20166
U2FsdGVkX1/RR/iUeH7LtYI+3yI6lqpNdZskd5zJZz3T+JVkVCM90eG469LkfXkGZVX6gNh4d20Ygt08ptNH/U6Y4wU60q1aDHF9fQ4VnocF2rilvaL6hg9LEv4/7m4Gtdtge3RZRWn0ufk6imSlpJNUBG0Ta5V/bKDIGkuWn/7MDWoOxM77GtU42C5qOnaL04LB17GSiKdpOuKG1H3pOnxMKEnRzBSW9k2WUAmNqizS2BtmGEAXxhrCBoYjRXmA179PlgKq0rpH7CH0hC82K8o6ij3SfhLjwhByXIlNioKB2cSN+vElVsFREoPS/FHkZwT3jqr5QepUIlpSmFKGy8bXCuzh8r/DxMH+qUf7TRijI5T1BS6Tev0eAKLBbbhDrzqWon67P4wBFdBLjIxKZMA4XsXYquc5EYYlhNfnydOKy0tX3kSR/J/CYavm1ijJhE5Fm0M1BHuTIud8F8rN2n5dnHIVWCFPaAHEtwUk0nYHZ8coFWYM71L55Hp1BCwxKB1oCxdTlgfr2/2GonRS5QqHVGXDKD/pfNP4S49OEJQWPG2vXaBTSF/RB4qdGJMcFpvryZC6/DjFMl6nUC53MBGZsYWhEuT2QJrn4IXHh249qgxRCGFZJNVK5PbuSdqCTtzYPlgie0dFqwyE10AnVFCTdHuIpR6GRR+10s4G71ckYf3ydKfu0fzUTHt9qH/p1pLQi6ij9sCSs5cGUoVRncL+vP0nsI3dS1uyoNymMGIITzhL913U52hA5N/qSmT/BoIuo4GmML4OdUxQga5NkL1RCRuRiY2lBHqE9P+TadWjrfL80PmTtxCAm6P+dnX0de/JUdfkn8x4stwRe/Ysp0RppdRts5LU9z2t8ZTMCgEvEOjmzSpUYC3srcKdI2H+i/nTx8NDSfFejXcBZr32TFW4bnbb+NnMgn1KmWu5fO2PaW/8Lk0G6Qb43seC+L3hcEGb1lhCFNyQ0Acx9YVwbfPU3/k8DTClvkIININ1RqIKyxnxjZQXkaE/Y1HJHlmsMEL/wJi6P5Nx/LKMcXyutiePeMkMb0YqZDZ9kuLvLHihQm7IWfl3ltLh9poyl8Nhc+FhrMKpFH6KwzbYYyjmXmNhdhF9KYmYyt29ONI4ugP3xV+RysJqdJSrJeBuIOAhzW6JSTqfEjep5/FKa9WrkH4rleWymhTRuj4Ro9YnfNJSEn4h4tyDS5gN1VZ/wEeNchZr9T1sERd3OsBxRoZ18n3CcjUXXyOiGWCiTsz//5wjvinR4mr8h/BZ6njwZJR1NC279Ubg6qtLOdOo/YSDqcURhoMw3hwryLduPN9a5k1y1wXrQj9Gz5zXbYpMvA1bXv5ZbZwAkhHu+grHxRV1q6RotZgubc2qB2l58uM0TsiD7GMGXmFH8kB9bUFQ/6WrSWO0uE7Sz8aWA/TPT7B+NpTc6qt5AThl3xsvK7n8OJ7JP488OgrsHZnZe85no9hjOQQX9Q9VSHRPc9ATsGN6iVuWfmCT32UjibUf76qQpz30RXJrvqgrDhRKZnCGQee9HOd+jk5OTa6k6d4AHo7TFeRwgHl+N5eZYyA/R3rY6hXGjlQNMYXABl2qJB2dUpjqgv9+Zn9js6pb9CbDmxQpejLz0o7A1DozY1V8K6yKaNpmMkFtiZpOZFQIoWzvdCYBqW1vZ+5vh1ubwEu2xKFGVy1FAu1wcJ6NtQn3JcaDQ70TmmPvI02wHB8yYn+l28pb9DCArlkn//ndYnEY/gbMCi82TNazucWaNzhV+NrChaHyHvonlE3DcFifw3Ru8s05mm85Sv5lwMYSdnS2ic9VB7ZLCuGki9s4INEBrnp95FV3MBKg7HojLBuxHD0PscXKV4v9zwWlkDtnqbSrMikKC+VOtwB4MPieZVa57VJqptIAg0Xeb6vpJFasc/i9WLhI+cChLm1j0OItFODR3IPrMIZ+vkK0JZXr5mltn+uXn3vuEwmDtbNzmWO0hod6YpD6CktwdtBnPm/iHNKltn1VkkwFULNR3d2v+X4bQ8PzS5i+aXLYZ7iBzqj7tolqq3i9F6edNoo4RXMwrKslXoSVndK8CB/LG+qmfqmeAHUiFTFpcPZ5Ex66LpqyFmkSNWs/J/EcXjf7oeoq10YLLv6SrnCKbaKy3wteb39SVuj5ZF/AA40GszV5OtYoZIdoxH0HJGn0GcAULLlGxp1lCNS2ccwDyFSruvSRT0ETJvfHENj/fRmt+IyVvTap8qjPPnzhpEhVMzV1sYiq5aYaKXtY3PuLbj1qd7o0HtcAhhgXwku1e61kqWODDQbizHLAme+drRwpr4Ek0r6uIQJvb7V5dcjYY0JN8VZLdPzBYSxIknNcEyyLiMfXPXOkaMdPPtwW4kVKKbvXYFUbz6R+uOEeOBepOAGJpsGlAQ0fi68ngj/VywZXUCK8OAWk1Hak3+ZzVB8p6uf3rNLgJH0JFsJQ3FnB18BrA9V863YF8IUCqYr3eqtKu2txAEELA4obwfigICnLDIG8lcDR8ar2pvjV9n4LW3Kc7B6XE5N6hNFJeGcGcYQ7L7/rIu+5hI/VMBUj5Lu6wdUEfRnPP7o3gGp7uC3FtOmShRGYRep1hFdDJ+JUAZk1JrFbJdv3IRBCDGTAk5Ws+poBrqiI6DpPxSdlW+sPPzgLTWMFi7+KsJ8bnfmFFL81FcexM+n5JGH1gXbaoZrCOov5A0ctQvVrvBkbube9lUVrqX9gvHQdd4N+pvvrtNwkR/ND01TX+q0vFqkVlNp9NJ54SH4jH4fErB84lMbzLbNHpSNKJHXkl7iCPc8Q2Maq8BRWtVBC+b0I/oiUVniJEFubqdOCLcO0rUalxLhtKhUVAhyE7SHhKFo6Nf0Lq73UQQLDml5oSQDWj8HIPBIUZrh0w7jCxUTmFjn9pCYdljbmUuUUHSGxTlkR4PCA4i6S126IMVke/2Hj8CcoT3L/z7LKQfAorB5pPcmhH8q1bWpqBfKdNyZOhsnofnXlu4SGWeCXgskKpYQ/hDC/4Fmna4YYuWq6DGHgQPAJg//v+/nBiUMrubJbsZC9WJiKSwm0Ybe7fomz1X6MsZAs0sxMSBaWM6R2HBhhqn64Xw/NcBwRzej5XfBqa6L0tDlSAcQB7HXSj2P/0hMQfGWOI5QzKeHPYaEy6yRXObS5d5O90WkIXSm/jaul1dBbHGkStBEOo2ST1tBhBjtgs9OyT6tcaM0eTovcwCEgQOkIn/jz7ODzwQXRD03MDtI4KLeimzZuTvwCGPQ/ksi0TfziQFvyhMIDmIVs00Mjd5D47Pd0vYLqlfTxfYkcV//XTA5RGS+oHOb7HMHHae7Ar0sJsbzI8TidC1iBIm/hVRHTv53r9dSY5MLPrMOnaF6SGd3R9HZR9+47Y0Z3Mi47C1PreGuBAS56EB4qAAOjqGpm3L1ozn1xCLAQrN9jJA5MLrLNs6C4rLkrYhAssxWiSorczlYO2PxXWNOGZwL3GJKBqgw7AnOU7e/RT9TqF7FdWf+Q4qsoG2SKr9TsJC5lTAt0LFixuo3r+9lDpE2DeqQKPe1IJrIsIBOfkjBqpeLfc6oPJDThPdOvrcDRhrlrMNUpYDUnKVINCUDcsGxrwmo7qTDSbT7SljXQfjwld58+x0wMBR1JXTyduwPs2Pu2Q1JyB3kpfYiiRLAKirLuTY4rUAcv3q2LlA4Q129vKouV4zB/kOMHjKkLMJhDU9qpFHRBa90vB9y6IG8JkJSqSXMH4vtn2O8CgfTHAa2do0M69cVo4JOAhso2KBA9+8K93ypb774H5TQ13xDFUkdGROYxEpfUuyfFu7drDwHKB7zhFFUgKpoC8gD3tPijcr6kb/h6oYw/iRxgD8pQeFUgW2PxOwLK0P/kU+urETBD2CCWtsZG1Md0JDK+XJ8ZDfkuBKpVqnElFwkPBBI6ABci4CEUklcn6nOY+EbtOLx9QR7I4Fk5CxhRv9M5NU8zZLbOafYy6fiURJnLf2bSw70G4Y5/c8U8HRgVI0n17rrfPLuf/h2Et14De02RMrOvmaqIYrkYYfPhZKuW6VlxcvfIQd2/11q92mbpyTFJ8OlEeMQsTsxruPbA3BCysXRt2MwiovHq7tXbYG3d29HPcMfLW45lq1W6VqPbndQd7pIniH1zOqSVXNcPDFn+Stmc4ZPffYQu0KkFc7BFBUK98Ws1wDG+ytPfloCshavE//dYZHUkJAeteLUdxONq8j3O8woyxri/R9ZWX3Z5vw7iXT/uvmV1QIEH8V6PpVdnH/cQa/ctSBl/mdcRI9cfNDl9ivJMUnMcokpzBGs+ZH4B266h/HNhFDxR6J8johrUHVsfiFm6IzlpdEAqQuUWi2RIHUI7k+LdoSFP+/d/iKDt6VDUDdeQ9m0XWwf6ql9NPcsmh9lgrd30Rv37si6D+qKUypoIYyllg0Sr60Vu5DNIR4G107qwjmJLDC/UEcPb+6h2wuuNqtlB8bb9LYoLnE1gBG6SQbeAKnGbAmC+bYZEmPKIzPFs8ipF9z0x10BD/R5WfDDy+MC54riw1OBk5GJsUCu4j3iHfG6NQJxlnkU71Wm0YwQwz44V2pdN1HBxrbTOy7XkWfcTYCZ/1Y7Hc5HXh5SQZ6KHEZQazItXQeYlqdi5yrL/M/ohrXgLBElncMRyKxa+HvQ7Ul24ca3KHSRVXhOAPnLgAaUCQH71+9+P72SJ99rnoQHEUeA+OPorw7vbs4Ktzsl0N/s6cd04k3n0kN2q2TVZo65wHIU3A6c0WvbnXREwgZy6KesCTSoPVP2WKOb4Zku1d0W/LcxiBsOvup3T2Nzlt7xBHe6mU/NX5RFP6KdDd7bnhHd2wddn+5Q9ynbGtpfMuVcmkQU0a+sYQ/KDSZnAzAdoafzUdX6RnttRRjmbRpE/ddb2Ftvo6+wShkPjrq3VsXcvGa6/LGUZZeDD9EXQWPYJMztIQnXQt7rLvfIjUzBZjxR3IkeKOv4KS3j9GkFfpcXyYsqDxCmKMRzdyh/Pk5mAhZ6fTZ6J9+yOcL+nNeU5AJOuFbjKvXB6fFm57KBDmDooPYoFYVKsRhzvPb/1CZnxmZVuwHIW9dnC/ZH7i5POMqOWFwA2EM/zIK0GbbJ6vogZ+Qi09nLBprqha3YeB57uxcqir0uouGg8GjfXcVAdR0RHx5UWJeKgIfU/sY+Pk8ADgwUa9VItWNcFJUcpiAIXqubsuelRSylCYVRSIJLcS/xpwinfITKyB37cf5QQpd+SVEN50I6ykfuUOqJGKft9yj/PT2bTRzdyedOhPQAJ2yvsK8jjpATLHoVonUg60u9859HrJSaTCB9jziLvNYmFRUgGG9Ym0cgtCfQYFDiT8T6lzKqjmw0+pMxkR0XUr8OxE5Os/1YOvlU2i6GJ7zjmWK5lWVralbAGUc7SPCxUBRQTTfwX3crFA1eP5ODG0tJVkbZbQAq4/hMD0qE59WsdhN88o68td113j778A8aliMj7w8mFJDFFPo3MhBERoAwGujnHIdan4LD4ddbRN+hexwTdfGJWK/nKkbgz2v63KpZTzs0fuJxw7NEJ+nIRqBzUmcHiLQqKdciPlyQ6fLPZH5jjo0T++fh3E4GNCrQklPWi6zLIV6KE3ewYtFJYzAkf1xlIzTZs2uKKc4QBVVsXTOEpLxaGukLZC0jVFqK2UVR4kJJ2N/dVn3Yn0FO3r9pGQjDffKnF22FuJKccfbAB6fdgEzrAtpG7NCoyIIqC8kivI8P0DMb+ZXz7PcH+cwxjj6h75jzjBDRTf+16fmzlXn9OOTsOrQA7nIM9huPjhWgzRsQB8/csFLbC1fTJVGJjV2h+2rGbB558QXAPDlnIUc8w2L0nGOIM8GmpyyAZLbDxAltZUXLrx8cJmpOHpFYmVoObCOKOSaJo6INfrPqV4H2xV6CRI0t2Tb3wOF2XxdtGGTgetoohGN5J6Yea/zkG6C92AFpHitfqy7iHpYcQqHWhYy9WohyhrF8M/veRcZ5TJIoB0rnDBr4krcYLOo96OihbwiO0cDlj8mMcG+4y0OOUQcRPpiFbvDNiBhmzCNdaXeQ0JWUF9MDTjg3qfcSn3x5dVra5wLwzw9lhdTr1DMY+mcWTeT0N5+kM1u7169DCR/gqicihNNsMf7Z0zKoZGbLoJjOwGATckSE5Y59QcRoDYiabghPUj/fQERx4zICUZhvEggrGhVaVrdxE8MAHKgtb34Kyyhj875uemsyEb6EF9Dl3ip01YK/I9aAtA6GP0HZjCiQNJaC2KKW3K7XQTbJLUoFpemKLLTJyOCzVTo1+gCBEOmcYnRbE8pJTsJq43uB6F9/aFpFJRaYn5UORpkUsPnZ/yG7chu9BsMv3WxgecPBRJ3GNtGOzo2KwsNHAEupiqMUMwOJbZ2YvKzptqPPAILQbKILbwCwDLdx4MzK2xfyfROeWHZLMp6f5xsCLRT3CcrlEgzul+u3gn1HSl2ZFEgCfrBO44PUVKNtpU1iRaUWq8dGeTYttjGcYYCrAzBzQs/M2Gi6SbvkvzLaVrgtdt269YBkURaAQoYNceLoBYFFSyAPQOZOok4MnHnOBZWGvlczGm1Q5+HqUDFbM99RUsi9prYDrXZs3MrcxwvZpgZN3P/yWLGEPKGdPVQfm15rT7mHT7UI+8VXJknXk7O279Pe2QRtOmuNxAh7wNiRONs+fG65TybcWJpiu4WKHjmQLyPNKjx7Qtdred1qAs0gGAeNM80vEQ9S4+xiPAL+Jc1fYQzuGUNlJ93kjirLQEg4qWEXo7m/KxWk/GRxnLH6UNUTJEaMjxdDcy3gXlXvCuxvsfnHDjjm2pWztcmKL+O/vEu5StoHaztZsWhBSr/Su2a5w2ytzlNOXJqwLRbUwSvSixfDV8EBUMZ9ztNQXl/4kHe2rZcDhbNgusqhQd9G5HtGacy8sQuvgo/LAZUXT94SuB+e5G+KxYGUfTed2TtevK2ltZD3th8C5pAbEjMAyB9CXGsWB1Q5ei3JU4ppgxUCyKIjrGBiKVnyEOpwrVBmsafXRKuToPFnU4SI0gABTwmedTr7k5FdbAw8HBgDk2nS3DfhAtZyxg0zchXmfHf+ww0lv1tD1U1Fv+FwH1tN3hgNzYemF045SiQoty6uSTs88/PW7ll29ZWDZsNFF8qIiZwAcUkdRL1Kmw5BWG9nKMRYWCXwBGut29jUAhgh3V0644WmKL4lENJyApx/3iBS84X9EH9+ARdxjl+zQZslkbIHYO+UD/JqzQEjwHKuUTU4nD1RkQPvObGQRP1GIElAovCuk3ELmgjikanuipiT5igfta06SpIbrOLCRKb6mn/6MZYTUQCUyGwj5KBUW2Gx9+9Rm7bM6Wz7MFz+fncbeYf7pLwLGk7s+BrKNWKu5MJ2N89kxjHWyatTzK84swxTqUmMAqIpTSqltFii1IxeIN8HMZK4RH2xOPE4VbBrBy80igAmOACiT8EUgobkHDbMhQUL3py2DYXAK29KPJYwymkOp6c0wwMIRi+eXwyyIqN1MC0phdW0i3otcbwlyvTJqJizDOM1+kgn7j27NUzHi4IdnbDkPg1Er+XOoKSoE91LKfgdQO1gXOHBq9GSUx/eEnCPi6Jby8aop9q2UnV8+Uyp2JZd7kQSIhpIXCdnxCVF7nV0YVieQ1zMDYJ5CRB6WpM+VEJizxfkiqFWNl0B+Av+LIVd2DIapr1lL5cvtFjhe88hMpmXg1w==
Variant 0
DifficultyLevel
581
Question
The weather bureau publishes the weekday maximum temperatures in the table below.
|
Mon |
Tue |
Wed |
Thu |
Fri |
Maximum Temp (°C) |
22.7 |
21.8 |
20.3 |
26.4 |
28.7 |
How much warmer was it on Thursday than on Monday?
Worked Solution
|
|
Degrees warmer |
= 26.4−22.7 |
|
= 3.7°C |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The weather bureau publishes the weekday maximum temperatures in the table below.
>>| | Mon | Tue |Wed |Thu |Fri |
|:-:|:-:|:-:|:-:|:-:|:-:|
| Maximum Temp ($\degree$C) | 22.7| 21.8|20.3 | 26.4 | 28.7 |
How much warmer was it on Thursday than on Monday? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Degrees warmer | = $26.4 - 22.7$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/ZWZhv78gbwFdfChiyYDyH08QsN+28fYskPhQs8tN/ZeMw9/O5pgwFp4d4TiyhJglyYcOaQkNd5dOH2OweZ7U3dFjyqFSlT/2gbS4/Ig5LABjlzqrzDJc+70aA5oY0nDVS7FhoIpYDOXPMmCMzilmuSEvpFOAyVvch6IkjljootR1QMWg5lbpN34YF750GVPqaISJHgTjA/BNcdWzFZ29uEwX3is08iDhKvYNE1APeeQOlavWyI02i3UEsEAwt5XpUI956Ipc8Yd8tOh9T36YFxe4un0GUvP75Tp/U16hTmAvxLCJeLdPZlOu/V0zWKDZxVTQnI7vLk/Zi2nRhPwsFFGy7oQFgJ4B16ktwPJJWsuTpBdlZej6URtxTVofy/kkqJ9Ay8uw9gJXTZfhIR201jDZMev0tjFasvrbyO7dkt4xg+/bImTKrjTfCcZU21ledIqnWhr3/O33bKagvRZCKnDqDzSr9nPkPdptagpmeKVBXgIdclOajMlTs73BqeFNHpq7dbyKnEdsyYvh2PzF+Yjd28HKORkTU4Muunq4z2TySrkgsIjQR1Rwcas/vrckrC1lhtITzLp3ferDZW7qU2oys6LST/zOFkGrSWx9ZGSMUcO17S4St3xC6cjOSwXLRrYXXIm+qVjp2Haawr3b99IbZKMv0/2Y4TRNQVFWZNfau9k+iPUVOUVwzZmIOpBQzg1N/XucX+Up0jZS1IkcR0n8TbRS4ULfUx6FMD9DbbrQ15c2B8gg0xOP0Kfrioy9ZP5YPPaaXICM5+9E4hqxSxxH41YYYdzSDYZcizKS2nA0GI/zBQFoq3N1Vw7SiCtRUSPLouFlZKya7X6X4SIh8U3iqyNjS+fB0aZ7N2YdE0lNy7a1LazsbXHjpXnmNg1lud88AdvRKgQONimFgFBQmeAxStKfRNyW/ngHshp7uYiazC5XOv0sIhk34mGdFa7NHRdsQJq2rhpoUY+bPkGtVN11OaCxD9/D2eJnIM/KDiCLKZsiXOsNGRyoNZ5qkoBTjyBHJ+DtrPFSePGLv0PClQYwlDNZFdrd7r4gU0GfAjdqBAdeVhfJKvj0i2cdrfjnsQBSlpkBjiAHdb+7JNO0w9TDaWc8TGUw0Wo0fnIphGkDjv9A4EgS0MnI/R2/48dL+s4Bxyw2ZzAAmm5awm/B99DJVoH17/FsrB/2kTlfxsRTd8jXT+ifCJV8jsm0xB+wV2sD89zIQZauMV1MXWyeH7JOlfar2YmiVKMOu/qUnGn1buaXl+0RuuV/GCyYx/Jpn3wzjuzPYbmRzOVgcpP09IwjC/CrnOuhfY10y9E3eP+DsQWpLwueMfWit+C3j/BmFWGY6L4AV8wavo7cNGFr6wCLVmPFqGsZxfSRA9SSVhsHBXDOm+RPbPgTAX4WgiBKKNs3XyWzImfRltCeHgBLhTkK4ymMrRW7s5iou20QCgOiGSl0wlzEykRxKoZ9FsPoOG2Rofazzsw37Qy6v5zLi7VCMN6D2K15eApQiCUUrAPdGk67RNEU3pY/Nmz5eNXs7JQFmDPt3PbPP6QV+1Y+Ajpyj9p02lmOa3y7zFmPNHZVEUtXd95XVlNBD6P2blwo29P8N+uv5M6t8lIs9rGC7ljeAk6JV6CgNXgaFKC74lHgcg+t41RY/+Gq0+INMkYe/DwWIZC1tr8Q450fe0I+8D/Mqzu5IRfDvlBfkgsKboAMF6TO1Em2cYGmLCvQATPQWRXLQFMresnjlbPMKbh31djzjtjeG2uLNJ59ZtbOZA1lb6K/yf3VzqcdRjKLRv75WezgnsE+xivCaXDZ4EViN22EgDwipcsxk3d0CGCAImc2jKmkRvgZnuru4XiUS/SjWKhXdjJc/s/bDmD9mrkr9wb2i+Q/vS4SWMMeszJHsQIg4ER+2Pdmf2kIlNYbcb/7Vd6tv4cOrQ1ZWgEvAvoE/lZS85Cbx09limbnAB957a5eU/S3HCINdyGu4FtjCHkvIIyICyto++h/ANts4CvaX51bBqJyzyS79tVxRsB8sdwInK5bg8M6ircPYtcAZEM7b2MnN7PXO8NyjsuYmtWoc1VMOxB5dheTdntKLAR4cJqoBhCBkSEP7xs+PMh3iXnNy5T5IU3KeHZ8oEyXadfKmz2MPlWVy4UVXUOKbAZWKcRTgPoWVJx0XZGDKwzzSMS+ZmiDz9VpVDja5dWUo6Psvjkey3ETBRan070qhgVW7BIGMNx7dR9ohxlue2D15kpMM4HTcmV1WddT7IQOP23lNDKQIOSqgi0nTZFcOXUi/SnCACHd8MCULwaCFhq4WHvWVYRbc3kTXcN4Q/BF508k45raSI65Ulx1CbroOQ4am0fcPQ3G1fDrVFOJYuZhAJJhD5YYrZj1IMARjWUm0PbvIF0wclgcJ7Jz7dIIzx2K16pVy9tA3WfEk8eGm5aMdwAXNyoPSN7jlhI8bw0pdxoyvU6xDD97W0dY4GJoae3YuXelAW3fOrShErp5WI5DVbA0NOg9AXQDowwIan0egWWlGo1QpBGCqUW8uAlT2seDeSK3LYNN96noGIJJbk+M3lB6cxaa0EqQOtIaOLgz7lSzByIy6TKow8CgwO5Y6tCghLgan7zsUe5VLv8MP1Vwco1pyR2w1MZgOkmNAm8+W6y42EPbuRVKeeqgyEXnMqAEbiGQVjS9+yYnehTh6brAsybLTX3W0d2Lr0VAyoDvOqsZaZCoSk9FyrIEeZvzNkJCTkrnjsqbQMsZKqIYGQP99HyFRMnoYr4oAdddXRQ2N0xv/zo6qcdkMjgy+m7+fvaTBTmMtRKMWwXUFeWSpmk1zRqrI2n63y/r7A/D9rVEpw0u2M1HxDd9Om5vlVHA7GfoT3FVuBTHhSD09mBowitq8Lz3GVEbyLGkznCx9RP6v0D354IlgIjemvhoWdtIg8vl7OPPo8pkccXy/CriiP0nfDvoAm72U/6hQO0rpN8HZGrxZDGBv4VisR1wKSn62bQ7tDlAtfKx9Y19J6ZAgDyMQXD8uCuegewjD5MgGukt2gK9ln2gBncelW86bFBtsYXitc3orAxqIzYlO0fqMHLmTL8/lOo5yeAi8EhByvTuVvLS08GqiBTnh7prdatG6TQ8nLIHVlJx/hgzlneyJMCdnicZk27YCbnSC4wIoiphcH+1FJxh24+WrLBhcivFn1Yr2bQIO6Y0PC6bNUtrJRGsH61rJIbE/dDm07DWLBHWUAeoucR+i5OWvaf5UB6zaSd/8QLAR8d7kKBiVL4h1qlCaN9yTQyYHWsa3T3haPwliuBYJhnTFiBygc+FQ0gbigCZAUo9O043ZSQx+GBm+3AlrqE/zWzfIclVGPKGxnhVcBDmrymrlDzwWTnIcEfPpvFXhFZ4rgMR0cTuTtES6CtXdj+TT2BBCERnkXpGrwI4LMTYDnvTqnBNNN+RZ5UTTROmK1FOupYjDwMasU0yrtpQ/jaWurvcKJK2ZubMll0dTrPP1Xaqt3+UvIbEgoEF/H+0HSYJKp+MaV9//7ySEjhGfYAMZ7Ob2T/JPHTrXaBqOIHqNgjSJyGZqBlqAgaGmB88usO4JUKxxpLqx5JWy1wpnvSTO0qf64WP0WKOt8bxYpDfE7xyqRn75IzCDsDkdqWu2D0kLZ3e3XXCel/uvldoAVaosmjeyAZM3ZzYWeQuSlf0q98wrBXOtR+fQhJzh1vBhg4To5XdWl+r3kBRI1bJZ//klnsZO506hAp59IV4Yt5WK6gDTYlixPZogw39Y3s/IyjgWecH13idN0v/VO3/z+zzOmHBhp38mNHwni+F4OHcWxNN9KA6GcA2Wo0uTs1CVEu7j030disblZs+dntMSLKBjWa3MRnAqCQy9pS0ryYrkIk5zW/gBKXX5Qvj345ORheM3AvXhhDNv5q/XB3jRBr+mDbpuTLo+PiYBqX1WascwrMFclAvjs0KKXK42kQlgyk4KhsPplXf/JnQsUMc+3Wac43VHes8m7sCB9ZS9/P4J6VcKXkl+2PumsKMbuP7WSP7APlvHZ3NM1OdWvweM72XMKqrG5uTG+1UcQA4fMn0J9bP+QYgyLOygwvkxkZGzMnJdRb7ATNeH+qyc96OpZk1dMK96/qSydAXu1yQWIfRZIa4B+m91Ss4mZlZA35MdW+hX/IoON9h/Ldz6WwHviSxDZxV1CzYltfyT7jlyo2ysofHkWu9tCFQpSAU1U4pHUXxKzECYHjrVim45gCzrg0rkqDVtCLe6oDaNX/KSR/eJCuP8EMsoTF+r53RB9gA3NdInV8Ku7q3xkwRRO5ZCr4Be0mw9OeNqn/C2MXI/dw8f8LV4ndispXsbVKpjGAuVgORZY7P8XzhP0K3nZgAICQPoMz24sldIPluHFPlXBM1P842unFJCRpbG0QgZBxjcJNj0eNuOi6ei+ZmWt7AOhvqyBBzDwA6DflEKIRplDZywcTua1sDYPVStuj5HeplQ3LgFHtnZB9rZrH2sHIAnrk9SBFwdHa+CCETqkKCQEs+JY9826ISqYh4TcgepYoYWgADQrC7ojSNiXk/oV95aOV0tv9MIIF7cnBDIthg5KAtqbESsDjV19vIDGb8ZA114iiZzdPh6HBDx9FL8JPpTvrhk3NiGPKXmmDbmAVisqq1x5j2qeOw9WZjTBt6yTh5HlSSTjbt8XtrwpTWo9Jwcam6iN/t1aSsoFGUFQhIRQnTpVSRK6i0gsYCCsOSlt+IBazfDbrVrMn36/mz/dudOA042DpGtixnP1giMrBxowuDY89JJ++H+7xT0ILYESQhndfAnp0ySvgBuMJIFb32CuMzuXUpUiC9GWr5/QOXCqZ4XmKcSTZ47mjnrbAKqM+tH+ZIUzL2tdouMcbmeQ+b+0QM/O0+R19bUC6/g32IsJIWj03LfT75XgPHl0K1P0SAEw+gE3mt7Jxx14V8Bg5qlfvF0OICrraaNgRPHbD9s7+KZsQC+vrQPgGmcNVcYtgwQyNXIj1h/oZIN7c6seebHYJuGT5PHt6wuEb0OlHqdqmQQzxDqu+iW6QBFbTBSlKHlDsvQuP9pshpF75ZBzRn4jVDZeegrF7ayUVRZa70jAolxjgM4CfOwCFePCD3Gn8iaSKLU4ziaMx8VZr3VzswaXU7W0S5sMw81wkc707/LMfQ8fRxqDAhmNmpazrfr4ZO8b5RgDqQAHIG9tSjAtq68J/Laj1714pd18kRtYuqPCxhCnNQkJQBGeEkAAjt/jd0xrVXrEzTSdMYSEykgylvEtsEaVL5+HOiCPyRCbiY7e4rsnB/WB7XJNAS88WbgFXv8WgdEU5Dyvh4GwZajILhVt3883GDxWK+B1s3vFW/nCutBQRiD1LO8KL6/DmT+3lVvge/5J62WkCMFoXHRM0eNuZqMIovx9NYC6KfBqCIrShSHiIhtf4WC52TYKhWasMoqtOuVzPPJII0d9trGegFCRZicuqe9k4ZQ++YLshr9tyhjgPInbFnQSDPIpVX31/xlkJgk3V2TmP0Mp33bf16qC2rWAuThD/7S8xu6yUO5/XH7U2M3vgkEHECjxyBFs5Z5/05vHO0yhDaAR+nTLfv53a9NaWTcoWSik9Hh6n/k8SakWuCFWvg2MatiImLpKXbCLm9nA3cnBDON5HlQpEbCxf61yV7gGSPi0NnEI3WeYjwmicwJQ+gYBjKSV+42nWE9/AwJcKk7Y8d0YFwywnBlGuEDsMnVEgfTwVS7ewilncBhzIYr58t+6+9asi87StsMknKP+QibWM6IiVFiYtg7IagJMPEGmNcwnBtdj/lsrTGMgUQB0LdDlALZ/bU9ofPiawtOf7u20KjiDL2UOCThvvYlnxVuUucLNn11M7ZPgidbGFhONeNBvUx9Out42fCHBmNsuBv92k2/n4zhaqTqHiYGYRVlLky/Ou9qiK/nMZgpSJlUseWpQA5d51YQuAH/bPTNoh/AH7SMjZkPgO43mSV4fNVhTAW6q03ZuPLKd/gLVTNbcGR9qCPeNnlwE9TRUNjH9d9st02p15LJGP6w2G0q430tX36MY9rN4wYiaa89KkHI7OY7chNPV1HcP9OMbL9GYOki5jMMYKJeVeMuO79lP9GiFUS13ba5Ek8VYG+yUYdtpHkVk8/aOfI7gAxUf25biF5E/kDUX1pV+wNI9WBSdGNS2aIghDe1GcqjqJqbeD600DFXm2rYeQ3zrZKhxLi+ygWESOGYvvIASIRPJOuwL361yGOgSE6nM1DmzP6SwEc+MIjLjzN3FIx0QFPxfxI3qB24pL58eKQ61QZDyPDQ4W4l8tX/LtEX9SJZrvmaY1nHsbk4vgSa71F15Psd81WrG/KvcAiTGnPTTavo3VlMtB0r3KWzb42gRWhHlnIXR/dzBGGKNcDGCwglLRoJ0IHUhVNlBOnjYHRiSZOZSEYd1I/+DsPWvGy003BqvAQzEZHwF9nj04V8tTwx4JXMu5FfrCXEjWfI06RDkwwpn3piqcrW+K5Pf6bHYFKt8D0CfHbuESLncKAWsjaKPcRLAyvNsbBMXCJGF+iDwRv/EXbUC7AzcpskzOzZjsRu0Mk94YoeVwhOCtqPbRAJ4D0z+VI44+HTUA/R636VSF7128sjJsjG/GOTJ6D2GdvfDXUZ7/7nHtsbt0zjTExoG7YDY/NcW1rFixLxBYb0e6jVpQV57OBEODWXzJHueoS5QCXLPeaEub2dtBmR3+o5W0nh8jIABW3e7d0R1NvV9S64oyXK/82tE+jIvehunUlFbXSoNVq2Eu8JFwk8FKt4eYk50izxBe3+9MSIOdyroX4uR05SxGTswF1y3QzhBJ6g0ROz77WS1bWz0lD18OeeXVP+xhdEKGf1o3vX/AIOluojF06UYwiVDZucnDDqPfDGwaiRRdbwKsGsxN9hSeuJO8w71mKNqM6awttZXM9cTfkTaNNeYvmSBb7VBW992MoJI42tQAN4y42qrOPUoonBqe/l6buuREaqPRzMbTL47sQdcMXhgjtU9+3REMskW53+w17jo2PUUDTYOnxorc215dpo83S5YI1OodQ4NwruPbKRoPTdeeVQRXvCtJNgLq19MVK7heXW2VbHFqFwWaNO3k6uQSlZLrv8OeuBGmyGQ83u4IVYP4XSd5suVkxoBaIERvty5QhcVIz+E+C3AoU0s5IHwuQ0W9K3fngf2VEcv877fLzx739y6Oox7pyDhc+n2i4Fps8pb5qs8U391AnMj3jiLytz9ejlfMnCi8PSmNWhYl6H2fSZdV3dfItpwqSlGCHa/PlbM506zflO3hxKyqSIHVsx516y0QTWUR7eB7477NlgqMzGCLT0vJsIaIx828gR82ABGHkc5X3+XQSVI0DzdeN6HL/YXzgW7tSXMKbqEioayumzMYChNnHS3F6QeL5VEGJLahB+OwykmpKy0nbJUS7d7kc/64kZIhjVUh/rwPwzc1+vrwLj2Sdp1uSknntxqzxM+qYD/vkjw5vaqRPE3sNp26JcNWmojTJo5yQJh821Dce+eOyrEdTKpijQb6JTO/+U2Plt4al9Sg2rJkulztt+e0nJ/wl/mXgNJYHofyTN7LGVF0S/WLRnvjAFcEeerXYBMmoqVEFrqHhWjOjxHyl7XVUQv1iRsbQmt9eyNamuUoFcuxuXHcFMmvqURobVC1l9Nkcb4y8+s85Q3sTW9kOu81Xxeu6y0jyJWHMyL65mOvjoExlnIA==
Variant 1
DifficultyLevel
579
Question
The maximum temperatures over 5 days of a cricket test are recorded in the table below.
|
Day 1 |
Day 2 |
Day 3 |
Day 4 |
Day 5 |
Maximum Temp (°C) |
28.9 |
29.4 |
33.6 |
32.2 |
35.2 |
How much warmer was it on Day 4 than on Day 2?
Worked Solution
|
|
Degrees warmer |
= 32.2−29.4 |
|
= 2.8°C |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The maximum temperatures over 5 days of a cricket test are recorded in the table below.
>>| | Day 1 | Day 2 | Day 3 |Day 4 |Day 5 |
|:-:|:-:|:-:|:-:|:-:|:-:|
| Maximum Temp ($\degree$C) | 28.9| 29.4 | 33.6 | 32.2 | 35.2 |
How much warmer was it on Day 4 than on Day 2? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Degrees warmer | = $32.2 - 29.4$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19TCfVpZxakRY5O/mKJvRMwlq4tCarxhysh6KvwYbaCVJlCl4O5YdytS1jw5SfZhEKJe5f0iWnPCTBwe5mNATRavcrRBec7k7wptmx9awbU09YJ4GpdY8iX6gVb3ECx4qTeGc0mYLuCyeezSiW/bRRi/uPm+Mah66HMbZv+gpPoEnRvCdpefQYNjbThMaUDVfneQtzGPQnRkXC/tFolVEDxE3k9DMNMJx9cMpP6rOSbNTpSwzkkiSj6c6ExV6PbD2ayNA4+b/ko7LmYttbxuAYzntItkcZ964O9vC0xPiFtGpdYPvIeFziaZt3gZBDa5ONDx0iJEsEGWk6pYWQYLqS4PK0Pp0ZXVdegU76EzjOqDAIM6CVG0t20y5p6Ok04f/DqDFU0d7oK/AlkeXE5OYVov5Ym5bSrk18qkozHk+6QYufJJR+zzxaP4evExTd6EGxlxjvrHaOKB2wUFtCw+NzxLuRBa8QF/24oBxvT8uR0K7WyREo8Yxme2xnkeGO00AwlN6BUOjIXFXKR8Byk4vQzVpRAOK9P3wZGm3TsISgmXYujxybewFuhdJl8cxG9VHQnGhhLu7ifCHNt6zMtIR73e/HIBxO1uHXdodoQv68IfripnJfpqKgmXsQbaJiIBxM+0buYi+T4m3sliYx5k2wi0L4/kQXgvpqoBu3oAlg/MFIRZSBcHI2cemMsA+yvfaOelXgnnV1g/HgCXmnhPiMvsRA+Xwyij5xxYreh2NC/PRqRBPUsXMYi9J26CzqvQAjTXw4IYSjk3YbmRjz/ggHuAkooS3LngnqpmOUiRFZewLzucwk24EESxrszOirC4H1kSdKHfprWyP9OMRvHTdKY1itMlJq/0Oiic1vZ7U0IwUZanMDX5ND1V//KfWiR6tf+OPXwcu8JGAALUFxWnQFcJC6vL9xnITqkYDGpxw3b+wqJpsDZ6gsXpyNzrdTdtgGNdjav2lsrJQvsN24CnVTRJsDqgNBXOwApihe6NKNiGRfx3EjM9xrTVN7hWa/h7x6RXHCmDblmRdOunMBE20ymaa76mk9HK1tl7UHeThy10U3uJU6CcmyEn4kdvIcCqOELrK+V2+ZJ2OO6fIjurAientRsmdU6ILc7F1J1WUS4OokuQACTVjBfFlvC+u9v6W0mO5O/vqyMsWP+1DEcrmJqxnzzbODEWM/wxF57+CkEeAAAwL1bmNRA9eDnYYodfWKQ42TVTJPhXG9hjwgkpoWyjp2oi+JajzC0SJR7lmDkNaZUH2wQ9ziNj41ikBk4BpdtjTdtzK8e+VFZvqJzRS5oJejZiCPm0rHnoL8kSmwWh7i1oTj8gFkmBrzSj6NzGWKn2RdUTxmvjyzlrKy/nWNYA2NKt/yIYp7MI0vY0FRXLU5XpZlI5UQWU/B8GAqWU9w00pN9VmkRqUG4cAzFxiAvmMQEpC8domqndtHgrPoijpBkPSNHJ8H9svJIXkyQTLCNhdYyLlwEwS+vqH4+BP/R0FoWG8FdMNT5uQCkfcCax8vmkYwFksKEd0ctJc7wHlgbu7zNQbGKbpjdQP3yv9+J6l7iOYTftZyZXj6LjFXAW/t0DJJ/mX3ZtmUcax9Y7oDRsLKC0+xZub8zGMEu3dt2SqMoE/hRKGPqcR91XVVNalH+4UK7MGRzjiHSvDpZAamH5RQ4bK2FWD8qsEyUhowH0wUd+xN3Un7ytspL0TbemhlGKGZg53zDRDaZ4mQrDxnzYE6AarFKR75f6V4zhC9lWssdLfZcrrKJvzF7quxB20Dy66SiA4PNaUQyo+dQDNX3E02w5MQCaGjTdXzUNhNckJNJORPEweb3UtTk8gdjw7LkGY3W4I88o8LLnuntBOsBCKhV5X7+2ufn1u+DXOMByKwN48SV+UAYctmHdCYZ/rPCeyoKbhhxRCdHaWqXMseP0OpjWy0oWbVbG4UXLuYSKqYOnBQDEpXZe3/eESoseg8AeA4OM0BOhEgMzaa4T+y1+kKy0J+P1LYe7SUTShIYx9A5SdGs7jC7XNRFbjR2R3fz9ET2gedGX8oTnxFpFu9a0D/RzYGnKYoYH4pQvYal7dLSt9RRFJGPh2Pu8oH3z+3crWPrwqdJ+cyTKWDdwfDgrnU6W7jYcNnMbvJGDe3MsYBxoM3/9qUHI4BP1irI3EEfb4Icp+3UGQWdm/TQmoGSrUi0IBKKGOWAuLQRS2f17p3g58xvjNGAoxZwSvGtxTeKHT3M3ZivArU0C76FshzkhFC7it4kHlbfVlLFijiZyD5iKINq+LUBuCFHFFYoW3C76Jnh4r5GHCi2/0vpULcpTQIR/ck1EG7I2xAHmkcTf4DAMlvpFd4Wh5BDCqs/bW52dJ1OMTJkI8tIyAO6s4uS5WRjdxyWHhOsrf11mBV9Qdgg2wZk+Y+GsaNrqN9Cw+QAPF6/hO0rlW/+E0XkGow16o7L+9VeDT+lVAZGd0xXgfAFPSStNo/TVz2ZxiBJuxnoxEF9jhsevw5+FyWKjeXVmmlDIDMe9fWniIi0a0Vn5R3noMMuwpS/XblX9YsKPUa0cFpNcYEfr6mQ/6jspNYadx9gDueml24QOl93tgbP5cPCFNPzrKnx5KRuYFZLxFtIZd4u3YHwCaBBAw8tMow7A9KK6z3Nkvx4t31kStpL8Vb1HuSzb5KT4pLhIsJF/3ls8fI2iMYJs7nfULCBC5RgGceX04n+BTZzRdaWVNXqA99FVbupryqUBJG26SwFBlY3dtGoBglQ6bQt5FpgPzDeLOVZ7meA4TIrnSn3y50oOp2g2qvFDMilx/zTXL624R0ybSOz7K+qMqAD9kXiA3i09PdxqddovvgHxpJTo4OVlszRd1BYBfyV6pbDqs8Cxcg9S8dDZzzSepUItzkmQQ1lCZQHlTytxYsYMt7XgQZ+tgHiVGwlPeVY38tPNqIUyaKQJQpw00xjBcUgJOsNYfwj3ld1uNqrvSuc4NyTRsng3qZZdVadWiSbiO7sSXJvoZQfhD9XDyEg51OAS1jZbmbhYR/zEuFPEY1yi5FFaQm910P/3BEmNCH7Iion5OTKF0JlP7Hnd8gzenGe+Krk4Zd5+o7jrlovZ1pnTRpmJUuj1xfvemh16pTt9V49EaJAYGzEDLVbJJ6QBLDbt7KrfXWicjOmyRyVHgMjxAKAsrtaxzElV2G7EAL2tl8mRdgODdLVePE3KnMQ96O5g0BtLEIdlTJqf979gw8UjphXN6xeCa4thxTK4At9rrZGRA3Wol28R7CQrPA+DF3ijip3iRZlgHrzonlRVg7aaUQ/DZaUW8jo+gqp0OcY1Or/TPAZRBUz4FN0091gmmN/a2MfM9gFofGUQb7tlErAY/zIMWAausgXHNctR3XhiHYa5L1xBT535MWMpWCC9/2Kkd+P91j90koroCqBGLcN5AuCeAsuKRoRFVH67ZJZGagICJuj76pxWkU67pNLWZ7ehn0zmDuBQ4oRLe8bhbuPc4iEgwKM7jXq8ucruVJIgGKEkSNHTEtXJ/M+lchWHS26yN2rIdjO8B/LeJSuiT8kRIqpVFGPUVjKSXjLdsYx7F6/6j3PJgZJ1xM3imtTLGuidjHZtQL12ivXcGJesiRraXuHo5wTySedVqbLEiUeVFROL2bn4xJFrYr19MuHqS+FfzsNFXyENXreD3sqp/Ms2U5p0V2zgr8t3FZmkb3J+cLVBzllRoaDqISwdxvGxrX944T0BLoUPDXud2imqkc8c4iQ6p3kBnr4q7bOGhxKewc9a11Mlpb9YsmlBRrAyMM+Dbzv/D+JuFGgZrZUXzqXL/S+ckDf3OKCxrageShGYLOUkN4nqjRgfRhfC3od7cHYWlsP1T+Oo6e7UpelbZ8Kn+1DL3f9l9JHkmWmWVPYNP8fLjg6g4mezfyXbnPV2KGbFtqtoHPpUOySXhrOrdJh7DaAnGPHP00ODoNwfGYtnMluiCnue/19zTIRvJpeAXWs47EHnMcD78ae3ep7nv3sOsN7aUkXFKSk0HowGdaJl5LFVj+nUs1XEyddAjvQtYpZ4Nbz3lPB8fY88ILp9kDVhjkaIK+RrAekMnhPa+gVk1aAlr05jSYkynbXWMDqNSxlXQN1yhZg2qgx2XAORRLHmUtLETJ+ITuJjvAnZhTgI8GwJ0HZNRI8DfYS5vcodirEJ2mC06jepuySTRn+wsHRvOLLWM6Mzi56hEFbWHB1NOvDAjpzM510jS/1+tUAkEHcyXO3sgISdMZ3RfP5R7Lf6MTjkkgffIw3ekGl9MUE0pl0+ngd7oOy3jHNZfw8MzZMiYVQhl1i9pH8HbG1T1M8r6ywa3+MmOuSm/2oLlD4CBMcA/eDcAFfDkGNYC4160XiVUfhnWvc1RAWRbb67JKD59YuZcoRnMoW+8cYLMgaL+5SRtqUBmgmD0GtuSXTz5WKds8iz4HsqRYXCj3zb4KNwf4jba88SheWaSr6Xj7D+qAFhh1Au+emydSAAITnc03+y5gyNkJHqbsmvVvWpvAgJEO2Kd+VmqXhCcovMrQGXJHYdhbOEWuTFkCLhOT97gVSiUIUFewCU4k1v9kfY5DW8+7aBPH1mKaira48+HW80SRXwHzJSQvWV/uozzOWddTrrwRtbxOsf1FxbYEQ7FMqAyPnnOkmdEbwzpE08I3T+Ep0ewjapCypzn8RaCR1SVlzIK1zkmgP06dKkBjrSH9vgEK5WMQ6tuDA8CUuoaFNFwdeBuCUgL0XQwU5NxJYv0yxYrwP5VHOGMGzdwuVrxGPjOv/KUQKzL7rKwfshp2J1/YpvKjHCt5nA+I4s2Z0/bzIO7dhDXORH9LKl5DFsvjlUMLO/pnhTyfxb5o6M+CPHfeDbWKtsG/yfbOMHJ+1oYYzDkhn0P4JGw8fYdbA5zO9xu87TBFB6JP5K/EqqojjkvGiEs5nSC8bS/CvnIGlv56n6VBk6f1igNOwHFWLynqPuYbVwFQCPbC+PbIjMoVcM+AP66qio/TPG1R/KGJ67ctN4dgT768LC5BEEcmakqGWwGFaQ8n/URS7Ncr5y/keOzE9ICNCvJ8RUri5ricN82XK5jylKQqKsn6vybXh+d0JXDbinAhBMzkUVwQWH4mWzMDt76OM2FWJoFFTfEtIePpExn7ZMOyenXAdSQK68eqEJ8g3xNEan/Eow9Emo4VMAX+kdOtF3LxN2cdOI+8HPB3TnZlzdtilsqXzwbl2ykTLCODLb4h8WhpHYNFOTJDz3UY1sHhnZ4I7hwjh6RVIF+Apz2j8zUpsMco26viiRc0WHR/FJtGSyD9kLkOzAtF0koBh2bG0NPiNliMWKjs5MJs9AfRUSSCH2xnNBZ4HF5agEI1IJjf3lvIfUZge7mo4LPsnh35SrdwIuHWW6BNHiNXQSkNm2G7TL0dwq341eeTAD8d+5bBt3CVmFHqrB2s/L4nP6Ln/Wb0t1yC6F5jg6c0lIVjh8uccQpgEvLaKXEXLVPiq9ZlI/5W0lmu1Sv+T17HAYEowBsJmulZiJKTncjAD1dhvJRZGB9CxChG6MYEG/dzL+MmGsRJ4CJaXvxCS6olhhHv8Z70q19An5T7DuYwiExN4Lnc6ya6S5EWkjG7qYBsJa1fQTk/eAYeu/pnwKOT9Wp+hHOYXy9ADGCX3wbUMGq79r2AoQd95YX08TRsJjPpButPpDou85oWImYa6puye0+po0p3bMCUp3hx2HrYdxs1COlN0J4p2ZAki9pjk1iItMhnKXR/RtDAu+66eekSIvQwbCxHnm7Bbr052N7PrFsR9F7ysRfxjGp4azUoRpUQxcPDysP4QJ5nlRCBqeynUY2ya7Mk46BBClnMjezthFxG8xhYCEitcpzVUGLysDGnIvrnuod0VuaK/VkwAVnk8Vpx9Zhe68lAsVfeizApbpbc2AhcZCij6ceEN5tb4oYcPQN/iHRd/ripSquS11H9E0xlVti3Ix1fchhGRwC1bPaFJxwh2yxEMjfbd4kmhFdpG2APtZH+X8GTairvQllrXGCYkyTT+XRstrEyu1l5P4Gg904SnM9adjvUqn6NOF0n9vqpvXgK4hESnQ+ceXBRSqqO7sRnuew57Mr+MYopRRXN0apXhl1DxDbRWnhjOpP0a8OhgYE1iNwUsJAJTZRdFd4BvRiajBGnZo6oczMqPp08Njp4pc7u5yZzndoPAD5eoyVIlApHByixVcd4OuE5+tEz9JajZNnKpCmkJuzefNKA2QWiv5mSuncaeDYi6H+KK4CQ484snW1PMa387F1NYvuN8e2TnXQIaux2VEi6jvsGV23rrgHZmlFdo5cujWDV0lhqCl5GCr29rhMiangzj3vxXXMzlvW1aZcdLs+IVkq//J6Y/aENCB7CsCKvMe1P4LaY2RDmHLX3NCw7lDyhdlFhQeP87fKgk+1v1uLK2jSNCbJcXEnC4CxMD762HEUJpth0IEDsyzn4gmAGFYhlh9meNgPbvu7f2mcarQKK7sAg11LWx0vBInbyiBhP2JJ+yN0xDYNa2XU/nGgzE4DZtELWsBiXyiE7EXSt3BhCyI55bYs5acjPHYIHbsaQ8+YBrusbGesntqywnqc9QAA3F/LkH1MVX+x1gFBsTldsjvIGDylNgx0SoCvph3bMqw2k7Ag3UmvMPDx3h09u9azSkRkYfioJ37xHEiYgxZavJlKEH5sQPBHdT7AFHpAjMsb7W9Ssj2ZnsYpk1nFLKJOZnSkJUL11pGVsuy4dQLvD6oZyOq/evJJ0jx4TOUbIUf1DaguUcWyR1q0RNw59FsEPFGfkNhTMijKX8I5vgf85/69bs61IeDSrp6i4PD6Vr98jPX6S7T2RTa/dfkxuOGLWd0nHnp09QbbBtkPqcq7A6BmFLf6ztn5+RbxJSd4V1YWYST8FOYckzYvkp2xyX19Aa1yu1v9VMyVscxlZlVfiUsz8uiXWPJ2ZHx0mtJLH5pt7Wi4Q4/Eu9XomqNGvJwv7lmqaMb3gxGWMqTstmF1Ux8fe0gJ+vpE/RqyRq7WY+/g45F81aKj6U7PbseyvwbZ01ahKKMJggI/AVlyEfuN396BqdfnVePmSWFK1Sr7sxExm1lmBi1x58UQLx/b/YqKez7cSOMFpJBxW9q1MVr/zExsZZV5FGXwr6MRvmTRGD0eKwL19V0Y/NDKGwH5xJbjpMB0xe8P5nZAlD/qP3VRReAFsXovim3krQdzYsWINhIrvLahS/rq2myhXOVUFlEAojI8OH+0LYwkyUvCGNxxnAW1kfiFvISKU50N/nB8KyjKWy5k6GKbH+CwYC/W09MEgG2vkzn8thAtlDxgq1r66e2VvOeorw60JziTFRcvrxtBnrFY1i7n0I1+CfAnM/7sPpDsolSjT2cOhrjYFm+CWbpoxfYNhpxxYHQaXA2FbBP0Eb57wlX/zmb94NbZ0s099LM5bGSbyZCosmEciTHO5MHcNdupN0FUm0/kL6pyLP4YuQy+QCQ8DAgSX+1Q5IBTd0JvYH/cipw1rToKYDkON+qJVtdSbdvo1BTetX8pyV17t96K7WZIMctiuazfHZEuwl+uCqBH+zlYXgKexitW6SzEcpMWlJjsG/7enabcUMrM8JcjKGTptAzuVpAg+/tapF4WpTik0R38bX7drcKa+Z/TH1UvagMoi6evizWKabYroVTWcQiEy6S5LDtcdkF9nmoKcfNKWe4VocGxKTBwWnjA6SWFYJahxKhh7kQw==
Variant 2
DifficultyLevel
577
Question
The maximum temperatures over 5 weekdays of in a country town are recorded in the table below.
|
Mon |
Tue |
Wed |
Thu |
Fri |
Maximum Temp (°C) |
42.5 |
44.1 |
39.3 |
43.7 |
46.2 |
How much warmer was it on Friday than on Monday?
Worked Solution
|
|
Degrees warmer |
= 46.2−42.5 |
|
= 3.7°C |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The maximum temperatures over 5 weekdays of in a country town are recorded in the table below.
>>| | Mon | Tue | Wed | Thu | Fri |
|:-:|:-:|:-:|:-:|:-:|:-:|
| Maximum Temp ($\degree$C) | 42.5| 44.1 | 39.3 | 43.7 | 46.2 |
How much warmer was it on Friday than on Monday? |
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Degrees warmer | = $46.2 - 42.5$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers