30059
U2FsdGVkX1+j6XiJmliZvg1qJsQzqfmaBT8VGukd49Dc9oPmTa7M6IuEGY9Mzd6IBoBuimAy4V070pUaCDKkFg9aB5XRbkAhUEJspoHXastfC84858EDU/K1eMcnlsFxN1iAoN5rl4yt7wrEb1NvciUAi1s4w1hmMbOtGPlt3S3LPBw87c61dhy8GxtjD8EKxt80kyDyqSi3O/Z0YwzQU3DEXNUWoFLQakpAQFnMIiZfFCzxzxwzJea8D+clEq1ZVkPPDBtUcMKfbI38XFxo0niedpCmklR1RD2vVPDMprtyzv2OM42QnJZU/tAqRVELUJ9lJkVaHdME0v8eBTOpRHfJvaTTJWoazjIliW5s8R4FydJrKEeoMOFwXVxrhEVXwxGCPfTqM/8/nrwaU0ZV6zKBaP9pZkZdODQ+z9ojziRDraR7UMyx7mvz6gl9Fh0YCvlYS2GtRA/r9FEHGNkOCHjAnUEDWU0T1Kvndu7qZejAlILIS+TUvD7SdGEZwUen5fguXi6LJ6PFDA3cWfDjMSH20XRgNzSUA9xE2rmXwhqTxtz0AslMDtNYrEq0wsFibt9aVDxyjI00772CP6MEe1aYahPTK6b4mkJRweR7ABas8SbcN+kFKqWP7/EqAh5+9qxlzyM58FCUinhJMhopVpIYokYwZ90p2+xTw7g1rXsjWnWn7aqgbD8xN8FFVvBADPx61hTdek168d/wNTgEQik8OSlSJ8pQxwOnEqv6VviUevqgnILhg2hRGivGK1G5+9SmGuuzEsDy3QfB8YSbXlYuqX1k+RYAMz6vUEeTUT7YlrfwmqEuhn6jYC+rdn/JZ0LRBJDfOcY1qdyD0BJHkjuuJ4OxTidqYTP0S4/V44UIbwRK4+8LOKoVZKmJJioFgfIKuaytB+fbexXHRPpmdPLrb1I3YG9GLZtNJKb6WOQZdeHze16bNS4j/Rbw/xdOliVovkhCI8vqhvIukB1DE7S+4bmkQxiyKHQ2buWIOTd93GL9rzUCTO6+L6eHEdCkn3HwrET9c0YN8+5z7FZo7wtlYdoYVlYkeZyjCot6Qfry2IoL7SRD1C1D0IO1a7YrUp1mZwlcKn8nxRLSXucB+xB7BoVMWfsuUlM7fv3D63TPHR46P/h0lhJo75F9LkD+bnK9cqT3a8wjbnkut6szMRcZ6iDq8GbHwqhXE5u/abnAwfHcFRdsFGRzsCFBm7T+rT7iZGpXaGQ2VIVqGSLQz7rdoZn3V88nxT/cX6/Tp7K2XcbS65ZHc9qVLeU2xy+/wAkCi7Hqc3kLID66HLWTuL2oiSzM6y/a7BR+VW7N0Z4JpIaDg1K5G5rCJPtdSaTVthst9YMhZU47DvPy75y7RamdhvzaYmrj+WxJxXVou33fhC2VT9dE82NRSCco8+wKuLcLUr6h05bEfaGJcyKgWzgvDAv3ZEjigFGJ+Yi1HplMNthfR9Fa8xvyrIx8QOQ79P/bicZiv4t2pKDOu48Ij9TKc91as+U6V1Lsl6K5Sf7DxNOcqnQCwY7Vda9ZNO/wuSyvwtqaLQ2CfNy1XXBwaojXpxiXdeDrpvF7oB+xGIZDl/awmm2UoK8WhmYU+GEUOrYNlaLjRj1zZePvWNfDRJJbV6n+33yqUXdA0lrJ0AC8RGmhMa+AVvkExUpP31UUTjic1azodElF0eg56e8A+VYaAaQ22bOspvo/JCCee4DBCDnVKQ+YN16F30/j+bBGBC4FwEcsc0snXWnXLKj9ctY31GWgrvd21V+ItsutA5Lle5nvhZrkOMrlmwePF4tXEM9Id3XhFEX+s5RbC/38PPYSHeYOprwRKOf7cp+z4b9uiGGFGStaPi1fj+1dH4RwkLVzvoI3DHhX83qwg0tJAz6rsNtM3z/ssO0YeWTKs501AkOLxYBfMhe314VD2e9nohpXb5DCEr8l3rooMXeBObygjmkHm3Ntd4NJvTqXwkE5vKBnCNjymTKNjKX/prChd/SEQt9eRMUbIEsP+kWAAhf6+EoAHuQjhcrMmRPI12gK2Bn6gkbt3bHxXLg5JeaLegaoCZQJgDfRGMwm+8K7uhdqk6FfLQnIpqp0AEOREBPtsNjujgxwu6sGGbWdH6GuYfn/Qls1VCka5cTaCe05ooSHHJQ8QP4CvdiFyAm3Pbd8/P9A35QICGwvz1atH8Sy2a1nyjBrL4s5n6bGL+q7+p3RvuEfpcujaYdrWX6MV6Ktw/se0O4107DR9XM5DDhQ93fA664VCJKBv6fPYUj9MEBNaoT9t41Jd1tvUiekbFlTUiB3AxxPU/O6h2X5VbgJtRfxYhA4+qiKJGGJAy35fjHbTw3eF1LamFQ0fBZILKi6Nhhl7OPpE7PGYaqnPe99JVnCUsnyk7ajCGIbfeUFPZ1vIEHPKNB05X0nxaWIGG7h4l66dzSQqSJQnqzTjsqfgB1u0Z1jQwr9+uuxIaiZh6kimgdUe7YiRYEnI3YWnkMZG1tiekosJYlZW8XwQaXTmPml3Xow5toiV+9wvFUQgxlrSOmHd1ZKaSYYH32EmqB3qeaQuHrCkTkX+XL0OtOVO44aTK8yuSslNwd3U6mvECAwOuUqccTO5pqvj0BWK+wRizhrUulC4I53zFFP3So7SQhaGDpuj/1SbnI+EirNvAtm4J7C8FE2LbD3JjF/UJvrXUM9IBrOExSyyiCPu9LrBWoVvVpylV1KXZQSNRZnT9KiWkRzYi77SqflVSIQHkxNhSYfU6KR/Ux8ezst52ylkQynYysUYCaF2kt0Q0DujGGvb3DNWchOLQ/2HB21dQICQ368PK3/ZNFe9SF6n63cLT6mhcbuB/n8/Y2rltg86HEjQjwTE2D0kUW7QhWJWN0R6igBVc7kOnp64db6II1VHOQsEgMfP1DZHjGKZherFEg2nh9QG01tfEq6MHYTu5DwoQRTbvhK+JiyXaJgIaMwwE+SC/DARlXUGnZyAwg9nzMIa2SyaZvGtnOudlvULsjs0WM77tEKSEIwVM5HFuLYr0U0+ITU4kziu+yBgfVWBpgVOoEF7R3Gs9nzA1kdsUQuLuxad3+iOnCG/Z5v7eoceyKZfM5uO8TUApR8mMa0uR16AR0Y1DckXv42c5FSTG/e9gle1H+fqvx5ou5SH3yvkbSaJ1yKlz619oOtJrQ8IKbtf2ioKE2mUvGshumF7HofYXvJa+XLNcfBCMt0djR7E0Qi1/iGZQOMdUA7tfSoIuYOIyrHbPm4rLHKhy4a0XV8kmbuflhNf8TOA66In+23srkA8wNNo70GczqqBNPFjcvwmHVPvEocpD1gCb9FhYHPX2Bj0B3gf29EAcLwFr1kaJ4KClynfhvngPfHoxlvybnCJ89IUyOCPq+L0lpiGTA8jGVPpmGbbiJXZMDkL9JrQIeR9+ITJSfiKd5jpRMGKPVVbhAOwTPi1dHxjbX2RXYwogQzocOPa27e5VEUn+wZMHXdJ09p/gEvw2ACiUPjvUW+SEh6aawETr2aGLAHm1/BotGMzTzA/SceL/N83ViqGuqzJh/l5tHZzMxyqXsPvn3jMw+u4NbDsK/QEEb7wqLkuPmHpsOezhpLenrufRQ1KnAFgoiCXYLWDIEl1X+lA4Dt4R+jVCBZLO4SiqGsLiYouBseZQHSWcfFPjNDs71ORZ6EVaDis4GPKOCVKCGtjlqXzveYjwarGDfsoqePp2gx726yGNvEaXzqijJwNt61ezakVUfb3d1iSnev7hlxRXDVDDlVV44BaGWUrj45dQKM15P8hix11GB1FaSOK+gFGoR7xbgKSZ/GUeSlk45g0rhhvrCY7t5amvVQ3sV/bk/hJ/ZbIjEjptZ6nOrjBJRKWGxikihNz2pSswvjEh1OeiD8eicAwWvzRfRd8R7G5MsS38et2/ItTBndsQen/ufCeCQvK9um9u/62tbZjYb/U+J9qgSrJEJXDKt/LHm7EE4GoLor4ca+v0xW22fExuwHYcysQ5dssaSxg42CE6MUL2xawRojDNKX5R/e99qM9qUmbR85SFqAUp9Ykgws7k4WT0HvJLXD3BUgxikYa2sXzJm2L8i1flkGupME2VBi5NDtJzGHOnLZ6A80latfsebDVjodROtgd9CWIDZX8smJ++alM+Y51DUAZJ3EgyThZOoZf8MVb3oGYIsT/Dt1oUT33pXUqx33tIxDbe+pnYkLjSZw3ezLHi5ZsHC1uynMHJ2iwsnqtWhIGujG+2KnerT+17lcjo5IgPGrDAtBO81oaXGUnw+7fq3HJ/gtfmvRNnaCjzsLi/fTUGj1Hv0R82jpTFB4jj5cWBrmE00frbMpeApyfGW9m2oLPd6CPbcPlQfpCEC/4aw1xAX6LH1b74PHQ8Tvh1a1nXDLCdXzwWF9QiYfTor+vSOd/eFQgsDpnppkiFZa0mGcWPPe+86N3rAW6VM1gSLGSu3zPgejlcwYgdeOqkR/XDmmW6AiA5V2l57ohRJwS8/rduyFSs4Nub95mxk0vRIvg6yIH0iLjbiDLZiw+HF8v56sMRt0JbKDQSVpG3Gprpm6VjJkeAZbxJNmf2mN9MKW6gQCtBX8F8EM4URgxmcZ8BaqrKP+DuWtTY7/W4Ih40bI74XpF5666jbk3+siPi/gpOiJ1qKMqp365GGhQwpnGrTKG53cthxPpKlMm03nE+eAjclepHGzc9hPyRJj805Ih+Lp4goQhs9HQdnmLLSEe5vVxNmCqbmn9a1CosXTNWXs6KoV8tEzdzpejkPcBKA1r8AGJ78ggBT72PGHweuAGu2djMzp9jUF67cVhGp+YMfZoBJ9PZJWJzqJ/mHpd7CiUYeEyxzcRAXkGl76miHCcyzY6pJKMqoG2oaf4yiPn/7x7wNU4dkkNF67qYZlSw90GhzpF0AU7xzACbqKIssIGVPG7LYQy3hLER53RZmQplLm+q9D4uw9LKYHOsTylXVB4UJR+vaclx5O+7hgWRD8QbbPq0zxu6mGEqLfpML7T9r9yrDkzmpTZcpP/vJWyV+p1MUBvM7Mj1E0rRHcoRjE5HEH/S9Ud7ZamBCvzdU4TnBs1f4Q9vcXUvS+jZyFEzei9aYx746oUXMFXbZdiqFcALs9KIzAq3Gc3BrMvQdY/pgwLhPH/yokbK/ER29KYypVn+74ESs3owXMcznHTLS4C/WqtrdL/bAAvpL6A2OIQZ8aUttZwGNkgH/vOK7Gy/xLJjYAekXFKFXMxJMiMnp4ElU+qcmYODIw91FzuBYY2w12JLp66rcEgfSMNd5r/B9jE5Ape3w75bWVotYlKeLZzKjsXNrcM2xMBrMqQgU4Es71r5sV6I+Fg3A/SPrM05zkDLTV/s0V8zDXYglzZPDW4frymPH9udFQUUCyAJbV8MkPbUYz7Qx/jUy67R3+TSjPEzYdGWnrh6MDrIyTSNoNLNC7jlp3FfrYKGGFolgeYFpJfmJrGQrxOtkdaTi8hak79BQkvCr/2UOq+l5qcaARzIOYO8D9ca4d/GNHKbRhy/qFMRrCqjmjioe3EC7Qcl3uInkFYCSJCB+Mn9WvMdJUnwiZIdQ2dj54JC7tzWNK1+LHDdQtrG64btcR3f+TDwH3gklJl5dYF8uuPJ8nygp0RzuJ7hY/RMG+C0S8FYUUD/Ht2z2QbLiJVTe37csrBto8WFA1VmRN/ugJ6e7Ptjd8F3TPxanaHbwS1PWedTIyft5Zq9REQnnKjY8/TYEctSmNkKYQeEXhXNOFEbH21JOJPY79D/cOfRQeI7bGvy8oGmdvJPCb/LtXojkuFPaVeMFBYDTwTy9Na3XnwW2H5yHvBOluhLdnM87NPRv2de/lnS7HiFo0NB1ZQs1/vp0nbO/HSL+0h2yrAKuZMALmd5Rky8yoXRVrHYDGjvbGPdcmt7s6L4yuHANIMzWpeoPj9u4hP6M5vPm5CZvZ20LOAcHWU3jwFRe/IVHH6p2KogldfN7/cDiThwn5g+F8Y2QrjYKOBnMPy0WU/wJ+VJPm2Ea0DaOMevKCHlvXyhLiL3R28YKKzTI1AkAO521o9cjn/xgKkUMRkxuzhfGcqXGGCjlw2QsjEFjX9KPkJI2Q8mTKknypPUhfX55xVHhKh/GTtt+Meq1qKdhpt5pe6MBXSHT2+jy3RayxwXdY5FILWvXH2523fsTpmrs3pMZRYGpUHI3MEzwyLoe+dRaUrvtgOcXtsCg+dejPfqyiBoUg7OAFXcMdhrzcPSDCVo3UWrXxl2VqI4KJrE2Lo95w1LUgUZVb4PYfFcZ13Ty/UD9GAOy3qvl+1hk3EdW9vSGzUzq6y/F7zrw8rdcZWRhqwxNobe7sv98CpevHN2dolGQ2TwbrpnEGcGb2iOXBj051rqHRq455FWPmHnZo7TfrBs+gt+1RfP4KlEtL9vk4NVF1pxJn1SydfKd947vSbWj8FA08h/sWb56ZgfMClKBZ24cZ8b6Nc9QI8UU+hgzDm0I7nZv/SdTFgBpmSv/vW93cvCH2Y7hXQAc7d2tKI/0nRIk9LVuORdDqGjRR38kMKP4xVu3sQx4xsejNeynKnEfz08cyr0ubKW184RmGW0GBHIWGb+D3Txixi7mW3z5js3OkspZlYYAWwpBsE+DJqLja7BlJDLxCtqpqpEWZ6qzR65p6pmHT+H900vWmMF/b8mL0PU3XzwAmjDVg6KjP9lalW6n0MbA7e7mp0fNCLgBxL0RqzK1dD2XLjTfcNlqdLavylsObTWus5v7H3+Lzb1NwiMsGMIZQ6q9Sa4MsR9DdHnh+VziV3c9086aYgQA0Gg7O0xs4VMbCxSMYubARGVB2LxJI6ZWt9feQv/OI/naweZy1DZdlqz4K3kdH9DTWgjCi7PeSC4HMXwO2Bfd9RT1ajOQd5+0T/Us8jnSUM7s7n2BI1b8/Ezgrj7b0OzUMH0YWg0LQrhzD9GfTnpR8pFlpwTUlyPEUDo+XSmgw5NJBC+qNirluG4wvROm6NwlwyyOvgdxquqN/jzndun0Y9xmQoUHXAuIsrIgQj3xqm3aGyZgw1EyTe+BlXfPewk76BODGImb7p939BqdhtHm6WeO+TTRrvDlWeusQCkHCJwqk9QiDU/fU13oLUffdZdR1nlx5Rqignz90eAma4AFajnR0YFk9ruqKCydUTABtihXLvglkcUpgbcPZxd38yQ4Jt2FK966vYlWlRYcKreHdgRgMuFqvVIlBal5iTtI7/iXH/ObNgkqwGTnKdAj2Z4Ib5/xrDwNVEK7TOMwoTE70zreseepD/HEv4Bf8gwkRGA5ZiGlS6n56r0RlbJ6iubt3EVKXiNap5N9KJa5BFAALWLgNeSE2x5jPkBZRPoRNdg6UbUZ8UBJ1JaUhLsPTjVKGObOV40BaWHg06do07RkfnDKsbqIftoBJCOllaWaaq9cJKKfO6U5rV6jbOou2yCLc5QhlYGBYtJ03juaYVhSkQBj3DbpyKs/j9ZuJ6XzpcL6Rjx7C6NLg9Gy/6aEW5D7r92EIisXv5FY9AKbssEUy9IU7XIU/PPQWYAYUIAAITJuHTDRA8gaf2f0ReeX37FKMNENgOeNK7c1CdUSM1Yu699/W0AUkduDD95VFsB+b3CeSQve9do1fP49riOc70JjxqnLaaCrMIDEx7PWjdyL1htJA8y+7896kAn7Aq07nGU7ITWemS5GWUBMa1eugmi2tDq+k8SULUvvklL/B/GzEOTloJSa4DhXBxnLUrYvDVLwlqWE+PMrH7878kdO6U0rZkLo5FJSfjedAxLfHEWm79N5CYk/no9Zjz7VdX12IKqqHV6y8uoymhJDTvssIgro4FqYDp3AmFxsflt51viwUJayCRUPx0ZsJnU+HW8ECCoYZAg4ySmb1nxddwiKRGt3lhrV6IRIvOm2LFABkbYKbQ3+bcNVTxwGM8empSvacxRbKHh62jEb6kB7pejvLOojqV4iN+fD4rBKiRH7X6lyEpgF4/SNeEn2Z7DHJuuiHQCqvjcVePnya+jEKLFooeKyNmRQxy6KcVjaqrKB5hzBQfI+onWTBgbBS/5AOXXNvdL7GTxJ3Wok6KDknnYtUBlHE0s0dzKW9fgpWS06lgjoO/A0oFzktj+DG9lJgLlvXOJZAVQIgFddlHCjN0isHDFEhwIBQ1dLUeaLFBR5SayEb3/IJSBfkEzmismiljYN8IQlqvRKIF6sI80Q2HtBB/jeMzra9+gqj1OrAxGi4e2ZzucFFryJQ818ZJaiibPXtC9T/c7aD2QczosImbwC+1COcMm5bROW+xnV/F7jhtKlipOFyi8di/OzALXywupEc2pJnluYu0fIkEQvRs9EERCTtwOr2aRBSlAcvmgLnBTCh171od8QdeGdYvjbpw+bUZX1zYRzHglLTivhjgIJX+XbFZ3ql9UCdHzXfKxr85Ac8RjNBlzIUXt42ZNXp+pj8bolB3Ca4i1SGvdk/glL2NQPU8sOOWXT16KQhg1TCzT76Yzz9Bsr+tY2DeV/F/qrhgJCpi5mtrh5KCyIEns7AciKcxEG70w6BRVRlqACvQ6Pr5Rk+H8cpfP+rLSykoy7K+aLPc3eEh86U2XD5j/1SnMdKgg6aTBjr+h3OXU7MblZZSID91UGkfI6AC3fctGssNC806MzNOYsBnXzUd3SMTxdt8ddJip2uWZCun1cxB/IY7L7pS9Aw8c4SNT/Y7BJwcLzyBTc7yKeePttUOahnIjcwkdAyhJet3TfGlkMMI58MtbEHiQ+J4QRdU8VLuI3iBzRzPazDsgNKDiao7J5vG9+lDOjVu3VoSbC9YY+7XtBsvMv3QRWQcQ52Dh2Om7n2WG4JMpotIGJTqRFU+PcMkD0mgwx5ry6cv970fRVmYriQe+3pA9Xfpt5e3kA7Ng6LSF8aatN19iXk/0qNHhQxOR37a5hGbd5cUpANKIldYDAnkzWtzyvp/nFxTvdKJcE1VRNKu+iGhoHBx9aAD8IQCI4xraVTH/mhKsNOse9GdMYn9HL79S6oopRfDLHwA3KbzcRlFFYwHXBXhnVmrGWJkrr2CiHRUx9zvQNSefk8Zkc8FX7Zy10r5j/OjtKg540ZurJKWKx5jCjR7b8tYQnE9stQMPNdfzU7cWjNRnx5hVIQQYHNB1B0NYdQoio/5dsfryvLPs1GQgQW+VHPGxFwSqe+RY/Acv4C6MQmWTfc/on1VbmpBc5jO8yQU4u5pv5EaWNys1C17riwi+ygK7+a+pxM8TzmQPG1HJVo5/i7xiZv7Uerhm0xz6QL4DpMS6S5Nx0Tbm6zAjYJc0gh+t8n1yXF1fsWtloyaJAf7P4phr7CwsAzqEkur4mL5wJvTkBZlkHJKX7TN+648lTD/VsjM9PwPzwkN3Er8D5d10yiCoaHDntm5s63hj26vcUnP3t7eg4AB+IGMG5zepIO3rbYmz4jkKqX9dgK6YhOs5byRYhe24HrHggGnhr3XgvohViC1jjcFlXXEhiocSSWhvYdPloYmIwh+TGGatcbElmfDhqCsO0ulh/puYqSqSIjR8Jj07llqJz4ZHHLFoNwnUxzTZe4vH99WmJ2/H+9UVamCkoqUYoU4xJ/Y1y6RmfaJnsxQ+zZ5S25A/am5MITeAZ8xIyAQjI2auT/pVkoydsJ1YrVcvJoqmgBVXF5SvBVRWDxBMYCMyNY2i8SR0crrvQhrWFVXyOsuFhs8bjaR15Ah/RwUGreWTZQCdWWRYtVKarnbm5VLo04Pw3cmUiWMkgzeMlav7tGCMzxYpY9/viCnvFPtGb6jfjS1QtiOoEk1AVUJJn3iX4ajHM5mzcD2dhANOI0UTbWc0lyjNlkHt5/NNNfH4TF8H2UvDi4irxItHoHOKy6GA==
Variant 0
DifficultyLevel
667
Question
A rectangular garden bed is 7 metres long by 4 metres wide.
The garden bed is filled with soil to a height of 50 centimetres.
How many cubic metres of soil are needed to fill the garden bed?
Worked Solution
50 cm = 0.5 metre
|
|
∴ Soil needed |
= 7 × 4×0.5 |
|
= 14 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rectangular garden bed is 7 metres long by 4 metres wide.
The garden bed is filled with soil to a height of 50 centimetres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/01/nap-L4-23-ver1.svg 400 indent3 vpad
How many cubic metres of soil are needed to fill the garden bed? |
workedSolution | 50 cm = 0.5 metre
|||
|-|-|
|$\therefore$ Soil needed|= 7 $\times\ 4 \times 0.5$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+htRTMYKu8aJ1pFrKBiYJrj2PjunIAUQkIJKlQhUM1Ei3wjeIdTTEXRZ3LPH1AjUvhIJ20SvTLfl6171I9v0wzfgVajGNzbNgyH4QFNWt0YcdaDiXUCzY9A1X9M6uJaGYLd2F3wdYWYASHugkq1+ow5j6g2pn1O9ZTQxYJIas966+C2ayCyFLMki0hm8fFc9pNGWHsRVKlur462IyHLov1EZhMIdyxSaQ85Ur/4ib4KBXoHY1AwxiOqP3aClb1fsHeo0pYrM8j9VPQx90zLoAH4qZ/Qhaf5aZTGYXsIxiMF6EnaGkcnSzAQWpB2X83KtFwn2inrd17FWHAX2QcogvmQlXynZorvJICADQ59Egs/qDijM1T+52jQHlT9RpsD8hpbjitJc0NX/pgp1O2sb4vJAgRQArKK3UNL6DjdflAzJX6avUdbnSuBLoey/D0RJkFgTJEoZ+tXZdkHRYSRBycO4PjllvqUfXxPYpSG3XuM2ndLeRDCn46BBZgyW6NsCKtuwt6ThCoY0UDBNHdj+9EJTsIm7QDsXW21FYZwNo47rMkC7KV1MEWmUCBYr9hVBzQL28b1xv6buGpm6Ff0ZA4RDDZTSJ1na3giU0CH+toAc+It/k0ZokD3lei5fFQ0/ZbN+UHNkeglmXWcNSyx2kuscVZFDO4+diwS2mVNhjLcW9EIfriUdoM2e3hqD3odlgq2z9L071gPv6Qc8HPI53Vjfo1vOIjvCxXW60DpUhczZndmOnYXcU/n5/XTWB/bqc6bIjB7RtlQwlNiMcxu8iHvhccEAu06M43xzqXY9p4bcQ0gImgOO0lv/1t1s1xy3L22YsNAgsR+4q1L8q7LgUkZBqG9L5iQRN0smmq/g66Uxv+8+ucAFltUUW5Q1I+vqkMe/UpD01cte+sdCPGYoZJH9/uEcWdEfsPx6Dxc9ilIaQqfIdewh4LSGwZxGMe0XHuTKAE8zN6ijZW4YnOiHdkh+InMr8zWibqmmJ8wBikWO5VmBh7UrMXfXKVSQ6bJwINdt91un9j08HnEFi9FTLSmbDwR6d7535EfH1g1EaCptI57h/gLT04PGB9+/KYTkHNRNmnCp9bXNua6nHjmw8kyldnndXgagqUfTVVIpnbYClXdl2hEi1CcknTtAEcs7Eb2ieKaFLstwe8hrCunKwgidf1v4zS87isfk6KIWav1vSdcm+3cpfoOqI4PlBESlt8tgnEbZibmPHqh9/7XUHJs/LHxlXjXJtbC54DMvVCeUXFr8983tPvwDAqEd+k3l2zHJOhkTqkn140pmsVZqTyuDIljmKkA6J8DmWfAVKlPKM/HxtGVMLcTOodwiH9dibugP+jZl2hf7qcxjwDEbB7psPaOQTVRuRa/VtWwxPxZLDqctchq0ha8kovOGL3aYPLZ5qeLP7RcxHi0eSRqZ9sfmCNHvGB9X21CuzBHqxKVbLteHj8k0EBFRPlgpcmX0rRwvf5jFRciJleRJDlimhLIeIURyt3G2FJna5ARPutu57oG1FrsBlC6FBtmXiPVEhdGwMke98T/Wsr9NSQJRIUsBf2L5JPdKdDkrNUdRtKVQmKTj42T/YERV9lOFTuViVy5MEtJ+NL1clOyEtsqkOnF2PD5/uS0A4QllY/inGwFuIIM5KEsMTo+D/NCa9n6u8kOtvNr6sTLEsgmdHootEtFqrp8mWzI0tKxe0K7ll4de3E1FSAwNHngZtGoFe9DZpLZqgT2XPzH4oDdYCRl1DbPRCfvGODdlzeRrK5mQZLIkMHHDxoDuTcSrsIpjYCMdmhu7elghLK/DpZzeLV+U/AZkJWpY92buREzg5CYUZf0rC7fZUg385tCn9cu6TkKro3fqsbdDjla91/vY7dE1zrIUAjTx+BI+AybOEXegjwRbzI98/5KfGacTtzU5kMnZV5e9SzBCZuxKSX0auIc0DErQgL7OgUGJtimNS849021SOq8iNpQw04lsNQ0cp/i5so0+8+W5R2PP6ovGIH+YEEXyT3cqaSpI/In9a4WgX4b3J3qHzpLj9Aa9QtpUH75pn31h1fYc3JkoBY759CIVmCmDzrG9mosFRrFpBG6NohvLOabD3hbwIf7JG8e2cb81zh3HlSz/Hz/QTN9xk4SLM+XKhEpaxMFzwMVfoqm1//SvjV7d4H6qpE2nFAQwu6+RUiDFCgfDEwjrqE4BsnJ0xDDr/VhzRUyMeg75+8gBe8NeAKc2Im3HwfYgkby6ulbZaxb/ZeDsD1nZSRyu3NYMOEhidsvhwYS0vxodDXJyC8boG7NpawqAY9eBt7R7sh70AwgAn+udc8Dzi4B/qN6gkl4zV8EpWwa8k6TYZsR4PSvuqKgvihxqN/teR9dac+aSa/zRSy9/KXldm0c1MjOjszNkENuGwrtRsX4EAeRNll05kuQrzQyxCng3ToT4+wG8i6BGvWN14BHox9ppm7Cx8LHgEumiQG7tob5E02TlCO22+y2Wb4pOA1YDP+hq5ZTZSC+wPtZTLaXu7GmWRvoQ9r0w2JIEefmF2ZtrlLAicOx4MDO5DSVNxkzive6l/OQ/g+5w/hjCXsupVPbBJt7S/URN3q/uBJdwdaSelSph85L4pmqEWnFvoyRDZ6/QJhhuf/CQ7uihV/St09Do863SsgEgZB/hJEuekNybQRMeGBnuYMr7358w/PBIa+V9ssf9bHM6sh1g9BQA0ZHbxybHDb+FyzyKOieNhxgPgzEzWO06zhQSnkKekJDqMoPAqG24NPhkfKQ0LStBJ8GwQcvUP71+s70ZLPgBLvoWrpd6HBy9DnZ8Pgvj7GB36YijtVI2s+Pg4s1VU3zquiJdkkJ/lm9rFQdjV1aoZ2hN9Fikp2nmphhE1YxA+F6J4GEd5gcm1buxhLRXusF1K1x8uubCSh3pSVqSFhrrHWOcmmA+SWlw0vlwdEYLngDtwUvZNDCid0fS8/Z5OKpMNFs53WcFslqrdPkyJenRt8UOgVBIWpAntfWUso83CmtIIErHWB+l2QrcMwyv8nea93gyWYQgPYYf3SXV9o8kSIs2/fwTZMyESErYxkAv7ET5I4rrNdZVouWF+dqAPYasvMf77EDQqFfO4gNMGgP2OBttT3RTa9vVYZZXiNpq6VFAAn6poLcBpNDvThnrLqmjxh4iwtZ4OSpamLPsaKLuicgi28Whko1Z5etytpOELg82r8hOFex6kKwBal/RXC3aC5Y2kbK2jnMUkoVHA0QIWrkU6VQG1g4qaF4IFBwa6c8lGTOFXxbWXDymwdlVeSBYbeFBkmDggohHu/zB7utaNBB0jM5UEyEm59peqDZ13fr/ayKy/dZ9zdEpIjHVHZbKxJliuvjLBXgRCFpJ+gxTWvenzVm/JYBrHSgkarkEVST2ERhcaPXEaVWunXf4bYKNosjOn3QhsjrlV1GUNCAaKDZEqKu3Q8jeI2uVOlH6jSSa7bbkT0nkgCjz7GeVGCZHwLeEqIs2ovZZoRQyLr6I0HToFvAgZugsm4kOdgG8qYMMHDe+nLCGYUn8ptT3y1bhRlMdROl5KHseqAkE2G0JVVCXXRHbFKp8ehVszBHCFtg2Hk81myj9hEaFnaDWsvJcf8oJbCXReDpup8aIOWAyfnLqgpcNbHfW9X9mIs60Ws0bp/ykX5UgSqVbjwbk2FtOB0HnL/Ao3u3upMsg8L+57Km+YdF3lNLIVK1VKpN4gHJth9cx8vP00WARBsSQaPXigr21sihYEtRZs22UMUxkcVxu/xdWE0U/XFrj4VEB0bqFipLyAHJZvNw4Ily/SmA0BElDWuIyqwunRto5wG2+6s/AUhaEpDyY3gyKFKDhZp7xK4lRrKHLq6mGujTDB9i6QC6e42UP4blfrNbF6npmWuicz9hGDlR74lqq/1SjSlc1ywAqSs9c7cDrEo1XoGfZ76Zvnprh8ySTOikQIfW1dQa3KZLV+5Ycv0f1Kwu/D1ouVJeVKvgrjWLmYRHdgGcc8Ij8hl38qNSro43/AxPcjyy4QYNrervsGRHEAm6OHJKqLmCqtGM342nV/49TpkUTXpU6hfWqpW/3lhshVowgCKsC27n/e9XDVpvBT1Z/HVUATNGu/doK3VfJ2RRWgPr+BcgLwbi7279w3pqnjYu540foGTJXMSnLd5dEPBlCOo35N/BJv3xdsLfj5rLb2RSsDSbnsAXwyx9aimqRhRyNd6KxADaMZoYCACG2CB5Z35HKM0gBAON43LI0Jr7sAlR1iIF7Fz6dHeqo8FBvanx5zC8j0wUlcdCtaCPxw4YLHiH3CHP/qmAm32BD7UZD6cNW8FL5X2rHlLjI8xURv+ZMPUHlmMKqXEcGKoNF3Ok1quUeVV/eJx+blE2QoNWyKRPm/c6n2gQA6r8wNvE/viuDhFIgAJAAILEwUxI/CpL6zm8MNd/Eun1WkChCw53Q4sXY2trpmenUocbUOkpxvuzavM0IGXkHm9geVgeIO3WHK4LJLafHxlcGiZYXXVZpBPxv5zfYPjK6aZ6qWMF45aOqNmdvvtzf4BOEj7vFD4xEgSuNAZbxL08hysAkyG7Ob7boBvMAewE+PnSN5vx5HjB/8QCqU5pwKkJ33yA5VW6SKXBQo7rsBCU4gD3vYRND3j+pBJE2MWSlGO2pr1x8ZTgX/Ko3wa5/IKFbu83tlhpe2X2o+pxOtUeBxp9DWIHAvF8KdCvkQ8cYpMT2eIWQhdtQcB+ssId4tGHiGMOF3x7IyfTMDVbkNSqu0h+01V5yuleDeTMc4ROKnEPNh2g8Z62JB+18SLqojZAp8JQ3I8C3AaAbSmhTTZ9jxFpKL18d2fP4WEkXdr0Q8Z2I1OXUZyL2EpavNnmGd60EZr2u70EOk/Xf0PJ4VS1wfFUPFxLBiRrps6TKibq0zi5iSFznwMbowGsUY0gMAucEQQABKDY6CEcSQ6HgUaGWHvlQghxUxZr5EIQVG2894wviGUrA8VCSzHKEo7hzaOhbuaZFA5/mgsUSBT4O3sVCdH/Z6StY94mOYLiL2FNW35/13KPk9N3QYY9ppyJiqfdEtVhphMGrydf+x1A3Jpqt4pMDCWb+BYKWSncoVBiC1RRr0+56juRt5E15cfFjbGNpReC6uwdrj4hiFvmUiaVll4clqVO6BzQLv3sxQKQLlfwYdjTh5/6S7WvM1tOCPdqbcRCcaV/gzQzb1lyTXajbmjCAiQfxVMvzx7jILdIAwlKKttIMly0CcJdyr7nounz/inasAYHv7JMRRxxvVMUi6SP91D6r9Yb6QTOPd6ABFbTVklSHp10YvWDJRLVec163Rtbc5cJkCVQQizV4uZJpMAcR4qPAI3AvrOaR+dw0McXSBIUKzFR8O4M5K+KFFYfGGI76j/3fzx0ydO3jxXyTSWtvzqohOsGQJCZZoco+ntIt+EJUnyMBtXsetK1A40IB9biI8Mjsu8QHUwsHsWvLdRrH1YDiqOgSjRUiSB7/gkNp7mxU0LoSgvSUn4Eko2V5ZR5SOAt0GP4Q8IBNVa8eJJ1NWrs48dlbNEo4lKedYs05HXxJcA6Wnd/9rjtjXb9BB1WyOLVrZ9F+MtnDHyPUet8PCsDgrD14PMRfLkyvYqHntSJCSPcLi4WYBWiqgqPqwVHq+hjWCZPwqxNBy8w4ic8dN4ePEwvuA/0A61cLj/91Dg0Fu3TAGBrWXm40+ciPZJYEVlUI8HgH059dz1u7bnSG+HnllGxiapTJema7nTYUFOx5dDcwzBbrIaP/foTosN54lru99JxkbrrJmbhw2/MI599QCjSVyrKh9GQfON57Z7LqmugwnG4VEFWSUCS+fGZxNlJRJJGiyYQ4CGMa+6cgH6g5itvYjlhBgZvRBS1jh+5Bs4bDorUJgT8VA97MbH3ZV38nfS80WmHy2AW58xsg8XgT5FS9BrfcgOlefvNLXrFBspVhWrNR+/lKEQgW8otMNpDJjlSCYBUjDXLtxIFIIMFvHv2j2Sa4uBGCins9pkhqYpRnVLD2BXKFFf+V+hBlFUcjMdaKrSb/d0/FRwZjKNAJ0FoKG+9kaCIFHMGC2WliicoNHZjERd1cjwsWts2IoaLPX6xI6/eHf6/yER7LavknDeJ5JkFfDrKRbgckau7OJiuCT8WA6aSMpBRPCUMcQTQatv71roqGo91KMjlIABkPpR4uXlzTTUz4oalE6lRdJ/cbprZgHzxNp/NEo+kE2evEdOB3M0VwqI+z+l/RJpx1oJiNUkykXkeEBFUhzkMSEwXq2+7lluzx5I/k+FgRTRFgEwvxBMWz1iyNh2dUYGIr0SkyK/3neHMgYvFWU29CWVQciZNaJyM+/QfvJ7QyfrOBj5dMoRIrBjbWXj24ZG5H0I/tyzoj4NRISjoF3YdD0C9fYpy/44JSRvsonOIJkWUSHkrmLIEvo3EV3f85nxfwbn9phOoiwHD6Z6wwRkar3jy0zQ0iQ/1rY1QvxHuJoTYu6Pqx/DY8eiYrCR55n5Di+D5N/+G+VLL+UAJCkKwwhydv5gk9RweGpWUhHwWrFueHF1z4h2DTowq1+lxvveG18bthGUeuGtDehusOlkk1kmciX34ICBrketLqE3HQjzA1YjdXocaXNZu4pxD5er2Ht2nDxca3D2MWaYKWIsACtih9/giG2xtN2MIY/kVTJ7xJDLj1OgM2lN3k4URzZorJHY/KUI09r9//bHSLs1KITmD2cAHBSCp4lgGRYQK6KnHnztWw83MWCTOh7dac4+kwsZta2iX9pyA5DjCeQ2Ue6AtY0f3pMS4QG8mQFlfRA+vU+Gy8NVISxHrlvjmlitnitvfCRJYzI/EaChx7QzZG2Lsdd0mXfr8K+hodlniVTg92mfof2YxCWoHcGpFqN3oKedNLbyFMlExu78QGH38DIbqo2kI0hiL3jjyC43RdQrLphMy3Ngma3ceE1hALKDWKauSB3VayXHJlOqZE9/E9XHzyWLo76AAwjX+89MU4aiuM/Y9KpxSR1QRlKfY4NEE6Afp1GsbqrhK9XVy6Xf6JcpmuAYbuugDEfXE/ot9vFlm9FewQsdYXJD3Ur5peJ1f9v2X9DX66wWf4QhzdNI9TAbCOqTEHsJgf2lNOtcP3XoiqDWAUeUpsEtZwzUAJM48/OLU0HIU4p2lq33pE+18RyCfuvVYNwp5E1V23VFPW4cJgKFeR8491AcgbsKJkSatX9HhESMINhkAGuPy11OiEQcz7IONmKdkO5DAOpTcSoVcL9aWX+35Dq4YiazzTU1+BUtBrKx6GOkLow+oktR+bNQ3aIvNc5q2TbIV5N6H5mWciXYM11zJJY/k4SuGCiuHSYqjjNeOoIa5052QpJrBg0jvaCeCHJTq6skcvvaR2TWl8pdHOMGNogljk1TnuRdeM+J8v8tc21gtcSr9mE7jv1n7bahaAYjI+E7FrOJ8e7wkZl2d3nNWrgrpMDxhNg9Ztj7GM5/usAQy5I4onTKEsOyW1ydr0CuQ1YmEKm8zPsZj+rJdZn8FUvIHNCSbSNm+zIWuiC89WZVOSJ3qQvI3Wth4GgyXWH7N6KjldFhG13dEDEH0zTvBIJcPGiZKAz8/i3goXpClF1BIVVMRmLsZjUdcjT8MoJ9Iu1sPRJ/j2naHMekjLnEHK1fJ36zNENZWWuxOB9R63bXXzYOT6TZMqZSHvah9WZ2ixwTXz0psERAsROCMW0Pj6jwpKx/ers17777g3yA08dsQMhyqsB6IGlKI/xwTtk1+/+jGPPYXvzbZeVyBGwwdVUjmRQC0AgA9Xer/iP3tiEyowNKbWpK3fuek0VsPeFSujiHhjNpAWpORLiD5XLbpfLtGwpzSvEW0MJ1LC98DRmrYGNNPNRklyIx+XLonl9ANbRmNIkmo501tc4DU3ihnS8wmfQax1WgyKULWA/qUjTYTdjGADEBxTrH2CJxOc5eQF/oyhp6m3Dp9zOUZyXyNW/saHUwkzUUskUDCzRGClgGkY7d7VegnUPF4lWCjT31sCK0sNm5mrZAtnw4HwxOOWid8zS3ycy7NiKZmfyWWXo01MN6nbBZOARzEUXYDraWwS48Mo9iev6/7l/toDpK2vZ9Yh7LSjWcZxlJgtJ2Q3NiFRirr3dGSJo0N7EpTwwHHPHbcfCulAoaydj0qCMPhrbBjkp8GX+F1vCAAM1MIFPvFizwiE/r861T10bSTJmVkK11Qf4LrYPWwvwsneWobTRz8Yjd3wQRnMlHJwNdMqkLyfX5ANYVmnC+5CpEO34WXV928Qx90eNHcZ5nxGr6LtTc23ZmTcDTiVuocs1u2I7J4CIQEWQ8sqPULCik6D4lzqZEZbfUIJfM9zdRu6m3OXWbUnFE10PUJ3j4kMmjzlEIcPt31X7ak5yD7TohsqcTotQFYhCRXQCl4JfBI1biBz7MQKG6pWlFGGKBfkewxn696q1TICuvdfqtXI5onVTNEv83N95JkaPCHHlrqPi2hD1IX4j+Jd/3pc0QlO0h/608U3Xyc/mU21XQ0U1dBa346Bs+sccuKcarK1nEhk7SP+fkrTzAaBKIrGh8MZLywa0C23JjE2aaQiRiPvGJ0huQiNtLeGKxMDhh+YeifwNyUYLRjSjZzfHR61G9fVn13cqwr+fmmKrjh+7x3oYC9Ip1eqHZsb4DtZcLhn0NeDCmsihxfhaYanDi8M4FBLa0XDigULg1ONW+tAThnorKtJl5YKFcfNc0GTt1IGnEH7pSwrJIDqbTbuDVYGcwakyEdzq30k5krbISre0CRby0il+Dg4hd6i2v6Y0sIMPU8OYfLVSGz8hW8Y4as80Rg5GNVx5qU5vP+Sl+URPmb/X4BA2akgDmxCX1NIsnTU3cAhc8Pw0qg+IgnpydmQasbS2iSPcR23C82nWHJ51y01H9lWZ+dAaiQDaCx2rd5E9/TsMHHiW6J5TuW2IjKb5a6kBD7HfBHFwwaqQF8WuBMRy9O2lWcjLd+Nao8yUoFtc6go+HmyGEFJ+z7l6dBcwMAdNcQRzMLf1k3hzRS38iQixzQ20sXZ+d8QVpmoFNfRuZ85K9SPH7Lpnnh+OC4gddO5DERsKOw4u1oTeQ+tBJOeF43nYlx4Gp8LC98RHkIqXZ5tpLqK67RIxXzQfMJg9ania8svjp6RCX0hFJtm1N1S+AYWygOuLKUvLyOcWcDQ9KMzuOHimCsSI2D8bLbgHmSNOUL8QIvpjrYD4BQJwji4oFjhvyBkHfq4pSZ3SpcVPWhfnFaNJu1wgj5/GLO0tl5w4UdLnzyxIdgcdhq56TKytMVzikMG33XV3tRaQ4wrHPAfOwfkx8b+5xstK8XOCd4I3KnS28OnH13nyJk1EOpH2Im0SWOY/4pkYl+Ohy92ZcUq7pDghO8EJbYef3YYk+VbLsH9RFJbZzezF0uz01UpEaY83N9sQn0XzQO11PZw2E9w9tHhhQCSZ1V4zp9peswYsu4R42cMF61Z8MNHIZZedjF3m4pUPr0WFbooAdBBJHDh3ORjbkNfsd17V9PXglRQ==
Variant 1
DifficultyLevel
652
Question
A square garden bed has a side length of 6 metres.
The garden bed is filled with soil to a height of 50 centimetres.
How many cubic metres of soil are needed to fill the garden bed?
Worked Solution
50 cm = 0.5 metre
|
|
∴ Soil needed |
= 6 × 6×0.5 |
|
= 18 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A square garden bed has a side length of 6 metres.
The garden bed is filled with soil to a height of 50 centimetres.
How many cubic metres of soil are needed to fill the garden bed? |
workedSolution | 50 cm = 0.5 metre
|||
|-|-|
|$\therefore$ Soil needed|= 6 $\times\ 6 \times 0.5$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18XWaazAKf3bJZyXXD0QIlvqftwkvGTN/h7Fo4zNmkX/36RrqklEq30q9w6G1O1W0Elqvznh56GbLHb7WgDoItGETD/FFZ18paYayTBljpVCEf97k38pPAyeWZceI16I7/VR1xhCcVoCG04qUZmMyh6X7SLNC5+uNxiu4sj3E6Ps/KPgB4C8vvtcXUUv/52JXUVNDd5Sihn6sEeK6FLY9HeeriZREjCxdUwUjrm2JvYdO0WGH1IOnTd786eT2efc0CjpYMKw5+eJDrjKdo7ngJg0JSdTsau+aU4FEKnuV9QzM9f0GdA4KdY9GDoaSPy+Nwjby94rYH3zVX4LsgpGf5EoO5//sg4vKkSBt1T9eJLvJFbGa3OIdZRVr5nP04Khkicp8zSt3OrTHNxT5Fe1ydfthBGnuqXgju4Art+4feH9GZu90fsYlXDobQzvkRIdDdbclwh1pB3Bk1029tgTukinXqDW3fqiKIHO1F9xR6vAO4L8yaUvF+CfVwoXZBs0H5YMxV9hJlI7G4QjPg105z6LIOhvV1dYFMEzf6M8xXGmT2X7df6IseSa2hEP8MmijT/CwezVvHsjYqsnMbgWbD5c+KBtWt2Ni89TUa6/Jxxv8HfdM8PRVtnELmVqV2BF7/A2IdCGN4pg5I+dixxnJubG9JmoqQvpQbfKWiVr3WACFH1+Q1dGavB3xYCbl+jKkljVqRvY8PU3Z/qaloWvEXfdXG5devXJnEGqe0ssXhEcWAW1gFfpD3dwiWx4G/FcglNS73vasptajIvFyzZdZaCoQS5SAwEvSXExeW/FfPkI7+sunsYvgFBAGN0HThTp3/XoZbfi1wZl9w53wC3JoZgoHNjsYp0Pw+YBEuMUxlqXZeSFZ+cMeOoLbTh7vVFzzyRjxGhXgnqzQNSs2du+0JfYV90+NvcaZK8vguZZg3sTopHCvkX3VotQdRhDl/RMkNQr20eJ+YoeT3+L27VKQx40NoOeULm5RKmoMc4B3zzBdH+h6e+aEr9bwidoNUFf9oNmLPAT++77zeaF+MwSA1EQCy9flYdixalGhMaZUbwKtiz0yiPL8UwbUEhnkz1ujtsESNN9A+XANNt0WG2fv+JggZog4bOa7p7H1/wVzbA/HMfCBN+6yYbU/GBjQykUVamqpH3pLQ9zBwTu9gir7XYNoYBssO+JnhqwR2wd5IDeR2n5LGvD6VsdgikOTXlfjeVs9Cq5GHZHd/J+lgC7Jigr7KyMz782y1P279Xg3k+0HI2xOG7pAARapRowlvu8ARvTqHQrF7I3dWEwNY8fOLZn0IxWfc3Pc7MNunJZnMx9KFly6uMjzRmz9ZWGPo0N4WPcr1D9cUNmU+p5cvoSPzO/oo3AHdjsrCwwQUSOPj0PPtUvOV5sc6GZPDuJgQPgwtUHdUxGQUxb9cfe6J5LB7+we6jz159YwiwIjXo9a2zrivuAZWfKFwxSO04CB3pr4yfK9oLrY+Yvzeb/nxFLqtyBVflgw48DTWuWcd0DR9IFBkvOlcCY5svS0iopyBTFN1QrAuTeN9EKKofOffi6aOawAXB58VzWgbPrx3lGJwInorbrG0UfFBcB7Uu/gmGUBr7vpTmt9zM1BIPRgBCgyfjzL1bgniYqGVTLUyAA78Kkkoxo8WQfUDopkT9gDw7J0eMiIk2u1pIwZ9WLYlpunPpYtvk9MJ9/VGwpgBRfYjHFagll0iGtE4dJozdU2QEu8lERdA2xbPqXD+8a5a9r92yLcllSyyFr9x6+HR6m0e8VjSQNIDALazgErhHr2DML+2vbbztlc/XtwEsJ2j0mo30aKn1PbtAFypFPW1kwxZqeHPHuijYDYWYnKROwc/GL7HGyEMV9KDS0Aop3BUuKBe9PRtIvP2/dR4je6Qp+dcXuqBIvVRsi14rMnZi4xOyTaylHaJbfzYREAvCScn8ZaNXqsEMZ0hRrp4sjaWzfVV+eXtRWi7EahPPfFlMPD5WA1SD4X2ILEl/TmUM7Dc2k6N4W9bexOQLBGgldAQxAVrV6KbT/FWJIUHWCxoLRthrszYuba9V4Zdf5uZxe1ILzovDXW6ejvgIqJACihq18o+j6pZ0UfZ/1RtjwECtSjdPlQ2l/Z9QVm8lKfHFGyPwupBAWycmoXUZRr2JaF9uPf25+J2eoFTGKvnV9ZjzPIs6llQsEJv2XzlF5HcrIOzUq8DA9seSGoy8QnvLwYAc9Z2hB1h3H6Ea6nIe1nHkF7Qgup+STBYF0XDcYFdRnJrqQsAiSb1183aSsdCzMCyz9OGgMGdV2/WFyBZ21lga8Q07mf75vNJevYEJFCJwoaVGXXp/2N1bPS57meA7JuGDt082yk9pEOFPMtVCjqGEsGoQo4Mo+UqueXvgY8HGuLoceajjzZeyec0NOWiJLcWcNjcik1g5Oqh1oOLxtmG3X8d857E9jMqQCg6AMrfgQp0FX8Fc5uIaWmp/73KLbAM1P+jhfkto8vM788GWWskm4Y/u0XfCB+YDfHljYe6IJ+Yzb28erwF4jQT98sqF+hwlCVJXFCx+aZFAXHmwxi1p7CP7sPd4C3PIiVdhbHyPWQd3/fg4D8piJWXvgox9JvGvHY7XgYIWtIN2CFWJWLQFeF3lsccvi5DXq82WJHsJ9M7eukznGs2iTzh85pr15J1O9U8yAzdV0hD+y5R1AYke5zI0weRPrEh7gZH9kFjVH+D3cKMevqMkQHMKXIju1kVrsRsjif65orl8p1FYRXsHY3+1TzoE11AYxgHHp+mFe23RNB5xJmr1npYHKfhj+h07d/jwzPKQ9hzhxSgeYSPJd3I9H9mUwa5d0AE/8u+pJAZWqh0efUatllcJ4ZzUQeunY6IFUKW8hG/7bVHW9BUQWCxrH2KI6OMTFk8tmk47s+FA3fz7vD90sQCRT25lv1f7YLMglw+Bfv7hFJ2DPK+1QUnA1H3sbadaRuzl3WeIT5aVKwb/BcaXmPzHMU8GzquZ/Y6hdLbR/MPiPFcm++KSaicPneLFhH0Mfi3boJerESSFyFWpTBlg5P2Fwlmn4zBN++xbFxoWPhNxA+n9rGQ/GAMWdXS6qjIzDWMzBrSKomyZRPBmEJDq6Mp76ELBt12vFGb+9i3Dl380d/P9RSTWfPOWuLTjLZaXRbyN5WEmHkejcPPk6VFp+tYYV4jUrMk+4wCjDureseoGIFKeYwJ6i9n74jQ4Ipb60qMiJikSbSu5DDvwDOpturAJD3xc9HF0xv2gtXPInyRRqJ5dOb5GHBQ3z6Xl0U/2+YmbvFA6nzkaRROALQEOTVQAhcFWygWk8y+v5a3X8jqfvPAv7Q7GyenD2BZVrRJpDpq5+8r1rOuLRS1lLLzGHGs46/uupex7lXlebRzs0CshOuPnfLRCSS80e1uQ8hUBZYyVVBfsYWXT36VER9cN7CgQNyCsGggl630bFL0Ca/7wGdjeBZ5D7ELBNOX/WtDKBlBGozFiCnQC4QeFZssTh2pO3GX5o8wWfEbe62LqWHx7uIYoDbfOknEdmRZSK5ae99tCzd4hVhnfuvvc49fo2znS87TIvbkFG9702LGh69s8gSznE4bnZkIaskr7ZdTkmy+AheoE3gR2se2KpHFnDnRX3S4aBX3aEkUi/0PJqFvhTHlL1sA6J+PhOgCpFlw9Mvidd9ieQ1xxNxTcqvcrUeCOPY8vM1aVYQEFdnPy2F8yZpAEstEIHr2HeNWrKwrikwDHlSXBN3WxeQIb3xoLnHX28aYavX21P6wdTBsj6lPirDG0uciNG3nQ2gnRltmn4Eii0LuRoAtAg1QIgWWRvD6iPzJ//XKFwx3nlsSklQfilgmOcI7RcrrMhqMglzxUVl/+NeGwnPPPjYF+tPY9JG22pNRejOkHBkBrX/YrjWSz1+eK6cuBZkYtLJrLanzXBHf/tlsqIcAK9f/awG8sBgdpkmyPlXsWi+x2QBonWENLoyjQBO72YeMOHGwWC+nTuZwiffjIQF+6y5XwqwzYzBAEJycztIPpSqMRUbSQ04ZWvvZ38pUIRcRH/tPpjZGKZfjFk5SWWEpg+fxqSWeNO+cMrAMRC3kTzaDb3y3x4VqkSQUBOBlJtLCUNHslTsHGYHMBIlUwm2OwTVC9HkVzSKV+9rre6mo/N/3iaK3qI7+RJsoak6BnBEE2pcngA069Bmnkl1mIJ7rqNLpsHamxAAoktNxYIYYv87SQUzjooHSoNhkTMW/IB0a9zYoaRWDB+QsWR8fiXDwSrOdhkb/z7xkjVwwoyrVxeER8zW73FCwkliHd5V2Mx+GN4Yhwfua2YR+dw3z4scynUM9uQhlMBT0cSSDv8td8l5dGUe9BoYFnNvngdnSZSMFAdBk+RE+rooNrNZlKhVFsvJ/oRZ9C37EDqEs9XtnM05b2koxvYdCi9fL8AqdMn7bIULv1yLF3sJIceIoTfdYTM4T4S2ltvPM5mrijn0lNulADXT9tDr9CCwNmZFXbRYsWl/xyWCAxZJCMU7BEKDfA/SEV2ZpRnkwmxPCMrGB/fIHAQNXpJ1luLRF6x2tK4EpoJ2skzCSC6buryI6nkxQ9ZEKyzdx980fxSGtEcFzsVd6IuxJ4aHCd5bjBmLZyuC6aXBFcxMx89OzNWYOHVLPZztV3a8kjLTnsT+r6jXWO3stCX+qugryZbYQjBFVk5QR5C4mkB1M1aESS67vlf/GWY+sBXb6w2fgasGW0mKygk++8hVEGhx8z8W3Y9Y0no9LT0AM5tdx2ciaktco9o7tl/b2o7RwntE2eOqgz5ZdZINWbbfLKeTKf8xc0Vq+2UrR+FO1Ukcsa0kjIle/VSdWSaFJMe38bicn3z0nIexwut4GiDMY3Eb9I7CQGQtM3ukyzt5nuTv0j/oqtQ1Y26A8kVgFN3jeLhhROi0rbphFuWQH2yb8Vl2sniWjdYH4aDSlcUqkbQbb5GQpySelRPxNj8A0M25zp75c5J11xaH7OQ0fax+ynZFu7YILpvHXYrDX3pHMGDKDHUdpKa67z0vk+RXvETcrUHDUmVun1Af39zVFmsF6Raj4E5ZUOto/std5I6JbPJu9huPMFiJE/qtrf9z6/Ib7dGmi226HgN303Lw7orpuRTjgI+SW4MXPq/hFq5er9biuHbxteRmCkY0CtZKeUwro4yXLDmLfsYJxiS+Z5fNPXrz2L+ItH7j90+buxUf4iJaPSSgTu9IDJ7lT5rkC4F0oJJ3BoH8+hmX99Dv02y6w1OJK/x+2M3+2USY0jyFylIC1GGf4BCrMRsoD6jbkDlNrrRT8aD+DwRXEJphgaBQiqQ9fB9Gadt4Rkd8SPuPRhQRxognxTPHYG721pjED8xCyA6FdtcRdnFhhy5aIlLfu5qrrFinKiuubjFChEKZ3GVrXP9eGXMmyiiMUQz2Evd9ASNAt4h7YUHNxZqZKuJd6ULGcHXhg6HNWJi3FfUfaz72lX+rxdKbEt/F2zYek+S67h2HZaaPGV/hZpBfVKk/Qozq74fd+lzSiPBcnC21lbYwcB8/kVllWUDfN5eG5jnMgohluyGHb7QC+NtWneTqBxft7ehDlZxpQhRHRPY1Td+5DHUPpeCLYHtTCi7EGedtLljJo4h33GlfL5qZmmi1Otza9zGIOM9wOfpL5J7DDrQS1Ne8O2v+bN7ZXUpS7SqvTytsnpCEwREEUO9QwtQpLkZW0ItiBeNfA4/N2pTvpZ975OJOeoKm/9XpxyM+uZGQfy7MPvcehGq8RgYLm5oiSyfSyey4L2q3ESl8wiAglks0HGbfld2nuotUWVVLfCGsQvG/qivwM7/9Hyr60cioPMitmNEdBePSIxLMf3kRH7mccnOpr3NlarF4zx88ee90swQgfkvlIaH9vWtUeoT2pp0K5oMcyYVEGETEhDP6GooWMW/Nn5cCa/VzUB0mAKSG81lPpL6hPa8UyGKj53VM8FxKy8AoXv/vrKvSFlTXI7reNN67F1eA6SF815ZKE/DM6h7wfXHnG1UUWd1+whpvi9G1kl9Gm/PlRtSb3fpOobhEB67PWhPqDRFG566UygS0xh6XWhe7GOtgnYsa156pdSmgXLWrePly27ZEzzoEZc7TPz/mGlbtlNBF62s9AFLLeokvkLZabH7pLBa+il2KHOlOnKgSLQEA/Wr+11bqCEvTExF+HmlgRiZZy9xaKMKvQgqLmnWHJ0kh5nJ18QpUnCTU3GyKr4pIMbUNutkUwZFWaZi7t3M85UDkSB364VQzF9w+Z2YzF0US0vaSsVocgo9RufduktujxtwCdrJ5E0Lh1uwD26dlvhoJD9+64q6Zv251hxSKLxsqvgSyyWcwq0S29rMaxtgUHO9OMWTM6vQcooVfjgHS3GqwTC96wzYimzNezXUNsQLGkoSw1Et/qoTc/5sUKV2RUm267Cqaqom6h//fDrPkld/cs4oW+qg1QqSv6Y/gig3tsKNkcyF9Utw6W9yBhkE16/jQrFguIIXkJfmFHPnZfGDB8Xv05NlS9OEqmVdsw/6i07+zJmXVlwtH8O0ZjNzz89K44Re0/khpQTd7JhX7oQqh7VJ+FrWb4V0/DppWolow0KinPApPD7E1A3iPtusQdbzaDnGnZCv0GPptuDdV0CyaCzodJqjume5E3Lr2DeeV249wTK1zq5hAMHknJD6jzCI6BGqYbKeGNUzhjvyCrzg0FdVI2GKsyzvsOM3ZK1bEHgLW+o4ZMG3ECb3Vxfos2QxtEIgSvxFOI92gO5R8Yy9/iVn+mhsUZwV+vLvC80y1D7a7DosDlaGWd6ecJJc5Il9vfz+Jgah3BghtiV4tJiI4QuCzJAjXGFSAkawOa83pcewpa4p4Dqpsf60TQmUh9dizl18UfdhsomPsHlycSWGYg0cPCGKpuhNQjGWccuJKj8MML1bGVJzYhO9/D70geTVP4ZSLJiVLKjqzJwXFk8WXc+sXn9jCFyYjzdn/ILV6HMHKi56e0dx0x3D2qAh9NxUoRY15QGxsg/3V+sjjU0SbtXDpJxEDdHCry11OPG59PcNU4OrJ19FS7yf+Wo3wl+JMTBEF8RsTGQ2QXCZwLWHlqwZRKp+xV9FQXXP1cVCqSTKpfyBgf0lxfAe+7w+oWSVRIKG0BTKGxblfq5m3BwIH2+ZVsKCZCyZfHkYXSTc5dQibzyhD8C3wF9FnDVReYJRtPk2nRaAgq5O288ht4AX/bQVi8/XbiAxaF+m6pnoigEfENtfHjyp219Sllun78+J8rrdHOwKhUr5AWVPLs+HsbtNyn46lDVCigooBxUMvNKEvtpq+FTsKJM3/RuHSxkDMnaqNuNHBaSSWu0QC51bA1Mzv/3qcUT42RvEbhyQ27Bw78wycD1c43r5Zq7xAg9s5lly1GGiG/7Hn+rBZd28JFi4FWC33KbgNPF5yL5ouvDmVbdDl7btDmVp+xB8NpNp4FWVbC6wOsgZEUtx5JCxEeYQscvu1nuubzUpW12+1tN7s/D7G5POTM5LuGKevLN3fvDrR/rteOws7xLCKIFt+RooJBBh6E9tSUQm4uPrkGqJgKGy1Y4mSXJb2XZoQHziwlhvEkSfIuEUESW0Pmb0CpORVcDBZE1176UdHhP1I7lBcpPSiui92uAcvET7SLzVnifDwH9k4o5q6T+5bYZDdDAUVFfbwbAB819WL0QnyxtBmxJ+hjYH8TJ9yzwBVezO1h9sNBFkKJIqw3HehAORUSmyZlNe0FAxRnuNZwBsphkLj1V44nWDNWYo84sM/tMMgS9DmRuMdQA9C3MUbFzd4CG6YiDsF/cJeRd1G9BQ7baJSENWoY207NZr4qZ86KFVb2ooRAxmsvGIRdBikr5Z4Qe7UXjBh8whVsoH4QqBkq6edkQfTiuIyWLwngT8Ki2Y+DnyF9LmYp7+OxEBstZtJomvwjUkw7OI02xA+Mk0ty8O+M1ezkWuelEEocWcwVVplfT1goX+T/itI5MyZy2vYJlxguCAwpKKSjz7lEgShmphM/GDNrlZnU5Ms5/aPDlSiyoqMZHggrEYOYHoGIoOkfObSCtXm2m53lU3h/auyyKKV2JnlEbmK5/trSfNO29wbgm2tx47st45g7D0BkYos3hDdjXHpvVhFDSTUMzOkCNTAGjt9tUxa/NuG1f3CKLF5dsYl04xRL0J0jH5cWWIqW5OmeBjTt3+rftpKSBEiiH+QTaurQQr9ZrJVQdHef96N65l1xpnUEMW9BV0r4hZrM5Tlidd8/pcoK1RmtnbbFuSuJQHHr5LGir5oL4G5wWkLFs1cn8t/Oxwb7CZmn0cytBChOhCnCnVFeh7vR/z1AbGIvw0pjo9FHIZIE/sXY3itVcrIwH5eeVF23/X7/ozW63IrHwa1YN/1OdScstWyW/YbVo2PfarYn1yfqyh5BJ/2CHxJGLo82chDZrSC4YT8GN4IJUxY0B8Q07PbmGCGNJEHrdJadh6haU3YOuYGvmY9I4eWl4qxSGKSaUJYco0/yeyXpTLsp5qzeFfjUm8LbG7Dtk5ltkTd71Y5RwbgIzfM7mBzGprCfT2anAYFmCuzXXUl9xRwK1XSn3vVK+xqWt+ot5qSXkCTCEKZG/0CMKJ5GEXUa7CudyIUPJeBb3VqpnQbNEpL4cVQsic66uH7xry6+oe7QpJYdPUc+s5OAtE/Jf3VtJblmB62ODzn/r0jEn9Vlm0aahDS3WojwX4o3VXaoy9tLdpdP9BMmFel2W15/k3wKsx4UG2FkhNb6iDSOZ+Msay4WOXTxrAAmye7keWQeyGfB73flWjEbt8GCjZ19KEfx7a9ArXoqKMtoPrscNaMZeidkPfHG+j2FvrmGz0htA2DDE/ye/vU7BXiCfwXgo3EyPzSsWchEWWgqQiN84pXZIugy2zLYVz28SlNJ8pazXQ4WorUTvld0q3Ulw7ZpfgwSpmThkq4tuD9ACwHMb2Oh7QKLORp9b+6D9XNz1bp6AHwgXO2NuQ5WroYnUXY10KfgjwqYk8xiMHVpzAtRKjz3pYhK/IrrLi1DYHhctZKOAzTz+BkIkqBq64k6uqS6u+LEJ2vy0Ma+6Z6xSlIrZ9GQXOqfX3rgIci9wNhFMMiMxafnWZXzFRGtMK1trOuqX38CK0ekYG717xGrjoC4pVtGXIqxxNEyCZz84wlUAVR2A+uUVgVw3akPbFqzGfB4EO4bDj9HRx0a/cAcEYBg5Jl7YokmucWVs0zwSL6NDwDcoVAUJK3aADpdBh60+4jK4a7st7mCDa7UMWB0YYXoGCIa0zezNLBX7PFLhXhCSwV/A2q/92TcarmvkStYaxLouvYcWWTC98qTvimldRKeSjYccu6iCdq5j82WY6Rz/15aeBHxFW0km6JWaBpdnsnxE7XExtCBDjuE4Y66827NEs34NGfUJtj2yfUnU5syr0bPrEp/EPwRv8x+ScVMazXVmVl3d9gpPqv9cc6zHnQC0ly6qtaQ7bU8fe7cjl6jYa9vNw/z/wkNQYKfe6NU8xdT1KCZlVlDMjFruqZZ6R6YzO5QNuazA0zXTehE=
Variant 2
DifficultyLevel
646
Question
A rectangular cement deck is 3 metres wide by 4 metres long.
The cement deck has a depth of 25 centimetres.
How many cubic metres of cement were needed to make the cement deck?
Worked Solution
25 cm = 0.25 metre
|
|
∴ Cement needed |
= 3 × 4×0.25 |
|
= 3 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rectangular cement deck is 3 metres wide by 4 metres long.
The cement deck has a depth of 25 centimetres.
How many cubic metres of cement were needed to make the cement deck? |
workedSolution | 25 cm = 0.25 metre
|||
|-|-|
|$\therefore$ Cement needed|= 3 $\times\ 4 \times 0.25$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+UNZt44z07AlK2Nz/XblfbFNpbgOP0OMYyFTl+rGjxTNoKsG2lAxruKCgVYdioeMKCrKNoNdmPSLe0qNYjyp85S5opXCGiATvnMabo3OOmURmjc48RNGG7Dh6oPdyyhq7YFRG8ZFLYb/KBgNX1w0k9In/VtR4krzoLiXMlSRxfX/CjWawE2rvGPwl0KCeQN5t5Ya99O7Mb/MWJzggpDjU2KfknC/ukpPkSF1r/PdQN2VsUKkXXzivFxOHcaKBl3R2HIi0dgNbwXfVE0JVD92dX0zjBBPzxMqItd6Mg3rWZ9A50VQ4AIRpyL2zpJUHItfJjiNHCr05I5FYPVpG62NEB1kxUHA0brTfG/hoA+iBj6WPUZ2P8T2YBKbKlOfKx1eYHu0pQW5XayQl6HgLkE/gTKYb/G3RxLqbiDXp57+zAwIYj0FQyY7WalunN2hrp5Xjbo4eu+i63tkyIbh7R5DtEUbZxrQEhDUdq520PvF5JrhDBS5gVa6DlCrVBKMwuJ51dC1XXmG9l5j1jn2FrDAc/bU4aHG/ECeSxKgbjZmnnHri6cce+vZyWlE0MIkLES8SzhZqblckQefCBqdj7xxnGnbB5vy/VAP1FYa1dGJrdmmQQIWNxrPt+cAphPb4ikZrp2+ebk+IaQBrjDn2c4AmcwzaQf9tOuhMNAX86mSVUNncfzSxTgkVNN8MoNSCJITvLrx5rUo0hpF3bJ2ScZFGk7c0P5zBUP5hP7uSS35YfjMiMCXa29EB0Uw93pdrE6p+v920kePQTQrQLNRc6amrkkzOcQIh97RSZ8isoYl4rg9W1g7sIRU95mN88RUqNNYYecnHgUf1Ui3KJ5VYw9cCK8051fvs+vREgxRBhdMqCVnkJxB0VGyfQtyCUYTt82OsGIm/579iiRbxvtz5Ji3VAGCExq4nq+1/jWVpXW9MrpgK3vHezpT97e5nUT78lNvX9Ld69rG2/3iT4d8LJhK70Cf2FmTf/5/T8w/nMXUUmcTrh5l9uYL9WYVHv6Nd7ORWJGsE5f4QVJptvC5dZvQZKQpLMue3N0VyS7vfwAs+CjSWlfN+vmMWJl8Yn/7DeZDZhLWGyyNRrCZHAtbdsCG+mlmR6X9T5L2Qlenolqmr+HJfjMg/wxI/NZUz/2NzIBAFBVhoYlZ9jjK+3dgu/UGHbs+0ffslFrRIZQ2YszC1mTXJilwJU/nQF62/LZGlYgyjp7pykwMzrSh0ge/4PH2u+Wlx6iP0JEHTWBQrQoLubxAaWyjIEHHWtq5MbtJkHar5g31TFUqVyy0TTEvTaHyVqW6bXl7JycVakGD2U3HQQC/OUKQzjtBsQvQWVgnQ0l4wW9o8fZlBKLyMrMgkAaSyHfbmphwrwtwgmlODSp9TG0D2/fPevjK2kLqOOCojycXKJd0ujgPxreSmvIUpwVQYsn6c+i0JdycPEtGmciGmz3Z8sfDqhaQc3rm8gn7qhOZTfLR89LUEMQb71kAv5Dk1fUEsOkOsN+wkFzf2SP64suGYhScz/ENvHNIJw6cz80tbsyMjD/Yk5cyWqOQ8mUhdn7xmkh1XyqWoKF14Waefv3PnXi/wQ/E7O2ayjSuBrgEpXe1UhwoKg/M2kftox6mHfjnh4ZKmMit2TN2SE4TJU4+7PrA2s+ZcuVMq8feTN8Wm2aY1MAVg3wMzirZb5tl6l5X4/VF+Ecasllf7Xi3kdyS8EHWgrwexzIg2BeF27ztcVOs2PRWSiDVu8U5l2P6k9ZbjYfKkYuXcC5imlrKIlXcoeDnPyDWmNvPOBGDLz+kkH7zKTJLyO81DLTeOOAHnBgoXZPLPTDQjIot2V0UmFBiE/sTIfqE+ZBGwKuC2tWpaUBohEPd+mR41vzlz4v7+NlVu0Tfbiw6zeOYJNHzZRYKamk3Z7VhVNMQUyKXlSckh+MARXjy6oqq8VdFQKbtGdmSrk4hkNJKW3lmxZJPpwReyv3zwbDY8hhFE0aqoKY2CSLKMGWHWFrmrkdZ0D4+o+yP5s3lFCeuapdYICTj40Y42S3taWTa31WkA3ZtBVFtf1BDlU2xChdGGN7v5H4xO2AvLfH70ebz9Xij/8cBKqBefeDleUD1cUKCceZbDMGr9E9tocM+McqGudrWu9iGpkCP97TmJIHDbSuF/p/RhUrIYkWopVRbshcjVEjXo7lQiGasy7ZAn9DvhYdYiI8jHIqRoul82B/nBaCKenfsYshe9uTk1/oYQdMgDsseETPz9rvbySfCJV/Veu/kuk8eIhHykUmhZA2Hoy4KP9PDCUg3/yUvXzuX5k25cnJ5bsHIh134KvFIPhY9Y4ddRkvfcZvASWdrLuj67YcRDYRR4HwHomLUIIJUfBMfo96Ke04zKaIt1I3XvoKArtwk4ZF6k8J44BhkWJzdyvFZKmKXUk7G1mWb8jTJrssieNJuEXTOYY5kppLBre1M84ULh7Avrp9DHx+aYiUEHuvIlK0Ar1LXObYb4kXCKp04UWJxuOlJ4TxhNzENRRz56BTK4Pc1csjftzGEMgLqM8lIq9geT8cbTVy+vMT7puxl49OkytXCU0fzmhO4QzskxgyxpIAVYTUaoYfwtdVkrywtZ68o8ivyOLa9+iLRncNoOtR6O8fihRWjcC28xzqJXO8SUBLEczc5pIqHrLo4vzmNE7ClgggZZWrRtB5AOOOmRIsAHjVbTxI4JzhVAr96FpMPfzmflpDf7O4nvroq8szB78oBF2Bb2xv40HreJbJKEYpx7oWXSONEB/xPZYQ/6BaytMwK2slmjyTthr4sWY/ni7Eqb4w/OgH6BNka8xXji+PJGIf0LFA0Z40Dl1j2JilyMvrg642fP72ofKGgUr8rQqQ6Qjp58LKkmRYC7+ND2ooF22hhjbXH9gIDxjEPDS67BoYjWvLqz09fdwtoWuVcrNlhIiyQUmV24C0hwqJ02x8NlimDBXKQSKSJ1TNNkbINtxfAH/VGTgI6sAvsLOgp4scxZz1ttcirP+DcUMf53p0sCNAQTqGa7Ozs7Ng+qY/Pj3fE9HMfpZSZ/Z3HPPiOjzgL/Gy9vjHjGa/z4kBXceUTHjgqiExQrCMOvfEIjLrWoLY4uHzcjtXEfc+bbg6ZzStaHZaaQcV5MMy4r5Gt7KhhnPlAmB3lqxnJavVW5dUx/h9gTrsGQLy3hcOkpYcCt2gexM21XPlEeHZ/7lpMKHZfGEAuPEXmuoe8j8LAsmSegwcklrMNNbzSVb9i0fiZbO2W+BogpM20RcBXYt3RX4P2/MpU5MdLywcDnizW7vir6JFdem2P6vxbvrmkzLfukbmvDSCouTDFebQHx5t+Iv4YqSxewACNZdC4xaQm1PtFqf+a5ZlN+QKfKU8O19uDtjUnfD9halwR9D0wGzUGD2DN/IzPo3xJsM7o6GlQBcD3b5aIPzT4jaGr3lN8qTkWBK8MKBvEE+F0KuNiHVKVntSS00RcP5M4fPpn4ySOZVnpbS4+yi0L8H4zhuVYLIdoJJtTKT5ZNGPOiYfIbAFTW+CqQnJr1W5boAFNb5avQip3/CDDWAcnP1ISSQ/WKWFDuJDG0s9PoBi1Nha59TvFE6YrdLghdCxiKGpHDdvJ9qSGrPitOBqhdy7i/8t2W9h/wHgB62eGAyCZgLs9gI7B50DEC5IKPQILmrYOYbiHsr6kqKRJqcRp5SAhkmcNk9MfP6RTVwJA9wvZ19EsT0HB0FBw+X4DWBKgfMZHCYnncT4wkVM8byyg86Y6PMDAgvc9FFKeC9uLNwVX16+Yqzb9tBkuiH2SV+0mox5zhXDN3yRhMfvoXVwFpe/ada2a8uXtAfGNNnl+ufyR2d0a8actWMqpFh7taqZ891toed9SJdXw3pW/GMkPhaa7JgJGlCoixwup+8QdIlIetjWD/HL/UfnG3gMllEroNUNEW1Cua/4LlsB0oO6GzBdSyQtpY39ifuf1/AC7fevasb/EiYzIEEa3pP4iFXiDDfTp9bMaQVBooKzDL68RpTgjh6VjhuzdV1ywyH9N2t5Xc4+7hbCeA7lRRx9gk7xTKZQemkD1OqeRO2QomoKtGOq7XX1RsQUcpf0MjU4zTl1Sc4U0BJLXxgGaa1B1OQHQIwuvJaUzueegvekK5DiLSpcTB3j+FYt3Glwk1jcxk+g342MCkJI4BRtwfu0tV2CCGH6MfyJgga3LEnPht57+Vqbfxny4JzLMzRWAoTuwD5vSfkk+dNGaz7d0GSIwvrumUX5DVjnAuG7bZ/zyH9tU2s3wNAPGjPdGiBFuJkS3UDX6zRE8inbSXQoXo5WF8CQ5RSadodD6FrfOzvPZan4FJAbCSccK1TuRcVs36UBIuop3SFFODgeRwjaLYYxYMg0F4dXrtVDPsYemzJv55UGxi7yNOm0K6k9U7ZifT0CSK5LJ8zwGesC/LN/3FbhX07KuT3Zx9I9PUEgsLPtniDkAP3Q86AGW3pqobgXiCRg0ZosazBAgcgIH8lCt3PT84LPehJV0xfJNIFKCuNC3UXp+wjXCFv7oJRC6kH6JnQFwVSLY0DqVCoYvxP786DChKrhc0/ZwOhjOreFV/OZ91IG4Tr4yl93hdO3e7h3KqJ1EJrVo+wPU07wbd688FzaKEgcV/3ijpil/I+SRBMFpUjGpdGMAf+jhoZRHYqrzx6IRmIPsN2kEdMqqR1KJ2ev6r1Cp4o+CrstB2lAN5EaELiun8zhCH8iHQeTdoroC6581jYJp5haMCu4qQ2DbewX2KRKETTsT8ZnSSkvecUNyzmVrdyd54Xthtu+6zkihosJmdmioVsqQzQQoBronYRD/zHg+FhVnjuEc3lNBmbbRrjXHgvlzO0S+acf6sukgBBQQINgTFkyj+CtVJgimOMwIl1NaZ1jNMw4WVBxzxUq65keRf4+VQ2+Kzkv53Mvk8/GkP/WxkL3lBM6q777PpquLhzTZZ+WUDLGg4FuKreQz59pbvTpq6d42yw5Anp3UX5J9fmQMG+rUdmjTeka0lQxsHy6VJ09cOg+aA1GgFHB8K6qRUALosRghXMu5fFyusrIZjKkLPh8l/eueawA/gzNEtz+C+IyddRmYcJZLkqEe5aAg/9pKXo2JtyZMgD7p5now2c20I906alnItu6T6HB5YJnpNuzrdb0kqSfF/mWU0qqyETsDNerUt9Qla3p0zf0zCBfS/F5UGjv1AwCFlwUT4moWUwSxj8wv/iY682G0BciIb5nP2Mon3t2CJLLRnzU19aWZ61f00b149/ikkBpU3d0BXiqOry/DrlBtFFlJNvsrUletBrjoGOaGEQAvfJ1nLpNBE+01sELdFHBHQVkF5xh8Ul3gmm7zEc+Wpnmi0qMEJqsEKJIaBHkqA49zaxOooO/F6hZlFQPv00Te1cFYkc/mzB3cjVxh5FyYaR5OIzGgaR+d9kizoaR4Val95flgAdI5oiMdjOkMrbwscKj1Ew2fDZJ4tUt4EgFkJ6RJHEr4PCuG+DbwcHSF/Gov7l/ICoFndUjCxRJvFU5uB5ZATCMxFhILlDCndLNLKAS24v1ndvjZw3wCZAaSIt/uDMRUGa56WwRR6B8uBSukBQipCMViLNfRC5xE3hHiux7l3z4TPXUZR2y0af6V59s8Pnn9Q1AX8jwSxPCpLO3y4j0iUqcIx/KURLhKm49lrRT3V9r2LVx+DnW6c8uPFZwUsgjB2f+tXogOyLE3Jd66VqqGy8DO7yyZvDjrtHn2+DmYV+R7UAqWzdXDqyHy/SrTCe+2NvwFUeAqciaqYjWAgzwn7jO1dW4zfts809+PYuG+m7exlZBoACQ8z6zPHymGIrUqmLt4Ii4eFAbkp+AJj2v1LxtFmOI6DbDZSobJItT1Shj3WPPzG4aRlPQKZqMIGST60ZB+EiYsT8c6EGwDBIUmTBKbp/ZbUOXtblq0pIhxaGIFZ1JLyzl/DG/g6SlBR4kO22Slt62zceE8u2+vZ8YFZ94nW+99u+ekIEjDuSzcO/b/IqXwH4Hvgk9fYbjMo/yi8reEGnWS37wdlKzpzivW51ohBPfiBClcdz+Oy1oG3zh8rrhnzTgqjXVIqGtr+cjVQDPshKF6L57t9gSwYeDKwmR56T8wI+ppQ/OD/PjYgicWhuuDPkNmWVIw59GEeJx1ZnVQgygRzNl05+q/acUF5kndpecI8/Hbp9sI68VRzBD8Bjx9ru+txIKNLHkbOdqwtrVz7inM8guYltYdembe8Sd1lDzTBVjZx0/WSu+6jYxDNybHMcmFsEDJm0OLBA5HZ+d199uTuaVx8FxulM84bZTye7I4TnfoAIGXWBCibt+OpjgY4GqPN2NmYMvpNVNg9PoBwHzKOQmf6cpUFWtQCcHpIxnFr/UYTvxSZDECoA3QinOQjUNU3Z1gvWM8vPZd12m01lzcuMlyIc7i6VMJIH0Yrez5nHfOMwKJ/Gil2wAl9HgW1/dsCYeBHcncSEu0l1mCSTQjwNEcX1hYvhnX8pqgOe21YcwDKZrHtXgdITPiDbGiSDdvWXelfIbz8yzYkdyXFkwcQRpH5GCnmh7dyYOVj9raiWpJCfZ1PJiAL64pWM3GKKhJsMnOGLYfA+B+3Uy5eMIeOuU1cVe+C22mi+GSNCR95C+xhTeyEcI+XFcBJtwHr/vzC6iuXq+X1p61TzJT3dGDT5vk8JF7oulDanqgRVFqa3qQwf+G0ZuXnkyk8w26fTwfgCLtw1Gw0luYtfGNYgSQRQrXx7xt8PDIWMHAp+GlAzw9vyggViCIXGVsQVxEammqqUwhG47dL0QX6uMETgODiEuC3xRYMKUdqvRA/SjshQA1stCAPqTHUnsOSS69Sx+iIijucv5DrKINdpEXeREMnMgN/BgtQENsFR/B4cwjVKZlrdwBynHViSC/f1ZMYK04H1pLl9Or2VsuuvG8LR1fQyDoFB7Sl5xOHbj+A3XvYvzy+WbLJLYMfiup1hz8zQnQNcqYk2Q9bcLBbs7UKgQAML+SdHLWfOh7qMEXw4qi9k94nXfoC2xM80Ak+G5jjopmh2yqyxDYmYSM2R6cAinZkagELS/aEzjE9ERmRkSgIqMMBUPn/sVqizrVTCnlyKFRSL+NXybbSTN9Xk0e60mINeTDHok+5dzfW9i2liIUyUXy9jraqiKct5bPNbWqM3oIyKTH6R4IAE6/AMtEi4KxrzX/lAqEO40yB+IXL7GND0rQdmEJqdz+9UmYJJ/h9Y8LzFJxjc2Qy9HLdIqp1tass6y84coh815dwR0j5r0vjZQHpQPTkHXWhsJZc0hv3xRRDzWoNYGox4yR9PFHKTS5UVva0IRxOvwr+ZtRZaZJCUIkVbwDC2RcRGgQM0o+eXtdmLgybVYIxo4kcZ0XUk6qENNdGLgJjLNtfFudgv7gX9V8Yd2+FI8BrH0SKu2UrzKliDqVk0n8IAfwBuWF0LkMR+E0cFdKyjEh2GlgRAnIng5bpmNZWaJRh0l2ynM/0KwCYGMaFKnXKMCSeYtJ1WR5nGS99zVIWlZwP2h746O9HgmG5HQrdq+z0T9cyJtlvkRCzBdoQMyT01M7/SSyBwIkY5T7hkQHZKjG6AU/FcMATIIMDH7zxNlIcUOEK3e4eBAwtHGkVTCM6IAJsN0gFTPDHyRZyPqfTcCgd3UlukrPM5veVTcy3fI3JEGdT3JJLHD//WI8tzfT3z90wkzStHh32B5zcLYcct2+m7YIHI6xCWXVeRgAbKJtlQIb7m9QHu0O6OUOkHnFMbsdcJ4U3pvB3FysUiTkDbIADGzo8HcFfRI3GYGPROy85VasE+oUTucFqgxkSPagZVu9A7FEn3HgsYJS6JJVfjoL4BghhPWhXPCMJFKtTA2qZtHkxyhfDGlHj1L0Z8zlVrWIgbpx2/oGni2aJSlcxvXebP2ssmy6EgbE6ZWRTjzyLoOo3lL5ym4PBJ8PJUcWC/LTm98Nn/zJKfxTTWVfWOYnjfg4IZhozwSOME2RYcCA97ZUS2aI7nL73+W2GmV3hLeQUYBJJuNK7Fl7OcoUFJtTuNOGVrUMf4Qgr/UeZWCcMV0Wg9bmHdTpLDeVoA2gq3QOCIj/JWjc5lCFDDjWyT+8YviZmZMBlOqkoWVoBsvMqpbgaARsN03Jr4/0U5uiu1zarn44rh2qeUjtG5MJrP/HbjVZsRnqS5CqilbCq+qPz2bFDrTPHSyeiLh7cK+/pDZwa3+SNYiN4yRTSJs101vTCNM0IzRjlrYyXq4M8KGoOY1uhH+18rqtIQcnI/pc8a7RJRdmIKbC9tu49mMd8uiGgzMGJt2NQ27nTi5wsBPuTUUCiQEXZu5FoIqWrs057FU+PsvOUB9p0b1jkFNFKQw/1iF/wJfHANY2oC69Id7DuoGSx5tK09S3ar8vA4gCQ3ryqsofniT1yLp2gQgoNtj/OqckZ/usXs2Eme6XQGeU1inSYPp37dd4IWhW48lXnWSofiAGfiSsMnQj2wm0kxIMoHBjg3yrQ+8XCqciN+8tHEwBZ87e0FDl2NpEvIFykp2V/9VcYt6PmP/t+3Ih0ZL2UB6w5rfYxrtLBvFv3seW7nvRt1qGSXgY3nVfJi/gSZpOjqJQfwWZlvt3LMDVmrPYPd4hB9jHvnbnMy3V/9OxiD9imSDcxve+bgjG2EJqrpame+828GgSQiAliFI+K1AuOX/In7+9+fJYmZcPFoSULcnh92W2k31hDQK3fHdHqAev8ptDXP2MT1yw+cUucADZXmZYL7jId05pyq34HHus7a01G0gKxrX0Y6V/8FQvwL5e9wmLA+920MCruIvmbOKxZFtl/OuhSBBe8Pxrnz1j1XOFXxkU9PE1gNcrLKo82CU205ANhhRdn+e/4NK5iM/rY5Fz+ffII7NuY9n+DZ0kW9xK7Jpf5x6pcHWEbQ08Lz9XsdC3TOHY4PD9THho4RemiTS/KoMjQw9el1IYScA3M9GW6IhkrhS8aMmzE6YtInGAZvt4D3dWmOTCkqf/LsQteU7xXFNwkJzEaodo3X4x3i85WEiXahGjOD3kp7323N6R6pz3b26MR2pRSgg5tRo9O+VS+91sNlCBQqX66vL29ctlkXWSkVwa/e0ZizF7u44ve8s3KDOloG0i8QkOp7+R1jkVceNh0ImTHofiUYFiXzr2D2MBuLO7txKQGdoZ/MJPwJXeV9n1LVAVD1LCxJGGaD/tpXd1YOtKQWPQ4Es9SeQ9lFUVE1H0fFSh9m0qFa+UN2m/sdSA3IHApdBxOvU/Lh9sVbdZFwCUE+2DOmOP+kIzChSItsbhXTorEjZIp0Kc1hSbzdBb/tTlitdrlfdzSFWR2mPWS6IgG+zwJXM3aAdaohfIpItxEAstw85DgzyU+Q97lOXDff+w3t+vSGUOTy+H0l/h4wV5hKoCx5CQP7Gd2Z+XRZuDCfhhJUocJPPhYlAFqdahmtcIId+10rOOUiuwUnGus7COmxxsv/OQem0xc8Mw0d2pe2/z21KTcCupJgrkpk1Z0rdinm52fUM+MR+CXbZ9JEG/6g4gO/32eQffNVUcRIPhD0VNYdNgekNRYKq7Uv+6i7
Variant 3
DifficultyLevel
642
Question
A rectangular path has been dug into the ground that is 10 metres long and 2 metres wide.
The path is 25 centimetres deep.
How many cubic metres of cement need to be poured to create the path?
Worked Solution
25 cm = 0.25 metre
|
|
∴ Cement needed |
= 10 × 2×0.25 |
|
= 5 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rectangular path has been dug into the ground that is 10 metres long and 2 metres wide.
The path is 25 centimetres deep.
How many cubic metres of cement need to be poured to create the path? |
workedSolution | 25 cm = 0.25 metre
|||
|-|-|
|$\therefore$ Cement needed|= 10 $\times\ 2 \times 0.25$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+WNL6O7QtHd4koZ6qpFr+hn6W8Id/pX6b1e/75lLD8EtO73DXnLRtQHRYz2r2g3QOksoE7tQ5WUlaOrHA5ozcwJVS8LSz9BsB7bN/quIOg/rg6MhfKLr4HxBKmMA/1Z0LXAUGjAsA1rFJ9HT0yBCOSdaYtD+DMxcNwWi9jo8Wrjn3pDOxlofmO0ji51PSN0EUmGPFKpSLLlYbY5M8E9APaTmH2bcPiFdpzT7jeCcYbLyapxt4F9Ka5N7U0xWYcEwlRhjC/WGKNReGrVkbVXPYUMiNoaMe4x6wa7UE6ED7AnsnCrvxT+Q8737ue88z8I/AgAxI7oPpk7SWX0ES7obdBAgfha+H4SBv8fkgAwYkmabBQG0xz0xCh/3Nxt5dO8WonCCY15yRDDNoESCiCRP3w1/os63U7tqVWZTE7Wd2Vrg1jZaMNnKCmZj6QtMppj0Hnn1TfFBUprrxGVXL/bTh6KhnYDHI1aldj7rKoyf9D1Vf0JcG6P37/L7bi8nrNmHNv9qU854A5JMifvHXQTR1zEd2CdX9vpbMznvu1CuYx04rxfpL3hyL93czKHxxBwuMJN7lTdn55Tlrzu11tMjAZitn6i8IBOFulTh19Q3IuvEtrZFX9jSGX5WpjND4TxYeCUEUCdE3QfwpX1/os63cjjbGAi1U0hvMIBFuFy9PUGZN3fqhntcIe4+4Q32hPzLKluwSf6VdmYzr193RqKCF13ELb6DxahY8aM+2TMiAjpkJPjHXeh0+vqw57VXSKJng1ZRsuyLrV72OfUQ1LUzaPE6skgTLn7LyflPumMN+ARAL9alxaLRTh2h7VmxYEvM9qKNb+5u3uIvi19uJzwDck2e8cHsB6PSTpefHtKKyrXAQqCZNviCuF5D+J3iEiGSaSfaCK5sb+971mw02kRhVlco6oy7bBw1YSOXmm7BkTtm51Foq1BRNqGakSevsu8Tzuo6c6w/oq4mwyxq54Nv/J0IfRNENONo5ovZEIscKK5jdqw/9lkSdfNASAjFu1xbXkkgtKOetFNANW+ZXnlIzVXcVzlKpOZhZ6ZeZYdWG2Mv0LzG4M8URKQmeQh+N4IxsBPsZFeY5FlcjtH0FTkDoTI/Bq+qWSaOYo1VB19HOf6MKz57fcNrq7R+gxEX91nJN4jsaMlKSdLrmA+3jxZxlrJ8NNdrifcA2NwfrDd3f0kkZ+WThC5ozsUP6XaF1AEshVzg/t0e8ItegamldyvaGJikpqaRGjli0rEpyiUnFuKDbXKP1Ve2btHIs8tNZ2aN/1H+ZTiupMqhxb1g8fp+ogmaQ4aA/r+ArIqWtgCow1mpaaTUTkwTvBP18dPdnvGU4kTv/nH/2wMGgbYyEjpeF9b21MDggBoGvSTlfMki38qsOSEHg9ekUyZWj1xVigGyfhCyu9T/3dYUQ1a345MwdrcD/iM6u5rSqvqquMYqH1QcaXymhR9ble2RUAYNd6Bn33A0hCDgmhALbF+VPECG29XgV3P+k4Krc6pG+hcdBr6frGreFRlWbN56AJIWZQKFgHPxI/jwYIjaDJ/wsKcXmS5gSEWJ8MyQrZ7O1CiQIrJ015GudD0kNNYLGzxUwP6MsXWMzEckK6842Fcwi5mcwpgEs0saYS7j0IebPCu1JAyZMrGKFXhawpWQb2X00WbLQvPV5bNDmFYEUfRRzrfV9bDgpUtse7HY1MX1shgFZht3N29gtWiSahcyY2pXaGbonJS8VFjTbUTPHUx/LN5E+IpeEj8yt0x/LAK/zeSHFTV+OrSP0l8n2Y25XEeRfcdYUb+G1Xphiz1npiWhXa27zE9K1aqZVQqbI3Xdg7dl0BjTJg5REqo2Dku5jdBhPZzJ7ZjRmndlEzigoK8S5N3BMhd8SutZiCXO++aF7elFerH/+mplZf+eJkHRinehZgKmZIXVn8WCtJiaRXKb/H4+zrb+cE3SwWZZHeV1XXX+BmCQtRHbhein75Tg8HVouBZucSfKKOvyayKLIzbiQp4qe+iMWP/vVzPHsNPQ8+sbLn79o1/Tl3goZ8C1+Md0VYqA9AQSbYY87Pb8q4/deqz1kgROqOMV1GZpyW9Qq8+jxPKzxMv034pKaQQ7eonBKSP3ziNwxhwosI/QhO84c/QC65VSmyDF+gth38frj2ZZuCO2qFO9cWqs89eWrOHURGZm5Zgc4nQ8x5o2WB6cBzuYqy582JUy93ku9mXh+hxVN1kpj/+z2j/OKv8VdfkvkpHDXR1V/Ug1zXv/VowzuRWsxL+2U3mLFmwrZzfqzWtYQxHOQXkkKX3i4NX5kqVyru8xTnSqH2iEqratrTFDEnrZJFcHVhv24yPaNWmfEa6588eqRXNOCoRTR8nu0gYALLs/q6zggUxf/lI5Oi/BGwZO5YrhCxWo1faaUFzJ78e7aPt0idkkaRWTQp4sKL3FUnirus3S4uXmUbG/ZcbmiQy55y1O4wLyRIHNcXAu1fbtFUU32LrhGAOiaozQzhTKXZ/i74r8v14N2/I2BLUQA+6N8qV8eMSArheWhol/+wSSletp21Lu/DVsb9xnrgDozBaqdBFYeNzCHGMr2GFhaBcQwtkKdbDweVwGwMZUGSreEm8S0ucqKdGAmQf/POm3QgPXlBldJd/fz2QPnxe7QWCphxyJPMGrj7cP7g3J4cGeXSU4DmQoovpSvsC/XWsK8Cv4H24eztRP/Nx1qYnwG1BCmRLoq21JoRBIp1awdl6BRA9xr8f43cb9hzx4mrfzDZ9fWyJrJMirXyQ9j7UwxPaQ36M+p3Mx3D10vu6R0L29YEgmWajpMcE3IzBAj3VgSpk90SFCiUewWQQ762TxrkaDumy6p6ls40CRnitZ/gnUx/2dioam+RVTZMqBWplMG5eVVwj6bNLXIJlRLV43pgz344CqD9tClNB1J5egSCAoHss/etSI8/LidW17CvVvRK9or8VnCNeYSqnPupMAe4jQBEI8ZwOjWVPRGStuCtIi6KEzPQ6GvurjGLdM5cUv0yjL9KPx96f3/caa6LUJA7NTC02/MBHhOxbh41wYDM25KkIT7riPaJI43d5+YxX6IC/Sz50rndE8Sr5Z+TkMkz0rRA/pZ8gBDACw7L+qTopZ0RVD9/ZDuGajlmfLQoETP/b+PtxKwEq9jaLkUu44f9Qny50G5M68qOU3QLR5vF/7zHcEKCXZP3yuaikxbNMISNEk+PcOifLRBDzTA7w7PpetSHUChm01orQ6IIKZfmD0/GivK5cEtmNBB/zkdPy0LQl8NrhIgRx31mrEH4j6r2Bd38pSctF1g83V24lA+ay78RSLF/aQNRzrVwm3yiahea78TGLXyFIhbx8KlATQ5NJUdsZCEeIcsOHPoFHWz3WZoTnnbGWJoPoTxe4s5cHGEI75thp9Sq79StNfUsd8228Ngbg8cuAjED+FTHARK7/sRnlz7eBwKiW6EH+ZaoI32cxo30hNoirGsWhCqDFl/gWENYkIMq0tbsBIpre9n+bFpjny8pQkidpZ/18BhtZnKynWG87PcZfVs3SZKYhMC2mCmdHMvsJTYdS9gxoGSdkHYocGwr6xqswLkB2UwTk4MdYL/zaDVsilhErkGVlAH6CgA1CwD07jAnlhFq7u8ZYFqpvRKyDCCWzHyj4NJceWlQh0BI9LCD/wuanBRV6efoe7yhi61/huOhUcua2/Ly5fvNpdOlqhgXPaNl7vyS/MxluIw6VXOijbteFQ1zkV/AvBDP87NpGVxgFPN1eIMgk+ZezXQ1025GLQ7oEKQSuWMIVNr0SpbmVmT44hY5E4xYzHKcxw0viMM9ooj1V+hG65VqmVlWCWbEt7QdE43iW9g12gLmeE+JdRGjrpmRAiyedd829LNAKZ486+Dvcm4qShj5SlWqlr/slLrl+KVWfunRObrHw7m4xniDO7JbPRdFhh/RJgrmy8bp9bb7IMNCoj5x7JuE6vKn7QAf77lWXD8JEB50+QO4YKxDjWnfDio+Pfnnkmx4YkAy93sJkm9Z4urB1ze75weN/UtPmSup9PY7oQ/oBEkRQbOovFI/So+j2cVx+MM6A/YNaKX80yG1tEz/BxPFScn06enF2QNRX39bidH5DaVrbz4SpFkhu+MWqQ8wUL+LYlJIq5Sa72IobyQEPkmOWG35aUfUEYAr6MHatUJMgShJieV7zsf8l59/US+7N+GJwZjZvmfwM8i78BenmN4qLIbu83CLmQjNs+rirEnfFl81gtBZ5yDHg+qml17lXPQRJGv6iRTEjMHqtEiNyou0aoovFQ4AIKryX7CiS4wIkbd7Bv/etrL5nJ8+4snCLQel5soX+z2nRGgZndUaO0mmz7Hy76es8sHi4CdV6y2VfKXDUdgk0lwIXP4Vq8d14OY0AexVB9RubjTPH8IkeAMh9JWtp5LVjeg5DGPQyYRF4YwLUdEFKDDJQpPyNGPydtp9hOZSuRXpfy2zaIdJ7VD8/MIH+fnTz/Wt5a+pb1fjB27Egmd8yTzrrcBpsJD2BthEp4n5O66hebl0ZyFTaGkXEzvA7Ea6ssigIRyZVuQuWz+rAvogMKyx2eRztwyTFah0bRfuAKQqS7OgZvi1uuYP2rK7591B5rSDcNfvtIttNBWXxtXoc4zIDJq+chbQeFoR7AOSYKr2uxzQtR3x9tO6xWTJDxe0qTkQbDQanKXiX78bNtuPb2LNJsCDs1O0gaiIsUopjU2u5OFIFIdbtv9vQ0Z9Krx3vd0aAHJGk3y/v0FFFFIJ98PrClfC1fjbKX4j243LNlS3YecrZ5/ZSmo7KE9hxTixkrO0z6BXDo+6uPN6ilsOwXTyUAOKkqmWZVoJsxyPWqP7ZfDFeWwcHnYZ6sutuNWWHtJfGoE5IuELLBMxHyEVbmSaxT7z61j+sCYpZGdS4HDVO+AhiveXVzcBjktu/GtFXgde3zFevEBp17jz9A4/en3z2FzTXT4tNTGMXBZFh3ikeOQiRIXSviHzB6+M6lDyz2KDvKiSCccOcCKGddFuOD9D2E6P9LXP5kc/9gv+rPM0Ed2GeNQYhXNOZETMSuETQEYsouydhpRVmfw9mXrfhx0vcw0NYkDNNvBIiHJxeBRThw+h+J2y+kvFJCEUGA/5FmXfkigp+d8NGr3Ms4QVuQy/AYqoPlXbEyxrjlz4eBLsgELOSVwkzBfB5l3gSgsV/UWzOkUedy/kV5W6+Wg7rZqAebOx1AMv2wzJjLuv3+27luI5C9RfhPDdzDk4tKxjne960/2SIHCM0xTC7jn7gZHigrNnwPS8ieelZjSAssQB/DSQrFNfG433BqttWHapMe86CRfPriKbUWxYlKDUSfYhoerXQPMqAx8v78rgZO31VAW8ajETxdg43DINrMPHo3WwXY9SnDlFCqkfPxbC/wffIH3GXrvzl382mYRfPKnmU+x2sPKwUzghxmJPsUz1xAUMd+yf9+QgcAhZdnHAI6/00Kcf4ya7b06pUdCMHumLhB2aGix+aMvtSRP01lo5BZLJbfLsA2VcOn9LNg6X2hHoGPcb/ZKUL88C6ntAsVVQrvrWyBmgw6ZnaH9/j6crE/tlq/kvnZRaTv/we+8WgEHSEVeLG/cyt18GjxWanfiJPBYhyS/ewPjc1fylAh4B5ynWCB2rJGHRwYfQicEFhJzKB/clReK8Kw8+WCSntbYygvQeczN/sTC8pSjUSs1UoUNCtPetLXu+3R5s3KcEcN3AYl/gYF9g+Sgt77BqpuI2hvhII48mQ0xl2OwhLk5h9hWfzeI1EqJkcy0GUvAaktRPz2NUQNQBpDXTxCTcs9H4vAcgci1ZFzLlacHM6zV1q3ocYXjfNNUOEavWi4e1/IRLwVHu+ncFIJkn8AJUWRavkmgLJ+JIH7hSz6/wbqVmCLHGIOXob3P+RvCid6A5INQlbuObPikjM6F0F4KN5a6iGbazndqP44harFszzfAjb703Hw3WlNzMgrpnyjctlkMx7EkaeJ+lzV8307SS/Gpz2LlIGGoqKwbU1k6iqEJctoWmHd1Ng5tPP+6Mz4Hw9JxtJNexzW9qKVfJYABrwVpiZgjz2VEpoh623l9NCgfLnoZV+wSJ5x2RttBgHfTfCv1cGnxwR4PWYaDj5BlkPvxaiHJ2+gCBzmybAAO0uSvl9fDYdIGgAHBDA8z0i4Cv/7dDzbyZDctaQ8XZyDv4yp4qGDvh2xkN3P4V4CieNx5wo6uVdBobLamOS0UjjfSGpedUwY+ecIng0ZUUfAIuUMCUKfPAW1Xf5S3M91VM0O5F2Jog5xSs+olDFB1pDBzwaaa5rWyJ3b10nQpuP+yYCmV1D3h4WOZFHCL36TYBxQP3d1c/bJbQzinra8LQN3iZWcAB73s/8fue0At8TGF5laJCqJnV4nJhpax3qE2Oujb3vSKiYVu9FxAfm6XmkjpYaRyp+mgUe79vdox54n2OVk2O16SDpHnai7j5qVjaIr9ccRT+XUYRfN4HJ6oXvwVabWSvBZrfosskajPLgUNMKjircM97t484ZJzsoppzITJB++OGVxKybBNAszDnyBBNEFdlupncPU6FuNonNeVwV5miansPZ8BF/QUUkyvM1/z4wwZp2hXGfZ8x+Gpy8USeVaG4zKv80laZFN9G0+DswBb3K7qBYtMnHjoZ8ci1O5/jzPIGIvAL+isFfCiemDNVRovxvxNw+QBs9Nm9ptPdSBE++M68aD2mwmYbPwIMXIciadtlEjKzLxWXzkCDxZJuo0pwZR3Xc6npbdhLvE5Vb83gqvaMv/uNrfLU5CIbcpOpQVFjwGkgrwixaIStGjL6vg8xRVepgtIfktEkkf8RvRF/Gb/EPqFtTtHeD9JRhitfhnQaCVMPVG8mCrIEeirOS9elOOOQ3kqWhdLlxvmsprFzHtJNP5GP/XEzfjDDR9oJeHgnLt9lQFzgwgJtHTRJtLBQWOs0GuE+WSOi+I3mbwy+cGAuyhzSsdGupLp7QQSgWhiw7fdksTxSus5W5UgyTUdDd9dwYwZ3529i+4nhzSe9W6FWPssMbPiDNMYwTrBKkk1ObmEyIs13zFKqUXeu14zzW/t2gBOmfZQvuyeFa66DONb9lQRDeZbxFEzUiRmhSu7YzfIU/mNUtwk8x3m0nIS1gL+VrJbPW3cS11E+vMd52qemXQWLbuWjffB0Ud+Iug+O+sr3Ik3afAW8jr0y+Fp/2T8qaCi/UhKu8So9k5G9ChpQ9HR4rY2oN11nO2RwMPRqwTbvrcqc1O/g7Sl41k6LRj3CTIwsv8yijI8RpBDA86amacep3Hdfbjg3Q5y9mFEDhyI4yQleTL84l6IjcND955esLAkb0nwpH8eG7Qu1ksgpqW5glLICr+wgJUkxIsoG4Z4BAs0Lzfo1sH2zTDNed+XJcyc5j2zAunri2N1k7R1+npeErTzx+bJJqszGf4lod0eSr8i0XecLmiDa2b70apSMzGijdVF0JD4SW9y/LJwoGwsvu6KGA+EWvtesaEURzbCldrW7csTJ+geZt8DD1seXXBbZosi+njLRrxvBh+fItPzQwf26q6dw92aGMCTlQKjsVzn7iPI5CQbxJnr2qkZq355yI+KCOxeyIrlepFqBqPQsFpQSJAGKYD354ZX+cKxrZr8TtmhRGE1CRVCdn6E7vEepcymKZSh4qyxGlalHUZoDoRWEv3OYt1nGHV1c3XgXeDetTFabzR/FJx0yU33qXiPO263xiIpTDZSX3NLytxZZalmx+58GI+6MMBcb03Ug0QHrF/v1sCbk6wLrQy2rR7udcvjeRXN9oDdgieEBwXeFHtZHall2ZQC5tvIqtrOyXjljr/XiaErucKDQlDwP8piClZRiAFOwLlm2ZWLkXwDjNXV4eRmNWHE+1XdhFCAWnIovN5t1jQgHUI75Gehh3qiWlJ+d3kAliI0ZmFWcEf30jbjkh4R4rC7DgjcESzO55RX7s3aGu2FFAHT3ZBqAbK9lzob68gJFv9TmyuSEVuhw89utuZe1ni0E5sSvfWWoYqOZra4+AHkajAlEXBA7dhEIlCwFuMMv9soepwXdgqlvikkQgBSRsIrs93UW4fcWXXraH1a0yRJOZRPErd1b0sOCZChqAnrHaCPr1pPp14XFYuah7j/t4E5+T5N7rJ6aNSz9L/nVLsPSb7XXNR2NHJvXhRp3dRT4gSJnp3Nm8LBnOve+Pt4uzbxjezpo/v5BdrZ2mQgix5GNx2s4TMlYyfGaX8OUNVSPTQP42h/a0vuVadRZpwv8PtPbkFKd4f87lFwcsYYyNjXcEReUL63pkR5yGE63EdUKBdVjKRTlEbMlAMDEXwTku7iLDfnh2rL3/Ij/J0aG2PANMZMFk9Pm+GfKbywrUb06KX9LVrid8lqCEztJ4UbXD/cd3i+0agNfXxZk8s/6BZ7UOWzPCOdv8FKeTMhNibGBLpUQK4h3WD1y4kXnwfNy9n7/rBNB39CLBskc/eGUsmOZqGCQD4x5C9ovGtaKuhZ1m88252aL3sq6XXHWD37YVHq+WIm+snp6xEOHzE1I0sXvk7Jobhq8Su9nAryxP8XoNSs9xTwjo8dXfKIC+Wp8HviJLWFSyplx2IE82Sw3ThU9rWkuHhmXPMSYo+UQfaN/YD6DUe0SFcWC8Iu06vZnclAkn/OONOj2KFp/AuroREM+ukQOEV8WixrbkqGINkuWSB5ODoCkE4mKQG+MQmYgFK2xSBgbUifMnrQk7dohEkn6n7WEC1MgvrfxfmgVCcABF/dp8bOQSF7w56lOLyfMzdMTVbMiWRjzlm64WscJKHRb/UFE9FY48JaJy68FZPrQhTqfz/psfIiyACdyMVQpMe5taE2rEB+rEBbLORUU5VwWcC6g4ABdwWht2XrvpWjRU0d37C3fe6I4bHcl9uCB/Nant7LzhCoJDWxU0WiqauxtRr7S7t7HwQRzG4J0QpFkbExXrlMUdrFRBhYIHitwI0Mn6LueCy+UQx+zIdDYX28dMuPvcbiyw+AKO5QzbOM7/AiyhlpGegH4A8KKpHS+lBElj2xA/Jq31kGnqmqW21by+uKahRTlskXDL9+8qbta9jsQsg0r1N7Arcjs48mzRaaiYEIjLT1wCfo6JzMY/E/AyYQxgDkqXaKYEMuieHj/YPgiDGC/rrBqRWns8vD0ettdUzNXOICDP4CyuNBnybKq6LZF7xi8e4U+XuVAz6uK52c69ddPDUYG7mFPPStj/sjwAbD1Q5SydQN3bnnvRf4dohYlYsiYLJmBg8syEnTzZos+insVOCzRknyXbNm8SbnsJqTXtTq0A/YNRcY0x6wWq52UpIyj5YyqgL+aPupgU4Vfl5f+w2mbEeX/BnM1B+iyvxiQ4dd44ih8POQmt2WUoyyhwhDjlDL8zmBqITHd4O9jwVLWNHB00x8dTiZXC0tsyqX0zv9aLNBE5Q4jwaiRrYEz6YWcWL7IdGg3bdKdGWO+r5RIfuHOy6YDrcfwd9AVOTSdeHCtsb/yof5ZKW/mdNtt0aQjhBOckYbBYsLGSflqZ3RsgSUMc8veqTkAE6iR
Variant 4
DifficultyLevel
656
Question
The rectangular base of a large sculpture is 10 metres long and 3 metres wide.
The base is made of steel and has a height of 30 centimetres.
How many cubic metres of steel are needed to make the base of the sculpture?
Worked Solution
30 cm = 0.3 metre
|
|
∴ Cement needed |
= 10 × 3×0.3 |
|
= 9 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular base of a large sculpture is 10 metres long and 3 metres wide.
The base is made of steel and has a height of 30 centimetres.
How many cubic metres of steel are needed to make the base of the sculpture? |
workedSolution | 30 cm = 0.3 metre
|||
|-|-|
|$\therefore$ Cement needed|= 10 $\times\ 3 \times 0.3$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+qP5dicG4EOL+uponaKsqR/XOzsOAwnS8sL4PEygOFnOf1IAA4g9/A/6B4fYb6bZkfXZFi87fYtQ6qsO7qyCkk3WRnS/S9m61ia2LVrBX7TPEH1agVVusEfMyaDUwWYWJ2dOLD2ZZHpThy36mrsMeyXCzUzK+XR9iCF1FSrlzgBG/aXRoiYhUySzOhzFkyRm4Fn/nAiDpk9hcZJj+yxMMcw15uvmXq/ebpYVK+smWYh4ENc0ihK338Qo3Iokd90yJd4hgj/+48uxNMosiwYpoGh6DfzokpcNEYmVbxXLLD/j97wC/SgpTwrBmA9gnJPd9GYxsXrnkBd2Ulis6Fo+LrD6gZCKPLHee1reotERQYfJ5A1Q97Z8urDkranc5KVVGI90+jNPnIlC2rKazQT9XPY+irX1ySW4hVFW7ttmiQwpl5P8l2fENUhZs6z2DUITyyDwX4VHAge3fBn5fCSb8z/Vwy5I7hoGBSixdsl9PajxMQhEw5AStMwFB7f0yOF3b7Fgm+rUNgRWBC/K8vqK+UqC5lwe2IImlTK5+I3uWBeh1MkLwF48m7b0oRKfCygHhwqstpQFuXfVK1vy8+JwEscDmbcUEZZjWh8igHeRUMCDaXhixTAmz39HWmMUwqI7Bu2itjyCGMVt1Ck6mwhu07C3lkTnQ6IHl692uM5Dp+8mbQIoVVph1Zf2UgufAZZ9cK3dVYRn7ymAKFeb3Ip3a5g//BhpO+oAz+688LT6T4B/K7K+hXbIOYMSSf8pBkRO5h8whWybW3/VKQRz++DOZWPZNIrLWeYA4yvLlNCh474I9P7rRCd3v4hKPZBc9HqRNlnp3GioITRpimp2fN4n1sFUJrHASo0QMB3g4MQPMVZVolVwXx+kEdJg19Fka8+EOWwMLlUTZWfLJTZ3maAMaCcqK9yK7PvXFPsIXra4VysZSE0KFyu6K8mvydlwvxkh360hc4+yjf1GtyIQ8zVAG7Yk7/rUDUo7SeGpFoCw8fNylBjZ83ZY8tcTDS/p5vTaUC0PAJpnEwzrViSFwtKX4wNJCehDBMH80aTh/jravarT1EkMOa562JijxkYHTJ0Cqgoimih0QoQkpXtzzWVpK3JZzYomUxeff75x+sLCuAP5SXQ1bOR+fJJhVg+hB4uPt2uGqTEnkeRGs6xUcR4i/vXbCimWp4El+BZEuImmV85XoRw1mxPHjxu+/dJAqqxwnV2FK9Zu/Eo3R9HBFkvIn1lAZ+4iSEVEm1RU0UsH/WR0h2pzQpy/b0MYcwwtz1S8Q0iMlJ9YBBw3iM4rb8WIoyTl88Mka1wRYJ1WRTmhKxAo1Z9TFoWoVmMORO5bTsZi+5BX0iyhFMAvGo4yEG4Zed0J+pOEELMJY9jdYHWBgUvbpxtERNqOaSK/4wxP744nc7xFLOJ8dVBMZ+NDelgdu7qz4WqNrqHysuV3PPS4YuOHGMgns0Nsty29O/zW4BFLoABt4W5gnle6d90ciuLMbdVp7ssuZ/NP51qovUZjUi4KF+Fq7gOSlf3Q56Vm4GIOAKYXg3YSAquAvtIYfIbRqdZgq6rSQgBGgP31RTjiJqFSaeXeYqibzaje4UGQL84NZaJMTR8UKS7A7TElMJKGDaRHO7yodv6Ess0sYgV8Rt9FNOThw5CASCsm4doYRVqNefcqs8lVK0xtW/uyltCNmQj8Lg+F6plOBi+nuralUz5yb/OQsK1fqeo3kwfCtSUSMhrQECGB4gDjlNWb28Cntj2Zu8wjH2hePZgzORFckazQF+X/hxPd4Huefx/wNSrcsIQsW0wLQDXWjJjV97sI0ORr/IwUV+U2VKnn8SLenKc58+ZGBzVkIG0HLnxGux8ZVOaM3ehT92SBczk+53z0Z0OYmemEu7Cd8XLcV9dBdSKcftH6t/lwpjtCsaF7qRJ9B/LPpjKZuOmdhUAlxMuGfqISArcfKp60fTyMgHj+jr/xTJMV/gGDcskIPaEjU/jFlpOZfzhiMVZR/5ppkNA3h5vHgfA1tx7KCvi4l37vn1inPtU9FcDQ9T7c5GDwBDqVM4+HcsBsE79Ky0ScvOkUG3uElQ4VT7CiKM69YtQRNFHFJ8lNi7TVbW3np1Wxj06+dZDBymR2qNPJY8vKvmBwLqi85T1buEB7eWBnH/b0iyfcwnbXQM35VJVw0q/bmKJMnyWNmBul8lkHf6SWXycJTOI+LAoKhJEcf1eNlRy8K9IYVD9fSh4L/6rc3DuMt5f2fdN5sq/RscQfkKKgfWM6E5hW/G/nV3h+/lBRnjEkfiXx/6EcewgoWeKvWfQuBTArRd9d/D78dn0HRdrw7bVnmSg2ckmw998BuJG/G6vYR4mD/IYjq0J3wu4mNOijuN3rzzyyD84WRKUuO8REds8qLaTb4yDGo4kYqyIdfxt0WTgrtGyrHQLzO1nz8EihDUD7Je+13Cn15AbBCag0YUEbeDrxubR+0MX7Sihd11GZUYrkrY/z3mqOdelHiitSEcqQjHdCUWyaxlDdPgPrc3bNfuJHP0YD3pAj2G7mGaPOPfOcrg8iXMnSk90b85hEsADmJzRAOn2k+cLSTEAcd0daRnAWcyahQmMEzAOgs2u2wrT2gXtQK2lCMlZnpTeqGZ8vzAmHDxsbBN5TkO03KophdZAJR9Zvd1bqUT03doOfkcurFyo07+BntTOi18EpIVGpZ3WWdruOXbMn2SKnnHBV3g9GI64uRpw2nS3KpmcXJqhw+02Lz46AjuU+2U8Uj7CIcwq0wsh80GRZx51DcWTIzTqECXHKolVmDFi0o6Mj70UbsMXMJuyGBbF1Kx76yFciH6qiNo7MiF/d1CAqNizpSUnSHTtS9hTcziChJM+mVnXHrljX6EHfyJLxpCZ5FhzBtVp9q+ptc5fcpJy/i7UD12V+12z+H26rQlb2wCKrJEwEIGzW4ZL5AAdeqMRM99wWngVjJi6merilnqg5CszquH1IR+/GBLRKkcJx0JmHtFOWvc7/ZfqZ9eKkp+oy6tgLHgmaEbu+RjW8znHOBjh1xWpLUngPxhbee3p8pi26eAuU/MisYYN+u7L/HLZdkNWaum4R+cz6impagc8+FUacIc66XqTkMRIsjdckBTXEkiCtVNHDA6X/WxGvtg0R4uBK9l/XQBmXZsl7KHvWW+A0tBfmnQyLIX68/Q2Y7DrSR68pmQYpyjudqbnz33UzF5GPhBRsz6z7/bzWPgvMpi/CTLuamdRPMaX0g8+T2rkJJ/WbJcTyhbt/vgC/+3lm033ojM4V29Z68wtadO+WCRu9T+ovu+N0hZQI8Eux7MQcOXP6F2H+Hq/r5hBh0zEiapydVbXcAz1WVzHL+H7oA93ANYtSIhskZidjUOwnMD/uoLGPR3YB9f32r8HW4OWbQgHwarEMfxUFmfIaA/vTqcWXmrA+rx68+XHYGGhk4Q4rkC4Bke7ti/oV14/fGlhUBvit3GiYUQ53ddc9BWU1fVNAWPAzi+4XtgJyXnxUOhYzfRK/YUqcMyNfhhrUv7q8NGSe5s5fY7uvvHlAp+6QkIHNxpkUamScFYazgGbyeNcbvtiuaWNiklRi1UbMP7FIm3z9WDA88GBjuRvE1JstFbw8ESa3sn2HY3B5sqocAmMZrFOxap2A8K9PxTUJhSHNAeAjqg82pHwgd8LHPa+BeTQmTl0rf/54tG5fiwpmTc3S51uHnGTeUU38JxgEKhOiVN2mi+SgNz+8B2KHWno26KpmbPEdyqTn7dl9kMAwJgyCvnD7VkPmgocTslbbpavvr41dVET4Hl+utMwEwWBvbFlj1s8od+9IePBc/9wQwJmZ4Rgs1EPf/8A4kzMNssq0DCMl8GdNonwD2e/RLDYMyEY7G4phaBOGBKu068Z3kJaOGeoP1wy5Wz2VdkmYTZxAdf0Rt1lGb4djszuUEkVjT3Iz2nPL35bTODNFYjyDG4gzzWVF72US6sQpVl8yCRX8uxrlZaWGiQpNE/W0FlQrmdjGxIPxX9G5tHN5nI7ptIlP9cPHre1BxhPHMxrxjiI4DkFzNDa5KmYedEmmZj4EylJ0lT53NWo20mZLc/bv9lKcamwn8CiiXc/LGNrn4R9eVoWdMlTMlm3kmiT+63zj8iAPx+nnZos2dtxxvV8vNShX42ua1ZkjdkcqXNd19/YfAAnAE29Iqab/JRSVqnSmdTy5SPsLxGUbEQ20QmhMQSepS7YAmgnFE/vDE5ACx597wCOpg8S9e9eSHVdYIyidiniYjWMJg0WJQbqKyGAAwY2q+Rs0LmKhn2NCbziTMfC+hKnbm002Z8Di7QNtyf0UdI8Qw3aWEJRHKMNIFldE0xCYquBFcpu6jqZOud2UCL3eDB2CJl1ObBFVT5zYUQXNR9whFF4RLqbTYTpcBalwF5d21xwdxLZN811dW84bRZS706EVTW7vPggiUScEoNq9vU66yqvJjWPtzOuh4ywFWgnGck+dfy7LZ7xFOCAhaZpPt1JKxfZ7UBYA0D9VOkIkfPpY4am1Axj0B1vIGbweE2/pdb02imS+I57Up7vQQm0+0D+KZSIijtcxHWeBzjR70k1athMSZhSVB/khIssUj83o+015psVUzqxEzWMU+8x7E+Nvs7FJzBZNexMm+KnZEORRxSjBg+k0xlT60S3mYbrJd70s6uUu7vve+PSBYJz3bk/mewThHuWlrZNW4k7aNMO0ujliUSd69cRLmXyRs6cAZr7HWS4SgeRf51OnOFOomqZrgYoLPQuti3g3Pz5sfape4wCwSEnPV+HoSbDKIKJ+tUxLXhLYaR7Ckduu+zQeYaxJihPOWz06fFsA2KugnokYxybUF0hUCVz82L/6nNozGt2SAkjXGgsiTGifnqCde2ZkmIymdpupvwafuHfqODeJ2rXPkKMWKakeS9u/7woysXbTKkOgPkJlF3dJ5Y6cDy+fI7o2EaICxtTeO8dAOTYobD4rZmG0B/T7q+o3CiMvaZspr8N7bv+0ZFVGtpJfVqr8x8esBEEdZATYyl8TGqglZ72N84vVu1Z6Ut/MlYr4jC8+GL3KDiGBkuRScY15HKCX/HpSfbKCdtaZXkcM+eur8JmhZOmYBfzET0hcrjU5wHBDVt9p2vbHBQd0+gsjYsnxFjs3h0BQaBi/6Usq9NSfa/fOS47EPzjVMao5NlzK9AJUgsHL3PECtRUkivpaFlc0UQfbhg6en/oh1JoVfgHDZIEtxI+1ReNzAZ6UCUlR0EgfhfJ9nrk1JTrmGJu3kFaxE4y2ZlWXC777TaxSfBV6HqbD0Bkp1vIpQqcTVdTcrKHqZuOzUQxwTmRWofb8H4/+TIRIw7vCE7mMIz8MjYeFmDWIeK5B0waEY8W3AGMp9gb5TT8g//FfdWf1Km4fIwqi0gV0yejubbfPJSE4EqUi32/VlgvPI62QTw1c3FlCAYP+YiXnhc1Iz2NUSZyxjhFvWQxx9geaflfJ/XQkOol82SRF812f0l6xEEt0xYycZ3l58mTE46zO4zWKTyNIHr/7Vduc+wqSGZ8LTIhnONPWedefbl47wM2pY5PMGoH0IirQf4z0ifsTPD9ifbUubGu8JxkTK0tNRVPYStJUioE4biR+mCFETH0kGe9pYFaTfDYccxIPGD6UPhWVO9ICtNx6g3ghJ+xH8IfqxPWME6Wbn/OS3b/rtzFJsy7PxT4pIAoJDF9zK4tRLGXCD/uZOwzFsv9OcqaEd6KnEs4XgeNTJvIjOfalZv2XFO/2ndFhxswrc/CiuSrtamoKo/zTCsmGlrGJPIzqQGI443xZ3nZ8WgH63ETLVAgkoWxNozjjJ7/jqjcb8aH1RHdWErDT1wJBOXW5+/7Nde4jSNwXUivO4PSglGuLBGH6pLH6PhWJ502nKldlGwdo1bTyyp1winvICkX0Bx4LPFwyC1S9T/EaY5483TQBrNpccKSGEBUaLiX+wApY8QcEYOiZF7oMbwWAJcAk8g3tVo5rbKCBnw5nNC7/+g9pnCdbxNu/5IbIeiPnXsO3dM47NSsBRzNLFx5GcNdswQPThGbkEJ0fkqKar3rXzbdd7DFK6Rjyjt+Do+JNVODYthJRMc8ltHfLIu3ILzhwiYJ0N+wdn2qq0xPrqgE8DHYErF5Z1bX7tBRutrJFtr8ERuaRBMNEFSGxMbBOBq1kfmC78YBpLAaoBhQVBBZneZfslPxgNOFaemmzOXAzxfj0rR1LtLGSqWivk4cG3wVZXUkufo/Cn4qz0dlIPQYuMXFwsWd34YLtOERNVegR4L1b1FGK/wueu5U/cxm2zC08h/962Oa8IQtbzwGhxpKZT9pwtkAGM6uFIThA4fIZB5XyNNKcVqsgHMAfFa5lmr8LH03KIMb06coRyEdLzYc/3x79SvH0oK7CKZdCUfgv7ZpN/hhZT9XzG9YWwf2Xitc6GLkiQAQOkhcfJroMEyuBrJ1bLQ2VfUwADY2pLj5+z3WSmp/b/zD4n0gAw9YKl3zQDuX3UxNyKWPgOLK/QLwr8A7bmlD/LKTUVZX/goPDbL0jcPMd7binei/VuZ+pBtCHAROowPpb4dYbILv1fVSC5uXlnloOMPV6LIbNtP4T+u1yh848ALX1wCi0wcFZdSaGTJT31JF37xAxk3gLTklCzi35VzDjVfFm/bPL+of9rkvAYamxVlFYM0COZfMmMAU+Sp5BHZzfYUaEv+I8iZvvKlVrilZQAXWxOH0LteAiIUTUElW+3g1mWOcR8gW79s4Scr+hncK/on8LsCjypxW1kQ/+0+en/ViDHMvZonJA+AKYPTJ18DGEI9tTBoCKovs7jTxNtiSb23rJ/7T9sSmmQ1mSVNuXhUshTE9T23dRyKcZAkGWkF6xP1U0pECysZVuWtyO34PplfSCF+i8oqnKzFyz0tHl6BZKoUVvNPDNezfDaY2v/0KkdWgB1O5eRudxf+jcDrip4QLHGNzU9pPYZUfWMDmLgWPpUNXZHWWmJkybsHH0QGHyMFniR2lA1p/tSoFCLykM+I2Pd6Zvzrpr+8Dw3a2GZE6retsYBwNwmtYXPcJj2vxvH/Z3dA2aSDazWPfqilmAH1BW4teYtrK+x0ifxWkff/5DtGqZ9GUsjYDrOOrOPPSNI3S7/swOwEk8Oq0C3w4nwqAL52LuNtPsaQsFsVgB3ps/dAGD9zv8AgfXXonAFmw5eupwxXfNalbUqv63/ORR8ILVFa6+mBjkMPxcDyM2XYVIHKnj6D8rgiYFZbYfyl0g+/dsyMl743R34aEZmJ1cOKaVDxoQ570BlAJEl53TcuXNPgLfpjM0ueE3pXOMOo4xVly0qol764GVQ3iGuNHxIj1FFbN7VvbDNBSVcTslSGiNlIsUzJ7YaknbilP371HNh9FkX4FLaTgqWagWcilGghBT+qctAHTIB8buQuRzZoo1cd6cAeHlL9UN7yWQS/oGjk1XDoC6SHcZl7edv1wpU2oxsWdY01Dw5Z35u2+L1WLhn6uW3WvomqZwbvsLddoYpOd3BK28n+X6FDC3N3HcRWtZEcu54EUUXcWfCxo/xSYUYxwcYGIImTwdZzpA46tugkZYlcFphUTZzgdXgDdo5Swbq9QyTjtivxn83RzQsdSefvhdbwA1s1r77M2eHOdOcz27MoXozLqlFjAscV8ejkwoHUHFQvTkR6n+CAuvwlZU6VbCymakT+y/OFfyDEPTW9lxpEk1tgDnOinoGHMa5JOnCjz5QteZdVxkHxXmhpEWa2vcn2kvCXCEeSSHY2aWDo4m6Ez9u8H2Bhf+4zCO/AIKV5dANRqZdiNg/93mbc1u6N1VTmlr8WfiCdhRRdGKItS7W8oHbeQSXq3BO7JWfQpR2wGxgiRfIgbk01IvFYcCCTU/1ROzFYvbXkrh4Rf5eGDueSLWa8I/oQcYRyGqhgUmFRMBr8ZSFB+fJkDXf56nQYFe/P3MtrYAMy/caucbBJKUmgzN5XibeDrYChrcFLoPxgYDrAhhdTSqREeXqOiklJljuIMC6NPppzWhWvsoFzl4K5Y//D8WsI65hyNxPaqZOtYMZF6PUpRCqimvpjaZ/sGGlcUIECcV2maBHFqmXdGOgShWgl0zekFaKrJHyE8r8iEKEPG1UemfViKxxrS2iPuFm0i4JfPwTRwuCJeNSmzVB4GOorMaQPbKBPcx0Pe07XnDOg7vtfmlnpaP896vPuraTybSystkhQJTceX/WZTfVM1tKZVZRYVi1K+UPlHdgcwewUYb/l07vxyS/webU7OBvsTUEwsWxteLYTajZhbwXqAwVqyq1fqHWbp2taZoHBI24Lme4b27M6tDyOxKYxULuSuH+IdUEVnZcpHCWx6FsdZ7T62OJrYGBoinFaQIWkIFT4NOtOXmM6NygcRxryQoHUFyMzkp7v6gBEdkr/LDEIAmawJ76Q5kFcVBXSgManiBkt5qPOjTY4YbMmttFX3W6FLaE/A0bjWDTb9LRC4G6c7Rrz8/5keY2wcHqMFSDn2wpYoefW2cmX1jdoxKCoQJvv+W5xh+hRyTfuTHfIAuDrXWmGro09IX0FVOf9Xdlrel9gRcohvPQA35ER/vGPAdMwNgJ+zjYMZFbDYGQGx9fqwu4AYBk1xqp4GDRN6iwsEiYTqNnb6TFgvZOHFatYAwBx8W4+ef1BBS2pl0aQrwtkUMFuxqfYDFl7SR5D5uVagRFyxYPcN2a+6ujJyBuoH2x4GMZl2IlONwZqtgQWfh4/jw0coZ+rk4WwChWXgYCMubR6LkziJEKsfhl/a4m/0Ecb+4i8SCf8d+zZdaBOt8tNOnh93re9SWawzYkRJtq9brx5kucBMldMcXtvc9DtgklfjiFMvm68TGQ7TgZNRVmGUzRJfTryWAxIE0fOootsi+cZMSzOKAyvp8Qb5tyoIUxK/qIIK6k7gthILxpPmvPKAylbRtnTT+NcPgG+/Dc++SGz0e+8AabeTq5p5iAkU+BtkXvh+rBF1jqbDR2T9PKOK0WvbKx94Pj6nfA93W74np4epN9zT+kBaH0zhIFpp9Ko3SDtqYFhjsU+YSKM8VTchqk6awkEDuElfgv9YzSJO5m7e34dAF/ObXMUTpegoSNhdC6m167vpgg4+tYzz0ahfiUAUUHLF77lr7KrbckBOlYr26ZMv8JA9Kh0+TYDZA7hRi5J3B3LSzN4Wiuv5X07DGVR/T3bf4UBqsAWzDTUfRegq4bGfz1VT/ksRvFzrQQhayUjS1T1KbCZsoOOJyc0UpQRYXLD2lf5B4HI6zSQBdbCRdptTdJnPdO6xZgANSYcDCidoHRTRBgq8CdFxvRKDhqwdQ52A8P/cdOZAwYz0kybeFJBkbDdkWC8dZ7fzCoBLG/sj73TBNHJ2+pvkktkou1Hb/JT32VIKbDJ9kS6AoBE+GEUOaACFtxPhpvshL7PFPGblXnh6tPArmBCY2pHZLoSvlNo2zU2hgbD4hugZxBarwAoxt0fJKg8vXMIafl2UdHdI5nh3JcVnwS3CvQTnvANDIgqN3ixkVBOnmatJ/Pc/9+hQPr1IPg=
Variant 5
DifficultyLevel
647
Question
The rectangular base of a crane is 4 metres long and 5 metres wide.
The base is made of iron and has a height of 60 centimetres.
How many cubic metres of iron are needed to make the base of the crane?
Worked Solution
60 cm = 0.6 metre
|
|
∴ Cement needed |
= 5 × 4×0.6 |
|
= 12 m3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular base of a crane is 4 metres long and 5 metres wide.
The base is made of iron and has a height of 60 centimetres.
How many cubic metres of iron are needed to make the base of the crane? |
workedSolution | 60 cm = 0.6 metre
|||
|-|-|
|$\therefore$ Cement needed|= 5 $\times\ 4 \times 0.6$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers