU4onWjtv7jEI9y1e7oSONFT4l3gkgfn7OUC+cGuc6x1p95v2VUNa+FkummiCEyGBLjNaeEIM4v3NZqZJ1blH9anFoC0lsaeNxwImrQqeHDjT7WdV543oeYPYPWitiRa67cxi7UCJB5ZH5pZQFJXs2ulFptGog6G4g1cblisEgsQrBpLKaO2ErNcQ+qdkA3OJb1HvYSqrCznhdFXfXRjohNU644Njpt/IYxe7S99B/z4n8OB6EFP6+6zF79E5uhntYMAryx2pmecHCbVwAIAvoOwyFO1fTpBYWQqKZ3/9QbDfPcT9JneKW+udtMBdhZkhWovW3UeZhIEh1ybdnmyybKA+pKTbsUoMsCxWRQbzEwnltSEGcItD4h+geqD3eHoue4xieobMSE5eeig3Fce5COBGTyg3DhSKgm92AArWm/sHPwF7brbYzGoHVbBMik1A/65v7ocJTHmodRRzekLa0fi8bS9uKUOwg05emM9ixH5ofSqTPKKQlSuE8DbYzz4IujsBeohh9ZSCFiiuhXUzidpoJCtkDiv6xHwG4g3dVhKXNNFap0PbCo6P3G32FtP+fNHO/BCslv5J+CNkYojeJxijjAvpkZFY7VUVQLURV9BwGGqduWHNxJiR/JfzVLZL5t/KdN8MyvLtWwrH9O0Ro1rZvfC6e7kMba/+/FWLGivLzffT1BmxmQyq0C3+88PCx+ZQ+jPnM7n+tWFKkZyOWK8n/csxFNjLoBtsJX/9HRRiCsH6IIuHLl1R0M1+20SPuu6YhuwXQ7LQFYshrjXKNC/MqBNYtol7jcxzVxHz/VieoonKoUSYpoXydKyZrQyhjUE1MtEAU+fy5wm6VmHbDcMVWYAO9v6FKm9C/CsRnktxnulm6mGMEFCgvbbZB/qHAvg89l7ygYSJWCBIEMK3iG+Ex784mha/K/WHhwUKArUMwRMBYyHJtdfz23MvK17k587ixcOsiiuAgCPaRNPp1wffjbWywXz0ws8j1rYOr4eQhA+OkbzO/xgOav5MyjzI1bs2IOQ536nnMVHUK7RbMRAqDtGYURQqmCJMWEw/sovoa+ga3rh6H3AYoikQjMha+Up+ZNhYEoCSDnzp/Yv252Ky7CK5CkEXt1sxD4VcD0T/rsdAfdEx8LFC1Pmfy7LN+yH+M8aLylIPFm4CMxjCJxLdWDKToIyoBJq/wBvg4C2hebc1gtivLcRuA2yspsA0cdGuHtomI5rEAA42dmryADR5IisStMIW8F62iLKvv7pg/KsSaTGrJNJs/JGdxylA2m+l7MWOUyLJumtyPAUQO4KhY8yPWf18Y72UOzbxxYLqNPB2rzSXMwnWdj5j5beqIgUgOeHIJaU1/o/31wsi8QGZ5O/LFlmvHwi8fsakTLDNSW3BR3nE6BekGuZhRi9xTVUVTOcCmMJzw6A7UUfhMmk7ZQ/tMPWEIk8XUR/+FltmKABIPBRpDzewR669exJT91S4ckdlOvErVaTg2aE9yB/eXHaZtuLRTGiPhWWXjCULK6cEM3T28Qj5eXqWnf4vmC3XmMLC9Crwr8r6W30iOA2GCAVfzXxNskPtkl3S+xBkNjI1ZnfPMswbN0EaKTLfAJ/uSsQZG+a6cYH6RLbKs8pZjSKKC09FhGbNEU1RN07Uy66xLNVdBgV/IyIgI+kp1qH3dJZb38WHe61L+lcqJpcLXDaMUXYxsoT5HeIUhapgOk+6dfYsOEfxf8dEv3/7MfnyIPaORsh66UWCJlXXnIkySbVxG3+wMQLt12cXe36AAI6y1eiRG7L0imv1yjoS/uizZMs7XiNiMcQ4HXG9tM/2OxL3SvkyEXRRmVgxKoHwkf88p0OqrdTv2aIUBVbVc2avWu6F9dxsRYZ3it5+q6+1y3Nq3EEvwL/nDiA63Dx/NoeWRswoUka1CF9Rhez7TThpRaE8VygCNAAsqYYKPBW14ZRnsLOdRnuaainDe52i/4s/bvkvEPQvYY1EGi7l7eSsK0XIN7uTn2ZuGMlkBEpmY3aLHJl3khDm32Hozc4Svfp+7QHpOFdYrmMWs/XAOYPKnRi0BS1DHMb34tcp+RX50z2zJYkH+97W4H9aGQlBH7tuMI+A25mChNdSgtN9j5CwDTgK20QZJMFHWRx9dBFwcNk3/hN5JTMs3dl49eqU6GYDRbl3At8s2Twbm/yZl4/0v3BHcCGwaDvXrt7esdlW4ivcOcQOAxjvSA2dtbzKu4WIxq93NMumXgArE2wpTnAq2rwb1h4f7unwXCajnqCntK5OdNqop2WZ1UWeojH/iXN90qE3e8HuVt9BYFJ0VEByK+kAa4GknOUs/JFqCEl/wi6Db6WOmhUFX04kamuWGY11gCs32+ILadOhU90Nt2T8I5Yf+m4bCirIFQ39t8M+QrfTGslfXbGvhorMAwMTe9Y8JMc+HindxXaOxdMGx3Y+2/NBLuo8iBhhdMK61EDg0Y883H4BXaf57UbMEVj7lKjuICPWywrrsyZWC5rzrnfFtwyxSUAYLGFZoqm9qAL32gzSlLGMu+3NHiba0iRAHCCp9TdBkEekVTrX2M9aWM49yXCm3A4R1ADt3VwsJdgtQICWWz1+sOhshyQU2F27eTL/1b4yJ0okCMM0DeAEUtBeObPCLtMZeORywE3XlVTcFoaepy8Da2WRzzMF1QMUf7GZU93H65B11mX1ddvCgPp55eB5rw7BMQxa9JXs7Gy7aXZVJXXr9lOHPb2lTt8l54fu4QvCwt+fjYusLzxBglnE9VLQw01u8VVof78ACM2rn5jP0lwWBYXwfDlyldATzuYjXmhw8x+Hsi6YNCbekNjWu/7Db32npOXOoUr2Wc6Ne4djEJshZtCcQ6fLlZaOn3UYIEveTAs5Iw8gz8jqWoA4RJ/XeM6L+zr8hgaVvW9H/sui6qGZ2AwHw185AnKt1VPtDZbqyrS2TZ3BvSOeFdL/AwcoYfvTgQ07Teea8EZE05XoV1neGr5jYsZo+yQE8/7l7iKx81iQAirVQ1UsllLDEI6R+lIDkV5/cV/4/bbt17+ini1maVoedhw3yycfBmHpjIydzpoLEy/oeYXC1MuGVpNZJmV6glXCY5RxIPaIGSGHfm4MbiOwcRUI7eq0UIXA/gF4YaRGzzfl18ZuklyN48QE0JrDgHPcI+3UBHC/H6EAixgklfpz/8dd1WoozBqcEt5L2hvCoR6ZTqO7CpY/L6MCiH6I9MYHWyRVUrjDktpL8q4LzYQ1IZrU+NKj9l4UQrz2x/+HYEXJdH2ViHY2zJC2Tohvj9zM68sMaU6pNs7bzRHGYhCqWwAiYXd9rf4REUWaMzmVnAq6+If/az8rQ/z5HIKQZw+5ET+79/1mHMtOXUPub9hkAV+jr0/tkI/MDXlNVQrudOjlbmcOdx8fx99Od9zWTLiqGYx5XTEwdHa/5lNDQuSXHEzdp5aPHxKaBS6a5XBOZ/mA4mJ9ij3uCFyLjTof5MbBGMDbvhdRpW4cgIBzP35pgAjf0gPAociyZEaQId7nSdg1BBvBII4PMK4W6/bu5lNB/VCS95+XetUdNAaxd21b51qnCeWZiPXqdMNrXw7r23blXxvtTZGkOvexujsAP5gpHoD/BYfsD2TrI/hgZhNuOiyuNA6Hgmljr9iglJn6b9FH4LiC4DRfEkBHJ0X8Y7VLNWr2f7kkxIQEr1KJzBOcW15580791D3pM5brGO6pqtHMQ7SABC4CoPmrUZ6GUogutLXio7J0bGEKxedwCKKnnFTjU93+XseAWxzRewdsVgpMSKbaKhy337O+GmjCBl3Hx7cy2uhDOpfon6Zn3BL+kBG9xMp2vuKu/+F2ttzaZXpy9UQmwNyuo80u9ploftJ2QvtfVZqODSQsEOhV7ke2JB61mm7NDuSoNewTKIBZ6RSTqROR4H5phww7R27dyDOG3XWUm2ynMt0aCYQG7JVmHj3p6P74rVlXvVmEVamrbS8OL1bQdkhtm17pzBqhkq05Qee3cVsL5s3yfnoM1iHIvyyj0EGOUfD1XBrDKlif6yc2rwcbkwPcBH1gqC0nkbmmsE2yG8g3rG6MY1nbDghh6qi/b8LKPzqXRDHrsj6ppjsN7jBQEHWeLd3OFWThxAwYzqqrOKPyrpQQ4eiThb4R06nOq6xAcmW/b0RsUm0/No7zkSl6c31akPeC3HTDShvwRmivGY5dsE+e3+6tOrupQR4zOUj1lQcPl8ZLL3LbgFtEJxUt6/lx38WjTcqfkW8sYRkupNzf3HSTGIQa7Uldxgt0ff6Vo/AtIr766KDcl1al2My/6kcbUa0PaMGX5oWrIeuxSjxV14qRargsboC82Gibna5pNJQWpCOfKK5pfPG1gaje3sUBYmcdKP+rNo/Yg6eteLJutPSuAn3VaLZ5n+VVbvBalNnhcdRHifCqk41/6Pk4ccxt/3jVNEGABzqwrTN9yS71MDTgBFTUQYmMMrkpM0gtq3Pq6eUH/NsUs9YTn92RGF3cZD5ItOIvUAVEZ09UjiMIqmY+BlHlWuuKxGnqnFonFfI7ciMKNDw2H8WIyzLsVQ70pxQ5nLFNH/ONzqM3IRnTfC1AFB7qcyakGnWLOA9Fua1SpUBWZ9bvqGSovswWiRvhH89BlQOaw4/kr2m7YO6Ccvi+Qh0cqMSLSq2r3nf7B1vusaR7XhiWMdexynx3y1qsgRiHTSNvNiieRgs9zvbtQ1IjwnBamTeZ+qMthdjMG5jSD7adlozzlCHakTMWsWPTyhmA0eMLX9iCYbPECLU+RRgUyRKxfqrNBXdEdo3KtonRIX2uTfRiKn3BofBgZ0dWPXrOn/NyTNnXMrSl9Sb/H9B7hYdrbgL7rJTRwzRhw+H2HLXeNUqAHlfjJ5ylm37+vLawFBdk3Mtv4CuN+eEQn3ml8m4jIA3pdZOfD98I7m0MNpC1OM5nD8VpfYgQ3r+oJs9Od7GtDbdsHaqdiOOaW5sosXTM60+NDN62W6xVFrfXG8qkSKJ9ZQ5yArfbYDY/6q2Xlr5o4N14K5ypPwsoUYSaNjti+qD2Q0eC8+h3sJSxA6r3cig1/GONI/SrYE+tLt0arFTNx3kEDkSh6FCCzUOKg/ZUNtGqNqOr+rIHQQxtyORd3HAEZ97rs83pw4oROf0jWV/Nwzkm9Zen65XzJkp4WpzP59kodwxm0eAN6gRvKa1MPiwEBUlpGRiECuwDhX+FA+HNdiFSnUAvidCK5ZUg3sMIFPFuLb/aZerN4Vo8opbizBqRb8Kg0fb4SDeTC6pLEjymQZgpICmfhnKDlV0UAduXhfIhMZImvw6cpQBxZzWi1S8UO4Dz0ATxDuTVK5GHn+IxqJpKYezPKv+R5FLVJwxjozkEUEfVQKVeilMkOWkWEoaNO9g7upbuN//aEsIuaXedx9NwJg/aGGW09NRhXvEGCVXrYKwzvk0kLfg8jLdaQK6wFpoC1zWcVYIGdOvGZQOSZon940SZMhuJG6pwQyWsTy19HAuzDUjzVYxpK41snOvEF86ob87ef5Ab5ya5Sg44OOjgDI3DFJyCVFa73LtM7L3Ff/VAd6Ijp3+2LvI/D5MSUq1gn0TnNAwYRTbiLHaEg9mFVbJ2CVLQAw2qotAqEHAiifRQn9qXbHE5bdGeUDVS6FWLajHd4PPzYTIBMP84F2TaFp907eyR5KMZtdSBja9pb8rwEXpZUYVvvWjPCMoQy5W4lJ/IcWMqGiV7TJ92r4q1iNxBIYYGv4s4W4X+uQh1tc5cuo1QkmbFkzMvtjjzWW7L7uRdZ5xQmWqNsctLUdW2j1ZanXWyDguM+QWtwkolP6qZHMs8rpdfyH24dA4PKu15n0TokOcG0TbttTMGdaf6ukvvn6Rwlpviscm8qa5THZivQomo7+xM/5qruQDfUkossI1rdN3yJcI6SiRRggIGBPOwzfCvlIwiuoC6Hex6LzEdnMcgep0mi5d9usL1JT+2BscjomQxkk4qRrPG+nNP+7PWQA+Xw2rBo2z4j60iTUVC6StzIqjgCdBcG0eNDHoWarvfc7vaobDC857CWqRGvN9Xext39WxBlDPRpl2kli8Kpihtck7gynDhC/agCixdOtCTMdd4r8rsShF2rPwdzS5PyYywpuJP3HbDYQCuJw/OdG7RmnU12Ej7gtoAB2M7/exgqi3NrPy+Qq/b1B0N1cxz+Cu4sAYSU7qniJJWooLmY1QQ0VkjTNolQn7C5Ymlh8iHuch2IGxcU9uW+IARVhjsXAtggY7uqBFixz3gR7jIGHARFN4Nj/j0O/Yk4EV4SW9SPZpy5CigRuaEwEbsQJuRdPCa/TGgr64HRaYDTzd/rEpmgiN7jXe1SOvb9+BtDFKS+HuDdIJlBNOvPE0TnhPCVoiP3xoCcZdkjfeUax5x19p96t/G/33SMCpN8ilIDLmwMwJwC0MRUJJAkGVL6s1kAVe0Dgz+MmZvrYs/THzG5N1iYNa3pltY7dVwkY/LQ0aQJ5G2wIEAXiz4lQCIx8fyL96wZGo+caE/X3ZBaNuDYqGIbU7bG4sdyHweqZUfD4K3Tgw5g/97iWb5+l+nCY786XKDhlty3R++P3g3zbi60lIiX7wYa1QIaMj0Ng6b7qPY3neWwjv7QEX1Qt+2tkfz0k7aNS5LAFtsg3PRgUKhfZWjBzEGWZ3DIUjTtwiLyrKpJmJzYjod9+IAm1rb3ugy2FqHna60rPLU09hYWoYF1diLEKRd9j9xwmprulAh3SXPr/3LpamQTr83jDXcwPu9OF0h37lZjMs4TCzHiWkOobhKCIz+jso1Qkngsmxu/tSYOnxGuPlyBnTZDR652oopF8gB0nFRbCNLoUyMDTE6Z74Mq3O2FcbmaT6aHj1RU11wVTEWqEgIIfgc8htxDh9LLN01q16droJzGvC9UIJRuLRxtHlHtKdgsJ83iVEaFpc7yoOd0Pk6AlqhUAjkkTCUocJ1cuF1bCM6FnZHB0pQ/OGO/aVMSeJqBdAtUCQlCtxuVTd4kTjF2ijvVD8GKqwyLUtaUD2gBcr+EsKYz/BBto0OAFNrb0s5FM6bV8abl/Sma+HGlQEYCecZLVCbzLxi2CxoHMxcWDOExFrGi8MJu22EqnwolN79RNqcmIy0p4nfTkRWii984JCZ9dKCiEqLPI1s7rt+lKG+AW7ezKAeIyRcOdlgNhaOZ+jkp5m3x0fRWlzZvobuGA7I7EKMnq45BJPrpFPsshx2Ft2dX8ceoya4XblyftoofzxDbm68bc7nB+CyKmM3bPTN3wrYMjT6rhV3sDFeNPjZd8BaPFfyR7T2m20kTdejUy1nsExhcMqp6/b6k7cM18mRXa5Zz1qck0wWTgWEBYAYv9YJIhgX0Xl5T2c31dj2HBtbFFuBNrskQGCOjux+/qIswmIm0q7PHzOV/b9xjYb8I/gQiQU7BEX4XhK7BSO7gO9zwrUiwLpU60RSigpbDwyxdr/CsjSoMwI821SGdkcbmf5Com3Pd2srobJcKyg8p3pgu4bTZsK4pezRxKYyR/qR74IMo2E/ddO1LuO2CvMLRVg8AR89Ld5U002mWhwk8xIGtDs8Y1/Y7lKBO4p6rv7yi/PpNO2thXW/D7eZnS7A4l0gdapOJha0hQGRuYroz/QLKSjNje6QNQH7XGIKKmGn6pFR9fT6l4i5EQ4u0bFyNRET29/0Mjg6i/DYypnGZZkr44DkSdsDR0H8gA0u/dspN8eEV1kvr75gyw6+EhAMk0Zq6wD7jQVp+9uK6mqUnMoB0ZSYES8S0JfWqfAouHCDhyau9EKGYYzDKtxnu/H0IuSE70VD55OEkEJrMLOCtoB3Scu9imFDk3RZ3S2L3dnQ4Rx5sVDDv0FljmfDyTI+spOUUTvVqVsKwEqXwKUQLYeCL5xqT/BO+TImJMESqA8EeWsjVK5yfDCq+fduo/nqm3W9FDeC2VRxyJPAdyxbg6Yq2xLv+q+UUzl+q2MNIqZ6Ujx54P9UGPFceKiVSm9dh8oFGNzOMTYWlUbkAQ2Dl2N4VCjbpgqw0PjxNKPlxBtkTHMEyYpUKiACBNiqJRzm3SzsmHCrVG3HDk5nSLbpSFKagqmpn/xoIpyfzB+fXK5SvgoKIR+SD6XVwIcYJD3Tg1s5tueap4tuf9w+y7saXBJ1GyBnVVyhbPauGt6vqEYoMhZOnAc0YZ5cpLP3kxIFJGhh1ig5slyulKDA363rcUNfyDPN9wNeZUoctuan/CZQ49Q7B0lB2TUAUP6LuNHbX/T6cV0OEPePFLmfBPhqDM/m5X1W+ERR7tC0SuyulMb8j6JvQOR0JOj1wE6QcrIeXroNfVpqgdIFFPpSRYrDOBy4ktrufLLX+AMI8ac0dpdxyjM/598vss2L8c0LPaLIfhM0pVKcra+tt8L/OqYOBofOjvYrCtjrY59yTr3xPh+4AN5epzl5KJ2VBDQoFIFkQvw41i6Lo/oDab6kHqSGSleocZUxOr0K25GKxJBzIPS6QBUX+reS4I1x6Ds22VZLW0drV/YgGcq98Lgt2KI6+68QCcBQl637pnBN0lJDRYfPHysOhYmmg3kRy1pjxVVuXmd6C0yovs4DC/WvlkQZhKXt6/k2QPwfMMHTCfVFW95Gz574mjzQ8f8MlcCVBhrF08H6krA0V5hEn9QQHEi1g0fZuyUj7qyjUm6RZxpxA+bt2WHV+C1OreNzh+1zBgddCCyMTj7Q+Zrx4MOmvhSFcY9uhnV0VWM/b3TSCJnWASuT2KCBqswQFmRyk2BZQIOPyxiIl6J7VwdmKQPvCilksVGQ1iTZ8wnZRsrRW0MwdCQ8UWJfsAol1vmH3ErQwuPByx78yDMH4ptu9keRTmNi68GIEDqFIOZ4Wb2MzN+2Ar0Ii7xF9fY6gJp5KmXVEv+z+N6j39h2EImoDf8/DHXfrFtH7megLAfKFgdKFvgvxnT6iGXdeyYJcqQHaJxDRTcf/zigfCEiKVNCMncBc8FvQkQXwDWD+ornkOFYHThiXqWuhtoI4TeHE4R7PqmSEHiIJ+aK/0Mlk8OKtEBQEJYPHHgrPrQkf1DTB17DVgf4zGOrKQo2Oa4UeeTLex1vK9qoamz/vTVxyn7Y8AIFBT7tq9kjLp0LV0n9A1KGYNNAIViOZtCItqhJyzK2UyOGBLSWCr2XRApoUxiCgNFZGa4+wpb+KopfQxtGA+xhCr/FtA3nLvSlCqv2SQTGXCUwbWw4XbQnleWM6KXiLrW72sgCt6aPWiQNqdkrl/YYfkV6Js799JCPtx8/Yzn0DiYp8MiiHTzEvVug4wzeNmxlMCcC7HFdYyjZZ3Rx2dyueQsZtq9j8Y1iUI6dddD+/2uqHaPdjC5T2LaOziKvBTqrQIg3Iucve4ChF7pS9k2zXmQb9d4hdiAf7P90M609Sv5TdLwuYFvod1sOESzqdy9i8NP67GDd6sSZ9jgKKksJGn/vYo3uTZTWACF7aJ4qSZ5+vCzD9EdPHqGIr+3bGxfMz+QQNIEK94ADTW8PMtgU4HQAe0ElJrjrz3TkDzbOV5K18+qJ2B81NZnedAQUKBmwmfpxf6Epf3SOqflNBS6k2ikYSyEOA9uVHJnQe3vPfqBrt1KoO8RnUjFYyGH4sDfcx5OT/V3+AT9zCUdTIPXM6Bo9K6yelPlHg+B5T6jiTYPYWnNP3CRQEERaUIFltPLBA+Ud9KhIyXA/5jQ21PDM7U4SfM1/JdpLONu2eP9iv7pfr8R0O2lolqeW89FlIjgHNa5cwmPaXLqMaiqa6MpmEQycq3czgaat8u1IymvKCyqJ+k9R3fNYhNnRA2LyAlxsdIwZq8uHidP9vku1S++TCqqveRwRlN3X23bvqMptl4/m0nTx4MNdrTUjIn46iWsYv1ICrlK/P+lTa38VmB1DPNbLI5y8MJH8x3IgmTXENi50/h9T6IrLY3vrs4qgGf3a8l1KUIr5mZSFa+8TvZjPGDkAJ9Wtc0C5quVQs4ga6vDQpORSkwO1N7m96lMDVxpolBpggPSK1j9xh1/Lbj+spd8FKGHsIHeXdM9KERI7umjqCKEHUbJN2pGAn5E8xucDQlJbbzlrEmGXhXBn5kuHyLPcBIGKosuPzZ8bzkuKbPF0iJGKgeo1P9qDdNCrzbTpftgUcY9+al9+VneRLeoHso5Zu3kR6wRt1JfOjslTNwYHaGgSVKbQU8YDO/Pm2Eky1ePOJ7XlIEhF7A8vik130+39ZbHuynueLz7kLeB5EQyHvv7e+iI7PORfYSOnBV83EsQpmPYzLr5onMch9902dRW6uBmAzZV4T2cE/oGoL4HrUvij1/68Fq9X31zfXwhjq2A5ABp5xNZlIZBevJcDb2RsRRcGrubhE+z9ggx0OXefJi75u7avM5IM2kl5DDSWJGOnU5qvDrC7xpbBVX1hufcBcXptgXX0IqpcGUxvicHq8k3aPEwfEKZh9yIhw0/LaRlndxLvN4wMOUeFYLnMdqXsa6KnuL+lLU8y47IyQPIHVCAM3pAdFFzqSF0Tm8sRTgWPLH7zmKaWTrs2QSvBC9lsGp1sJ3MHn4f0Mt7Y7GX0xTW5pVgxRtIfCWSPX1b4j8HVWgFAXPwV/6k6TLq3yDP3cRRT21ycB7X5ehukMtNckx7UYs1lCMr4HQbXJd9fHjvMpZVVQpiUwZroaygSa5tON8WNUWcpoFq6XesNMQwIZIg91UzbgIUTPQqLwMMZXKVN4HWVIVQoglh9aP0Yr0BkiLu1aQHNwrq6IA0BOX6UCxidndwXG7zDdD1YVABNyz7eiVpWv90oVQ6GEtr0IJZaSzvGioJazt1Kss5QEF+wNDtOew++RCrHUtacjhMwkEWoyyt/4s64yrvEXU0h8C/gK40g5zgioyIabwNOqKxRobmGGo46+Wsvn7pPf07FejnEypvwy+e8Y5awZmMA0ttg6287DzSfc8amYL1VXU+T9lWMK0fqxVUN8deVMgNRSjZPTwjIRPr5ccwRI4RPwn6cw4eP5Kucwpg9H59J8lHNXaaHGINXEW+xrVLpqGu/sGsv22aWcTvmnUVibnjxA6vHQH8IVvE8rlgz2K6z4T6PtVdVUBOOuxOJpzbSkczYJ5XvrLOADo8jiE3j72fa8otmqo9s1mNrMCWGVx/SCpxnB/uQ+Gvb3pPUhlWcqdsVHUmzieMTmXv3WPLsP81iJPuCk5YNmdegZQn19ahwm+Wjbr5KpZYnKRseTt3OtP/9d3ANPtEkpVdmKY9nKJ1f+c7jpwBu7NzCnBgWnSFJuhWt/jy25wZNq5v4AEieZ4UPKW7M0tDVXq2JaRomHLmVjg/RDaGfVxJFLXh6Pxkyrp68esNVZsrUlpNJMhtyf0LJDN3tycCDKnAQNxjOmJVwsy04IfRl1fQPYBNU9bN9al3pUaLqGoXe+Lg34HZh8EiPQBg0E1VEOMRaGkUY5QSWJoZbtT0/iFv9SzO7NdrLC7xC6bJI9zgJEvJ8fm6DWomZEMVCCmQXrIKvGwgyDL4jQdLYJo4OKamYCRV5D/Vw8K2KGA3QWkWu8RqkSdFuREFVVVsoHTBMRMQdSwkQLdM1wLI5gluJ83ewFQV2kZ4bHKw0JygCKSxKJL0p7XaDcgMhRqK53xbPIdqD3Qad5jbt19RTYdwA9k48K7fSm+IzwEF+ZMCHgEmMVRJFMiumF2nRHTftFKbRF5/3ijwMzvG89M6uDLUCVcYvWI4mf9oG9JUCg3rhdks2P5DfykfQzfonbdHwZ/GgNaNbgsqYqmk+nUQfLnOXl9/7N4LBRPEoPxi9fK3IVeLYP+BXqI9n00ms2OLVcP8eH613KiVDiUwYSpZS9BDVmOalre8twvKlF6lSBnGSbme/PsI8X7Np9hYYH25CFRo4PrQ3rQ57k/S9HuU6bjbKF0xp8dMVgCi+A1Qe2zhc+gF7VH4cFlpUsLJ9Q7+COOKDnSd8OfWNhqt7yT5evgAvt1lRh9hVTbaE6PhSYXPskK8/aSTPNeiJ+AbcdT/EvjRJCP8hU2201Aj9hSvoCwqZqLNPXe2JgrCcSXJdyexS2+i4KO6bII+ax8XsyT4822i0KdsNvctCoAqbxdEEhDyNMgyF+qLoe7HJFbRFPzBJBwzH5VTlOE1bfAzkLndRxJASA1BqcpyMXUTJKEY6vujW61D0TDsDMfOS50cUBXRhuqY7F/X2KDVaHIGZS05uWKrzigo36C7hxCmaGi9aLtek1webwaKzQYwppFSRn1k1f8r5JTtU07gv+eid4pGutpVYFrc3vH/2HrsX12n6bQpMq6/rqjh92AZITxPXV+wSfd0fyS/LNZtwrwVMsrk5Aj+AXKwfzaQl52NRwSVeZW+yiQErPQMP6eLja6nudZfhRgnfxiTzGVnSX1Tc82g5u78YafZlGpEUJ/gt9HziPBZwUV00mD/c+F9H6XJWLz8ZED3+hkmKYpIq8xMB6cWyB440cDdeHSrHX8WTbjDnOobKPnR+d8paLgxMqByBY7QsH8DkLzX9xU3t9vFavMTU4z8k54kXS8y5TjhXUF0QtWE3r0FRa0zpaUErFnbwyjXv2xeYgzbHqHw4EEsHhSuVbM/FuOveDgKyFE2MGMHV0SmBNWLxO9XJKJ9t32BVDcn1zo97OjVXjubDV97d3/k3/gfgv81DCdxao9BcuiwljCLS2hGtiHSn0MqjwdnVU9qqiOqkwGuvKvjK74GnV9BdU6cNC+qI1pW0YfZooc/KgDnymf2sXqfRbpDo2Jcj2/0nWzEZYqC5ShDITVrAKI8DfcHEFttzlbm1WgAlvO3vWQLUVlUx1P0Q14jk0g+TgvESsqzyLw3RPk4VugNTZjUsN2H5QvWGmzDha5MPup5+sGZx5iBXFJF8GUxC+Ug8+RvF+h/Cu1fx4ruEzZtCAhVrMN+XQfg0lakEUIKAukV8A/gx/ltqPvNtTsiYYnDBLmt2FOKjSOD/6KQ4CLLc1JV+TEl2/b7ex7fUbS6Q0+HqlIZ6H4FvWRTYmQosJyvIYeYB9p5UEDhWOy3BYHbfSTjDXQwF1FHTRHjZU4sMNFtvMBFVk3xuiD3jNXTRaopx7KY6eHbBfdNIJRzhXla25UbzSvbxsoB0prs6iQKpL24K6t7ysIf6+I/UxHmHCEobxvsQ+isRMG6jDir8m26wz5qrdLNsv9F3VkbV+IwTA6dbSQoPN1BvwMCICtadwfGfJ78jBRtPnmTACuKkH+Yb0j/J6v4YVVtRac0LWNoxEYbeIR9v2eXqYexfilm7pZAoShNBMVieYENT4hlbRzpmGbYBFGH6Gwch6ZwBt8JUKFemJSGIbPLMqHPR6z57qZVDBy/R38tnLsAvXfSDyYPNy3FcZlSB9m9UYPPcTuA8/9Gt9OIprRPGej5t+t+mesI5/d9LJvZ+SFpUIpK9s8yaVrLVXcG9Z9R5Lh7T0SqkAeuIoC9Au06W78ZC/gJlTHIB+GeNkXlntsIWTWptT85BCySE8RI+k0tjLRNS1vWXqHe52wxqfaZLQRysTnA5zNep6TfuZNCWV1hV2gbal+5I+/19ZrNhb/pEwb2G1WymyAslZSjAQYTAIGA/SOvgj95/WwR6UhERm8mQFsvb6pKJqm5O1ctmfHE0x7IMIkdV7TemJf/bNFnRnnLUfTJTYJzli2SUCDzIbM+upQC3R/TG+HG51OsMXpBbA00v3jSz0aETW+vJ2wCbhWm0GtYCv4ZRGOciUduOErS0G+0PcZ9ji3elka2V/ikpBtHFz4ZkhbTov6JsGILUccTOhiXF5Q/NtMmMD8ro2sovSs61ep4P2tBDvBpKvqi9Q3AjTzrHpBQZnUmBiW2g6yYFGRyg3WWd1sWBDv2BnwIJkyOAvIPPFHziL68aktAZEu/f38xPptDg4v2ZcbR1oc7RtYnnx7fWsz1kfe3b40jFOTC/xyHetva1XA38l+YosrryKPRFDqv/Q3GtHnGMo5D74kJsDay/qshlJRK/4FJxGL7Ug/+e8obRodKr5IJCQHfVAosAMtZsQB3Bu06dQajs+RJsxqFo3o9v7v+f4VeNTGZWr4gKD71aINDKs3sE8o2E7N4xlBagZGBpgveF9cGYH6oW3fggq+GN/ncXz6wuLTfn+zJD1BK/USp5TTmmbihX7711PJlJEhre7aQ7BOyRm1MbFS10wly6xoei4Z3geGXMwofDF33Qrz/77bqGT+sIzB1i+5ANVuzWtT05vhWe1Q8J1iHyBuXz0PYIMrf13FH66skNrzBJZl5ePDG1xwFCAg5YukavLOPFC9kzeicP9bvvRTdDShOwX7kikanl50Y53Qn9o38VqWhEeKuCWzrd5O4wxc3gwSUKQASPqjSgHEBtiJnkpH7BG/PFETrpbEqSk8qbpeQpZwvx5iPQaXGsB34m6TPVS6bj1+SyR/NBHi7vrFovzEsiphoeesLVc3rZJACykm81Lbs2U0uSivuVcHV08aJLhRRs0MElRm28FRUExlJVxMSIphllk72L/LVKu1gqlPt6utytU8Fe4ltlafz4pYHLn+GN8PsirecNMKhbXrEaLxbSUrBJm40hqov1t63AEOL3BbpX3qis4BokvK0rVnHTKdwlLcoDuw+KAVtoZPx8QqfBst7rRLsFYCpN4ujOmJiFBF5e9riT4PZVnwlpn3rESShX3bMnPYeqviVHfjE9sWJkqh2WExiigD0uAJPboOHKKnz8wBpyZ1XSaJ+FDt01nIpkmZ1lKOp8h00knLWjjJVg7PaGOSkP1dl70yjnuQn+W4Z8CFiA0AdjTFcIXTrFC78ckkN+NuX2QnmD2x/A+IiTOG98phT4NyKwT+Gm75W0aY03/yj4XcW2gXlC1BMy5crvoTmnEx555o66gJsd3WC5lJSZl7YgOKlg+sg8GL1pZE4DIuQRmCeoOMuOrgNVJwjzIsNIoikdfNTePFhd6wW9pnybMXmgPzYd6ozY0ZtclfxqzNALifZgxI1McKFYSHGgbTfR5h3hACW+2m3SRUEMSo2Te7P8QlgpBflAOoTZOmMUaovvvrpHXrFDt5z0hKJ1gDNTEWNVilgP8x9Wy1BOg8jiL8wcnwIb5aQ50DgdH8hZEfh6G+vAMpU1rc7RrMbUGbPg0D4ye8GYP7MJtuwKhq6LtcWnFrONPY39X1a9o2qc3JntczVik7EtVJRsHw/QW/BCjuj3cBKcVAKQimMjGKcIfhJG9CP4wo+sLVH0LKmjfRlyqDtCe5xSnNZmJAqbasfgxILq1TsxTlkSJU2d79y1W1mvBU4YUzWAB6Ku73Rqm48zm4njZc39vHIi1oxvF6W8W6Is/mRqa9UgGMVNfzrjt14iTsZ1VkEybixdPfet+DUrhd/AAbL/xAQYeu28YYIx7pj6c1g+8Fc5dyw9GC8WoG0VzjA8tmmuj1S6bFSO3dxDfpZ3Mxll2o9e1q++xJMO/w0nuC52rPuqqEdcJQEHBt5TUVguwO58w7micHJSFqnRnPc5++xrsL1oJWCOI1p6eUCzrwl0eReeQrh0oGQqh653j8IgvMsJ7GSZv9bj2hZSBSlu12xvBoY+PwvJLzzHX4OfR3GxiqR5aPcAjai2TnaNfzFBDriWDcbNQXJTUp+XllnMTqFt9jQcFbF1IpYdnB5aWTI5um8Et+ebESGyzCxo/m6Nk0yHyTaBnkD5ZnvwFxpmv/w+iwGzWgxpT3/VDrg+Pbz6TF1gIZbbL09bxYpCvd7/BRaSOL0KCmvVqvEzic/2NqPddMdquoS4/KEWyOt+pS7gYUNP8DHRSth24P78WhcoKbIIGeLTVti01S/TyEIO/WtZ6YJQDoWVuyuHV8M8vFvO4jLe5i8FNFwnYI/t86+xpHEui9EUOtZpEeBQrI1pXRNgxfPyaM0W4CLQ/ihqRy/3bEaBLBBSZyv+B4V9bjQQZITIvRa4dv7v2WU1RNMMbOgZD/RiLGpgA/K/MxaesNZ88IsNKpcsZON96zQPeII+O4G0/BZ/w/ZNyY2JUPm6bGR4JR+wRrHNbsDPQa4itQicZ1XwnhHQMslDyFfhG7o0/6mO3yQ97LQVPbWn1q+rMCAwuLChDUcHruxILc/I/iCvt48PfAzD47j3Y2mBRrA8ole6jRGFjg7+OolFomJuHeVk5Dh8E1kuSQa4KmW6km5X4xJmmMwUzTEO/fzLpi8EFOmweo6EhDhzuPiVSzdPS/7f9LRYIpUZuhUYwzCWxP7OzMlzjRBSwsWNRW6OnWAbiWmnF5wr8mc4FGn4yB1BI1Og9beIR5d7R6IuuZvbD2IbmLOXaXkkWwMa/VFoXKEbCkDZx5KSZi+ezoACXmotO4BYuaXCVTjg6KpC39V1uaonX9hkbIM6ws6zzC+1dR0Z6KBnhnKurra2gvfvDsXtgCebyCHzw4p1yaj5yBP1WhPxsK0OFLuEA/BO5MIeSEpXqErFHuxP4AX170L5CZaqHVSyVtawneXZTSO3PG060sLYsgDmswrjmmOWO4VjwgXVQOINRAsI/1U3eD1S4qXhR/+MwLeaSZlK2SNxY0Vf8h+DwOot2S0GGnYfjYVGlSSaJ46/Am6or9Dnc0xpvy9/IF2ijkFZ/gmrIqxKwFkkDfkdKgQJaCmRJ52F+oHbc29Clh16l4/KO6LPwA4OKTvupgSov0vTV/VKpa1BdNnTAqPs31uUe8zeYVGps1QRy3tj4iO/Jm2DH7sPIwBi+TgNg7putTSKrgdT/FbB3XSoBefzbaY5TuerdRW8Y2R+PlVec0e92sBq8kox/A3K2a0zRYqBf4XE6AAErPDz48UxCDW0nWGtAZwhXnrm7nONFI0TuOnCEh1sIdGhLDbo/b6AwCWD2d5p5f9RShMGAh/oXpHtGKZQY+YfybQd+gh4TdzdR7YvZziNbXJyMrugtEHPwjaFCN7k3XldGOVEnC7kQUWvft/zzCthfGNJoao3+P5zYgZ59/huvCWYYNnVDIK5fC2uTGb6jLyHTNVltGDvAhge9v3z9vBeCnED649B9fw6z3C3ksZJIFrj74J+21zZMZj2fhFQBI53N2EzR4wZM0GVtCDFHu5nXYOFGfFSgBHMtGpxZ9Mz45DhaQkoB5S2X2aowJMr/ieFAfvrmt/aZCzivHKFSP8GSzUABUeWFFLM0IO9j47vaIcxY8ByEQVLjt8L6A9aOBSoIAlWPREJacQEPwD0ZTXBlXEhbfa88dVq/l7k9qKSrl0x/XD578t+iPyG7xg0Dzzgh2EXTUgNvovcEfeps5cixooAYU1yTNVB3nZTbjH283ws0tfoczHcuYNZjZLXbnrzqjeE9JwUFWIjAYUHkUvqg3LhGwddQ+Cha27UVHCQ7R6P5iRZ73UiViTXqZ2kXPDlEJRXfDFZHd9bRlhOL0nPdqXKDP+NiNCS47KksRMY0qOm5FMmwQEc1tWArU9IZO9zfMk5KIFYmGjuUAm2DPA92KEvXhRilUqF8VvxmoePmYF3WKl5R/zvY8l2TOGK79diJ4Ut/H9ACgTkE3wLObB94fxsmX8Cu8sn3mYfV2pBCJYr8nBmR92crn/kUzlOAVPWA0ggUYo3OIDWO1PLtQB1Ni/B1KzUfQv5vZim924DQ3wOyhwB1DulUextu3C9V+nHMleQtu532uCg+uPYDw82H6fNCXKdlr59zuovWZjTUZjpUmGlQYQDhjCw3tFIlcSRLAzd4Mag5EyoAeilEtQlxHW8mVQXUZYiCe5QrwcV9LeW6cQe6wCGn/KWpGWJLyvQWpJ9K/OczrU+ZFCMrJch8L/nv3KpxhWi/YdD14jrV/R28HtUDSjA3HQapLoutF95ekeEYRpBs3A+iemryNH3P8u9hVyzbNJGtA+IKInVJTtJv8f+ApTRNtKDcWsLhoxmdOJa4qXgOPO64NDGn82R6l4cmyQkromXQ3mqdWT7G3TKCg3S+fqcvgLKxhvm4NDip1zxYR7lBT8mSKiGjs54hZ7bZhGclfbT0HwxDCnhkYkDIE/YtqkwRr7PMXJQQTAMLx/7W6zXhMB+DYj02pRTCF3Pj7RJVzyr0T/bqkJbs9j2ITrub13E9upqxFFvV1Icl6e/8t0AxclFIR5bOJjRdbvBz36qtquTT3PIjL32PzP80rxrArj8mHiMKxVNo3ilJsGISMpOOGO445D3iwyg3Pyw5x76Pv37hpWnRj4skdKt32Ye2rmHfBO6y/RM73dxMTCEiRy1N0HuCA2vLim1sSwi3fdpQ4+JOFtQmU02Jzpyg1cqRwXs3eMs+C9EJW7t9LQmjZMMQOmdmmBYNw2HNaSLRtI9j7AEOSiYWxYMMpn0jZfyiRCNV+7/FYz2IwUK8MkpawH82E+KeEWtQXCbrZpcKlz9G2JU7MF1j1dCxEddgg44m4Sa9jTNxrw6q+h5dzSjcAcVTNpFzhBprRzvAEvzSLJ8CrSP0WW3BsphkIUmS425dvXvLQ07FAmVzynywCe91f8hcoqd+gFfRK2FROuKSoBQiOU9zeb6uxfh/2p9QyLAGD9dDz+jhERtkxmqGFp6qI+r9nqhzkRposK8fnNPGDykg5PAtV5EPP1fGUGLqLsxAMC+IsZ+ncjgeZ3Zp0lJyVkZJqWC4O3u/W7lgyAeBD8voKRdgF54bXRfP9NFfRJE7fq2/wPYYp8L0SW5XMTGkJ6mJo5KqmBvBJzuLAQwgjiVYax9hBvwBFiwkx8rgJ+aH/UfVwNdb/M0U/CAwlbl7rmYw5X+XHJ6QzeMdEZd1xNDOFDnl8TUwmiLIeAii8sWzp2Jps9uy1CkzCcl67fJd34JjO9sh8KCdggH95X3LeL+IZN6SBVJWLRcBB/8oEI7tIzpC+S9piho+j8kfPk0i/HkrVGh4HRy/Bt9o1ZcWxi5BE9XjDCcqYCwUpKzTciv9+GOUTlbcfwRCKgzl+jDKNav39YFZuG/ygLBbLF9GqADmLlW3KTwNg49r0y4oTtVkQLMtjrUR7SOeyVTvF9Bib3OcdvWxUSm43SrevAuNrQXWWbN49+1fo6d+bogTh0tD9Xqir5Reh22hBr5vjEdSqhin/sz5NXk5CILIHZdeNaAEuhrKstvNuhoUQHv21XU0ZCtW8AO+X7sjjBUo58Yfxob588JWryOS4M+7I02os2HDuxtI9o6c20xEtmlxE//I8wwv1fNV3huYqIb0r9se9IEuq2GCfvAeZCh5BcpQiSrVcMHhPtR9gt7mhQSZCo4O7sK+T9aFIOeOOLdvl8vQaWWBx+DApKG83YA9DMsLnK5UluaAzLrlVQpDGatR3+EUZhqCZ7jn3dp9IcavTfCFyS6SsS4BBTeDk62gY7q9ZsyVj/2eVgeXl0U6NHiEqViBCmYTdX0Kj4m4LHWLITDdzFd5nIMGJROtJlS8TGNGBuJ7042D/Eg+0LCJefBXRUOlFhHAKCFo1gmBMkrI7AC9Wn24RksGfH5tnUCHl/WgqozoD0Q4Jv60K3EO3N6Vs0BuJTfN9w1Ryfp22CR8kyGX6sUZAELvxJdoDC+LkL3bvvHb1Xc52jr46qeb0n48jYXR7tOIPjscSImG99P1LHvUZ2quyYESKuaCfh1XL1T7fCTw2WIkJ7+MSe15b07O/CTlaiprOfHHpl074mifXKTAPAB+kzqJiljQNcf462g0hbB0FheopAQnr7IRNPhywythveOPHgc+wW9k2Q1pxWN21t6hANlXctOX5Yay8F4HfKdZweDPSaeqqfAA3eB7cxUCccxoHHnowy4/bA1sY/45aoIiFOnqupwSP2IVccHfrWwB9IsTW89nQ9GsS+/CSGPukhZaXvMdyCSdbrG7VUphrrxLk2oX+5+MSsCjL4JKqceCxGi+FqvIVX62YK7j5c98/H0TNe7U298z0UnwByA8gGuliuHLFCcaw+eREePMys8aiRw//O8qgVANM1jAA493vVfjLVplEdDl3cjddxXtoaQuuWWhw5rsD1Dx5jiUklKU9Wrdwv9/wVZm6HqE5wNElMPwLo7fMUiq3C+CQf75wFtXTRNvgFWa0VRXqv97GO57X0T0xAYjKvEfpekXjGWjXtp6PbycnbtiOZTyDDjN6ntlP7ROUFCsQDu9hZcIyN5ZRRn+f00BQMiROxT3hCxrru3zmL5ZgyKDq4EeXx37FXe342S3bfjeQeK4XHn5uS+28vavTrK1kuUQDYJ4i+S2bolkX43xZZKWy9Isz0Z6nmyqCy3yB6TBQcgqXEwojQlM+x29rCZR5/N3sXzU02I5uLB3q7NL6ETHvG3Bsax2g3RBrSudfY6roRoyGA9jXBGz5l4w9qf8WOgHYBqiIyRWkqShqXMROwYspmM1SQ5h3rUQarGUYUNpaBKSYD6n8xc8vTn99N7kcQXE7KdhqRkgUQ4ye/+eAYuzChjodm2KIGalNvrPmZu/s1A6mELKyIIfa9UnNeFOwbptmQbPpefxRXSrLkzq7CG87sa5nsYU8IlX0GxX+vU8oDrMNeT2BxCmDsHQwOa8TvbR8zY+UiAXqC+GTV/oisPvzL+tHr8IV2MzmkD0OugHaASzQ4sNUkRqEUPIt/AJUMII68eKOG5XtfPTzVLmU+PuQYDX1+ngYQEb2cC+ea+XIWd63TaTSfmGi9Og5O1ftGC/KX4qqPVsTW/CAvn/1Xd5F40hO1Ba3sf840N+am+B13EpuX0AMKkoyUqgD9vw30dTwq4oEIIR2Fa/nnHi/Wo/4vtFeZTqlIlQRjG+Dbt8wX61+BA4Hyn0P6ql+cQQPondBTm95ajQqMpcmte8+LlBd6MWuXdNfuC2BlZqdJUk9fDm6c/IGwr5aI2f7jKpxnN6CVNzAYnGhyhh/chts7a0FxUvbko9LniOFjkY6nDPOhg8sw3EeIM3x59KDE30Djo1HAypXq3ioyJ3hUpFpaW50YVrACC8ouO+LxDhCv29nDWCg70IAT26qdLBv/v/9dKU0n2+qAWijBZEYPz8PKWI/li2Jtc59tyFMx8gTBJkd1ZL8JOLI0C+SCD
Variant 3
DifficultyLevel
655
Question
Joanna solved the following equation:
5x − 8 = − 5
Which of the following could be two lines of her solution?
Worked Solution
|
|
5x − 8 |
= − 5 |
5x |
= 3 |
x |
= 53 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Joanna solved the following equation:
$5\large x$ $-$ 8 = $-$ 5
Which of the following could be two lines of her solution? |
workedSolution |
| | |
| -------------: | ---------- |
| $5\large x$ $-$ 8 | \= $-$ 5 |
| $5\large x$ | \= 3 |
| $\large x$| \= $\dfrac{3}{5}$ |
|
correctAnswer |
| | |
| ------------: | ---------- |
| $5\large x$ | \= 3 |
| $\large x$ | \= $\dfrac{3}{5}$ |
|
Answers
Is Correct? | Answer |
x |
|
|
5x |
= 3 |
x |
= 35 |
|
✓ |
|
|
5x |
= 3 |
x |
= 53 |
|
x |
|
|
5x |
= − 13 |
x |
= − 513 |
|
x |
|
|
5x |
= − 13 |
x |
= − 135 |
|
U2FsdGVkX1/Y9+h2f4dUqaPhRtjShWZGSJCDV0CfNLkGdBcdTSLNTDvXA4Jp43xj6fgdFyQ0rYjp1dgN7yx90qiDz/VkIfBoqYI93k72uOUvdjT/cnC1sy6F67KENKgqHsYp2HuyzVNc6N9S/3lZIOL39S1WoqlVo8LslqidtmhvrsvilBdeHzYRk6BkCepkUuJY0b6uuj1HfHos3lO7geWIt6aDDTVw9qYwfs5K5LMjsgK62NCDNw0FNgaIuB/7sjvqFQsGpMPm5puYrZmncl5xgshlxE/7jn0HTkwfVS6i7tiWz9SHIA6sJwr8JF6ImPfxvXmK2BPXOAwMRfkVBvU2Fa+i92D6TrcQSrm99jWPgR34iz2M1LW4ka4ckRLV/8hA60zPgCzEW69egThXq7Z92ZEyCrtbppIx+Bhy9zYUJyBRhd65jAHjuCY81ffNpnVGS9khL4fRzGxLfXrsh+uM6234k6AQHZn4U783ZhG1hAkBo2cBQ4gKvmvrnen2ghL7PsbwcSGpGpOfDi3EoCxDtohu5CNP6RlGFrVRMYh2GuvGlj6rtGzpp8gdz9NPkFL19aZyUDfKgrdfcY5LuqR/+UA1llwZjKN50MUgBqlrKNzID82CNa4QJRKU/BN8Xax2Brj8wRyiAWgLmc4/gSag/Oywa9g/MNIboZ2RlESHLN7CIjul/2IkMMg7wAv2kUrCOwFcDFx3vhsRvG8fmDxfvsMR6W1w8LuCoGzX88NBTr65IbJiSuhf1FB3A5qUPsrlHq2HkptAAOGhVZl+E7sJX+Bda0gKf+ilaZrgRJTbGfx2yYmfjWD2MhZfNX9ATl/BSuB/KgCh8SbRENBRGIMGKJ9SRKSwYkGFcB1ygXOcfaTfZ6bTcgV8/Be3wvNQYsD9Ltar3+61Zlink8p5Yt1vW8jR18yB74BjZzYUhKjxUoIfBWomuPMy6Eo+D7adzcHXbg4jgrqKhYkz1s8sM1V70box9bBg7KnCotxPYns/QfeYRVdak9SkMfula5It/BepHPT2mydmW7MzHILOfOd0iYgBlNxfzVjr4PYSISA6wWv147YR70mHcuoqHR4a/XYVNp4ZUwvUv4U7de24+iYqIxPghIqJbXSJzaOLuTbHY0APsfP+s4ittNdnZjO6XW6LKTizl+SrRoScHM4OgUQKy4QJk0ViwSPsxDQ5BKWU5+HHlyWFigO8jtDNkmXoxyf7ATOLhc5KPslELuqKCSaG7ozijLG3z+YhwN3HgK2XFwd2TKSDW+Bxw2DFGm4rTB5m+kiP/T5RNpjkVxb37OHHxXMfpuidFusLJ11XLvd3PnMjzewBNyv+iaGpxsPXLQwIil79wpSKpuqReHZUriAoBnLweUqcfqU8+w+ffzZDVjHgtR0PH6uLNRM4XqA+bqT2EzyT/08+xXauGDBvAgeO3zrx9wPV24c5f55R/oStVE5fd3mgHCOp4HbrBXdjzyMO7MhshG9R1+lGXquLkMbL1RP7ri2gRHWyCbgDMD9WIrR68nguSaYhOPd2q5/uNWA4SIqntettK/8rJEgio5tXRsTnD9EJ7nJk43r1HLGSeiPNvBhtJ46/q54tTlcvIX/PB1gmTks0wwux1C9n61ZfWV8s/ZKInTv6qvuMi6yLkESHKIt6REJk6gmJB5h8pkW7jPsdyEpAIyfCF3ts6cd/0cHpAx36iaDWdnamS2MbgAssECf/7rPtJY0OBXy9U9V+cVwQ3zoXe2DuV1jMKVFYiiQzcViA8Jz1Y20NdF0654ZZu77PgKTZci//1zOMtdtu9Z737wZaOiN5MhNVaafJ1hB8A8HBVQUlF8wxECui/+p9m05SS7izujEv5sOMAM9WLaK5HKaPtmboOW9DWlJhw8nYqzEIvk0ep6His3z/iBzJ0xRjxolxBjISGZgM0HQa4IQG9DPtBcqPEqWkcV2hbMqPlwawQdyqi3kYl82jsX52TiC0s3wEzAKIhchoZqhZbdl9sBKc2/O56Ie0g9z7RJIJKMmbDbH9A6eYLCGQ5Pz7fn3jzrrt+sadovsIQ9h5atjAr0CF/erH9vXlJ5BbIKbfV+2nZ9ng1vkCoV63elof+Wnf+7LlGqWXfS9GmKd/C5ej/QOxECHtoRBLgHrT1VX/5LcA2FAquwJNFT4YDjicHd6QNkaP0w3jPISIG62bDWxcoO5sasJD6EqPBdjNI/PJCZlt2eE/36uYj3onC0rYwoSmjohpvICwZaxOtg9LTIksfz+nZqgF3nbnw5OERFsq4+vdIpmjruArC77TxZRaY9vD+29WStadIUv0H2mtJsScpVG53u8YPO0cMe/2lCJmpEmU+iWZ4yiLVsjOcjrJKZV/dKQbkEOXdu3ZEUtYQtMiPOI8OvJaWSnxhRKzM6EUUETM61HLCDqny26nhdxab5JzJOmQL6u4sSrPTGe+M4F0rOUv3H9AnAjLfVLMz+ZhinkbFym3uuVw1l9AAXgv2bKM1/AdDtBh9u3I6cM5pfjUz7CnQP4C64LqqeNCyC5w6EtmG1ecGhvTpsVFoeb3LuaWQA0mUSYvCS5UEyDtRaALgGuP0+y3qvDMYLMhMJuz08oC0kX3KGNeZx9GPZsOF2xzeLoV540gYWQDIWY3UaBhX3kt26Vh002FFIR/mMhtIJJ5TwG8dFHgrpYukfisQXLNeE0KAA7sCCTH0zK7hJ3HzfGauVX49qPkswcFI0NQA5K1gUWJLVmoI4i+Uc8ubBPeHX0DJ9R+w3MTJZNc5GrJ5nXQoqpj4FK6y43Ps+OmwYMPzwFNaT02Wdu+NSbMiQaF+nnEQ2n4cOWgt9FwKg3pmogPzheoPuzvPi9rFAkPjL3Kts9I2XsXNogss+eBuAalJ/OsOFdOt/voj/0Rm+A6BrhI92ZxRgF5Vk8tIg04W02YYVuGHmjf8EzdWwPunyJw/w5bzqpeyO2U5e/3I/xZOzHELzpxYTi+YuEWj0A5AoANpSJ8suLje4KekuEER/AmIeX2tNSXYJGi6otup6PCUbsrby/Su/9niwJbgGzHV+b94GZhwROGCkW07FWNRs5CgsbKyD3ioY8ahlXLyko99k0bonSMeydygw7Lq2khdoYsxfx/KyhwXQ/tHIu5iza0EZyPABnWfPjO7bGU6EIFOJRAy20yeqaqoQikP1OPLOKlYMR3Y0RyaEmM8B1uGkEk0b3uYEl5FAa9m589+ncVzmIqXFpqhHqOtoTkRQDf/rw+QCa3Ppnn55PV6yA//WAh59Lc1EktlV8qatmoD33pYPhcTs0wFx9dfn9x5AqgoWkBhbh2nD3xJtZp38uSVFa2WKzjNrSk2NT7E3jhE38r99cOlvuCg8DNqcSDY4O/KD49WZijfTHRqD46oSEcEbux0M6mIqK0tuWDiE4W0TbMeaKIlyWorlbKllYwHmyetnM+7Sti4dcoFAh3kpNd5wKA4hZlydt3A/4dd30JuFhA+6lZKqebnjoOxqpOLv60NZ+TysgnYh0S0Ud+W9oaB4VXjH1TemCQW+rTSfzW3TmKrhmnuQrWWZ7a+I8ziz7sJFdlwqe/TEZpELKKRmlbi4xJqyU6HX/yTa1b12STGWCpBPwHGK3OV/lbHmLRV+Oaa3FHNc9mdLZqi0XUKDE1ZvSBqJ6HnL6+mlyy3oI/1ZUTrEiblDux2cvugJWGpNzki6QkFqY7a/fuz9YpTauu/PWtieuvzhMWR0G1X6jSvKVpNJQO7MRtf2G3wi7GIPc3UCk5ZvlGfvoNuPQ0VhkagEYk4H7DH7o/9MEl6KetzQYlqZj1gb6cFmY5KAHWKjY/qMbjAVGTkzfdzkVgavHrDDmQiMvJLSR5N8PWswpZovVf2mE6snJ5AuopIdYTTDsdq+wbSAkhLISonqHQR4jj5trg0jdlQXcK8xjj4FlCpUEwQ/QymG/aB7RhgMWaPTTTKDR0sgzSSTZ20OP1NsOJi9L5g46JB3H5wtRLPSW4o1DToOobyAnb9zTxkqPaeTj1/BNM2MlUbxouRF6pM694Qwsae4mAkBKo8xrrf7Oeai0+ibY57l4ZLZrjVK94KGn1on4XdkKOykqKi4mVk/hVxmeLYm2vp8lYreYFAPct9w+HalXii/FBGze0guiJ75EdHUDyuptnJPy3gro7iPKFAK3JjtV0We+WK4/PtQb7/vxdMyhOvf3rINU9w3x2jOoO8cto0l3XMh/dbeu7+PsmHh2LXrkcXS2H1Nq/UaI/jBMdIC8oZoFQ5rN7JnZK+ICf789oXEJxgRwO5NPOZhG92BqR/BekKnr00lg5vOb6PmS0QtxzV4cKEzZpvvjM2oTR3HHvZA7jg1vuNi+28zCLTrfeWLKVq39o4I2sELOq1egUDzCmahG8deu7MMOJGcl8452DO4P8DPQSmFzAqd6wF/gXJqS0ECB2S2fkgr5sLzPkGmf4hK2iKPlL6SNZLIXAl6UE0amCEDwNoIA2BokkwiF9dVw9+xgmnxykkxOb0OnCwCdBTMyB3+a4oQvHr6e5dJyeetV1JExE/H2o6udfu472uBtY9+tnHriqVPjA5YPED+udmxNx/GQw5JAyg0HQBSXiYyg5Rmy8Ym9pSLYnHXb7fgBYeTmDgk6VrWlqaAY0wVnuHLp3hVkJHag/bYEAXmlcrW5Ce0KZC6U/5EC2Y2octIFUpWBOqGYtgj3cIIdzQWk2QzExyRCdhwnycErO8yxiaj1Z0nwfPEF+Osj60FoYXssLrww0ISeLiXZpH7YmbQuCfFLACJdopT0tx2+v6YgjHbzpS/GqgTel8RicPXEuyrdlbcL2lWfK19GVtD6XMSegsqzprzhKfjFb782sbWxkyUb/pdKg4TR5d8QRsLkXnohooAOZfyj3RBPpF2NsJXS50dgbTCf3gdyEWeG0vTGb3qRbWILhkf5Z5gpbUn2GsNhT8o1loOck0iSZOm7jVsLVSM9zMc3CiEQVjxQWT10sy9DeSc87330ekuzf7RpdPGV9xHuCWHyQ+cpm8xqQewSkbAXbB1AWF3US6uM/cE0/8Tlw25x9IsNmNx3O46pe+PWkqIP1kLdBIygsHrKR7eLeHIcTKfAhsins8bzzLcyvHcSiVYHqJWbPUjBfgqAFBm/A0dlyYwzpL9SVRNMUR4zu+y73Vu6K3BASPwLnOwtR53TYe58YhwgwxlOGOoi32VeRnzzRt97GypI6Mp9UdZOTNDxqslIaK2gDzMQB24Aqx76HiVqAsPXXptvIe7BXHlTT2bHG66+sWxpF/zBMG/78Uk9RTq97/Zk0gKd2B+hA5QG3bg9ry8zJpPXxChufq+tTFtnEWcZRNDiQ5KaP60QO9St6CyHMT0pWjXyYUGPkwBfrLBLkR5z7qyPQyDfeLmuXko//sUxJY170wTVwHuToYs+lF4be6DByHHRPvPa6YvOyv+1GUj3F/P1BIT9L6vo2UzPBNaY6KewLvb2gtQQ9JolzIaChuaRVzFO6X4luu31B62C6AJtlocSksAUwVnmb019CjmPiQaOO9HrTX2leuuGrp1sr/s6RoHSOq9vC1zuFDQnLhiIn+SEpo/9rSs3WrSCkHs9EMBO+8JRJu5BUPMBDywqjG2g0KTUZZ6cQqOIG4mzUbZW0pGPyNTLw/4zVYZxkQ/6Rx8eY9doWwrdhsRu2xKya5KAcRSEprI1zG345xRuXXvXTyqeyB+d2AQo7zRcUgVcQ8jl7LM32oQCkSjJmaDAqZ1uEhYH0LqVKjqnqIubiKcRgbHqMXXyMdaMIay/8xAajQMVPqyUdHj2h0vL3GLU1u9MvLWCggR88CC8N08lOnUvysV0EwoTYokuYWr3dSNCC4kTQ8JKg/YgQzMWOmUoUKnU4jFngqmE9QM8DWNaSrmCLCHPlmwoBOVxZUAGNGdQ0G8W5tPIzaPvLspR2Yxe8O0PiDre1/RgvLd/4RqjyVIkIvGWLQFwsKmize6kIUKgKm7G1cZlOllUmg6+dzdJhY+SJwpMsXj4a1dEHVh+3MEvRjJzoD7XfD3ezxFd1Z+wBunpQ8+i2aTzcUXxDAcwNhRjoojllfJNMABBrsi6I9KjGx0QHxtZN0IdWkB7e3Ijpxn2lkur5ngP2x5GxUXsm803Ji2VEn1AtF3g54f7pv4JOXYEwf+Gn341sN+sIwVfgj4gOSoDyhQZ/VjXJCDGzd/EFZHz+dNS3itCuaptx1uaCC+iXp8wNcjWwia3DNysmjxa4RVwVXbbcxwg8jpeB+hz2NRrDI9eL3st/S3d5zaSubBwUAZgzFgnyciRfU0sVuP9+KhcEJNn0vZXOHzsmAkSuc6Mrwqc0dmjYMvArcB0GqYApM2pu1CayW6jo6OGtVaHb0iuVyi17M6kTVXMCzqdtECATmy2UcDqsIjE3UmptexZWTxTsNtHbvFNnTauR7F+QujwiU/aBGjGgGhZ4j33xXz+jrXb+E3sN0ZjBrkjMa1/9Cc6urp5fp0MsV6PE8pPdNIiX7WDWeJ0fKSQMDSy5r1nRTUBl5SVKDB2n4fv0sOljv3D9F5wLlP5fXv7fjJHp5wlMmtQMoaj5HNS2MVUV2OSFPMSxNNQL/nLs5zAGn0uZJp6AezEIqmBW32vD64kYLmInQWQ9OoYHLVkXRLuAEQEEN7nr2aob8menYc62+x4H2s3pdaTnbavVSEAdLDLh3KhbgVrz4FjKF+m4budYvp34aRo8tA7SYvNuAfrzS8E+t36U2akxTpUaGlXXAo85OGPiJ7Al13VFycGsDNQJRDwuV4RouhuXdmOf4JTZb37HeYYQ0P4ySs6p81kivMnqlhyH2BolxHitKMjKgV4LtdH8aba9o79rjbAl2j5Xj4SfrKX27Yf5JwIV7jmIez+3atzmqlb/vEjdSvw1vMEaPjNg0B54VhE08HXR756v9C7rwRuuDFMvhc6nZ3AEQUsMQdiDCw7ZK3mkQ7nhalVrKkkke5KKy1J8ZYEZE9PCN3v1GtqJJqadNTHfP95dQEryj727WvcKhuoasxDubs8e1A5i2qjz3pm1/FRvMUjdh+8GUS85lKAmnboPTqkxlpbGyia+davw4HuAtLov1/qAm4ymtOXjo35J1jvTed5yyr8DxeipUVS/zzorE338RfUpMaL60qmBEmJCd2P0gslGftPB3SK5vCEjHoaT5jPX8um0u81zv1s48fE7NZzMEki+Lfl0KOxg/iCsPqgtDfkEF3Gp7fj89pGQMe4pScXXUnVHj45oEjhuxFzQ8kG6W/vSDocs4qQWHfYdRLrZVzsVgkYYyEdOq/k+iUS4EDyfHd/xwT97ZfB2UEIIdsw4aTzqkJ+gUz9/38DCwdgj+Fhm60t8FUy2hVunyJl1o7D3LhMPGsGZdz0v19i0JodADbzYOUiA2tM3O0/L/nfAqU+0ITt5leWj7eCkoa1qM91TSg0OHEHPjU3/HaFsG1yGoDMPLzj1W1S8k9uGM32k5bHcKsPF9WBRIVUXSDmHPopf04BcXUxXEyOEEO053aQugrnLk9XA/+kk6NgAeWqA6hAtvuGoSroEP9bZNhqtlF7JKCGwk8qlorXiqilSf6PmHs4WufgYqOBNKYdMplm3u8n1ZFY8/Klv723ApcfHXe2xyrZXHbRZmhFYI6W44LGwkykj1jORvRMEUYGMDxSITjo5cz7RzFtKUxPOlz1i78TWPMS072f4WD6jKP1YLlmEtUR4B2az/e5wcce0IxRFvtIfSURMUObTRBoJ3N9AMd/ig4cOf/ExA/BDpcwIA/UqzHCNe0Qwjwb1O6M11zw78c4aKEsdorKy5f5SwiUYANAF0REHgarVDQCkY4NGNGYSzrdJeFfQ2Fdj0PCJ6BGjYIgI0VIwjmpzptdk6xkQk7ZVRWA+82L9jMAwXJ/SVTDe0cyIRpLyNtP2cFCkKiGC+nBU8bm94A32WbQNh++iDEF/ybxpDyhCgqG/DEjYJGWg19LgCaLcJdD+kPw0gFcxIicl2SAg4DAH949Gaj8Ys45SVBO2TbPCcJka3ufLwsL3rhCeKM6Qgh5dcJfX/AU1nwVqxNyBPIYRNblXO8kBfVW0Yh77w5Af/KcDPfJyk5KeW1bg3WTPMm8IDEQl9+emqTulmFPMBF83NH8J5x2/YiRhRwBxh3hMB2IJ1JrZwGcROpdOKwlZYn5Z+1rEoEAKHNk4dLSgQjrGSpeoOp6AK35xnhxXjpUMAMiXwsXflyDT77Gc5gbML06tAIDb9yHM9T8nACht6WuvIF6aD3ftDfC3cqjfGbV9grEWITHe6DsMn1b9gLVAeRL7v6JrnoHCpGr6ZrKCBQENrHOkIP2CunPRClHC8BtPQPPX2Rd//eLsI09q8qj6RCvICDdlsF4KdgnvS0Vuan29azbsGKxsqdD7tpWxmP+9yV8WmlXHE5Z30OI2W7X/Gpf8H/gk+FRhnknNpG1t4K/PzyBKVCp6Oed2kNsyKt72ZygIa+lATmrRCvZAvygh1cyM/lRcxbFdE81Nljxnd8JuDByWrNpwbRHyZjpwSOzK5npx4VcO7QGY02CQ0EcVVhJUscCl5eWfM9oUZ8mSaemuKmBCj+WE+TeWP8Kjw4Ayyibs/cX1ir+Ibkm1XlzigpXac6shPikA9UbykXiblI6TrjcWyC1sjzN+QFvhPH4eLs7kW0cuK/GbF42ckGFxRDRF8mMPZoqKPsG595FS9DSORif9yGiaAmne4ammjrMBdhwq/3ZPXQGQHMZkoMc62oYmhSEpStmZVfwyxtpFBpP0r4CQfBMUZw7IUtj3ZuYTHjSdscOwnVyJxRDxd/XbHkZWI1Mre9UFCRbL56uU7XFEYttJOmqRog1TSQUfN1A5E41lJGNSBHa4x7GandJ06WRNrvpLtLVuiCmvd3O8xlbAKMLvM6XhU8SYU5kaAP132ud0IhwDyCfEeuOSInZVeuZwlDWmvrDwocc5YyLaflIyJTT1ZRD6iE3CL01eZQc0mGv28cYprXJd8/nPtIL6Dvn0flvxB3Ggto0lUGpB59LF+Bd4SP9UjVZ55KkEeF2I0QjLNbZTM7bC2R2UMnxiodwLG4HuERAI+ec39okwAVQzdWZiiDmP2taNCZNwz7BlgfgRHdiS4LeIS3L4yBWlS8INdMMLUK8At5QHY3cD4ycg9OaeovdAA8ROKrlZQrf/uDL1tf5inMPZmwUOuj5aKRuJNAM6D/tIXAHt8HikUjoiVtzngCeLECgRDhtwK7sP9/NFQ01xHfqZ1W3gLzvt0/gaG1kQjZKpzk+ZbDGoAPFkAxsReb7Pdg0GcfEgUk6iSOzJfmp+fL7ajc+qHvbV6AcC45E6pZ+eVUxFzA1SUxPslkinj1WMo2qk3pey4iJwzZUm8KxBYAB5zqDZhAOR0SdNsFqC/p6dPk+lsLsYnyQNtl6vq/idn4xywmVh6ZkxiZv4nzShFGxavwpVV2s88Z7GvL4giTZwuoBwIzgfSZvElvMpKFpm2nXN8+OCEMmB5m5Ps7tdS9TlF5tSBtXZdWn7dbZBLNl9mPn9xX+KLY5fs5zfQ+3k9g0cuqG0UpfKLhooAZ63uANEYRAv60rjPrNN2Ct9MnNJnVxS+5v1iT0MfRkQDjb24qqOVyJLWQvZitMd6jR4FaqYR3BI19QsLBFEm4HlWFDqdslaS7VOeKmX40jyBD7vCQkKFPiukzBTVQINC0dDFiqsmyustzcjL8jmUVTBpdf2mKt3++FLuRnEXApBr9bsHwE5mFMq5BVOu2tH+yTxbRVIe/3hEwr+42KCDwuRNZv+Ro7/g72VJj8AMOwb2Ic6hJhMvCkXsFsKMIErSZbwh8zc4wQXJrdbUJRheinWHSLNHwqTbnVEKQ1/ic68q/alfnbvgOGXmPx0SfXTdzDKN8g2mtGpHM8cWrbYn8Va02vllbFgtXDLAE8eDeGsoUmNM+d3tfkhnl0rXOk/gZujq+t2JVIe0a7u0ab9udLXjGs1gpEcj1XMDZVqnRf1P1g6ceDV/9JUN/FDwcTLTna9i9DimcAkc9ToCV01Xp3EFTSZS5E2VVjmqn5UD8FYS2Sufdfz8/Qe309swARKkuVhYwsKYe1tEjJV4UP46NFpPwkMDsPA5h+cv2xreg4HyOdcUdCdn3hP9Ycm3MCstUXBJU1pqXBqu0AEVnHFRFzRuF2oZl9IoC+hEYyy7H9VjNU1OdJzczXpp+qv1ozDsn9W6I9JN9gzzq+Bem64vicOkYytsvFUS2urCzOY8trepyEBP8Wwv6/vqs5HXqfh421Ht238mHHUJKyYTIXlp7h+iRfr2myEySwxt75MX5AXZyJ1vmhVmIqvhBsopZQaY3CHQrrP9uFAoNhCjujJxVmDOmVIOd/ns3DH0YTsSzM58mNJSkp+4nD9QFioUVM89ROkd+iEbyOPWG28N9itj+o8+WzwErIV9dB0DCqPoKPHzGieLjfOQDIjkzBmofmwzZyGSNU2od4SBDoU7p5Z6ITDWYMVvkDInR4TexxNeyK/nxjUnO/+UBk9RgGbF8v2XXv3bOYw6IERwZ9WQ1MKNQ6F7GduzLOqS2kRnX2a189BZxkP35TwYdTIHOkrHdQ7stC5A51rJLXASRZuB1Jl6dlplHM4j5THuGEiouToECoXAbZEge2g9kf6uWZiNCnKCbplKQCvzZ/jl9kTy5J2UTbrRJwHkFTCQMEmYBSQF6PAsojWpMfT2mLhuAYgwBA6GytRT5yB7CPp2hkG7ijOUX8RhRFmvqxfnbqrfoGqIca04yC3oKwaXl8rwEkbtIzt5E2f+SwxEVprt1gUFCdRWSEIib0si9w1SaEPr/YxdzVKo1eopG061t/ZryurDYinQv6839nJiCgaMmY7yKIMoujj2LXvUEGUDeqs0+91r0xrK8ztjTjrA6Nuf14TL7+IP7f+RLOf47D8N7Ui6/JnIFfBkWsFObeDmn9E9emZSEGWY2+o01KTgV9eJg6dVbWAN29+tDYHWGOV2dOvFVID2e4z8DwXDwVxTkHFKLpavRKgguEdEZVP5ZYCE6HuUyVaCBv0zI8ArAIRkRsWwS02+oKSkJie/Gb6JKw6jDGyWEnlzPgLwypag2pJNecpfSRBJVvoGNF5dg+ypN22k/QDJRxn0P2WN2qiIXKihPOPuZiixt2/YT+x5jdz92f/u9s2JEHoz5USVK0iqJ/Wmhino4bxJJOF8a1D1zJ/JG5bBgy6liz9pMy9IqIharOwKhpvkPpTEO/j6ZlKI91QFwDDuMSX+x3BWwOo5RYpKga07eLdcIy+Tqp2roz6zOijk4kGwnKOPmeJP4Ylwv62vV5sQjBqRcq5gbR4aEKkkJyt6rXUYVe9LdgeR0RAFswwQPeGh1ta0iqLS1VqgYYsNpblcEBc0OPMOkseHsGKMbowa4L9OyJFJS5iHMJlvrQQeDPBFuCJi+pKMECWmwReCJWFSxEbyHEqvMluPkan0nt1VRVtmV18vdDu5ejkYObRUDuMe3aeGfC1zeWsWX1ZLZN0c6XbN0mQatG6w2AVn2HXCbYSiBSLNV9LoN5cuckKOdu5V+2OypMgE6LONNHDFvSu8Ea2xUmwmL4+i7cZUWVgUonOQgbV9nhKw74Hhi0shZauGiIiQvRglf9BN48mgp5zZwgvXXlKrCYsxHl31abrlQb1poyJnleYhKu3GgQu8t1eOB9ziVhbLf28Ohwh/4PNsGXSHUHvy46fIP4ORRbv+1mrkBu1KGZw2vFUryjNqPDm2FHoigakpo+CRByE6Q17j5IEK2gXvp9uH82AkkH3QYdh8mKqyGzkZWdtrPoB0HWLCOgzI/EmRdgC2eZAuZFiU4fG1PsIcMYq/tkz9fiiG2DQAxxq5o1k6+DwJNxm1fhmHTlHJc3HavHtSJUA3CqA1TuQNH0/8mvlzdWzFkZJj9Gw4XO/5xk5/rpgeSiLha3b+Thi9diemU52whbaNfCT83eRkH1rSnt7B8tXTV6Nza7iN2Gk1yacS9vLhlG3o4+2RBhENJcT0UnxOeLoU5RSf7wX0I8NlleAkuGh7sFXF3WxtzIp9Zk4AtCbIAkrziCzysHuuRcWg6p480XfW8b+7q+AYjlgtetMnnBy2xNEoBj9TRfmAR2bz4udNmINrDkJyJUCazuAtr2ESecpYRd5bZ8VFSjPbBkQln7iaNUsN/qpOqQwWuPsx6uYQWM4iexQ7rbGTSvKq/d+KsOEAko+cUtyvU2S3j5CoMs3MonnWmeA16JphCN3F4Y9n7Oh1btM4t4syI2WGp4GVrar0Xk2SSjjH3PJ5AgJZzgNgLaZQD6FaDZzlNjtPpEA0oEnBRHReATgVfKqBPjSxGUP5oZR4kWRHspyZQDzRcjThgl/8LDe1+J061yyEuYObr6+jPE3Kznk3HTc3qpTRJ8tQBYnLMo2VkEuGg9xS2aGuRRPzaH8UCvQcU/4TgeYiX6v4XIusgODn8+dC9Qk62/HUXzAXjmp19+0Jn7mXGKOLj4Djbb+DZG5kDhIWE8L/Q+rO+2snlPEz9sScLtqCgkf0eo8JSOiFSs9GKoa8llpzMzQwAdQVqyxzid2Q9Xex6Yu8/zT/iAzUptZTuVglvAm3HlIxiTvLxWWE+9wkkO2jTOPjn6/reMU/PILZRSM956IEohkU3UAFLyRrHc0t9WeS1ZLrv2R0DpZkq82VjWwGd78NIXRtbYWbYSbRohat/gFwz6B2hg4k+WUcr8/3ffFgKizFrcUYq2L0O436M40fDjw0/Q+/eV9XgEzsF2v4LhqRuuKqtY2WPKAHilY1hN6hIIEMZR9wtOJN0IO2g8jiQgM1ZElB5eWG5bz5F1J61gme4I/1p3uF9icF9hB5Vfjn7scyEDNYVO0apJO4yldwtmSiYjBRQkQ1XvRiQIMxCjlTUCBH7+a2MWbGJF/wf5VduQa7l4fO3BzbRcnaw7s+hssr/4t5ZDj2i+qSuWxQ/bX63AU1324y0v2W2MwxdFTmIt5vUuGVI5YaqFsHYgRqfcdgUN2UPMNJBjMWmIbyS+pvALJJ4zmeUjDl5hg7imSiuMao8nsR3LXMvEdlHQ80Gz5H2XTZ0U9NSvxiqKMvug0N4XJQZbeLEvaJF/dHfW+QtxQXi0amyfiP16oLy61UqJhFP/s9aleu+JE6b35Sr2oWvdOvW4ZUj2PeeUJRJrWSSxetF+5yC0/PpmN6rH55BlW8hA0NkRAa05r97ArdaWfH5FRB6dJnkAWjmAagF/Ji0vjJpHHOCBbPEOqqUHzJf5R3dp1UA0Z3ZJjQtVwFWT9vQC4+vmR/QkX/JR/c4vFrlx+eVdUrJYbuVgLFDsLnAotGRTqkX9nqgta4goFpcx5F4XLiKQssHnebOfB7PjXADbZnC1diD8SLG3GI4em6WWhgiNcDpq7Py0eCuElRqbELQksk7TvlELvDfZtxH4/E5TS3j+ofEc/sXo97UlgMgMGVdx98fCs3twwd6AYMlZXL3FHBIjniqmfwPuQHtfmsd5olwEcXpYmo5u+2l4+nk/7n03TRz4JkcN0ksiSdIA7XyurtGHpJfXCMjXcEcankgufYuRveh9TfOI6bMfmv+uuprWPOFSvoms8QaBccyBL3EWHkSIrAYBKSK6sm+7pe014ZArBBGItHZbQvbeeh6asgydA7J3BvFLgR0FB6IMRUOY4b8oj5RUfP1w2dwpcI0R55otGKW+4UUm5AZ7c2N+1Tn/yFfWYQ8OZb0dS/4VffqfjXKee76vNrFLMrhsif/xu/5QgepLa5+CK3rtklmEGW9osKQWtfX83C9GDmSksQEINx7uxOMC7u8Qx+t+YlES9w2E0vvVLotUo/RBs/4ioJ607mJ6AqkNwREcZzdhh2BPVqFWyoc1CvElZOdYInri3jE2r2XKjB7321qdGt48mzxA+EHH5nLGKfz14YRZYDoGgpLvobC7KrcO5HhE87lTFhqWXqzKrcBKGlUGama5AzbOvPGIiBG/yPMYGiq69enfZbIz6Ti6AJdVwQTvGVws5t+FXYzewYBxO7ONXCgnSy5wqJkAJaOZAqBAlyVcnm2pVyC45ZKOTlvgcqwR7QfDxn0D7D6EdlLJkMuHazVoqAGBXKsLDhJIFlBsyPGPTs+oxwuuUZHKfMebH/kQsI+/NfzP1kkw5MKQ5ae0V3WMPyAlCHljl4ObEYFeLIbKR5BAmwFrlzvJW7ozaqX2FIcjEpTlZoyMsbG2jJExBoeNa1+9K3XdcFit0D08Cf67LnyaxaMyf1P3bXU0lolRv6/1cpldL4/mJdjD9RBkyXxy481lYt3y8CUOCssXNibaQNp3X1i3hulnZa0vLYTpGQyWzk1Qe9wuenDpQZl2YJi8BvuDoLlKdjB4KGQdQmYosD9vNY1T8nhrY52v2SozuMj5sz9y2ck0ULGuptV0RzjHZ+yL+J6MsB7iE4g7m4B473R99gX6FBquSUE/NkHXrLS8S1yh+JK7EEZ41FSqtbFG0gNB04s8uWAPLU1rtWctoVrV0QHku79PJyxzDwG2vRGskpkaV5up6UGhj2995Ax5HCVzW9nGQn9szvAngVEff6EzIf83ySgaF6aZJOOO7TmfM3hvUfROw47luEMCuTYznCbO+s1lv+A8vV905yjR/xcFFtVUM3iZG8OYLHCteSb+Eaap8nl2KQTEutywrTKu7/7Ep/xecCnvXlVm7M2pU9LMsF0jJemPhsUd52He0Bru+FspzsRUbP+v97sloBopzFdjd0mEK2JbpwxhewArBC9HWoR3YWH/LVgzx0/8IhbenJPYt6Dkus7fAegUQfc0EfaxKJMhxoawFpAQinBeSfWXDNCS+k/J4FMFHlmuLCJjDV2XPetvPcBo2oDZABCC9gfKD5N14TW14zxevp9NjSr4Ljx3l/J8E1JHtMwmcZ0fIp/dnYteZvDw0z5Vk6Cc5OCE2BR38glHw1QnUyqo4sy5Rnt+/YSHVGuPRcaJ/yXVriihd8JU3UxE5u8RKfg0UvZRvbiE8RLTC4XmDxZcktW7Lwabhe9CtilwvdPu18O+1rnJ3PLMrtbaHhilwO9NdCD2WIzCZPuQ1iHnnS1LdyR5hQqTdMMg6Pn/sXv9wTTrBp3IC3IlqBwo8K/zK6NrNzpZQ6QOYMArvesbuJxZY1MOb61OJNwEso9398wKJOV42cKHE+ATH1esOiyb71rQrKQni+8RYxw1EB8GNYBeAZZkO4LDoFc32Y4qnSaiaO/1MjZ0piGoSpMDPCLYRhkE1weL4fDuieNt3KiwXY1LkySVf4ie+Uj3rXVf71EvGlkVQtVzyiyxmOknHcpQ5m7h5pS2GXZdX+XNWt+8oteXfKCOrborBrrfin+oCpO0T41+dy2FlTFQyJNzuK1yb9w6uQwfuXYv0x6HZFpOmA4KIa8ji8Hz72bi12LqXaiIFM40D/mkfj4QHaFHk7vsXaQ1e7YyVQkDNB7wmfXpSz8y1GWNXiEpORfKXfrC83hc4NjGxM+8RctjzUav5NLJWX3xyNJplxsxF6iaxqjj86i7cOt4SgMuY+z449WCR3f6Ih4xcMiuhDHuXGzt179/BjG0vZdWSqod91/D1xPDH8Fi+MHOoG7qoucn/I+73g2GMO0gwVq5IboPKCkGawoO5+jej9pKHREuGvFvzRMVNnkIJg+78T4vM/XuKK4goJ8gKEspMAM98FiNRw5CLxPNyA5FJnVNi1KoiSRYiCT3F1qKE36Ad4COC6BX8EkshmT4QOICuXsTbVAqCaCUYjYAX/DbVJ7B5BTDkJQZUxY2I96lzbRm9qaexdScuDaJRxPooRDibYBBAnNIJUg6rAqVb+g3IrGF6QP45DwY9Uwvu0siZDbkrae90s+jZwuzdqRn656TOisXktVDiquKZpLGO7mLbhgDHmk0XfuzFbPWVe03cJkqK1s30i1uWmVYsbH4sLF08xDi3nxrw+7DR0XR2jOMKXAcP5xT1V20etjtkDAMutYZ35YmdThtXNMQ1IEcpsJIHaAcLsDy784Z/esQDUsGll3uf+JFkh00w4pDBYRAftSqRzfDtJOxBVR0QRy31DgR3SzHvE5Dtj3tMhj0HdrUvCfCDMt5To6E3TFLRwAxscWSnmiF10fY0Hzil8pn+tcUQCpw2kNMjJ5vmtK2yd1I8aZ77bVsgkl6tEKsTy++uRv54ETYw8PeD41M5YE6kia77V1obA4PXHiQZtZYKUYR8zNAoebtvWi0AIwi3p8sd8W5JKAYaFfIvRWUS7PnRaQv9yBFXXq42XDAJOKr/FS/8zfUgPHP6QFHZdl4kXFDmkvkIUDrnq3SQVwOXqAYdHG52FLaVJgQJxkRfGq4G6xzsT8nlUwzqbtlL+BpgC3D13N1zxcYUCLbhzV4NHvzyO4Z9RQLunFIKxGjQPXBCAE8JX2IyVJz8UhFDC2jRTz1tXUe3U73Ce4fkEjgfuPKMbnv/Gfn/Bvrody3/utCD0cvgyAKFVkqnwAmnj1+3Axzeas13F1LRk5EsZwLbw3JoKr6j43/VEnCAlapnzY5zmpY3Hxe+yieLS1csJvbK6JXrgum7E2oDjRBje3+fUiovV4rYMFF7Bm6NiFm0JO5A2+Ponfw/AlOunrfOenG8ujCeePeLvv/9C6YrU+THhrlrFk3vZ3pQpt3kCz928ZH1t1aLbtkE9l9wrrCn3JUYwfVyjWL5zaAl6952ftwbiSsjWwUp61NFBQkW2LP3cT3x0LveB+KiqJpUbcd7aAanE0MAEvN4nfB8PKQBi7/2OlO7IrFQj6pajkDl/0ah+pD0ZhUH1bLeYtc/3MYgQ5cyG/wqFzdmwagFwZy7tn15SWCNnzxUEpEN/ilBl9qR43FcdER5GX4S2q5G8LjRZaiLCevcz0EGrIEPCv4QNC4tYPpscrdQbFBGPmAlAo89WaPWTppDBP1PP6u92lxqSG+CGlyhUP67IsO3YMOkQEgowvyPXZqhiMzz98rA7wLGAVFSQIVay/BwQr98JH/hgaXKpejdvyyNul8uu/pUizDXTfpbpEP8fZm9F/XF1sYzjVZ2JWvd5U7yZVncXi6Y3uNtYDD4wbJPmgP24qeMVjCH9AF3CHw4PQEWyCLUyWES7qciwsP+yAmaHFZ7OPJ+1HCVeEHlCRgMSXsBxHVy1moJ/UrIHTTY8gcF4HrUZPAPB2d5l0xPG7uS4XZMI7q1v0beMbfuNT68Z4Op7V7qMtq8hDaguf85kDdK4pOZanugQmTtekzr6c0uJYTJyz0zA2h0NeoFnCpufHBUaGhbsIGVxX8ucten/dNWV3d4sPUSk46M+0jfJusLzYZN3fa/1ZmsIXm+zPkGjRg8BefXkirEUXTxM5hrhh0/qfm1zIJFt5z8+thlx0w/1/zk6wWOwJowY6zH3OdU4zRotRd+1nDgvHyzBKKWV96ebQ/Nnkr4ODXPaEG0QILZtiA+Y1WQ4rQYda222PDYkEEHdHD5qcCImyMMnq1tDdS4Nh2MqiDGG0tYodu24Pp6OOR17RbqTTXwkEXM8JF7lQwrchoCX1KRPW998Vo5cC6Ewe8tz3pccf6P/rZxDdAHLhjN9l7konXMuV/x6r63BuCMsN3Dr5KImd8o2qQG3QPZ43ll/sU0DSLPRZO29TsS3LbPq2BREfG3OpgfrmiqESY2HaWwqWOscYyL4LGvKk+jbsg+LlR4Y0Y5B3JO6UCy9HwXSnJ8dfGWV1Y5iRubywKsAdbMDWO5tPGzJdK3cqj1tw/W/Is+A79kWpc7yYp/MeUpkALC+QgiGkHlPAFwaKU1kW7N+2dcQEWCBt2RdrnP1/xCGJupnwGniE36KuRHMIU00x4plQn/PdpgpqzleuZt7JHq5HKtaP8+Lme3zwrYFuJT0G++n0Ej/VsjSrh6/YBdKsnfmVMQ4LMFelOJtpu+ZnDgKIJoubi91eejYEnQZb0h+2JSPQnIWQfR/J378H8Hw6tivebTsO248WJszlogafIQprm4E7l8tXtACduDnWNNABLm5lNqDvm6+m2LoI8Rdw1LOjLwgZZVEu06AIN98nJU1IY//GT0GBKcvLb0NcsDgr334ScL5hNZEJSGwuZrTbyaVhMfk3v+eGIuSP/0uyAioG5LyDLS9ZAQf01F3pxpv7x13BCfoG0z+4Cy/ZDMFWzgWQ5YoEJhuy3gHjuJnrMlM6bc9yzFwFDxC7qmQYZhpndQNeOHWOwqlv3OZeYRIfW+La6A+j0gmUg3OKDqIfOswY49O7lxsKCuo2d41lulU+x7bgWHltTMY9N7NEUFPCQfBoxKXwfCDp5TaVm3f7fOa9DVdYLZ+Z0VizLT9fG+zKSgwPZnTV+9SzqYsdaArNickEdjqZSjWs13kcxNSG1P6/L9O1UKn/MMoTn98VcQTzK6L8rcvaaBRlpUg7WUr1ZYIvaAdTBcl6G3qH+HC7jCQNeYjwN5h11v3D8MgR3YAwFOhBTm4B3RAGYh9uvo9G2CMf3bTo4yM2kQsMUU8/ncDNofxMJ8w1m2DvHvOB5/Y3KgOUrmap/Dw634Vy2QtnRuIKtAluJpdgRuUuwmNJECclGhX6lEv2s1pskXR6gLTDjz4ozvjCRBzDtQSQOQjU6vAK+xfEddH9evYk0ibwVXj2rwNC/8zI9WSwYrIN1effrzjfsXCO+zlx8i1YVBj8bDu6992M8G/kyXTdZNh9/i0dlVgRq4KRgtdzn6Fj/xa6mACSueeWXhBAgjhN9vLRAv+obQK4DOfLjjTAMg3zoFSWbIhenIR0PvzEMHX6WBj2yv6SjSSZv1tvxWB6Z2luV2SustE7ixdMnaglmcH7DrTnBr3MkoZYgbjBjGIMQy+62UC3ScphDxHzsGZab4c/w5UIc+my8VFwLveMrtm/SWK1ZlIODVdFFm4K3gSTENBJ0FWfneyAjJMYSao1JszOe6llcbyTMdXBKvgM9Mi7jn0AdskE+qaGiwSOR3s+/6nuPhmn1s8TJgC3sOc+QzJdhbET0a99cLEyW+Iobh3wa2gni9boqAsQVyWQvi2Pt1jw+LXxx5ASCGGWSblNzyBcmxvKaTMwlhA6ifVJiMHY+dL3h2Ol8CdNP1M3zMyMRjBuIvJYIJNnszfM6rW/DBw8XATLDvRm5LsVke6qZGAMfq/jK8Rtix/y586hiqRO3UuyJTKVgG8HaF0hmp/5pPxqCNtekGLUiY6ry0g2tkafOiAsviU3jLpD+2rcTAMBhXluT/ZJv2XbQLHcO1ryaVQsiFDEc53hkL9qYnvP0Vls4lMInA6ftrSbmVIT8Oo/kTZmw+bPGYhVw7V9bMHbrUQrtc1GkozF4xBZR8ghPjb6R79SGyge04udUK/bLmurAEjCDfnhpN4c4shEbgUTi1Ba7oKAtSuP96jrgQd3ofWJoZPJv7L9Tgu7hkPjRLtRMU5f77Ci7w+HBFUd6qU5dszQbZP1Li9d6kjW6uixDBwJA9swA/E2DSeRUQeGiVpAT4FbT6tXNmZzR/gQQtwK6JbBc8lz/ZsI9xWaCWUAVjlqY/y9ozATNgBm4DhyyqvEZaJ6+IjPi3iVSTg6ZZkcWJSViQIL4PHHbZ50vh+L2rTqAGOLepg9f4BZ1nIvS9P7UwDh2ARHlBV3W0yXPAezI3CGlXF34bFXFzobbZLC4xmig6N6QCbKlB1X8GJLJz2S4FJOCU3+DifkyNSPDc9fnGIdQhdOnGpZUffCqGnRS+Tk4bddtsRhg4Am/4Zy+nap1xDZn9faOGbKtPbzri2ri8xbu0wXIXQ1oeLxjrZZJP+H81RQLWreoYn83xGvInWtdQgWdk/B+VtqdGlp2BXQsYGAfb/zOrHNlk17LxqKphwcSKMaAICKiKLBUxV/4oiLM2zVDdgdY99XIOJNSYUDpwWi87ty0wDhsUN9QE5RJWDbm49jwuav3ocCgrXvh8q26mWc6zNgXevzRZQOUHs5S33iZPQDVBTIVyMfJKTe8UdW1FBMQDggvDBrgEDFlJHbIya8uVTbXhRuFCLW9VlzUFLVvd11vrwEiaoOzRGcB0CSvypityYwdK21ynLFRX1vjoVhp2Gqb2CLQ1KSMBJgRJFyjmvCcmerSlr2VNgP0MMocXsuG0n/t0Zah8mvRmKI11NCIWSH5LjiGTLCdcEL8mOIDKaz/PvYPzRBKtht1Db9wjTzaYhMQaoox/a/F8RuGC/acq/CqTaJoIGUUuyD4OScHZVjm41uyiXEgevJICJRY4HqVQX6rc6CYLLBxWFe+5d1apM4NXR4ZYWMfIoX5+eU0M2warrZm2NAnZvmRPudC2aqZ7VZInLLZ1Q7h8Lg72HfmqTAlwDedV1SOnpPU5eCbFmCKcK4HrKAfyKVJhj5EbBS3bVn5G8no+2y+ugVPaaaaHi/N/ZZxlDdYOWOBCOEzpCL1mikzLjqKg0ccI4aG9IwHyiYqQENbRe8PYtYaEe1N4dpw7oItoxmP4qAKiUsztgRN+fV4xNXBWVO7Y2R+Dv1y+l4pa5g5TFfY6afTKvv783RrU4+nmu/QcF33SpxiMLf7HHp3nfHNV2rVtA1eugCA9UhDjhSiSzppMETKgFa/PHT+9JEEZ0r47WbhHhOtSmyC1pwzYztKK5lSFzmB4bs5+gsq0T35dc3tobCZeuRYaaIihCKqVbErI7Sm9rErMAT7da1QbYNMsHHqW+uWhk0t9cyE9l+b2OhZsFF5u3UJQdad4KXeYqvGpzk7aQqm7SweWxKPkDpvJbP2fnAvUYSDCqL+auahIoK2B7F9vmqdsZVLcILvBu0cP6GE6jqkLGW8BKX6a3KfXg1rmfPWPyeAgVp9xCHeLwaenRtwIZnAXGfHat7vP0OeGDAMSDwE5cOgYVdGmYlgxMNVTxAw4aSvSyV1HpvS7FIQHv2ieHZ73tt8OqWh6ONFPEy/g5sOVf9YNTL08dOHObUADdoNXXo/GKfnw3RqmyqALgwLDqYfv6WZRlWG3YswzyqDbcGTcWZIH0DLVJuYZELewOInkOC5xlwtD1Y2E2mUAOl1rIVdhOOIyFs/zG5t2WUD7T31pQGXvxz+5P8Sjw2hgceEOH1zXTsmP91udK4LRZTSba8R21jrBdM/jwwwsd5r96RyFz+vXmHImWeckE9VWMMw4NQ0QVnnPhiq86itT0rHGvH3124hUd2QlslJBC8wyaaasC4ANIyE+uMDZKLhUDYQVdCMrdY+lpM/P0GBolGZ8NctTFQPb0WNxaYOyDpARAG8lmvpCs8aD9C+2ZG1KTaqgC9ILFs9L/9rnpn7qNSDmk0HuxagJ17r3QTI+1QK//DFdLLcrW4oyDmdRtoKIDHvueP/bfnGjrAzlFI55kopW9IxEycWKD08hVNPTgija91msv//QSMti2Be6tuuQAz5BEVgfLXMj6UeDt4FPnnhyjlrAbEGk93XHd3jnpm+NedhPm2JyhCp5cWgtPsvrylIGaDYI9PZ12HI+cUNjvqDC3NpTBhIrU4u5RejWEje2o5tDX1bUtO1L39YjaShZqeqq9uRRIq84pJzFqSfmxog2Hpewr1YkAs7iX4+gtE/r6hXEXv0aw1B34t6/qmLp6mSVvHLLyAjEMQcw9lF7/wKRcdx1YxdAWm3XFxmqorM3ukZuiWgQktRB0vTRK2RLsb92AcmeGF4VY4MmnUxEdAKp4S4leB3MH75BBu5Eihgcfa+lQwTd43f9QhvAUtfUu1xyIbnVEPBtCe9k4Koht4Ej3EjJgdf8EoJ8gFotZag0XjiTJDztMrrE/qLgdhIN9nnpw8wioybuqqn4HFBk8TqhsyOVFw6tYySIcgV9tzxtDiWmwWgmIMcJEn3m7bBDIMnTZip5HH4I1XuUEATovYlajCwPEDM9SqK0NXaL6U1sDqBh/nkh8y66KZvT1XmZDEpq5SaqM0Z0sUHSApqvdcJpQallgaIjoMrhVt7+VCZHdpCSWDTcEOeTM1VHJblFjIc6B28trSHX5vW/0Fng+ixsoKhHqgw1Y78grVhRZuhdbRzEZuCiHj9jp2oxpbjYmO2MdANVIjJoKZmhuSXO8Q81s9DWtkV3Qz+udG0hpvK9bIFtcQwW256Vzb9WF/yfoBzyEj2Sdkev5zM4wwr9h/0VQIEd1+FNULPvq4jZPI4lTVYE7+rmek++qk6WniVf2+2hSZmnCHCWknNbzAJfgDk5WaIicZoDrNlfbCJgkk/9aVKHKjw6wBjZ7IUPH0W8YsIc/tR+xJfGFe+wpkhZSZqrJGC0mzNQYZ4KTOM1/KD7nOmhcgwL+ARx4aMmL50aZlm68EGJPremYsmIpXY5vKWMOPxD0LaT4hTV+18wUVNu9Cs4jAp/M4S58y40Qfh90LfiR8tPA2a7DXoG3dU5E8fC6hhcAeScrp9ebuzhocb94Y2P7JRd5AlfiD4+U7PZS7ifBEafcebCaXVbtE9sMh3mI8hZUo3+a2awFwLPl5xwgTmdgHcB5rbaGsqIe1zR7F8TsMqpWCKN7fncTOujvVUY/PG+C0p61+ibfpd8JM1UNaCL2n31OIhVeH7YRhq2F/zEzDPvU3DRwwbahZ0H/fxLOzzF91HxOP+W3vCE/u2vOq2yF4W8c9AxHulI4286tcVUfmzEv1p8jdDp7jSYqi2LZJoMAigjkd+Tk2Vz/nLlm3DoMdOQ//JptCDLrHeVkgE7WuOA5EzCO0daaiHLEDhtyoknGwm6zveUL414XkT+vglm4NnAHqaECHEy7R0nIeiLnzYax2aCyT41SzRTGA462HP+I11B/quMNxtLvYDmvCY8p/ezyul2rpdhNxb47/nhDF8+QzSErHQ42YBKikB5IzSOS/3a2y2UdqxLmK7h5Le6OHf7O2RO6by6Nqgs+86uY5au6jznkexZch5wdeskXN9FjWkNlV7sZhxu2FHA1j5/GVV1SP+I3NVbsua92GbHsIgImzdknN4uOtQnYI4MIM/bxmCiRo4Uog0MKDXxoKhjoEXjz7KtrcDWdvCJJQRIP7CRJYc1/EEnemCqU7pf4cZXTKemm9AErDHevosslLhSvkUyuudSbtG4Q2+TJRXJECS8rh/IPOFwFSjp0oS3jH1IST7HP9Wp53SFAGHK0kVG71kZtS2avF1B5IRFArEZ9tDHp6fbH0273qWy8FIHBKbRaG9bbiiwfXm3JBA7R5gNnSABJq9qA/lO7l3GY8jWoYT4B/MFq4UUx68uymiUt/j5kPbnpvOtyQe4FJllClMMEaqHFKfWD0CxwAiN4D3nE25FFenis4GbCDcF+NEbcd6cJYAk3GlQZs6qtZFBtA6+Gu7mfQBF+aINz7G++j+tRO9nJeIXSp5AEkY2A9pqyUkQuKqHBO+K12onAOTp8dCElJj6xiBifbCJJD784zdntfv7kqEQdl8Z93an5aMbo9qdPxe9nEOl98CWc7fv+AUgBmRsCHgBkiFvpSMhDVhz9PG/SUL90Nlt4G03UlbRj+lySJvcKSVRGda9/VitFDK0H9miL580HibulkK5BXHTdBBF9TpYwmftytGLJz0wHmJTrKh90+42XGVAYHtX2IXnqg5q2NimhLNtmPI897gp5nHAWWR6BsIKK9hXbjdCB4v79ETZne3yHXdD1sjRsU8SdKWHjPkD20ghv6MdTIccL/aTwZkojN+ZcvAHpEp/IfsBvb2xg2o0I/AfasKMyJLbU1pku7PuX/6zIQk3GmGZ1434Gey+KLssBL9uQH+g4ZEK6bMYk75XRNi0szk28FtxAvRpzuVK8RKb4cQ2hcCZRH6PbpPLaP2Pkc3BcVEvJMtMzs+PC6WWJPZWHC8zXm35MXDV8fue8/C4Hf+Hr4Xqswv2FXhI4a1vq5C3OMTfE1aKYeHogDdROQvYGCF4TKnsLYBlc5rTqBG0yOcEM5OzWDSS+FeQ7Fu1uDw32ljDT0eVKMpu5UH5fCTx51jFNxpj/wAjCDbeqKC//2VHnUd07ZkJ9H2F37y/yRDBS6svsyXf3GgREhj+IqzVfNYP9oxkYQ8IIsIZ67yE7N4GLH6G6/LyP8Yj7tEPwOPWLUtdbz7wFRxbQQq6Kitd+zdWi0Q2eRzkTIaxQ+qHxKf7ETEfHdRN5ooeAn1Qcy/2PLeRhyF8AKh2vk6UztqJ1Wc6uvlm5Sjq9ldQk6tSj41DOqkFcmukGporNZFLxKro0IpN1ADi6UBniz2mNAmXEkKcGtDQRg2WC2k220uRENmAry4Y/luSj9oEZxRgYGP7g9VHwn0C/lO7EQNcaIV4tu/xy3OorLxiwrsqrpoO9xnHO6saaYB3z8neFsYjFwP3JMUlyE8OZNZk6q83PfUBnJcwp5aN7V4Tu7z5o2BX0PPOIFSuXiVpXM+zErqfXTM+QxlDuo31IW8XuR8NkPqoZMhhGqqocy4AUiXGox+YD5QMemxMMG2CjGN4fFAXMJViWSSHNERO6RprASP+5fBr75XaCxa/Nj/qQh1BtDu39Be3hBfZ7DfndCiFOlFdhAjb7K6BlgSXhR1/CVBLHS3WUeX0XPFa6wpCI4a80JEM2tzTYlOCnh8Noy1q6jSyhebdF1DDa1HlnZceMvW1vgKPgBlzAVPLFHOIsMKeaqEKOZlmnhV+fFKm/nv8gzLCdXm+Zz4lFppvyNmQLEIPCiFgC57ACLdI8astWwnVt/cNMfPnK1oykJXvJVXW/mgME1eLxTd9j2ThIW4GIH1bgP6seBb6rzHMI9teUyx4MbT+PY8r5i3EIDHB5msvn46I7JsRrReVdnEBxmbbHNeW/JGsGKkIrnF8m8PdgcWDLyohTqmYJEc3EgvvzveFZjmO8YF9+bj9fGwplmD4PxMHAxarvldBRLmc/NoDa92CB2TQoosDe4mDWx7TEpi8uMJ4c2T/LgY2nzYYk62AbLhA6IIQeloN1L1dSD9phWYZHyJUa+mx8EBALJ0Px/hwS28jMnOjFDxiRkwHqxd9HX8lqengKXPE5w+VkISKBM2ET24OlE2w96lhT49Y9nLi2sZb9gUYhSV3NkI4zUtRcYfu4EVVwNfvv0Cr/GwRoUD32vvwTXC78gkx8z126zSinYwGQhxyVSBJX0Q7A8slJ6nOI68irn3LGEaX/ylmYDC8CXHraB9EUHLEiC7BQRksNzpEWEt5Vfy2jgBsSRlIb/ButOqSdyWWxPkyzgnU4VE6YXzswWl8OLc/VskrRsTP41HGQICRdjE2c3Cys+LWUjMzx9zkfgg0FAJBC8fQvZSem0U4iI6lsEp46pCKhhifPP0yUl95K2+D7VCGiSJDTNt3lPuIdIL5Bms+AxiFW6WPEsnaYIrksEEsCJpxaTrVvVOkfnXfmal78t4p8lDs3plVxh9VkDFOfEqfEvYvWVsvmik0QGGCE6yMVzOprJrFjHQN6zmqaE8Q6t4g6RGi/FO/NlXMj0g0A+OXAZU7DLtigM/CTXPnTWI/aakOEyX/5VbSFiuuJWG1+bb6pw5SxCf6i6PNj+i/M1OqS0cY7iCZefBr8LK1qV/TutVZjAb59Gry6xckENQl9P260Xvyh/LW8NKtcuwpcZfrjX9OnrEZiEsdL/rEAYso2VpVHT99tGIqkCak9m+1pu1oV6dWqNrHP+yvVEuJcAgW7rarOew9w5Jbspymw4vYYd3kUXGCve+iHVEBb79MxscE5PrcGwbRt6SyUF0GXl8DzjDKmZE0FoaUlOCDUpccVuX50kbK65QQfI0whg1YLSJmBT6m1TNp4Tyvj7moHFQSRAwaVMZp007RBZ8STi3ncXdozpPUrVw/kX3R/VOtGsIuZl7ca5jky2EMYArAHyA+ZMJiiyOUttoVhx+axWzUCOgvFR0OmXpBgEjmZL8Mpgf3lua+Sq7QDr7GHY4JOC1zA50Vu9E1Sfv/m36XTmXgMMx2FQrW5/+6vZ9FPWw7JbhoO9lH5Gu4e8+1+UWG+5vlrYVTYQxhpbDl7rw/micPkELjPgsrWeOuc8sYohCrIJTgLT59wdCcJpxVDmttytOX+IFAXGCVVW+WIc7Ao7z805bSwc+O4ZX29Ep5cOtDMLlYvQNf0jLQPdle3jX3NR8Eb1TSQVxf99f1+l9t+YmyB7rRVe6oloSogGB8UI9vrOthh0OD5n0Hjc0pEmNSQ8Ecn8QN4zoAEkaPpr0DUHXAmzdD33wYmQuFhUKY9NY7s8rYSQwg0UoXrpX6midLyr8=
Variant 4
DifficultyLevel
655
Question
Sheldon solved the following equation:
7x + 8 = − 2
Which of the following could be two lines of her solution?
Worked Solution
|
|
7x + 8 |
= − 2 |
7x |
= − 10 |
x |
= − 710 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Sheldon solved the following equation:
$7\large x$ + 8 = $-$ 2
Which of the following could be two lines of her solution? |
workedSolution |
| | |
| -------------: | ---------- |
| $7\large x$ + 8 | \= $-$ 2 |
| $7\large x$ | \= $-$ 10 |
| $\large x$| \= $-$ $\dfrac{10}{7}$ |
|
correctAnswer |
| | |
| ------------: | ---------- |
| $7\large x$ | \= $-$ 10 |
| $\large x$ | \= $-$ $\dfrac{10}{7}$ |
|
Answers
Is Correct? | Answer |
x |
|
|
7x |
= − 10 |
x |
= − 107 |
|
✓ |
|
|
7x |
= − 10 |
x |
= − 710 |
|
x |
|
|
7x |
= 6 |
x |
= 76 |
|
x |
|
|
7x |
= 6 |
x |
= 67 |
|
U2FsdGVkX1+nK2hod2wX8X7TFtG3exs9mtwZL1B7jx1XYctLWdD3lnoYH4X8AF8Um+Z9tml9ZPa8AWBPsD+cjsUliJ5Nuu9wC1DT+1YIBrwKerbE1xfCpXhup/Ue1VwdK/wu04FHd/Vs+PB/NDC8gqbR6vDAamd/YOnj4Ffsmo17dTo9jrShX1IpEdqSKa8Aw869ZGUv6rcjFuBotqTj4iJyNVzuYwreR9K/TwHYtUFW5uhejGeX87NvanfNvBvP7UNiPKdIPVdIBJ+KavB1cOmKKVr64GST2CCsUyjB8k/TNP20FoXFHAcRQkfMpWDgMfG0lePTBBlSzaUWYMbyD+dcrrPdsG7EcE2FbHrGn/l6JKauzzsOFMMwgETO9ypGZZxmlAVVoYK4OmpQYCb8A3Y7yYYgUgZ2AdtQyxIYoF052DPAJYAmcH5fwg6hEbC5YNXTLmnMFqf00IAmwxqYrzL4wa2d23iz/47eH5SDJsJ0kMp69MT4/0jfDR/7lpugaM8k2MKkWgoz29UhAmHHmS7SneK+w7Mgo/+VNH9XM2IssxwE5waoQjV1GzZgaPTGptFMX3f+hCY8bZdcbAwh369Y2QLpnRZbY8ingXfq5HPFavW5Xxsh2RaeWlPLJtxiz0oawyayIJwDg3EBB6jWFAi0RFdmX7NdR2oFcIvoSS4ilFFlV0hMX32B6yVoqn5FMO4LWJ1TmDHaxGx4fOS6Rg87UmPyKNQXnmIpXwrOV3571w1ezjMlvY6IZK+hkra9Rw3mgl3pFPLBUCjUVqpy/CIJzctT2po/2IeZjorA+WNSzO5oAt8o4JiF6H2O9Bi/JuhRSfWdGFECIZ2Zf2+1T2cayHmA1QajDYAig+bwO5nuuMODHovgeAyTrztTdd7xNbd3JmCpFCpGPGwnT5dYB2wQBV040hD30BZFaGwKRrVfA8OPjKOb+uEdaKB97Xbdkuif06tCWXYQE9eSkXoHz4RpXcUDl8j4e95Zc8Z+1UrhRKH1XO07l2KOZumBiIY3eKJIWejLo8Pt19MMgyU9W+eTnFlnJHUqRbbTQwHOtkv18RDWvL04Q/qTklNE/TbvaAfuu5jknchOdqDONe1r3/Rw3/FzMe2UJpThup29YyZfL5jPzjkWgtLJbxSOLm/lvvwRBgG6ylPvLSqoCV11u3YItmpUnOr/Dp+0UmUBH3mY9Cq8IUpQqsykmhwkX/nmEW5Lvn8MnYLRPNfX9IqZdQA9d+F6kkij5AUW0STK9nK6OBjb8q5AB2wB8egh7eAGQrQ8HkXZf2UbWxfGD24qnaTgd+ACH9BCjVFL5m6lYmBGSf9Hyw2hEELldvkPUQ0EKL+CBaWzYm6+j4BzDHEx4TToyX1/14bzBacccrCwQDT+a5I6aXBvpA7MynEHBLniAcLL3ZUZalVLPauEEH5l5itgQMUlZRRnstYOoyeEBB6GiU6QzZtNXPQn/uijcJmPDUr7fEaROB3Uxx+0dblKWm3GCv7LQoMOGsADjOmWOZ/P88Zn75HEy+tMwgSu9hMsuUNE69aMsyYJHY4f74iKBM+13H1enW+SjYdbQyISzBVMY7gtOt0Abg91XIrR4qIsZtiLV6J4JSqk6i4KTofjOQDKfzcjmAvjI+fIiv6r14NeCe/3RQwCvYwFU0vwugc50c4yo/1rg8K9TxhedPlZRQ+5hWeSuI5rhVRgKFxErBrOJvk+7H/z9Y1/vc1l0Js3zmEdFLalV6nYgOaF+fV0PZwB/Ky7JMg8Nymps+E5MZamDN1BnTL8kXzIjo3wTcDpUNY/pGLsIOOv3JtFT6if82lxP/JYZrUWfXwGsErh+SLLEA8qnk1lLXqNbBN8r35Q86jXy9iqX7K+JuRrs9BfkPVlmmy+p+f0Rmwtbp6N6uaWNci4mb5wuDJugJxyty+ofGZBK7/4onSXN3Y1NZ4ibUcN0M92KmwzX1X7wJRyuXM+tEXvqLf5WRQ8Pjh9SCWrIvbU15aXjsa3ky356k3AYZbeAgk+WQTKaJvwfl6c3pOZYowAwyF1KpXv9XBCjOr3KAcvMbijfQ5sGUR+mkDG+tb2mUc/l5H6AiF70ACTZxzr2GJFyGjN34pwteM9T+zRpoWb5qoEAQm44pnElSQAejPzpph6N3nuuY2CraOdIK1s5fmSV3+eksB3VhkxbYZIujU9X7QpoRP6T9ZBKlIZNYpYPUf4Fe7EjVxHEtl2rlLcQEu8BOLjEza4M+YrGYZ7C4lICHY1upfqOC6Y/v7JDWkx8up+WFu8k3xv4hc6L4XYoIHlDMhIFwFnzOrZPbkmABuc7MXFRsev6U+f+dLQYjgo7bj38CaaIgyP3UgPAKuafcNyDOvTgsOFI7oNuiqaJumnzyDgaa+YyXlT4NP/1AO7qu36fS4p6XS7Y2PLzOVvjYJmx47cviYJBCWSiyF8sUqszl0tFqGsKf2D0f/++bumUO4x4rESq9yduPG9MqRH49QWVQkQeKkgCNmEs9eNIzCPAXmDsbPgPMhrVM9tVW+ppWCdSnU1MciA9aIRR57xdTvPGP5D7RG9dssUjAGZU3CqKpgLRlhICKcyR75XyM1DcVBdeYiVcagJ984Dbg3vXRz3eBROskZSy+4FklHGjTyUGdIjH1cAz5aSRsaJPdEFArNrcZ3Ho0cRgTz7yaz+a4unRJqwBulHIHlt90UzYw2G+V4YfGzxW2LwspB19wmh9WYEwLIL/MV7/rwS3A4K/kfTc8QNOZGmOyHRipTXXeMFC32RwHJ1t/TK2UFy8dqNhBhdVGxkj5LXJW0ZlWYJV4UE6YOLUurqtK81+wY0KniO1/saJXc6nZ822k4s0N/jubTxAMqcJNhdcZlDKoZEBY+SgWaOBHDpPfCj5qy6QJJKXskswsC5ahNouKDb4VGSCsqZLt9g2Go6fWIUOqeMjpK3drVDiFtsV0JaDj6//rEtec9VrwMaL1tSoqznCYQ2cvC52tM2DXBqfGtkxuBALsjgMA0876FRy+4uUp/x2wEIxfNWKnBOXH4rpazzPiuIMlz6GHrz72WOxqostdXAKFJZREL9sJpTmjr7AOqkR67gNkknvFUAdla/KvDTeBhcjHpGOO7EcPFfy3oYYkSm8DUToIYFvXi+SmjxTJj9nGAFTVo13XyW4Z2YluyU6Wzyg1f5oK+WaxSLHb++0vVt7tZGSYCKvTXwzSXNR/hL/Q9Q2HwJy3kHmbJ7PZgXk6UnfmrX6oTgc0xNyf9M5w1KNgcJHhaCRHfnBPqU/nKoeGc/QDZ9+ypir0i9//HiKbb2SUjvJuLexhNwwdpFE/0Uu9L8k7vCmGvNNvFhhLuEN3+hEKC9DEvLDQ7pkXjedfnMTvXfjtkmabTKWO4nP3HRffBmbTuW+MrKssaLwc4lHPTZpA2gIrVXYlv9UcUrRM52ZIZUfuWu+LQijtbN7ctwg6ZYlaoNmK3KhuDCU7WZt11nX2ENt1NeJpVOQDJFV3ReO8KLF6E2h1znsFN4Dq+JkJqUKJah0h9ym6FT+LYpNXleBe/skBXSlq2h2bGGVLhSxxU+1TdaHWZwhGvLjc50RY2BO2On9e6rtfjF8efQako06d6GAJYRIWd7aoQmN0rwWyYBojam8cVr1pJoc7Cs1CU2oZhZ3WK7aFi77oY19BDClz6kP64dgLQRcfyc8V2rHnbXqwMxhsUQh/mb7zgWBBOEOgc7q5FRhep8jGJIngG0CuXwe8lYXizUOG+RCevjaWhGM3GbiQiq07wu0f1IxwIvCVy2+WZL11U53vSBL4JvYzaOni49u2U66fMDa/w+ZuXUT0B615CKDkDBkJAs3GD/NnnhwARJcTg4JZ59hjKvwzlJs3pykF8idJLiG9jHzm9+MNuBhvjJVwSWVuV2oQzo2DF6GoBSiocPbd9inx/Tc1omA7ufcTAV9ysqBeZENIJ7puskuWZcZlzd/CZR5UxOrfWSRDfvIZaeDCy6cb8Qsn4vHylwFosaKRdIWaZomO5UkXo3CwDDKxf5G2WIT6bjc0ks+OBnusXXKCfVvAnbdO/VaRmWpa+FOgzYltB1asvn7+4uWAgQasbGAG7Qg7EjfqDAao4hSr9225QF5LFboDDO0TdQ8EnoJ49DIQulaOHtAPJCLFhMVDmLbvmhyzlvyUYrrvXo88cOzHx1RtJwCdtJOMDZzB83KLZ/7tIrXKSlWgXvMOsWF1GdmWqTbdBwRWymKE36tDYhqrLfr69xgEynrKtzr5A0uiDfnsgpNEnY48jM7WRra16gX+ZiyE3DHJB1StfS7hb35+oBsNzqWU/OeHq0yuzbBelAv7tSYs4sv+ZlBmSxjRBkxmmuyg4ISGW0m63Za/bEgpmiIdrtcIpV1FCY0AXkyl+Vv5uJZYJ09SlohmoSdNElYOX7Etfn5ZUQ7Mf0yHUM+/jZG7AEzAqUzi9nsCakIA/O7M5sevdoXpGKVjR6w1s2EMS5CdrjIZy6bRooWuvZS46PActLDJFW0PfAOS5UWPzCdRZDvSkqEqMHqADr19e0BDrh+4eimcoU403pw57lZKPHwD6TDQPP9c5JLxWBQ4oazfeSDB+qiGFWzhxX4f5ZvKWsKUuwmoFYZvRhxYlnKDA+AuFywgbeoLL4WL/0lT9B8UCZgbOEQPXJFt3YOOUtelw8g+NiblsMHecJAAh7akX+WM4Et3XFawkgFmeNrHOvJIasvNYfZO9nnAVgIQQO8S8kVAg0hyluh8g1fA54yVpj7yZdUP32F4VSE/AK1EIhUC6dOoRaS2e+xj1X4HNpSq0kDNAxH2H4tyW1TME+HIHru5LHRYFvwOKVy/EOMyaCYtw9VbwSwqGyRSPnPCsGnrltKOy0paWPfhE0zDn2LDzwNXCZFcUZN8LB6J5kr2aRWDehMvHtiX6hYlgWQAkBdt8rhryu5v6OPCaDgwyMUrDtahtJe+SRTcToT9zYvG8MLVkgJ1/vjG1VPudbgSYBza9oyQIxAuNsrPGYVsregYMf5CwYnwfylQS7Ek2CXi87FiNe+MW22kF3/M3VmH9ViKv1ER6cUSKHd8hOUSN+sQhieteazDNySa4moOMbUhvOMUV0p1sGggsKV1UuXLVAYFG+A+Dl1jfP9OsMt8KhHo7kz+1uIDWVdg5X5JEfwm3se0UuNA81u+aQgrYu/Ig7AkWOG9Tx51HFImkBQGiGfZ1wiVTGpztS4xO5TIGrl9sY8f3+fbcSY5yCoWtavHqZm2FbYjeqVEcmLNtIm7+DF8Zvy14/Ikf4Dt/Os3F9MZmc7JwpIurYjcbn7eqnjgXhj/KYE5TZCLy2aoIu5cMGFMZxBtbrBc0U2MMOHrNv8Iy4R08oVRxEylzzO/VCQI+FI3xUkxNdq7C/mUsJ6c2Xs502/g8pJu8oZjNZ9Cb7buC3G778UMEVePKjNUIzg1Fgkpza77oCqvvTNDxdggaBDm4dcTiIS+/g+r8dw+TjRO5GItLsYkHErNWarN6fuiVtYmae3WrEsQsRiTpGAQdCv01PMN7OgeNenatpDd6weu9mTXvLetmvM5Lr519Uitcu5s50bUgutkdqeCnRIqLHfj43ZCEjeKVd2dSgJYPbnqIpyW/mjl+upLSmuTdr1xIzdLSlw1hZzyJ50G28xcUrz0VaZ0QJ+eQ13DNiN/8xLTLXSwU2/oHxSceBJQOPqQ7t1PZreeuIPhVwxvw/W35pRq+ULq0Cg9y1H7WGEIhv4psKUSYsav9hdkt/zW5EdjhYNzbHhp4WxajxdZuofW6SuOperxnZOByBFPg4xZyfoGW50maFGeAF8uaNqIT3fa5Ed6J3TVJL5ltD2/23qrcw5IaBX47b8UE5PYIbTJotJf2ZRhfGcT1CDN0t67aWUJprxEHc6jsBaX0dHs12HZRTBhDClgPy11SrCZc1KKiJpJLBSPzJbYG2Ig5Cab2K5gTVFDbuRjWSLUtxzKgWB8l9/Ys3z48Eo7Uk0J2Ll3nwTbzGKyKGrp6kimbPGD3PFcbsFJLdvaF1zIDXksospfkh/CJdMdcV6zsKUNpw4fVKeGbHgzdtjOxnPVLn25SUIjtQheHyzsiP88hrJmbt8G4qy8Q9HfTQCWEKnbCEJB/8IUTCPnD2tD0Yl7S7w0BGc1vECeyDxekRrF2HZLjAq3Ug+usfCtu7U4Xuk+UG0zKtZL7IiBSxY5wUmMOirX1YAhYjpl9p5Lu0Ntgzkf29bJBke1jfPobh4WSlEz12DmbFim/zhqkC0H4a9sNl6/DQDV47Km/gnCZA0vTf0SbEo+OnsYixghi3qdUHoLwyJvj8pjSO0FMgZGsY5CBZAmtEROm983y7F2EN2PMpggBr2o5gaWwk1ApZWPnUrLvtvnJXrYjrAYGSvpn60V70weCtTZwmcknk2hnnkVW/O+AC0Yb9GYvLENK9ddn4iTHk4BZI6l23lwh+IlPUo+WcA56JpukSjdsumoZ00po0NnLrdTgWgNy4znPddHARALQOWisbAO4uAB9IWYVo/CEbeKScCw7AYXzEa1GqyYKSVINjGM8CUhYgvkiu8Y1g+mJgzkDkTVITlLSUNDEofCV3j+eG5116SkuHmVe56vn9+guYXZh2s1559Ov2MIZDvaBgNv2uOZiZxl4IsFN2YUbSPUleoD+PcZ9gd+w327LQEs2DEtTkxjyO1aFjlSeX+wCXtmiHXbusyoZVzL3vvA9SC9FakMjE1MoFMqJU9NT9mtb5UDTT8tok/30mlt4ESAgQykhbTtKSkeDqfPSSLtfEG6LzoC4QgEDouuOfidCimZoPuz1EZuTKp4WEzC/zTj4q3VyLD9xN/d276GCtm0z+okiocsDlLXICf1XEJlnAH+BapEhdXs3w9/QxgV6c+Zt2p7myVmCPSqQL83UX99NuKTihu6XiEQced8KIvRTZP+CTEMr6jHUHVO34G7rAJ+XYf2JklAY8jqdzvkbi8tQRHkFp4b1OSnn/L3xNY6CZTtUXk/DQqywUhJDbgc9CWeFV6YQw4RDnvKBe8eva0BbGREY1ZDxtBl4Fo2UzBfGnepMlkpCnBhybInAvgaSjrQKgPqgG8ZzY+1FGw40ZSlFQ2I0+r054I1VAum+7w6nIPjR15ZLq9Ts144o4O3NzJpt5MVZiA641QIJhxDV2aRal05NBQulBHV7KxuuKvkfeXWaMVLpceZhJd2lrJkvY1IuJuws4mfCZyUGh++gZY/l97aKovn+klN1abYIaaJ31f/KC72z38Ssa3USs44wJXc0FAPjoe4EgJ79JzZuB7hLx86PsuPd0NX6ydeJLKjUnK1gJJrd3OckaQt/3YZ+h5c3Pu8iJPKBj1fzL1WZbUpFNsq9FptZO5zunC57lYflHMdljweCv1lUZMY1S9/p4b48IIp1qxwE+NXbGY6GiNNYJt7camjX1tOktKtRJeabho+nLkG+CXrH/p32ftwgbB2tzQTAk+MKkFdzCyloTyHpeQmwdW0GRM82v5a44QhwRO5NU/2wYELZEq4Hr7m3V658VEQupBy7zpTtK30o9eVyQh6RGpcwj8s90Fpq/4erQVaclqJp5i9DCKcM5U/MOC3c1sndIpxHb43AZHAn85qca+fSs/bGpHAoOVDLSr9cSdMqvFrZSwlohT1zRngZYX4qOWHaVWWRV94CqJnv3xFJbAhSMhd4cP1AdHXmQKixc1ZeGSGzywbfOMim0yDFrPzFay42s3TgkxqF14hXQ1rEC3Dcl4DMqKlzHUsXMvGOlMqyVnDaMuPTvfBAUd1l3Ic+DtkMTY5N8RI3et9emdpy3RaUnV3Y3DiseCpcOniEZl0UfnWTVOPctYUNFJo6tdOI2ccIHnOGz0NDPiw51h7PINoOOcAPuoFfN29qo01uavU98M9pNtlJRtWB72PcBCVO/49IVmjyMgy4gE2M0dYXsRsRJoOkjtxLbNitvxPW72/xSESboegjnmPXBzPh+h+ixNp8laJ2hgTfX2CnJzd5AwB0aXmy5DnA3jhK6OKNGG1OzOjzjfgUAfn6E62yz/LZV1wCdR/r998E138glnBXe0hb1LhF1HpnVlYbsXrdU4Djw450N66ujvi4/UciULyXUG2UK7KhHUZwD9Gk2wl0jkIwwWR0DG1zYtmcP1Zqprfr8AXdWI6hO8CO+Ywk2rUFnAGWVohr8VG4MUFAPpxkFPWqLDKLwQKGOam43DfS8PYRhAPu1zriSddf0cELIRfTNP7ViZZdXQuBrQoxEeaBc2EElIEIEtZwuL2/tZR2EnKV+kzKZDOqLf4liyNI2TtvRRyb3dwEhf1mcMORKkMdTeCK2KpKEDRvXJ+pTuXbahOnQ7bsUaVh7CgWEZECPDuOwLxUQqYfG67pXvKJwu6bpUbYOHRm4hPcUD01UV4Pyz9HGothbFCZYxTJrZ1f6fRoO+fOAGOIZ7Um355y61hE5Td5jfMy1StH+BtoEKB5bzqMvSj+w2QC39zUwxHaP8lL3POh26q8KnajFTNz56R1ah8nCJ91EuhmSHCBcpamAuAa4prEUffykNUrLPl23pMJ7D1AC0SrGg78m+kRKoTMkd5R/6hdz/PFLhilO0PUpwYASMDOnxY28Yn2UN1jQst5KQYOcRvnozK6ZK7KlBOQDZpjbTSaPBwkcCL82ZAxrzYiOe/W7iFVxsAe0aCR8bTMCBvEAZJEMVYuk250Cdd2eYLgWX9AgZntSk448JbopDSm50ERciS+nu0ZsXcWCdqPhgEzC3IBtRxp3af/AcOhvbFbI6s4MglknBh+ZW82N4YV2KuPfJUA7xyY+3cK7dxSPz+HC98KDe33qyw8age0GBBWiFTTvC5Y1pnq9PqR2KHTcqM94jDTAZV12E8V8BPKWpRmL1nEPIlmI2QPNBVTUlNcWMoFV8P5S/BUfRytfSwKe6AHjWkQuxmh31JZCua88UQzl0jCpxLa9aOsEHyp1SfGtHONNpJ24isGpDsaVqL1s6qHp1CKJHNDdQrCPztRsPqqFPkJdzsVP0xcGqzygZWHZP3Ye12tNKHpAxEed0tSu/9Gv5jcNJ4pICYfLNAUA4IAGi1aweaSZyI+bbZlO867G6fJIvAkvo94M+OCRN75lVOk/mjOkfXlICpDoGyjLmooqhnUraM0NCBBYSgGUs5KuaeDuCkyCstM63BBA8iNgtg82b9c2RHs1f2tq/1uvKfFxtJ94NUvacpEwE66Z/O8Xgl8zUjmpgknyiuJuDsTwWYYd0/ryQyf9filGYMeZBxFTBOJE43I4IjqxBHrnj4C9uXpZrOfvUEqI/G16Bp3dKOmwBTyo40b6hFw3zshvigt5fNj1IHDlpN5zaVWPmJXP5Nl7ym9FpbzPpPSCrh8+Z7d1ajyyxqXYDCBNY5p8JE5Fc2lSSPQabwL7nUoxetuV7GLDGeOvRlwK91sam3WAawaUub9K705FqTqKdte8M7I2Hka1CtqF3LX2csE/V/tEI92CtPaEiAZjmG1Uuzctw3Af5smyiNxZCA4McefFaZ6/C7coHCaUMX6bJWybukQEI2NJb2ZVjJA7POzqpr/EYX36yfNYki/s4qHqkBMRwP80rAro2F79ThJLC7OfBhBUUBZXPBMVFzQVAhHe5D9i6dcQmABoILRdb8efDZW1Em6apWYM75wVTRIg6IlZjV53ppOYWIaI31notB3bky29CGQENLZs4vr7dq1MJeyhbqpvOD9O+5WeIzIexc7G5df2Ts4sEAdHS0H3eahcjizdzq6ERhe+8GcGNCOCzKJ+YoQaMdNRPPkB7yHqiFj39afXFOS92b42LNg8U8oDY/D4T80Cp2YERYYO3ROtPwx/CGJp0MQAG7TF0789GRTRDfXY4W4tetFgvjSrdkd5+UCvH3F44pODU/bvm1z9XMAZlCD2GZmOsC+FMBp0m0DMlDyu0XhSBLCDFNf0uYnSIIcpVuI59F8LVhB9cDG3d0lkdX05Ldrvvs15ZmjqMH0q4gamThk0afa/NGSVnuePFD8mkc0KMQgMleauN+fBXsrsUkFjAFmkD2/XOT5FCovDi3V1N4/+o3QH5xiSM6gFc93d1JXgnhoHxfIjDuRPUl5Qq8X/QMcXQgbMoKXF2cdBsHMoTYGaCHNRf+WKSEQyyhf9Ty9b0o4tmQdU02otcPAyP5lY0EVfd7HMqsvaJPAXWpgPM+2o//LNBAgkXIcOO8lA7+QJguKFjaEGV6SV7y26VthXUH9E8+L36vTCErNXEEu/Wkbvt3Fc7lq2S459UbzanFJa0nC/7qou0ijczXVlBSRZhuxVdBLHcU2LGpz89VH+s9A7tjL2RxZlzFzmucsDEcnci7s/t9nqQ8t+HrZlfCvjI7Y0V2Nr3m/hFpwnAHVhjnO7c8WpmheycV1l3tMnH3pe3WI4XhSQV8mhhfps7WA3dUz/uGN0BRnCLBp/O6qGCbEnF6qGaVZM6XzFuhQ4/3wwYCePEutxgiQRVR4I+h6Q0G8+EzIRGthOia+RpJ8qQFK4kvqNWn7Gmv70TvBU29ruHbi3dxoHwOaPwFdwTv1BhfCoScxOlZujykvXQ8X8UH41y9iR1aqQOS4q7Fyk2IyogNnqli2luRVcQThSyeRYjlke6C/x8p9tUoEa2dgRMkwfGijz+xEtZ15swiN+mAnTcr07GAr7/I7TQ14VmoqvhAmMBAsescLhrd3p9x0Ug+jb1Am7HBfkbQ9dyMOi9I44hFNhccd2OMuZcJNuCSIk6tUch6af6dIKi1QJVcSSuqBbZH6Lnp7MWcJekMSNNkOqyTIBoA2AeCZXWJVRQC+hl6OhYTKcWKok22aVk0RsFXavPt+hYl8V1VAiQZYfnxZeWSvirloIgFIKjLOF8iR+ajAmgk3sA+FuGfBHw796tPzPmro08IuhcEkSzzeXJXThTd6YSQWc6pvAvDbxbdQlxElME66jhGAccN2G7DBgjVTfff++jU1GKcywnQQRnTzTUegRJ8jDQ+ao2ICsIq0bor1lqm65mE1FItQ5F+H1NJwyc7Rnn35iqEdlGAyKs8yABim7iQBxMi8lYo7OdGGpvjdlA047p8k4GnJIrYUECeTbm7qtjnLeI6s7+7B7LtfV6CnG+m3u6k1CEo838nuMEzHcgkPmCgHFNt9X6b200eHD08gCesYv6gVuaZjbnprCKr8vcTLSSJ5wa4O2+blLogT+P9oCT31NcqDc8GbfRvBaFhHEvkb7x90TN2rTLro58MOmJYmO0OwGvS5wAOuLxtvVskKuYID+PQaHXYjEMCETmHPXWr1sQAGeimm3Qx69LXl3/LJ7KKL/eAhB1iLPFBiyHr4FjAZ3HUJTy35rZNzcU0FowO5+9cLI38mVppxBFRFJQ+Dr9an33SDnl6XPyEDT6YBriM7oTq1tcbylyMYyG0fGooOTA6wMUfI24y8FF5A7xIbODF/4Hd2fijS+mTmapUYnGMM+u8Aw84Eg1e0DlZKh3Sxgo5cnpu/ykwi4Z2JPbW5o7n6UkSA4z/Mv95lr4FbzxZKmbja3rQU7lC4GMd/6ByS3A17FsmdqXSvimlvIxPfq3O21RmQj1h41VzF9sOMfg4D0HL/MmshKIHQCLFH95+Bm53+AwGOmxRDvgohnIb4OJiTjAXB6uJ0s30+P6ouaAKL6mnouPh+by75PyAO51/RnbNJRGZ4pR89ZvtJl2wOX/3uUlWBIW/0aZjiye/QTgWFdtF5DlNvOaMrGRVITHneH5Ug0R4aFuyK1G5usXtIckpMmcsUxToEl+uKxzd2OSxJgj/9qSe91X+o1ip+2kj4RA9SoM65px5RJP2t4DfabQvhOxU4CUHHDnS1EmgdqKJmBJvg8noUPKjM3EZdpuswUqCR1hgH5qxEbH1h8jMFA9ByLv/2419zOGrcdSH25P/rV7yHrr0MAdjN7X1BC31isiIqr4RTUn8Gcdh44BwSTylnwhMh3m1q8SkEOwF5USai0AFQn6WVx3UjhmwGiiMdGG9fOIUavj3Reh+LURX0I8ysg3Mju/RT81A2IePoQ4A2zih9/0y1Tjax+ul5XtXyk/tsLI3wG+gHUyY6YcPrjE5uNQlN7PkNdgTeimovLLSuXL7iA5x9fkQFwky4zl58jSZbW2MPJ2QNOaE4vZHw2FT/pPYkSDsBpXPT6VA8Rc64h24waNHFXN66d8HcfGSCntlVlg5Tmle5vLKqNLUsywAixInPCekjb2ximUA+zTzzG+Xmk8QHIlt0mxqCOrLeQyWP6/a+HXbSzaIUz23uXr88A6yGfjTATkPS5Ny3X81s6FL3hXD4fUi7YnA45hPzxyjbYPlwJqMjCTdqBvTZUK032qPxRKeiz8ZDZTpcS7G7l+JkJle/A1V2F5mm2El98pcjbA17KSmzfPt6L2MOwK7lHejH4erAqXLVeBZnb7CgfrBZX4hSZnCNFci7qQ0oq0Ue9RZWUro5yFk3LK0ByiZW4oTMY4xG8/BUSQZS2zdhXALheYdIIhQ61r3GhH2XZU51i9pThNpjUpoo87qtHAuoTA8RLSNUYoxdDNdrtSxG8YQShZaUtz+fWSnhhc2K5MtzWxAPi2J8qDWqAyaQxUgfSU73Fl0zrjPChPzEEq6Tk89N9wmvD9hDZb6Te7iWzYQZ6NpvKmgIMFi4ga6DYaXN8z5M3ZeuuLnCMdfv15XE4FPLIRk9BGmauQfg46DI9orp8puXSdEMMd3OGAY8azSYInw+ARZkao8DjTpNfXSL6nPu/XjU2Te7yKnwLhEX3BJrRbnijg2k6Ng7ynluSAphepvhhlT+Wd8rXE0sF4d/7HLnOXzdZYAvYISPiggX7fsFxPqlXNUzuiod+JR/2CHL90zoB9mbYTW+RVmYZH9jZk9tqOq3H4a/IF2YcVg/wzcwI5YBgME/Xp7GGFrmkgTd4WABSSXljQZPV4IFGjplBscifvRw83XQ2Xzt8GAoFREG7L8OSzK6y1mdx15mzi26Ypn+zjJ50KGa8UiyYUc5KjR2JHTZRcjaAe/JnHtkOWxJ/ZGETfSMy/mcJerzD297aaNrEB4/DU6XRH7XOYHQIUmpTgyd88ukcE2l3ymxoqiq4gHwwdqxQ+V0t3pkTL0+dGRg1zLGWfiqRKeE3tl2ex24Mpqil9ld8MjCcGb1R+BpSNqxlBKW/diRDbK/VICXROAt6dfG2Uhm6QLxw/GKE/2vPaE7c/tU9C+ZG8w34zV9I9s3JTWWgQeDpiufEeXL4Jla+owQYdWgndPH2VKlKaQ0jE7VsnPqhjdEbAB1fYT9Y5RN6U0CxgHWhvOlETa1A7UsKAz1jQmqY2H/iq3r+Tqelc4ODCU3CvAJnno66RY77NgcMhQwQiSFkjNvWzmVLSK6aXOac59rFSqlbMW7Fc+DcyM/kTEX8LL3sLKm0YwS737M00zLNc7nyq8D9m90L+RXf1O8hDZmcgE6VMhnsMP+8BlqliKPSwF8AyjB2LRsLoAVQ7sYMS7nZuihmmdd6vu/mHu6jnEem6aqYQQbiCE50HGHMLrm1JIIUgoiazXl3vaYso1d7ThAu1iEUKusx+hXzz/zaACQnHfPFkpT+Q8+72W2FQIlaVz2a7nFur5ShmVqnyUwNlgKk7uUP7KG6Dr9EOkJQeY7lY2toYdMP2KCqJG2xSvmz8tUFzZWwXi8ERpbDonEdmtqny663XY0Lo8rfBpQ9qZ0qbOGFyLFosVBroeaFOtov1eMdNIKZiu6TwJSwYSlKdhB0Koe5bsX5zfx0xrDR9zCoDjhkFGRF86FPcgEenkjOJte6YJ56+5yJW4RYVB8QBcnKusaMCR8RIF6fx1WyTlnwc9S+8IOZ0EN+ODYhUG9mCRw2IVCX6nu+jk7+7leIZMb2+EP1YgAXmZNeCiDXKD1MrPVaXGvE25I/klL6v9g3Y12+Uz4tZWXynMQGGroWs0HjdhFMJDlj0Ve3nNxcxQifZYv6be8wyp7/Y4ayGHSCiiM4395KybA4NUzX6RDWCyaZPpcuOFRtFopq0MHsBxnI8B6r6XMKi3Y4nxYLmI/Kf4x46DSlTjNAnJbQyuMUcrWn5cZRVPoKUSX9ZCogbUAoPzIVjlJq3xKm6tDIA5a/xmQ2d1V/kVO++t8vBYoNsKt1gh0wQ1F2+AJKLDewAPzhCYw77n+Bd9LwQxhH18l5KQxLSKYAafmJJ8/M+VLaV0/zEqQzqojynewGLianrFjlmceR5nNqg3llsO6q5HvxGbD8Z00PrlcluaHGItnEJWlRXoawZpMHsMShTpYCYVlZh623qoEIVCUi8hrnH1kT2G/COJNxv7HbM0p4SaMr7o+dgejlD7hFhE2AcXSNmEqd/bsY35OiF4yKGL6KCLaJK5buCmxA73cf4fqGIuWAq2+C+nBgHgvg774eEebMFyiMLS+ZBlwNMoxkn0Bcg4Hsjr5+f17XQbUWFP1lGaAil6iBvKcjSUw/sqmWPf2eEajDyJbPJEpV/I3K2jaWD8iV8DxvxEJTmYUv8Tb3nfCPhx+xXpMaJDu1Ed3AkqPR3OJPpC5hbQdCdz/df8mb9mxop/IPq2XcO8bD4G2mZhG9NXz5lqfwpnfuI2fIuMfwPPIATYel+ehIJy5xgOx8xgK2GUP8/DU+straiJAiJLuoPSB77WchiX6aMQy+98az8Xc6vrcwgxgc/Yelpe6+TSx9zX80vxlI/LHvAI0KN32na2wXwdcPuhgtAvN1shc9rmJ6s3ifp8Hgv+RK6Jqj3W3uQT9REDZjg29pxm/g7EH2aJg+c01E7MZoZO+j8Q3hT342S4lOLfpMrmuSZfvWKGLOWyTDEJ0fc6F8CPk7xBIdfD2kD10aL1RWvEzdP4fXc7ox4abzWOaDn4NXWwXPh1hpmB+L+U+kddj7zLmFfcrHLlhRncRG/vc5ZMeVW7RlhQijqgCMGfugJvMu2W9EgsMXTMlHdVTy2AlCODqUTwxEllNXP/DxeeIkUCy4kWLre41doQoU5fqRPKBpL0ugO48rC4LYnZVPb8wcUWoz5mLt2bsaFq079SukvrNlhfd9/zxkNVE0qQTDe0skF9YZJZhm/KT7S1N2Mw24g9C/84fP+ybBV+53RqH1H8xLOaf2K8VGMUu85m9Y9xL9poDf49+ZxAczwkmWRYQ9cJooy/yA8YwRIY4cMXp7jCWs6+mvzr6Tsy2KwWFsxd+EKClRdkIwpsNVLgVNywqA5EApY67W2lZOQJrX9XQWxofHi2Zxce5IcJ8N4trovsJtsVgEGP6Kd0KBPSChN3lmsOxsOV5s5TH/3ETwbd2dm+g9tj3y6mHJnNTBOvR7DaOO4uEmW+yHveKmysO53GbB3Xpxjzx9fHcxtbMKpgyWxogrvJKg5DOgljhHf5P++eDtYsXwG/ws4UozVTvSxyoXH8jQ6L220nsyqEa6O3ViQxgM9xRVnCXBxtHjtwJAfgS15Nt3DuEg0WMyfvRpH8m/Kvg7L3Mm5H7vYmTb7Y+5ofMqtMDozFKy1g7Jck+rRvwhweyXnsSMZ2fXw7PcrsBF9hygJm3n+jz26HeP/G/SkCEhnMQV1sAFrspscLYf7D8bWI3cKUoqbqu4DkxR/we4wsLGnLLmDcMKtdxPpN6b6KaezKWi7LwojIwsVmvfEzMjws3/RP7tsA5edwvCXN4Ud5vWPif4xuVT5eadVQColUx0jcpcALcV3f+5OrELAUVcchv+PSzKnx7RtW6L52H8N+HI1xXvgMy5Mbd/3o6e23QTqeTYw7DfHUstFuGejO/g+wZnKCOGiprHOyBe1zOWQnx+510niQsy51Bl9RM5xyNtROgiNlEDlSafhkvau3UPFOnuqo0RrGJtddAUvQMgvNldZ4QoRFGY/rCIQPmZ7kY6kAXMGiGPQuqGkV16YbATEzIxHhBx+e2vjZK8T+oBKYttXli+TyAfRkmZjWPZe8d4aAYZtjH08hlDodmZD0j9lCyKSSjYBN36Lwinm6WDMOpmxBA86TfZKNS63CueuRC8fYMdR96QZfHEb3QTA/WBEhxZDC4ujx+eMD+B9bdwEllo48d5Jz8UcGXSZwodJq6wxPY5W5Dl6o3/eLNw4m0wGSGXRO2dxr2XK9nPOoCE3kd/zsYGi0L1pdnrehUh5Mauuhl0nZW0Mf20LB37LtK6aNqw3TGlQILm5Ih43NhWQNrG/mG86c8+NpII+g8qWFXTmlYGbd2yGUWYOCuTe/ljXKBnK1zKGWt8Vmq5NaFJSSWb/NtTWfGdjMY1AotFnBxmSIvfhAiuCzktlNLv3PgHGMsXi6K1/jhtMpzkKDcECjcmM6OtxHbqqRinaUAqC6HcSU26KY3tcRzSmUl7D9iNepLtsAkSsxvUdRUTPhPiJORf3094zGHclxlEKl0+BQrGv4Jyq6Nwti+3RzVm67VEcPGopLPcdAySm/Pzl9ui86bytj+hLNumgiBIARUsNv9hxsvLHlQ+nmfbreOBXHOeAPv2dPtuGXMph9pOp0nxmEtipe0oCtLh6VNBQPkinthvXianxli8SmIz9ItEpwMNwzqPaPW8EiQD2vZtHGBce2uqg0guxQsZ54f0kLTwKd4QlL34zAt4Mp0fULMpwtcRQwAVpEawzcBTPbbaLFyeCn3ZkXjdRSaDRQ8zeLTIIhNJ3jcl9cTcB3Mb/G6PBch+q7aFdjeUkKn9aAGEw4Ol9IWrYGGo+vZNOArnnpmjN3kbWv6s6a4eTrxWlydN+Y89omefU7itPcSRBhI4G6HQVevhTYjRFX3useQQivDRxoZsuds9YY4tnTlmYt0+odrDP0nQWY7fuseFJi0B/Bae33v3StisUtmzKJ29E2DgkevUPYGn/ljaQDYmoj9NQbRpY+eMmTiPxeSCovtoiob5KSjL1HpJX7neiEMAok2KKVDQInSbVWEqHff602TThFNTmKhGzmf1V58sQY+yGwH2vvb9UOtd/w5CwISwLNXfQGoNvTvpPL3F2p0VKDhIt+StLAKW3XxwzuXkINDhivwLR90KUI+DRXOxM6lgwNKWLzuNPAJ7Btdr/1A+EzDWSic7lE0mkmkK80CrYOz72D3esIYrGjfBURfXoLvXnxN7dPaGENUFgJLHzhct1yLEEx41YbPblzWVBTmcIy7pFmmQA0uo4IU1S3d3zNU5sxFknUwY4xGvaEfDBlrFbI1YwqQbAVcwiEn3RvAQK5JlgrakPutieS0MpryGgpGynJfS1Linm9ZhAtQmBhtqvVdpiBpgNXLzdh8UrHXXDTuzS3PASDrIwQ/Ka8PGDm+1sM6RgLOA+YSUTzJnZgZv4RByDQAecjue3r8egyQgxKWVrLoI4PZgai/yo0Kd/TK1VlVM5zQ15z/BrqnmmNKe1RJ/Vmg/1R2aeW5eivhvpluaJy+iZg3vzZ9Fn33+cAw6uVwSbutXAha9bjUtm+flpOHUy7VEfJN1ccqLxg8HPhp48rxUbekoqtp/kV+sxLd2HDnWh9ymsXByBrr/AWgYvAWYjY7SUxKAskZ2UqmxG+U8kgDXi9TOoHI6jccbXU8NEkbZ08l5h15+0r7rKb0Kj+9d9SJ7iuNRxsXVb2VZ7l/gVjcwciLHujDTT7LNkD/HGPmjhBHRK1Xnx/N2TuWIfvyPMxUEAxAd5LtibpcKbfQhqTaDVKEc+me1JJ5b26fhcxcCJge6eO8xeHgtuSZstvWUJhjLxrBgbgBxYDHHSY4NOHuNYFPFhn1PfNFXDH/CYgFVKf0+Uj+eQzC+ZqT5zgRecn9uS1vvFdX7Z7MERX/kycvekPVyjZ+Z22657rT1lKVOa1quMoZOsLDCzpyyEM0t8T84fxcE05veqoeYPul02mwBDvYC7m2GCr3akKJdwuX0v09dK9dapYbrLu0U90mVPTPf2rxGpKSPns0o9ZPLUr75tpbzg7ZioQC/ElG3nA7i39q1hQez0wgLZ6T2BCIW1Zi5kztpe7hlSR8a2BV4dJhhFyLYn+FMqNrvWxrUnyPEoy4+UMpu92SZ8TbK63sYZKngJxvtIqi2wSgTvAGnHDnVY7HEx7bspdk3nCi/v0Ds1lcaxQcw8mfmR9ZQmrhLgM2zLmVSqaqA70LnuWmJD+SBGbcyQQSE4OlEOgeFWSkkzJSHQWa3mvbdtLWLRNqZ0gNRnu4+5792xyVSJuv4XASZVh+Z/tBQj2LOwhS6WDsVVihmx2CgA+zl0VtoNP6GnR9LFHaSfPJZo+77bmHJkuhOcieTBEv1+ZvYtPViP76qgAlXMLGBzDPhWVtEAvACWDGmQSbOHyPn7sL6uJP4gDsw8bscEEQH16oj/8v1Rw334b1cP2zGvroosYHN2mvunw4W7bE6Nw++JDypRi54gt7UC3Jv+j+oAlU/5ifTkaBMo+1DmVWaE+EYgBsIlL+k7pSY2SiH1nNUE+BQFaxW7DqOF8kkHHLzY7don1IbPJbCUpforVfFUUCvr4q93U09XFwg9F/b+WSemUI41np/uxPa40kRTDf1sv6f1x4NaDuWnhjxxDDx9+taHIsoUq/RikKuV/GEOyoZwmOi5yeiIZcsnpiURbeDHRdAZ22kxgb69Rfa9d6ePv5IU0TIkKLFePrgOXMjra5KSRjPnOr4NFBZCWz0tgjc6o7kgWsBIYqg9KTpbSdoMfBhqFdMUKqSCQeKV7wXgvLxnsa4d2pKQ72X9Bzkzv4lhHAkPVi4EN5YoAJbVn91KAlBFVwHmkLxRY7eOlCYmGtD1tYODJZHo+50sU8S/jMe9pGU+b0dn4H+mB2Db6VDBz0Hs2IXihfyYmAJNzL6OZEknMt6aEEZSNqpBtRYgnSmSaS327anDRRg2/RrV+BCPeIE3Slj/b20PdkkLSKdexRJ84BQT34Iwt8pTp3HiFYB06K0YtnTN9IYtOqF6GbLFKkK5oUvGgvVbQrYfk6a8r+qVK4HW18LVs3FD1DRzSOD25IzSShJxsTc/dPfmj7ED8YVHFei6bxIgJmpkAm+enwI52519THit8hUQLQs+Inct60PNf1CTsrjGUuJF14Z1NiTkdEi9eCdNmURUaQ3zHF7XF1M5EnKTy4I1QvjWUP5RUq4wOUXRrGfKWT/WAvZFmAyHcHI84pWfHtaUr7N9Kz28T3Vgd8VUg5rDzlmOvZ06KaS0essPIp+C9yqwRqmLt8PQN8DBOtE7yY1l3WIUM2HRWZINQbqbkTDrU506AJltjVHfUbZSUzoOTjJNcm2wRNyCb8aoNQdUShrQ1/8p4Bn0TC+gK5xC3zlibaxrFCGWY03Gkh2goYkFS/piT7dhvGkhSrklUmpYoWFtk0r+O1ohIoRNzhW62nLH0rNXSU7eARARPXZn+feH6vTZeqYAgvPyTW2sE0OcNtlZlb1+m1odA5ESgb8UXbz6DqvqROxy1EyVZ6Q9yFB5cV3cD1dhVVwHLO4OqK9KGvCUhIHTNoe9QHE9f38aUN8s/e8Opk30q7nG4vy2QfG32JqzBuOvmZ5i6z+JuNvLR0UgwzrZagd1i4g1FSNO65lmkfvE4wSTvM6UAm0pe3c4RpZ0wLRev2nitNNQTkWaXa1hJS2rshHoEtaLhPGj1Dl17A6i0ElQg77XivH9SL5f5ny3sKndM4qEZbcdsrPdpozAxSCUgSAupvqcz2/yEdUd0WOf2BUJLUfTtYNQ4w8VHcvVt/U3DWpUaTjpgXPNuT/TCDON6ZOEq+aYIptXrbpoejAlXzbMpplfe8hI/fk7+os5Cv85vRKlPfGb0O4fo41JWIPdyubodczU0BM3EwqR12FYWyzNPZCAd5YCx2H3KlE2279In/ZETa2CyT+JogYwCSmk1w1GxiKRR50qUUg0+Ad4N0PEouOskMNnRWjp7kgdVX2+ULmgZcAIIDPpzSpVd7j+WPKyqFZ6R+KbQ2j1Spx5qN+r7dp8o7s8nMClqpAJAzkD/kCla/MpgFICmmcmsCQMd9hpXS0SenTlouwvemZsSOYfFiigSgk2g+YUjUg+JmsuridJqebe///pCdVtAs6+xfStUKhtDvsKOHjVBE16Dv8j/+nu4emucSh6Mz6Z0vRNMlwE51DHwbcPhMkzK7+Qox0A66MqKBkJTjd1/1yQRL0+fXurTwksPBvc0GNemffomFTJ2X0A56jN/1VwfBmXrvcE/cqtC7eg2sYyoyJQn+OgWPpjzAj0SqN2lvbHtHibTnHHPlaGkwlcCZB13G2JjV6B0J1PIDeFAeGDvLieSkvcxv1i7v7K6D1uMVW/ahM+bBrutVVuZc3cCN2Wno2JbQDj+Qyfz/9Ge5Q/ZxKhF5q6Pgfn9C6YCTzyW2i9IpEN6eHkdsUtnSY+YslCxNdOSark5qKs05xbxJp6u2apuscQ8J0cyyZjTX1BFeKErlR13DRppL57sVb9EMFLkyZW8lzS8RIHCcFFXRCanE2MfDEjQFRgfU0P3iDoilyOUq+aXP+oS9Dl0T8L12X2X4G8nNIGztGogV95giZTJdl2jn0d94UanfP9hGF5OdPVWNT8Z++1May5Dxw58AM5XhXw1tCj8RY4O+ITXGi8a1FWpXjM2axBUwLvHmNuksGfkXKSjLmcaczF2RwzxxDqx6FSsMkuH0azjm2B7ZvifomOezaekNoIcUFkOBlygWVU+WOs1CJSeCwiRHp5N3K7ufJ75qy1Si5xMKZPJOE9w5lcLhqbaiIDA3eH2O6l+dT+ru0WOvc709QcBgSI5pzTogYX8lYX/Qo8zJreHIYseYcS9mKKOHAdhvZJZRwK3HB/6dBSa/y5rDsfaQgvPm6kRqqsrQaxdkOWNJpPGTMHUpLLpvl8Izs2A4cItROASkColYJODNorcEWX6xDRe0zsHcxbBaVxGFq+jc+/8ezO6aogsIGrz0IjWJYdZF89bqYqZvm/fwLe/qJvOZ/dx/fksjTYQYTFGa7w0iFYcWhEzapDXz9Z+kthMSFrFgHKSuAg5/1jFmBtHEjowVGZjuHEt4I+y0tYKD8+JMi4OmXXf9C7vlj4rxEYW/ea6DWDV56kKBpvuhIwedLCEQvXzCUmIKi6F7p0rlokZP1TYqwqcUGOBdux40kfrZ5A+KXz5kAgultoWFnd35SB2/DlbTzKysvVqgfo1vxn5Sob3UtN+rlqkU8FjOgWbVXyKtADwtlpSWtOMqfzgliKh4WjQvitTfDfR1eRlKA/ltSTw/144YLoHCi30WB/plT8vOOKGNQQsj8LaOGQxD83dCHVB3XMqdLL8dTxCogWTx8b9G6EeWyLmtL5XvyzrsPyqnMoZ36x74ua9C4aTEYx6nyffqi4k6GMlfSnZvkPHLqROXtU3wYqvac4qGh6oBQaewmj/JtR14XHH2y1CWqFYyKPF309zqqKMg5Ikz/x1KoFLE7EyXrkAAWlkCKBr/vejazIfHYpWzo7JpoobykOF9zpc81hEPu9LZPRwo2BGuR3e50TVRsDWI4O07BotbLg/PWDRCUdWGAa6Tz+iSH2kDAGkOk2PDTpC0VK/Drd3fbmD3bldtBiHzcdaN/CSsrF5yAKuxnOo4St1FI5u3Qavmm5xKirV3iIQtYTxoofcFUaRDl61hMqWcJXW/LF9HKYuoLHf7lYWudk0Yu6oTRtabIA0cdLZ2NfICFIco5kJ8zvcrDiS7mMhe7g2kw7bVo/SeS10EkdgEKKDN8CpQIXwHzCPT0EriQKg8+GboP0zOubQAY7YqYPbs95sXT5fUaeOk+0psw6pFPwt+a6XnXrdqi8DO8hf5PRkedM06WYMsDKUK330clUm318UcXknBdGvkCVBFYHfv0prPcnJwFkNrF6iHFRF0AyFbt0hPAHHnDSh1qDEdCgOpAi2kfp2dr35TSwEXkgQd3UT5T+ZZ3Cb2nRq9tMeG2McUjpJSb/Wpw2ViBE0TpHBmoGr+IL+17VdWmnUmfctnNgxanf+NnAARLuKLI07jxhBzEY0HxDBrSeas7F2NxUrdJcUIfvA7qAQgnLvFl+vxkT+TDCxO1lCpJuAYKPe9CDPHi/HUAIUxF1R0x42gaCYusatFH9eLo66GYrnTQi7NogallnrVMwcoQgXu/X7t0m6gL+2cUHnamJsHCNDNzY4m0WnhmHxh5PtgiZ63uXZI+FXUVcjTAWowPQ1iyfQicS8zd7qmNXXW7p4PLkeFzWzDWz5l8K2e0joqtoz5EwVnxbUFbLFOF88kz+3BCUTPPnaBuYtLi8mPLJKQm7L34nJKstdpnadfuzWEq6YFDMAN7xprjIJmNxTNfVCTlHYYP0jaL0KiXPOuWfdczjlETMDYo/TdQQL778RaofFjwRUYraw0TW8CdWNsl7ZYGLtGnrTmlra5cXayS+27l+zU0Ha4usNxVu2KqFvSjnF/qNhLXxjGnPIvLkbNK9R9dD/1T8ZooHf6rTGgzW4iqELnzf4rNV1a3iU7AJqgak0cJl6ToFr3Iu5m0/FFVuk53ftmLk30MZ+bPRShhs9wDyR3nrbAD4Qq3O+/+891IIvsJFyeTEQD+Btt6ED2SvGyUIdtR4sp7bL+YQrRD+t3hlumm+k2tf/67QQghqz70/czLV56/biM0xJZT7DVBThArhJkgvlkXwNqPbWEZkcnsn2NCGQY5viAlIwqCLH1s6w714dvAbnBqpfuAk4aA2fLci8ZsffVBVjtEAzAPCmRUfNEObGEfXhuAEu+vR3/2SiTdD4nPXTmLddU7Gvfr4GK+WLarg33QS04Iaz2SO+l3Fcxo3Mf3HqF4NwRdFOwA7mrh9dHAosMAzVEeA7dwHAJ8Dzj/Ggnek030bDp94d3xZyCTsfxFvaE6zuZCK+4T40UqE9iBUMFjiShw8I+qgJXmUnB6rgt1MUvHjEV+iRQxawAuT/stNwk20EdlJheicRxOdvRePyLwuKGFdKWd7K4Zv5gkuwT5+i2w1Af+XjDdQ57H8bWidZjGegPkhbA+lJD13Gb1ZFh526THnnfRrV/jsAfpB8TM0DkUPzDkaMOktdMKl0FYX82h95QCqvlBu5CzfKjk6PqEeAP9l8ibTfAIcMaBGC+atDKbYD/qwuQPTZ67Jyu528xNU5ZitPJMiVVQwfSVHHQDKiRd4IYub5tu7O+LzWsCB1+7KSDqoIHIRR/nKLHQxX4UKbAwhuV/GQ4GHSrlDgyLeEtdRjkhOxL9iLK3UDSl54dbml/qqbJ/AEnkdDlOWYQODdW9MQhFhWYVCpGC9reOHOa5G+UXlkVxZYuAn1FcuGK5AdZmzCGtoMGvcsAt6IYaWc1gUCfB7tXP6m8BHeLyhH5NT+iLKNbuDpT6i6flNT07+sq2QorAN1qrVi5jCa9BrB7zjqm912Nn56Jk1T0LKJyQx7bBoVDKwqWN6whlSqT1V0NUoF/kazvue867GO81rSULPMgn3HotGe7dvqqOj0kF6txshSK0SsG3ezpafR7M9jtTx+Lts1pAihISQdPBDArC7gN1zi/ASTMl+wNgHSk3VHw/ImIlSNsQTlLWFB9iGIDPHClKnzqS6zyJWTjeTz2B43fMUmfkhZ5lOoVUfnqfFponKuWdwVcL88ISVnKwKTl8mBUF7y6Jk4nUXbAZnWoevhn2xXWXPHLuIQbD/TnTj/MADOucy/vRk2XVnWvdN0qAIGvpxJNYqn9cpd78801nsXdj4HQDCmsQCCnRZAvFPUB5uVR676Om20ps5udBznB6oWytK67hpE16HWvN9PHzKJBC3/fUc+jat+l0EAqEgx8nqvMOofOKPdbQHfoaEaEhUVG1EY+se23T9P7FHxlaTnaUHXwzOIw2swZ4cfvs7kGxsEoICJF4vHV/1P+UxDWQwANTvzmhHdLAVNiQj4hF2IfMqbmIS5+CusMU4QBurpvchw2HwpGoKGHH0QLkDiG87M0aAFT6WYycpBoWDzgOdexmXdSlWR65wqZA9P00I+dqeO2dfALxsId03NpkuZu+R2jfeGB07pTQI8c/9sYINpWvhXhH1lpqMbzX/NEz02HQ/U7vGssMPpw5DliGb1BmHPi5ydgU6HrU//tCSUu/15yUp+lTFF9pEgGm/omdFArNbk/wwFUEmxukoDqwlKXUKXQnB6sinr6lbxgh4FhJ3RQ7onBdMY71AlonP0Mt44piJndmdNPF5iYwI8HxA/NOF6CLBN+0/6sRaKRjsZZ6fp/wf7DsuENvklXdOIJrY9GRrg99n4zGfYHO3ldXVwxMsgqjfzkbRFwuk/gwxKorlf246i0Y+tAWuBRp3iy2i49QiPC+rul9cTOMIjfZRCWiQfD1ZncO4PzXoryQ9TnAnt/pkvEu4hwvLPXwakqYrwsE72shTpVtDlJ+RBvnipsaSksIIPmRBNwJi6FhlHwfNMUvA7Nkvv76CHAxbZu1ZwchcgPQP4mLF9VH4sgkFXTwMooCnqPMrFsunlvqvJLFFC4k/5aQnYth1cttnT9JGrWeigRtyXmnzICLjRu1FFb1L4JDWI/uBrGJimje0B5EmtgDKoAjkwBRwo2BzchICVSUEWxTlQiZbJ7Tu4cLjzC7GUpQRB5odZifufCpN8rD7O2bftdyLvKYhKmMyiwd77AUE3GCsdr24QI6mlkZKPY0EYWXVRkqcFW0g/Rl76mqssPWzm/x1MkUTXTHFcD+IH3jaBsacKZt8nxG73RI7VwESbKPJfcFRflpP/3bHdt4HWneL1QO6fVYFnxLIjJrkNwW2K/JWiS/lp1fvrIZciRXY3vUNY0DdRSCEx4SkoeVNsYAbog0XNhPqlgTYCXbiVcVzSnxf+F1xOHTfa9+rTMF2Lo129+bapY0xEYU8qEOzOPkPLm75VSFEdBkkapFjlvwozo4qEOlqWxepO6cjeoRmKRriK7ypfmkbdB3IfyyGoKDDksyO5RGjvHJi2ggIr2WPkvZmcnxIG/xeRCzLVa8gwoUFD8Wi9JfR3SPSvLg8O6zU4GNz/IoWezJxdaLHN0afLLABHgq8gHHyk3DZ4B7FdenM8PFWHKb5T7qKrXUcajuINEP24RdX7xcgyfN5sBCVPzCyayx+s4OpbPTX0ZvCZ7Nedao/GWGoRemjn3gcHFT2L7PXuBRpdJdSY6VXHw8bVwMeVv4WS9a3zIkE67VTseK6bmGihGCiadRkwU1ZT+LDIe8/KRrbKYzJcYAoPnVWbRMJ2pVZJFUen1wovMGfV8Zo8CCRckvoRzFOYw0rnnlIiwpnH/1WNAgYSmjliU5OJXtHSdTcmKYpIeN1bOynUpMoNPGmd82EZ8FBxv75eBucyRo9+cTV9bUnSKgeBBpV+SCTiMViwxA9c9G5XhU+VqGPs4Nie5zbm76KtMTk60TYCUfXqUdp4rSaBhZwQHL1xNiOyRVqwKFB9RhtNVIdQlOrchPBySOqjGeMlmG+IOscaulRYLbXWXYlw/jl5dSAEMfVKPf+8+AKTsTNcAEzCiXX30FUJ+/ker5rAR5c0iOmN7lj76UJGkmNzOZ476zWD/1K6D9Dd2V37CVCwSt+vbXp/XVri6ohazfb1O9mKHlTO4UPb/rFirrTxDJ5F/BKJZ84Wjji/Xh662eV39hLpTp/EsgPJ87DgzQvqPWcusSO1S9JpUuGO+lGqYI7rbjZOAasKXIIP96vJvelnYJkhXJv6LAfdNw6lggr28vsNaa8QLg3kxN872snL6/q1aKgajhOw0yykF2WcU0h3oVowZLa2cQLwwYNhuBIRGMAQVxYpLSaXVSJhRTANB8FIPocIzx1GmhpgIFZyyvQFuEfDG6/sDlD4Oy+cxM5JeWTb+OIQqNz53PEPzDU7zP88+ADOoI5TJXXbrcpvxFff4vE/xIF28dN5rJKrnvg68aeLcW0xNtMw+8iFDk1BwgqeyHl344S/Z7dFZDuhf2n2gLkEfcT/zDBOoHNQ8MITHu5tLr2/Qi+Nsu3zxLUVmcwTvKQaYXtL9lZ84m0nCD8LlB3cejsoGuTn5T9xXbJqwMbIc6Sq01LvPoNail8LEFW+hhXPMQIpa9DL+TbD+2PYa/NxCMMu+bZhGQOd7W73r51191GnefGzQMr6jZr4q/mzTgaD56WcvfS/gGYrrFDoINunUsnra74D7eQbGqnfZ2oDWnbW+4q3sdbD5FvBwOjTNbzN2NUoO9NGzawBDPDafuwxy2dUT0VVJdXiVyiLWW8LEudUg8cVY7u/2SMUPat5W6+OEGIQNyVWGXzVMjvZCcxgb4Gc/T9EooVTNr11d0a4vEGi5DqbTxi8xKWqd9OY3CUIdbjdhRpwjw0amCiCRc/DbhomK8ghGXSx8fJ6jV+YWLOXZv0eEufWsJTsfCTYs0NGleYBqOoOmet/Sa5yhlU7LAlZ3N7/X5SEI56fPkNli3GX4uEAugyWZddvIPPwl2BCfrkxvji5AkgxZi12dx8LqVgDkb1mvtLpUBz1qNT07qao+muh545o6ad8edJqWXj2o8zdqOgMOeWei9vEFCtwpTD3pXpg/mSX4Hs5Ijt4wBfDLNoV31hflcfoRTcIyw+r9vVstW/IYtmvw6be+JJzTLH2+YrRGe93K80SpE1qZnIkVHho59gy525FyIXrmkH2gvRRLC0OOD4IzIDYQJpL7jEODwYEwbtyp8YNoPpBSqoIUP39zDBV5Snt1TJzE+aawN9r3i9zdre0SwqUUbtb3jU8w6yqk7RmZUl88l5OTm4i/mh+fC2lrNw4MOATqsV5QFCjT6UVOeZiZ6kFSdQb9HrxlUIqSDXphu4PjuFK/r6ao0ZPD/iGAQW9LNyUtUDS5WrEmhc6Aof/DZRmjvJkC4ytcHLgCk2CqyxNF58h86LRz2kmGxPmMjP6WeEDqHvcT08C3ixCwLZLlYwdztxGZSFgNHnhOn6c7m2dzN4JrZiyZcneLB3uM42JUIGYO7VVql8SGrAycAzNw4pQU+oMEtG4m8S/rub3Cq8SSsD2oehC72g7PcgT4kzhwq2pWuYASYYcpVsSLw2JK9yTVJlxYAO+oEFJvSwH39NJa3Q/RpMCe+KRw50yLzDQiKUOE2XfQN6UkaJuZXfYM5o45j9QqQrZN5emccgz/3Vp9uqxQsavzjagyMoqkHWPBWRzpiXv3+k1kj3lhqArg1jiQqetJSfudiDuvHaF8jwYv3BIIR6tSbnKCzWY9rxpMd1E3zcA1JrPp4i38G3fF3iVVm48kVCXpLgrUDXC3R/NX/Iwlv2cNO9be753tslcc2fn9WrH3nQAkdJxq2SkUGdYLP5ljYQLHiT593q4xJmB/R6Q0SA3IxABLWvFdcPfL9FozWBkqRkn338OERnIL+IV1N4eez7rwaUGeLGg+tcAOMw2pRM+T+l4Lb57PYqc4HHDF/ZWqvwEHyI9CbQl1TUseid8c1AlNwvWusSjJbUacHXsflvOGN2fWrpWPnBouObSQgI3UGxHu2hRewgKwTCKqgh7Tfi6gpjv/MtjK3TkFm73XbDSIHOSXZgnjHiSd9igTbLWl3MRLbVM/jdhl/9oZo8kAf8vbKfc6ivjb2zemijwqsVMiOi4XRZfYL87Rf76+ZXiTiieOfuVJc3ka7vFUh9kFXyNCHFqr3va8KYVdwFJpPaI+dz1Dfuo8pwZmjEWhGQQDxdK8STiTg2cRDbztG8BcgVEeND7y48746xxAFXVe8aa+WXKuJsTKnmyAewQN1qiaNkjh8ht5TXWHoi5NilgFe2NfrkjalGZDkQJhRHCVllIcJcTeXt6i7fDd1JN+y7p119vR1+RW1sZjOyWzS2/VCmwnlG/T17/XyKeyTSPgr62UoTwoozY7mCaBIsWocAq4s5M7fDvhLgPc496XJ0ij/LnYFMjL1d19vD/t+OCKkjS3twiqJ5BVTVtpMS8LaUho2ODlFlzy4vCw6hbnFBayZAnkClfAcFua2P947alwpBNuq6+Nrfw+RAk63hoTvu+ceAnD9KDtabKUpnBguiv98zqO7RdlSEhaZeGoF3r9Nbb5p7hEI1GaKUoJ/CFB5LrOFgOttU9Lzshyrqn2/0v5z/KmtW9P5JBC23YkBZcV1jNvYAFeRnDb9GrM9BJNt+SScCjd7ovg/1WLsCa1TvfgPKzS1fE/NONy/A8lsR5qSosDrHz8a1ahJfHo/EBFs9+v+ZZ0FiDW8bOvvidmf7zPmiPPefD/AaqNtrsMPdVTutfMiYmSSexDj72sAsanRS/Xi5UqR1h4Ht0IVtVHB6h2kM7wJskSj7zoMurxaF2e9eWKbDeYdXuoOskPqAe4M39cU27k6mO0ylyhTBt0cS8XV1yNMcDUGu+h+9GvGiBXUmehrotEWnrnX9DuKdedos4Htzb/7R49bEJp/YV0wO3OWw1BJ+XSaTGm92YBIyoaaV9HvVbz9/F4Mu+50eVuaTdptvr7FOg8pa8z6bCAFuMPIs4csB9T9U+CRazIralzpEvyploxLxepJ98wMCUU+b6Bjccu4kES5nJmiqo0fz6nnAb5D6meaEMD3wUlahHqqqLVUyD7Zd2v3QjYTjIXaH6QM0EzGRbscLs7OJXQNBaoiaPF1w8o6da/DPhEt40SkHVTGl7Ckg43H3DwtQHlfG07Fu5DMmAn/8n5gvgd39obyeKxZ3vF4x6Zyf9ecfF5VghYVVPNPtLp89QiCFqW7FWIUfR2Raaz0YuJ/ySvLY4XgW/ERlykqCIcbbnXAK2O7dugr9qxDO3IFbvZOxkRN8XCmIdBD80xEywF3amOLAaTvNnJF4EiaJ/XatJ2hPD1Av2d5QdZVNGUxESjCnRUSGZPUahskkulLYDciHAY7uPEB1wPtbxGp55IA0Rs//gsSQsQXjfojhoZ7mUNyvdalVcxWFGarG/GBtp3facahAHQ19kdT4zcQeVx/K4M/clRtEJpHtKZPHzvdkQRicstHL5db2QvJ61mLy52zpDCqty0EvRHOcKRhc8ZMLNk3NUZJrGMW88sdWzpOcxTQ20JPFkqU1BQ/I0pZQVdbBJRMCsFRWz0CdMWJpOI9/WfxL+wLO7c9Dw5EPIGqP7jmZ1eIG1B6OhOoeuG/k90WyJKj/XziM1WeC5BBz5bD7mnRohaGBD294ACzP6TCR2eYUinioOHtKchZt7kz0QxVLolT0lOKdejrmvL7bZd4+CPmNu7tYsOkmXk12H6kzy3R3SYwcUZ9YYS12nRBgi17wHHqpsLC9dz5p4B5F9gW
Variant 5
DifficultyLevel
659
Question
Joyce solved the following equation:
− 3x + 5 = 3
Which of the following could be two lines of her solution?
Worked Solution
|
|
− 3x + 5 |
= 3 |
− 3x |
= − 2 |
x |
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Joyce solved the following equation:
$-$ $3\large x$ + 5 = 3
Which of the following could be two lines of her solution? |
workedSolution |
| | |
| -------------: | ---------- |
| $-$ $3\large x$ + 5 | \= 3 |
| $-$ $3\large x$ | \= $-$ 2 |
| $\large x$| \= $\dfrac{2}{3}$ |
|
correctAnswer |
| | |
| ------------: | ---------- |
| $-$ $3\large x$ | \= $-$ 2 |
| $\large x$ | \= $\dfrac{2}{3}$ |
|
Answers
Is Correct? | Answer |
x |
|
|
− 3x |
= 8 |
x |
= − 38 |
|
x |
|
|
− 3x |
= 8 |
x |
= − 83 |
|
x |
|
|
− 3x |
= − 2 |
x |
= − 32 |
|
✓ |
|
|
− 3x |
= − 2 |
x |
= 32 |
|