30126
Question
{{name}} has exactly {{change}} in change which is made up of {{cent1}} cent, {{cent2}} cent and {{cent3}} cent coins only.
If she has exactly {{coins}} coins, how many {{cent4}} cent coins could she have?
Worked Solution
Total of {{change}} in {{coins}} coins:
{{set}}
∴ {{{correctAnswer}}} × {{cent4}} cent coins
U2FsdGVkX19jafdFVb2Mkn4DKbPdAQ/+B7qRMhomEIW+/0f0O3bhcd7jU0EI/G+uGo5WsRwD1Q/tY+WU0bAay9/j3zfZOcvfi4KV9WOI8bgONCLaClMIPnK8uPEdsSsXYgHvpiwMcDSnm6JZexgcAMpq6oZQRSWzJ5nigOl6cORPoh1Nu+FB4jTFP61d3UwqmiRNYv3Ty68IaCtJu3c5hTJQD7fmBtynTW+4cWr53YcKkrBE7LXGylMqQiT3Q7Y6MQ+WY517zNt24RyQqr2J7I6MqCSdOD008112ke7Yq4hGgzD+SocsUYi/VYzmoEctvSEJmlxzn8hKdEUWUEuuMUfYfBZ3jkAWDmP+S2Y3F1OJpNLb1W+68sWYKBcg/Cl401nVYHxgdCEmqbEoMX3jCqzmteUo8ItrFTw7NbOlCJQR4VqpBhCWpCs9CUmMbRlmtOloHQNJw/HNiMWUF0bXMQo+4DsfhQOBb5NOYTOumioFJPunEPJKcwXXvuYWo9fpgqLydy7YTpvrh0CYboLsk5rA9z5TwHdorpH8g2nzeNTB/kFNTyyzRlg9cuYU714IMtCBTdeRiPNJrD4MDkkkTg7aXVBUty3U1D4LpPCojVWZc9g/arZ0i4mnegecOnzcQXQeOhx/ncuDnJVsIbj0raF0uMmCOBpOoCrkjWzzWW19/2v8ScL9c/vJjRFquOLg0b2h7/z49f816Hb6yqsKAl366lj99Fs9xoUe+NtOswo2QFYPVzBfvSG1H9zI43K+8TF7PYQWFMwXgtNg62RfkETb+5pd6f8G4c6iYDiCfsQuTNBJWIeTgl9V0dO4P8mylLZ6WAyhr3uN3pK2/ADf1nGxTiPntT82rhGln05KNOgq8FowxLUNn9Epq3Cbst3veA1nEAJ3m8Iu8eM6t1gaN1SSNqZb0/VcVUtss8tFQaYik+VEj1pgVNvlLUikSZFYAMrXoqBdM717KYZKJ40Vb9QivrAx+ecSIFyi9Tdettmz7OeVzTwCMTmvpqFZ4m+hdsDhv/nG2yNr8Xe+ZC0pHBCYuwCiDQ21YWYniNYIIi6WVXsk7FQHVnPL9a/peqjJyV0yNnp6iXgrlhJpXnCtdkLBM0XD3oyJeY27qQspGmnimlsoCsKo6a02QFEN7DQjI36L/aFKGvjg4b/4jmG1Be4IZOZ/nzY64u4dVDjCS5kQnBO+RCIld+J3L4TIDhMTJ/MXlztPQyxUXSJGC4DCcGwHEVln65kWYy4b5vcn4UFuAJmUtTkZlu8oTrayux35q32kYKTjbvEDsDMmFmfNOUg5tcsnZ03SmUpNXi/Hav2kIIMrYj0mPLp2U6kUyvHFgdJTT855WYDHKO2BYip+Hdbi5IlFD7D1zSyHGadpNqlJcezXyzYO6FlYGFJDTYuosGYjlKugrsz4Jcn7lrXMG9viSpnzvHHD66cOJQbvjOZbwOjVv9r0L3DEoyq2NfIm7zU2n7xoCAKxgcrYcj0o+m1Szr1PT26t0nkNSez+I25IyUaPgjYKD4n4qMvDLYYJV5QusG+oYNcoB/7Cppb53EiYpK1vQrCREmWIGqnV/hQzI9Uk93DLToPD7GSsxel/lrXGaFf/4vPcjrobtJgteVJVvUKaDbRFI6aYVo24//vOAI/y/0xgfDh4e49vN3+P61ImCtNwWpHbZ+j44JQy8eProXpCuFA9kMAIVTTxc99FiywF6CtvJjJZOxFlp+caoJygsXgPpR66yBnkwwORigNtMYTjjn+PC/LodcBy22S5q+4EtfAiEGVwyTqU29rrHgd2n+yjZ9B831aJ4g8ZGC7ngC2qNXiRQzU4ezjwLHLbEwdzfA4r2ZNkXG2ycBdT+VzkCO+BZ7Nga1wzVNOxxBtfbFtRFcRAOr5gLAR29q5S61amIpfuRkRl46tMvEcS8CEnMHBeDWcKM6tiRvWw6KAncz0hoH0qnsqiPtlQNrLeDQd7YsmHZjECg7Ui8WuxVzPbQ2cX5aqL2oiurPFC7Lc9kZN/b1OM1FfSQL3jF4EJFh4Bd/z92kNpgO7/4f9FTBtAUhcuTPuA4H6oGDMOuL90LOrptpq4KWWhCGD1KRaJ/20VyTcEmZSVi+Hkybx4mJ5GB9Cvq2DH7TJNyvU1nUIVqmQ19NoJMqynFPv0NcaLS+VfUO386mhSnPLNP0rTrmqIHmMoNTKC1HgHAL0S6cJhyAWfhrhl1ZFeUOaB38o9PSD8rmoV4T5lHNeCpq1KLG1/97AXxhlN85Gi/64BWuAeU2jbgCBwUbgjH7FqGzlbwnlNioQoqf/LHXn6kfzdT4UtUyzZQo49eHn9yatcj9ONGwAau/mecBzQWqquGXX/QgYQuVwBcMjSaSseaE+PlC+Oqt0d+bFHda9FI37hE+8P4QUSbrLXZS0436GSzmhyOdl6ONkiQBgLtDV+zPDNiOyHS3ZzPmpMZFS8v9i0zYBN1oBg1rDxqynS7OJEt1CnLNMUNuFA4B+iaaga1oOd2pKD2wDYJkv29TfhGQpENPzGA0hncCkU3pqYHu1CrxSXPLBp8H8YDrGgQ6bjAfXDCh0St70Q4g/EZwkxHMegi/SCeWA25epfzHhTn4iwEaCk21F3zi1cbcyFyDPKz0ZE2UPCD/oaIRxR0g4pmBdENEcQD6aEwEU9axQ/ETsCA0gT5/pQ4NHBVXh1HRmCmua6bcl85qGuv6d0h5Gzk6zwgtUqODsdLyOJ2vrHfJkxGjFujcILrn+2ms+r+cFxsXMBkLFvDcDDilqH70ix8oLd8FoZA3zRpnFDYSQSY1Dor0wIOTEXawarH3krCQqwW5LXwW4kPcRKhv1AnhPWX0MHJS4edvYnfITbxn/qMzz+8tNYe3sxlUfomYVpGEp1409GWQyq6ZITduqzbyjJRDvKrxCKGnkB4MrSqJql89sn/Xt61EGBTEn6j7vQaZM14xSVoxUuJrz3a27pJRu6ywhtU14b+9qypIqC3ceS1QQx9Aau55cun1r7ht82oH512/tHiEjX9gXr+Z3TzvcVEHUz7zqFWoxeigRXStFTL3mzFAm/NFbPF6qFuZYwuvhPfabkf4h/mk1UK2vJpfhYzeJodCyCscW3icSb7wYXMslRYQfq3qI+EveRQM00QNscphx38Ho4SZMc++oA+bfV9UWcg6cdyBQaaxpM5vjVPIYjjjfrL2t6WZOfdHP/Zx6EYpcmizi6tcioy2on8ssT2bocyBJ6IozwxSFKzEvApRm1VHJG/8PO+KrGOgyLKtd3p+yYSqSP5FAmPAy+vSjeerAYDBc8x25HjaeTpwvv5SY6gypmulEKS9EUH0FUNxTQAv09DG0wZxNBWkRdh2QR1By+gr4iJX4Rxo2oIWHdJ6zopwCLcxJPXPbYbeTJfNpIcPxBBLQ1KW4h+b8+LPHmpCPl7//K3W2O/zdQintHAYu1Yh3zpAxVvt/ZtTnZQW+w01zjMg0rSL1l3jKzAlGULcWrrF4zxjwoEkCkZsOYESBbpUmNQX035yEX943z2wLBVexwM6lSj7fZj/fC3O9DgMqBkigBnbmBtMRrTL4Ihtv55VQmtjX7l365Py/wznHKddwgGfEXkTbKTILHk+7NvA/4+hoQ50oKzGeedv/GiEqsbJ4hogIpsIAtALADshViopoN9I7Xx+QnhjM66lDSj8W1QAhr/OvEqfyc9UIHCP2BRn5OYtsAVBpiKAC/eWySUaFL1Hy/EvBftTc22taz9sgDB+tZW48Ritdy7DFBYMhtxS1t1rOAfezQS2ptIpez5cZtOWWk88dgr9zaNtz9QYN+68N02rKTVRX9ILgVNW8WlQyRLOFk4wjn+lKVw5NcCTukn0rAaZUPl73LLawPcHRpqZ3l82Jjn0s0SmTO6h/6EhmY8DEzB3vuqISwiwTECmaqRbD4RPDWfuFp8YR5Ptu7SEGI1bzABIPVGGl+RuGB/sybhI4C0p4tuobE6v5uITKizKS8TB5QQ6rx34sv5pBPm3wmZCGz0eKnNKxqUQD0UszuTXGy+auEld5y2duxHP60xHH+O8IImHVsZDq1cTPCvSGTlfLqzbNkbeYjJ0dw2FeEpYKk90yQ3F8b28C/rCf13mWc8gwtg9PMGzTh6GQnbVE5DbMiSTqRuvn2Y7c3AYiXC8WJ+rh4rN8HsvHv9a7/e5LHMFvgONEjFCeA8QO7k2P5MO0eyUIqTnMr1Fbl6Qtyf+CjU7PcRInZKmsbIzHvt5bHTdxyEYPdqkfaSTp2gZUNg+dfssKpSWsIu+rnL65VrIb+eCknpXnB6cwgaD+WuTM704ef5rh7zt0ke6hYjVeFPJTs6/OYjCe5ICz2YdcdTW7kvr5DwrLBs/dWZbFj7on3tMU96tHVefJq/Ka22p8iiIRIRi9+3fEtqAe/iB08L7W7B8nPRsXyi6E74USxsAJ3H+1Zu+cpphd2srlWNB4iw1XMR3+mPo8WR8rBLdNQ/OJT1ZE8JF3V714foM29V3gGeLR6a8qTwSeKoRIgGz2ywALFODuLJ26g1x32snpVCqrIPLzVx7qHzQ1+WOWcoQHngwGQldtL6ueAp1bYw2urnqlJnmwkr5vgwnwX9raqoHDVcWXAVX+1P0HiIgk1005ZZmXSjmX3/qmtpjJgbIgoxHak8GwWnpEQsUlCPO7/ALzJiirSU/vt1t7GwRsQsYZ9Ez2h9WXqy36pfz3yNR5ogJIKWmAftwZh/eneyGgUIqKovygTonzYzor61XYUo3obOiDbHqCY6n8rmG1p2UzysQG1zbz2SV3JbePQ5NvxeKwOEvC3N8ED7tVaLaPhEMdJVHsQtpEdjptCaZBvgjwIOI4k4ZH0OzvWpBK/lbqNNzlqESL7fA5YYryI+jxD9umg0lahxVOQa1PaUIjr8mEfIDN65kcrpKPuerLGjz64WRbkgqyG0G5Dbjhy6shWBWXFN3vfWYJXx4bNdL3OdLG3usKMJ+lm2cZ11umd6iciRCFZok30wrZme+UoRnMxuUpbF6WIBLdvhOufXNAAst7YJsCw2qZn1dCzyNOda3Chk/rS38nyfMb/Jc0hqOp5qYdWQpUbLc35T7+3XrDCwLZY2rFgW9UDfcxo+V/wM5tjlOMu52umCZv0VTjg4wfoedk/5JY+WD1oFGJO1Z8/8Py2jLH61mDXidFkfQRtfdnCjzAwiZO38KCpGl8ixNFWsvt1HcA1lzC/2XP+Wb87oSFH2+QGGn8iCqxMWW5KdmvXicZ1oXoZyR43mUriJnhBmIpLJ50dsS71MpAORpgByIvLmKfwCQ+3rfT/T68jLnzW5NsSqe9P215DHDJOSf0SwozYky5wDgH+MpzoUjU3ahsSirGpIuiRm3M1/uNJ1joKqvXZ+vluXzYzsUrxzwCHPhmJVyIvVq8J5u0jYpksrqiZ2iW5/ls3aT2BH3nax+kH4IOPgh0HQjGrg2BtKSCGqwBVSc3CBNPfc2Uu3HU3hlZiegVSHIYGZMWR/trlTSMWPRE++mckDnRm8EWw7+moer0ULts5PaZXwODL8YrqyWSoPRWg83Ks8Il9EjYjk97Xc6oJJjt5G+Blgi7cNUXmkyhCMnsMjnoxmLUPFhSitUBlVfTG6JKx4N9mrVl/C9LXltZ4HTaRg5MIxbL4/hDy0QlARRwJ26hgGEzWDx2ZSURZ2QVuktyuS2FRb3+t1FyGIdjGLqHb6IiZx0fyu/+rlFjM0jZt2HeoE7/hiCX0qAhyhfl3HuLv0xB9u9+69WVSxzxnO5AFCmFlGs3S6uY5DjJ8EE2FigAYSxl+H46EQ5sbzERmYX9tY0vOOSHP2RppTtUjTW+TSsCPQvThZvbzs1pWwxfbkH/MHQEcjSF7+yXKmOY6xqYKnkwFpDnLVpkue6nWvLK0M3Zrx8xftCp7j5JZRSN/SpK4GOyZ9EJvhQLgRZqDn/l6KubQldOStqv4afAdyLhUIqdicQEs5PaR/sbFF5JTME8YHueug3asmkFGx5/oQd+m+cJB0iZSjbHwT+FE0RCCEYlEF0rZ45HcTLzMbHwuzE/Vcru16KxU/1OmVxFDl5sH4sVDWtiQ6eFHPWvGKelc+eX5cOvjUSvHKqP527kWVvv3G//Vc/NROg4D57VSq7D0B80lyCLx/w1WtjYn5+fPObNccqt7FdU9NoNWTW4Mti47FCJrHOo83DbHXBTmNp3PI0/YKVx5oqnDXekQcbODg13s1E4VOQcMLtNfoWcCjGpnqEcKj2SrAfG9xw8qF3vEBRaEgVP6ezDIQlsg0J34+H5twRkDMHC//h/NbFiNBk+d0mRmtpAhdyxsUYJd+agoWBHtY3CMhm8=
Variant 0
DifficultyLevel
569
Question
Kate has exactly $2.60 in change which is made up of 50 cent, 20 cent and 10 cent coins only.
If she has exactly 8 coins, how many 10 cent coins could she have?
Worked Solution
Total of $2.60 in 8 coins:
- 4 × 50c
- 2 × 20c
- 2 × 10c
∴ 2 × 10 cent coins
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
change | |
cent1 | |
cent2 | |
cent3 | |
coins | |
cent4 | |
set | * 4 $\times$ 50$c$
* 2 $\times$ 20$c$
* 2 $\times$ 10$c$ |
correctAnswer | |
Answers
U2FsdGVkX1/0pUkrXsChNp5DUaJcJvJOpRTSlQvbvfuGxdZ2nhVwzB0aq629EYwHvmAblgEvv+8+Yy61o52bNDRV1cMX1vFqewC7Y1vYmjVsa6MnPyrb0hdsibkF88maTybp/CBBJbpg1aC8K5E+spqANhRXMuYInBEnU3sK9810Y8o085/Lgxaa3FPMj3HRUU6OyUMJQaUj/cBOCutxBeLAAF9mjc6yzrUZmOjTSedy/qjUfWr87xwf6fqNeKtJxnRPyygiDj1BE8kVbk85EOV/5e4lxg6sWHRiFSpVUdZzT1OO9pxZtnq6Ob0cbNIMv+7a4vTdGe+0T77L76DfxBIlQ11edadTDnoAYYkV2JuHS/SdP8DCWEVPU6rkQajVxp9H9gs738i+c8uLH3m/Thj/lbZOZWkdPLGcwLi5+fu6mO2zumfPY8c9P36uUJmKeAD56LX8tKW+Q4MvnoixkZESXYYAwF9aosBcJiITRD1qAu8bJ3/5HmBkZ7qbjBwKu1mqXLb6yINf4avVxQUV/t81wTjmZL6kCNJQ+X0eWqls0k+tJAxAp4oWauPiz68OMWiwhwh4rIYmSeUIrUzRNf8i44e/15nzdl9JZSguJqIwh0+Y2PO9H0nAfoGEdsusc5CbZ/My/tSywq94IcDMn8Tz1jkzE1ezOKRGsZluMjbFgks9Iv2fX6tHvT3jG6JnRPdVLgk86VBjrgvmJoGPS+giR287qEd2lOV2OdyooL5JzDLFxqTV8ufat4pkUj7naG9D1B7onXvO8e50suue/gNpvb58QcUwIDxS1ZSksCKsGCeivj/nRFCmMByhHSVZRKg3YPsNyMzlZMca/KWF893HH6J+bzyJZajPIYrK2pxrmZLdURB5Xg4hZ+kGg5Xuy7sJF62hDn7STxmRkYbe2Lsr6Ypu5v73jzP4699jpyZDZ9nYlAR0Vv0X+n20OvN7DTzqjH0BS2EXOasRg7PpSmWrRJVIzchkQfY3Fq2JhAZIZ5UiUalwa41vxU+eFTTYmPizA7urDVYzDXgMk1Q4BpBZtslrzYqyEpCghw89Uhwtot90vLe52WfENm6sX2qGUPw2tkjJq6Y+RAQkfSfFNtv1aiq197cggM/QUTkNkXtqbkecnz8cU9taVrClP1TtunSNAvEQnRzjKLPubgZaiOJsIYc1AL4/ssae8D9sLwYqpN0klnCmkEQhRthDglQtSVkRszxH9KQBBeuBpUauEpCfhF5nS/CmLnbhdbv0C+4P2vcJjDCgnVRF0K1gKvsrdgjqn2Dm1OqmYHcgVnrDsTLiT2sFHESGSWyV1S1MI5eg0vMqVE1w3XQVQT04E2kbwUbERoax5fOsQL1L8gnmb3NkI+JiX+1mJwqEm99FlPwk76+e7DC91dnYzejcehS6P+w5BIcKP1UDiU13WqOOTVujmKXTogf54wdoHAdVwGQ9o5At6VwNRD4tAliHTrq4agMYVsos8r57KNzfQuUKXXC0jKkbhiPQKeI3O6CBo/YBCzg58SYxAVTraEz5BNxVCXORp9NPYRngcf1wIQLMK28nD5jZGDu0ejM2c1m1G9YcLucGf9Qu7YqjfLW6WOthG/Y2cxypeAkM4QYCT/lELmW5oBLMqriJAR2JMytvGp0v0NQbh+wspevRfZIHKgNa4YrDCR/UsPhicQT+nDTjAmCISpNl7xx5oqsL7hCrWRvjgJw2KttbSGscKLhepHk/nmMqVbkEoWdBqM6I10WTURtpfFkXuksuOVT+kCCNmHFIOGwYSjfKaRLkj7ihTry2EIwB/2wIXWghkFEj0ZdOP3J2Us+yxlgLJweyKCah2loRA4LMcFpOtFbvYxdYm9V31IX4M1n24e1L9kkBhfd3oWVWL2mV9CeNBnVhg/Vuw0cNI/Kqd1qcxbiXEzXtw4dPGi3x8a8uE52vuR5FnQsYm9nVZ01FGCpn+Pf6jNIPpqZeDQdSzWF0O0eBnByFfYdfdVZGuEyI8RQW3JSKaJaJE7Q1iKsX6zcsO6EPz6TK8BzhUMGelCmvgIq7Oq1gRmg4+5mtlqficd+KYPkigBny5sWWFORaUgLXz1zaQh7/3RW/TtpLDD65FtMEoPtBGiiaGCbw3361i2ThDC+kvKgopjTksQQWH0snP5w+O52OhqtO+lQSDnqKShOy/YA5aU27x1LZ2cbelmA/snNV9c8OySBtsU0zLuQgpJB7vIBVgFR+xnBOQtJg6fs5oBc4P5m3x+EHLay8ZfhEnwl9N02iK0Xo7p51EZbr3KqRL/sWAiLyG/e6KqwBoTlLf32PHid3TESM2myQQYvD4P+U8KF8Eq60oz6XDfamDgENpwpUDk8DU85HcbwOIozzGgk1Bz97qc+p12YTHW2bQ0f0k3zsNtdVWrdLIqojapMNjTYZvUrg6fivubiY4ShtIMO5NQv3FgtMwK3eDehNKACDPRefrQI+snKvvtHrPXI2PAZGFgnCUfEsD9DfZ2/hrRcp0pPDRNxmyveMZoqWt3GgwFPnX1sFLtWIYDkhEn+4y3YOQCNv16Xg09dDpwp/IqVT0/HhaLnAhfrpdnbJ4ZllEy8q0NmJZ9uKaFLUjSEfBUiNtwRuWd6N5+Zs7SgzrRziVCKBsgyy/8yKsQwOGFpugD8QVMJ+M394+ZcHr7J70C5qkRFK0SxWw9K/lBN5xB4cQF+7tzUetzkWM8oo7uh/avn2Ce3ltxOXBPN5uMUledfJmWaxe9Ulta6Dfaq4KaUEfaZebgLHsTDPgCzGZO+yAhK/z8ga0ruzr4kmT8jlfYeFmkCatk+4GH12CE+dw8Giy/JB91CzfEGFN4N3VuhX07MmdXO0+/6QppMwrQSPqlCtCaw+720Y+xDQn0QAAxdn2vYXB3h/bbdQPSY1tiZOFeryQNLU3M87mIWO0f5WhowdeIt7bdvT6fRTw6p0DiYz0p3BpvGoJYUIoWaJhcvUMY3r0wDMWu37Vci0XkvSgfzxlRGxoXlDj9pf+0ThifpiGIOcZ2k2FZ2T7OVOeIOnPGnwM3xjhM2Ihn6L3OvKBjJgwmqhWdKu765T1fFIrQqnlBBney0G0s0mMo9KspSWH/e8RF/d59j6oOWNOlLIyqY1c3qMjmebeClqsYikLtvH4PVv+kwb7a7nggwt1czjDeC/wRVkwHgbjag3Nflm4uNCSzG7eFx3rO1BnEfT8WbWV/wFC0DAe9FHdGrZKObra9XHKhUBce6MvY59v7Ak+Q5oYMXaXEEB9nhcArxovlZj5JfNc+H8Mr69mTrs56oqN1/lGj6G+ASzeJR/Jvf+40S3nBgyUS0AQDFoGRDUUDDlhFZdIjnpRy23vCOQ5FMatAFq5QeWX5bPWGXWdPsaeCg3uVdMWNd2r6+eYibW1AP3cnlIAnFsnZbRzpoJ6oLsjUi06ETvLsR1Cyfk7dAeqvj09m3nuWas3OOMtaHVGCr6RaUKucxDzfd0vWP8L2+qqaO2V/PxPHCvoxUvuX1arZmi1n4R1alkjubKVa7RF0A84zyqDZGut6jmdEGyufydh0UGGfNqHn9N9dLSLu9Y/9i352fPO+v1yaZ6HTA0JPWoRiJlzNzmCX2H+46yXoeXdREIoA1LrkJwQgSJ6REaDnj89fPQ5FZqJ9gG+u2JGJQumQ2fBw5EVOfnYN8XUTA6N89LZQ9NAoYXR43orinx+y2aNo6ensRofpWF2ZzZeEJh4U8UrV5azu5jI1NQt8toGDkU5QNd48GEJEAAcB8nzgjSR2km3fF2/vpcgcy8tRFsGxYUC908FmpS2bgiQp2Pq/ymqMjy3exgu7JOaVE6HWx2avgoiqrAx5YqGoifFyH6fE/mQmBNs0erx5UESY1mbvHEODmGOxPraBjcrWIHjHQ+ZG+spOTh+ShnIDpEYR/4vKT3PNCFggD7CYykJsw5/WR3P0NzrFQnhCQXM2JYyTQK0tMoiokYleTl/R8FUnI7IEKqxS8g9K7A8OhLrC9o7MY1X/kVxCL6Bx4+RVK0lknyw3zI6ymQTLsuUe4Lo+LYJvKg2G0trDeiF0uC/E0lYf2NlhFz84v3XJ8Jp2OjIadeiGEAkDEQmWKbi7WLKuJltJ/WIo/wiMBYZcG4/ti1A1tLo6zS/8XVqfGtutZNtD2xyGYu880SBspaL7bx0wpTNFNSCLOeKYi2lAhIeg7d/FUHTgoPPqIGq+hYLcoWdbMXgN2TPw3yc+3YcaGvx8ljd0wmQddTVOSnq/FW+1BGfTpCzqYo77YvC9GGBevIL0rUqRIq9om9iIiqf1rRe52KgGD+XSCNzSzgIwWK74wS6W96Ee2B1JiIKdksc7lK0mrYWpDt12xDfCQwL/nJxTQ/fUkRnny0QN+Lb+F5umZYQ+2S64GRU4pDGPhJkT+bjMc55NiuNUHgeBaI8+o4+I5JjmY+GE8PoqMcUZtX0U/RoAAxub0YyLP0Ys06RsgvmwTX+qaA+FMBUsweTnZFGD0P6I6lBad/GI8mYQuNJYj0Ormr3EfcVUhnoyQaPT5WMMTp/IxnVBrp+4SPXCU76IgyUUYDbqu2TdoXjKXHsh8ZdMbJSysnAZM3MpPb8egHp7bBSIhdc0RzQxiDUAnL+zMR1QB3VbIXamQuCvG/SPUrvAMMoHM/GQKG9ta6q+AS4EXCpDOnCjyY5kWtaen2hsWpjIXJyzdNoT+k5phtPEOp2UAtL802cu9HiP5QT3DkSnD/zBSsHFo7k16647Q7gqiRd1Mfk1UjAhQPt0fEj3awc0EwSUV77c7g9gSohVbCOO0Qs6t8sHKQ9yZ1pPkeqNwT0X48hfGrOKIRXqanREFFt0s+Wdpp8YmCR0MxU9jQ8+xZ7EWp5bvUxCorKJ9O9jo0L/iyQtOKCdV2GL2iFLtKB/ggxpwiMplhY/PX8N5QuZezzEWXmFlvZqD+oHPX1ljDkJdFNDnPEGuOduAZR7y/ydYPZiuZzV8VzklDxVo+2BCZ5x9gFq62gAlw6FYwRaEPTHTUv2dT1SxJmge6JQBqTxOOA8VfZFUbCmyGUxJyNZ5UUhPccCat0wYDN80Z0hyK4WvPv6ZGcOSMJS/NcqNhqkCCizLrb2/ILHBIpUOXT2zqhX+OzDcSU74NJoxgTr+/ko6JuxNPtg763bPquK3HlLUZa3Q+ogSxDMFHQkRkfTMHJueR44a8GP2A9tUAbGAvkkQWgfqa8xgqGcuh1S7ImizM7xu5lk27e2XrVy92Mj4atEYnN5Zqt0tG/4TCITLPbe//WzxYl2+9zJUbciAG+3gGcqRtDI4lHPx16K4TCWHhKnssanubNwFcoOYHpSKDDFDcRtxMq8J36FxtcfM1I2Wtg408fCHNKp+mVQFKcN0k9y2bUXBs7nm7KhogtlP+vyCxpKSrsT4yiBpNwTL28nxQKcXOOUA6h5djVcJ9IAQG3KamX9RcmTvdlXs/vU7Xzu1+AnRu0h30fNGeP6vykZ4ps07+Rnr/4Ek1HLsCTYYJZ+L7Vu9RY9CQyrUAwdv+gvhECy8ovjP8VnC9b6OvFfWPyu6MJM+JWojgaBZVHK/UuiCinimtqeJsnbDzK+SlnrATLREEk5+6+noWpvti3tligWssqBILB6jSLL85xK7WSDbpOLXPJjyiyIpeoc7zywneCCLoYEY6DzOsABTf5EyytilVBFy+4678Eg4hshK0LyA9LUrCBNYp+lS8CSP4Akz37GtY5I+n7bGON152gOrqYzoT8uJTWCUafLWVuyIAd11AM8snzI10tM84GqyqfnUBSRH9O1FNm99Ueo0A1doJ+tBmkIkCAsQUNtkcdWRgOzq2VDB1/pUyHEVenP1EagV15rTlSBLkw4X3n57kJgD2KkxfUMRfKUxMXdRmYoOKZdPqqFOfnyy3kh56bsnPnirbismL/bBFQRw70CLzjPilLq2szQcI/9ZO0FDfUNk5JdH+34H3EQaWQDB4awgrucWjHpfLDqHwxIOG6yVl3QQ9+vhrSqdlDVsYg0teSlG+MPyqXItT+ux7F+FAkqn1wb6fWtsva8nEaNVe6VeO8N60Z9RcZLbXHc6CWy8tVFbUSqOlA2hCKQBdVSMZaZyaWAFBv6yWv5jksfMHtzJXWNccj7jEHIebUO0DF/vhzJSboR+c1+HqiX+z833R3cX4BPaCFEBDU0J70TM20vCXQ4yqiGx6e/1ZphP0ToNf5eNaiFcDgEDdQw2AXH2y1l7DrT8Ca2r7guoPTOhL3V63yaMTRdle0KKS18BeF/oPYi1WLQOl/xS2BEKA0OvK+og0gNzXZ9wuaG/cjDqfXK+wJEE21Q==
Variant 1
DifficultyLevel
569
Question
Mary has exactly $1.65 in change which is made up of 50 cent, 20 cent and 5 cent coins only.
If she has exactly 9 coins, how many 5 cent coins could she have?
Worked Solution
Total of $1.65 in 9 coins:
- 1 × 50c
- 5 × 20c
- 3 × 5c
∴ 3 × 5 cent coins
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
change | |
cent1 | |
cent2 | |
cent3 | |
coins | |
cent4 | |
set | * 1 $\times$ 50$c$
* 5 $\times$ 20$c$
* 3 $\times$ 5$c$ |
correctAnswer | |
Answers
U2FsdGVkX18cVW229Itnsz0E3/IZzKJeZov58Cvad5c2FnHJO6vv+V6uTqfkMQGVc64KKk9JCA+73KbtWzSOBKBldTlRezA6i7AamUPXryi7jdAOB4Fl4Asuni/ZhypswByacstaI2vNvi2dSWDShG0pOv4QCaxUkmi69/AFRO9ugpHeao920//tCEPZVJjG9XDF4pP9jxr/fGfXwZWmXmibnM+CHnQAuFzsAB3v9RExq2z7W4In/whOEW/1AN6xTtkRbd0EpyWbHA/zUuFjFZcs8o0VWZH20JFKGFRmgGEMflBTYscLjZvDHe304scTu6sm0+21PoewWEaYZREK4OoLbuYjMkmzX3s0d7jhilin43q3vg0HpSAgPqj0w477UVIWJKf3R57dByGLwVBtC7GWrXpNzaU9aoRda783WS+w4xPGxcPV2c6OxNjukFuxWAhTMksYKfLR9mSEmjbo+aUFavrpTL8wvwDRw9fjMzOeYI/pnBWgjdIMj2kTNoiackipWjkEbVKpC4DOTGLnOHHwqG61cimq0KiNo7XdIGuZ590SHi/OT3V6zHjrwFsRlY8/mDd4jTEF5tdU/k4fp1upay8jplQPevrS2nd79bddV+Bh1VXC2g4Ozl1Vo63yfz//pcM3jc94uDFZw9gz22frVqyy//TkJJ0gZIqX+raLdIIuHX11x2uvJFPpbB4c1+zDXzMkgLxVGaSU0UvOhvlq+FgirxEiYEOZRMKfpR+U3VQ2/Fc95tB8Yr8ulPOCaBpfjAy/f/fIukwVHV5J0qZ5Il/VZJDDo9K5KVLlWpVzZIJhPk2c1fvyZcIvsRKsfnamI8cfbuQ4lc3SOh4jRABZu+fiTZ98iuWso4JQaorKGNoQP/Du3yWTt5vELW5Xx8IHA8bkeBoZLlF08eHLnL+zWgWiFuybzh4qUxLlvExaEkOndtuNXWYw/cTJA09TJntQgoe/yTlmDSSWuITads6i4yit07HLS8ao2XTckYxKhYZdkVpSlyVxm5Kiprhh37DXbLLPq0SFZGWCugr8X2Sbsf1DSwB7B640DHLZgrW5LOKPTpb84EDk68qrjFDD2815hTW3CbeeO4/jqzI5YOQQIXwCXNkjnYQuQQrKtLl0inOQyrshTaVdvjLMtkob7on1l6kkaAlviPAdKCHXzPEEHWs0TqIzg9A48Oh1RPcVvXzblsch3tmUit2bz2W60L1LFKNVMr5NA53YmafnN5uzpN8PmCwBXaeC2QyLy+McZxTN6AuaFCNFCdgCp3ZWVn7Ce6SttwwmkroKednt7kT8S5xTuDmqeVyEbIgf2JteoJ6sEZmMvgQlSJjMQnUh9Jv7GJudxCN0p2kiDE7/vc8euqBFFT98W+LvBAny1GJ1Ik2mWICG4RsSMwB7HIapCF1jSNjWbnoJ24wHGWRt48vwM3wl9Yf5g9mPEQ3F56QEWaW8GUEmHrsje7sYHYVohafDeyrUXallep/YDnsKaW38j5kiayBia4sszwZ8c4H+iariZdDf+r3trPhkZ2YawsDWqkMbiuL4kL+yvXHwn8fQHQ2ejGEfA0b3tSG9NRR51OAN2A4fyZR8jnbc+g40y6L2lpi/D1ci/zP8hkjLaagjaRBW723FWn7mXov86LEQda04mjNfnA0dz/65v40b9i+FLyIYv4/WF0Qis9GRKZw9Fa+iuF1tSkTrdT+EkoKoocp2kja/e5+faoKTfX2/16cLy0Bx0KrGES6jTY7C6m04yrh/u3UXHuaeXnqBNt5wc8eULILjiurz+a66CDwGctr0CmcbXV8WkYbOsdRTaYEJkwqWrgs73NM88TXhQjiW/kkC7cVvfkLjanAOi6FL/1k+QTZgj5eRxnSWeefQIdMnoPsvzbaTS0yOnmEi+/SjQs+aaK1WYxwLcdWfEejAW8JlJ3IrDKZ52y4FSEizFI84UL2KLeUsUgMbnxK4GCYR4d060FwQCChEqYtn7uGfsNFoVrxtk4lJUzfjfaHTc9fT9xx3qgVyz+oGcIl4V4YkTPkt4tX05kbN43Fr1nq/9978hPyq+abf872tcWXn2L+95SAkM041bBPdhXy0v+3DdK1P84VS2Q1+eJy8Zok66BgBqj4j/ZsxQrgNZXeEp0DPac/X8OyyfXcc8tOS/Eydx3+PSkomUTCeOoZ0rnOPKHv67G/jDSIc4q0+SgPq/a3uxftpHSdc8hdxjlEjK6LBwcUfg6HyO+akXQqH5pLsBvR27SnMzdYhdGo06c4ZidbcbT4lPThUlZfqsxwGEm724qa2H6NMtEAIwJxQSAkCW7YNm7hvN7Bnp1wD5OJPTu8YEhkWNrLvWzgE4X1RgoWmx1Q94rOIqw6+WjFQA6CR1BpSCUBQL7/9zVbsCVFbzhDPZKqYOtBXb6qXIbiQIm3rMiGscm9rCneYzyU/5/Z3D/cUy+0ktOqVrGShg0WYDYeTprmSmnFF6VPSjhYza/+9LnXpDYkdDgA1gM1zVreyQCyD/88Jto3Nk5TTnFg/mmLNT/gx3MxkQ9TRzUH0hCqM+zQzrusUJFRAo0lyyhgyJr1opSGhGjL1xDecPeUoe6xPqoNSrv6PITriAEILiaamWrpr/oLqH25NLrEjsJut/H0pwqXrwDelVxxEyTPlPSK3YrQkVpAdq1IvflobF7Ao0wNHHKeUeV44LdhtAN6+zIHYT7cZeLzK08MbdwOdFSPIQqk4eER33F2iai/pWjeC9UdMpEdBy9JgxCpfamCrSgyvEhaMEMZj9NnUgt+LhuMIeZhWEQLLQvdI9ANIjJ5vuFYNYRVsTb3o1zeE+11LmErU3395akMmzqb2NMTFKnS/bJwHYY1W4lSQPCINBXdBTNnRriCYhncdAKX2PsscOR5XtrZEl5Au838OoIlNm6NlCTKTT7zPbg0aVvDAcD6sKdeXd1Cvv+nhMjvZj5j6bk+RQmhxIfXoR8NrEr0FsEWzHsC5DbsBm4DkmZrRbL6jb3WNKZ4H7Y0jISl6W6vEvSh6DVVjxNMC7AHi0URVPtJ5imK/KrLTQOO/95vraXkT35huMG/oXG6MZYONT+/qCEP1Ra/xo/FgF5QCt+NPSdqe4gwoDiKgRCGWSw8ExILZIPyv6gnIXGIpGmzRJ/oS3dsHyoFOervjfKT+1a8+YL0fMcgsKajitPnkvTZmaH/PzzUyrH8NqPlxD3yqamxNapyavFhLEoUi3I5xbC1WmctfRv0z7oQMkKyP6HoIbNZLemMjkc0KIaKy/TpigK0EG2IRF4ClEDMJTmjG++TkhVl3sxoI7UZ0mXCr4PaeVcUKk+GJSxKuU8INZijZxA2FgrRTzP0ZiNGYzhmpVijfe/QF6QlmG/Gk74D4X2/5KXtzHynnEsB+nBqcz8vQKm1PN4vwl7jyPCrju5pmrzUrzr/apRWhriwy91JuWTqeD6yeZntpCNJo7kmqfiG451SF197NOUHwRcAa9zsrKCTswV2/ivUbvyjMksvMPeemtfiqOpHHTaWf3jETHm6wT1F9sKsar7lOZixOmO6rnnT9e8CyBu+bbWYe+Kdbu4Wov5qx/osUJZ5oufnGL6yG5J1O1k3sGGrY5B5rJfTy64YMnaBDD75XnA7Uh8H8TOrTrHJy/I08JHFaZc2WatpHn3H2y/G10GOM8XTacVrylbNLWpB7gILGO5oPqbkizIYg1epXaG4ZrJWAqjnW21MF/nPkgu2q4ojW7QtqOieemgHmj4QeSBD4uBT8nxFJsV+3V8YgbYLrhp9bNDRHR/jpPqGZVN1fEJAXL9ogjVuYWiZU9tSHnQzi05oyF14cqg+ThvMvV8XPZ3r9qo/NZA76NfJeUxPIJqvhJM9QDhn2USXRpc71kkqgrQGv74lMc+RnUQy325Y6b74G1Y+cRXHKyvES2iFGbPisOq6NEjnkmMxryj1zq98FKvxs75cFf+2C7nsAtgLn2BSp1nl9Yflhdd+GA0V/7Fu21+tvm9kTydawmOJj7Uv+VI+9pQmxsG99YgsFKzGVeB/mK4ix3WZwzZlNPielFaqQcplOQx38Jr2sYHJuOwK2HOizs7cR/RN8gTbr8CT6m5/wZSDqTob+TRxhcYfaSZi/JLaihzXZnVLmPFH52bVsdWvFdzl6imAjy/irwuLnk8+SmcN9SEL8ffmidsWn61kGoKbaGDdPQYIb8VHIsyeDhI1rHylYnzU1JXx1S/CSSDui1xd6EmTU9uCPxybzbpcbBnKcjgbh+xZEFpl4ozeI4nAk6UJJaGN5xxH7S4UMz7nHmHpyXifCUgvX6Ljb4dMSCtWl0AbLU3sC27iYb80L0WVn6qU0ryWInVmk0zvMd9jGfXmp74K/1XCrwc5f9Tw82C+zP7LwLPB4QJ22QAQffLPCl9PWCQbFnIFDNAsldT12MUwiTHxXbFO7DIjjOlvjgsgIkVJ3o1qzq1lC9btyzpeKGttlqzcZJYc+/m0suRXO1GOwT1C9MALfqciFYvcewca3MHmY07pRwZT9eEObQI6ipetbBUj1c/FKyN/6OuPUVdzEyJi6znAHsawS5MIp4rqtvMef6TLUTeBDSq8jHw2vsK/lUtP4nRw3jjivf6l4pQKUzmFr8K2nSIkR9zdJYcx151Vpa4Jci+L8XOYNynMz6Ub80EiKI3opbw8CwLSMQbUo/Vk8cNWeVKwXFBEJtsuZFFuKTR/o3mfiHpu1F9gFN3etAcSyNgGdGzVarkK9AgehkebTptdLcVQLs27OsyHbktW/Oo44YwbxTi0Dt4C0K9EiDEPidvQmTRNMKSaGpvYHDXfg+SRP2n13FzUO5B6C5Mig3p13AlpdWnUTQ/NVpIVIImwIcPYYowDDiNdY/tXhJw+4mc9Je79srFS/dKwZPqEJNl/E5TtgDBF2sWUyk/B5C6NLt01x5FdlnXvsjHcgJ4z5eqEkh63S+KBOTuUkGo73nZjiTm30QyIz6bmwQnZhBd64+1acY7hVQMK/hEMIeTxd00wIOSbyhtRtbFrqCq8iBbKOAeC0SQvs9LR6c1Qz73mz/z05kI7qVJe7Mn+YKRl2fiJQKh/K52mfLeTE8PfYRQJwcxr/xB59i54cO993jQ6XKu9W2UIwMaZw5bqPOPWbqXFy03prIJwLXTKllb6ZBg4+NG/pl8L8Dor9JBIwTA8EOlB+vrfVFyoz3lxJHWsrsxSLSYYTRdI6Ucqv0nVHpT5AEsSmqrJNchAgThwk+M/jPSIeUHA7aiQuHWPodvVuLOaDCT5mBV1+KXCOKjxhLHOxq170pirOxPapX1eAHPl6QGO3gtWUOHbObs8XaOxuME65+ybq4uY1hXtimStDgkRRn3mgKma5O4rn2ltkgsenYrvBjig3KH0x9JHHhls3E/RJi0nJfE04OA3NtcjTkgnRM3ez6SukjgocamgvBqK8Mf0Y3CKFy1gBey3Cm3qCv5JBH0koe26PMGBGi13BVZOt+JaPaNU3Mh+njODG4A1oYhgFyPQer7+4MN6VLEzihDY1s5UZsYgrPFHg+8NcSrWXTZt5FCRV7nlhjBwmJEXas+UtUrrU8rpHu94G0jOhPhN5mKeklGjPbVXRPHTXDq+tZuTL9Pjy72oq3JZj8eYw+1XYKOkcaed2Fun1mlzSUYmS95yd6TZwfG/zB+9lwf+YE1ejdsWhFR/fPNX6u7bybDzerIsFBhNaX+JunzAeUTeHVouF84QRrR1jZd7OXY8B1sDQzCI0XnrqV2t3WXXLSXmhTtGSrjZMjfOhFogk3Cb8O2RbZj40daNC37jxRt8taTj2nsZcRPTV8V5+n8bSpAELzdwzElOTvEQVrhGe8GklUkJ7vkKhqkzjqeREMvUlqveOCufZs26Fdsq49I+yqb/wSrGY4MPIa82h8UVmJ04D3muHWv53ZlOWIdf1INhlkfraPR3suRjNfGHqk2/yo810/4MCBv9nqWpVlb08KCRVX5lfUzfLv7N8kqvzQlse7l6RNyMemRiThuOQoLoIswEtr/Xs4vv4RntHpz2bby7Onyjghm504ouyn60+gUNtgZyEzmMd4UQRA+Ib3mtmMVcBjSTBXpcjQlsQxjb+hS3TE92B5hwI9Bno3u8YCFJocotRdWWEU3U0aAJRefH9ge0lirPYSVIk317kTrwn3PouvCQoceI1A9n/imG0ErOgpuEgO9h2Pg9AwqfBRP9wF4s820pU4FEDwprrEqU/lhWxk6LOGET3d21/RBMCrmQ1RJUHyKYBlI1WlyfE1LTU/zxVbmECDZfAB8Fc7rfM7L+mNF305VngfAPiEy317GNNuw==
Variant 2
DifficultyLevel
569
Question
Kirsty has exactly $1.15 in change which is made up of 50 cent, 20 cent and 5 cent coins only.
If she has exactly 8 coins, how many 5 cent coins could she have?
Worked Solution
Total of $1.15 in 8 coins:
- 1 × 50c
- 2 × 20c
- 5 × 5c
∴ 5 × 5 cent coins
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
change | |
cent1 | |
cent2 | |
cent3 | |
coins | |
cent4 | |
set | * 1 $\times$ 50$c$
* 2 $\times$ 20$c$
* 5 $\times$ 5$c$ |
correctAnswer | |
Answers
U2FsdGVkX1/4HTtSR4oWY3be121ZxQeYmaydsx+A3J+quvSg5zW/DcaE+W3qb5V0zSLN8ScvWihK4RQJ4tmUyQzy7FezJXTsV2WiUw0O9ha605UOjnst6cppK/BkgW23G47lXlEomuEEZc3x0RX5ASl7DWLVwnTRJtmJoRtVb8ajsFcvN5R9Dl+kltH0yGFUmKBvXx9UVm30Zzz92oUEUgMyqmSOuAk1E46Kmaj3xLVN2gX7Esqt2HtvHtubcWJrIW73CFrQDGHJYv3eMsAAVLjyFHrSRpKRGebp7SKU/kUpxKTsf2eU8mpz98T4r34fgj5SybWfUxBTbq6i2ViBF9yQ/zWtvyyiLwpWSZY3wGklXo65SYvJyBXhmY/FhfBgAKxwRtJ30M4Dh4CYiotl10+KtaOKojACdbzJfGjJ3GTyhQjaHJ1Kt0owaUIdLfEIghIL12uDH8+PqL7ZR0MDUeUqn6pk/uV52bME26UEfF0l2++92InFjKk0rI2o0dzKjAZR05jKtdfAqApUtsXklwzrkew8dU7wBOwsWUyO141fFrvMg/nWuyTwoQ4h0vaRObuimVpAHNpd9TP6RNhBuXFBwzU3Cb6Aqma4PCCK6NDDw84H5j9cRUdzCJbaUeDiwqyHdwoQk8eC4rsMa1KUebKbRp0QYYss1UbjGMKjCTTRiPbFWybUffg4BSHBFbhKAqPKHDcdHyAXY9O+HI1AqE1DfE+a4N5natOWo7kNQQRsW7uWxvhgNCcQoVBllwkO/nKkGXA3kvFBwzilb9W0TGehooDVKArIayMLFlodh2QnsaRh5g7B0vh2irxUHPfq8sYUkRUHWkTIroqFmKIDsMkHoCILIe+ybJjJSBUX8IfkQGx2/YvoD1meyjTa8BGeXD/lAJVKkzXLv0KYDkgL/PwCP0epST3iVP7SyVgFr2kp14+OpnWXDoitlZ845ShKZ279LreohtpNMyX9aGT0MECMIpk1pifU4HUPyzF+PDjfmQkKr08vVgvI+8hGMmONcRnUU64IzoCemJoIJvtZrhdVucXqm//QIBL6CHjZrv6RqTsFXPbiGvmHqRMQCuRLQbnyX5DXMs60f0RWAdm9fiXYjGHuR2ehNQ3r/CR4sHNsLxnMD+u+P/f2J3dxL24fBm/x+331+hrd7XzkUr26ogYd0IXG4lzX6LzUlXjxjTmNfiw79bySvZbsCF2F5v452CsDXp0BJ03dQDBjR9y8xz3zGkeEJBZd+cEMopUTWfTWKoKckY6Usa4GuPeSlb3Px6PpCjV1JVIsFcdxj2NTKn7QG3hHmcO7N3R3ozNsw/2gy3nnzHB0UpTXThHwZ1VxAKAFKO+okH17ysTg52XRfN1fTJP+EyfjAZhtPrqI4e+P/wBzsoWzilLONH0ro6KzQzZ969PyPSCXczpjwccDQnQQRCDrsmKNzcHQfZv5m11Qu6G8KASi26jHqjBFfE7a4YbiLldi8sSuP45oTGyiKGBqBRAYE2Sy2iLoHifhzsDqHMyS+debXv528NqBV91DsXZQJHurs2mdl8p51/z64hDh/I8ZokxuOC86bHHgoewEYBreWQI3ZwAJbB8QhUGLocY8XY4AEtJ6KHew0GpJhSRBUILV0wXgsVfQ7KP86D7Ep+t/Lalm/jNA4UgR3U8OMf+8rx6KiGKAxlhuLasRkC01yelkYI1rAbYlwAKmSrto0+lCVEE7MUG9P+PQtWfSuzYkxBK9LyIY2qDI7CpTkY26yAKA7VzCQmv7ugiT7iw0P8qMyvQyr4gpDHXi7S5TIMllFyBVJ5LitpfOYPz7X9nWDERPqtpmqq/2jtSMeje4EEVRuIbT+ZT4OzaAlgDjRuuW+olIRyYct77xnqae0lCYdFEmkqY55554xzCNun7ciOO8gNiY1lJwzMZDsA5nS+l4Zb/Gq15l9MqSq5uRXjbf3tZJ0fCtjJiLNMZpkkzNjDm7zwJ55EUXTNoqpdhSMXnItzxAVuV8xbm+mm+Ah5QLtaINVvbZks34VkZuk69VMZ0fEuqb8+5nhkXjSZbE38KtI0b1O/XGeWVIKU9kcmT9iJ9EXTf5rDdS0xRYrAvmdkj9cD4olfwc9hOKU/YvdZC7yaoq/oXJpx5wzbqwHpoINsaneENl2wPOS9eL5h6d5tTieceBHlSPktQ2gmwnlJW/uq1fO+TphuthGZEJflI7Y73zASt6lK+hthcm3jU0MwN13jUbZKVT5yzsFTiVz76gy0IkpdMxPHZNr3hB+FRX1P2I/HdhjrKklG+fqOFZ9g48+lv5DydhARbfchpE73sVGkEUqbd77+LSIhRilMKVntV2hKHJCee6X5YOZTh2shcJ67sMSYaIa2vuNkEMZ/yb9ItI8vp1Qa02iNzGhbWFnNwudf1Z5odEupe+nD19SAYhxeCU3nSgf9gOL6ySe5DPQykfqnwUokfd2V6cmyIhVfKFc5LXF2zUhVRQgRhh/l80DfsfXD2IlX/nEzuNhxof+wPUXPEhbSGZ2rWNR6CXjl3Uc7ql82KFXzucDqSHP4vezRF+80QFki62emYgnD/xswVjEluJXtt/dS0WA/3qtYo3lI1lGIGum9fyBuIVojGeT2LpVLm0d8DPLWqhkEpnOBpgCW4XRSl5B/HqaMn0EgkGFy9B3chzE4md7Ur+18bKhbCGol9Wyxsla+KNRb1d9vpbM40XoXE+EUTfWCtlIfpcBHR+dp8u6a4f4Jjy3zbLU5mg+zYi+0NnMgowZoNsnYtQUP1nCJCDufK/LC3usg4rPd+AwQL4TeRlahQ/zdyXT3r5JhOBGiGV0UgB4MVPhbJ/iMrge1C0BB6iXSD85AfsdcPiH8a1DWVzFHDaQfIm8ajOaUWdzCq1kdYULmmscVivNGk4oWLq90+XgaLcDGittYwZQGOuzI+v052GAbTfaJJ5iYZ0QR+duBn0uplwPAWxBLJKJG/okRYc9ihU7CE8OFobR/B6uuM827xQJz9squDpMMckFbxJXjRVdDtyRp6AaC175/dMfpN0OEirNP7vv69bu5/e378T0DJ7apw8rEBA1LvGGcPz4EDzrEXtjk2xflayeQxYsAeNb6qncjKw3jbP2+DsjLT+Vl01/ujQ0BoK3f8A+Y4rUG9t7r3L99W0jwRixYl/S1CjUqGxjz8fPjWsQZSlzuk2iOjKYBQoGgaJitU/mAHcinqgROhraEYvvsv1nVHznmJRxsnDXmfK45THiBj+8hgxXmYZTKzu4gkeeasVwRPnA4xAmn1tHySZN5Zn9FKZOlbkSD+Dbzc+PFmgPliNgSUleOE0C/ZHfQ+A+eljOvzYl0h4g54Z+L4HXLIvFzvmn58+fvq5jWnFoRKax+TuELG6D/SDvnTBvcm3p/y5+zMKxGvwjCaZeUx4M5zCdivD/SJKnCRAtA5sQHhG5wC8grZW25O1+GvfSB69CPs0qBZxHZ58dX36Tc1uqO/hzIfljrsEjQXH/yJYtt0yM8DpKFITugjyo0jkCT1+8pPmYnKYs4tdafUfTui8UvWMuLGX0bOGKx7fS8cHDkxzEujuUcmKWY8Pz21acEhNXLJ0vFCWmw0Rk7WH43zJEUtFpaUtX36Ff8z0+bPOK79oEcAD+j3Q9rA2KCtsEarloN+j02MHQtlK1cA6ogakARolN1H7irWgoVHmWzWndKCjDjAD48fFndNzGU6KUXy77c5uyDE6elPpWcPWsnhPwxKOFwg+OTRja4pi6ylnd4CjJTGGsIENTxopIEiwfFaI8CWKil/XY8YCInIG+KggbhyiGalgVNC28vahnAoMm3aLLry58dR6kWkFNDhA6D67cLTRDD4JnhdXYUa5UUIV/DJK+ELan4K5Bj7vbbMxMoQb1JMbsial1z1iV/vH7chj16mlT+jJf6fy/3An/xocEqlFvrUmqOqHiqA8kmXuIIoA6WFDKGF1on33r0kOTHxxy3UwHIeNSU3DMf6F/iiYEQiQXW6+BpH5KbxVNGlazuV9khWOYEI5NiT3Sl1YG1qM2X7G3fYrF2qFT++fgYIfFOyfotxtWzuMn3qUOzbMsuWT4zj/q4fWZuvIkK/hmclxCy+q0JZovGV+cP/j4I0cuAmhpUJ0EEPPO0nXOUe5/cyHIdKmgtYQq3lH0ctGxtKKA0CHyFt05PBvgR2abuV4UYVLFaiDgU93malSVDT6BdKoDnhvSMmT8LfdXtWgO2OspZoyNDStJG7PV9H9iJzzYFgI3TMO1nIFElQxY3GSbKkqFTCe1OLbKt1A/sBCoPf5cPhPS+BJcjLQ8643qhVw206t7bh4m0B9IWzWSYVlogGNv6wTgVQtTbZTG0vLJ01z/j8iIxHhTkUG6cvN6IwhSHfLWgOZvhwzgKWmMFo2cm/tDHqfAYEs/stKXCvn+q8FtqHi53yaDvrNlfjzn5H/lQHiJukoqMl0uAEuTY6TnHTiNGa2v7KmJUJ+BtyYQryAAL53ZHIrR5J2ew+AR4P9xs1eOl5p+QjzduXmoIlNX+6JnbB4T7VXMSnujcoLRFaSDFgp03Dbe5xD+sgPpb1kbLm5a279HorQKLgpa2gU/GAf4MQawDKwklIOR3ktxwGU6MN/Lk62OSr6rEaYYy45r1RWP14JWAtJNRBuZo860jqItEBBYfT62e2G5hF5/wtmnjKqIa6Fd2xseV7WHQF6YKhztLOhkzKHQcPiKsLaiP/71KqmDtSO0ggI9s1XNQOm3wlUEaADo+g+1Y4ir35+Z/Y2Fv+ot9UD0r8n3lQjnwBJOF5oz0e84QLsusmB7C1HJEN7Gj/zYCSkM3kqgUwLUzxw5rdtWrCyY2Cosll4WOjjFVi4NSxAy4MTtoIO4yTP15E4woo2iCQ+dWZ3ICxcVNu3yczqEiBXWbEqcClv1yorlB+kjt+u9JYroE0XJW4RP53Br7qVbnquVhiSswPGMXQwCAhI5jitOC8RvZCwV184F+vZpyRtF0j9fJqlKsehPD4QQcKW0rq6DccvvqI+zoBTQG9q920tJaNLt+yV/pokQHmYyO5a0gWB82KkxbtspkO/TcfOGFfUz/sXWFHWoVl/e1tdvv3+J61WNFDI0Oj+5zYpkTbSgX5jmqyEoapYo5FcD9LGMEb4EWfwzPxqLhH4KmIiWLpLcBe8mlj9W8pOXviDJ8Ci2yZ+bK5AZzT/ee6EW2st37LHcjoLxz9HAWZoCQdqHwbkBjKGnoZismncpaW6t8FMHQ3FS8sN07OIuokcJL97QvbQhXFTVgUHdHeiOYGk6xgKwRkxIln2jWI5giZCl6LV2a586hFf5Nni1CiywjlxAIwy1WsAw7NYLbEUntvggLmywAihMH8435NZyij8yhjss5bsRbS0ywGoZqgoo0+7qzXYtO902Ri1ol5RqEt5r6DRvlg5DimkNunXMl5uFgmCZS9NTyHh5WJsAj3Kn3gGkTbxK97mwH4nPdLLpabigbdW1bWMyU3X1YNeX0ZovzsOXVwlfyvkWkAjeHSPbtRnbUxh9Iiq4qJfQr922HJscn8wdKTak1wiaQmGh+kl38FJNAaSg1vun06SO8Zh7T2eGQiVqtB586mQZ+c47zVqz/HLrKOSOFV+gDio667BQTIFlqS61DnVhYBO1BqGThF1KTYBFDqOMu5dMPGAtr0DDRVnKXg3b0xdzvhLULlkfmDV/gEcG5+C6PeFxDakRowFJPAv4yly1tTebqAJPVP0U8yBLW465Fkx+bjJS/p7POYEaKqwAfEOKGgs9nexHY1mcuJgDvOYcbfULWNEOjUCialHtVWPreyGcy3tI/fDWje4P7xqWVztC0ZO+MhOstpZ0MW6mycVjJVm433rDp8UVrQkEd3D/K1rJhWfrlKl3Ec6nqMP8ITAhfM0AIleTZERGMC22lbgwlD/8mo7ACGSRZY8GR9xyMyA7Ka0LpdCoXb9BjT2U0Z4ItAp1cQ70E2r50bKGq1+dELcY89hsaQ7Obf3AsmYLUIl07iS8d91FvnDN9+BrCEM/VEuDCOTg1svbFTWHDRAznXQz0EmOFFcns1Pd6hTNWLU8b63QTI2mo+gBLdrGRE76EmLaaSBAhf+yXNIoUENxGHKjoRvZ/Y3w6SFAKZq67wf9kjIV5+qsv/8XPF8maswlAaahaSm8rThOe8GxfIWXWZ/V7bq8jX2d7V1qXgQCgT92dMLPDMDQhLUiIMMpDIm0FcTorh97Ok+2KJvonpCEhGLalS68tvS6Ywif6RNcXGBuBr5q+wMq8u8Ltrf+mgInqMkaLs/yO97nfEE7XY799uLSmmer4NeKVRNzCRDJLfSUKuAx1007tOyda4=
Variant 3
DifficultyLevel
569
Question
Sibyl has exactly $2.30 in change which is made up of 50 cent, 20 cent and 10 cent coins only.
If she has exactly 8 coins, how many 20 cent coins could she have?
Worked Solution
Total of $2.30 in 8 coins:
- 3 × 50c
- 3 × 20c
- 2 × 10c
∴ 3 × 20 cent coins
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
change | |
cent1 | |
cent2 | |
cent3 | |
coins | |
cent4 | |
set | * 3 $\times$ 50$c$
* 3 $\times$ 20$c$
* 2 $\times$ 10$c$ |
correctAnswer | |
Answers
U2FsdGVkX1/lMkAcXWFHp2WHCCjZFBMGw3D0uVAtO+sUdh7gGqhYqwFf8M1jQGJFpoom0AHlP27wDa2Ygo6QWaFkn2OHHaNkySOq7c/deG9Fpwk3oVP9eDh8iXewelBc6JKE2aCllGNAkXqxIKeQ6XP8eIw6DODJGuwHEDdPKTZ6AJVovPuvqv138wdeRD4HQRyKv800IG9ZXVAMTo+nqRNZjhgV+NBX369ijs36dOrT/rQXbNjOR96SfpGTb3OytIjRyTBMZEcM1pYfyL0E/hizIeNmSLX1lLVAe3SeoppwxBvn12y5VDEcsctdcJrx+4Q+0+aUHoxKP75PayIcZeJFyOd2uTxR+M3YbN10QeQz1E/n9BKjO+drzj/s3Y6Ms2ZH9T6y39ZR57usoLgnQ+7nNemitKMZc4jfWAJTQ0wz+zhguqFFH8v9KyYIVytg5VrbBzQZcGhA7IdIBC6Q+ufRuy1kBP7XqscklQLmJXvW7pgWZbVC1ROP2mmJkZ/kCpZIoozP6ER6PwH4bBZewCFaOUu7gi2mXfJxx1naIZZJ37eLMuAAHaY2isiaupxxaNl40JCLSMguGwSn3Go4S+zkAvJh/wMVYfc564MipdIAupmvFBRGcp+TvPdWIul6BsRrKBWHjhb2/CoiJBkXdWpPo94aVqIfCEpOIZdPbXSaH9KX5MgQBnOcKh7UYI2yyo4GOsPLlX4NP85/ezCF1mDACMXiD/T98DF+Igdukqyuf5nNoCgYr/PfaQiKS4ulD03GduVVJzDxJI87FvfD3jGotscDV9PaLOZsCTKxm7pwMWxy6hIC1ZPoXRSmYEhzIjOo8Zfdk9S9/uZ7qR/eq1uoTuBIKQ8j7Yfso0JTE6R6ZyUcGYMns1/GRVQBw/r5bWPXnw/DFX3VWidE7TvXbLNGYXwPoue6ps8rUA72awkTTXsY9RdPwm+oUz5WkMdEunVVT+uhpEYRiXFJRHaSARIB2fc01MPkke6ViF7Xdeq1L2husmM74ajTw5V+h8FXaDVCMdY7dhjke+wmA9JtQkLbv/ZrZyzkulExIobZCbWnL5wTIwF4C57fNMAcPSDkDjNt+YLAbYk80YCb4kEpi1nNGHwIhLqj2pLaO3+VyaFC3n03pTvB+hYr6ssB5OyusgYj9+Zb7dnYl6Koh3b7CB6LE+Y0Di21XXi0sWHawtKSErAEjXhMhVxrxaXCe5AR+dfJV/hkTjS2nI4t5mXv6jBMwQfcJyHpM/gOM8r0CDVpHaHgX6GOl1TFXmdf6qjjcIGD8lyCyY2swmkX7MVJoMLKZW88px65s7hZyMUozJAwST+CY+yT2NZuvvRcPBl/yAOUqQsw49qh926myftveshbbomokJf7imYePLU+0VxottXQcA9UU0ns+3VTyglacOwJ36DaRDVbHQsYzOJUHwcueneKbJqsskEBlJQE1MRE3aL3Ghzsq+W8wtbn+3bTatJnecQXCkZzyZzd3W8RIE9Z/q6dxcq4fTUvYjXCJULk1kPYUJf0M32hEyPdWHda5XIwgwOTGBT5/4w/0DrRXybO50mYJl7sojzI4zElTNsfOc/uURsGJ1sKqYqRrpbz4Wm0fAIgvq7d2hxsbfZ3RQvM0TwdCXgE6VYIr7h9+8MxWEbgjaiy+Zk7Afanwf1JID4z12C9HlqVDqDI8burlCJhOSF1gKZv4Xwc1v+BP4iKDV6VlnW4CtiAA+/v9TRND9JO75HCM31cGMlPJcP1Aqtp/FCtORKJGBY0Vn1i2EBzdvPe0ZaKnVaf9QtPtk0Xhxqr8OF+Bo5gndEree7/Ndf6uKJGmmNSrVBRGcSx8uagM5ZhXV3zLYh/vqD5QSyDRjzCx7JscDNh8dqsU8clEwo4ZpbTMwydNyZKqYZLgmhJEjvmCuLcvpR64AGaKZkZjK2Y+OEKaxsZuwKtHtFX3rFGyTiY1PrsGgWZlBIhpjgHipjLSP4zXPg9kY5MysD8kHRU1MMnKsrBfBgcqqEpMJ8+tHQa8tafAgh389pNYc3iG2SkJiezlxOv9P7vBHcbJb2Vip8W2E8Di9X9F3ROIuVRFZyGOPACb1z6PzpZ4Wp0+tx5CLioGNzqm8FFucBcuvW97kqlKXiS4BI/9iA7NR58W/q3en587LmOT860oGSrmH5YwNGjG/r04DMF6qtyQcCMUPhUoJI7WhPy4zK6WN3/dNQB1hFArV5X7Tuhsmk3a9Jcf1hmj9xzgge3g9cdptkfrclaheqsQ3VDY6lQqnzO1QM2FL47pA1OT4DkCfdEAIdjQl1YbcGNPiw7jhdd8sUAz/pxQzGAJ0wnaa/G20M9M18Tn1lyjoIB961+0lPPx5gCX+JpxJf5jsmklJ/RQKkUpenA51+ZYvYFdxMaEXWVDt1bzr8a9LPibOPvNVZ8QomtF5k4jVo9S6OLBzJqgngJwiVeZuJWHf5DvMd0fU7fNFaX5m5OwaaEW/OOFpNDk+yPfwwXcMjKu/ei4JAdcNA/IL7hRWM2kPdKoc4OXq7RUSCsTDU5CqXbHUfoLB5jc5JDeoPoQMeWwMXdUtKcq+48oUXiYltT9O6p2JZJQ26Z8MXYyuZi/BeOPduA2DIiHVH7V91bykufjWvH75SsjLLnInREnyAx9Le+fziNf8N4R8Jf8oHO1sLEqkLYaRmr4J41SnhL9a7qp8sj+0KA17gbPb9qJ6EHEuZVrNz7dyCWCTmuXGNbsHcmFvvLONusLpj3oKZX4O1942jmtMguLIYR/TC4t0RByLtiKgQXSbD6AwPBRTio0d6YGOz7O2n6w641EusZRm8LOx9yX7h4whR8ENGguyzRhZJYwgfL7Ymj7hG1jfuytNkWKdK9esu8TG8Ru5UwzE1HxzDyhBKUs5d4TeU8DqTuRhHZ3mN+7p39NmyPlPemIILmcfzzg5VPe2LEKPWErEDS/IbgmJAsw7NUdF3lyMQ+ulYTqBRJC0MB+6NQZOtGO14eTQSEnh9ffHgj4F78oHEaARiXpxm43bwlJM12Qecolacf2jpJ2ksYPy8fBYj2GCS/5in2SjT13fOfkZtjUn6k6vrg21gd4Gdz8C5Z/t/17oRWhAarXDU8ZcjQRFGTcB5xaj4d4KLElonosE18LFDXlJKw70qV4G2sSdHX13Bi+B9xfiYG43Jf3nxoA8WA8wWb9GvUR3HGKLdRn0D5tIzM5GNZJbV3Crx/pTyb9YMSvG+iU221MEN0ej/YANMKuwYZJkLt3iLxwY3g070nneWDBADLsbSwPa3zMdumDTeUtl5POG6qp710wf3NiH4ZwODQua5iOM7bI6MvYOGYE9kyncBSOQ0IRep2JG8zSLUnAy4DsWvRXEkP30l8GxSMB1TFgKbWXfJ8fBaqzNDLqOJwAOOYq7dEm0RqxQ5NDtfVRmmKBnaHlhTMCDgHGU27872spR3aatxnbZMIiDD+SmyPBEdbvlakdR3B14146/wFKzvg5GE3qvjI1gpIeihuNVhCMdSTWf10Rva+KfJNj28rLkV2UHPEmbyqN6v9SXQTp6BE/9ueDfgerzeWamoD8r7O9rqxNqeYYezyZqFIuD5RrTEPojRsS/WhguFdMyxXW/gzfJ7COTHzdpM/pDl2sGAAchu/ZEBOFnjK4A/zDRx/QTGigiCpScfTQARJmtyCOnVVIZAib08+V2h4jp5h5uqvQIH8ihjO6V+msHNUW7qLCmnZXVbj2QJh3fqME2obaLVEjBgSavPpt0JqOBeLPE5I8QnHTLvUWpbRb1cqqsARDiRneTI/cWxbj6me0D2FlHKbwrJ/ii07ICm4xNA0N5MM+KegErj4kIknmfKpbzUtX9F+2pTDzfP88qJ4uGydQ1r7r/TYA0OnAix/uut9G66RQSEfsdxWP6atWEHGuLEbik7Jq1W7wmAsf9IlOxH/6rdeSmQnTYxUsiQZq9g53gaKOLI/raccrDmd4yQkkZC9QH3a57Mkbfum1g5T0WH9+HpPMQelzFHjU3Zf+3SpTPCj/4OSCsx1DIukGR4sUw+eqtwSugYDnTR/CFwMUIo7eTmrykfjtDh8pVcTPu1SXTf5JjKs9e8vqoFm0rgWYexNYRUDsCmQd2dg6sgtpy5fzqvQ65cQF5Fx5vllMy8hnTdKb23hEkeiTGnfvq/eD/umUwrLQhCz0qot2XC+UVkUwGMHjZDWmm1Fvwl/W7i0qHGikIzSb1564xyyv6jHAB/HG+Y0vnKlBM4MWKGp2eANT0hGiHx+hVKcYnnQ4GGjF4eRkZtWI7F8o4AacMX0vFef/9qyQjycyt8PpWxj1vOVzxQ6fipBwq/RhJOgp354dUnjU023ToBWpGol5FYSGbiC0gRj6TVa88mXY3Abz/ymOlRVaU3zoe9R7fYEWlhrdEdNfzjo4bz5ZqAZPSfyzejMNDtL1BLKjq1N3bNRrjg0CccIixh2Le1N0onkkXgZh7ph4VsEFyIRTOTbnl1k/Qa0korQp1qN1SQF1xqDio85JQjg/1LWvV1X+XoOeGbYzwrn6JSp3yWt43HpLi8e8mdedsueOCmRhH2P+vKOHExnnMI2NPq0AZe8EJQE0KYRY/k6UWPkuxlfuhBzVLxJRTnM8OhCCeXnu4iKUokcEFCNWkyAry7pvZK7gXir9oveN9Xbd935SMesmBj2pOpsSZT7eIkdtCKLm2Fs9E210ueHB+jH+tLU0uJTOKJNzOnuD9Q6PC4eV063WxTHo81YZ0pKssWdYexbpCC5KHl9aVyqEydGszQ0XWjfVat43TlMZDMArAAL/lmXFgt2bHdbA7+J4HYkB+1iQ2ZsdGiIUKQVvLcTRN4xPFYe58IgUbjed9Q5lRS4q2zPn7dMAM2BNqsHk+5VJYsn7eN9wEtotBb5c+J2a1iw2GELehuOeLSWTQAzi+SN5XsGHLqfsAjAVqpusBy1pcUYHpiaOJdkmMEwkpojmLbVMVD+IjqyV4HyvipazJyaEyJfeVdGVt4cjHLuRa13rSOdYqXdl+hX9D6oAiDUsHrVbPgxTWd91+63/cd5nvP0uAi5TuIFkfCcpYFzEAjEwjWOp3TYpMaVEq3CSNAr4zZkguR1XULHCNHlVqEgQC84N2UQaZ4iq83zNNX9UCNdd6TSGp9RYwgSxsWz7l3M9EZg8tDzUu+ftszrC6egV4RJJh2gogdgbHqChVBscSBDrOMrqzOmqWIkJlKBxBwjKZ13QuPGd6+RjvtwrahQuRDCJrXzwTN94jJM1qGUTQkNZUycZ/6wSXbRj7S4oJ10hPbhUFmT5+hY6H63pWMoTP6xMcPOn1vNL9opLthR4sUaQZd6xOyVB4KH0CcykOjdMQTkXccz4wNwVtws2GifAN8Y5neFbHbPhfcDyda5ila0RX1UEaDXgERAVesxfM912IcPYi88Yei75E0+GV8ibb5Yi+YM1Pab7TJpejAqO0SAS0OBfQAt8me6YkNurn8lWUAZbgrzPFLY4zXI0EIqHgjkA6o+N2qOTCPYie5R+Ki69AAODWKBT3kMc1246rzHXcyiHdNGfsnMMg4HxJTV8rIia+BQm4uOPaV1+X3cqBnAdtz37uArrKRa+sYSPP0nosb27HCCyqbLzpkfIAXqU7w1rcI6PPWjHJ/eDTydpS9uMb/9Yn053wyK7LqL9O0F/dxiIfYBLm7TbP7ctRPDsNwgG8rst1aDlKg+HYpWHHoca2rkPMuMZacgYOXxluyBUCAHJ151TWpI2Fc17Vc1Hn6gFkLgGu759xPLa9i1IARhdnJs1xVN116orKF5oTZfE1x6Yeed9GOgtpW/CEcy8ciZCm0z5PWGeVH9SPzRW41T6MHSDkXxM5wFlH0gHXuEMp6npIB/moTZoRf2pSBUV0O0BexvYD+V22VV8RehWcA/sbwlglBfiJC0qm/65yncVCmumyHYXGjypSe1gJrKcseJr3AapteTPFxxp6Epi9j7q4t+0Q5PVw7KLdDXfmrKaLmSDPqhqXAUXN3iYu6rkkOHuY95vXeJtrAWvhltuZc2rlC7Qeglo8rGLHQR662MMMTihAHdrtTJZWTemsbL/iaN8GXpcj7xWZNbdNhaFR2PVMDx1A3Q1IwbpG7ronbN4So8WJTNt3+8x80QNSwVc8HGsxA32ueC8SKUzneKFXVqnOw4jn4y64RFxnW5nRwSnhrdO0DQp4bpcUWPeQmFUut6Zqc6EUAJsbPsWVmcHLByQvasm+1bV7HPEcVPihRw0D7fiUAeZER0R/KJAHyk7QGPR4rZTmKnbFwCYTB15/v7hEMyky+PIH9T5E/BQvBkVSdkKn/FYcp6kaLD7owyFwZl/hs=
Variant 4
DifficultyLevel
569
Question
Melanie has exactly $1.50 in change which is made up of 50 cent, 20 cent and 10 cent coins only.
If she has exactly 9 coins, how many 10 cent coins could she have?
Worked Solution
Total of $1.50 in 9 coins:
- 1 × 50 c
- 2 × 20 c
- 6 × 10 c
∴ 6 × 10 cent coins
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
change | |
cent1 | |
cent2 | |
cent3 | |
coins | |
cent4 | |
set | * 1 $\times$ 50 $c$
* 2 $\times$ 20 $c$
* 6 $\times$ 10 $c$ |
correctAnswer | |
Answers