Measurement, NAPX-F4-CA21
U2FsdGVkX18W1BG/yF4O2JIgTvJoPFUO+ACAtqdfIWIoLFf/Iu0IXu1rXFBfhmUf1xxTz4xqbMa0B4NyrvH4wFOHQhC+EeiOCLP/Gq4jzVbvdxlJrLvfv3rEuJWOmSltASD5GwO+ToUdf6VSjcFylKecZ/RIHYX6iwMFqbqaf3qlSKN9CtwkYcfVdDs3+Y0nBv+aeXVZI3XnKYhhV8k3R9rVDMuL0QEziwjxogHzw/EElDTDYNogL1D+o6XKKcZZFsf6/p0BBjqIFAo/u14E71St6O2XL41TcgTQzPZtI4JHbFeOSL93xzh8AX+RdUpvsBbqwFYWkJncfDF//A5BK7zmo3fpZz+9YgjLHjWNYflhBLx6bzO/4SJnA5Z8GpX66x6iOV7qDjHyeviFfWtPDgDtkfU9ftmaVoK/AXeO6uR7HxGQBwvyWINkh314gd8w9vPzJleupqaZqg84N0NV+KR5Gz6BMsJ12yZZrbHrTlNZzHK6eao0kkhY9bNM2sED3MIMPB0/Myrz1uI+EdRqxego+J7jG5yDRevnOWo8cKRYxN8V85glJljmTKPKQnNGdEoI625ng5xAs0bQaG2DnFBqj6Hmh8gTInCjOlrnKRqbkCBUlUJxwQlPidulGGVE6jeUiAlbMggk3toXkXLGKyoA57nr1Bzu8zZ5YeinBcPK6xYzdUZ9Tn68ve86uDVKHdmXjv+2N8Hirffa9vHcbXTmbIVoRMqsPsaHx5Pf9fg+sZ4NPIkp5TnDE52EBm4DEFTbDTG/7vUDGS7l0ZQBdFiv2hrRMxTn+lOAQpaVXpiUSveZ3XlBg5QK8myJXn5wpwci5PhIrM9Hx95fV+matZ9sRdY7OMTvhGKHGekvYfAygfNZqg86ITya/+Il0zmx44RY8APWQBdDZzUb1ClPRKfVB5hkVe9uRzigV2ogjMIxM3MpNPsAxYlKxTxIbUGsdvZyDZz9bhBrqB8uapZhuRP4LWb0FooZFHtfm/hH3X9RSGhgpO6PDbjHAzswCrjrvonG5JlCckQG6ipweG4l+WokbfQ8sgZOB5AWAU5U7048jOW9Jm0EgnO1O9M7gftSvJctwNVzjBJVTMQA09jTFxdeL7ZtI5iOH7njdJO0kfPUeyb/EDKeRiYH0O9mYMfp8SjNPjo++ts8sWRxryRgRiSMIapxXNoCb0+RyGpgj/vawaVgdzNJZ8jb2EBjiCMSdHLmptxlYzciiRncXgHeMGY+3minPgBNlAP4ZRwZ6RYreasAb95+8se25su3/r45MuJ2kyXTwwxm3n9rstaKIXH1ETc+OQNk9UOjKoMUisyW49Efk45SoUgpcBVLWtXJfwtlsUi1/+Y1YUyECyyGsBVBvXC+AIxuLaNp2T8epxWte7gojJ8Q9+3KPwTzo1k4jyL7pQmrgvdu5zDwgEFaudbeyZlHUPPjrt68Rew9XgSTG11xTumf9XlIMlzX+RYGwABiN4kymWVDmtVUGwJEL+BuqfiD1QJveAr9kHy5BLeKwwhujcZjdHoFo3QaNJldmrSdFXiJeiA65ROmjl7ka0EXe7OfJ2ylD4NJ70gQLuzIrjiC65naFgDh5AnVJXM9mBVj2BY8kQAi2kA4fdwCFCaHFPc7G5SjDiGlKhwXInX+mxEwbNK8D308KY9rQuip+5IyBfDKyUl0jVKC7CK9LCEbDDeGiFAMkslERo0ZE6NyZdjtPDBp01EwGNU9YtXqh5pDnwSVGsvqRSl3+6NbkoQaO5oLTZmvNrVkXpfGqB1nmE8RUpgykU16kdr2kb+qlTPFoeK8vKDYykyqTjy6l6ZPvSNpFFpIFruNmfHxKNyEtE3OrI5k3tm0TPPCNSFjhdb2O7778e79xiY7Hwq+pWqYSeOlWHGmz+bAJnRtGzqYEzb/XbJ4nSXWvSax60XC2pCAmTUAmIx4RCd5qP9EkI1p9pa3fdR4OCXFzYCNpqW9juPCnJ+EbB6ncIRAXAwUCyPcqzsq0mhuFxfxxMJWVwgMdjn6UcQ8kkqHSwXTcS7Qt+yFGTHgbIfNai02XWeX49VTfme6cfD2dm0ZMl/3UMFOGVtnVuoLiPzSwaQQkZkoOCl/dTP2IKf/B/DCk6jaVIB5mpOqT59HFOf3fS8ThAV98ViTqgTsJ+yA3v74DxqeiJG0IJAOpuqfZ5cAkPfJPFZDKxZy22pP7shfVHGwVZu0In3IaVZiJ6x1pePm7qwmDCu42QtBbLlVDWXSC6FnHnSH8toRe5zvQGdvYwyNM5JOLCP47541b92zzkWbVdU3WDtLJw69cBvN6h/yLI9+ApMVK0MRMi0Fg5AAk+8hz/hU7iOh7UWKfYFfHesEfxNU3NJmAnx4hFvppfCsNYgvfkY0uAnO5BNdoQ3pgXKMbaqSPkrdeDeNe+sogY2kOx1lNKY56dhSDgoMRG3z0wjMbf+zQu1N4Wu7DPCrAqIA/+QRpKVg3EEsja+aN/7BwiC5KXBRJ7aWfN5mZq3dQV/Oxmuy0c8fPhw36tPCaYwzgdBzX3n6vNVOwkt6qiVsyT8lvIOsKzRwA7rUHkwzSLTTdwj47d9y9hk/armyFg9lkhUFLLvldjW0aH06LHRum9HbndI9NC6DwItqFwoVAa1zaFvLgKhtLt4gHpLzPBFMIrGA2dhYhivIZYK5uZtHAf5CcQ9WIOXdzVyslPO0ci6FxwoEw32xw8biJfbRwZoFf6bk6EjFAw9FgGOUOPcd/pTtMbCnJ8mf3bufWgS3oziDMMZJ86bywesmU8FSFg/tIP5TJUxvkePn7SyfwDTmzpxwgvJPzGMWjyc0NK3IMYjAlM7bWJ9k/IlMWzBQ0bG7cWfytVoldllQTuuW1iaZjhZzIBfVrFIWWqh4nWWX0FDWiULKA2bLv1Do/tVBHVz9fLTwwiplgkd9OtL64uTh2a/3EoPhLGvsdvEik6IS0mZloDBNa3y2qPHrt1amcIlmKOzKKEnbm5Me1y9lgEr5waQ++E1rPehHTg7EOCAlZcEqfJjnDl2GC2bzZjn187XPw2ZKPbczEIQy6Che/J4/YYbp6WlCMv6DBUa9lUulU3M+PFwoaWps+mSZrUmwFxzVFDd4t1C8eY63k3DbLr+any5/IPjMhDKrXey+0qRvUAAVpho5soeDYtl8p2EA6LfW2UbwfpG3F0z37QFypBcoBKEfLUIDF23Xz6rf32oZpNSGM9kRtwF7GhhoZ35jnVZzo7XeMUDRDJRKc54OPhFoHe9UzJ3claccY36EmqE29s0jgrSvw0ckE8TNnnCtTGPiUecXOrSIrYC1suswA94IH6z1r0+t3r8lPIctJYPz99cGM7A3GmTKbWhtFz01EXZLiwkBU7fOM/GMpArz2mufO2YZUA2A+XQnNo1BsJEDRReLX3oJDFOgP0j0EBFNC2m0KX8uhniYkP5VHRAFFMm8Y6NPgl47bAGUjlcHfG4aRqUPcoy3B9PgL7TN/+SjF4t8mQvkm6V/n9OwcVRwOymlh3/y4kzzAftivYZIZWhJDnrKsheLVpjhsyOidds+oPeRNZFJn/DE2MV3Z8aw3bW232jzzIc3d+1WukrM8SGqypBmlJDFnIQWmAMifqTOS8Uxu4ROGybNNs0LZo4ZUOq45hVecoSIUDZouC92ZzgPUbHHZ7x9fcmYELijiPt5Js6yc0siYgUqXAWVn/NfV6zgZMh2SfCeLdmKqhvrRfJpQP3QAMcno+BRPN2KiVIGF0WNpiSJabduPY87CnlgXX03dQe3N6S+omeFf6WapZFK8G/W8Ofjwy2tadnVVWoGovwMlLGrxMgmEiDekIzhdW+ko2ToRdKE6VVIw8a/A41w/sUXYV1+9UvuF3pmWiYJq8tulSwQo/94+7dKQvF6yP0jB9+HQ1qvlTFcpzYizbJrO/FjEdGl2fwdhr7T7ohOTURThNbxy485kpPuGtawDR9euJ557JmYeIb/ymo5wyx600sFL9Bl+iiQLf2lvMPLnAksDwVZSJ5cTShMRpCo8Fw+ODsNPO3gdpbPc9rUdmccltXli44XvqLjyvGMzZsusAFeNU5C90uA9G/O5Y3VoSBPFVFZYHzShqBYcynfd3s42H0ZDUn0UsCQN6fgr4QbCxW2ZfSr0YILYxDCtzgl2m3HDSuRkPA3FKZwaFswIe+SioSOQadOP5X1IEw06kk7bmi4L4vAW0L9Co7SSKi44mMHNC8FQfEbXPDDnmZnN5tHJpWxutIoSHjkAnAYjrekjb+fvlXx56wI2mYwdPfMArPtQ47Txjpi2KjvGTjnZt2haOtBiyou4C3Ud+/VwzqzbvyJMz9KbmyTkyUgmMWSsq2xkKW1yFzUPNi5JlAGLqOTFcbe3cboIQyVnAiLXW36GV/sexvpuZwxvlCBSpK5myLOoujjqnweTcpNixit9upuMMVut8gt+JDEg+ecUwMjiTu+OJlaqOFfXzaXFpkJxvaynW2Gdog/IuDy5+UnGJhPZ0rVCKGrpO4SUsPRQMeMQa6jivs4fclBzU8uEl/kLbi6D3nGHtshxbkiqfj83b99YyaGiz7fpvppxlKTPYCtTP8bHCX4xqG+4i2w4nVfwc+MCoZQoj6Th1z/+lY/uqPnfLO6rSL6rp427tmbxeSqe5R4zwXxNI6Wyz3ec0Weu1NvzIpGbCKiGBo6GHeAQwmlAYoCIDS8xshUnq7yzmbhHhznWWe4OX5F/oTs3YcQsYZSD78ZJRX0Dw8R+9QU5kyRXArX7fw1Sd5JA/8te9mub0VKCS3jAuwyuSxZGiajlTKo+Y0BGosliwJHRLTy9rIhaCShN5NayFNLkqxrtSgCX+BltlMNPbVBFYiHSemFySGLjMNr24hGdKCM/SvAHNPZqykdCzLQDpo0gwtrF1NXI2UxInU3zs0exjJZjG2PDYbumnmls91HZ8WaFkcgkRT57WU4yuTHhoMLfQeW6RYxwI0V+74jbgwYwb6/nQSokNYx910XBsiHtEPlY4juZ2dV/vQ+s2IBhroKRWnjJsKqJk1S3jsR1OjM7+5D1jATExP5g8gN0SNMZR2Uf1HixD4B7bXAJmaL5hK5bV66QXO8z9gRqEnochc6C3KGmCE+3s5rwpfhOtlM/USuuzkvH5Y+O03p3vnUhv3MXqkEb5PIobUC9i4zFv+aDms6K98c6BcEkOZTpzCM5/sWvM3OLKGza3Z+JKfsIE5lCo3VDQAdfZLNqIJrqGP8TKa4iGSCF1AN+M8Xi8hzokw2o3eTbygrdkPU0II2CSL1CJlgAG4IRrxlhvtNDHYzdMtIrUbvDcCWjRCVy8bdKNXTTn2u/bSpJ281rvqtKkUpVdndVzRINzh4Xn2wlRE6W7OQ5TjPIjacFIbZbfsFHdXEt8xCBk96X648Lv+gwf4IF0nH7hlRrGlj6XDYDYD6Yeg2U4mTbuU1dmn1NHMVcOhUsEzwY9cB0CUdJ9uUn+ANAHkUllCV2B71r+Yk766m0FWm9vdA+3sPO7SvUwXQkEAOzErVrhz0aKYD0/Wt0Exfg5nAw/H/xfw8HtTIY7TsT12KxKey12zzzwcrbg8AfiK/Uj3+K+wOpFDUmTOE5rnRXRxtyn/FXyOxxgFPZNgaos+CwmvjZWDpDN/Li7tTzZoyETuIGaIEqpOIsQ+ewGvedOBQkPq9QL4u/QpwJvRls4WWHAP8tTJ6rKSxU25HjAz/T5KmVdeSgIQ7ReVEP5J8B9/CHsm4iD9CJMNUNUqN4GGRr8C/7pAc2FaDYYRq08AFIXDtZo84JUi0M7JVm6YIrOiLbXZ9uJiL9h+Snzo69UrnqDB6U//A2gEVxbreBpFIJmW3Bqx8DvZ2Lspk1db05mOHDob1m/CgAlx6is5qMkC45ixDXiJAqK8pHMiflTTRErh4dNvIJgtgZgLHzovGcFucusz2ugcRRjqSL2t91tVt/qYDBsERZMpNWQqUioZjZNVzRtD6oWYUv63TDqnwECfrIRg03TkLvtymQHAP7Or0wO2s3qAaJnUBl/Iz7oUdFK5ngEJGirAhBER8ClGetM09e4JsrzrLCkcUpxWkFNf2POK1LAdXCCdrIN3VMjGGrnf5iDxAI0V+mM81wA8ElofKBZUxL7Uy0qYQWbHHRkU/ivGf1iVg79GrtovBdsMlbpkHcClS2y8JNawORMBUg9SYSJGpOAijp9WEVplFxJunMOvNiy0A6zQs0sVput9rho+m4CzPD2StRHWo9I2GgqoQmdk8US+MaSRGQwBuRR87NnUF8NeYm3Shd2USKzskgqpaHMmWesEtZeiZ8jCeQ86NLl+8B+W3cBI69UMLCj9v3ItH01xl96R3lSNKS0X3gxH3+6QrItiHJGkUzF1Un/DD6z61OYq8vZIenLCe3/JSgPGornlFL8fKGTTij4ewc1TUpn6q9cmtRtyl0wRisZPae4ToXggsNMmw373YAHcplDY9CpREKRczsDPsG/AM9Cd582MrMnZUzdbxXlVfQlxYOZVLERgoIg5IzjwcQCqrZ7VeoYZ6WPA6/EMRnBLHe68M3Z19eHuHHaIMEBOL7OG2T/Sc5tXeFoslDo0KooRzQ6+IvetvE10NOaY6tAdP/tzF/lzib4XFZeTy9jmWyCXVnfrrnzt6CtkcLRhSOfWPLfbBOH7evbhwW+jAwpj9WjxGenveOpIOcwI567Dvy59yKucOTs89LgsqPStQyutGhfa+5V3thbGfIwgobsvedH3wT/FSFr45nb65kDtaHrBhPEuSs+woAR+NRU/miLuwPmNPm85WTi9gDJfN0MdsMRI4hQSB0qNjIZI2r5Nx73J2r9odOXA0vu52wAI/3cBGA+/pmLvYbo8zKnYIVQtRYxKYN5VXrBm3I4KezacH0GEOcXhXeKCIkJqDvQ1Mz+MpAb88ToAFlo7Xkj6AU4YEi/wB77WrR5+brxHMPiUyGSzLC9SE7oten3ocUtMG8BiRIrdfpjvhLy1jAQGhiSpKdxsZT0VNPBSOWv6ozBth+C6oalTlM9uRZ3KbZOUUSBYmicpK0T9OL9IZBqRXNi+wN+hBLyii+Hm7szuogh1Kj9lp1co2nwzVWw5yYM49ubssm8MBIFCE5ZwwKw2OBasiJlK6l1p7kRMnuy+wFsXczkNsBzgYwOYwwZ8n6zvTYJu8XRRfhDoBfD+LmUxuq7Ia3EdAHawdnrkK+CegthbWRsby2G7jMwHGHLpYy5xPfsQKtEy82bfyph8KVA19nUh39n6Y3ATdtRRsULnGYRjcq7bhIU+oJadRNnpBHPf6c1KWS6F/mCGz3mbRepGvSOAemvBE4OYxaE8mp0xfvMZKQT2aFogDsQv1J+PR93arf/bH+e/2Uscq4JCj1ahzramGHbZ/bXR/F2yWSBvh7GOS65Q0isjA7yis1z8Yf2m098vZz4rGPW/AZr8V4/s9cyD1FeqWgmeEE/o8WdAhrQwq+7pKJk+gXhyBuS/mfEfceBxTigvfHbtmaWJzBtaoEJPbfm6L4zMoyJrR18z+rdFq5rwVxvDjlLrEvzacDuz3Zbs3P86343Fys1G1gZB2qlWn9WMSrewZ5Z+04Awvfn7tlVWIsUyzqHE4U6B5F3gv+6sEivjtS7tDDLm/JPZ0JDnLzdSMwIg9krz/ympXo4L+jO0I8+0hPvnVzddJ9DD/7Lw1NEcgTI2Rezzf2+iZkWENg/xdBHinAdFmTJwcJzD34l4RPV9vjxC7e9Q0WPxofzgHAkOabBIcPnODyRA6AC4gGVKSq3AQvxkkGTXhIQF5sqsdfxcu8egoM2K4dWuGW68MAeTuTUEKOLc2pVOqU5TnEzpArA2Ledoi3M9FGQNHrhI+NpVr9GRAvEinYBTzticx/NABKEnwW84LNP6gvk1/oXq6Shl13nHccFAvlq7oL0Y3VzAgQnxPqBb+VQkx/dx9XFQ8QVSWTuGz7c0mNzslsdcXBL5bV6FBs9nV0PpQzgqY41bzAUUzFK16Z2d1sAZwLHPYfwe6ifmr+ZLvH5GMkVW+1kYAHanHL95Fzi3xEcC+MNAw+FbJ2Q5i6NXECQUJcSQJXuUX1ugLyS5aX0wtFBF9gdj1JmZBP2zJNf09nwSvkWT3OCYZFUVrJzDCO/+ujtQoF0tgR6MmNNUqQFZPzeHyVNdVi3JLpc9B+EwhATIOXZ+K64RgOmJXvXCeRw55k/nI7ZnTDB+4tHniPBoPSk/XjdvJd0avbcAkfmq8QdFbFIYTSPmtnWgnsP1cKpO1wQ2pBDN5A9ULbITXHKJH9QVCDlmm55iGBV8IDghfX41l3kCZHZ8PHTXLmBLTBBusA7ksrKhmtoPVMDRpcMpOmzf3DhOsrLBDZ6TYU2ZEHGF9u/j+o7HaqEhWZTqILFIN3CUg4geSxav0DoPzxxp9oCoieHb6PNCZumTW4cVjT7qY+GeCeEurczIKrE930aAKTdHYMjDHlfid+1MHjyRxJ7rvyyZhvhh0Ex7/+wnyuebw6RQdZlEelRXCQuGS76bUlVfrNqea6iaiWXYj6jiEt6glM30FyBzykm7Qu5pRUq7uIh2I6zcksyc+hkYLzDgeMUWLpdZXnmqn+8cExJvdSeDN+i/mgOc31thnc0hNv++30d1Tp6bwG45g0Q0xaOZXwC+mmfVdLakdwYPQJSQZ6HcOas812hLRyW6vX/jfiinCRlUHyzmhLzSSlgzWR3PUr8INONmr+EPH7DuKfLXJpvrvFpnKxwA6tHXifMxwLG2aij5sLTom5T2QOQCCQyOXIBLueMy9O/Sl36b2IOpqovY6EJKQUnIc6jxYC2mPWK9fP/L6JdwVpkVpm3tbfwouWdTAHU8YcLSoHHifjpcBvUm9FJxj5fTqwCcsa9nhaMXJzzax2Ohp0FNNyuJR2svoaIUJP1jsOweg2sbgXp/FqZ4ff20l5JRRkIGrZ5MOeWieOAp2evriK06irzU5PGy+HUX35qPuVTP8l/fbCL90YS6pTt9BbJjwkfspPmEkRyniViejrh5UhQq0huctaMaldRFrg4p43rR+Y9YpvMqXmf7WLrdSv1J4rKun7ox6NKVWLkk8FsRU6FJ0KlY527vRsdnblhxB+zwWT1HEcBX+u8I1A8uDC8rn50EZmo259YhtyQEcpCmfDz6CzG6LrAr1zXUt8WaLB/XY6iWGNBHOhhQ6V/BOkUT4hHw1igDr1bheCZK849J9ko8IuB3+wnzM+mtbmNyuNuZsgGf+h0YBgEz5e/Cu+ziSPsX8+8Ce5kLKejuL/uw/5NKqWP0EZRfvYwm13c9012Oa46a3uaBDbkD2t9rjWdjaSDbAxSqVotDdY/S/Dy71l9Zskfa/JwJqq8W6OkO2oG1VoSmdsQGvEE8hMeSkYonMy8RKrH1knK/X5KfJ4ytcpTY4I0qxdkchJ20d37e9qTzZmc82yM+XZGvZmD0KCtffKMu9/zv0kZ1X/Mks1/F3aIV+pbfBIvDpU3oxQucO4KipdPnA1eFRU7D0vM7FR3TeK52YmtMcwz9o/ziawQ6OFqERoL5sdADCmMYyk7HFRpR60y/XRvBntN3oZjzeq8FK9yw8fdM+I0+DXQceX1cd9GnixlX4TgN8HUrCXoqpqBTOsXwSAULSZNBzIr0xyGQn03caiPsu9r9Xqj47QniwYLTpnmBein6jfk/IJu6wGem0m6dweXxobwvw3Wl7WTziraSr1lLjX+LZY52g2hM0HbdVy0iFmNpCfPTQfK4cNN2bGqtUBjOu8Cms1FBGULio/C5A+Ry20m+1xpVxTElGQGQe+hEMbb1vJmWlOixGtlNDVf/px1iIvJQkkPywqOirv2E+5cVpOX5jANRbfB6q61R6QzzTWqlk0YmNuR34FkoRv40FRCId5CbL6ZsvRgr9EarEIeBe9jzb3hOn6I0P1XltMTIvPlyaWv96Bscsnq2HfB201Irn11+H5S85ItyWkIKw6BbIOmn6Mgn9p9pNKasZhEiEYLdCrkDcUMS9QBjb1INBdPyIevuo8sALWhwoNE350ZR8tGwJ8naSiIRpZO4Xr5nICotESsOCTJqjETtnAZy0YEgrJ5/rUS2UJbi8w762jfr9cfOubXQz8vZhSmgdYpztARXXXwQQgzb4rMVtJMfStEM4S3sj8AfhLtr+heeHbR+f3r3q0wu7QibENCJxLKGh89S8oBrPEjNlPWpqcjAC9PylxWi+Vg8aZQbESvkO+FgTlMiE0NI8eGimXOcYkE29KqtiojIn9TcS9aRtW9UztsYIkndobCRlTEAW1gm1EFfHmI/NCan7BvpxQtmmkFyx5CoNVZMmmjoL341KZRzTTCe/rQhTpY+ldYneDKoF52Wqo0E4SU7FLqA/svRO1/H6GMXKXYbsRq9cFsFjXdxWu1IMez2jFeXgFaXoG8lIpQBpBUjWema7XcvjYA/fjVmD8rDj34t7Kq9nknZXTb177vjDKkwR9YMgO4QmLcOnV2a03jAhLFMRvZVv606ICWKHeErQKBU+ClYXIJJ/jfNCvxoEYr56oT+6EH0JouaU/7LMGFyu1d2BEtavlaGsVlu7BM+xzN6dnLkHlVg2FPjeXx+ubjMMnlQ3N+I1f1An7XPIrDmiCzVL2V2v5Ke+93bdwmYIOHz/4AMhCrt1uKPMaFry7/JBgAzGas5HLyzOUZfpJoW2D9QLbrQBZEkAv+GFDcUr1ucJN7/1AUJqYEGEpeiR+Uy90vRBw4+0iiVwyrxSSwdmrWUmv22GU5r5N1yhcapgun6EN6jS+p5eP6shUVbL/shyh+wxKiER6d17QrTY/eKGnXtAi0EraQErXezcb5icL9PIbtzqZ8FfgOGdXVKaJeYihdKxfZ/0M+ufIH5r9XJ7B7RfID2GDOT50IdWAsuI/sMiSgMhILScAXT+ZS7x3AG/ATTrMvM2XFUKkueiIh4fgXBmNrqfdfLyR4q0Zui3aWERS3l9BglHY0V3vHpPiNsazGjAoCWu6RYLNNwE0vcZxeySht8gp02UFCNMUdmahwjrQL9GwnDOdrTrzNjD/NZlPcjYJjcbbKoXTiUOzToNDQ2siBm1lbeNZQS7RpprQLa4Ccl6FuZWw6MeTQbPniWVFGzIDgkyuEW4YCYhVIhl9cKcdhbgX6zMlqQyo1b+8iC/4314A8idPOKGhhATl1Nwzp3JKxjeEpZ3hRaicVg/KHi2+jVB+bXj5j2OrKBP9BUBubbsPGR9yznN/LWCEwvUiG4FarOWpCIV9zzV23fRtOksWmAgTgtQ18Hsti5PT2CXkuLYnmPDj7EPETYMGNyT7EM0L05jewf5RmA0IJKlFT9yhwbGqNYbOSCdSENfCHgleykDFD7LLu7aPFroJ/CoADHZw/MOOxvdAFQJt9eQbW47x6XF8noKq9FdCJ/AiZ1bMUrGwJPHlCJ/0qUZj5v2/e7p5I9wCsjJ1XK6dvCIHr3CztTZjfs2OsDkM7MuBu8zlig0TSsgJISAOxOM1chESqG1Z7oXaetzPjhoA2rKfX9QFY4fYkcPT4zPpy94C5qp61Y64ptl5mUmC7mBRikvhoCeErDPZAcQ3alylQrKwSih43nyTYRleQ25Ko/o+AgyXTIipmmFvxF+Dhe64tt5mCdX014lByKchrtXFPM96gLUo1TgnfaHDKavBX6Qx2tWnPAUWZeSz8ZqLs2nWpBVqdY7l1aMa2hNTUwiHm2238J+eY/SPa59EvIWk1cMSFVfewJckr7mbDXKT5ZhqUWVWP1a4zA4FT0EOfPmGqI3HgRIDstvFBQByrJXXoD88ZqFrXcWMiHsaBcNur3L0hFkGu1JNWJ038x9ATn6+uQfx057odJdWWVgoIg+y/aucco4IsL+S+NEsQRZkp61nLiuCF0tIJp6EV7gizPrVHob4ttAcMxif2JSAzso/Zv4A8L3KbR62c3RRM7gPWaHfC+1CzDC6oARQsT0c/Su56UqscFS4skHInacdvrQq5tZoECnh2qMIgUW9Yml8uGnFXOesPZyXQnBqvWoUhLIX3yG/VqZ57NRmlqUff5aFlKnfhQdLBXLJ4I2jI7+dTse90gubMCca7PW
Variant 0
DifficultyLevel
631
Question
A cube has a side length of 8 cm.
Two smaller cubes of side length 4 cm are attached to the larger cube as shown in the diagram below.
Including the base, what is the surface area of the new object?
Worked Solution
One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 8 × 8 = 384 cm2
S.A. (small cube) = 6 × 4 × 4 = 96 cm2
S.A. (sides not showing) = 6 × (4 × 4) = 96 cm2
|
= 384 + (2 × 96) − 96 |
= 480 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cube has a side length of 8 cm.
Two smaller cubes of side length 4 cm are attached to the larger cube as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/01/naplan-2013-21mc-300x207.png 240 indent vpad
Including the base, what is the surface area of the new object? |
workedSolution | One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 8 × 8 = 384 cm$^2$
S.A. (small cube) = 6 × 4 × 4 = 96 cm$^2$
S.A. (sides not showing) = 6 × (4 × 4) = 96 cm$^2$
sm_nogap $\therefore$ Total S.A.
>>||
|-|
|= 384 + (2 × 96) − 96|
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+QHr7cIT0sZ+3QItwKqGd31ndz4fBG2jcI9OzSgzm1RyRnxDMLChx4mawHvzyEwDwmlqE8dXrKNKFlBS+Ipk3O4ZtnZ2+fgTdqpovLhd1BDshzaEBVmUdAcvkgHDj0bTAvTTK/3EnYK/Pad+ddc2Jcu0bRPxE+7UY7IgbBeuVdgte3Uil6t5d7Gd9yRYhoHHB6XWhmccXDzIT+MYsZcfVXUwVAhveobrrqNzC0jqqXYRkJAqoVNg9Ya53e2cNPryCZB3fC0PUNBS8tc8ywc30n4KpmMOZay2HliThqN0meE5njOHgXeVXF0UTVKJGhWgUwHZqftXV0KjIhRA2XpwnLZEIcCP0YXjXV3VqZw+IrVB2vS3/CmNW2AFTcmRdnCNrJTSq9DKKXt6/+LGeuYPdpp7Y4/Ck4ABtZVIg1/hqA4q7thlzr4E/NYCu/sQkMLE5dlu3JuBflLkWA0PIDiH9kOaVH21/J4Tno/UeZ/jIQU7OL1gvqZxQcpuz7LjDxm6L0ODFeMbHoxhyBsdGptWmoJ9dLINeRc0oSMtl/NLzWtHF/4OEBqkfN5ygGcERux9PK5PMEOtPGxrAassL4bmDXDzJawYN0l6PU2lg5lYrkmKDNg7dFuEt64oXhotLLD2C80kaagyQ/8dpApGh+pDhMIlKCudijd3u7ZZykIBRnc2hlCTCGWUh3gj3b5iTlTtDgFQ1UbiDHAZnZDseXiCe6pyM8Q+1olVSkO6RJARl+SSBVnqC1PZkl/y9/myO2huNH1QR+u8HSa3uUyyj0/4bgbt3xtUHktCzvgwipRQSawWu69lM3b+MRNrvIXyjdP2xDbm6Es9Wlv0z1QbI3iTpK6IEjR8DCXvO697nlOg48gqOa7amzIjxgD2bODjvLFOrsMxbivlMbSLpn+/vFBfkWHnxJUPNtKlpHPHfisF9d/Mb6gJ3yAcy17i49V98e0SJSzHM+Km8Ed6JNWejJ2rgEFBISxMmPfNc+atuHTRraX8vpq61qvLcNz/8KvrHUS7S1mMrz0gtjJoQsD7aJZ8upUv5dHTf+FvztdoALZ7Z5jOzJ7uS6eJHcu/26qxLNOfG958VFkrxGf/xqp9v2B/3MTIOHesG77fpLB9RDevU+qZCfVGBbmE6fIMMH/hd4f3FogYuDV0A70tPBmLzmdHFsQ0aQveYGSMF7yXmKidRJiBSo6jJXJB8qicZfQHJwGnVcEMce74fvVFgdCpPR98nlFZ9dh5e0M7w5Q439kqjdrb09aUYKXzsIyPTiZ0x5BkwvS9a+p5h+Pg3c05l9RrDV1vbGJo+71Tvv9yoa/DasHgEaJWDQne0rEieNf5lIhdo7gC+FVlao7tSqi45WqYWqB9ZT8bTEJFFVLu01i8GdVJU4C2068o2HD29xzJjAY7ZiONn1T/HxcV8no+viyCIfQNfgeQgmWsND4meM8miypNJNDkXvDPVNxScOBlLMN41n1ofPJG30PK0FeEH1X8e0UKKv04t5Dntc46eyaazkvoEoj+6a+j1lS7dKq8Zugr0Q+jUJCJ2mKEF0ky6a+K7PKrmunW8TSU+A2QgFjI/oWOAeHMB+/6YiNeND1SCaWB1sjdQ1Meciv7qE3OUMSFTCqLJQmcCSnHMQYoALhNQYy8Gcy3kU2Vidpn9KJrt9MZqrGhXiAu0Z/XpUDSediNWL57A9ppRq30lP8BK5QehHMafZUIC+fG6fAcQvXJGuCzCX7TDjEuL5aNkWaQao6xHRuEbOdczDRL8YJbMz/8lhpUbRTJhurZSNYAS3Nd3Jq0PKZN1JHvNwvvk6SOfJiyTdcnh50L2Wb1O/xM/ByIf67QOrtJF3peWGXXCWSZRvqJFlAZFtzstDioMd6gFPa+sW5Bio5VyFmSLMK4HtfOxW8VFInvubCQEwDziRttEvOgW8x5fFXN0aMMsQvmWJa5UbTVMbG+Ukz8FVMa2Ok5vsdb8zwPdS0lq/Jy4DyWJkZlAbYa7RzZy8e1FmVgj7NovSyWwI3wBDr8r+SwiDWpu1yi9XF5MHsqnrgSzUqiEWIZ1nC22stxH8KhDod7s4KIPV67YVOlSt0j5dn7uZud9EEsXRP56/1CxMXptEPHSc9ltY3Y5gCy3pJhVXasPwe0KgEMisbIf8VMkFWYAjbegDNKlHgPrC/aQKTXJNKg05QHGXy95/Xafn6jRnzePWyBw81pBQPCU5/wDCqq9s5AjS6pKi/nHjxHkYkSKstRd6DL+3vw6mMn5OJzfiVyC9Pnx00VOkJEfDc/sVpm3WCT/91MDZ5OWhd+pOQzd1E6V9WumZrInkFbuJuYmIgvyKnj2ZC2DgmZij+d/yu4DDSRZw4HJ8xsm/+AQBjfvz3eGD1s2iajE94nUBfY9swfi39iKYTfEq67cof4YV9caJTIuNZF+vIQ6vTK6bjHNyOYdZU/8SMsqZbEtIbXNyKHuOchbwLD5Uqz0VylVJtDRQi1Tza632aoFyo1Y5kyrEyrTu8irKw1kTh05JsNXIo6vvHOqsPC81sBgVj5J6dg9Hs49vGcSbbiObxUVmh8BhfxL43K45TU28SqiGKBGfzD4YZZoItKwzT83YxPfaolk4N9kZSbMXg02FNPqKvu8RwlBIGJBZsFzSmIe7Ibmyah7WvlVSW0MoqcqFQBBdB2DKHrLLEHbucQNLmkdk4fTgMUBYmOLZT/nmQdCd+fg9E22Fvoxdblv/5sfvq1SWClTm++lYXmI3V4mJQDLg2Dvb38G1KCBiaBZ14mH958kWZ464k1ukefZj6PHdXaf1IJpQBd7gFogTaxtdXWvaAZ0jZ3NbeunMd47uAAhEu7pKkz2DhV0xBj9UjMJ2LPlTlR+zyQ8+KQzMjBhCss6fPzHj/a+156mgMLg9mRTPVnHkd4Kk4cYn/0mvu0B3HdCzWTbpEKHO8sTesCpf3eDQF2gPB/iXuHY0ysPuWExpyDZZauv51mbH+mck3F7//cCbRduJjXdUQYYUzsSgazq5eKV/izeox0XSeawY/CRf36lghQnrZSU4+e9j4e3t9Vfu72MxcMzV5VvdOd6cBv4Ou22ocvTmEDoJZ/KAZfjJ6ZLYgAAjVrlQiwxH1zoV4OS3rEWh6wCHJ5piierYkul2qTcSH+v6akqIFXo04UEorpHA/M0NUAlHJoQNkPoi8W9ywTfdwWrRPQeXU02IvuKjWa8G3LVCWSctHAQUICOr71Da4OklYbDRBCABd+DSP70p+oWrxlpsrhV1UiVuXoZptNrobAaknycK6PzPE1ZOFatNIvhx1jSJzEE3gxLaHi/pPY4+/CsdnO72OqQwnOXD42ikzhWCs1FmW4mtDhEQz5y9J4LyNAF1gQt4+20t3e1iwZ3Br/dHcsJU16x2y2vahOJ78gVr/stC+Rxt5a53nP28vhWCrHldLfRrGhQ+YXLCTBcu98EOnmnleLDgwiqqSGcA8BmBMOevZusfaSSeeJNCVSumOGjt38umFn6NFYqPX3LNOzQKNO/ZxhZvOWbUMwkbWsSoIjjYtsuXS65ZPIeXQ5hUQbiCRg6a4X6we+l5jimIB+HLxKmU7t9PFII8zpKQwlyz3I/sSFt/0sbfeNrh0wfNDY8VVprWEjOTm6RbdVRRSOMqfTQqIng1l9dB8VS+m78ri+94NcgFY+yfMTmymPwpVTqnGC6PNCvhdBpfF9dV8nZn9bv9f1Hk4+1fMnme5lI9VTisqDOXONZSBaENusCFB5Hr7V1cNjufwgc0cYZFaORzM6nGA/a1XJL/VRyNl6H550NCE4evF+fy02kuSUQ/ab1CVKuXU8gnXVwXDPYa7K3K+6qnxcU8n2y1b5ndokztPKD4kn2yilHLbQAb43Dk1XpoYhUflomeo4WHvZyvNYBwO7GTxGyDuZAZZdCPOhqHfipAipLyZnGJLHmP6KGFcQT10xCq/749HK0KOLgTajtkxf4gDcvY/vbJd49HO0zeTvz2yCEpiXqxrbqfoX4zULa1SqqbG9V7FS7bvgFQgzavfV9cP7DzxVQz0pwRR2kUCHtVPqWPfE5VXnvEv9k1rt9TDzSk2xJbtUudQuY7DuxonBC9liusB01kSqz2iiSwlbmCPx+Lk4ZKFNjtbs8ZoRmkl3/k6/K+VoaQs2pb4IwJP45ASaRNEjolidxlk/9WM+275ta0FwA/yZ/iV5LogstFVsBDo2fM2BhdcUuCcrPz/YtyTR+3DzLo+GeZmxg/jf26hiV6bZQIMd3jPoBI2jifXdlN9Pe74qDj8mwv3vaKtIcE+MJSVSF6G0u9JuCom5rE67FaHLY/VjOmK1s5ONYjOE7Za3UPxpPM3x9xFWsncgK8z5VcVk5Mo1fnLF6Qv9Wbt9sLEGBxbspFT4VrZ+e+ULi1v43NTEn3AvExrNFKRsXw8Vs3q1CXmUFL2BwVCkf6g7eN/qmtwIbivpLsz6BAQWa7x1wy7hSFr8xUE9g/hdcz3/wU5sv7Mo4xZk8LL2XbnP718c82wWoBGuD1diyREwG/gJCxRy8wVm3+j/FBHhEcDwT8hStW7Ay5oDrP2H5YOxkljfFaUpHCc+NFyoWulZg0vaPwUhCjXygNSyttAjSU7SK8J2rPRpwjZ+sWnod+jfukV0DoxKKhgFdwze/TUtutv5EMR7vxcR5Nyylzw1JY4+r56EAnCOgqSOO4M0T4oIJgQOMoR04Vm1Rx982MkFE94XESZfuwYz/za7Yih6Ft8MQOyILzRzaSvFdGf6xl11k6Aq42moi3r7IZBlSlEot6KtkmvFCN0fBhhy5xNzwkMpmUyaZ8EIMqwVIir+2ZqS9MdRHfC79WjdrlCpN37iMi4bZeAAHw3mkAtZED9lgxWUwllihV4jvU7q2OMcQ8y5wHGY+evR5/5pebWcgxK0BGWLbdu6ftG3DDh0nqKuEJcFvhF33pvqjFUphsvMvDmn/eX3DMOPEkj77vVKPPxhqMD+yoFCB2ePlbDzFCO5pnanM8+8umsvwqod3NjASTcPo6TY9agKuC823n/Uj7BvY4IGbf16jGNEGaxMRoXeqr/Nf++rwdaQ2qXREQcRsdhqizUggYryPLk57zciGn//y+GrbYboK/93djfvfPG1Rp7xkzBnXz1K3EQK0gQedHM7+6mf3nDxeA6LMZRdJF/j6tzUam+R4vweF5GLthLQ7tXn5/hRyGVTzGaJ23XCg4rT1joq/vGRnR8xAK70X6Z5MRrVmdOpXd7uite8PRru+Gd/t1mswesB9KtLPSXX1AeUKUoJ0Zzq2aFDGQWAycoxMXy+bSB5MbHAxvLmhCHh8DJPjONgZHh8sIiytpc4LNG/vJLxTgyG8wPjKEpCpw2+8AUbT2TjLgSZDywzif/3sziFUL27lN7oSj5CZKfpfwAEEkkKkcd/p9kS8YI5QsBazma1rJGp8W8IZurjLZcRVVAXtnVVDSVMkssTZCZZV4y4GfoOgb10eTNoPPqil7MbSf9Eem+2nuOiEUSwMhLXcA0jMTia0Ha1n46Dv5ql++N9cQcgZAsc5CGVT8Vj2h94QizdWSkA9bJf3Xva6dN/NpajJvrPN/t87tyFfXGrP9crrhbVBUmy8flYxJExRZQvgIbkEqcjBn36mrdBMv1HMNkM52wVuUml1TvQ/lMQYjHiZG2RkYyCo2DCzd2s/4CYQfLKynxHxUh4VKavAtBJ4DSB0wRXDlJUgCO92MZ0mXQMjbwQsUGWxu/ws/h0qoJIRn+i39x9970ftpUI+NK7nbO/hnr+894G1+BQ3a7x7Hc6phi8PU1N6LVA4YXlkShOLW5+oPe+X8CHjGoZjIjwohvo9n02I2ecA6GXG46iposctA/GBPODT57NFjvJfi1jK94+CLCGQ/34rSl2s4u3OndUOm0CZ7lLpemWR/OmMUyyvu/mc85YgQPgY3lvaFMRa/dp6LKDdhOwt4ryLOt7sD/zRNUJisIFjT9KzSirEXu8K89zyZncFJqlfM7yBy5pELCbjcAqrgdUD9DUr3o2lrNMYRh4PuGFqx9K095wNRe+UzUn29ihraceqtYTxWG4r9ie9DG66NN1kn2NbnIcYd3JAOQH/auz8L0jr/gAdAe6pPnQAesPfCC2UUIJpLie+3m4brPhTJRPMvCKkO9fQ3JKyuQJRslEetl54O6IGlU93BGvMbjz+cSSHoo27YY78fWYHwfV9gehQatrK4TI17or7egJMGSGTQezLBNo+WsMrlVqmHKBG/tAMB5Jo2OY0y7N02Ljt8CGu/I8jb36v6d1XlIGYS5Enjmv8nJscq06nRMH7MRE94GvP8wEUm7mwqEjv3Rpl7IkUQseN8XQQakNyib9Qf0MsuNoFz+Wtk25IzJu+3/B2Tc+td94ahGOwNDK2LbR9c/YC2Av/y3do6xs1AwRYyjYkbCsO7LuvNqOLfs+ge7VXsrNQ7IwPIrCjkhFO0zETkhAZpyZ18QhiSxUlAARulFaCwWzQoDgkOwiGXpAgdHomnNhM9SCUx6Or2pcq4+pWIxIzN1a+qGv9Tp60wvRr/VBm1N6we6ul0fAjyzZdqjEKd/blieZE2BkK+V91waA+rcTBbrVe4M6QgRuyqm2lruen+ErYwSt5j4SVb4w0KbuUXf5bkEN4jxpLqEWYpxeQBsTA6/NgOKZaJlQyQtL5ESWWbBdsdYzA89+XxrihxpYvjfIGNQF7UvhddxrhrI+cs9TqL7dmHJBWDV0ePthTq6M9ayLANhJXbG+5JeRuL8JzmLGu0XptJSHt0ShEEU8c4XENawoVpaovaF8Ti3gz2HOtDTvzqJMnKp1i04/okA/n10KPlfQt30a//ZGph5uGU17FjWYHtyjaVSNhICwJ6Zi3m5W5lHGyyOmjtY6HHt3sRF9QccUlCyHBFE3scensg7cWER0UmASdAtg294Ga+WDS2fbCcKjs8gG6lCOrDDbZgcpAKDXBQUYo0BC5X79KM43Uy/SZm4BmspHSWyU2IYYI9bfABiEttl73WewsbAGegSMPmpH59sm+ZhwPq4vy7v4YANzxIKXaDxiV4yVwgiAZxDGfr+YOsIEgpABgoCT+C4Xk5D33dhA9/uaFl4RR4+wfmpESf3KKDjZv/4tOQ+sANlQA6kORB8fM117JY4/iDDzotcQAh8zgYP6pkCGjbv7gVVdnvvT0TzaTWIqZMGja+EEu3JDBw96TB+PB/hGMjo5orpMEXU9uHhQ4C+BVRCd9Aw1Lsow3cIEcgrBzZckbN1Hp7T3MpRXwA1p46YXOMZoGsP4tKxc6LZ2OS0rZExa1qtmnwLZ2wn3jtzPe0LjxCK2r3tL48iGVsLrK5jq1NlUroEA6Z/9KeDoIb7PpQ2i+DlJlUzpMnQvzzCNHT4eMr8mj8XR8ty+bipcReJ3Qm1oGvs8BvvaqkriuwFXAHbeakIxpRS6YB+fNL5y9zHLU4bsVnfV8bfin/L5Gmi6MpcsI1oaTtLixVDcfFMORXu5PzX+tIFEQ37ZEmdTbasgSfi9pGU0NPoNkliy/odrALodwnutqm8Jqg4jXJTN4mN0VdBct0ei6Wfam5ulZWwcIYrzdTXKVI+CIUucUdDUNKkg99mgYSWp1RJkSM1P5+tANnLeZGsN4VwCu8Ott96WaMduTp/mPLyUGDdBdnxKXoqASHnU5nN719lbuStU2pk2K8q6FoWzqMrisn7Xdca4VBrEY61sbKB3Vd9WtX2zZnD0KcbiNa+qyXE+e/cXH9hk1rDPBTe3u2y4nriX9OSLYY9LNsb8FtJ+7Q1MVuIM4x6kprG5azNzxBfndh0+9STBrTqoLibT2DGyl+nFUWENiBfovhnEY7gjaTcHTkZGLBhwCwECzjjrH6L0ETlNi2s2JIPVRrRPcL9JqdsymbdQQinjmkBAZCvPaZ8EVod/ygHPiYGOwqJIoZzmJNgC+Oo0XF0Vy5cxIluv6RiI+MAPzE5mSdG62wdjiK8a2kOJ6kfNjEnId3zisD5vxnzetQ8cjNMTvN/U0wz3cQwchifPaLEYC+vEsDrs+vUXgSNvkVqyh87vvaMj1BDS5+VCDJUzbIh8Ie7ciiL287BdA6lmSsXF6R6ijUexH+LkeVB2ItPMv4Lhc9C6xNbGGZCItDtTGQioQL2P2GQtVcwFLq9N1geiqZqxz6IzM9R9JeUchhzjMKwjk/rkfMeF5wB+dS+P89/oVrhhA1FtGYYv3amafXACLku5xFXjFFqB5xKnyZd1NE8C+J0f/1NR5MpQ/4lbWdPp28sNabe6oJ36kSMPI8d0ofSf6Apw1qeSx+gVOBjWSRqpRqs6pIqyhT+uEMW5QmU1ZGTLy6/PskXvfsz2M5UlqxVFjgAl8o9lxvp7+YK1E1dkj5l0+ghh7DleldIQQIvcB1Ox5tlQx65R9U+S72ZfoBCT+JORWum1SHDlSRkRbfq0RDnGL39Mjlogi/R0Hvdi3ys5YYkuKict0q+/yyWELDnooRJKsV80+yqHnswfxsGg3pT0YPbDfSHhUc/D1pY9oqRAxPaxJgS3YB6h4Vj0eU7BzaHt/uLYDpa92GkYMG9honC4ccsmC3xBtqZSX0HByKla8U4kDXTUsQQCYj8BbXmYXr00eNTyKgQL9PRbm/7N3Vi1tr/CRsM9Tt0aQTGhQVe6EKBqNHUgSXaTwUkGMtgwaauVIO+2PIoMPQuWw5ydE7TTjRUQEWB0O5NWRIGUa9mtdpYlxsP84nzBMaRzlKmQw/TFGDMgrxSI9d5Cv3/Ccm4N7tjk8uJgY1ZwlAK5aojYq+xgs+eYe1OjBgN/QRqIqIH/dJpjMZ/M+z6H638VDs0JQLnW5f60s/1mbho/j92RaNtF74OTcWituc4dqN9K51l4CCZgGH7VxhyY4m1VMfJhWZZKgvKf8RDmGRNjgbiqQPen1BCQGYy6CFcMn6XcKehdkz8TIhQhhV5Dgs4mdBJl0eiwjBeYvX5d3pf/Vu6JBWofeBUlue6glMX4PYbyIXF6Y9xz1SUoqPU2vEBCcA5r/dDqmTNUR9KLD4vyB0LxMVPHoXGoThTl6wctDX9DmfrHnOi2BY/s59K43FUCdXLq7uoiN2bop7nz42XfUYXh3ZliIydWE3iRQDi1aYYj2ZBZbeDknBwKzWoMOYDw2Fb0dwMULAiqQkYBrK7xBiTjuwghsMQASlae5q5wg23aORl0PiGGuLzrc0xsgQPxw08/WVlrhv7BzLztRGT+mzrQxjp4MYPb6MbSc3mgKnlXeUhQqMjtxp+IUX4v0w8BVleHpZ35We30ZuyT3mJ28g7vXO+P6L5fyqsiXm2BtU3aB3TQ0iFe28GxO+uHy2KwF3MmHpOWfjg5T37yuSa4mZlNdicCQU8bSeZGfvEQeVaCSM/StGk6r81UCLDJXNcUH3E2mBM4j9NIOBVMFQ5yiaEy0/Yoxifoe7e0E5NuWmfyAEw1FsVq25Q4SNzII3ydGWtOECmmwWY+ANFjAqMI2D54QXRlfb4q8xc1PN666utNuucp6eX01grwNRQMOzJRogSNgf+/mVp5DPZ+oTw8eVvgxvzaMy9Jf+xiFC2WhTT26WccEndDrP95CjLIm9OkM6F952sZInmwdkEI6seTv0fFxb1nWL1TB61voqhAF9UFsaHL6Vl17QjbSx5B2BRXpVtpHRdzIvZmbqVhfUEMfoonp0K3yGMhVS6UzQJZEe9EfbADr4djpHT+UgDuHygEYTo0ZBEq3simoVP7Nzb9Tkr9ifjkIl2ArBvJ9Cjc9P/QKJ0AgoCl/F+dsbwQ8zMnfUp4cOshsRSsHR7zGKordo/PukgEubdDMEYh+aKSBDN/e2tuuLtjU4CMza9K4tcBROvHymbqNVlVAnUiMt0tZ3TawTuonSqQUz+7A9GEeSPobDhRj8yXc1QbwTHvkkcCaJphe/8ZKJ7cLooXKsswlPeHnwdRJeIK8+gthJ5624cTV5c22sQIGoe4M21MnAj4M74Zm12sPviO3pOKbcGLZRAUZz6dEVK7PSPkFu9SPNYMZsZQyWZTcR/rNS/9LcsXq8o8HaCdrFgkqAe7Ek7PtI/okT0MPvFCy0ybTvm98P2YomySctHe0SuFtVPIoy0g8AlxnMwuTBW4wX7BwtfzGtovR+g5HD5FOxs3K3+NQ8pNI4v/+rwLpHYHKpfflOYUtoGheJk2NcFanfsP27HLYIQrZTKLof6i2WPZtj3U2m1ktFuqDc7E3qQ1R5uJJlTu/iDqk/Cv2IOQFelUSnC1DGnEmWjrocLrpSdIkRBaj1dZg5cA8ModBjm+8ehKt2FTWxGuib0zs2ycb7RGnAgaXWpUq5gYwm9EDBwh7jV4zfVyegFTM4u7uTSvmn7l/UjWMWxsImEJKZ2MNlmDfLdiL9Id7zLDLdvxBLLrxeoG7voEIhAlnheqpQ+Q7RJjMrL0Hm4LuvHGlhQ/Wo/ujjXGe3vIMI/Uwxi4WlrR5XlfCMLHU7tJK1J1ntHYEZ/tH1VjlECRZm5DeeLvfJxfjbUFOLrHAVahMs+Os/FtUrd6hnC2XPJWeRucjm1z8JqBJCuxGxGaZF4JfeMNoU621cC+ICNwD9lra51arljHtCr3MW9E8Ir3w+8h7t5/LiGhEk33Dm8+t9H8twQAl+KKyvid+mjsLgz0EaYKPdit2RN79p3rKApK4GmBB2xePOLWctpGWET8+yQD7kiqj8qhAxtLYtmlPhXpkNnvVoy12VUj0QkDAN9vLqM7ktPaFHCFYXlUT+ycBH7iPhXSHR/um0HO/YnzlDlGUEq1ESMJ05pmFSzSrfQWwzDFPUnAfxNyS4+slrv2/5BlV43MUnAIC//fqJTQCxvGDavHWprZ2cQjZGKFA5menlhfTYTFJjAFOLA+xYCcXNlbF5UU1vLJ9PO7vl3fTI5NwpuoMkbXTxuiQu3AgI/mMmPpo/OrwK4M0HwfL6LDs/1nIPl0oA1A7JaZ3qMdfpeOVQ5ZU8Mztsap2EllPTmHh3FGY2A2DpHZ9T5yfUNWq5pA5RmlA8Stnrs9KzJ3nEQL4OJhZ9/LTc7enSiqZkdHCdT+ypx9F2vr19BktCw1Kfu8f3wgS6l0PfpywcePxTSjNH7jLPGBvRJXcXwxUhG7c7wJdJTcg6dQm1d51oFZCFAPPBmUPHLxJJT8LHJvFErKDXW+SBKMLnq/5hd3RgZOVGJXMiZWnjC9FNmae0shh68PfkBLzXbRH+KXewYhHFPonoSo6bC851z3Cej3oST2rD1nTuA2WIY7GSgTOdtO01+0xYcCdAccMwZhksIGxzKZSLhAYj1l8zQRxuNXUpUEWj+Ip8I6j1gLK6BoRfQwlZEi9H/hP9hNIo8ZViF8TETNCfO01IzoiGzMSzQTeOXsMI/lujSmPdVCphXmozApBTGm1Qc/IUBej77hbJ0uODup81y3aEGMhOty9ptqlIz4X8Lpxpw9dmwy6KfvnMOrANm2/aFXV6oYcdAm7QQxYMC497QJ2IBnP137odzC+UKTBCH+mMB+gNq7piKmtD7joadzL1S2iu4HEnWG2mCKbIabx0Xlo8QTxZucDHJBJs7K+sU668Xddly6brQHIx2Q5GyyGpifvjlM6/Kh6fniSPt7iK73tjP2WggvIuCFC1n4od0TDD12ueA8NCZQ0BHWi4Eajt2iBsmTpNQ/JVv+5ogKhs5yjlN3jOxbF8cMz7r/gAMZLRHyUKIbozqGd4BszeIW/4W9xe13Nu2pkb6tq1yFayqiwtPNg6BGw2e9iwbxea3Bpwyw+/QS1DfSkwmgP7RVjUIiqlF4UAAwCSjQRcekJ5g8DDGb8V9f8GRx2fnShlzPTJ1T+Jkh5Gxrk+K5pAaP+p1j/jhXWWXYaoIeGjKt6ElIvJRRQxh2smgWMaLIU0NDxQjfhIlozF6zFdG6qf4bVh6Sa3fUK1kYjBMZWV5VTZwRUKnP6S86wrBVOghrWsjpJJzcVbb07unnp61FEhoe10FCg+Mm4FgTST3o7baSXi5aN20VUm0t8YD+1iKhfUlw3fon3888HCtzPlLT5qs4Qup+mp9dknAOid+Xit+jag1fNh
Variant 1
DifficultyLevel
630
Question
A cube has a side length of 6 cm.
Four smaller cubes of side length 3 cm are attached to the larger cube as shown in the diagram below.
Including the base, what is the surface area of the new object?
Worked Solution
One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 6 × 6 = 216 cm2
S.A. (small cube) = 6 × 3 × 3 = 54 cm2
S.A. (sides not showing) = 12 × (3 × 3) = 108 cm2
|
= 216 + (4 × 54) − 108 |
= 324 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cube has a side length of 6 cm.
Four smaller cubes of side length 3 cm are attached to the larger cube as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA21_v1.svg 240 indent vpad
Including the base, what is the surface area of the new object? |
workedSolution | One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 6 × 6 = 216 cm$^2$
S.A. (small cube) = 6 × 3 × 3 = 54 cm$^2$
S.A. (sides not showing) = 12 × (3 × 3) = 108 cm$^2$
sm_nogap $\therefore$ Total S.A.
>>||
|-|
|= 216 + (4 × 54) − 108|
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX19nwIAiB+9ci9ncbDabIPQQ6coyy13aY1aVSHwEF9bYJK2AHz3CUVeOIU2NIonMj7wT2jRL+OGigmqC8ib7ajKbhKO3NogL1ByCBsGT/SpQvp+HnlxPJMl9NXaJChd1t7/XuqK6C5OPWN0zcCt+WEqPd+mYr1Mb4KJN7EoZLSk91+qEqs+nTrh3X8n51Ze0sxOLTIo6j+2lXFvZLJyumDjeztaLYpTTzFhgpsTxn6k9Bo6Fxe3y662WbX2NqGYbhkUP8oIqjBIHAq5yDnCsUimA4rJKF4h5iR1NlrNJmKBHTbeI7aBpJtUn3Yw9ci36hH71D0ZBAJJwy72/nIIQsg94IEXJOHfjKPjl9mL0i5djOfxdus5uJZXgsono44FaPBGrDJiuHhuGi7wU1qjRNW8NCM5fF0wUfeZ63inAgeozTvIgD1k9jV6MSiaAt2r68pe0y6MnlJkWqoRrjqw1f0+a13IBLMyKnNEvRtkX46rgy7oh+1X1+UKD4QxHNMzD0k5nrjrmn88Px4P1x7sUjZmGhcQ6b4ltUZW5UtX3cIE5IPLrWHyivaQNkYLAWXxENsqtLJUHd7Bj69CuQg8arJvwN0btXCZ/OfpeHhmCBBhcQl1QRci+XNEIBLTTQiht/hYJOCNQCPfEPZ6coLXYL8KBn1fEQqiBR3lD5J84AYOYlfKJWlYkhXNbcpfF0VV1mdwx/UVoFRXeN9R9rO8nkohC77GZqcHhz5hUqgcZ5GowWMyNZudB3Ajr561mEyvqxph6aowkXGOmf1TDOT2gxcgEt9Ev+UEHCTuj9KAyzRZmOzK5N++zaAXPr4ley2prMVn3hjPWhuYtblzSJv37uTzgAozOHkmYpUOYUQUZ1Yk/UAsp54I1IP0SoounOz+Yu3XtjR+tGOG2YzqqFQfBv5C4CMAw3TfZX1i34ProyMy2e9yLhpHT0xfmd4TnGgaU9IvO/gWlnTsciRriAcP+nHBs7fz0biRL7vCY9pjFliFuSlXdwtQcNbE2FRljLRzYhT+VX8M7x2pKBarFin3KlWBJHQweSZ3fA5wNlndDYlzNUeFxFsTtDyi0+ixuBfkWVhbLcBsnlaabyJxZ85ZOKsYqscSLSQrm/l4WlZfiWt4/FmFQ1QJSDPqlhntcbTlac80GfZb8SOp9Iih5lZapgkxe2dyRN1u0uQAqeNWBFPo+8TCd15gPm7aPmLDB6vqfyTraf9UZ/qOmE8WgO72iicMO6sqg5+LpsuDH9A351tktq7lqLh7qRBOKqQbY3sNc5eXEhU/QZs1tEJaVUgQyLmmaJ9k5XQCihWfbnMlcTYnMZImRMsBNfPaleZUr9a6LNhu7fl9pMjTchGrlleAAIsLhRXVYRIJT/iFUvMk5ZUSWTFGMuG63PU2XAO0ZgjcG73nPUFtuO+kuyyBVbLath340rjuxuvsyomp0DuX04KC5x26vvfAa+FPCB4mDM2CIS80LrkQPwzv+ytO3vfwm0oaLMlTlWR2SOD787TSZZr1wd6tIwtp3C48rfKgsvnIS8BwB8QD3+EPWH0wadWSoomTvIN3ta+EyZYi21RCOiamKAE1b5rQy8uDCqWnjFMPKcd6JXdUFx4af1PxB+v7ypDdp+2qyV1US5aBZe2e6h3gXleeSg1qNd6UU9k6MJimFLITyOvIKr44BNPBQ1hFT085HU3ODV9qj9IIrXjvH4sU7nkf16NFw+ik/CVWq2oKEbIkzVRZip3Ki3qvM5rbDoOSsNvcIutV1ryKR3diecZx3r+vyEg0qgxN6UC0GBo/DPwCCjGX1VTeXxBYD06ZGHVFKLQGt8/iuV9xes6zuUPaCFnk0EVsQy5FUySg8PPGf++X85LI4/ib4KlmGPKPte9i2ofx3o20OOvvIaHRnNfVwmQG+N1iRJJSaKYgE9TBBP3MmPVdsPNoe5TcaBe9jC219awigM0GrAn0hxd5G7ClHus0SDCU3AvUBTCsreFlKwiDsuZwYn6EdZ3YvP8q+0yNzNoGNxiYi5t1IivHWxGTBFrmoL9AUC61NjOLpzHv9+oYcV8MGwtMa+IKV7QAQYDF2jCKWS4ho95l8lJ/6izjSD1K0d2ieeLixjFyFlHdAF4dccKRAhL5L7KfGaQs84VPuUcaiE+PHhNXHw9tPCd1jarkZZ/6F/DTNLPWo8DUk0rtBQ2lSCQCzjNEaCKam3WtWT6yBq7zZYN62Svw5StgZXE6UKGzbG2nIZibisn1Y0C4nutdQ9W3zLm0DpABtoCbsBxTvt0ob3i/A2UkXan+vju2SzvzrrziOoHzUkyH2A0O2G3UPwihumRCwIBPf71pSu81R8jXRaTG2tDfLTGlu/WWKoVccnSGp27gcaKX7hShwe4pBcfVhEKB4yHdMRPI96y4vyybRfCgfGfCtdN2PmYw71rNVfkPv29Q82LCB4SCTrDyfBEAt/Z871damTIhkxLEv0gmVcf9ln+/G7NbDMOqGYIWL/TOYWed4ztAQHFN5RKmaYP8J3tSYt/g/rKFTyDXMf1lAbU7hL2TgoY4nh/NzNowaPvM9vQP5JojEMXk2NB23JVNw0vYP1UQUCg2BeqvIVDkaFplBp+vOiaCR4DlrtT6p7wlpFcwB2guiqf0Sz+k6WYlGkui1Jodh9KSYoodEk9ZtlhdqnWQ/jfkyDF+pCdVjirXJmil++nLzSAQhQKfXwW+rcFCGAQAJgFT0+xS4JZ6DppWvvQhdEPtvUi4B/P9vPDXiWMJXQkO4RfDKeFoc/auEO2fvzEhH0fb9lVnwZvzu/ydwefyChn9Nx3E6XX/fW1zdsDLk17jflm4HIfDeG9+631ULkeE9oYMK1/fXP5UYvtb10bVhxgMbg+JtnjbAbPyx0NH8Q3rLHZih/ZwUVZPQHMKOaS2L5msPsVqMwWzcd0F2pAbIMlrgN2/EY5THPlsEV+jKduTibRzIi9+x5miJrjRPVsgBCCsVmw9EvuJYio1Ep5gcoOeWUGbKyAyfXNyax1i/zYARaKOghFJWbR46dzaqTxOjEOOGS54+x5cGwWri62FyfezTyGAmUYmv1D6JWB596Q+gZaWOPMBRNPjXkTo44ob64X2HS0g7tTt6LxEkJudabw1umxqhp+4oFoYkt2LKoMA1kWTOpLeC3wuzcjXzWjF+lBNf5nhxUaY5AoKVyz5nyaowe0XOHK3V7f1TRhyiq+zFJ0TL1oLbsZ5hDDOkaVpSEaDrVhhLagyupdm1fahMGF5UMTrWpGwLrzUuPJ6GavXd2JEoAg7YCotSt40Bwp71RmNwGyp6AqjjZch/lDVl+GaAzxZpTI4wjgterfdF4SWk7wiGFgAc3sf9S6r2eGHwZe5RanyrmXZILgG2AW2i2msyp3DI+eeHnIamnibf+0QtE1ckfqiX1FUVt5geVXI+9iOQ/Rg2ahlI1e++HRYDeWHMKx3ck4uGRWx2wHXxRx1IejC9igspNSK/meHNtay/bt1kHO+08OboOaNYCcW1owsRlBCl88rEWkd6rURhxwDmhAAZhEtNAx5LBUfuC5WHaV9v0RwVnFkknZSKwSzgH7cF61+deEwuoM8HA+7v39PPv7Ftwnw4zOeepQtQ6mrojpHmyMZJxf69T6nAFCHnIQw68fy71Ls0PD8hF80wZIoN0PIgB2CpB2BHwQkB0hoTuZGEyEKPTQ7Dl+/JDVPgMUd8CN1W8jSXRXajbN2Ecnx1Ohp93Y3w8B0kxemv+hybmmFR4psgY8DNY3x+IKPbjxcj3A4IO5IvYs7/c57RwnQPg7384QctlAvI4i16msKUEsBKCxT/ekPxrSNGyKSz3kaRbPmTDadojvSS1llq/oHtPaCGNkyRFW22Mdpa2EDuQVc164CyeVlfbj9PBRAkwwVFdEIbD1SeUaw6KiEa9FwJysmXGV6/fXWZPL+FtxCYFHJMFJXXx6dkVot4V+jEbMCvxNGVqMc0bhcDQQb0vFodHxhxhUE/5/uETdcNl3CiX8MrMaljjZj3FXS3xZ7ETn/zhu8ZTuAJoRC1U9IfmyKPwHk+p5K+exu2mwuaSU4Y+4xh7Jsd8SRXOgK7ikqbLJlXwuDz+/HuiM3MuHa/tvPrHHx1MA9bZakBvFuZltK5KA3uGWlDoYJdkToHGshkYiyrDDYKujJd+vyM+hGGVg28twaDhQDayv4HCp+weF8h2Bie+qx6lk6lVURi+NwC/e4G8FCDWAi/3iBgwLS4p4/hpiH+DadV9FHKRLdP78qv/zwBykKUD77o7OFYdT6TuFjbABNvXGUCfUM9rLi7Tz9Gb0cDnOIukPbyyfPBW9kZtAcvTMZc1dl5LCUYgFiiDk7izxf0PhwI212V5Bw2NOxcrVhX7AJ+6pI/v2TpssBjxrviXzGp0A97V3+Jy5MkYHycFspbm/7fw69t7+Xkm8BrzWLj1tvimolBMlrCp7xHhDS0HZu1wwn90QNHl6TzW61/86h+ntBnc2qesCK+RXQU6fF/4rC0E6fYEqPGAc4cfd7QKuFsVqkctY7y5rgxdK19DYYjEt+FgK82+D8272jZyb+Q7SITYwlSgIzmdIHsHErf8mbPz+Qja967AI+JysW7OW7JjwnwL/UepfR39zMv/CEEelHASyYeLtqwFNXpUt52Nlcj0GZNiIiv+rrb44L2mts1cAEpvG2RURyD0qKok178zuH1dbMo8uPJDXtPPTVDC8tcQ+bkg+X+RndmpzVaJSI/0zgMRZ3HujN54Pl4AgOu0jw5PYLHXN3wTEgmVm5UEaa0m+iOro/3DiFHLRiNin4BT5R+CjNVVYp3HJBNhC8cS1nLSmo5yVXQouogIUzA5obwZ9HAYl6xYATLSsMagE1hCK+qiw6TNlynNvAYGRW+NTPl+FEAk1zBqHusDFkeMj9JJHKEYQnlCYmMn+OzuM+STOB5f4qDDOH28wGZQAram2tm3FzlOG7mxexk08oVanx40bIgCQUdgioCCIA/rwNj504Tzpg8BNrkDUBwaLwgM7JYVX+UU+/vc+EBCBYiSidMP7+TyTDUtka9+H+XeWMJSFGz2LP1fqtLTDhr735yh2evAjb7DIlam9CIkUYRaB292Z/tOzHBuFT40QDHxm8QIPKNW45nDOIBn4PMJvKt6tLG/2o6CBXvwDmQE80UjGmLHqg6V3hsACm2fiM+mT0hw9oHFX+hAwLKIZnJBmUns7CANQLnbqEWeFV+WxjpSlKYXaEEUiWslb/4S8CgpsRy/aVPY7tQVxzIMdRw8eirhQMDVxOxbpj5wad/ZsnjlKzXnxXo3Tz+tUAxv7lbEwKe5KGKZm+2KmhfU8HgpM+/0Yb9sn73zEhSWg6s0jCKAxJ5Yy66V09yG+Vvd6KVqWyOE/v/NRq38Z3f6HAv4ClSmVi1K/JQb2ODQJ9cCit/KvS2ojQkmVpQQWLp1uJ50B4/mpc064k4/CSM0SB84iccvjQlOtT6qrafV18Qsytguimrn4LB2Pf8CfktqJUYmJVt+ma5eZ+cs1WpInvVKdQBsuHF35V2Rik6yp5pKhLTbn4rcSrV5zIqyspFF63dzPHxCKHDMjJKG4QbDSnR2sh2FIeBIo7UWREeP8TL50jBHl/U38yqRwnMC6cbmNxpXeGUbMeP/ucWxFP/U0TiIuKzARLzJKTqzy3aJy55znVR+7ro2m3U5XSb6Rk2Dxrz2TL6X/NXObzcM6B0/VAh4r+itJidWQT8M4P6+DAWOA3n+vpFR9vvtLE/3kPj9mZ9uHZR6pogtG7EU4f5UBjjd/+pgnncdNc9jyTrH/hYU4YYQq/5ECLHUdslNtksTotcGT3XI6f9bMB/E/4kaI0nNi4ERYqYQvbkf/EP1AGg2m/81qbzaryVuWiRoMcz4UDxcHL6oWRG26D8f6lNd6lEwiZ1HGWDLArJjemQzEw+JBekDfynjSZFOFDlIykujEU3jr6w5sID06OneWq9uAQydEmty7UtjA5kRi/BSU72rwzAsgAIWzAV7bpLA25Oa/rzUSH+Omx5Wa4Izbgm8wq4dttabKdoCz576BE2mI2tgUuMYuj11BzW6SmShNHMH3UzWifIjVem9/G5gl60VRmA7lW7L+URngf/kwA551gJSXelS47ujv2lMOLHJLvH1L04fFcdUD6iLSbH7swWvrngp7tyiO4dj8Ae9a3q5RWxZEISJFKRzIgLQo8z02lWw4P95KJGsc33YaixG0zRddVOPsrJdFnHpWKi9kr+cm7bOLCQYx56e9ZOqiXQGqzkEGK14MRtHDdqQ1RDt15+odBiqnTPz3m0tA+jsl17FBP+aNfLgVz5h+vAF5esfKUFRzTui26vdN5jj2hF9YyT5WCX6nCKO3LmIVRfEZC11TOAJ6/hvVeV0QT/ppLmVFDmq9v7VGGanz1i53khOPrU9mYG32S4l6KGXXF8dolcAToF2nSlfT4sctGn5C8y4xwF+YG0FtCpjmceSPIIU42Iri8dTb6lm6MwKhbpw6us+FeiWCJZAekft7lsd19E0PcE8qSzNpnoNzLP424I8kJBT1GLIe+dOa0fc4aMgsXcJJpkVCzwjfz/gFG+WvF31F9nDEnNb1/1YL2zZ4U8F1bfwXndve9LK/Tw+YjXpfnkrqk32RUcMJJbmMf3gVE034ciNdVUlOjNdUSxLH7P7L4EQnN3+fA7VrxnOCn/ss/LWoLRwGwRNAtecm7lJqQxr59RG8eZHzHBQSlqgL/n/e0hSplIwFLxLj3v1GFNWavZfCcZ6Ib6e36GdE57hx3ZTJKKOjNloVFCJmzkqI42gzsZSO3+OesvXxNFfHP/pPEM6orcWnCVKpNYvs97Y/2/4kJDE7CCZLnKGCFEagHIDy7X7l9unD8ij/ctzb3FoddElHXfDioBZVBA4aEKW1F+JVS1P790bAeO3h7LVrJLHZhbRLcIAJlui/Z1zF6nH7HJxAQx12a/nvTsotGgAuHb6eDmdmA7roCT+LHbHqW7QP96yFdbRsAnTvtgCULfZbSROHwHFWSsKRmIaYg6UiQIDuNHT3zM9DF0bGbnXTHLCKMQNHJR+FCxuS+ithjYqsHmrQ9Yn2mGEC2eB6jzCNM+Wp5vYsvhILd1hfwuhtWYL6MeP6m5gJMitqYisZ6Q6ZpKunkZ3V90KMbiNQGrDVSov+Ohz8/N5t3v8Hf8yFkJPHIyzmkyNkQ5+JQTn1ehkjxUACbQ3WJi5qF536zokvfx0vd1SrGZMwGLKxB2DVVhBxiKOQdjOyooni76sTmJZojap5P6DFdyBItAwEz9Ge0jO0oBEs1maepNUpsnsuMi97k2oG77JQitGMGvf4ur/xD87FgFAxz/eaiGG2PIO3GPRKc6V8axVuA8/YuuJ8NttBNYefzUO08nII7VhKjhccGHm7J016PGN3nehj9rSdKqfBjfAkJKk9kHFhzDSzVo8Kk2946ZSru+Igm5+6QQCGCZBlwCSn40dYXsahkkgiaDaoSIQ4N/273MHkC/Iqq/5a+BrRTKTpa2r1faBH5hNV0UUHybknLErUzaGMNoleP0Az0tSzi3th2IbNM1Zhwcygxx3IYUchVQA3ndbErociZ0dGxyXPpOFK8V2GyOBpVJGgKbsvUyKmTQud+/dAfEHtU4AxEgBVBjeOYqM76XmepYfVrP20kzY5Ze7LasDsynlLAkLf3SpqcbT4AgSrNQR+vh5K8y74MAAbakS+3ZuQhPhl3TsThHLd+PSS0T3+k4mTO5VcYoSHluMjrGBqoUzW46opD8fIMBeDPZDzc6JmXeysEyHncs20aoBdBuR+KtBH7Eg99wEGTVUol2SQCCmJ2/On2NWtoE3720AG5X0xaAyFjPyo87Txu/Ihuy113+1NFR1S/hPMFUXcoNmZm/dC9vIejA4kbWZo6rcj7e+zvyCO1Geca2MYUIiZO8QREiQRGFOo2tqd53dyPPm2VcNHqm04ljCNr65bcqkZUqqpjy0DaTpdl1FkXlENRA9nOYOMMSGxUxfCHsI9e+lF44EWB5AN80pHsd0N5slZp/5X+erPcOq64oHjrl1eCJVE/WPjg823hF7shuf9cAg6wMHsgesTW0TWXtL9P8UmUol3+oICO4xzQnAMs/2tvRZK5ys7bgN/ZMHPZMuLJVDN81969+hcYGOr4Bxp1IV2yBbE0wUmkc2ivwEHGyxNGa6cMOzLECxMYPo9j0rVOq+W+TRYUgdt2EfPT4AhJNyO4Jl+zT76NnhgWMJQy+JOcFKyuuZ9LyIEG+lFaGxEE9rlENKWq2rDmJSIkmPdZoxjYLYtY7qqexFgN89pixXDSvpNkdoUMrYsQwEYuEQMdmjZsHx+fK8Nyy5JzGe3pbnJx/AKge94tbVn4IuLjmPxUESIGS4JEVlNu6cKqGnPJJUz+RS6kyWuAjTn8SNtqYuZtptwZ3sRpEGW8g8ArijX7K9Rck19LX6FSNAJGO8sJyHXlRzvrWgXQmARsLT5lHwqG2343xqlzbUa4NSKwaeEXyh35p23N/DAelPE2dTGDoNf4/xT8Qg/LDf6g22Y12NDb3P/IHTFh7bZQH0t4P5TdjJdbanT7Z4XsQ9+oOwRtSsdKpaPvduQRs9amCHZCeddZIhKGZfLrQErdPB+PbeKOjo4tvH6gvI2nO7+qNClV6LzxHatI4Go3QUal8PeKui4Kq2oXl8CYbgbDoVCLoTaCkTjCLpE+iPIbkWNovq/W/IuD0P6CHWLaAZPQneDnPEoLxLIw9ghQpbwQXxZMttnun3vYkArEc0QewRTYVczT1RdB5aXfe9RdR2fR553h9Se5dSmzGWikr35+9mclBqxWiqABOGl59vIko+2W5jSVCqQcwz6auMkg9EJa528V//ltikt8Rx1ZVObD4RQnOBLJsGTPGydiLJ9rpk53nK6vYCkD+0eDwZcPuwOJIZOD4spSlOc+mUNHaIm5scnb8tGi3cA4BtQVwtJf2VAxJWP3X1lmudqWbGMHK2RQ0pZVcsbaGGdMmUnlj7+vYMwqgIQi5dhyh+uYzzHElK7niqj3CXjlgaQafT1q4MuzXhB5Se7IoHx2DcYeEw5Stzw+cJdniBX/zy0w9KYQNWzFDLMkRuIG+7ptKL4SlvbebI7y211raKqmQzzU5KZPiGn0Ufhn24fM/HOlFmNO522y5jN+xk/ha8Ny8OtSyW2ej5fa5mROE9WBXGVnm5lqKOpBcMkwTCiPkF9h4Wp7fTAiLkizliOb0GmiiHVUgdobXGWoYHP4dhXFqFhUw2iDrldGqKi/IkqZYcivzBEG4KSJaRfz+dWZVfXaOvCDIHwQY69OysVXKOr95wdbMbprbeB36VyMuiFNbBQ5Zbih32ifgOx8dALbdhrJijZBgj9gSZtEqNzVj4Zw+fPf0eCcriNl/qg0F7k0tZ+NAaU2yJzgsbb9xRuBhgS8yqegYsKhBEN593cwdfdoOL7HfBBIX/yzIczBCPvE/6APoCEVCaFiaErm0Y0PrXJl0vHEr+AU9+DfCDTPtVmGLenIeCEL4ebc5o5mTQqSsEbZYVDEEpT5M5Eel3yvegld727GX7Y/BQUSBc2O15lBlbIQrK3eiOfDx1Pn6O83V2vZJ3vbCzo20gj5p+WA8UR40kY5Dps3r5oyuBwWdrjM2YVrcOk3OzHNdaw0Z2mhFdgAkKmuX59WhUK6zIJbw1dSIImycZ4dw8m9fpZ/jChAuuvfJZnGblLJnlaEw5FE7h1ZQX9bvOtLW6PScqpxEl35QhP+m7h/z2pw/lm/aJgcEdjMASMSBR4e3vzV1PMW4mz6/j44FLNActQ6L8ppNdaJU2fKy8Re8QHVs7rF7i5L7BUHhRVtLx806dyElTuQpXAXXdqcmzkzXPm0py1HKRpAD/uCJKzmv2l6CdfVc/8rOMT3Wbaq9Jgg7y27FNke/KXJ89F1gwFefzOHYxjlKBvZsKB1P5xwcamJMAK4UVjY5jC7t0z4SCSOf0LHq2kKKHRXSLu3Sr+xGl5PFXZOV7baIoVr2gOm1nkIQL03kJrBYv19vd1oX3JRP5mxzJJxQBAdyQdFL5n5UyVy6eQQT/I3+kjFHgkKLwF9i4gU4DmUk6ZejLejtGF34McTKXj3nK3rK9Udiqe3oQK0QAhzSfo/LYWKHLj80eLk4T7LntBtQeQT1w4C2Voi6FPMm1pGbSwMXCAnv/JIp6pKZvmXrdl/46ybqakt2tt0WEQyI1mZP50UveqBn2Q4cOGoKX231p2SuhZsFvoHc1LyMOUaynhpB39/dSMtYg1WKJDL/BjLjqR5VT7mP/DoHBNIDVwiqRLDpUtpY7ZnOTHtriRhFUH+ST6QZcYWISkZDLTIJ+Bq7Abi+nP5mI16rnp0aA2+SU2vxdU7HDHJprEtkXxYR/44wu2UtV5bLMEIvGWt51y5+DR+i4DX5CcYisR8szuG8KtuFtHrPGwwRQ3PbKBMtoh9/In4mEOlyNodSGBIkcOqdoL9s+y/HRSJjPcdbsH1sT46R1THKIhUZ7VywLtuHvNyci3rSDYAoA+hksbwLyvCI1fd8qth6biqy0QCCrnvu0HTyNQ5891KxvPMWkAtNcTBAJfIWaOk0hs3dtsmSTif9nm9SGx5SQ67/k22OXnz9841qpHHKsm4RBCMPhq0aC5/zfJ5eKbFvZ4z+S0iErjlMc6pi40xtNlOYFapgD8iyIyQKlAC7zsKgW7qoYIsNiAm15YHk++9WPz4h2jPIyn6EGEPBU9RtgnEYp/6BFmQGfRh+ElpdcHIw6duLVExPOJ/x8fOp2fhmuxhGlqYL2+nz3d3NcEmgR+Zv+H+x5BoxpqVTKrA0vbMZP42WwaBL2jFLAVQwvxjhKgrI9xtRA1OzYPK1qWfimeUGD81AcM9g9bv/VFG3GEuIAQdewtQqbbxuT3EiiEclM1NxxUrUa37vaUeDXOX5raIv//Mqz1ySI44itAElo5abVsQCOptqXdMmmdzCQFf+xYRYXI4/EH9Sqgzqo5eco4KHAE6Fbd0YmFFFEK8+GEUYrFLdfsb6gzCpygXsgir4Pl+8Z6FCbEnu6Yk/wR3AMBATAHAGcq+qFVisZP3GiH3riYcymFiHeaaRSvnEh8UeXPvExkG6zIakym3LM0s4S3HGcnUb6kUW7OOuc3xvOvQ6B6+KZ1PBwjZkz4fmT+/M2hUIJkB4oEUS1nrBk4xc8DLj3q6BZ1ZOcItdt7HV/mRcYazIhM5UzKpgvTUlTVA86DUjJoOKc+jtyyBog/wi0cdqrBgXlbOiXU8WZLXgfTQl/hILJgjV48rGekiaaty9VxqgxZTiCrm9I3BhvE4Z+kHD5ls5A8UJph54O2IcHfIJWziFe2sS+OMUqFd90GC6oyfvrs4Z4PAx67EuNuqPsPyu4JxZVNwJwQmzUMOJLCtPb4gFlZnME3bZR0dVVezzAnEqXhXt8Asm7BlckNdO0bq4cFPW16YfGMZezXUfPkIcARbr4r/jXnsIjbo8hzDH7keTg83ubg3nQf6qYaaCOqACzXQfwf7G8/85W56qxzNlt2SGOJkmX2J90XQbpLpkCOLVhb+yZV3P1LIf8HK1XFXtAyk/PO49rC3QKWc6CXTxeEe2VU/t9nGw4lEljnrBwC9h9i1ETMOhBLUpJ7ety3UeXnH7/FLlvLEeha09//KCMM0u5xhWeueGgD5kZSLIuctla4YYXrsVMLkjOppVKt7gZ46t7aHxoA6ucCf5GZkDgnwSX0SMZQFsftIMEODjUSS1Ig05J0Gudq1Vnsx8H6wniOeNEe0xwjVy+HUMMtpgJSybPxUio6Z0fh4TVIAfgYHvpGGkliMcYi5BGvDCO0Cs6XvT4r/DLqS/Tgu6btEcHXR8K72LVRQjqKb1qJY74GfPzX56PmDW/uK3IStbi5tjkjTCsIBFNBo/IbaJC+ikYU/VCYZx+gDLI++6bn5ATn+qbckL6RQNfdIGuQWMFwW76omYhoFO3SFwYnQHrvSSZZ7KW/fTRpOf8FBirypaZp8hvk91EyYPPuwHhkwdhNnUBOQX8cd4uoWAeCneC75EkqG/5+0tX8f3VXFB9FBLe31XtHO2hg==
Variant 2
DifficultyLevel
629
Question
A cube has a side length of 20 cm.
Two smaller cubes of side length 10 cm are attached to the larger cube as shown in the diagram below.
Including the base, what is the surface area of the new object?
Worked Solution
One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 20 × 20 = 2400 cm2
S.A. (small cube) = 6 × 10 × 10 = 600 cm2
S.A. (sides not showing) = 6 × (10 × 10) = 600 cm2
|
= 2400 + (2 × 600) − 600 |
= 3000 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cube has a side length of 20 cm.
Two smaller cubes of side length 10 cm are attached to the larger cube as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA21_v2.svg 240 indent vpad
Including the base, what is the surface area of the new object? |
workedSolution | One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 20 × 20 = 2400 cm$^2$
S.A. (small cube) = 6 × 10 × 10 = 600 cm$^2$
S.A. (sides not showing) = 6 × (10 × 10) = 600 cm$^2$
sm_nogap $\therefore$ Total S.A.
>>||
|-|
|= 2400 + (2 × 600) − 600|
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18E6keZRIwGPNqOkcpSSaNGTaPj82VEWeckFjvaEJtDUDWHD5WCDhqFVOxeIerQk/eu+vLCnskL9Y1FXiTKd85eB73Z4z9nM3uN1j7HjO/xE62fSFi/34NKxgBFHbJ6Y7p31A80dDbOlCvOicxDcLMx66PIzrHkBUVlABRm8yRmLsOkVuL6mQhWu2GiSzKCmp1j6XkslEZzwefdSNRpgjtXyAK96kvwV5BUl/t4WcYbmf9Ry5HzS0/8jydvoi+WKOdjEk+aqz4jZTDnFJ333ha7DXQvMDIFlHrgBVXrq8iybaLSIstsQq2JIpcTHo8NPETaq3kacTN28giksjQaiIgRhhRCPjtOoxaCRYu05GaGIvvwnb98JR6b+MahRus6QVWgugKmq5m7Jxq+wualGJfbeEqCPcjnSjOVi55vxCtj6xQ4bUDlCSy6xY+ufGuLnIoQ0lWFAmZxp+JAVIC0uW8g3yzNwE6JRsPFiuRd9mvduco1Z6EmUpN4ExR3gXskaFeWAgblfnveS6sA4ofQQLHrcRReZSILzzZMTHUT8gXpR2FpQsrjVFRpPE7neerLS44awfUg/JQWywUkNQNPyCggb9UFwn9nx6ObBvf8GDDFtG/c0rWQDccynFy6yip/ap5DZgpWWSKlntYYZPwdrwKDLtdErkzZ6YBJveKMSaJ4cqtrUxWRcDQeoc+yUwJ8wU+RLKOxGMOyh6wQ5t1eLdLJSo1Vc08BtbYnvhSnwyk30UsVsg4cF0Kq21Ap/RN81bohA9akHjaSja6xg4q2N/98xb9nrMZXmF7ULQwwdeeEljgZ0pywCPtuYPQukOnGeCOgKS3CKsoWoXM2ftRCGApXi3uN+I8O7u2CgPEmRygaPlRndU3xwAoDD4WeQKEG9+LYe9Q3lgjF3K+1HrhpwXPDhkrRUE0nWdXXWyLae2kDAk7464uXgew8Tp1x4z0xucu03bS5GUF8/pqmM3ryRTTXyyN1WrrqqsYUJF82sMykXTqABPY3IZebNqbHx6KQu1WwR0at/1gJqqguKjIw3en2NSL2BYP1LeDJFfD3zr0ICUyT2J85xXuGbgQb+vRBXLIDiAWvvLHGFBnDmQaPifUJttsTzbetvyUDt82Sg24plHgi+9ppd+iTuZpEExjYkZVODW2Y2GZ09/Bk5CRo/YdMP3E26NjaFdhkdyi92G9YE+/g9Ff+P0CITBQN3oLjnyHc9zxKMTIFfShzLCb0ig3DWa+qY1pCvw7s6MKb86VKxQc+lbzgDKWwY9HBAnsrOh6QeiquiF2BZiHAlkLUVaHUL6zT4CeQgtCMQXITHn2LuFOWZPw3JZEiedNOH8EVktRwxwOZ2W0Rc3+OldBwxtdMv2fhf0frw2Ba1ELq0Kad9jpGY1k4oJuHfNUCmLo6OUlLnUcMW9qPvwnx0YucAjeltwYxXaxzpDCe5nSSY30jB6ObgcQU805j/O5fiU4YqvjTioi97iHcuROqfdt0hi3aZR266WuiP69Lnb4GIw83GUxrz5+G1qI27MTU0tFVHtYEz8dqsIeju3rSDlSEUnpReNQAItW8p4SdwV/wTmL1n8hXJj9nTPOaYCzXGCXqWlkJkYQOwSfYOOFMzX2uoTNXDQrsL6MW/A/XgMqXkPreNkwIoKTU1rgAwKP2qxiQXAZB7363j9Q8xw2H/o21YkArOoeRVHfFy/e4t6VKW4DujTu7pdwMmcWyWD8n5tS7tup0huDc2d+N3DcdKjy64pcMw2zpteGDF45yuNOwC9RV1GE0frlCizA0fOeOLiNbnrE9nepg0M4PxXKwos8VlAsoBwv4ckOuRyN5UUiIZSpz8pn7FWWBuwdVKK3PE3giiNmfdv8gfvwImIlVNjhMj/ATmdEmj5WOFz+lHdnVjeCv655TQfriFet0XCjn8ObI+DKyrm94vf/qof2sibqu3HAwmQCB5VMsw4w7ObYwBlSep3gNAOKUYlSjLlK3V+ud/R3fCvPY/XxdiUdGADmJomKlXR1H3lTn4JBq0sZrJ/np+LZ9Pfmy67jn3j9EJtkG9nGSA1rFfvM6PxE+KYgLyfZ9l53qG8LwPZNvRC1lXL2/mljVHZtxTVYD2X+FCvJ4kJkwfuTI0f54MmSMuzeTcgr3W/Skkk52pvXYH/JBuFBemkgRm90EhIWaP7xo23txT7+sbGPn8TCsR7wWgBRUZ9sgimI6bcXK+3Y3ld3eMKQDPxiC6QoRG5OCyiptNxqIlZ9pjazGOzgK1mz8xLX+VI7gq355OXjxn9KTNaSj8cPDXDPz6im1QM4vRedPPuT2lWbRUOZO2ZjOtiP98sUAB1TGkbUCjjluBw2pCqqmn/MhoeeTIf31qJUZjcVNcaIL3zDMUoRyOXZmqoaImFAkrP+LyEwjSCOA04aC3QSqbURyuBB1vgsmL1NQ/Atse0P3tuM8Os13CcFTmKnt3DWkEB1Vo8eQ/2u49nLEmmpPPz5FB8azMLsllb0/RP/Cr/oUNLC2ILZeA7Iz8YKpa059jOi9OYgny9DyIWrAiyWxMzs43274+3I0eBpoINTs1/nByxgJtEoKo4XvfXkwaHScbnz6W97zycGCqVU2qwt21oMrwPNKc7G6Y7D0ydec1eIEXeqdERUfvX2+GGK8On15cAu7wwcE2YqiE1D9ezEVl0hHEWPU/Y8GOU2FMLE5vehIYniA1ZfB6v7UZlq4Qgt62NIz8HpWNb65ti3WoyUM3M7ctL1xZVjQdUl8pqp39kHJO9Kt0/IJEX5aEL7jypBSw9K+MvqAGFr+PZ2W4H9LtBRBaA2vQg3zwdBolMZbt3JCP0NP4FRSfeTpH0szz+CwvWTL/qXgBajmcHQ5AaNUj/wQm/0mypQmJGIBzICuqO3HFZ48YYh2YowXuw0OOi0PIBVwQX3inqbRlWXw0HG1eCqvXyZ9RW/ipdnLaszT8RB9JhR2U9y3Ydh04RUQi4c5Qk83lD33KRdJTdAc7bEsAeUuGVpV2X98DdzASP5o1RsApQow1TqJ4/aboLU4pKAzHNGQv9rbjY8IHwPwVmY3RZc2eQP1TPlfeZ4NCp4ZM5Ag96tmSYS6QIOVNHVYLlugtAMECCU7vsEYnAvOQGI+HD9DwcKGBdmLyLI3awZvoZIqexFXRsp/3gdWozVYw7mXoMtAhT02VojCwS+DJ/ulV+MS6oMj2FRd+3yBv+kGK1AChGO58KxW50pgbe2GDlFgbk7J5+VeG2g8BtMIRJrp7easJgW2NtqRLt/4QkZH4HY1R9RuQAK37NRgqwx9sRmUuthsF8iJ9cVXJScSgNGzUY15XxLLPtBPrUKxi+6yc50HBy5W+CBQ4tmLulE8/1JsryAhpnS/jpES2G0AI1vZQZS47IzfUYpVnDtCOiO4xrsanU9+T28uL7JaC7um//4bu97aW8nONzBamDQrnT9/kBRD7de3kZE8sOX0Apgf4RUqV2srCsubpKttnXWZAMMphO93YIDSxJ+jn7aKfIhHSaYnDSScTLmfOUKyjhSW69TJOJiINyyx9NxasFID+62erXZskK+lJDWMMKEG4jbiGm2daLwdgQQu/ApRpoXSntyzxSGOEmLCPQ4mbwGAcQ3ihZXuFazfreqVsfPYmQl2Ni4eloAP5VDAQhE2ueY2wbGbmHgqr37UucFrh1VD5CWstQLiKToJrRw0MUL5GHcDzl7RX95veFg2qRg5ucWuf8cxlHM5k/sbl9g2nHGKBInN2Yjtu8HCBRjwmI/7IucR3K7JKP4sqE2Bb4lR0uNH6YF6397uqDNhBdEQD+24BSGHE7P3XhKFYkY19j8pGH/3E0KVAxnlSOLB9n6Eh4UQ1vVCwsyVk9RHU2Pc3anCzgEtVwWODxWaFX7Ng8hkwp25cZxy0q7agkJjGvk9sEGVkWa7lvuLiorJIwDM1CW5dL49vEfm6/OaJxGOa01CXGNNQqvtXiEokWEHZrbmoT66VjFD/SsIOjGwze681JHboc4e+MP2TIQ5tuYyc31ZzQCzwrI04v6Tbam1C1GcMp9dndFQ4461cRqDvxGanQzjeQpdMN3WPQNY4uh3sJ4XAH19orA7Xs85FIa8EBhXyQxfd86RmG9slSLr6ka1LY7c5gB7UPwmGfKD149k5u9Cfcj1keKFQGHC5HpSGkdUHGcKxrsDqSdDItkjwHNIG0ReGukY/+GuHYlTVvVara7I9TfKpnkwjkCIzzIvs5poFAtybHJdAkmp32caHyIP7O23xNjUJ4IlyKf4SrcxGIUJBd4iR5M2+hiLPiJzcEnph5oxUvCW281ssLYN9STq4ZJRDyow4Sd5klJVNPYQdY8kjeD8BaBAhF3hj+nnwK2gY+tHVVh2m79JLWCZFW4lOq1Ctsv31LwSygPi4EoR2oTlXxTCvYNQh1jfI8LE0ntIUeMOF8xV7ySHG8bABoXO4l9sUBcNC0w5yAvxdY8PhDwh1FjWh+aOd2v8Gtxab6dvJULJV3P6ZjGrvy8wKEJCawZ2JjnDh/Y50OYeX1TWXxlHoQnNnZ0Nkcqn3Ddqj33fEgnh6dwHp1R5B5778DFK02JSLwEQs2aw/MQOJdixNifeb41xDYqXImdZVYZealibeCbvZrv96uSVgSJgrQkCvP6E29/FgxCQF6vxiN66h7yJEKlpGFrRFC98XDJrMb4V5wEDAMpt9vqx0lEORQfm9zzD3ASl2Y4Mri7mYIJmDYo65i21OE9TwVAePE7c+dGT4pN9zHNvlRnCJn0bSsiGx9q8AuMfJuC50y6DLFIs03kWUviJ/jBqb4pt7WAL35p9DML9PTYLr2avNzF9MzSwKjEwHWlgKd6++eAsHpCdWyAi9itXaoR4V/dLivlAWTFC9w6Ll685JHQz+GzYn7L1cvSHElWFKocukXFp6fbCJR/GVCSLWJOIewiJnOI6muxTDMDKumFW17NoDkuTVxbgwy0SSByigXiHwjYID8VIq7utNfuN17jb5C4SUa+Ig7LUAKIl0WiPas3kZGrC70Ka6uDQUMBJtu2WqrRjifvQPr2A7WSxl+02UTCzh3AkL5JAtTL5qxRnVCXDvy6CohmduUzKBNlK6jRpA1qbZRH4U+hhJtD46Ft3VkK0ESVN+/ykV8fpi5zLdYrL437ufheckgzXzKjvZToTRZTSmNhDk8kHaFUsGoaT63OS1iYYD4TlBZQTjj1W0l8DjoDT4EY3zCyqsawNymdGhkKluNj/RuMtEO3EtI/66Wi0DROt4pMShs6X7WdxAruODE5SR04GMIh+JpMjn/AJTa5U666N+wMPWlOFt+tFbeROtFPXaxASfCCG09/+MSplKhNqdBpGJ5Ke8m0DxMxmk/5xu2XPdQj2pu/AbjR5eOpALycWvOZS2PsI9p5O48LxPLQGMuf2gWextwyvrXzBaRddHqfgZeG1mUhnA7lSCrasXuRD/jQhwnKFdLD6NEbnkRGjoheZLUwvc0Bi5+EijvdIzt56kXHrcqPw5zi0QHaA1ll9bYX5UI2I2kMGxnQ0Bvzj7u1zDUi46u2b6Yts9/h6361xqqLCw5s7ibNGEm7GsyCo5asGhwapbibjYT7+QsKF2DUwUAmG/kzuun7MVtPvkH6fLkRahZ2CtN5kxReb3ZRIXAfth4WfAj5pk66liWGTA7iTrvuL8bX33TvMfX47r1CKsabZMH3vbtsIo1X4uFKQE+G/s+uOn6iooRt4nLDyh7Non2TRdjVeB7br6XsjXNBXCm+q/gYdnREoeSQ5yfED+IZHoAjExBPEkyZqCImz2tN+iPVHIBt1NNQfv+6w2OXVrj/pB1ZO90nlJgQjnljV5U9y27mvCUHs6UJmcuRZvZ1APLQFdaEsajQdVltDTfeepKaPgpnacWdz0ylDmWRVS9ROxpDTnjrwnHei8LIV4pbGiQT0+BEjyCQWfiLW2PWV3HaaK7FQiXmPrsw2VOerftoFKMmiwPu4Dvl02nP+LzxTwH1giZETfO0WBVWUEPHEnR8/5+ne/O2BFxlohyuhC+I16pIi84BB8YVeVdKbdrKTMpSwdxsEuTMyClExLD6dZuwXZqwaOpfTa4o23UEdBmELKtILapJxEMsJ05up9ahNmnXptCsvIqOXWnEQpGr2IHOsvAQA9lKJGK5excRtZu1nFU+uE5G4HjKwrbEf0VPWll6HS6K3f9Dt2QHAFZKby26MomKWqJR1m7jS0YzUcmn2Dx/g77iXcIHmW2LLSEFN5/WT6u422O6DobnVwebz65/Gz8DdQnXWgCTRaS0Np4mfStRrS3WO3+cNuu8McvztGLIkTFMfheNv6uz7dIa6lT+fQr+r7XsNCzUeknu+cmwr/ZHiINqT+aZOzYa167GckmsDfR+bHXFz+4UXI0UQEJnpp3WT60sN9a3whWz+DkemMl5T0jnptai8moioREkQpYZl74IZqjB8Fsg6tit58Bnz2HU0b1nZpJTZkaMpuyo/quyV81NNRVcKhNmFuFOFFRFMyLXq3t6T9p6bLjIgon26Y9OXSe6IG4rg9LvesWpRqw6XlVCcD+ISKmgkFTZXoe9jiQbuy5OdFtressjzH89LMk0b23lCqRAQ8YIWFd2DEsGQQPOw4D+VewvbGcSFkU8xPnfXfrGuNT9kTzpPT3utjDwL+EHHbowdsWD6VhnAWRywz2DT6szOtuIs9yTPWFRSiHic/mp5U0/1nzNERuQFBlv06OCUIlNNWWuRNF+UZnYMKqrmQwdFd75RL4aNfwc80qI2ltuFjlSxBC+OaMiz2zs02uDT1e7ROYaZclIsRV4vSEzmLxF/DW5Wa6u3HYn8ujPfCF7Brkv9j3j4hw8ABfmky0VQE4NHnJPOPCibGFIbG56qS1rZMj7oG+Uy7Qq/ZzUkvedtqAxPlhPvxq4WjGH0njAZeOxsB1hzzYvnFd4EjiB+BjzgXgq+aHyH88M+h+q7CHzMd/+5IuLP5p59rc6/nsF8L0edm16YHkEJIaoWuuUHXIwBKSbSoU0ee95LHbucch7e7ZequOy/7GlvTWz59AagxIZqa30VBo76eqAtxjARShhGa4FDY8Iq/gYXUMW5HCUxUwUjCpWbaeL3meu0krVC0mnIALmKksLtieYzBO2zHBn1ZwNiTXjp7BFpo3mBCXkobcjzXW1gGZRrV+QIsmC1cSeteeN4LowdrkJnBmbZ62Z7g3HhDpX5mwfSWSaFdODuPesamn9/KEZQp5tp4PP1Sg6lZz4p7n/qXgMrlStwkiz8qlFVBVjTZF+zH4L/R+l29BV7XOaqhsI44IAznW1tbzb3C0f+0d0zTZW0WMlfzJnIzwwBowRDVBpe3w2eNWoHF/JxJp+wcDON3TyP/eY7V+761ZbTi6yr5EndZyoWMBE4PvkcgW/dynWXxcnh59Y1EHgfEbhCAOxBKjRMMgiXcGKsZTz7tYHqas10HJGg0/od8kFFOWRwnuW0eO1WXTAgH44rHhSLwcCvy2IffM1nc9NgvcMumtX8t7dVkbS9ZN9YsZiXHW3yv9A34HwqlHmXBBbBnKD+po6TWw2/rZJjVmqRZ3n4y2FE5F/kvsWwE7/eDUnBZhQGaiSP9e/jKhzykKQgqJEaoD85Cj6YotsdSer5FWJc9sMXXW1E1U9zdz8Mb7UA+W+QnnDnfFJFWHapLMiCALbBkrnH4sHoNT1gFLppJ2FrxzjE5FZYOuxu3kAoTcM6rEA6WbO0tyga/dZv83uCzFXBE197GJO3z6X+2E4oC1zSk/Ac9avZnO8zKugsssEuzv81M4pe2nDBFr/aebiqDtBnJ5bIdAOFrPnvGr7DKYCCGcO+EfuquNr0+lA2OtW0dMCsCpQhkhmTGsk+51lkLNpt6U7MyQ9QkCAxcD3D7S4gmx0t2Ao2KraoV/G1/emAqOPHyLU7bEYKHZrX3IkaU732l6vyY9ugkBGcDf6OONKp/1p9VaziRJbWuryvPBO7gINY2bj3VC8amlCKhYnqJiqUmAfBHjTKAnK4SWK6FRV3whaWKWENA6zN6ohy3OrtbiIVT0c57a/45FPOKCw3EyXHJZy1jhdm8dvyoYU9JjWarwCTrFjC5Of+lCADVIUmJ5ljVuxy6/4y3LGP4flkKoQjlHVnU/zHp8cYR+FAhBvPmkYbcIIJzxE57+ItMq++ivJTPSZxQUuHDBDVwBtXXjsPR9d29dkxRezRM9ku7b74hmj6Gbz+20SIdPs3XDoKQRr1GFf8zC+RlSlcwx5qknu0DQEvjr4QciULlHUZcLFbDG85oN5rYeDsv7FH25b8qTgQOfb/ne8fbRCzx0C6ef/dmUml/SC+k9SMvWILYS3GhPXFLm/EyETNyon0oDBzHxZ2DAVh7AifBSCAMzTFGVoWlW1XFw2vUhnTCmF22LnJWIy6DKcpiUTR4KZUQS/P+B25XO464gfESn+lM0lKTFIN0IP7ZwoTjOrRc5k+LHTncAMU4oirtamazI585CzHMHurogDkTZ9jgZlMJOEFfe/4K7ZJ+/L6OzsVuPYrkCAZhLTsc98413Xcb+cG9TjWq/MrGJHatqYKtqr0Zs1PC/U60zVbRlyl9QQupTY265/EpIwYTaKdUrNC9rc5e3K8Y/l4tOuMM6CyeYwnXhmBQvfoDH4JuYsh5gP7JWJ1lpepBGtSKpwkW4eqtazL/ryLjJZxFw82ObyO5B6kuPZMBHoAs7ND/V1OIp3B/RzyccoxeqjfkT85muC9B8Jmsp28mOctKk7t1oHjLvzRkyXg4MjJG6c6nlAk8PZ4mZ6dAn8hq5echjHHUvj9+hgG4j+UV6x8pNWcVYS6igFabL9nzxYfKjltmtaiAyQQ8xsAMmUG+VDj8PgqLEpWwVhrztC5JfYikWiq/V1yJAKtuwA69qM76kEgAp0z5zflo/77NHOAeKXDnbjGiEv4mnwWWSnhPy9SIhuYkTCn4ru/NcKOlOMfQ9hGnWdED3gqMXLc28MWxAbwRDStJI7EV6n1d5XVFPqHAiIaWMC1CF5lZJyv+kjtRizMw2W5Zzgw8t2QhU49juQC2oQssyV/cdVnrQBRQaykHiIKwJU+N9aZ4WNzqC8vqBb3uvU3fPLWYF7kF0JZ+5G7Egb9jucrrWWrk7wHF6/MoRbFYtBHtrN1Iain9QkVmJOQsqGn8HfYupCwsSan/nKXBGJm2nawkux/S8P7bUVO0JueqVu87ZIHUBDcg2Rs2pFIGUdu54GmQYgVT7UeRAqSDQioGpC4V4VQ0bEnksVvRbYio2Vuk/YUI7MJeLUhuyroEnm72rdmz2mEdSvS2qJJwtVAcSQ/RuFXSddHhIph3BU1mMns4cx1YNLZHadf668IJ6FZ7JpL2/9WGEIlbqKR8ckRqC37TabXCXNxW1XKkRIZV3UKmpprA8/EZsh5Y/7dRMyKMo8o8XokW7DhW9KE6FVesHvu3OCy3bY146XQAxFB0ohnyCKa1IW9au7C1ahvBu68e5w697B9c0lhIL7a5weE+6BlqogVuzIqZNxGY/imTBERLap7ibRAWVG0mdDIOqycMGoMaOofsAe+Qnd2kNciU5I1K2fCtTn8Zc9yQmslAuHdqbVPRBq5HqpYQxgXtAsqb1PYw7WzMEDmLRWCswQg13qJ4YhrjdxSeV7HTlvins9nEfi09Rm0H0JwMEkHeY/uu6fJp83W7DbUBJIsDIF6ymrOpysCAjnlEiTiCp0hI2J2xicnXerVPd8+fHDPjGlOt/jCE7R/hBHvzBl+kl7E70SWZXefplAXo0Ofe8t956cn5uAE2zk3BBUeX50CWNkFUVE/sov6b2j1mp2FiDwMwQK8Oo+08ER2ybUKSMuzZtzsJF06Z0co28xxOvAJAUOrxFmMGSM2I3QRQITqofOu+zHYOLvoYDPNsxUNM2fJr4HYdOpb7O0QVDyhEHrFBhLz0Dy+6APIrTr6a5BQoiRFyK2nCMScqnKLTd1rl4f4xleG+Haq7BdsVayy97btZsNeHl/JwKRqoP8WJ/9lSKRftzDL8sXeNNYit22mA29vgHjBQtdGLqK1RBHqF71cVWabrrTLyN2R0JOciyBnEmJz24paqZOnmfxnLvOJ9HFr53x2oZPWsCoqs9/a/vR2q/3fRCDWflCCgrb0RCxi6H8ejaSungR+LCAZSmdUSIfTEiF+1NWdgQSMtjB9Kji1Mj69oJ/VIazrDDBnnMOuuSYOMjcRYLANTeVMrBDQ+4xOdE1monyUPm1+85YvRhreTTdMBriYDie6f1tKafWa8b6nTElZ1Jny1PQPXjYaH/sJscXxIM2Cvo0wRcY86NhRpu/nRY3K0wRzgMTyDtQw8slOszahCvtc20uSUSyWfymvDBU16sQc4i9RX8K7KJixOPS53uX3wDJ4TXPOtBXkIQiiAUL7g6UfdmlTV1VhtMGp9tkZYeVrOEIw47FmneMUPJQb77llCa0vpIEHEeAFLKz9m5z0K3isw0CSk/59RAlECgOBnQQ3u+fksa/P6fEo1JUVgLk8xXFVUi6RfSRs4FHKBO4vSKQ2lDDfOfUub3G89jP40BQq43A7pM1bcBQKBGb7h6odFGFG9iYFzB/b56ER7F0D/zpoJcRjzCsFRNku1/S5TzuhyO5eHVR6F+pO5U32cYB2vAoTNWeJApo9/Y1NcZUl2TorGUQE0gKfAnYVFzuLwJWJsAVoD/GHNpPVWZaovLbxxtp5/CNllRq7nCUTZwB8GpRGFuoEHluqeCq3+Bd6upHpzHuk4zzbF2n8BJXq5P3CacNsFw+83N0aImSz+oFRXHSj7f4EpNlXy8COT1poY2czVYohX+JUgAUagxNdLZ6PRx/SslHbR0Bo/cobVhhNei5O02HS4K41sRmQ+Naxj5fMV4mlE6zHj/C5sC/oArTkb+kpOr8PaquBBESgswE9LDGrFxjY5+5dNPFIYfY9R9Oi3Bo9UpdG0E+e1iLh+Q7Imrtkqav725FawYgOOvX44k/tf6EGvlPn9scOOp9O5VO3+ghuW5xSxab3RMG4KTr0w/PM7ewIU1ekN4C5rNLUs1E9fjXb3HHCQLJJf1XW9r561B5AcPNkRVgk+psU9KkKgDkIXPP1GngWwXK3eL1RmwLXwLZJv+fBatp1HJKY+vt8mSdMRJswJFH1pWYbHwXLrTEHhnJn3A765qsIB8gLWz7AmqmDvDCfC5F9WOSPREKrmYpCG+fjMPRMAkhtQtL+G0/kIJ0ybXyZPHtbn8KelrAUW1JzzmZN1OXpYNMlTng/OUcfdAWfX2wcN325xfrCT8nYT1zrf/3kM+GegPeg0OLDAwUYtXM5rwJ+NQaRTSOG8wr1AxKvhdFPwhOYkXMTzZQnStz8RzI/a1SxbGlbXVGR+sbqemFC7dCuPUVuqLlIv7RU51FrDho19yT02LuuvjfZedaNMlI2PlKcal7D2bDoBemzcizJVNxcOAZobxb+oNtBNFAKzWfZhbKHiStxZ4mE7PkngcrtKbwaVujK7ugv4INYjj3EKigNQJj3o8ZDk+Cr/UqiTiwHYRgq5wHlFRewKWpeUGTqNADX6K81H9higALv9Nsh7Xwx3YXNEjPgjhpE294ukKSf2M23eEcjcTWo7Jr8zn3woZUgt//bX20OkYDXw9mtcjnqZ18OaO5Y3r/iA4YzWgOYStFc5UJ8usHjWCxqPQ0X4EhadvoX0pg6y7IX7gzrgn8R+Xw5/sv7pU21z3zEyDiWF7Jsh8564eVsWrk2oOBHgHfMztpdXSd//gZPNx7i0rIfOjjbTPDDmLJSz9gEXtafLotUt12thge1PehEYrYBUosJLY0x637nASu6qmL5ivBXbQ2WC9GCxwCEXqJUu878ZbvPuSnArFyzaQlookwaiCHIDOXhlqYtkFN4iEvlrOAE4D901w9yygNjhcTenRKMWGW58yavzYvPxJzJsAJvq04g3PrW4okaFGFk/gtvICHi2NSckK8MACzICJkjh2pFRjFe07jpuOvfRqb3b9ZaR9AIC0+7X+r+t8W31RVMIbQcQJtkGcOjacrENWh2RKQs9CzOhiWQxdYCTJHVXqGU+HOP+quWokze0VVJZ2U2ew==
Variant 3
DifficultyLevel
628
Question
A cube has a side length of 10 cm.
Four smaller cubes of side length 5 cm are attached to the larger cube as shown in the diagram below.
Including the base, what is the surface area of the new object?
Worked Solution
One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 10 × 10 = 600 cm2
S.A. (small cube) = 6 × 5 × 5 = 150 cm2
S.A. (sides not showing) = 12 × (5 × 5) = 300 cm2
|
= 600 + (4 × 150) − 300 |
= 900 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cube has a side length of 10 cm.
Four smaller cubes of side length 5 cm are attached to the larger cube as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA21_v3.svg 240 indent vpad
Including the base, what is the surface area of the new object? |
workedSolution | One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 10 × 10 = 600 cm$^2$
S.A. (small cube) = 6 × 5 × 5 = 150 cm$^2$
S.A. (sides not showing) = 12 × (5 × 5) = 300 cm$^2$
sm_nogap $\therefore$ Total S.A.
>>||
|-|
|= 600 + (4 × 150) − 300|
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18l5+epOFuInKirn0rc/zVxdpWhjD3n0XkhUOqnFcR76czspd9ZfF8JUz398RCX4X7iazJxyhxL1bWgShjSom7f2bvGPCuxKDp8hZJ1rxZUCsht1vr1XLD8lkEQlHXgIEYf7fh4WlcHcuJF1JMVtr/c7j3XyPg9IQH42VyYpXLYlUAela19Yii8oLUhuSpsvE5XrGrfN7OXuHuvxFD/TJMLJiKvi7mr027521l12Xs5uXwMwwaMFX+y9s6S/Q73tlgxANrzzPCKFQNY3z582ElHBImlBH4K50zMPIQjFCPCN/XfXuf+tFtNQzk6k+km+7T2yw1ySBbfFOMQA6cGlYdHBZA4ECgei3hchy/G6bkjqLVLrgtbEbxPxsBDpwavU81iFhtJ4A+HuDjCJqk1zr07PUd3KZ/ne9E8S6T78XN2hvmrFCBELu7BHfMCXNl6YY9tBv47PYfS8We4qsIWdzCBxKon9Xto3CEGZiWoeGMX4nOdYJiuYkKT6A9XohClN79xcYSkTNPX6fUM+XS2AXCzDsQ+rnsFM01xc3jjL2MkxWWJfLB5GwmbHcqtbqB8vmJzIMYtgQHZbrSRkkz44pKXvYw3m5f26I1ASWVowT1U4XCuDpCOGK0Fb1voqNjrVKH7/e1tGFGNYfxoUcUvF9nl3DnuDuw0zaAufiODdnHGU/BAIuysJ7TcxzBdUdPUnX+wfZ1Cfbx+bFBWeRySvJRqB6TXeXwM2nxDXmX/lyIEoSHOyFKNXCzl3uPwlg9KiENPNLaz1S6yEEjT/JcefTX/Lng/R4dhMsuxSZoZpERoB3RDcs48Pfos1m8bVHcCbCGtbl4z8xUXNORrbIEoRiVOlF3dR9z15meZlb48ZX/62xD8l5mAiw0wGXzw6dxTvKSwAfdEaBDbYvJ/skF83kLDJC8GTnqnqXfF7VBkHoHkr5NwkU8OfyTN+O++UzPdDSH414kns9rVc2sOFfyhuN3bMPbdDIJTyikunaoL1UVrPOJ0/J4A3IwBMcClTTQ+N4kokCuUBZlZJxBOzJrOZ0bPNxdtFl5LrPC/zKGf3ywwNysK3n1up/+oUbN82JeR0mgrARiftR8jhfPEyXe7wDHJKgiUR4HADnjqZQ1J8+ClhvoIYq3l8OK2RzcknA9cVHI4s9W/H2oyh/7P7RF62jnXQyUx83XSegLUdaFpBvKsugJGHtXkOfpIrq/Tfzm5cvFsYE23XOtRWVpEMJwgkarDDmAEyTPLpCfxdauBh/OaGuSlqeITlF5L0UczFBxkpyDKAnSP0ZvasApZkfTk/jJzdOWHDL4hnkItI8r6OHSziD93dwnGNgTagfOivNWv6oUSaCOGF5IdrNM6mPu6UiB0WHvb6y+x5OnCkcphXqAq/Jg7IFZsUC9WbK3mSQRBwPtA9RyuBCPPJcJK4WGu9zHA/WuGzKMYbLsGUYIJJZPJXs+8CTj1uGk3cwVEJxqDVw7tS65E8fnEO54SNJVcvRAStDWwy+vqSBHD+cPtZH0xIoJGbSWFuk0/RKEu1kiwjSSUQCoVoYQG6qQ3Jvf5nLTTkQpDg/7xahS4et0dWDkDEVkShSaA6CIUkrCfErVZ3u46zA/V0temmoLpamSg2KMQBKR+SfQCFxVFEi1hO7FJV6V3vucYjJG1xt9RNCnMEMIccKBpfgQPYOGGwGfsDuvx1W12PS2nWuSh8dLFbUVVHFbdI9rxpBDefzFHe1zwJ6ezaBZAcL3btX2uc35nbyUrjMsRGG8vN56IDkk+UaK2cwJngfS8rPmNAX498A6tmzwUQoX9pVWOaKX9Xc/HDl1xygd2U0l7VEKTPHCi8+lgwjCzAYQ9AOLhjDP5c1gR8fBV8Z/O5Yj6dWujYJwDLWXdHhEGt0ZnDybb1RMgR84NaBK44T9A4AuaESMvl2Ghlzf4UARM7otRc2eZodejzR/AgxAVKr6Hw3OTQyUIsBmxYLhx0vM7ASgT5xA1n+IEF2F3BO0TC92L4r7iKM6t1P+RVKqB6vAsiEsdOKzuCuDSsaV/QLQlBs82kfMbQP4k0e4j+BOcnlUYIZ11ZvpG9k8G6D9bzQOwnB/LaK4HjVccJfhViaelTYYdjOZ7yxUmqVcLKrWqsmllKLeWiUuB8JwZ8HO9xoq3ffQJY9yTviGS7B2qDOhMH38n0db3xlFGQDgCp95Ur8wsCrqO39baZFWcnRKzwTzrD5PKUeduybLzDUF5UZb0VZg3XhBALC+sGs4mEHGEhcFlYGKRyCSwTt2D3pm9k3aHh2XMT0gZKIhwD5gAO/3cAnOIkGBrjmideUQgnORSOrNcXVzLS1G8PLEe2VCdnKV01kMqFjtAI14ldDjNVuVg771NUrrjFwab/rAUkbXdmH045LJIJ4thTrhUzPByyhj/7/9Bh45SO4DmySI4rV5iGylpsDwYoVbDRtWcADd8BPgyiR7hq6o7ld9q1Zy+KZAplYDFxtvudFYo3qMzHC8cNe05vAsWAgTkieI6H4d9bxGKMg/4mOmn+pE5FlB+cHUAP9u/e1Vl0erZPVnFh7qJAdzxpJ/6NWJ6HbDoSNMhh0pCihFi4qCGXIqgJHeAf3h/GyYJWnHeS3R0ttw2w0RVxfjEiT0UAeIWnHW8zzZZLWnA8TuQwA2P3cXyv/eYN58KuHVzOO5kUeaqIN5VncC8CvIxoAAtG4xcwGqVbDX0h0GrIKl1PuRNrbVrsVQOGqSerlvtZJ8ZQe6MAjmh71QBm4DCFkxw1DJLMiVpy4gCqpsxhZIIRLAEaYLJHbyxAmgXCBFbGQBbH8u0hGgbiRU6/cnYIFBsCZu79kKIBRMLatLg06+QzRiFe7hhQGclrH4gV1xzTYWwSjGT0ZRe2eBMhA9wOovBVz+/GZEPqkc0KKHuqpPOaKcgMn67+F99SSvqEDvMBkngEMaK65Njh2Pm43mGMP3tNmdx6DY1PcQhPzsUNEUZB851a+4tr3HT4hg1dRGnruRgYlUdqF7jJDdnQWiLwzpj1Nt6avxya0tkgLtWKVLHLTwcs/Ol7UHgrPHPGSTVaJv8sD9Rdc64KtPSZFCCI1X5QYVIj6KWqzS1eTjXsRa34gsToWxNRVAxaIbuQEoZAmhE1pjKvSfkt7zGE0ZzMz8Jh/2LKXdNlgLQ3hmpktwas7aWprV9WZMV8ZTvO0Y/KwmOmzxbZo6CoJbJN8uQfR1uF0r0v+RLcJlTkhekMcRvGK3sYuTIav7XLBlyJ5jsz6N8a8rtp+uD5hEVvwFXvZesTuv8nUaU7B1VnyMxotj1B3L7XfwgrfRM7QFlrCh0X1aUzGhJUcnIz8ZgirRAKmQR+DZF1pTdprSLiPVA9HW7TE89TV45U/45vqt0P5S7fgqIW657rPIji7x8AGAyEaMtjALoVDg/CxQ2kp4Q+qaMraluenHl3NiKS4R9kj6Gm8xvjjSxlYuRFGc/tHPZPvIJm2JiR3fMcywuS7oJyioR3fCVHHMLz4aqPPSWwOFnWkd2Bqza4Otc7Bc2N4h/Z6HQWkWELUYZXIQZY5cERriXcWrgVWoX/bXOS5PRo0w1/LoMj/PRcePNsV2vkQgX/GdirpgfC2Qim7fQdXCtxA/5Tcy7HY17PuYqzjBYnQu6O426wt8NMdPrYRFIgkr11frQuaKefwxj0zOBsq6JTVE21w7JzQibT2Tg+5d5z3KHtvFfhgYede7/aHEfcNbzQ0WyIU4cFCMpUha7yuMHtZWn47Ur7BO0fgj7PYwA6N5rJWfhX53+4KL8MkFdBgViuf1JzZvT7WznnBJCu3yboYZruzkhp1en/Qz1as1PyelYYHvRthLxgWAUKJ0mrTY13rDa5elxeO0zQx0c607DY3GEgw3FaPST25EILRR8OKuM5/UwLvb8G8UGlIXBglYRvk0fO0gUlc0X3fXahpxLE0dl8vzOun2FYWAkL+VC5I7ASH1p6lwQyhbT6hTyyGhJ6D5r7Q6zQpAX43VaV/VToNUUX+ZOTRqEPr9aj1yZvPmfNvzURGpKZ4RXmy9AZ+L8F9qLR5aLG2HpakpoOMYJXXhPa0x1Q69sRNStiuLPV/8t4iZYTeN8lFhfHvH9O883pxDnfXBWZqfdS/Xne5EXCHO0e9UsZ80+kAbrW2CTFU8w21CK7EGqPl+njlLR0fxXFgrIujAXQMhdM9k7NzNM/jdE5dav6YB+lvA8ptoxVhCnLa0I5xUNyOP8LBw+HiQJzOzLXfsDDYsr4ZdPWtKV0D4gnEIvnBmyA2jaDJdvB36jUdfO3vKmsiaFOM8ylzbK6YeliNBfH27ydZUT0mB0lSN4SX3dvmgOqGQQ/SIH/k7A58jlFqGUyStSsIrz80+lO6Va+83SW+4uUp3S20Y3xZvwfR6JTe01KfnUdR+o6nYHpI679jq+YpRh0xYjG/SEA+N0uL3OmF6d20M19pEbeBtns1vq4STxzgT13ixdR+6kunVZBG/Bat9BvW0wniajJmmDZB8ogtZrId40vpSwA/ZY5eVARbHcVsmjl17Zvl16WAYF6hT91l/9U3/f/V/tOQS9mpCVZUKEQQ9bM6ic+N3H2J/uECrCM6PApJaEUGuRZ9WGfqC5XafAIvKxmp1Swds3Z7UbImVEUruezhrJYQzJbA/4wj/rHCyocf7tACrLDvMsjf3fi7e1AR+LO/tb4WkHuMeHndBlVVmL8qt6bBKbKJajoQb9Nr/dHGJp57yGFkuGhGlxCPKh7j8RTBhxHJHEYoe05+DN2VRuR06vbbAd2p04TzNYTdcC7IQiASTPWNGUPQn9shxp7TalTXK44tLfqneX/9ghs3jMdE6vQQRhEjiEvquM5AhjH1UqgEhIxiLDqXzgWnMMR5r4ML5rfdKANWmjWZ1qtiO1FO8VtzUCTv+LhMuIq6ezJnSbFFVFGGA6wygG10r+GERNxscdfBDWN3EveW/kNaxr5dlIMRN/fv148f0Q4ilb4E2hc5AX0Hg9FBmZ6LKRxGGEFe4cgmKP0Ac+IQWFbelVYlIADoMLTDS1fQY0/veeFoYIs4julGC6J5WDGnrUtH3esrsjNdFGZ4WG9gYppi15gaK2US8ahJvVae0A1QxzzE0+L3Y7zRj835wuKi9bDdjgHgiUqhniDA6t4/ezKQRT9PhZhwCtrIZY/ef4oAFbwUlG0gkFPbJoFxpIT2g8/PdCznAp4BWJK/kQkLxItAhBqI1pmv86shWv/uzU+dSihG0uaizI0i8G8drssZ1RvYSufq6Ol+TURhAd6qg1sWYhzWCxFYhxzbUwZje8MI/Biu6oZ8VrTrBFYqR6ayvTMi4AZjzYoCtcSo5zXMquItQHkUVrbvT/38NY678VF3niW5AxyNb6PJTdgl3UtrR1gfw32XJqEqJNr90a3DdhDvFWnkHI6UC4SPE5252B2rzfyjDZ8AwBHHzcmAVdcBa7tIF743fOTcrsIi9aGM0DmSq7HAur6xA7UC3TLByaHSlHUOaLKaH3h7D9VBBUqZF2eRckA+I+Z8BrlDOm393gnA5PO14+oOsVR/MgRHtUUgszz6yDYE4OMPuaE1vNeMsXSX+UwLYu7fswswxW0cl5Hnxn886lwkUv441LKbBgOx+fwr5p3n7gYbg2KmchOnohMlJWQ39zkqsUDof7U2fOYt1VLRnKO2hZSlsqLe7MJYDa5TlOLxkuJcK2otHYUbHej2ftlZA6UIOqokKAluxqAldcqzB+voN/SepipKuzJa7jJ2ZNbx3PWtvfthYDrHAAIwCpfTb9r/oHuV/rYSHzU3la+uNYqC/MGU/6cpPZ2hMStxLz6trtemTJ5TeolJm6yYDKcr9r0YJNpMxMwUja1fRTcfO/GXHvdfPBckNT80+3vkDEMWddrNjPd+SdJCPjL6c1jNzlNs0YC5YLGTYQEM/AiczJ9AN3vLcIlgaztnGGntaMtSeQCnA3Prtmfl9LKZh9/pYaQW41dYC2OTz+A437uJaBM50yZQP/wtNVYwDLtRGQexU4RckjZlcqYf0ir6Pbx/ZTdDqKRPN9SKPbaLx3BbVJ4p0V5kq0JDNKAk198Jvc6+MoDzU1AKfMz/66q2v3EAEgzI5gI/A8JO6P3pHyGEM9DalAdMVKY92mSt/vpDRaYl7QybFV8XF7uMKVRHE+WzB9yRzOiAp9UbzmRn5hfaOCVVs21z80MjnFQmsZ49+yVEKB3rxhCeQ9PMDSAEcVImgzsfeadRrjuce3RKlooCFAp+LQ/mjBXpVt1HsaeXKFwIcfshYDfUOT87HonHvHyA5m3buhOtyMeLyIMRy/BflBFvCOe0dS836+HKKgrEh6ora23UnnXp6R4DKvjYjCfKhXcaisAuSGKTVXNKEQgrQWmoAI2MmO1qc4i+WTohoQrZism4WxQp2ZS4yxDK5DSjbz8hvvNTsdqCEcoPm4PdsG7dP7EtM51/TLBdx2gNTme4wZRyyZvRfTaXFvjMhpx64tTVuFCLNaYBiQXvLHN5J0amPeGD4Aq6fSjpiUPh3ZLBs6z17bQJuezXtV4f8a7MpLKYRWFcP0VwEDVJBe6YfKVMSN4R+TXhPqwloX2IKns6r4tsKf9qUOC4YCmJDO2S+mHp3T0VBXzQtEoEj8KzBN2+3KC/+aBgs8BIYy3hiLWJ7R5hsBXoR3MrDPieTlgvcdZHqz75uwzf/izn5PkeOeh01vyTYSdfIsJdoP/YCOuXNlx47ulonHUpW+f+g1Yl7dYC/wiFTEp3Z8CwkQPr2XnK/7EtJbqUUek56GDd7otzIlsGco+62uQSOgLXVYYAgbfp218UAT7SENY9LgYUTHAkiq6lJF98TKCSmKy/9FWQxgnfLfOK6npiu4VJdC8cKEhTZMeT8eP+nWvz1FV010iACyy+L5nULXWTDsushaRh2xn7Izob6tekIRRtJ10jtFbntv+C8zppNKHPKpROrcxtPe4Fu36KW1qlwdlNAXmdRMgrludsxEkKq85NQaxPaP4Wvp5wW3sRZzN+CRXnntDrBWqIGgrPSJNSgZ/5Smm4C56pVXqtV60rqfO0frAEO3ZEezSp5QJugQu51ieDWKRPIEKq326Z4ao0efRdyqAoHlfPOHU7LDj6QzNTXldDU8mMYsJcEQyRDhvrFQBSSLrK+0TWycjJ5HRbHey0vfQ3DcJdH3X0FjSEMlsaonEB2UJK46DQldbtLnuqtFTrLKkMubMEg8CR9bEiuXwa+DMRqgQQSalX4z01SG611sI/WgtvT6YqkbOnXkZ7pcoKyDTfaGUspM3bnu4SWKZ0Xr3KBtdc4AaF+qYwD5qwdfXwEIOOVhN6MjbR0eOo3zd/jaMOm9yAdtOxWXL9vTTy8t9IZBc9FAGNL3xu1fhdz4d/5AVf1Po1dJ+ZFicHJCjv14x2F5eRwavf8Phx4LEmAUDaLZApaI01uYGk1wLYlKMVU3TnZt8rtfUjNjDzTjVxbBWDtZSJw6jCpsVhaAZxWdhhXo/lnEPdS+6RbDI9aRWrJk0LplmWTiHY33de4DscR28FypCmHkRt4URvP34pkY/Y0i1gKU1v/Iz4cQE8eOKR6F4Q4u3s7Zo6piEf5LDlovmZAyeelTSdpugGivlOprtN1LoO1WfXhbFB0KMLmzrB4DQ8leeHArtCfFMPiD96A0FBG67BEquOOMLoBnlNzY+Xl8vaV7pMS1j0TbpBZCQfEow1Z2sLsG8QyfIy+lbMjZZHCzZkTv55bq4ZmdNz9dPEUgPktNzTy8vjP034zmiLejlNfIcWKg3HiybuHIWaD/CGjk2eSnfyhHj5AUKjAQejREVM/Fv2b0HMD21oeFCGBkbSrpXI8oiHZBZmy40H5sFdlxm8S/UC06uDaxnwJi8SYflMRtoUCnmOTOY2IiANgkeHFVxUEyous3hnXskSQrx2x2FfJRqfOukyWgbHIjKO6PZXN9syS4UnKOGeqIm8frdmjMNAgYg4Tf6REXiq8KNlxPfo5M1djU/LUmA3dsNgMHi3/lcxbzDOa7b+XOpTam8pr+Dm2TiwqxGF/i3ulKvGwofXKIaKHyD/uJcr4PD7T6V9uYPYSiy+jialdhfrh8lEDGpCT8aco6DGH9WsTGa4rX5mw+baE41wZZfV+givgFpDvl1Fj2hwyDzvV/14GQQ9yS6bYpkmFJsHyJMis6RztRzLj4rwAtJhEbFmHzSxHmpDKS+qeKLlZqUEpWooKFZK98TfzHV+9MdxVWs2cxbFv2qg6k1oc5p+2E6UmICZK/pFnNAhPHwItDFdtnQ4X1Ta2p77rrosVu6c74xsS+dtlFun5pIPGQqNnYvuy9BYRJ3wODUtlHa1kGMAOBxqKUzze0Y5OsJEf6sZg8NpI5wX1vvn5RboB+i3gwmTQJRU4iRPQAL72sCA1luTQlDPISE0eLFFay0jBCi+gHgNnk0Zc8iqRwWOA5L5FSz1SVmHVFoGCJFBFlgXB4a1KETjepKwMnIvYUr7omEcXA+IHRF49vcr3PqcEi8HB90TlvKu/kTRQW9Ho0Pt+U5+LVm5XjrK2qBPuD0P479zRp6ZKRH/96feX0Y8kMDbLfEI2x1iutQtDpqOW42oZpWytPvA7YSQLuzKQ+p8NW6CvBIrIOQ1cz+U0MR6fFo0z+9manVVkHpkIgYEc+dsFnp2f+LkQ/x32Md87UhwJRey+/6rchjVJYATzVsFoh9U0MeIp40RfmstFWOQDkT9XZqOLnZD0KuXT6E2VVobuet9VhG2u5ffuLXsXTrAhuk/ohK/gXT5NQ2dHc345AOKlJlSXcG1pc9/2beybfujWWP3P4b5ype0jOPob+LUB1XBP3JAR5m6oP1vqYsqk4c5SaWvMuiFn2Fd3FZNp6HWMyamOfjGeZnoo4go4x7eiryw2o2iR/LEj5PKHJzOjFl1rgbBUwercUNXYyWlhAPQkGR+9lP6/HwDyQ+TuguVG1bMEyZVEPA3yUVEmPfGeNDlI9XQgNNkvzL+9EPFVDtvilSl6dE0eqPFi3+csRdvjlKfB6cvLsTw98sILB0wcGrphYHW00ZC5XYBJ/7ocdEh8BRLJvK4Mfrgr2/7rHR1vVBPmyXeFbZRaOgKShgpybGn5lxdw3MA9cyeSGJ+wg8mWKgafRRsHg5yqCMYhm38INp5MuPSSZ5neacDk5ssxLEVfmXRZ/ShqhHi8cG6E4Ff3tloHaJB4tFUcRCxC8P1OzBFyRWcOSVVB/t/VMT94/bDL4q8cqm2SAH/A3mZRwqyAkao6OYVQy3/70CEJu8nKsiyFof3moyhGaGgJDfO1QX8AJIks7skxWFtYyOlmtqq9WiOkvLMa7rD15r4ZP3cJBzGd6lSFBPoWtPnNQxwUCiknPmYDKYnG1nuC+EyXldG8KiL1XXVK3xcIm1zZIa5ncJeqtewUNC07XWDBpPssmwk6wPPUuclBUUUM85IQLRWwAaKSAsVsgbFP6vp/IdrOZ0rZeaNJy8ag+Me4D8tEHrZSgqFZrVOUN2zovssUrD3VS928XXuAZyRbJH97hYYT6wOMHvpUPItKjXg8B0rNdRXRihnFAh9hklZqZcd7WA5aosuz18fKtEGsu0CHT63Y+mFxdUhlUilc/TDTKmpDMjBhO1MyGG5y664ry5IXLYTt4C9tv98biZ9ZZ+BvFCHl4A+4apgUGkuNh/0nELOgRZih9Ee+zljNHFE85FuzvBACocHLoLwuRfYPruwJ/nDJewTNF0WhnF/uXPH1rpuIhupBOqjhIad1PinsdBOLB2zicE6q8vFxU2c7SrRCCc0/hSrA6MtH6FGVt/HwG3w7cyFRA60uMSG6/ApOXAml8PosihRr++wYB9B8hT7jh9hQivObSCiyhj3pJH3gHDysEhdVdtZXb3RIbOTmxjZYELxFtpwO5n4g8OSdwF+Iq3dt5n5DudJzBW/rIYjbZBhprftKCq4jXEhIq2tOLwowoLCp4bRYN5IUNkCa1mrPYMQ/k1rcYBlUo1txaHpb+snIrmYokpmDJfmqmZIPgQZY7EWOgn9WX+zelT3GIu3H0v8Cdpu8qotOq+yfttVABsl0fsNPJJRLWfptYs80chWk9dq3kdKF8Nf62fHvX6FKAeE8osYbQ0voWbrqnVQ/qttuRStLcad4H0blZ01rjRNGh57ZeTEumo52uj3H10xLIZbmS3jK+/AbVbhy9nYA1kUX3qJqDmJoRRauf0mlNnt5liIkoWixx8sxM1RSpe7AcBJ/9zKF3FSLZZMBlSW40NaaUNEPSwwDhgVCTpBxCZ2qJRibWExlS5G2VhxmiTT4zi/qHMuMBZ5ev62ZyrJq06/7/xljt1rGQc4G60rp3AQp2hTDHB3dRVuBVXUuaaYFMz2KulYN7ipQd2TweZRim9fWthaCnvgxOefSownrcPtPrd4ITrX3uPiO16gzYUKJ9XX05RbgRMk7wY+fs5FXPsv2JSmfkgz1YFeFD+nVjkprx6fTPEax8icN/4GuVi2BfFRGZFDnWuHv7MQp9zgG+UX9yB440JC+zqLjQgW3uGHikkFWCvEBuGEJGH25ggiP20bWvHdQ3lvH/A5+xXn2AK5K7xI6nDWPMLtyBC0mgddGWPh/Ox7x/V46htb5RzK9QOBUBvCwBcr39XlQp0rk3yuKZjclIcVblTBw8mxf8nr8uhE+P3+nF/fZpVuJ2nlHQQJbBkr8igxctq7d6ENDAlKao6D2sskDS4T01OiK5nI061X7bw6bGeZuXYsFDi5W69gmkNWLUVlY5eROywT5Q3k/uXw/nXFKYzHPDX8FRh2UIkuUoWkrAABWtSuO5kSRPSDGN1RusMxKB4txvRvJGVBei3RRoeuypI+O3/g+uvOvwD3BbwoeZSHfj53FVx5PAJhWMF1VQ4k8g3uoO8aTaycK0orhTm0OjcXk80qcDK0nF0l/dMfIXcLa+oJJz3fqCcz+6tkc5tPMfQV1DGHj7Su3q7knx9N3PG8S4IRA8jiH6G9/0pfAcKynRzT8EAKstyoVS/fS4rvyTleRNNyg7lk2TvSiPJQcL6aY/97ppwBQBYbGvZzne7+j82lSJlWj3sSuEyv6Rv/V4yx/eTGbbPZ/3bRbwYCpTdCqRdr+W0svDNrOtBgzzKMG9rJIG9ViMZdIZMkdNQMpi1QniH28eYenxGoISWN6lPYhFaW3/UgoJbaR9Flp9I97PmI7D0DKIGqHCULyOv6yI9zec0MUSKHWLLaFr1ANdqDMmncQsOlWEshl1XVPXAl6sINZSXBizJi5jYHYDvzZBmhhS/Cy5d3SyH7XYMdh4pPmp1O2RcYjWwBhMFLSIq6I/BMbk4oXu244Im+xxdTa0mcZqWdW5ztcTVn66Q/UgWsL1GHnjxNRZQAKRZzBr6hHEWgAb8fsUH+5qtPg/sotRC+vbrdFYgDkI/BZTff18NbL7CyjkczeFo3Jdw8aV+xiW0XkPwp5zU9ckejW+eSLZApcMlTZnny+Rc8hiiXSGE52uAdbekX+ZT8OudA8wHCeHmSJIrEXbG1er5TNhxDd4iT2mJLUNYpzIeAmx/i/oC1zYvVeo00NUQxfKUpYkJ+4VbXfuOg7WRlEcBfewfX+cbZ0KbtBTC+xAjcUCMWX7VCwkFfv1BiN4/Vx73NzpT1NgK/gHijIkfeyHjqgac8lxkta+404+DbixcDvGrNCow2TC3xN0qPTYDqmqvZM35LMcyH9MV71WsUpeVd9K8jqjwBx3Tlm4HDFb2KOa3IAdbr3DOQNexi0AkcMYGdiokGWo+7DiL8GuVqbQtbcHnMI1Vc+SFKfy8Iqt2gqUUTIo02lesq3zCvQcQGm9H9rAq2nEy6kRXY/IsouPN3t7cH8SBEXjua7BecU4IoHioQW3KPXJN6B3nhQsoJLGw6hnDDF/QuD9hAmh7scuNHv+DFQ7KnxIkiP+HZIgTrhVjzMkQrfNOJf9GNXPpUEX6qEaOZmQr0C0iklZVsRGF+AB/JKAFYH76eVQgFY65c3AuPo2pwNz4Uc34GzsU3IQVJ9VZO+3Os3ijMZG6Z/QCTxdiUlQXbZkopgPCRUrCb0+mOxJsu/mQ1U0+ZiwFaD1C2B/WhSvIQ==
Variant 4
DifficultyLevel
637
Question
A cube has a side length of 14 cm.
Two smaller cubes of side length 7 cm are attached to the larger cube as shown in the diagram below.
Including the base, what is the surface area of the new object?
Worked Solution
One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 14 × 14 = 1176 cm2
S.A. (small cube) = 6 × 7 × 7 = 294 cm2
S.A. (sides not showing) = 4 × (7 × 7) = 196 cm2
|
= 1176 + (2 × 294) − 196 |
= 1568 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cube has a side length of 14 cm.
Two smaller cubes of side length 7 cm are attached to the larger cube as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA21_v4.svg 240 indent vpad
Including the base, what is the surface area of the new object? |
workedSolution | One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 14 × 14 = 1176 cm$^2$
S.A. (small cube) = 6 × 7 × 7 = 294 cm$^2$
S.A. (sides not showing) = 4 × (7 × 7) = 196 cm$^2$
sm_nogap $\therefore$ Total S.A.
>>||
|-|
|= 1176 + (2 × 294) − 196|
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18HhLS4pOkdh8aA4E/n68rfEIa9F32MnegCtRBIjeIfmA1DK0v+CterZdvungTlRoXSmM1kY38fprwuaMZslySPbaMFCZNclyccgWaXYQR4r2EXJqu/h5kX4ENYoGJXz6+5rI+xnOjKp6f+7zZINLm3DxC9B2o1rM5mQxDFgLRhS+0z94v4PqHu5RM1tqnPFagvUmSBxMrT7IqpWAx2LiRMe39zUoleL7IybcaS1vRYWOlG0WPjqGCkQbmsmW48GN8r/U2kQqYlYSUdZnRXvHDf5JZrc0VQI3UsYEC05QmXSqokNRTUuhnA/3Ea4EB/YYpcD+sRQMGbQu3uowk2FPGSuOHEJr0UTY1da4calWDyIpIWPiuvkiZiefLehAwaGKSpxpOJ94E/oHTuyx4i+i+kUCsqJ4mqn0qgMA+1h2+mqX/MhBopbWDu0i7nOVqTLbhcgqrlRhomIU73ywSL1gEm5DiCx56U69sxKzq+7IoJJz0Rr9yHRflJMGPEegayHyuqzEv61eEikF6Y4zMHVchji/WdVETGr0pI7dzwvXjzlWmUnjGf3vwP4FDJ07yL5vQThCOqd/dXw3ILEIrZsfGZ265b/PAszwwYEFu07t80O1aeKMYeNFQwz1P3wt+Esm1pLlBQ1LvzFEWf48V5TC/Vb//qNFEU3gEe/S88VT35tBqH9c6/izjjFYkDYAB2pdDV4MXmGBed9PGMIeg6RyuN0HjRTCf2hGDxxU2gXuKUrAxFs4YM1kaNSb29iN7BEdgIHNa6QEKeZ9NQwe5JvgwPYVBbxaMiGF7KWRyNRGP/K33BAHe5fM4MjLxFa89MBWpOYV/ICkny238PMH10ZxywrYm6LWVAeuiZVesP45GwoPtv3sl60f/yCMMtwCVUtlWP0g3W7naHuFbXeAuPPXsofj5z5xb5pT4eFjD6zEStbBT48SGSzVR1sXHxr1KmaMoDxIfoHH+FvFprY2UZFhOC11sAml7Z44lP3uEV27Fl6Tc+AJvRSL8hmK1SsRgISksJRq91FSVuqxVNYtgx+qYBQGjEWzIXzmcGFzYgD15hvhrrSv9sadQIsfnnxLhM7VXf/ah40lflwx3vOsne2jvGDISwyuwjpGtEhDaMWon5yQ/ToeHAa/q5y/0+zAeU2g50ZBK4d4WMAdcvIQL4BpAOaoueO+ry/5PujANOi0Whu6TmyHOUf2A55Wpba7vu6cY4UEk+/2y9JRU/n2xywKW4NDXI61Wy61qok3UwDYGu5ma++pa/05pYikod7FKODT5Pp6zYSK4FUuK0NGpPHHKOQlyhwNZ0xQ2j2EZRE/kP2ac6CVkgClMd9wEkln9x/l/HaoOFCZt7Te3QGf3FVUJG0MPSDKtt4n9PLee2P/Olowr4N6RDUuF62ZSRnxwnW1zvjnlKBsslGZdiHfwUSt3O73aOK8Kr7blb4ne3l2YWwpUBo6jRK/BiIF5220WfHDZ022NyzkQxkDb3g3TQsPkEQuV3S/qqK2d3s/xMpXGRROfcTq0YWhG2xAVnkiR6y+G51u4NeMxA/gL0IjVwvgjMMLDd0IJHenDzLH6ttNLGq5n3APugI8CjAsNWQgha7hk9wT1u2Nf9I7wwXJRoKgP0DDwuG99JuTo5aA//jwdvqJj9b6Q1OnsQhX84OqmeXX2F6Hruo98PC6iA2HabwaKuv2QUNZQmR4gB3UiKFFbQ4vklCdch8S0wN0hG4vUkx5wPY2jTTiBBUyoQunGmwsVu2MbW6IT6lYvWdPok+6Ri/pcPCA7apmKhCZ3TDri3tJ6KwDos6PtvejLskxDxTUAAFIl16Ft+OuKPa6v8ROBT11VTMOXXg/JemVufsWYOEtfEIvlNEwkMiW+IDnCBxc8qTvKRYj0tLjY4/w9WrMq24vNWRyRdpmXihohhjYaY5Wsy250VKFhqFmBEnLb0x+s1IfGC4MT/lwIs6uhxvk5fSEeWHwheV3s4eW1Hvv75QfZ1+M4he7oq77SfKB40TJxx/xdQ6lPVxw8kVZj/DnOqFXy3AvMVsjiClncL/2plWzWMMAWnJb36244mqWs3gREDZjAP+I+YpQ753BaLdFNRtmYxzGu3xMp4jPbSOnItLOMwDP20Uc6zshU58Mo0/WtiFRDDYRxKv46mTIHuZx2Xd3dRxVnPaP/jQhjxpi1U6XNEF3L/UVXn2Y59D4Ju7gEH7MSzfWmwZkTW8q4J4/I8TGA2GTV7DSxi9gfK4Ok+eDOlvDhzv0Bb6lOGstrBIYRMcQFlOTs4hi+qVWYiW7HGN3ZPTU+mhNjSY8G8uzEtyfad10kedhLv8yt5PGso3NwJCAK5+vR87001uO74tM4VtIrUizAxRJ1lCcEqs9wOn1Z4a71XNLCO3NNhaGPIKyOMFkuJTSQ9/z5ZqilHlqeGWN4avArIaV3ui6yc+5QVqvfjcEpc01dfNA4Zukl6spufMuoBsXd94pq8O7IUHUDn/vMxzqTqlZ5GYNGZKWb1RmtELUXpDofYWIANYFWwvWrlTOzeu4zOEvxAJGG5Y8C0upkNqg7h69g0oqCMLjbHpPYFs5H9YwANshN4IA0IH3NhgcR/6Vcmv+uZqGWeqn6eDvNMAfjlg3ko0Tkp0i/gczpE4a4Ilqveu50Ymm98b7/NbuaWkjYA5UE8zBHDbCjFO+TunC5Gqn9OrtAvUPX+guCO07KHQEDckEt0gIF0Nu66SUQgzWY78ux7GcxYcTx0kwZd/P3UZXSQ2oE0vAPnUBu4eIttHczw4QPWP6odHCjnH+hPkvmyHBzI7RQsidCSAVW4nTKrgUtCD5ONBdxzxi/pKpWLDOVT+vpi7rk/SKpf7bmURdXD1RnpWPiE/2hTjeRtyViEffSLmkwEfrPw0mmaJg91LHuoi/BjTCFdGfUXv1uvl1wSz2xET5xxBiVpCPGkPWW1EEIvMxPGKlebXa25UyvAw8pIyUzKM7UXMFptOKU+Dalzp/gwQW/0NIq2MOKXau8izxOXeH/50lr7bCb33zmI9rX7NFSZ9Q18zoMbHVfuITz0x6oswu6HsVXDkbi03lm/quXVCqC+ekvRES4zF0/5noMPJf0Ku49+44nowl/JBqew9phyoUd7+ZvUJf26dR0yseS/rXkQMwnOK3kTtL1K7RoxMfSQRGg703yTmvh9b9M+cXgabgdc+/DJSXuIXK9yAFzqcZ8BGJugk63lY/LTAcF/bEWtQFpSoY68EgwJzW3gvQrlfJKJmEpky3BICnAp4JqmeoFWOI2zT8DPZSITiIGHow7qg4rw2HzPwgQALY+Cg578Ldr3i3LCx9dnDIKBLSkmu/GkB9EpEJhed7I1rlhT9s4/5P+mVm6YRuS/hzIQOYdcRen2ZTycgDcFj+m1MEdbL9G7bxacigThcLDpm/HyrV1Ve3RQ9XwwgOLqf+giu+92j8dN5a7WTSxp8rW3rm7GVio2CHXYlniorqUl/xEL5pbroJRwudcj9LoCxW+AhwulvjINIbGWg1TLIp4pQl4pndIKgq4u9RjiTadEoQWHLMAAuVkA2L+FAQDZSsTCQkt2CxRXOBZWfBVmu/6mDhBkpW7KSpdpRUWDCH2cNESBvkbaOO9KUZ1afAjFir5qPTMineXVcog6mdJeQ6K0aaUpXlc0pO+2VSRc0QVzx6D7XV2T4Gp9y2eMQflmevxwHzg/5OnsL1sXrGF1YA3BSKDEUN/UjG8f7ari9Ag3KG9F4OhCvGkmwDUFOXfx2QCSKdRaZWeiFk/dERTQ2yVe/R7tZkCM2tx6UrM9VH9aYEjpM2Oc6MheAr7ZkaDES9bKkxckbteHOyqY0Jq2miZeuLyVcyJw3eR1Dzm96YsgNiwWXWOVy1KRCJFv/8OvL+cQsRA33M8Vai9tUNf51t5szcxt5fFJkXoYgc83S9TWZ9R3bu5aoTrfNGj+XukyZ0ycyHwLWKKOYtiCD15wFa12E9liZCXS9oPQ4NDpCc+My6IPfj1p5Pdr2+hbYgfSzFelduhDh2msU/JE7rYGCSLP5ifo2LfWnw6owigUNUqf8qB4sLKuJv4b/+PeJXnKRfaCFNfFjzqNAxs5qKSstPFcITWowc3Tkv1WernsCBtKDif1GLK1Jf6SrHvIo14fasWj45e0fZeUEvYUjO7ZXCyOYWM4QSY5ECedMct66qy9cc/yBjcRMiCG5qOXQHiHTYUefrket8NuykuqqljrJoqrB4vY3kXd0b9wp63ECnh23mWdhJ94/KkjzRhNpKt8yji3Pajj9rds9bv281LbiQq8fc1rQRmfQIHi/RCLIAhtjfFhQk7eNHVCLnnzJiTNvKmP74SPuaLohBGvUlpGrVa3AWah1+aFcmI7u1a6UbhrHqJZRhiQB+HZX2E/e191ITwq/czmB/kLUceqJOSmbbxDvTc0DXef7Oin1iWkV7RitKgVEulxji+/Qb8NbyzymrzMaOzDmrkNAtES1aNq9QHu79Rn8YsC1k1ydZe0m16TbXsP4ogRVkW8wHhTSftQ6R6DBDdZXXxrAS+uTELLn9DpVtLkwtwt7gB99GP/BHJmS00graSIkk469VRkuEmctVoPEhgIJYrqaymjn4B1SDe+x+pjHQ6L15RVNIxXmITg6yBJGRTwB/JyIig+xHuV0JvoUIxU3hUzh/kJn4XOdy/eVg2jntOzIiA4thoprZurn8BSWKddqou9koEqZQePZiyGqP7rVzYJFP9tc2fk6F2/WbhJrvblGZYOmX47f7KNLzdNN3TyJrpL0yhNgGifNh9HQAkCqRI/HDEa160bTq2SH31Y+GWJBv4u/YaSzKHPWMFuJuB1jsk1++/zu/RIqYYAB9v5RSWb+VfCGOvrd56N6LUMUEKl0PuytNqdvVlgDJNaRwer1vYT++cc7AULJ2nE6kQVuI0XWfwo/bhA9LkeVaI/+OPOyoanJSVxJsAnJMNjSUQzT2qA+fXJ0gCY/kdN8A6CqjSJz8wn0vCZRZyA7oNeQ7N7rEv040X7VhDt6vh5K6W3nFLh2Vk2YEFh5DzZ2/w7JMHjj1K1AVhxO8ive+qVBzZBNDRGTjAY1g4rWmKB3357VvHE6YjRs3Jxr4tv3rIxEv4HDkPgzngfZSqdOWsablgUZ7ydMfxUZ+iZshmtrIllyVJBnZJNB989+vzr7lIuFDq9ag4HfIsENgutteICduFulK0R2CZFVbfZAgtqGQibFU4PyB47ZmTImPsT6MQnJ6n3MwiYtfTcXi88QDRLK8s1OmrymwiLQMkFvDL5VjhU78ZIvHROPvz5TC6WnVWUioXxMlTqNUTK0oBSIf98qaAgc41pgYWu461yLkTqaHcmzLUphwIxtmm4Tq8wvM5+uNWDSq5T7GR3IvW+UZI0fM/2Px6HshT6rZOQM1jXhKBG/eRHeX7R/QFHUXgfCQbHCiWTwrGBD4E2N8XOMr99K0Wte2yWGBikPVWtvHzaz9O4xMST0WnZbMbyjFsUGblFee7dw7OcpuHPy8tVaV3vZM4fDe2sRer7oftuk6RKjIq6uXIIY6EZCfoXuy611CK4TUfhD1UlcYnWBJmDtcyF06cZDxpULj02DuI8jwl6fx36myXm/iJoMpmV5SUfm+BsAGWBCTIbeSyceRfTvVRH2/l3X2QtzuKCH6WA3PDum9JcVqvDE6EAUquu10hL0CX+kIisnLd0cdN7hZs7lOiFj5RjXoIlvPXcAhDQ0LWYRxchxi7ZzWjf9NoHrJxNzYSfubNHdihWuFVYAr7Vf/0goNG3R9hzyrvEC+iOEKwdZDJstEqRlTb0fbs6nUJ5diVPLysh9ZqqRmsqvwtu6VGMWiPTC0EGsqaDw54QiXE83pVDLJ9qTYS0DggsZwPeeSJKUu3/m5htdRi572MMI7v362OtIrg4sa9Gp/ifz5vYB8xjWNcxzh7OUhN4f7OFebh2+1YxkuJsRci59dGkweVnw0aT0T1kipmBmrzSbatOfq1wg/Kkf8KXeHYJRBW8iGqvL7pAN5T+RoeCArKvveCVtWYMmeIFVu6meP0aFBhFcMNYmoblZfMZrutrEQkZeaOSM9SiqCiFYpBPCsDPYtmktTPDTwnfJlGvxRKt86QInBPSIF4H9M153PT9NXLoZPQlS48VR5zP1Rc0yT9nzh28RkkKp2XKFP9yBRHIzQrUKNQQC2MyRj9aK56KmfSC05h5YOu8oXCDl5bq1LP+MPidxggHXpw7An+vVe5i1MKGQNSMQgVjDiF+iT4bVT5/RR4q5V3ylx3XujuK2ximNvYJaeqx5ATp8CMaJoSIidQ7zmN/o+QFcbrpuTW3iulUuurOYx4oWstfyIMFPTsx7vdLk8AEZeY3YgfG+HYpXQHYNkZPlER5OcMtt5LwICW6FpTfRlzf+ROTI91teP4pEaAe9AzOcPBG+jc7U0TY3bqm/P6o0eFJMHrGGOAW3ZSVyBCpuixv9qJ0FVF8Jmdtr4QVAYXOxh5VArs6Q//qIzT7JO2cAOLLQrHPf4CHD1SOm+Pn5YyWZInVgEHsgr/dmoRYY1XeywbbS0mv+v8Ba8p26Tgtd4C19j8CvBMwodIqN95vmvB60aogkB9X1156HhB/6VoDOuqohhtg5gqoDLBEiOc61mt1CXVbMNwnOSNZHutTxynLSKQeaOcZjsluEy0NYSd6ToH89DFrMBMG0qqjJrhBuUqYCeqeSvGkqdwaIdhuXEr3UaDNjcEORK+qxIixRviwuMBPHtwIhQQgO20b68poBG+d3LJZzy7V7LymezRtAvnUewEQXSPCwbWgCllLr1k2j28gDM1jxmk9KqqQudu8sHWjvHf5rIREIbZnRmnJEL8hwWREKFvqmseWOBxtECJ4Pb/8GpwL64Qho6dsYRIJOrlKSQFU+dyBr+/l+zekjg+brEDQigeKkPtKt19SPRKIKO6VVeSbWfoGxcie3UcmSCQrEMrSHXQ9/g4JETLs+8m+sHA71coZs/I/NczTgi15E95v1sEt5hed/mcs9717wfILGPPBjyBBZr2QHWcP/zCV4Kcsk9APR0y8Hq0ifpWGBjNeo2GrgWdbd0eu9rNkqNuPAHnVDRpXqRjmRshZTgR5nMWyYdNSk9WnblCn01crfG/pLbd3cOKv880bhzTHTTRSi9F2ly5X8JiU3IAFEhFfhyvb1SCtd22lp9fdz9KBL0s4qtMfxJvr3HE8l502kn6oWYSnZ3FD/G9mxqFja+q4Hr+5w1R5FrBA06fpPDjoi1dJ77H2zDzM7aOQV5o19TEuytwbd/ppVnvywRc3odBBrriuPFIaRf1Tfo5JOqCL7B3eEFEoJwDLY0oAD60Ee8mH5H3xF3ZTStfbRR27+8Jo9mym07w0r0XNvbEPGgVCJJkgIgHz9sn97l2hHAQ+ygH5APKIZqsSLDW1phfo0HTw3/zqTeRAMotJXFz7Sg3Ird/5Grz2utS7WnMAv9Z7ZoGWf7+VZKKitygMmV8H1qIsYB33Me32Nk6KYfn2TzTi1RxiEFD7BN17H6U0Y1i3tJXU36FyhS6XsxtPhbbNN48jYd40jrlms5Y+sS5ERlAsoWsEuCR8q5iAx+E/bgg/+fEnbEvk8VBReUG5EDNoJVih7HuIQ+gwufg8udMO2kQv6GRcE2V+m5Gj1qsxgtVvdtoFwo/8Faj4XdCqiJui29E6daYYcohBLH9Fq+T79WFdNVcB94gvCl8dFVfOUhEGxyz6wyNS2fGtlXXvmBO61jfE8QiR0t/a1gQb1hQtsnm9MflF4kVC6sMWn06x9U7eISdWowePo7Vc31zfnFNRW5SPk1eLdZBzWZuZ7i9RoHBIUID8Qk4EVjWRleR6KUPonzpcRr08LiJSAu89r9v6f1wEtDVQWpuqZbB/1oEzCCYezkdFs3eucvk0IiRqpUhpxPzu1Rpmtb3rTP5DbGjyGtfuhrk6bARr5b1xU+s7orjg9J/wCiEqBqgebEFSuX7qSZwi5yTlQCbS9d7vhvxFjYiS406H69tQHSkHV13U7lZB7Sr25ox+3OgaUAd15jYMyzJvvkCN7/6HZwu9o0XjiydEPg6/zVISWU7hjmtDNZ9MipOnLMNKPldxOrEZk/SKoPB1cFOSg5APtiyXgPEYvPa/vMPn4oaHugY+RRlFz0ZzyGWt4/FF5w3TjiarqhMjsOwuvpS5VRNB6D62O0h4Rmc9WYZ6h13K/2eVavi1cL1DPOMQ492wdMReQYE0jPnXuDBDWBXtYc07fMAPhLJRD+Y/dyg2PfIuQqtITre28fMpLMglw3NZ7yINpD0CZY46VuqwErKKMHnUu9mO6Y2/dpxBr6Vw3lmKRbHIEyGFs0AmGyro1m0+8TDdWnVbGKkfXgcjTP/RgdiwMv68HWWr3L3VZd7/NzSHX5jvJLg9vWr7sApSFTkg0LbFOCpGb2RSOH/6FiH1UawrMGXBC279+GDWRBsJdC0VMwlS/kok7aYyIJsuoUnqeAET4RQBdiuA68yU+AMADL8cqmzNNzAIXF9ldq3Wy0CaG/YrOeWWHgmSDFXzfnWyvZHCB60GKgfdbIM09zzBMeqKQjRYBFB0V5B7aRbmLk/ZzXWKGnz1UOmxIv9MlQQ4LYFFMjHM84M7DxYjtojzncrGSYz1dYZUAmUPZsCXVjktiz9DU00cM++/6+Rw3TcvfoeaXcYvgsE/5W/utGz52D5oor9vwDTRrZRBTX2FQx4Vk14rvWQ66QKnP5gY8NT+hZ5IO2VIMTLMN3qzCANLnU9mDa1fig3P9nhzDIcpxHoum6iNZtSoLNij7uSzgU4NRxK2iU7dd3rRLsnP1fCTIJJYvbeJP9QBSMGz8kCRbPFjwO6tAYKwSkUBXfJmcqla9SAz/hvqFbSOdHH3fKjWp8zXnLLF1jtOrQmMbU6UYxvrQQiXBT2YZmOoVP36sU5mCaVWfkF7+8I28RCgMAsH+lv2vMpVakwWKGlvm4c5czd39QmtW+wV22vNa7/rdbzX2CypHAMnlKuEK9M/kfiuaXD1x7sGc/WhW8BcEoC7nNYrN91py1VH0zb8LAl4T7eab8qu0IYRzTrg7F6a8TKy/9AtinnWSW/m6Npjh/JRAzGH8CspOH1iEgIr7nEl/1D5Y4FoAiqhbdFJM6cmtVfPngv+xSNwf2hFMkpAmR+J4e/Cgwh5VXzgRd/f6/4e5Htx1YY6Axlm+Pbo44i8fz1bBOsnHddOSacv6FodiigNw7sxWboSG3tfu2QHyQyY36fhHPwlzUi9OLbnZd3RD1W1GdCftXZupb5QbAXhky/wvvZUjhO/jRwudqg3I4MVX2+2kWy5DPJjD0rZxuTsZnMFcPdvmEkTmXJdXJSFhFN/BwT0N1IJqSoHiV0GgV2gAoCUwoU/uV9WNOGOGFdZAlhsbFInQo30lq4YsgdAPa4J3+sqblIxteD+l4rpin6JRrRpSZBIFgtgQCCY9RKcgt68zXbKx5tCxtJahocO6R/dzj3zQAUJ0NDi30GPQklgBivdy78rbzQp86LFzg2WlfSjl8nUv7XYSzNWqOUcgydEq/40KjWoKYrKSCwzZ6szcKnDjMi4V669hPJ/p07PGytodXzsl8SzI86shfTYA6qSxaSiCVu2sQW/7J+pwLkR7Z4CDtss0t3Sow4SjGTZkdwRzGbnZvuCrlrZXtuvBac75F6dcBounFLRtPdo+6gam0vZ3wec+IIT5gFMMfVI1nTMtLlb2HOsYJWnWj4AQRERKPPa3yvZpeHH/Y7gzbA8Je6Ry4/sRJPzx42lw9a/eR32myV5KcuDF93sPKBBtCgimyS5Plz7PDrIP2FY00KgfPvMh6l7e8y7pgBetfn3MgxOiGYZ3CzdS3IJ0VLAM/Ju5ImantoeRW8RQ9meT8K80gHLwP9C8AJjLMsWqu+DhJw3qmGlDNmS1kfCiYuNhIXOW0ufISHBK15l2Ahp5NlqLL5plVHYzFBwkXXH8gvNCIBbyQ4jQQH4yqHDHCzfwpuCMdoA1TbfWNwLP1XqrbtDX2Yu65V9nUq78p9KqLIBKe6y+dgH/GwwY2leez0Cjm46WkYgctULLCBWNKkB6rJaiX7tNjauGIzq4hd9X7lvcjFasW2LaVYXyivs3xUSq/uUEsY9Eci2epXbeTAli9wniej8yloFrkCYfdIUX8fk11euZ+0i/Bv3XJq4e2eGiEveq1DNBxwqN8iu7kOANKHEV1iIfbO+41p36uYwuV70TfrcNwTzOcq+Kthuv0rSrYI+TbVO7RfA8jcPSpPksFcGGjvboiUMc71H+NvNmszekMwhIMCwDHZDbVf+V3WrHr7+v3wJPMkZcmwZ8sJQcwZxcBS7NIvUwSZlUai923xwZ/QUv+O7bqUhD1/JF0iQc5CUGAmF9toao1seYsmEWjiDxsoua3raFK1bRAyevgcYNaaubvifO2Qp9B/hRa09wEPhu3Xr5XMynCRiXE7/KIeHqBxrwjO8phNXX1i1AJQkCRLKbwhSwgJ7d0tLKSu0gV6FQcyukRJzxLLtSWR652yADMtq4I1Sln+cqeyplpOYP5nBWfjz2N+70eF9XopVhmH+0WMTRLS0dUKrp6RjfTYQIUzzfUbb9lMFSsqPY3XiLyIt0nhNXGkdXy0+1W36Qb8SoquN70Xt0kgP/q7epx52CcqiR0hwMh7N1gxS/DmXN9nz8/Q40SSecKxZrLueVYwOaiT/fae+9qgxkW6FzNLZ+hScUKR8mRnYbgvymu57XkNFro+BiWKHPksb8v95So5lArKgdldq/F4INnjo5dDZzdNVI4ZB1jhodD0sOIyqGtWKGbYQCNkB6SAW5uxYB3F52Yqrz+ym763lL8aVXqrUBZUn3KzYEZ/GVVpjB0N438BXz6ztY/6i/QbyvyfBjTNFPzg3YN/sRtps4FClVSGENSY81I2xBqo25KSVrqnJgaFVki0A1DqPq/G2z6viT9eABLIAeC/ZjFi9CJjP3pto7Ta+jpGkDray6vvijcY2O+6px9MIuC1qjKAGApXSk/z7VOFUUrsFzolzgjwl8CeKT55x3oRXgA4lGKSAbZX8FPHcT33Liel+k044ovcqBZk1p7jsZACeh5vRFjPKzy2yaMZK7CF6TXHYXwNSdl0VO+TeOCR/UPxM0fKzSCD32CsTSjtQvqpMcMp5jR8piXkWxIaXTrp5bC5fJm9ihdu/n/rUzhnRK5wmxImFvOMSJ+Sl19/0NGbvwGxP1bVMs0n5SbQcVX97MAsh0i+sWNMh5PbfAi45YoSS1hvjQ4n0gosOcGtfyAnHSmpw4uQaTm5GTYYkXm4V9DVW4UvwahAaU6R/Xzl8DKu0IOn49affuhrWJ/RlALm6x+eLpf+5MGBxwP4WjbFehjoi/GA+BwNAYGClGLTVCf6YnEhRDZU2YJtaoR4dfvpfYXiFvvsazFqY2iF7NBul1nweYCxOLXXD4pbYM/lHMCbsQD/2DenetXKePPRy+t6OovL1UVGHe12QFseB+JwwDzxNuUbcrjPf2HZgxAdgLn4R1Rwa1oGF4p5wViOFIe4vH81u1d88C7+2nRKXq0D1NImQvaATz/4VcMiOrQJDnz0wxZSl++1elu2zfKOf7xibXMkBFt1ctsxfdbRIvpzSPHD78KK8WV6Gi43qmAYJlfmgQlAU5WNc2XhFd/Kyh+G5IYNtbJ5X9jD4HjCtgwWAxFnv5Ac/qQ3UoCYrGN2QTL86rxA0jmOYVtC33YMasuVjz8LcN32Fcm8WjnPN9j8ExasE3T5KMSVDpDL3n2/YWSKKFRINvXkgUle+kVJ0nIq/c/ZLJ8wP4JLIHMp48ebz83VfswlXXt+o73wv44eoVTN0YzritwsFwAekOOy+Ptu31XZdj9iHNLiHoVqKWMsQZpkhxGmSIo8Vd3Cqa8ltPTGPC0LyPLo2G9DcD/amB6fFOKVlfTDhpz5tCkwBuuRXcj+iH9ntrINZRHULtf3lDM2ION4+/H8OpHfNAcnE2LYDNO7+rxtJSkXat5+KhjQB/veRwtSDy+czhyj5MEiT9yj0PUbEinuNPculUxXs+zeT84UI
Variant 5
DifficultyLevel
636
Question
A cube has a side length of 8 cm.
Three smaller cubes of side length 4 cm are attached to the larger cube as shown in the diagram below.
Including the base, what is the surface area of the new object?
Worked Solution
One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 8 × 8 = 384 cm2
S.A. (small cube) = 6 × 4 × 4 = 96 cm2
S.A. (sides not showing) = 6 × (4 × 4) = 96 cm2
|
= 384 + (3 × 96) − 96 |
= 576 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A cube has a side length of 8 cm.
Three smaller cubes of side length 4 cm are attached to the larger cube as shown in the diagram below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-CA21_v5.svg 240 indent vpad
Including the base, what is the surface area of the new object? |
workedSolution | One strategy:
Calculate the surface area (S.A.) of each object
then deduct the faces not showing.
S.A. (large cube) = 6 × 8 × 8 = 384 cm$^2$
S.A. (small cube) = 6 × 4 × 4 = 96 cm$^2$
S.A. (sides not showing) = 6 × (4 × 4) = 96 cm$^2$
sm_nogap $\therefore$ Total S.A.
>>||
|-|
|= 384 + (3 × 96) − 96|
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers