Algebra, NAPX-H4-CA19
U2FsdGVkX1/sdA91Bvdn+6Cq1A9gUIJ2F4e17GJJU4/Yv/xVLXwlAEwfX4IjAuLhhesBg9isUVtUAcT5W9edxIHbdKl+0zGIaU4xk36oTBDNpONFlampDTLh3JZZJ/GN/g+iwzCEKQeVrNOMbAKtHJ6F0AwW+slObmg5vbx8YJj3gVTuW7pLUwoJcL70ZDlZdCHWPrOhVz0WM4cuSDY5lPhR5G4s1xd2GZG4gYzRTciXhR9t6Wysvgnjjk0eSzE7wTEURVi4ht7ExyKX39iRH1agSZP6LVD4Wq05wbIKYfPFSKvWEnKfnLvLO3o3Q428w01Xf3XTI8HJii8779h0r4TOSz879DzXYvvbIsdx3EhdUTFM4KvKFCnZNuiR7DjtxEFeskgHx5t9EVZ9zLJKeJ5n2qHX6YwDAguNrxjfRlifgjTgdfjVdzTGZ+8jEUYzGjzZAIdFIQo6t6cygK2lkNcLR/tljYnwlRmZF3bnTMU6D4k0bPPLU4j8ZBFS0l3k0k2w+MOU0UiAj7PMHXkcLfO7R7r1yOqxTsECj9iar6Q9xh1YfEjKuzxphnk8YZ3OQgRlL8t1PovN61Qw6LThBv08yDvZgtrcQ5ZhZ7wDu96ITebzhBsPEWn+hS84qP0GIK1sJt9/pvMHx93vcRVbcnVamwQqg9T9EDzXFcdOQ89sR5/4rmMAXo+jTMy+7yygu+qdhcC+t/qsgv+qg71y6B7+TBiOlyDAqPq0eg5BJR3Ooh+uumayCwRL5zl9gfIVmaGLP/Q4I4bKSUWOUwvTppZtXocGzbgmET07TCWZsHxdvt3jNH3SBeLtns3jq1kyWnFXgOa9hdgr+AICDnEXx/c7ZSC/K8h7bb2e+RJAd76C/JyOfgZeTSRuRN/IVelJYIOd3ULP6c+TkZLtVpJ2+hq0IGVuyDsH4oLrdS/EPtOQBEri8ICCuaSlgr4mySqn7bqrGiuVOeSQIdvAm/LNNPVd5dgmSrxvuNDm0QkPHokmGT4NG3pU4sMXuIX7EJklTfeB92QgSk7SyLu3UrHOAHg/Ar2gZuWO9b7rNBlMUlKuWehoes85f17ECh8aJFEXr4MtZWYCwgeoFDWU4mZaTHO/7WfwFMBzYxPgSbegzHjJpIZSNDeT8MR25dU0MaT9y54WYEe6W3FsR372SPh8yeQISUdhNNRKpUZqXs5bA0+5WysH6jBiHHAnenh/Ofm7c1jQHojRpBLd1d/5s2qXt9QMzjOJGyOzvtcDLw/N8hJfhbfEDP/CK3xv62UHAMO8fnS1vrs1zjMSxr0US5/rXIXEnvte12Y0YUYByhkLHoSXr6brRpK9yaqa3ggRNQp29j4jxGuO4hmmWD1d/NNI1h24WsOM8F2/QYY3AEf+PhF4BscDQd6HpkSGBDbyWSfmrGiRBC64Z8Q9fqvCFtJSLKwQ/0+LFlLEUXlNTD216S1l30IOjxKaIFH/3YtfEmGlNKBdw/D12Uy0U9d90R2XUNJOhDWYobhv9dNHdaGVHA24GIJ7bZYNg59unrr1YEkqZecY41ROIk110aTVYjKtctDpWjHSwLpF1yjtp2opItrMxcJlChNqx0fgPJBuMJRon3w8IoYj5P52jTuNSvpQY9MiJPeZAAcraQSEtqt8Tma7N9OT/l/xjeCuC7oqS1cDqMcjvCn09wFe4qJ1WSTPFvUHed6jrFsiZWgDsoAfoDz1Bl+jQ+0iOk+lcT3jDtXHD2JxzjXfXSqy0K6Ffn4VJsZjKQqAdOUhzs1y2D7dKfUb4GxWz/LdVCbhD5SuIxu9V/KBa9y7uP3XWZzkgAg7G/UNOVvbWQ415YGN2BT4XW1XPqCI41dVPDAE+8kxblBqHb5REAgwcBtKBCaW5nPFcZu8gSlhx1TWJd+d8Rnk5COmrVT/16nMbfnk3inenE4qCtzX9qOfUkTcnbNs6Hf2/+q6tw2nanY8mWEmCaTP0Jpc2AKuAYKaqHUZDI5lQw7nWS8e0Vn7KBOZMMXUAkWQRZoGD5eRQN6oVzlPvV/dW2aMHITmNyZeRwcUKM5ynCCrQdt/ut7sIYDSj6eNit8n2huO8jrCUox0VPHtBrkGy1AYgDErBZ+buHGv1crtzAXCLmlxjOO1ihRo9cCUV2HiQTWvMPv3WTRwa1Z+tO963Wt2MbRntU+WUkwh32OZ1Dl0yhpq/FmYEX44kZekPFw2ooxbeRoaH7TKx/fpO7/qcUZutgGFO+ELr7gstclESHDREq7FYFGYNZsei//MhsAaRqaaumbKA4iYa805evpsHUaMp6dUHXD75s9GE5OwG1bCGdfLVlC/e13ulV7g6+StNlIlvsnjptzZmgrwXPRf2hsmzg6wGAU7Ouu1iRxJvX1niB6yglM6YGNbPIiH74QQ+9ZmT0FVY6pGQPOPTS4evLjEn9dzk7V9RApqyZsreYXuyWxH6EzNOguEKZGSzTVQec7lwK5t3Bsso9S/jj1ftVKfPi7Ze7CTdL38bn8t+voyqXdb6Yb82XyQ2UzNo71yNT2AUPfzjraUfKXRH8LEozxvrtX6Crj7XcEU/FTo4nbEVrr5aO+0olOFJtjbTYA0WSHueWJo+I8s0VwvZ0OtBpxMPrlZ018tQoZaYBYJ1o6+QNj/+e9ckXHqvP83d/26K+ZRtwGITPTlKw78XFonsdPYSuFfGyez0/4m1Y/nXogVU2n+v45V16vApVxfSpK3DJUCRu+25Q92e33Oip8co5EpxxhKWbDVQtnFnGuKOqxmCh0ubL8+zjja2r5Xms4flUzOXdpe2MoiR+MwE+09ZGREFArysxzbfpRujavDlf/M9twdfYsCMVhxTezG7IiLZ9/ocHLpQMIh8CLlxAj4JF6rS4DLO7mEDUTI5DPz0XYOBISF23JPMtED9gUvx/aDCrIzNgxSN9C8FszcWS00kgEBbBRmKbnVOCDLhn8XIVJEufG3c6aYj9+om6Q3w7gxam20RiV0TL7Eg0pTTkGX6TLt0osfKklUmpeeJlSHF0v4TXI9BxM0jtit/RbZHA/7IA/Npnr5eD+9ZCZLs5dWFMNUvX99Hufx+d3X/aOgk72GM+drGtELtDnO3By0b9ubx3E7luj6FByIskTjvA0hERw1azFkHfesAoK2fgB+9ni7+bN+XxlkmI6cJsH0xoBo9qdUZ9KO53JCj9w14iVymzAk0NMCjAXSFG0E4ty7FeJ+K2mdbE974MFixGKJ2oXiv+XPHrb3VnTfs8i1UgTmSsttMLEi/AD7kAOuSWvwlp4UAmcVMXAOX2wFGIo8auzu8jbIPw5NOUqOqOkf7gkhAJykwVZyTzEr2OqKuKOlbbxpTSui7uK/Iu+ewi/JGHhp5jBeQw/TKrxRfOGTCNJ9DCnIJ/zRMAGSqCxYcVc0874Rvp0tToQR5DkpMbMUzbdvOzJejCZjT+HkDSriKyhKkFtezlP/e+2GmfEs37sltebFYDqqtoKvr9QUFNr25i0khM11ibuKOCFPRjfl0Hcr+miFE1gw7ctVlFHD46VOseTtkUZZ/qqZ57zxEW/pu9AhuJAb3SGf0E8hDMg5pxjezHQmLg8u6vcwcg0QXGZSvmYdMwIvE4tBXJ1BazYQ7QpAsy2nPXYq4+QfKmiTMnx44guyAW2JvnZLgTrkWyhcwH4lJsKx//b0USgaKEidqn+KqWLhzp82x+oui2tIpTwI7PV5HDpuBhCdwFDw6rmBOaZa3hWVrhg77uiauSzDHrCLePRoik29t1zuI3pxGiv4XRhGR6gXYEJ6CfTT4RC2kHpGegrN5SYAFq5rPPIqIoM6EpniT/+cEnls7dnAhdVB5WBwdnmFHp66lGEjTJmfKnFkgdbuK2QyfgTkkCJlWMm3x5hD84cJOoHXLoB8ETlt8dbGrj+mp3dQVnbdS5QcoZ1OP9auClo96Tvx8FHn0Sm+ofKcO+a35rhEBGOqmZVz3SLbr2QCsUNZQsbuZHgvXRIIUWhTWBIe43EK8I04amjT5FzBMeDiCNlWw2LPlm9DCUQboqAz6wCdbqdR5oBS3+r6NVU6eDOb5SWp8hkYRLvAvrTwlZiv0XW26ChrdkSudyRbdb0lmCnFrFdhFG+Ct6rtLW5uMBJMr8t2Zrqx8Ditx3RAVICe/5vQ4nwuBE1yBK+NEhQMM6VNUS8rqb9+oqEjR62btYsKAUYFaeJjvX3KKlQEpmNkI1txU4pcSzXZWEd/R5R0XSEWCWHjiTZrukF7GPUhMFyVkhUoh4VC+rO/85OajHINRCjawCDu+WjSQm46528epMs/QcGN+89erRHmQBkW8VsMd9BcJ+gkaOARyLGa6n2RIhWcn3MKVRAmKeBSl9HDdW1nibm48L+W2fkND89hNq2YtntvCQzcLzPGbD6xxGk9vvi0/A0vao/3Uk/z6GUKfcw4RVQUcEpwK8DzD1q1LDror6DZTspyTX2QPh82pJdCT0OoPWn2zswN1MoG5XXQdn5yKH6zuJ+ncc75Q4wu6EQg8mAihA0naLSiM4cYM607wHXddT5OWAPQl2AKI2f7svlllS4iDbXKorkiUPt+mUp4AvIJfn2fkZLCX1PV7FCewgv521GagDY4XY7b4sRJFSlvNNtFUFh3i6z20wXd+Sf7KJpqA2KyppHW7isn/LZBPbruZYEmV+mhfI4WLpgtTjAwraBv1GC3J7gDz15dmmG6sqzW/r/ekU3G6wWCPW+BI6v/TihvHydgjGhRFliA+QypxUJWhmSSqynKWSdthvBHyUSl/Y+m68xnXMSQOH+VxydakHYG5WeAVG65bEi7vXPKNT5Blu0zY7cTTiNlrOY9jD03esdq8S2/3J5RiJ2W5j6eQbWQukITOvFWM1uErDACpVIrdYt8oplzDlq99qPDfypdgYnjMUjHGcqZ3675WfY3KXjNAatRelKrQG8E3TRkeqKqQ7BB+hWkSrxq2xK821pXEUNCd4kZujxFT9lCQ0ZaG5qzw/CjugrItx72h+kRKJgBKW/bfCNHs/y08KFLfFE/hFemOKeDgc+zodX9fD8Gdn1d0b0UwMmD7n2kwB1HxxtbDtvsW/KfPx8LFRgmJNt1tGuzul3YKUZHA6GWxkLyLvWrjo6mfEBHF6nPNqCbuJLLZRoReIVwf51OxnfMSvPMvIIcVVSLFXLQUleS9PvcfizY60kSHoUPaajk6cdJGGFEeW6IoO/DBS2WVrNfthJIqrwmbp4Uosp/YdhIkBn6/yCjkERH2VZPMA/siHFnYyqausOcAEESLgB0pbfK35SbaQSEsekwrIxND3NVck0GPY/8Ks8dziEp59LuJuAx23/0iak18ZGLHlkBiWQAA/pIYYeohoI4nk7li4WAaWIWuxUuyMXMU4jYe1NCKXAQtfEPsrAGr02JAx+Pag0nc2kSagyi8Z7JwmWmN71+ByIar8+UMoH39JfbMmyCPnp6gF9TN9ASmr5S/lP4Qzeu5TcKW+XsSXylNSy9RPJq3vr6gneMZ2lu8NMxgRdZEyNPl5DvpkuKXng7E6Idb0wXZTAD/P8fKpJZTKa4Gc3ST86e1u1h8V/q/4ABTIA8HPGIg5v6KuWbUdcD2hp8W49FRnwetM/Zo9DFNHfnCN3cIxxcC3AHXu5Sr922O4cxYw3jkubP2heYTjdvztIjJ8bF8weVd6/vCqNpbJhSQh4eKScSfT5a90nhaRNvo78CRfan4bEVSPma1nxtu685DbndbYH/lvmYP58IvLoQxWoQHpRdzMVNNMMpuzjuVJr53zbuFfacACNAfytQ+NR9QlGdtVz6+bQSYyA8EEcqpre8k+rK49ung5Z3KSLQmGkbc/JU6ccmQXQvdveZu55/QMzdK9iV0UIqRjYtisiX2FI5fDc+kXMZ78JFcRyyiV1mpY3QUWrj1dkjMK0HP3okob3Qi+oztqPjxDilEoneJAWF2mPgOo+Yri4MgD2tT8ZomPiumJXSQzDNOeupoeVQyNVjQgv9j4UPEO/om1Vpmy2jWid9Fh6STEs7GXsq6odhFNoOKpK3WLYZ4PsRfDQS0ZBa5feveT/RBsHc2uveY3sFqW4dz9v7G8KufbtVLObGdGlMZtx789m/8VBaHoEAdAhNTksV3fRHhcXl2i/3TuIRvX6Quz6V+cCbpg8h8aL6xvO55y6XtJrmUi09HWNPBpx7dOcBaA1MSly6ReOGF/IupaTe1mYF71599UEc4KkdsjlgvrUMMHQ3+FTTVbElhBvsZ+hXG7Ol5qvsD0S0tPJNvcGIkmroub4TTw0TYuo+oE9hyE2kzeqdI4LtWdO89Jm4NFAXQE3EW5FIXb7VjgK+JpnYrGoTzqtWhEQXADUSpzjSZoV0RgZFjyu4ayEB56tPB5/1NK4BPNEDyhuymlTN5xAXgUpmwk4/tblwREejSHY06A4Z5uCBgHEO6re5d9l6RV5DaXIftz1wVFzH+4cVWIRGVUlrvZAnJOATXf99B3FzvTKUKRUpnSpotYvhVI73M/CZ0DtXDSqsZJ3oINBDqOh6XMICDwJ3Y1s35b92Yf1WqHzt330EXss7oRlg5si50BVWqbwHbmKE0cfrpSEkNWayjpMEyYBPyPq1BwOSYWaRGmToWMnJU0URlv885DcyW5oazFe1oxRroEiKWcN2lMhKBz0a7IOHwRQVqT4YV/vbQvKHEVX5dvzuICe2pIfvEV20IHzxJAXjobYV8mYfdhBs8UDP2ef/3p6TWd+VCnUa5TndFaeKMzW+H5ng+/x8UyGwazVfi/seD+XHowNAzbC2E4/Cd3hbvw9Sk/L4PfygeSw88F1JhlRSx+LczOxT/0w9Epq4ch8WRxnOYagNQDfm4uR9IeLozebml9Bccyvk9O8Y2iRkZq2o7VYHWRGjrLCwys07BhtD5rAmb2Lmxznwjd13P72zlE6EefF6xtzxC1+BypduR1HGgSyT4j3wUu1rtI6O98B7OvjPEVO5ZyZpP+vX8GGZnpKbPIY8DU80zMl+T5Mgctlxn3FKCOfjai8p2iYjAK1+PwXjsJnZKccVo4VfhLiah6gHV2d/Iid35su3n50sA0yx33zUTzKpeYo7tw5BhgTUWsQCI/p+vPByymCxokzNmEmDSY1ruFe2neFWLm/DcnME+KAbJ/3BAa8i2PUw2m3OP7MDTubx4PTNm075xr+POGz0GpFfwp7ZgvCoRUJniMpJFpbdWwAYtnDdQadXm/bX/o9iF0FULwN9V7WEve4GJUXwWtTcVWcOhB64NMsKChfaKEfPoBAX3VIiz0KhfesQUD4BU8hA9HUsQOVslAdx/7TJYoPKcmRZaLXXZMcAdIbNZJkZH1Ii8gXGgGlPhun4ye5aSlMsvK3z1lxnIf4tbHXNz7Db6txCvZCbmMn94SP5PLVaa6uaJaJMe3HNX385Oy/FufSQblF+eVMCM82GjmkH71Ja0gdnahzhZAlU1451Xo/fC78FHSra/m8/Dv5DVYUQC9EWXV/I3PMoIhBw8M3QBpBTBVcXZV4rP8xqxAHlP+RgRChuggtf5eK8hr3DhQbmAitMAwLkpJGD8rkaTSoF4ym/Zo1oBdsR+qnraiMNdqXzdSCVrxmkQy3MDRhuHQEg2iG7frQBT8A7vFJCL4qmOEoZ91j2x2Ds2TnG3GPdMQOsUZ8dNrFLYXnwQOGrdvq3uc33gtjmcyv8Hb4+3BjdgDYAIdoy3qqeRq5LTTxiRb82+bqfVlzPsfCeGtnhuK18EGBkqM1Di4k9tgpxylW2/2F5SIDRzJNeL8jsPru8h4W3ncW1Xt2yrQiUkjiM0Ht2qhWQ9dt4R9ncRnn8IUBzymUvZhRRxfuniaptemkzNaKv9/uQ5d+S49AkmZxDYzftbFmLlZat6mXGb1NBmwJ8ctZ/PgpF7hcQvW9aGxNhKaZnkWumOECUI7va2bjb7HD7xXJP7PREnwlUxxv0kISSmnGoRDqrXHMVRE1x62lSz6U5354uMcGx7SeAkMC5i0ERadDHYPY2Wp/a+pF/aHQI23YZY8Ipi/B8FRBBLGvgRon1s2IcCkv4Z3EsoV1ZBmzqx9fi6LczMdr6HpsHDRXd8OHp7ad+sboJFLJucbb0HgTdEM4H/yvuH/mcnPXpAKiif4EB8HS9u+sxHf+wSHIIlyscSFQHFGSdOCoiWwNFrfJdIZhZujB5btXkAuTZh8sX1SVpMSQYw2zmdJFiZNkp280+RFf+4KrsinlgpzNMBkt41pkig4c/CfIVwA7ZGn0NfPmv1rtudIa+yuxbnmuPIh6tJcP0u2mrIfiZSqLyoWGuVEd4M15Mihje6abCh0SDH1YUOlYW2oti4fUfvqw2Vdi1KoB+5hWptfS0Y54WRAuK+0M2i2OwpqZGxn3JOYMVq0G83y/SluDVAkQhNoYNkYGicAKHcBKHS10wb6RttGN0dkESN/BDfBuPMlYdMoEoYrEz3FMhyBuAoFaJ4CXy6D2eAO7QOP1nCBKNdcL+5Y7U7bnh6UImlhHyRDf3bRLkWMgCaWjATcHf0ym5db+daebwmQzA7mBPA2xSYGGtQBxvZXdjWREIcl7uxQ2YbXzQfAZqocLNw/HjEd13aMnIpNURh8p3zhyGWwBg2Al2hAyhtwBawcmq5s/4f30P03YlOZQ6TR+EQyi02scelGxpi1RwwX1w/T+pNJCmrkQhyO5GMs7QoObvGK524ssmtZ/UpuXz8oExycNFZ11c40v8KeqPchDZ5Pclt7c/a8NURSfp3JOXN3FK5OyQsKJXA8wOmYTInYxb4g2dgxlhEOEf4J+lOXTmFjQYooW0HAdnGcW0+5k5Is+hsP6GrKbgTZiqehsmHh9kWreaMMEAhhVUCQoK0RM3FIQbJN5+6iEjz2UDFRYYf/mFKqWNc7528Z9bBix6iavRiKy4MqfkeHi8vcUjNHRQM5q5kBt7/uPHfhA6FUj58kT+4tvqu+FLlbJsoi3bXCp4vjXOHv2n23Xq+klhWb7sLdQSHzmoK/giwpMdSa6jhaiJ/92TAhSrfvXatSVcT4baJwC+LbnpT9qPeZ1T5JVpjVnTHsQUuwSyKXPwoWOZnBXO5sc5ySOfgZv8MNQxDW80IB+yv2R9+jYQCIuX0MAdqV8+TDct/PzAH2vum8N4souIrMYayh/AkqwwXE+0DYeDjvikZEpVe+8Jv/m6pRcFq6y/i4VgGczqZYym762sSHb7QySfIZgtdkovw+oWGqXmcRSa4iG2ogC6cKvtCn7YiuuMqwjH4MMKJusabFe/b35gVZgUvxGLCQGHiyzIih1wlin18I19q9BUOh+B+d2ruw1EUyEYcxfuFXKKArDXSepm4RIreb5A3X1JJRR6LjrI/9+ky2LSVXQ4xLJpO2zXqOxqgZtIHLCh/g/DcVZaSFTyWGFRKyBqE8dmVTAAQs+LjeIMoknHjGw+beDeNDygOdRjKvrQVI1PSAgolDRvUXI8r/jwLJPbc9yxb/UJp9O6HkOCfv7+cKUEDlpzcnLpk/lNuqRVXszYjx1M3bpdXRQyA83r2Tr9KcpeLe329Dat612D77esJNOGuAWCwSnTS3Fbb4RMoIEGsWXnsFGVlzFMdZW4j5a9onLENryEInbn0mNV4v/j+T9ro73yXUxLw4BqYFP7bk4Jsb2pmAa0u9K/YRrwXMRONbJ4zD3/7uyMRqizwyuHFigZuXWyl8PLTg5xd8VFcrwm1+2DicKFYUhxZWxLILGQSEFu1+/pMnzqfm+ve0gFNxGrrRlKW/oSb4O3oJPPkZBC7ij3egPxprauyjBbfx+qS/YGyfxjBQ2Q+a4VeNlB1mXh3hUELJ4ueXJPci9m1EQnJZIZaSB68D0Z8HqjM0mn61cVBVwwjxMuTmgTiYlaZ42pG1PcsxbLJJMRY4+kixQ4fg5JRHqe55gjaBOlFXO+gCovFEhpuUTE9gj8z4yaaMk4K/3uvAkZVPmZUBdCw/2TTAYlECXflBQIL38ibxgrMqbRbn4c2C08dyBvEjPK90yCiDRQamHnxXeFX2QDlmemlodAvDeCoGcFDHPvT2O+aHR75ha77XDivI8ImlAmCfEP15tPd2d8MIow96CcNgaYylWuHp7Jh9Hz7jGL7Ya3Mt9l2baWkSjO3MUdTJJekZeTq9hClYg4X1LRImY88WpW40JoLLsvP7JP5pJjJnzcUyrMzdM72+kpIat4HmuwSyBUGQmNA0izQHbeE6OSjdOA3a6dZfO4JZoG2GhtTBhFF/3XlivRPwFw7ZX7PfITShmrdcqg6rLXFzw9GFcKiURk3ZXT71EqRkeqhhhYOVfnb2kQJ21DbHPT+GSlDUuOrXP51FAGiCYzu//iSNn2WwqfopSW0KsIz55By5jg1LeoZHdSJ6uLekmuy6p4EqpD/03nwxeGPbAtAAbUHXDi6AgFbUE/KmdUBIR4MM2wuiT/vJhJLWYHejaMwYvJ7HBCRX+kN9WpqrrVIqDoil7qfYC99Dun8Rw4V8Tvc0cOloFrA60exxHxqjPGUQyn7DcAZIz7f28NAk0rzD5m6975w7bfm6Wm4HoPrU82dFsM3QZ37B42wBJFCaDP9bwGIiirdL5yYLfszGk6Wnm+KGIGuxJqfUpisgN96tKLNuR9900h6oJjfmHRiC/Kahu8LQkME4kSNjElSusM/9bgelT9FRyvhBH23N6xQoSWgzD0TfKFJX2ECFNqdJ1qRN3sK55qL1ldYOrBtHn87S4VA3HbXnnAg4boNz5l+ZJaZNzFGWRVSBg7bZ0mYXaI/Mqq02iZ80FW1jaNqM/MUbjEywJaP1ENqqcrHrDqWJGtiKLA/poW00E7N8mRpZXGDGrWB+8ZZr9eo7LlrHwGEuUtmh8DAICiieNACUguhTtXG4g0PMH1wnXXPdqSnjvLtkf0rIm7yOygEnkeAAmykkdnlRkvFDO1WWLDPG5H1+vBDPL/mJnC/JSOd6PzbQE5RW3dBB5nhAdTD1xYF8r1bOyR3gJcC745oK+qbUEYoM7rUJnPSwUOtfTE8Y608gAHE+3Zxlj3T/OQv5rHdriAK6ksQ1L02ZsIE/v2MkdddtcqAhDwUOMJud9D3/Z627d2P7BsBS4jgRmdc7468SJrp615RZ6LudUS8EwxoICXqHYY3SCgiO9hCP971iATQflw7tmRWUjY+xIS7L/+upHvcuGwRj1Tvncdf7J7qD2jpOh0X+6Jdc5Brp92gldMB+qJbFgvtMBej6qgOTMEibml5Wy2/Ot4CKtQVi8EiQDxs4k1eUN/GnOIkGQP/M1ifRrF8Yx4Wwr/LEYL1DNqD58bZ/RQ9F7afTIDBKRzeIMVC1p45+y9XGKJn9YBU3jRyUtW6uL9/yxh6jaTz9+UnKEKCc54+X/MerrGWK5JYvLi2tgipRmO/NCu1CPYBCqaJDWWsWFYN/WpFLsXXso+NOemjh3Fk8Wh60Ox15MXJOl4ROH9N9B+TXfGROjsWLjWYuiT6wv+ChV+x2NpdmdIlZKT6o7L2P+RNvp/cKrLGjIOdm0j4vcd4ke1JWl1YPSfgmTsPdJp+b71yUmRiReXFECIlPy4uht2T7V8ufnXwTocnZDyOfmjH4YKifmZoCzj5NFvoLSI3olzUUBxGFY4cHS3xDZD8rKQqZsEYuvMPQ/BoTHquyrH9UulFnEK9ebIk5OwbxnStz+0nYpUvLDrAb4Lg5m/ZeMlXJsqOB+rruO9BbWNieuuXke+5r1f7VhDbnFhicV5nC/UeFr/CoP78NgjHKMVRYZrvUBYKavjyeU/BnGGIYbIPa84JCaR7Nns0XgnyOJbNWKGBm5uR5WfhruZLTVMI55z0xg+RRSfJApPc6xpnW+pZTXFK7Ha346F4l+DYxLtNNxwCQwzt1l3SZMTdoQjXex/3JHIDD7IdR7+l3ZgG9kslFNFLQ9V0DdGSjh/0d+1KZ2MTZI6mea9hYGR4wUFXa8xx3pe4trQ+n7FMBrTKhQa0n9+lBkNbpAtPIWqXZ63wgEtXnCEZlcGb/bSzUZWQIyP7TcezdnXJfeY2LUwqtPkmlwRN53DaCY1ikpHJ3qKpyUGp/p1uwVcrdk0aAmOMUb0KaNFLHotxtnDxXCZCerkPSfKgGCogvGq1vhJN1I+9gjXJRMcfSkFMg5urHTUXC3ewYLdGqJKZCfyz+Sh0FLuy3EvApWpN1gni/dNbI5cwEt0CANs+uQjoLwhPW6pF6wOOI0kC02hECOKRctl0MgntOR/Jwr7ZKlD4EfhIa6ivkcTxfhMXnhiQXnUffNnmEc5dTsVCZ6v3/C1AS5wOGZRca+ynxNxRJs4U/KP/WnbDbxeU8mP+WeDXq0PoykL4izsklw2s904HYAA4HTZaKGVVILj0yAunaSKwqYNzm4u1yuhFqnkuSrfIq0HqshjQaSerBOiUkUvRGtHJek8KKTfK2A5fNrFXCDEhzatyDn4WawVJvw/ZhJpBLu3EfHjAIFrCInca4xbft6emFuHEzpqjWnN6Asidh+tArwUYp6XtqI4PQbmPI1CZzQc2JonVljqp7/V3QWO7Zh21zgAA648e8aFb2tFvyNsU89Btu8RYzW8euzmf8mp7FwMvmQks1O4QXWu9SF9367eTuRCsd1Wi6qTw1Bmyn29L9GuNymp8GW4MZp+lPu5jWl8qKMjOspdnQT5eKHs9PnfIJgwbyeU8d1GqCCMocWziJ4irYcwfcRLesr4A2dt7tNtaZU2JWBc6KtEq/YIv7X/QZi5R5nfGI7GkpuVSFj8MckeWZNny9g/5d9acffdxfaD7ZTZLIwqtKKb1DnSTQj/Tb2YZEVs0isk3FVS0Aq3jEnC9jM5Ka4b+beUmheY6R2ZFxXguF9tXAAl3z2ikBF02Hh8jwljgDG/+OiAY6sIl9ogfmpCNHo6bP45NQBgUF1CGpUgCM376SkfFhl49lkaP9Z/4c+kkx0hxI/adFNiiYWt2q/CJ6GX9BhoVzNn/QIlxtfe7VIA883+ygH8wUWwua6AhaKl0WyqlKS1QSK0Cj/t4iTBs3t0UT1hdYFGgjXdajSedEVx/vORJ9OpIw1vlKHeKVh8wAuDim4ugYPOqssBpV7jQtw1yvLk2yuqylIhOaClC+4BjZAT1eqfmdbR5NfqioWYC+RVvPag/9SmZLbaT1xjgxC5e5sQmJnvDeCHFsw6WDouN4VgjG1Sg6++A3uNX6xCDHLEx7ebpSmcRGxLM9PHNjHsuagrnrz+9K6JKL4vr7lBEIQqSrnrRzU1rXuXbInN/kLiI4W1mll1nLmqSHuA56AuAX2zqLgrmpmU4UT3ytBJI2AwHwF7oN6nru9GMD++hLwvOvp+OVmRODXG9WSMy66tYCeGOiEoZaBtz+mkBu92KAkX6Z9AZX9yiqcKF2YHduTGgTvh6rdzKfsA/v8lkNWtqyFgLKvkvvefx61nOOG99iErHfvp9RKFLp9PqpjhO3wVrQmkNkFOteY/A6RTj3Tg7PTIyTnDzuY/LoBGC+kFi7+LPluiGYn61ZQ1HwZBjfl2CIbLHAQZKuDLgNkfFQZR/mgl7cYqYjTWxOC8qBxMvwV1V/vjInhe9sNA+rP0gozsw6Us+BfpCZyacsuE/qn2zIWFcFLBmlwnAcE797SxmyMsTUgNmk1+7/A6bvunWM6RjbbMZo13M0K3xLPBpl4p0W7ireAWz9iezhQCTv3Gw4HfWJ0EuUO61fFKmNLzxF39xM0MfqhJc+PMsqcCauPi4tl+A8zRaqCTd2oWQoBmQtXGCnyg6ZLLXzytImXscIf5SAW2YNX5QKj4noELm9CnV2HjsCQ1Xzbtfj37CWn7IcvGizorFHpfT81IiMswn9Clc4UC4J2lM54G5REBagETiFDzDEu19RbL/MDFj12EfrfhNn5Yc1PSv5ULzl8CertrYdIuXYFA1oXc/CJY47fajOX5xTz8CRDqcPPVCGvx+0iU/qv0eJOTNR5SnEt9RPnEHxMlraIeJhmbavBI33zYbz6Mp9Wv/86sgXVjMEWMKZO7oGuCpgCEb69bxMvR87z9DGjq4I/y6HRStM8AQWi7pRVUC6EGt0wNhbsLLVCHazugUAcBE+ajJrpFxskHHOdxOguIkVHnKsEV/9dWKQSXwbg=
Variant 0
DifficultyLevel
639
Question
Which of the following has the same value as a−2?
Worked Solution
a21
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following has the same value as $\ \large a$$^{−2}$?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | −a21 |
x | −2×a |
x | |
✓ | a21 |
U2FsdGVkX1/SFqUu8JbJx3oL/TPQEl/bTe+pgqPtZSTgn26Beb+jOED8KFL8NpDOxtcssG8OnddYA1tG7cwnXGZ8C+fCVUuOLWQw8heAeITWCt3AA1n9zWeEczeuqaTzFYtGfGFgt5VpCfC3xXcX06I7/Jxg1skZ77z+5lw77LM+DZYHyMFCnbYFWsKSlv82/ubIS3kNOVzGgiAgeLl17Skuo17RVRvBI0xBifDZwwpvOdrvnsUcmfl66AxVUevJuKW+0ECVGTwbikHG5nk71h+hrRFkFIb0GSFHh3K1N7jsKrTh3shN3obJ+fHbBowW52UHZNTP2NyQGJ+p/lZJVAwbujX0UiIP7OcB9d1hNR/psVd6H1BowlXyMpBBzf9Ho59yQwgtxQGqsMa1dxunRZh3JzWusuKQZ7SBVK9yk/UbOQ8xoQmxv56kUINuimmmum1Vpbu/hzsfkb6WyiL+PCul8l3pKLzKtVSdzI3YaD/oAZUxfEqcqmhuZMhGHjSP5bu2CofNZZ1KpnMb+CCtIb62LAUvGPeN29iJ9tdw/JHfjWMCN8NoRiPLE4Yd9SzX41PLnGuXPAc7sQAbvrZekna34k+WkhG5CdyJpGCHKSGEMvqOZgyuweYMBqUpkqcDNi2sGuW1PXmE7L3K9AErUGa0ztAlBjIFDtv5CnZK6qhXqDDOHAuRTHRKAUzytZkCb+SGibzMxh+kzKiFB+PY8w49ka2c0UJdtUxdvN4iV5rryCH0gtbf+wfntkVtg3MDzzgM5L6G1IYLNNHeu+A+CRfTY90GbNC3h99q72J2MPK1EAOQVIns8TqP2odBSZoZ3M69eWk+KmApHFjUX9pZajrwNj/N87ovkU/qvN3CP6js1ciuAzOlbJ82+Udy3lV8ZSWPbNsr4wHGnTLpg0WkvaplIJdmko0jsulaYUzMIcLrDb/RnJw2iiUOVpZ+RPkMZrgf76DM/w5pWEzllW1Vjpx+qlkzvuo2w5bin/R6GZ8Ya9cd42CdaOzzN1Do6yVBaKwNvbQOjOS3nhmkwaTlNzD+BMQvSXI/dGROzCFDuwTdXCDEw8FXaY2MfzL9QdPH04flJ4vlqWGreKB8MCp50YhI50HioCa7YVdC0qfTjZOYugO4DUyl5y5kx/hd4Uvefert1i4TjkBVtuILUODdu+gq6U3pdhuw+oGe/NWCVDVoNedsEskS4umJPvgW91Igl/JGA+keniDyzPTeiebBjIBf3gWwaa3s8lmKWtgjaaUmuxgxsJLLx0BhF3jVs3jXXaO2dd+ql0IyTchFIQtsYnV+lEftbPkJgjLoS9+22O1QSf22tTRJTZ5Kr6s9sjQiNXpAvvSVEaqPTnecukPxaxeN1oR020RGejmiBEERgmEbo8m6deAqdx8YhAcNv+bgOES599kxAw0Zh2ukqVxLdAiR6vQVRbGtwu+G6oTcMnDq5eI/3QqN1MFCENop50LhooVTiYvSBRS/Ze1yUMFO5yDNeGH8UXbtq01mQepyEr8NUqm0vg2ShFKobw3NC9jOEePj2XvOWu/6MPBpblUcgl5/0jYPjIVAVsJDeDS8KSsqkixz24WT4q94Ay9GkXweInOM8KFOT6mgFeIm3MDfRfMO3HU57GzL93zvbd92kmLAEBKTYncWj27b+w/RAdDPObwZb9VlMtyxXnjdIlBgTQrLPtwdNsjH4MGKV/zXx9asNnAyOrtSLVQWpa69GTfCr27SknvSEvItL8HGZHkHDgvY0eOKP3UHUs69zjRneh/OeIBk2lNdPxuyo8sfn9sY17g6zf/MhHoMCn580KtVBX8VBHTp+YJDi8vMglGwBya+3e9oWlnNGo2AHDbMVq5S+t3Ux8ylSJifNcJG0eBjnXBgk4wskOlJZkVbSeKqaxe+wSuBjwlnUL6yZzQ+u4XBnjQqSkOeDi0Y4hdJfdHVAK87phPoAUrIooFXNNcjzn9x+OYvV6hk4pU6UJyjSuz27RRBqo/M1LAaExL0yCO01+NfNYIoCoE9TfRns2SHhdfD2DlpYOEW3pJWwH8jlnIH1+/+dcivdq+e3iM/81drlnTHAbKxaxpHVzFQ0k5qV3d1AKW1eVutdaZrT4KE+reWw8rhvZyNCMFA0wlFPlttOHaPH1Ri4DF2geUKwwPXoHiXgCLxmHK13VU7oHrDxi49VJxXXyiPQoE+L+Kk9apfCv5HhfQm6up1TqaerOwRwCRWqOzt7Wrj4NdRa6db2QtckoSrSWyVyA7u46wNbvOvbY/jiJ+PqCGTTUsdRN4vL4i6/yLC+s4HpL02Dr5A/aCKO8z5Mgmsvb9sZGWzWA5OzVqYzaG8NlSjvEnTSmzxdnTb+nrAj6bk/Cl6mnEnFZqOY0fjvBuf+YF0hKqNBdv/TCNEZn3k1kC5DiAELGD/FH8/YEQoQvMxmhNZl0tlGxi0nux5yIyYyHWVa5kQ2fwBKLShzA8ojA67RccywWSiqi3X2GatxARYeoXSOHsQUPxKHxmozvb6HT80+MZdVh2i6R147E/chuQyDCRpcdQkOUXspLWEM4M7uwTt5+HKDKut+cLRc4LtKUE2tk5RuP1VYOUugidnZzK0Hb+BOSqoRzUbOu3ZLKhxQnqjPoJPe3W9vzkOh9dv4u5x7IQEWcbYHt9X9FNZOk34erJ4qEBvnGZ+ft280W/OEz6YCgxYGEhrtuq5o5PULDM4SD8wFSgtpSLicWVxHN02Q4epIp+Ktj2x1e3hrWThYfQtLPQcUDpyfC7L74Y5DygUHVpq6LYnTsvS+xTKLYed0+8f1wAtgroiDJYGG1XraGlwsWEScSHrrSZKvwZ810cfXI2IMPrgIgQ7pwe52YoU2VBeNiqkLLUl57PysgH6RMl6MBc0COrD2ia20vZHwUqhm7z9Om/vXW+cdeZ31CsSL9DpxtQ/Z5/yIPc96DyUGTnA1TT17k9J+lsHtcRtkcWKw/Oqq8yu5nnluNXdS0Q35JMOQM5VfrbkAfZMJgfeR/a/ZjThAef96bmwmSNvHenxnxXviLyg5FQ5emi640UxFv+g47dABOYdMyqKCZpiv0ZHz3bniP7iHB/x8UPnGB050GRSgCJ7IivVF3FLqm2dIYVa7hMvJYYE7TK1yxuSqWtvsRfCDTUz2mJBQK+kc48sFVdYCd++ODcvFWOZS8c0IKsn2EyA/0/h32zBK/41HXth3iBdQcctRLYLAoWY3tHC6Qy/gaq1+yFl8/+yAGTrG0yqabn9yQ0Ppjzi+hs6rLghMz4ca7x1l2zgtpsyKHBuoN5xMELQqtE7MtFsT3vTTRnB9p6q+a4gNjgXWnB0oGM9vf/K6BEhWFhItx/1+1bUDYGjO6ZGbpR7NCZueaWsaQmRTZAHtFOXhnJXnT9lvFEI/wH8hXC3jVeO4WLZZNcQ7ZgXYtOvnPUj+zhg6+YdC9ooSM4Fk8s6Z35K4rrSTzkQU11phW1wA8wZRj1NDAsHZOhZxRDyPr172d8yLtisqdgZW2CL1sJvih8Cb/rzTYh9qzo4RB5ctakh0xC06ToBc6GCq6wqWrvRBke7RrO362r9nDvFWVsHmXmuJq//ySU74lp70SeegySFpgjR3UqR2FS6xsKFAT6fG3mvrBQn5K0g+zWfTQ0f3AVXMjx8EKz6TAoAWKd2P3ku6s8mx7z1xLYAMjRfBwHI4efxWmEoFB6jFjEANAJAPkOgRnto31XUrWPYuVR9+h+f5NKD01fso3kibBysXqwovexV39D89vwLCMHlMBSsoMIWkrwc4c+aeoyXvwWd+UdIVDkAiGs9yIy2XrLjSPh6g4dWHoAwJHute5+dwZiozvyVPm0NbCqG6axfvspAxgH7DLkSoXCgoWL9HQAu+MOLuFHQjKw+3niesmHBDGhvCCdooW6H/EeuhKVjl0U/GkkTRcJYm1XobM/pJnjnHtq4IerIa31ieL+FL5wzbmcqIGDzfQ+JM8KPm8UdGE9ymf47zV6Z3FypioGn9RmlPMEB3GaCW9f6xTPL4zq6UIWDjehMaPImofLPULvwwjmN71psOTx8vyu2fx38x73goSAYvZ4SsbsscIVu0Cel4d9QH7T3vQcJrAsnPY6zRXkQJYhi4kIg0iqeGa617fWx+dxUegKJtaaJzIssvISCyqXM2erpPBrcmqTCEnLqiUGNTT4l4mNhQoc6n1umLxJFOcLhGbb3tpyr18qdfEaLKSj6yAHRNW708ul4Qgu/JQZQBpehAkHw2Mamd6f3U68TnNRCBKDI57qSOkV0QA9yoVvS37CeX9+OBB1zX1AOKjSaSWCzCDbmQrelNyfGYlSLAM6ZCk2Jw1WtVFCDokXmAb0bsuSB8nBdnwoODvBT8hJofwf8x2jWIZ6s55qMFDgOCndTZsEXQ5LYO+IomCo/lIGG84s5I4929yrRL6iBEsrFtLoht90OTxG0l9kqya3/dNKHnLrlGM1h0lGMHjho5VDbgH52YT7Ix/EeAg6aeKcNmcpPmz5/z+iciNdYSghoxf5w9P7kx2rwH9XuUGrA5kLzms2OeZAGX87mLV9yHZL3Au9mGnOSyIgCyrqJAS3XBZJNaQG+AuLcCxhLdRm3m7elLvZsDQN6/tTeVoZZRAFRhbvE321vqo8cfmqTTLZi04p/PwP3enqlhnFD/Je2vB/TssMz+UVCnsTF7lKmbtCsgWsXlbL81bjJZP5roPdnbIuxyfqgfLcIXcLgktz1cgLZbRwbYkklGkVdWjni9xbktFmqrxhL/ojI7QykKzT1z0IAHGe411YLRVPuBLot9bBo08dtBd7T5WMRX7rUnd5i61MMbEIK41blojk4z8WBf42OjI2BbZ+ZiiOg+O9F/fk1oz7sjkbTOIZiDd3QnwI3PY0t8uQXBNdheNNmqjjIDwlT8ZxtGyqwZuovZRf3Yk9KYezaQvGvVPcLJ68P1l9tKCZmeB1yD0eCPfkgj7h8SLYAiDI/SvHGlxH+1mi+WVaQS1Yu5qGS8JfFzo3yIHtS9pbizBostQ5tUeO5+1By9cdYE/xhoKhTQgusQN64p8guJtoU731eRsM30JHbXkUHCgFbQ/J1i/VJKHTxND96mBRvfb49pqqpJiKv5S3LOOLTxNCAmZkhhdMiHXhgv+F1YSS5IwIje36EiSyf5N9VFamL8qLC4WUyHQeTaO1O8W8DYhGo5ZfrMMEtpSUFDJ42eUqwoyI8Md5zlsuR37fi0IB16UdFUpZPQLwOXhiiOm9Qmp2J1gWth/Kmj7t64LvT/+axdE8vllnGH+SeafIPhAZQhcTwPMTm1gS5ZaPILuQLOzM4fnuWo4Yd1seIUbgDNsOPrqzVHhVC5csBIg3IYg4eLsI9ShzNrVzvvSr51CvstR/eOTu/F1f10bi/sNw5b8VBj7NTFqEidMJL7u2+OoQjj0CefmIRlqdZAquIiOTR2RShXzZnpjBBcylUlmubwSldsUBOuzbzmbpF82LCpruEXu7x8sUgQavcum7FPRWRl/v0DjXHlFscj7lxitgopp7rGf6ml4vXvpXZvgAawMVxIjPhv07ovgrrSbgrnEmOkhlXQgpwHm6hVCYa9Kk7RgoFhuSAHBqEytrz8aE5ga09fHTVYqdCzLzBbfbV2WnMurL9NVk1Kpw7DFfuCLgpGV0K+jRNq9hMVaBhLYKlHx+ult1/cXaKMxij8VrPIg89dFGiLXGf2JGOUtCCgkOmrMSzmc6DIf8SwV3T3UY3xJBHAW9MEz8KTflF733rLOq02hdOJgtC8ZJD7IqswxNEh6G3YKvYz6Jdxg7oa3BYWALTGblBOjytMmyde2gRAl6TrBfeBO869EsO4H/C9Xk+9GE1f6WeSuZ0wrXuN9qOYtwD529TOXERdpc0tnr0VKS3SQhnR39F7m93mQMVl2Pgv3ZEZk5DGSNAFXPqMYU26qGe+qkWu7KfRBLiVISArLWdesr6/39Tat4ZqNpCVrpOsq2PDTl627sN1OIE7xkt2N8rrM4A4eMa85KzYpqkFpouKvsBy8cRUFYZaZwR+GYxGqgPMfRddK+lc9VpwRd4U/Vnn5CBLDHj01CeKgeTFJmrIFbNjKpanaHRskYGEPObZy76LU1vpC+KjDl9rz2WiwfVRa11EfK4zasvLaWxDI7Yw+6glpke2xRj85OVS5SvaxcN16Jl9WD54n+hDqF/i6IirwdYXif2aSEG0cdK7oAWxvZyZ2/pqj94izL0gQPzRUb2TTXI3VqadD88YFU3GwGN1d8a2D34/2Wj0Pujipq9bQBnHk8nD8ayn8PYMeg06/rxYgdN0vAnZSAMx9aFWbuviUWmrS5CxxjFzbS7Z3haRQIVGgSAXXuTS/+I+I1O8MRJ9xyhUBxLxe2Wr+obkw6WuXEX/YBTAgyOUDIlK88HnAiJ8EHo76rBEat82noJmGhM2Gg5HELtD2JjRVsTSrh2NiryepFZcEE7J6KiU28OY9ccXuoZQ0hXvJoycmR1ww7tCZiLIj0Yz2gFeOjXB5vUuu47TulGj54rSPaRKGQi7l3wsrhAtDZdwjsxKYAktYp7CfmdsmccKwSD+XakqkrvCahQp/7Gv1o6Z8IAFYyqcEzcoRarQ0jU/RncrEYOInMtUdZ0i9C38UdT8gv6L/NDAbuG41P6e3bl7G376qAvWJFCTZHwqCC21Rdmyjv1x7Jg1PGnXH48njSmDL3jKxbv3q9I4pyjPhd/1QSx+kPjtvm/nULxwJCoE+8QT/WElPcciK6FepthF7qEkwpfptq3wP9UFb9m70w8YVquyR2/HKGaYfpOlUREPD0L1JmRZ8F0qs1fXbKAQ/+53bq0sNj9pyeizAE8XlwHS/iTJ9MJgfhpEo1BmetQUgLnko/RrjDTWCZETXRJ7ywberqmHrggsAu8BhpZ+Z0v39mPGWOc9ncOAxr6BbrC/zkScxWiKaX69EbgBuXHupWCddzLMXf+1m1MuDn7jDHGqBh+tv83Q41OonZa55HQcMmPnT0kb6oMOXVJeHvRt7SYeoiO74dws9aLLr32iPcFcwQvR9NHNl4MOJqoa2H59IidcBIRIRv9Qx6dsBgcLxrHvLpfjhjXx3LujEkqJiUy0uNrl8HPf6O4eN8npXjvD68hyLYrDtMG9ibSoXqC3IJ6fuZnkPDMHUExfXmRe6wLQC3VneqRDYeg2kAu+z3Q1fMnitoYNylhDveUjhIYv3K2vyViUDpcPgMJLGxC+TUYKsFiS+fKayQZOdmiBfx3wtLcwlB0WAa1yL7sWTBvdeji/ImcCNdSKwZxV7tpQolgvj4B2DUSOf+Ron6ThZN1T2COs/WfLF68ahqqQDruBJRmc6G056qmK8zTAFRai5gesWD6ZBBg/fAnQ35a8iXa1yVrpEDjZaQUok2cP0J4Rwx7np2wSGFxGCvKsU0MhttWdsSxF3DpoSnuYvtEjg/P1x+Fj6T+dD0eBuj6WiDWasvaD9wOyXkoYgeDF2BTtnTsbgx5cZuczH8DObeLR0eIi/ioEZMeXn4BPtXqzi5QHLqsAMhFNtuGKtrdCypjwGkGGQiQE4CC2PLZgQMNZzZ4N1dpsCCdT0IJNRnrYP9wJLKL+SHRkTTzqwNFgyyrMi/nD7XC1bJ5lnH63+tWSwKcpGa2xHwn2p+kkTg2B6qSVB4mpTZtidUU6Hm1q7ijaVQVbWn9r77AOjTKjl0sp3TpCLZTwxKoEfPx71DG8dqZyXPYB1h/FAXTnvis79sBgc39mSlSUeSNIVmJsNn6+aDIWIWwg2eg4PxZihmx/3MJGJ8VXWZZVvPI9WvoVE+Q2ziH5AtjpAJwjxmkFmpw8YVAHG636w8p14bZJ9FVtLLQa7bJzVdDMqtf/ccU9l2erwd+V+Hh2jcCRSNmPL0IkuNbJPlerbzw1w48fETO0NqC9WazW831/5W1GJRjn1PeDOlxc1HnFBj22vZTqnq08Z7u/9AZ8HhBRRnnjWanbs07oEtQpzYait1ak737ZKOFrZqnlHfH4O6t+yt866YOZdcm5vIWFbY+6BsT9YdRIfdH2XLZ+teq3jyerRNZE3kIoUlpzSKxaSzT1gcoKrq4/DPgmjAHBgWqlcNeDTtGZjZE1yQJ2l3+bq0eY3IHXXnrZAiUVSs9RZWeM3YYbaOwbigKP6RifbWtHfSK4Z47WiyMkJrP53kB3m6WXajZzvVsSp0fngzBPIx7Ysc9dNpQqBl/DjhvZein25JSFwiWJgoxxJuBj5gx+SQ5e24sKWqohSXle4UNR8daud0NdheesXXtWe99iQiaLdps/0PRRbFT4AhSHhZvoScMw3wINzs/fFXEK4CwbYhBB+9pJSPTfQL/IoOSp2JmeI3U3eC5qVWz6qu9v2ViTfPFlCuxsWyxMkdORhbuQ30fiEjPK8/V7pDVTVR2HEJDrLwFHO4d9aj8FvEBgTupN8XWtnXnwkYtxRLW4k+gST7yXn4nicUrFQ+0JvZ+nNQh1Oi4KwnG4uETLRkDGF5POaW41sCPJpFnYlwyxrqzLZin1f5K4crtdzxgtXhHIHntikxHCzR4EZnrVLOscsKsojuNXVMaqtU3SQqw4teeoOvTRPc6ywCwhFOLfZmPMM9YfxaOW1HGWTta2LD0dzusvNzDPclieLQqCDjOnw+UpfFbB4JMzRe0vklEOwTWUfMEBQncPqv6Az0ijPRQifqV84qU13sbHhynHIiDQo4XtxD9PWBLhbmdSrUJJHQYD/dnoL7J30a8uLLtwVCwSlJX2OzHPKF6X4l591JuxEDbF4HBjcpXoxO1s6zrdlKsOXLeKTBW1TLoZmVngmYWw/MqjKiXvKMxl2RGdwL62QqEdkrWg9yhlr2VMgMJDdgoI/eV2/94+WPxwH0jBo4BjgspD7fN/zAxWjBRl0M+OB+ahk2SlCNxwDjLN8LMlhsZB/kfj9Try/lpZG0KyZTr6yrN3ipqR56pCNHWNGavsgvRUwx/Yi1BYt8gcT4BGBM3SVoIKoD/acafaz4/oPnGXD29qqMFB4jKi5tvqxPe+PjlZImHjmvr4+hLysseG77W6tFHx0Ljgp7UQKK4oERmmD4o87zWTxKdHZRlctIntwCCJW6Kly33H4A28zbqMSfi3pB/ZypgkktjoghQ4BXtu/KhSc7PRjaXmQSrPmV98i5HweCSgC+aTuvRvbEFFWSLP+ldV+B+FqdGPWbCHFrLRoS2Ky0K7DXcDPLrk+WwHewg5dEHGe4U4JBs7EAbVmndISLAlK1dCao9Q4h0LJsMopRwuS6V8KmKZVRiEuWW4Z7F7W9S+wC1qLo25SIDdeSCgKI9ANuOqaLfHXEQVweFj8EjFcPbEAJub7JzgsOI7/V/GYj5XaTYYi1VFjzL2DooE8Sv4l0J8ym6rzlRN1iOBkzrlTMNtQdutHUW91gV4RHIF7B4uD7nqZWAShRLJmv7/f+6+GHrmjGGPKUqnZ9/bNROo4dMjslx+nryh5KkYVMGKoeZ+FyXJ5scdD5Tw8AkX1FRID8VzZmKngk+ZWfaYLi0p0YlGfV5vm1QRLPIGZSwMNWlaVTp9WAVTETxOfzYxm3HeM0forCuwfhF4iyVi+eEa8BZ0RBA9ttItfc4KupN947VTii2VsAnMsAo1n+mwJeKOLnZ2Qs7BiZQxA9T0djsORG8nQ0dT59pTYLFO3IeCmkXD2GhijIBEivq3I6TeIsZGbP/oBKjR5OQewr7SkjP8bWkwKoK0MBvv7K3AdAOTTOAgovJjzgn9CtyVb00HVW+A8+jGyQ4ATTJUuZLKIdinwcWNCaK/H0Iu2H7JAr2fXxINJQf+LGTrT3GZGro11klwQ8A3+tUof/v014lzCR0OoZBxk1MNLR9UEQAdDKD/L+w5TGd7d1/BmtNdBdoRBca4Iwohx1mpAV027PBM/VOUFmWfH6KF0maeaU+NxZuFN/yEcf3d2Koj69FsWS593PfqLJrJi/s6uGomml9SWH/N/smI/AuCoowAQprfKiDv/c9059cre6PX5qkk37burZx5gDMAbhC16uyzgcRIFG2Mg2w+AWih5LYbymlSPdzN9SlAbvnrDs/uXn5eyyJuHzPjNMVp/Z9zJmkw3/njq4xvf1bG6vbDZgkOL0ko1OdIsc8Ks02pT82JFQJM1qf7ebOsvjTEjW2xuSk6Qnd1krOQVpDYsN+OHI/b74VUWiMQk4UvGmD7i2NJXUklE5lwmJa/zu2pTulpVInE6eEhOMAz/kfkd7AgVrRoZg8mh/UA4qIrFKe7FgSCARrtIFoawD/i1o/yWUOiuJZpAmOdgAmifIYXkeJgss3crI4feGNLTdx0eWtYHzGQTxXvR/yxQuliMl0P9u5Lqp+ujfexy7kCSORSQsmlFU44t0w+G6mANeZIFEkbDRgG305SES70cuf1eyG5vU4mzmcob0bUCJJ4rqD06PWBliGcQ1BiW2VlLn2AMT++yOCtxnNFmta3vzFL9cp5bMQ2toA6W1kPVN7SdZ+S/EsgeE2/XQH0fwpIZqAsbFvueGsMdO6omTB4dSdv/oGxmc0zn2mMXY0e0K9Wuc29S0QJnDv7+oO5l93B26SAEZo9g7DMniaGAUjCF9KxcHEqpQEHFLfgniUVEYNW4ox3zTPN2IRiY1ra5et3l3hrsZh0ffymbWAgTVyh5iUQB+daBnGGZlJ4yqNE2NgWUnuUyocn/fNBi5vFTEyV9kaOGxpBZFf5cNsiDgSEZVmIf0gPkKPyARUovv9awcPL4tQC1UWkI3pBB766O5gJClB5s/wz3mIty+TeLtTAUBHOyNzSteDILC5kfvLewS9CurT5wyO8cZdpLo1nsLcR7ZRPU1Mrd0LtmLF3ruy5E5sm++P+DWx8KBDfAK1r9idQdzhaAWR0RwNqm4BUi3kLnM6Lb1es9nDk2zbtAxTaTKDOaqCUkUV+BMgG/p0W6KrDTokHgYJ2lyBWfZ3gEYSnQbKh89BKfjsPBFi/NPpAQI93YQiolSgGm6crenMlV01J3LyyiQu77wtq63lsgGDdm4xwQphgyKAizXIfxbH8p+fNIX+P8fkXp9rjaMEbT1aW78kPQ2XP7szn6j+X4uCISd0VUYCc6YizSOYcz1EboZCDcow2xZ49RS3U1hU/F1tE3uNH+StnENGZ9OkkO+2zbtvyum6MjyWWNxBybnwSN4/GL811FQLIQjcy0UA3lYmxeYc++cogOnTzL6+RK2XSn3BA3vNANw6hF3ox/YHu3T6WAox9liqLOiwAaYKuFHJnBFI09dkeKqNNgAc1/QlsOPZsX98doZo+ZGZcBa/l9ObkU1vPAQdGfHZjPtadF4oNg==
Variant 1
DifficultyLevel
639
Question
Which of the following has the same value as 2a−1?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following has the same value as $2 \large a$$^{−1}$?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | −2a1 |
x | −1×2a |
✓ | |
x | |
U2FsdGVkX18bYSgRPajLGJWvwHI5X+1LgQrkeQ6NDYuEisQkug8em5NexQVXTzOMBx1ioF3u1bW7E69DZDN8PEC8tpboPZ70tcIY+kJOLP2osP9ctrtS8H1SoR2uBrA/C1z1TuCFKWGmkLArI8hjrK96fnEEPA8lDQwFCYmVWd+6Pej6naEujF/agGianY5aMmU3y+Yc0IJHGd+2Cu0LebcEBqO4r7j5xJ3m8MJJUjR3YX2HtX1EJ2XjEEXIOfQXx26aaDg32nsBlDEumyFwPkrqPZ1HscZkww3iSHewJiLRBQGEonC1+/kwEB7VxmjlhUjbkJHQxMmdlu1v+WiqtfjQkPtmNxlFmiPHFT2luAfLfmvlKpwN9khpORqnyGGWGErCpw8w3mcaNzFaziqss4R7HcjpX9oEalPZTNPR3tY1HkEueu25ZSWkJYIanbXUGNVdF0JVg49+Iucx19TGzD2UDeoJ4uqZ5leIVg7dm/UFJ2NMAsW1Iaur5l0+ZqSvX3bpAjPAGW9U7GNQXp0fz6B4Qp1+girr0VuNzhHOhTtnzRSdA5bskrn/VhQ6BJuLq12T58DyvfSQZUMsncUq4l4x55PE1feC5j+Qb2GNC0goNXMAp/Q6kcRe5zU6FngIx/23N4dxMNe+YT5pw5t7A8wlw6tnFcaSlxsQtThdNJ2ANB9MS/gp7efE+Xh+WA0dKw5tcXgzJD9CQZbU6PCTyedRfgBLrrMaK/ALVYTrbkPtU6k5gJ1lYLQ37n7k4LW2c3/mrNW/sjla9kN8KR3udrVAleKZC5CNKS0Rkt2B5RwyMgJWzuq7XMfu2WwpuIZP3MAc1W9QWpoY5ZZB6a38WUteV1N9lPsv+6frL0CYMHjKZQG/MjNRfk2JLwb+Vvm3NuXvY0Xrd12qoAKLLlOJNZDEqCm4txse6ykTMxT1vieB/V/+N7e1dtayRLBcOydnerX19mGw74BDcGKPOAzHyOviBztvcOC2VUye8pjzYD1p5/mZGYdlE0DRUMKPT4YFEmEy8c88duTnymGwRWGs+I7zbqRfL35PkCit+BVYhHuuqqiRUMfOJM4BHIYOa5ZFjx8Slgi27/fsHu9a2VIDd85bTPcGd7ZbEuUNxOT7fQmDHESqt8ATBE/w+eaJr2/Zveed9Gg49b4qGQXvvgaxyeoDzT/kKUAJ5FaWo8Hi0vGT236XkcKalg37MMXSX361Go0BmJlK8lrJ8TM5rWse35jsefuf+bDoHrvnCjJ5K7SnX0a78ho6gVmxsRLqg9H3QkdXJg703FKFHf8p3RVVMS+XcLnf6LnH4Bq33S5/m0geymXfraeuRFdcUX3W98qdK9r5RQXZoHDqgbExHU7YR0+r/W172h/nuftCPhyJ0tMrQZS5MFtXRrtlikVnesXmYMDmF0/ChkGYG3CXG37gOxAKOaoOtV66Wo7noAKixFgbL+9DZjLVbAWBwdl4T/dItjGAA572fH9M//2iHYleONQmYmUHoWFyO1OZNaSicwG9rag8lbbAeqEu3fXoTNZ/tHKhWn+CKslOD71AOqtKNaUzT95WcLrYuUzggtLSudkldMJ7ru0wrGjzNvjULqvoW4PNLytRxdnrbTHRxqnASaz8bD+nvZk3hrITG8giyBNtaxkypXfkcY0Lcc7mBGaoi05NnYabZJCZs9E/TRgl5/5C8CU1cK2VypYhzC9G/iWUaCD90NUSG35zwo7xLuI/CXEDDUTWllQw9FTq79QrVTGvgxKFzqwJH1QRKy0M71vw5IOPZlqfgaBXnXLWqCzn/7Z84ELd831aeZA/krUSZt1QJ3PCsBx+fXzHcG63RlMvsrL6rz43W9xZXibzXls1/oFP0i9abwtomG+1JVIRc3jgPJxsN7hnxb/NCt+cquQ5XfIFSi4XRVMnTaGCZMb/4M24DczkK2HT7bEJ5KcvRCo9Z0BRxIpL/Yx6qg4/O/1yzZ/Ymzub80T2SGKYJ7JE8tIwTHjc6jx0dHotNkYHhdZPA++Scoacw4Dj9DEqYlwuTNK6EXAMpGsZVO51xTpR38pm+7NufQbDXS/IrrMpyF9xc6YpldmrtCPxbYtzHlQ7HqQW8rh1OmHMBlHBA6ACSGjO1rJFf3LP/s2togXtbVOx8XPgpsMUujGEmMM0Y6/WCwQWHtGscyvBa589f3lmZk5Kmjw6zuwMQMojgmiR67Vmk/icnt4F1Iga+74OoJpT7ziq6veekL5bVSBeOjFtbO03v3Wqkj/Q17DByWglGeVONYL+Wauvbn4s6kC/h9ZUI8tLCggmCIJ4DIDgarPQ5IRo1BScYdh1PkLNgeTrhKKPbPeLXClPAEwDGuxnkcS8jgniJLKF51W9OYzaVnK9mCQysTNGkrynCsV/QPTKhwmOQEa0JgadXrR5dwllD9sakxW2+sDFL7w/+bIlNaH22igPCDq40PfG7ijg17uZ/x4OP1v+yNwMLqd5EPRHbcQ7UZVrfEmuihV7Xh8iZTdS25219eVgfoBBTMFXQ3zwyZGm9DMsXF/qHve9ceyZE1LmDwefwG1U0+Lh1seudNI8IEWITuc2Qg9dFY3g5+hIqhwl9zNp/RW07IPTVpzwN0w4JPQcGzB/3M07hFc/kEMCOPQwahnOnAC1dfri+irafXmr0KxkoBpiDn1FpUzdgpaFf439P9V1ZHxugUtcpDo3bIXfK3edMfYEceoLNkrurhog3y/pU3tMIwQeToGa0a8o/miMazyA26PqyifF4pqMQ5hZt1dBFs73DFgcnttRUQ3Tgy+p0sy6hZBBxdBoCgPeReSg6BPRgF/Qa+hm2RGWS07ln4MJ3VZA+H7T8laUavKPxl7ty9vRB12uzfETrQa+WtSUNpd4A9ThvIZz6LpRGe+C7ZoTXCu/uHmqaMlokBP9D67UDr39EpemOZgZBg79/t/X+z7ENIBF1dtQS+f3/mf3tyFDXL+XOh9fkQWLaUXr44ATsqcJM76skoI3pyb/v/dh0uWhiFeUl2pbkR/UjDlw9Jrddq5ial+RRZT8CpAfpz8dCGXmKP7l/X8ojphbyuy377uXgIVelfvSJU6Urnid8/yga9+HjAjXfHRXRtgpvSDl/8fUNDJnq3KQQM0w7yuHndBO1hsmCDiDw3reKgJpIbNwKVIV+UMkRRruV5UHpM0QczdSnDssfdXnw9M6qfyn49fGWo7u0nHDGJq8iDSjcgeLJdEOANA7fREOpeHz8YBwj+joKht1zZOdgjjQGHTi2jI6cJIsC0Gwyc5dW7WD3ntEjQ2x7toU/80z9Y+njsbJpp3Ud97t0vJTqCBmwoQ+bcHT82yFJ2gpbeEIkahUDiXjfwKkDXL3mOjfbaf1xY/VM8YjLgGDxR+MTpzwgMld4H2VZ6FJrSo2hyVzKeKZjKUVn7K8bo6UIiki78pYQw5ER6CSNKgOMMXs3xxJJ4P3UvdYcJAk8+YfnscxlXDItTHvMYdaS6z0/3qce7VVYbgpJvZzzlI1wnjbWmFe06GBJmtJZpK5WHdIvAQapyQ75QLrRW4dwiWP4ag0xgtKVecoYfEQqGg401Kr/bRE+CPCZ+LK0gkaLiqn6ZgCwtcqUS4bumTqcSe/+3rkLcP3KuSJISMpig3EWY0qTd2KCpamNHdbQKV5aPjX3ArjpTJE1vLAvT1sFee5rhZDPxPT943azD6o+Ym/CW+TddStcG/WZNPrC9d2/l8kQYzvF6c6omcNdLqnOcdawTZst97eWW3nGvsw16vxnbuF2SdVfPOknv5W0GjREq6BFch8k9UnTw3pULTZou8X+ZErTap4oBbZ6LNa1jy+JeUzeKmNV0nVAPoQdPNaA+wUgjzxgyCmJdKR6XAm2/qfL56i08qYRvkqD84o7rvSwg5s8Y+WHem7t75nz73sInX5t3lOehpnzZ8Ud/lnHmfWk4gt/63QZqDLfteNJDCqH3TcQ1+LuNYm98ePmivvlzfTEQnOkVnJdWGzUMeHWtnT3uO/JUfvwIaw5doHceGZJzio6O+RRAPC1iHKL9dzhWdSUjWKCu6XFR4MGBLWnREXa/EYQyqp20cOi2MyKgxiL+2zszvpGNkHK4DWAvE/aCLFsfpV7/807bzLs+hFB568CP7r6uWOjh/tIMCpiplXwZCs8UaSz8JHuTv6XlO42G2VC4jYMSKZdfHu4w3arQZ6YAiu4o8aoCAMLqYEyLv53ulXxLZH+G5JvEUMlwkTw+/fLu0/LHA90v8VCzYMY0ppIO/rXLUO5X3KEVr/f38PxP3Q12i+kZ5n5/MLulhgvJUOMYtNreGaGdipWn1HFe2veUyZzjwWVh4wWtQ9SQEvituz8juS6/SKx6CqVpZvCr+QWQ5YE02giLABxNAwvrOfZDeDNwKw+ZMQ7JXjSTDgJyF5u8u5QM1/u/yO1vhBFMh6Y/6jk/eZeGAcsOD0YnkKHrHY8WOYBepSHjgUHPM6LG76TNil+nqJlaJIlKOEM/dKC53iom18k4KlZDC5BxlsCzvhtsul52PijBcrhjWeLdXsLwkKuFgx+MLot8whwjBNIcQoC1FQ6vNeTzUIweXc+yTu3DocsS45ZlfLf0ArvKis+XYnDy2sswqPAnUMotTAUK4sqLD/SF4QBa1qkvDwS8pyceVPJTxkgJ1pU6x2uKtWb1ZcheFRE7FtoVX61bBwb0lEu4ZdvbQywZNS/uT5iqlyo5BT81yCnEwXqvsfc/iouYHUKeaj6rNiWT+6bgUt9mHMYw6b41+o0WLK1oBOWlz8mMWBhjvbrSxH4B7wxBtFC4+HQoNLFOBuuxTkoVump8vwKhz11FDhuRjh0RGNTSRJ+U04SRSB3AUBy6Hz5HvyeiJ32aDJwv9elkIv+E3V4IxJSX1w3uIfENRU5qmN2UA83S2ae90DMzYXKOWaISWOXEycPvhWXQ4B5wicCkkdRTy8Tddb2q9wCHds9WksBNL2qoFH3NhHJr3EAo8n2dG8soPB8aBLhyQIbYvsXW8Mt9zrRguyNMJ0/DT9RGZ5fNa48nBnRz94m54oNi1z+4x8OPwT0u1vianL1jtFpwB/zvoC7orpNLXtLEfTk9iG5ILbWn5GRAdG+e+d01jumhTm6ZJFkW5Z/j9M0UblKwyxyx8W/tUP2nB22ZSsF3sOui+TIFRhLtecyIOBqiIJ7Fwun9I+4e3Z5nxln4lHget2OM5gPBaWDTZ252d5TUsFGGyLY+o2K+GY9mDe8OXwMGvJvV8Rg5VLKy7FIoujHO4FyvyWxQ/aCTGcMiZDVhcbE5nysl9/U2GcnTWJuWktp9LIumvu6U7Wq0bA+zH54KYsO3henGiOb/H4fbkkzOAfzUMDa8bSEsGPN+fBGmPt8eM5uYvdDcrPs7UwZQ7Nq+bKRKULDq++by3KVbxJEwg7JcxtO+2WAD0DZ/f7expeoGr5F2EPJjoegDxXZlyRw+rRGOCWngtbhDIK/lJnKSlj+w8bXgIMXJ5RRuHpB2EqubFrvm6CKW7bwUQRt0GHNnAx+WmNbuei07oiGQ8pO56ArtIaTFjQQDHQR3ES1fM5zp3mWdkYeD6bvUxSPYXOgkQpkfXOt5kLIDkP23BbYKXgenOR+hcdv5xi6b7eKJLu86xrX9pnerZnRMCAfXMlpW8SB5fq2Ip0Vgzz7FnDMvGLRXQRkY23mMhXguE5i7jF0S+Q3DbbAREvet5/SGXOgIwrwFFyK1PHOhQP4M9nfhXzlbZ7iaYAhNAB58SZgDOq8ywdoFaUj8p2DmERKN2E3A44v7HyuDTdt8YCeC3d3rPI0H53KTVFAT209vDitlrkrIzWsQKLAJs+LJ7GVj2Jkcu4kemHgi7ee2n42ES2EkvoeX2duXIh17nUQ+T+4oPN2FFhyw3x1NCIGigH9bTh3Jl9h1o9zhcC640SkpUfkmoQ8bJBoTrbcOtsya1FN/5XaracwHP1TRSzNUGM0KWbsODxoiLY+rbDVHo/K9EGOixG1OS/2LcvNL8COGv2m6bMl61MF2qU1rTMlkLCQalAss7hSOrP1sZcKsFQpb7H7kLDI/WWtap9DMf6lgPONPPTQFs+nTVvJa1L0mIMKPby+WyeekXWux2rmqVi7VezmFagcKnWYxsaZ6zMQMb0i74W7CgGpMp2F50+Mb/XmpLapeUjoYv/d+Gw9RmX8HJc6EWCh2aUmtWLcqT7TYJCK49v/qdRdG0e2LOneSGJpxP5PnShDbRS/3mJnIauJOWWubu7/aTyEIa4xmEgUaBlcuTr5FfPJMUBRoziy5Fj8Sj5ChwaXZGpE1AUEbLEn36k+57FsJi26uJNzk5SiFtU6KoqOPXV1pGEnVVLxAjADk9PQRhUGV+cD3065vhW4Jl7lwDe8QC3yrPngaNz1QnMi/UOifFSBUDDc/IqMFQJ4qdplQkIFzUaXXmjJIxANxYr5O0RpHROITdN0fHmnBQCoMRTRNjJfDxFCYKDvV2JYZoDbxmPJFf5aHTQgiidb6DOZrWHKmthEdLc3uwIRck1gTjwvsYKOQR64sggFn8eBa5m6fHx+AEWxHf031Sug9RdDnJfw5pPI+DJf0QgR6FzrbJQky2tRzT5/ImuCvr5eEE7l/Ml3p6MhvhQ5wgAmtsyOT/M6U2+Yxp9R92OptDi7C4/JaoRjHKtT9USbgSPJE5DL95VwDAJvYpzhg5cdonwC2oQKg9Fw7J7oKg05HYZzwtDuiPmn0HHsl+hbToBWujqGvkhHGvrME7D7mIPmsAVayiNnA82jtR80Jim1fdiTp0+o/vcoAGqELI2D5/nO4yrMtmDL+Nqyl7+9E1f6WhyCMizOyLXurxXfrQcX4+B6ve1+yS7E0sct8QF1ENFY84xHoglmo2zgdDukEu9XhA7J9DjBwc7VcZ/K80tjJpIheC6j4L9e42tddu/lwEEKnmkIvytHObwS//bvCCY52cc6uchOfTptCjUiE0zj+G3j21yH0FndWDnutkRVv7eeByCfmdVN4tSWSwCth0aIy8MVY3BXfnW8JHDv4TJ/yxANHOaB6wLG3TuPqq/H1UP9mvsHFaB/VZIB9Bkc1SfVbrV2oXIZD9/gt6VAXHcPN/jjouMdgcx9F2agO/WtjY6ZhJc2yRjPL5efiSXcvlnIa+Ced2bOSOm5xmeC8ceP12l20jb8XsLEAtUmyH8DOkoJIePuCktZ0eH0CbQNR5yj9K9iRDVQnay2PeoSOUkWKu6Wm6rpwW1O3ZKxR4da/spV4PSFb1wk9IbwCu/f2ncLprkGWbrY0fc0p76RoEWn78LcddTHAroZLJbTQfv6uwGRUUzVkqYHXv0YtjByaZ09KUzewoL7Pn5fqBzHKUD18yuvGYGX260t6r01jxuN1fCy/pVg5HY/zI8r1fse4k4MSzyGUl221ZBraQReuWOoNk7+K6Qc5hb4Ed1MvI2Oadns+kIXPhSTsa806vEq4XN3w06KV/s+LLKNmpTB/VA498snwOK72rHWa1o0tHWmuzROaFDFIlLfHRoaJwn3++Bv/wGCD162wV6NjVtqTDtUn/3/CMlr4NyDwfrZRVUDkY1JohEH61yTjdcFQE+KwR91sjFutyXDUSG9o51FdZwbKeowUOJFjX1aHvFs+JweQvheLcSyxQ5Hc2e/f/Zhqzbdo0XHPaH72lJKridAwQnwgnEE/yhJql7B2HOpiwDOJfZa9TPXRlNFqhn4DpSrfZOfBjfeyiybTFkQYoCFCsys/Z7iNBXFFs2TYzwrQU6CoJ/taMsIU+paq7aWh796GD23SAB31sKXzLnApioPVYS9Z/1OPOV4sgf3tPFGfjCipcBZ1AIttkas697LcS0ibHVWt/TB7PCeFURTZTGfui12DgtVm3ouYeG9YN5AOgiyrosCltwB+6ld9F6v13IW+JmuznpLwbRIuNaG8X3C/SNIa8ZKtFkV26RvaH0ZOgVpaBsKpxiNWaZWq7HKgMVUcWrzAnF38iH64lbh7Of0QwtJct9RWyjIFCof+TAuXQ39A5JoaQ6yVaVH0484RSBj5V2+dfKTKhMLHr75Js101iRPTLdh7LRcVZh8wr7bNbv9LDPavBDnRhSzYxq6Ogf0H5KmB3ndonuYWmvm2GFcI8F+a29QXnSX/GTVACosB7picLEzFLn4rIJi7nv+sC+JmhYnwUH3wwNp1m8sqF2JMvh4YEUAd2GPQZf2p26DYf+FMogAZ7ekRmnl2T013JlvZ5/JZy2ogPg/tECrSzQAO8ajGSd9EUq0AegRDxRKARCvThBeZ+X9uLTsa++TCT63CL4ZTbUjnQ0/wYdG7QcyTcOBvMmhdx5VsncY8sXK9yqQa09BjRVa9l5sl7lDOBp7P/RIOhfHAapENPjHneizzENL5jODWIDxb42aYYAJGey5x2oi8b6x6i8MEHyrLUeUq0JErQMr168cTtLpLTTnbBlaPBrm34mgdFtiRQCIKLaKwg/AFjxtcrscBrMupu376m/W0wr0fG/8zYGTxtYbyleVX7cysebeGq4TBvPUroL84SCZW03N+qLZazxr/S2yZ5XbNI9E0yQEUIAFi+HQAFP/q6j4ZFkvtUPYr8sNKptIHO6plJWTHCLFRzCGUsQ3nG8q8nPJYf0+lPOZtaBxuS1N/IudSf+Bc2EA3WHeoi5AoBudlkYT3vQds34lPV6tC0htK5mK7TEwuM8zxVVDzCFh/GxortqV9iyq6XK/141fN5ajt4dJfxolQnsNN9pNo+JVfDxONXJBxLHDPNEQVttY2tCeNhOf8J0eoKrAjDqsPZOPhUJ7i3IcCVCX2W/DDrCW2cd9ugZeMPLVEryHGyfRWpX/tAyrjIusJgtiVv4ODelv/nLYs6g0pJZrnLIpwZxbPMGzRIDpSvI2ux8JN3/gQbc0DZcqkHoFucgGtxWzyv9jPVFqGGhgr8ECJiKAAwOt6cIS6MVqUBF83hk70DwG8uPBtMmjHfpTK8HobYCYLs3duyMVdQQPNZurJyrxuZ3ot325YEEhiXTPvGi3YrK8lrb4ayDYe4+LbSx887BM2OxZIGm3hDuc7FPn4tZ8kMeqmpQejyWRv/rQlB0/jR7+/PV5FPfGjWmPMoZdQ5CrA9KAzkTWxytXVCKwu9RjoZivhFls2F1+1nM8cuQBYAQE45Q5rUvdBXinij1lY/wpqCL4VGHMvYtbk87tFwr6lUmUAYE0FrewQGPPgsYw6vG8SBodKYRv6ct/twmBMErT3h2cNDWAwKedSr12FluG1IZsm0FGaR3ele7Q8MaknCuyMGmARJNmky4sBeqh/iZYnxky5t5vEUadkVPIUad05suYhMgF32EsXFVUyP86PJuvi11tp3uQ4PSMvlC9iBO0qTiN6anp63ZuTA6USfLJFx2dRXWJhAOS7CIVL9Tjv5zzv/ofT2ySrt8uElzJQej2OM/nfb8qxZqMIHaom3rAqS+6ddk2c0DDOMXP6QlSECPHrxMT1oiRboww+nJWGtltpJ/g42Es2LMULKsQUNAgsnFvlqEXON/2ZAEGScoTxTlXKquoAGlbViEV4Tgzs3xWFALYA3aNmuunfJoi5iw1kD5qMG/R/OJ/VVikXlZk/1MY71Ynlrc6/RsRic8kx4Q+xu03iZ9xjA+ZKYDhLkz4po2u86pIi+699LA5O31nC3y8UM2NxTUXmct9y1Wc7LHUjpONtE9nb/lB8XMJdhU5/MzhUNwpc0bZg6Y89+njW9lrrW6mZPx7iSBigwzmTfNcwBIdZOBMFkUFDN7+H0M2mI4mlwVU+gjsNZSlnnGfCYUoamTAjun1DYVD7kxA4m9WP7Luxxq6cWAw3ZG9dxwiru1ZgE+LA2ZtdXPdPS2DcfMzxlJIrwlzWmMUU/dESWWd6h5XoB/RA7y5J9SqAVXAdecSRsDe2B6bDDTewmBbnMICZT8glBvXoSUgV2U2DOy9+H2h5tpEK4hRD5kTPyalrd27wtyyQP0BSYW/cv+rXNIykNMKkcEg0CrxHX4t/PK/JPr02mlrzBmN7BoBc1BxW+tpd3r9faxXnBJkhIlq0lkT9wSt8GiPFO/Y+0SpEFU0rMr1qip49m/i+xPvgjVz6SFWr0Mh+LYe+pCoNsdMgX/MLSppTTBwWKWdrggnQUBfXJ0LYTuxrTTvWnwjn71/eNJDk9ztsF54AyJwPgLc9NSSyHOvaUTCcyeEyXiS2tDBeo9a+pZCc02W3uF4vpiwswI6kp+u2Q8hTzkpCfH9qKI0F1ajjdmy1gPu2KxbSodg2EXE8oQZ+gg0ChBpppBVjFSLk/ea+ucb4njfvZXzudLrnccwz24XeOVB/xA7oHKuBXk28qyWqJJI5ebOOZUZOhfw+dOQqXFqJVhA3iqigLnw158ohWfG/JES57/rjAHoed0Qczp5RHc2cID5I6MjKOrlILbOOkQa6YYC5Wp3HNoUg6h43MwiDgD3hk7lYWyQMgX3BxGV40NIHfLFeMy66GG7OpzQX2hFAfsaXzcmJgRluQyifyz8oDjwX1uaVsTni4sVmzgMlOuybAMFIei7MVBPXbtsEyYnzxrytOOgOZks41nGRH2pS/5OjS0EiMiAGbn9Mi0VHbiN7Er1M1UgrTLLtvf4RNEwLC8ruu0VDQfQyvnKloYVR7Xi1/J0E6bZ1Fw2ydOc1/BW2OQzkLnMjPZCqaXc//H0g39Os/IfT6ZcUPV7IXOLTkCZVXvWiVV3n9rg5q8a8NMVv1CWt66nUvJkRAID0JApgnfuJWRFmSXrmTl8UVl/+b2Um0I3zfGExCnjEbQhHAtcrRLXbfD35+JUZIdn1EXaadGELbuVdb7d9JA0XqvXFsrh9T5NdXu3j1qU1nybfi486C1j/8Wkytv50mwDMnv4BBPhP3LzO6Rve1GR12q4EpW4aQ9TY80+IbCCeey/7nA5V+3Tx62osG9zChQExUuaGRNSTrQsb5nH2EecqkV/EEFpccrxnkuHq31XYqb/RU0WCMLo9QGPw76SawKo+gjzETCHAa1j9fjWdg39e7jTWGZRfp+zThwdRMSIGRlJ5k3jsaaCc6GRc26Ja+XAiJOklcnQ7OZ0sXZiCorCzQ/l2RtyvK2jdE32NdI/m5DqKlbLEwTrhImxA6LFFPEQOHup9RYve5VZSLTtXznx/nndDM3C8Hgt0d9KBJnwgI2D4cmWB2nAcHsI75FFci2tUcH7nV4XAy5EoQEChX/iQ3WP9D4ZPTjnaPTQgfFFEm/ioZVz5anKSEGTekg+/UFyyXf7Og7zw41he/QbSwy6BEFs89Ux3wWMRCjO6te2jDFMaU8ZMdWXuRZ3o8jw1dnVFXvz7XqfL4W8W/R8UtEYkHCo8FA5JfHjLcKnLImTC3NGzf0qFJBwUuAJF1yRIc3jajpP5oWDSgrIA0+/9FIa7czEEh7oGDnTZoi6fQmBcjm+tTwaiDxCGqOY2O3siB60ZY28r3Yx4h+aMf3WZzzzYQuTKLGv/zNTlhmKJJxXVxEfMqimnjIEkyoU7UP6C6xrEBX1AZUUemCyixSRG+DBUPieRLxg8DKGz2iwvTldQlVwbybSwHAjGeFSbX9c9J5Np/Zf9Q8Bh4aOlvI4hhXKmVGHGrBDDdZt1dcuyoRRcnQVKEEfWLsfHIhRVjanu1TdOZI8H9knKaKx+RXbKJ0+CpaVIt4SQbi/aPhwVOGxn6IAAuzv8o0QynHiBNLEzeGhJ3oEObVuTj4SYjSlnuPMgrwYaaFD9tsOPnPLL0B6TBKHAcD73p4hBdwL4kQnIIgvqEmRNtoz4A3h/vNGjyskKx4DGWQrjE7ft+IMPJYySUhk3WoZBwbgbeHO7QYRd6IhOyQG2Sq7/BDy5YmnRS7kVmkM9hcDemtX4le4rvRE5tCmuJM25NTNkABsjEdD6DgBpv2IIUf8CgOCL7HlViaJ2BfDFLEXG56if90oEmMZO5EdsJoFf04dXOuPeGc3QX+MivSUrY/y5NzBbvFh3UangZaSUDAY+sAx62Bv53PfRpsoAoNxh4YYNE3nQk5y0It82mTbl3ig4l8gw44TeXvcRyZBWryUu8HDn4nAmjtCtDZN1B8c1KV6JWdcuj6+ANXbllBEEUIs9SSkMUvSAjgpDmJgedZafTj1EVPcb3BhsAj5j1txKV5UJuWGH4JJItLKeIrE8Ivt1licm9gAzIOe7sh1Ya7nbBn/Y9TGUDyU6i91qwJBjRAX0TadOR5banorJwCBqpDi6HwrWItsXqZ72IUfd1q26eQ5bGLapfrAcCNDmPDnlx3PbNvGBe55a1lWKUlc02Fff4IyGWqcYfvp3C+tyQ6QYSwaGosWwHeSK56ni8ijPkzMfdojC9+uPBVMxVPx7qKRe9Gngy40hnniZA6stZOFzaWIIptQVOruzTxiwRjSPwAdtBuhWMVlIxkNq0xur/iBrI0bPvT+LXDiOCFWMr5aEuYuHFEULNhl+ot+Q6RvseJeNT1m2jPUrgGQVJDvfopLGlp7bVMCVwaeJblH1s8JU+8AOnbr3s3TOj6U+/8iSh7HsVgxqiRinbV3gB5R5d2Yz+Tnv7RdRCLYsn+uvrZRT1aQg/7njX3FDKvmB1PA6Esum0yU4WaXUtKmQAQTZNo/PZQ1aCndwUhHCUaOU3aEeaLJSTPU82yt2sDQ2hmnQTTrkFkT7Z/m1NQQwwRuaAojYCr2lMmeT7dBiP22acfPUAUuAN1lCAgmKSB8H3jDHpjBLUieQCgx6WZHFujjs0VUPvNfpcXK6YAXraGMgQBTCb9e0m/SoTUYa+TvgLyzHIqJnuYnCMbtNxKwDTklBfo3vqaeGPk+02LG234+ALlxRi/XsZcohbsR9Rs7XQO5kAtgy9BrGAsPTmYXgvEU1x1tQ0k81iT36vdrLcSerx7ZzW3A3ON5iBQcR1Aop5DOXCF0SN+Rm7xsnPnoLA5EjeluDaP/3FmrZseRQCf0YLjMB7MWcG1N4J0WM3+KlSVO2ONQP/a7ooBYSHS+uBA4/BqaeYE4ljZ1I1Lkvn6hPNQ7BFc/STf7h2KeRwCrAosYWIjwsoQiBnvsDaoVADOyp1wYlk+Prh+Pw5/4GvkjXtGtYP23jAvYnhk9+h1TyFuxklIc+XWMK1vtQGGTAe1buqEOVnJA6+EFL1jiqbgGe8PSAlF6ZKPjvfxZSpWsdrLzBrjd1TVcyZBu8Ek90JEcmGFFr11YTB49m74Qb6J0m//NEP1iJj8mXVe80ngendRnDNFdFy6xFZ0fp+TnqtVE83SP9tNhV53FYKdGkQIIocejAsGHOte0bDEJ5Hgu+Kw69RxvGG1cbhleHqGgY3paa2KUUrs+MwauQhDrPccEw8wHxfaUnhKs+ACyKn0qJJvDoYxuqY+EECjbpNZxzu7rVd9JICIoARRMnBQUvlKLseJdERf57HE3gz5KoCJ2omg0CO1DfjzYzw0CAFrfD+q7OLcLy/G2/n+YtP+u7tqfAmd6j/pLdPw0Ys+xz88y3RDD65hFAnxQk8+jaPeaAko1wyAq9Njk4nNrlZniZt8C98CXCOHZa48oXmJ8y1C2fQPD9bm9s6yB326q3G9W7N69CluTzDmz/ch2uC+BdY7K9xUabk+d57ZgIXhrPRPfoZGT2Ca0Ewl9lO7ubC0lyoCiPezWiqHbn0xmwyz2BKbT/QMU/8/X0WN6AQ4+qi2tW1atDQQdXk0Q9Ad/XaP8xomwhqIz1iBnsefUnVj1Isk2/RMxhdf8MFv1PYTNDAspXbo/FGabFvGi4ggKpmfF1h3NZ6hGbj/FrAMNbrdabOwH4Me6IAjmDIMI18XQ2V2tmvkEb5M3+WuI72AEe5Ix8dmohHvia4Ay5uzRBcb310fL6RViaoBucguN/Zt7zHIbfVkEuctVaQgZf5A4Hx9vEMgCZI94TjoIfAFPKbO/WspWp+gaJnc+Sqq4GWO8OfHOR4WqL5BOYLlg1ZlOrR3EazRnaYKm2apqx9+R0ej3QsJtUPvFxt39OUgTSQzPJeBW4eXmaTGBJs5W+jBFNBPWTwPzO527SBLyynVxuSBL4qDfET2cvughRszZE3+FxSBj43Om+1HyzKil0KwIOslgOVBT964SNS3njd1lcVwdUhqEq4HqogNhKAyKxPW4Js9AXct/zYWTU/Wg0/ExBxGdLlTiHG0eTOjpW7AEbILt1m4vrjfi50bamyE4DEyDniaNRwsOak9h287vcncr6sJ0kP0PgzwbzowHvmd6Cps/r9EJ6JTJhwz97WQmVvh62U0M8xrLczR7XtWFl5L+YEbAua9jo1mHrMqH/82Wm9TftuEbyDt600nc46XUshhJnRzn4NeL8r7C+/xZlSHDUK5BYmonEnrxj47Bju5b49Mv6AZGhUVV3z50rxzJkiv0kHbqwQ1LjQSJPMzDzrTtPiRdQuGAjH0mIzsOgRF9+gK92+TLJDSDJ3T+BdwilxJFfBnrfyCFMezKf2/ztrjEeuTBoQrO6xfYmdcuaLHbCnoGttp5KedY6ajNpmJ0ZtI0+pWY8uqT/jp78D6A7N7hCLMbQ/WHqPoKSsLfS1ALvfbZOsvWndgprxBZD8BaNv9MAiRkW8o5z80RKl0VI+MGrVrIaxvguWZyqHNaZ8C/rQ0SpA3tqqp/YlAw0TnhfnT4AF4fFFOkhg723lCfnqZELqy+8reSJA/DQ==
Variant 2
DifficultyLevel
639
Question
Which of the following has the same value as b−3?
Worked Solution
b31
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following has the same value as $\ \large b$$^{−3}$? |
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | b31 |
x | |
x | −3×b |
x | −b31 |
U2FsdGVkX1868dwDQwQHAQIYuZIJ8BrqYPEsC62yWAnfRKBxZNXgc32ygIKv3cdhIbyY4Tut7wicLBaygfvokljBsvLhBLycF+N2tgiiFBAyx9cqguEjHV8wf8dKIdM1sw0n+SM3X7W3NJKTeVBfehZy5eoUW1wUwLOI2zDLF5FlcvGeMABLabXJiM2z71h69CZCX6Ny1zsP89q5FYaAYCRHlexPcZweeui/pZ/zbu69jqqH+/cvs3H2axJL2B73NDiWDaxsRF1DOnnKD2VzhaT/Gfk3+ycP7UNYyscMqOUgRCppYTH4w03+CCZDKk3AAKmxtn0w0gB/RYPxp5n0HH5cFEJdA4bqCI+gCPwECU5ltxSTyxTXq/y9z/XyrxT+v9lpqAYUJXLtgDfEk2qiMXr7KysqzKfMSyKOguP+AJRalx2FeNT9I0W/zmahYjX4+RtFbkwcy6DYAmj4fkhvX6eakPXbz8gVyedR95Pmh/uA+wWLF+Dj/5Lz63fWgUT/LrYgKO0Lr9NHEORvIeFcczORCYVaF4vWXw8qliOLMmgz4MZuReVUE9ahTVA0YB9wYn9+NHbp3460aRxXDEhJt5409sBdjMj6huvwuvPKz1UN+uSf69hB/+WbaWMWPd8Kd2iYZoVBmQU2cMH3BrExeKtj083IYaFOWyP82SaLZBs3dF02Zx83lZDDDRxuUqWgHo2A0I3npdp61x2SLbMBcmD9HJ/KfhXte7bSiYqyeBWSLvvdjV6OFrC0fzZAzJXp8n05xqcFAHxB/tQvcaJSwMzU6YJHLfvN34p2DD1vyIagGeApRqP6C9eHig5tI9vKUPRcoygNCCYnIOm3obb99SwvYn30HtcoZci41HAQQ6eMksXwHrDQzyvejcEMQd1iq61zAGleLkpvkF3eu9/fkIXdoEYzl+iwmfWmoeJ1OoSHUz6pWp+MpyXh45YlJZeEFgPNzmPYikSOOIZF/cQti6j82tDrZyeeqGqpoqsCz4aeTqXNLMI6hS8zmNuVsYwyPS8kBwBY2csVxLheQ1LBuusrY+xS6+aZa1PS2R1LdolpJ8VNmHXtM7LY0+zP1hVcyDmJB3gEjegYqyesW0TH84ut3nGPJeTiHt+t/s5g4gZMvYbOcFKF26/OssYFVOy5nqIAoQ/Ic/o0tSIooTTgG6ZMc/1z8GTxLFSA9iYI7CElLv+WSgnYBXVfMpyKv7aYQtiV3vQBgT+8J+GItw7xJdMIREAdxUGoKy8cmiNnACF6ySVfnCJ71GK5B64N0+YLYfUL7V2xNfVJwoBAayasZZ4D2t2mC69pMqPrHAMHqplEvoWRj7/PkLn92t+dLSXYzeSEy8dPEpCjSNsyLKMFloOwL1VJYnsrvMTnE9k+S1a5+aybzWyQ4sEEcxetzdRLogmt6U9HcE2/RezO80wz15jOc7BHxp2c73wJoWM9XYlenFYgA3Hr7d4pV3iZ4P8Y0rzj08AwqYtPqlN7w5UF5cVXdkeWRkozTC/dQvOtJ7IVaft1VFbb308K2Sxny2CQb8x/A5Ss1eTrmHmhfcC1jBO8hYtldymcbsW1B81dF8+Z75rjQSrEA+7iGnHizvTuqbNYIKxUHnRm2wo4BMvHappiTZLxIRgSyzO/s4wI6x9ccw7zY+m2Dks5frU7ziojZVNLyThLdjkpzQsszShJXO7SlbeTSPq7ljBdeflIlcSFRVeytMQxcJbTJy7PmKdwTQnkeM1PU1YmxnRaSwaD9Rq1rTzQf4M1u6diEVABr7709ZiaJME06TdhaV+zfQfKHoBPgT1sRa+255UhPnAvIe8KpsQ7M/N/7rghIFKHjmELu1R8B9P/7ZyOHKZ3CUWwTc05+h3ERAMrKueO3Pat2yQbryvDd0DmuJyLet+mAYxD+8C+4WMXw2GCs/wrLz971yvh0GzZ5NlukYUn0H0/WHgd6YrT7ym6XKNKINMqyCEtTgAe5sKy1dEYeqFuw3EH8HQswZE9BRCo+t/EK8DImkjr9vdj/nxZ8i8Igwqyl6bIgHADdTLzIFB1W9xMeWgNymJJBfvpuMRMXUAXyIM8BEjX+i8O1Ud2tVVhLRhBF2pviMvybTuXupQvpTU0hIQXLb+qhOMa+EeO/4Zw6gn7ZjkLBL0IGQtBwyvRzHkHk+U1BBhazKj0bU8+I82ME6IDmSqhAQ274AZO1KPTbX1ClN4jBR+1Z/XJXMUQ5SQ9uoVRLrKpJRKIcOootoaYCPZFfbEG1PKD0R+KmcsXZQsk3eDGjf//lw+ZjT+Wc9CHzn9z0GFTM8vKOzELEGRZQPIXF1t03UKxW1YkKDAt4xVF6Ox2ehxokK0MFiIkEdr++hnGc05+5XgyE90ATm39evV6ZIaeH8xXyKJfA3f0JxSe/NGEvi5hf/tPMg4Fyag9z7mwCDLE/6+ckzbiOk19sF7lSi1fPoxrPd88ZyzPysnriZiN1tzNeYHrhjbuTFa5QcfwZjIR5p9P7J388vb8eDXiSyJ6Miz9kuADMhekYGF4yJtxwI2NYGR/IggAlRAn4nZ01wkfeYJljMw5EEmJcwDIizHzefSZyfowNigA0PPyqmIlXKhWoW0g5FKrwJjlb6wACnET4UgJi5D0A4x3LVPw+ZyvSupqWlYPxSaBfFw+8FK+ahtenwFrnIbxsyFjqQtkm/07Pwm8Ph2UhpAZckUVmGb9WpoV29TSQzIliTYoW6eEGgnLwvmQsPlPxlMStHDXH8ZQeFbBTfz+eOv2xNl6GKfVUtSOi7m2QK5hn3qpJGbo4YW1GhofJ2qmGA+nkTkpjhXx+XD4qR7CwDyHGSE4wxq5a4fNM4QgWcjDy//gDDknZ0Sdqa6oerMSXYoaMYkEDjiXSdloKlTl1oj2IelT71I9IisS8I0cNohN35kZClXTOngJe5sJvRTwdYbHUXsCWE/9PKr6D2vf8dlkAruA5ZTquuNGw4bnaLRr416G0h/N2RCsaIjQl6sc3y2xysdss+/X1uFjFOTGGdXa3Id2JsoLXCExYippTJVC/R+/wWmkjlB/86Qa3cFoiLU3RxuY5qr/XEVFjwkdjAAD4hCz0YibSeBn7Sf4EbQ4XUryPCSpujS/cA5SikSce5D8L1bhxzup6YvZxKzmFoAQIlPPr+uj1XPkmf3rpcmRBFM8E8unGcMKCk9ItAp4JPUS4EuRx9qoOHY5FoCsn6qzT917dRBwbpCoeRft7uA4k6JzB1riOTR6OMsKFBCdugAfxhlVDanX/vjH+esUG3dVc2fDwYAfiM7eXViuH0dbplTeLQYrdGIruh1i+zDDRS0LDxe5m7aYb3C2Qs2KM+fKlbIUSpTRQJf3NoPQ5nnYmrVq3w+g/fQKYAyp0BivpFFBDUNl52SJ433gxsYUOxhI/Lr7JkjW24sM8D+6+xQ0ckyl6IDZmclpvmA1kZGvdinu0hJKNQiStzQCsyZ5r2MQbLm4zUkKl8YxvQtvbHNpBV6qKMjb2/96wb9DZYzvLjD+9pxCn7oPuArV5+AQUmzDKDNYLEnZrBdesRDEGw9xqCyOk4Wsq5pS34xO6+iJVhpNwyKPQiZKKlINFVmAJllUJaOqGZfaR5N8t5F400b++yU/0Yws3PVjygBWwU2SM0/BTZKzYafuFdIwsl+ipoksDDbNShCVDiFs3jw3Gulp15Bs9nVfrozJUAJFv6OOd0TVeV+k4J9EgLn/W9HFjihGYukyDlcx53veb/1sp3t10yny0HOyFRaTR5puOIVlMxDkonX5LVDquKxBpvvl04b6qIMUvUSBwdZRM9j18IyCvshdwjEzpJOJCKOIwJiG2muUSGfzM+J9t+wjy4OoiwG2OHQVdW3ekjBb9XwUe2XjQI01m2Z7CJa+3iWaqEkm6qS/ohIS6mn5rtM4DAUU99deqch8vEG7VJZiz2/sDYE12bauqXCRxfOOSYjLicSENtNpfrPCpQsV5jH7BSa9pzxW8gtTwfgOR/vK5FTwdi4n6bfcr27e/W/meCICerpty8Mw46sduClRPhlZG65GmAGWOJjirEvbONOBvo4PkcZ5HasZagTpHY4kIUDyLvRY/fQM5rvAw++Oshmrvk7/1+LBdifw22ky38gMBqdGKHgoJ+egySgM//YJcn7pYWsCPk3zgCJCb6c7UdB0szu/Hkrr/mzQKXgbNWg5+B7SOkMlFj8WTSCmGxeyfuH5O8JgKJVej9RIFfhWcXYT/awbEW1bUyauhmzJyuU0LSB9v06lCOglDVHx+Drk1Qf31I1x35/CXJcKpXycg4WxwawC+HSC/kKGGLLCis0o6BF4bWqlSai1NGE/a3xnBFl8MiXOhCmSTAd/F6QsS2F0AlKxQ2AtyTD/o3EhmRz28tCpIiqneN2oO+nt5mqAjD5lk0R71IA/HEdT+AHfSRx1eGOU4OuFecI1Wl+aZD+5oqeAnb8qcJwMCMp2PvVU6w+cTE+timfU2Dc3CVLSsR1dPnyd1sInEPjATw4B45Ap9dgeI3pF/gU8QRJUDL2cesCDBTGNlmo+9rzrFrJcuJLRn0AXc6BK3Dsz/LtFSp4SxOEbJMvfA/YozeQM8dIw2R7vbR/wFU0Nj27ykZQiNO1/zyH+JVrpQG4Slhr8yTHbc/cAxDst+LFBSF+KGgpCjSUZywNc48k+R3pxwgIGmBIu+yaG0b+/qEE0JHoPWyQn4FvvkyMUC4u7TWQZ6CRdA7ektHQDmRTh/O7kAWe/h1j7Dp52JX1AHoWnaln318djXeznOx0U85OOPxBTA0hBZ7bsNfKxMD8q65G3GSHvLOhuHxZd0A0XpEZP+9JKz3twipU9s6h++MN0Zk12ifFeweg1z8rymmc40cLAiYkwf225wV+q9Ls+4zQnuxWS9mdmqA3cEVuTvoqsoVvaTuj77sVsbYolzic/NA+r2YY2UYSkZzdYTuD9OH9wUTbsOpFOAKTEgvZj+WsNIG6gdSyQ9kPO2db5+fY7I/lA5A7AMVfDn/8cGsilquvwHJALEg1w6nx5anccqnp6AnNckBqKWupti2Ik8H6lwg1DIyvGYDEGqFcshjNY0FyNezl1e5khzVklrjf3dejfhcG6LUQXYSuYHknAjrmnZ/V1jC9nv/L/4gad6OfqIAK6P2Rkbn7i7vIbAydLiaiB1E2us41f7R88oQ+tZ2xiOSQAoHJRHK+r9lEg+YJ6bRYgAZkGGNU2qhJ9Kw3gm7/dxDbhgB6MvrYsnZQ1jRR34ydIoeOwt5REN/SO5qOWsE+LjAuBC1yweJaXJqlj3Aj+iyivpfINh13Gyrax+LG5XnaR8DTe6NH5TTKCk7L+ZpD8Q+FVLs63VmsYnKbBADA/HoZGbLovLCVYABvg9lGuspRu6HlITBuDzmAglUNo0rwjTAAj+HaafxVL2jjPrtbNMEaKWwZ2fpGmMC8UP3CzrpSDycxnDkBJ7r/BnCRkg6m0SsKqJZbw5byHfqdDTAAP3qEe2AVsQR2JwL4ZrJZaxzGDD1Ql1Cb9LWpjWgAeIO0FvUlE7lHL+CTS0p4figSDi1KKS5GmlTBSeCRsRIWeiF95GocpYz275Kisu0eA0ZNeJw5rNmjgA1QshEPmUQObosd1mOw7tleyXGpHIPLcNB/pni8qnivHrZTCOTC61Ehmr7kCufLFoPVH3HMcFZAbaH63vc6bmjkCNtR+MFlQJ9yFY8aaFAkgfcZYPJBxqOjqyoXA3g6FIbCRHv084GpbHwYM8o1uz7Fez0tp8252hVrbveihZG5+M5ChYlGdpn/W4NuA0lR2Z0//RagXp9T0R2m8gcGa/lXquGXTF9diByS/Li6tfxByM1zfbve7P5SxEHr6I9hytorKXsxKBF/fwO18Ox9HLRYZiqUmz0i2BGT/FdEVi9kbpN6JxfY8tevJHJlPgktpjFqTrKTXmWCzggHSc5ZTEv0DN6zf4+GLKm+3QAGaTImuUhYPrCQMVmSq51IpCmXNEtFR6eAonXFrW2ev4+JXB4tePQgBr4sXbgo095KGEKq80w2m7pQB1q4S0B0bCna51zT/LRPnrxOHe4YEtTkvdxe2JxvJ8Fs+VC7E4oovEr+4Ti7pzZCu2/GMUaPTQvUmTL+IZfiH9FtOi4MvcXay6EEvQNefcJ1jIjrsPntBSvrerx3AtYWgMrN+JBjAsd0T2SZbRTNDy4WorzBM5YSniVunW7P+TgRsFKHfNKip9s4TOAntNgVYO6iGRcuPMu9KqiOUta8XT6+wuWgRMkNgXeBjfUMVvRYYZOzpvCS/jttGFOD5Mr1VIvpl8oSJ9+H0jVeOXIFRG7L/XyMVNxlJAt8v+fuofAJd97YpCI9NjoE8sIuoGB/pclzVMnMzaxdmywwqFQdp4wAI1KdzR+4xzfCnGBb+X4uvT7oQKa3ARCAs7AC05WGvA0XRjTGbjrcjEoIFR/CIy95fMdAIIIAHilW2+1bC/fanMUFbhT+gqFXnnc/lBPrSWszmFfcLxxTqWneid0hsD+TMKRCcJ1q10kenHR48IKoPEW5naiJxBA6rr7x4E63AXoK38fu5jUf+l4JTiYk2u9dQIkk2OaWGe3st5bh49pd7u2BiRrOuuzqm1J3o3wPGXy9HTAC1XlaiKpzsfgM3GGpcxf1+GD/gDFXshqld1hQTsOqc2YYPsTAj+xrumh4zJ4fJnQujexTTqAArrbs8CUZfRrQMButj8yFybLXbf1Ay4ytvmf1Lo4r4l5fxWgZj+UR7tpi/Uzej6/P7o4mMiR5nSz22k6nfp6UJ0YoupdSp8g2PI8yJSgnud4ShMjua5PGjoEUCcLtKPkpjX1Iha6abygK/7scK1pZvAaOweYzGf0NBxBS/pp60WkWG7zOatGT9MioVbOI7r5o8jBEpRPAWlpoeawDs8IDNPSxVxNoMRrgcYrkec5K00tK+U+rtDacSpB5v9ytiNqHEf64N1M5LyFzNeoXARYDstPxc4kZn7QfjUgk/MWP0n/CykCW5Kmu0uA60fsyoqbtlMa8NbafybSGuO84C4p3GYPFpPWZa0IxId5TJikEtdOSZ+9jfFpvH0YoqjkCd5koxWE0AZwqESeO7ntxclqL0oiP4U1AsF//pNWvHQiKZF3paCWmoBtmKAaq/EOJIOg4zVIhGl0FMpxKCPHLVy+BdrXS3sPo3gnNQPP6WZq5uKRenX0nEpADcuK5M2KmuyUA6ykNrCsyd8qdlw5UItjMOGfZiXUXcKHYO83svBDU884Mp4T00cyL2egyKSIqMkI2MSDvnG4sCOsAyezwpHFNq0X6LW9AqaOnQDOOHEX+PW+sqbDokivUj4dh8yl8GwjL4LD5TEi8PN7I0wLCHI89jb0Gl/vuoLuJlaWrfakgcFmLcxQPe5yKt1B7T7fgpL+8XljkC9dYemvnOxyAiwKWkywRAXHQ2o5gSsB9Cm0ax1L7m9+/1CCjG+tesTEUK7jx3sVQaA2zdz1IUKhq/v1FMP6zNxfNXMEED5ktWmUNZM6jd56P41UyxzJLxrWLAKpu7MPp5cwPSd0mYixQUMFYosF9FUmfdXwP4BCcteYymwt+XhuMNyRHzXH34BrrZQx+xtcnvFq938QrZm5KWmhygXOZKZLpinmPg3vPIgxloQJWqFRg637sRZUl8u3H4LZKS5s1h7HfG4axBLs61T8RVghVBO5GEwbrw6S+JpznO1D+MLZoEaIF/YjLiAhbHmdtu/yyL04Bzhyj+G8ICGMKedMwf9sOJ6+GZB8TIi6WY8ir2805IfMT19Yp8smOj1lLdWHVVVdM/g4Q8k4ZS/LDp5aD3PUD3lZAClHkY1xIBtfhComxg5HKDPt0B/qlyy7EhyOE1BWV8Fuo/opPqdXBUL23mdyOdBQjw3F+zmROmnGnqA2iPBfdpWxcbPEsQwDX8M4DPGfKS1ZxsFmw0mNH+Fd2cmphXt8DMal0L3tNRKFQI2YifxnRYOcTMKWONZOs0MKVyfV8w4xwL74c2qgPa6oIEfj5ILmA+Tu6SQx3lqDC2Lu26w2dLucq1zK2bkpH/NcHtpsORvHV7OGWPZNAQA70Qw6mPBch4rckjal/CcFHWs/sQ0BDkEf+T2x7M7oW0/HI2HIUHitjO/uKOxxg2BFfaOSFg/bPxm/EnZjxwSGRzSpMWhpCV24eMlaDRJSZSxZD+4eBqfRK46ghushD7dRUCWIxXcayUSZ8s8M5tKilaBps6P5aVdZhTHxMK84pH0woQJ/UY1hsHnXL6AubjLPFNVEi4fTozeIIAx2bgweZUNWmeuPbZikbHK3T2DW0eCkXnYuZvtNtdaZCH/jKWdE+c2DCEfiO+B6WaXj+WAeEd5o/QJ6CMa69LGl6OBQfXJh1BRqrfNDQkH3AxynDiYPZdG27825dYsnoqd2xKNCvuWAgLQbb/pgc8w93v/Psl5/lWHXmGRCtrPFoU4KKyOZRGGxO0jXz7mTAvaiHI/8TV8LmxRIPRRIqBLw98yFozZgRlrY85YwE/BTHX2+7gMxiZ6+UQUQ3szw6K3ntZHqpl634Sq0gCIwTHjfKUpGBKZQyEPvvChhbB9N7GNli0qHWWnDZQiXyUFQAPy4vsEmn0H3ULzb/0eQTBg34tX6qgq0wQtFP8pfCEXDbV5b049JuWLXi3BdBNcXjXO0QmOIfO248vEkfmVxSc62oEYvkhLcbTvSHry3TWfaoNF4oNkxdRAwmhIW1+xJo5Ve+ZcDj5srvq87Wc+UWDpWew/k+bNQ5pNF3xMwb736P9R+DOJaELYa9qQPuKJn0nARJ7jsA7Rc9QtSXauZ5ji6RfUAsfZ8442v07AKvs6mX2IauQphFzwWj4GAD8JFOBPZUq/VJGGyduXL/pNfrdyGESkNHpELPN7nUMBToefP+mGqDqcS96sTYb82QXrpsbKRA5bbmsx9dvw9Wr6oE5XMKcqzT819GWlm0+yOkV7r/QsoDvVWG159/ZHrakd5TJlU5yKEYbhx9WkzrZesMkynN6pCMTDwbsxKsM57kNXlj1e9wQ0kTrsiNDA3VriBZf7Px6IF+vN/1ZyNOCiucrEv/faKmRJ/q0rV/6Nz1odJtx/Sm+IuCVsprRBENt65UJD+jpXGS3xKsLhl8J9jEblHFuxTQXTa/rnVkwyMnKoCxStDoWE9OBY1uRw0nWCGxykNR6ICqQ2ljhtAPJZrETBO9yqGYsxf7sI2dEYdk6Ms+H60dJxGjU7cUx5igOrq+AAzuXr7E+qJyAv/5DwP/kiWZO/+1lMerDR14GloPbQEIxcFsRWk+NhefAXVEX1hwbM1NS0NajwEuLIceh+HHQ74a+u+lSxlTh5CRsXNsPBfF3nwUyRpGbb9is7x5t3SjFRtUzelhvAnP45PJZToQuPmwm/SmCjMmoy21gO3k+jmjCwcRaosiQ79W6W9Ia9Gaew9+/lv31w5J9r0VWc5+U8JfOZKs/L7OIeUGf9VUXFlfC/pkan9pQbUP5TVy+HFDs55hwKpdgbFB4NBNBfGmXWu9dMOOtc5Ky0iCGRTOYH+HRwqhrarWAE+D1XQ6rEFlcAIczibL2r5ib7QP7g5Wx4h5rlykSJngfCd7pdIqOdsTUnKa+TJX2//TG24IONSMLDfBB10hoj87hblmIwtDPcbgsysq/rw2vuXT5qprlxSd1egSYW506BoxxzqtA+L0p0Et4lqbPGhQTQWU+dX7pCyVYhD5rTqU99BbmX5UZ+bg/YwEZNzIaX66hSOoI08Xh9d3vRX7aHLMFK6hmXgMzF+BO7QzKUHygHr9V4+2FoQoW4EGzRhjVTsa8TBfpQdruWglqlSUbDvgVUIUHDbtzL+pHQDivpQoAq6upcRl4MRwpbWglhgDh+gesIZ0IZpGSU8doSrx7+GrW/dDwBMMsyaalD8VpSoy2ZsUHiDOZfBetyZbG3YD1uefRipjQN0QmWVMu1L65/I7m5lLrgQ8UmyznN06LxAnLLub8lJ3FUetMXFYq/Efm7DxZDvrMG/6h7utHA/xlpxG4kp+SzomTY6aslwVI+g3ABo6OnmrIWSu1CXdqdkovARoL5bhmlKPHtuZ/HPhke4REDPF/duZk7cnzVODemn0KXgp7Ci3cDZwm14RmrD17lCDINIX/lo3z/N4+tbptCU/ywHX9P/DOr/qy9a3tSoKlIygxwUKzUvBfMcdPhEgtXIRKfWafqVKEMZqZfccjPOA2KM/+3CDrH2IyBGLVptro7gamA/FX9tMwbvAKPG9ON3jXAZtRtLMC973m/CYpsBhMBOi7KdARTs8a17Mq9mTkQyxuC0GOLwBhK8JdpkWQSGywu24H+sUlIshmbM+4i7kGSQuzgbK6tKC3g1hu8VE2ou8VDBwT5pD6Xe63ij7OdbBl93SJmZI1+NQYaWXFnaT+gjgu2FY/FlK86QGUJokS2MyZGSjz3Gb4dlPLc+x5Yn0YlTKLOXxiIH3oczy+g1sx+kGp8rFk5ERUh3Rss4OTrVE5lKOCEazP1qV+xScr5eJgddG+5lfKySWyeAQj7IjmblFQTtYkTdYDej8gD8Wq8Kg7Uy9SABa3MRUPPW3tLuKtunNSQbHaxVt0AdUwvxU/6VO3E8glRJ7CvohCwTAU7v6V/kWNQb0W153MxndpNJcwje8eY52xdElgYOUkwsYw9RfDo8Ie88BfqQThJOlO0eL4kxgJSEYJak0Y5+/toWWLV7red0NVFyhSbxJKimza3MtdPsoMImk5kJezLXSlTkDmjAkiNdXYYY0GQQZ7toVfGKNHHJeCoS99AGd5j+4UwdCeUN949hCPLbFL1O0gZLwBQIJMvcFtRGcqriEiYTeHe8UGi4Osrx7wtGPLrtk76HntWKtenHEZLUsmZvmZACnFB4dytOpfa6DZEYh3jzkSxJLWz9eNS54J/zTPNf7M80J013b5elZGautOG9Gzk9EuTI9ujagQgtP2e6XMt5ouo6AVkWXXuYf4aWvcl+8lBCHcawx/E3ltfq/Kywurv1dy0fUTzo6GmYWqdq0NMNZQ1Kk5rw2dOnP63bsGpUXiCwF+NxvAK2p1RwtqFun/ddQDRS90PDjblYoUslN/oe+nHX7NGfE1m2Gd29X31AvXxAGFWRNzT6TsrpTzglcbGojJy7jC71noM5Ql4e8eA7l+iP6htMip+kweP/0oP/cWmR2Y54sVje/zpgluUeMZhhB0U0jiNSYPKkM68pjwiR9upPBJp8GiRywQzEC3PBNHa/R4WJ+vhmqPmMggDwMDHAR0XGqXi2+zYPUzZihMEOrQdqejW8qug6vYirG/aWyDUClby3rd4dzZHwF++LQqrrTxW3ErX1uwRdAIEu6+pbd0CkJFks9nJs7p5G9YxgQnLRl2XMIeqppHsK4nkwoHPg6Bn90K8//jHKooCDlmf77rMEbOPHmQ/JJGmOrnM0wQx2r/Ugo4U7kc515N0oOBbAhqqkvDAsiM98GpsgplFV5SPvdp5tVmrhYRzZ8apnbVGijMgQ9OifXrzGSUpwIdb6X4YoCOEfc+Z/DNbvV3hz8vltcQnWDnnu2ejnnj9iWAU7Aap3FZynXV680ZHfXWbx28kdsMbgfvsQ+IyvJsxFK5VGa6uXS0xXS/UmL6orEUN98lzgnEWkmLnO67t3OvmrM6mW8sYZOWA6+RMf9CFA5+CHLCe+CB3hQFxLGYrMmN9LFvsxCrcjO1gu51ehOZcZD4ApYpopYXH94oAe4u3bqkGAFqCnmEPWFZ/jEZfSnUDrvsJq6GAj0M9AewNOxmYhhcSRo1EJtiAbWykapU9xPsrJRMr0F+9F8Ztr0hgQv1PRF7f/zdvxWtbw5qO0fVknDuiqol8Fz1j41SMX7Rqt39K7w6DzxQ1L2bS5BFhMPHBhDcCwp/XmKAdr4TNn2T4U2kyTAILzyJxITpLzscC/96IzFgpHgflr2nhnrgWFR8v2+Ao4PHrwZEPNNlTQOnNC2tc9UWu3wjn+aqexZHXuYLhc+vYIuz6jLuTBRb/RjHb3aOLkdIwjHMMl0qnBs7ZcUDaG0kOOHHWWQabJuKRitubIPwKlNRZVWJRqG/JCTqhKqJzN3Ek9YSaH8lpx9gc86qm6gX81mtz9EL3jha9jqX02xAGieimVxqKSo10m2zZhTmtb4PDmDpRPQox1UNnQVCP1a8ZE8on2O5BbJw3yjZmig9wqQtx0NeirJ+DgfMKvsm0wiDD4TJgfRRPTfe2i1/eSMdyFz0YtjLKR2xQCxaVpz+vYtySHzg8tPs2i6ex/y+qpjLuAbYXxI43eh6ykkjvYuO7G66R53/TUo8eVOz2TYBaeqDBydCXRXUEo7RIoFleqLu4Jl5chYqFCaKP/8KypJxkpKFiu0TfRj1J7a+O4jAVQvUADa6NIJWWL1dfIhixABDIxXztXATwWzU5o/shovRyAFN/qSGDd1PAutV5Ei0IYG5J5/TiqfKQBdARL2Nygjlzz0gRGHiHLCKtXZQrzewqtY/2W/VNtaELHf3/ht9117T9BSuJ4j8PghV2C3YmCwMIRUqtLOhScF9LCaPFOQGOo9HhACTDB4Nhv+9r6xuKPwWHxquJXJh2DVX3fBaQt1aTXIaCt8R6IBZpLRLJiD4YThxe8PHhW4XuUxcyTYHtuF0U+KaHkzwl460/+K9r3HyMBpt3qBJ/hHb+/Rd/PgW5j3w6h1oFO2ySplCYqwPCeGf0iLpIueXMd75yymgAQbLM3SaZXCQkc1Fof9Qv8HmdizZ3aUOOqBtIYd05YVVF2Z2JGVFrhEVoWoklpMMWBhXtVUKjPVheab7B6TmTrTBVaLLwoDaXn867z2rwlYfy/ViUI68/zkQf92g8+3rhnsQ0H+8ScmhbummxPBc+nWyueoxLapfWZTXS2/RDGAH5V6OKlV+Bjbsl57n6zFe0zdCvzzN90klkDQoSNmicEGXU3XAAurkAbHG2pT/xGkvumBvIA5bOzOsqMvDeMitdNMmDcCErcgJqH2SG4phDGxyw1vCDbGETKuOAJQxhn0iMIWRe25DfU8WRJTuNMVwSbqbxCmVJew1DdPFkVw/czaEYDxdRtqIKQW6drKcfXAdhU2OwDL/AU+hVJ9hLp3uGEbvExuO7zUDlQGu/r6L8rDQ9VizPKH7LwwpzQdnUHHXB1bEYIdo1buenj+yIIb7bFMBuR8r5t9c+cdwOFRnD7Gy2PNR9LpeJBd1M4b6psnzBoS9cRUegNPY/b0icysGjWvCD6ahOOk9AumMIQNacVhF89OliG6pG76eqBeH27Sk9mlJLvj7jxftWBmfyTzojEuvVqp1+NP/XZi3rRAQ+MPBVApC8SmdWrndcGCKq3Q46rs6sdA6UzlLlQ/3GTv1jziBb4jxE7OtHNVfwRDg6trodOfD/jyfk+DPIyLtkDUkVI72bUX5NMtNrOTrH9GZSmn7/QGQXyr0+HkQSiIoF03WJY5hBysCzzACBq5jIfWCepjyf7p7G0tc4FDMF08rU0E2OEo4Lb8AmBdg8Ys9JpHfBszfNrVKIGMa9yHxdTpUNnn0Ln3TrFn+J6ZSiz2zk5jW8IvQ+b81yUgbs/FsgcyS1+ukOQ0O9BIN81zvi1UWJwUICtkmK1zoZj8cYNmTC1mwGL0p+BO43wKt1+BKkHGbzVa3E716+BN1T/c1qKqUvijLVsfLZA+sCO9QS42L4Eq2j3FJOLTO0nxNRaJVH5PGxldiKcv1UTPTFM4M329cEJFRpnUqOY4cwRIAWBnjQd7piOIhxi/8Mk87kzN/H+RZCuJ8zur8GEaDvr5jRvAaNpAaQ4SYY2Q4myYQMv5oR1Nz8auJXUyceshqS0RfquHTReAj1QbkgcnStv+LdKRBwNl6m1F6gMuPfSN0LM926ftsenLCVd8OaHHE/F3VRnYYib6RsobI2r+I3xQKTrxsr7UWqfJmDlNqZZwEZlfOrvTm79p7bxKaX35tEWe5pV0DNSmVHPf6sYPAZUfR0dRufk3NlTvzsOX1bSeN7QjFVQzHobLiv/Lv+cdfPINNO9UGHgYQ9vKbQ6RnnZer/9EoYvQnzQUL3LkAAG+u6QqZPBL/W1jD5ChrwJZkqg3HtHs9Qp7v6rTsl/wpdrTEs6LXKoxkT1mGh5RFN0J3llSEsUA/k8dC8NDhR0r72tBwSIyEM/a5Ys3E8xJUELDXebZ77tvJFBjcasG17L6P7AQfHPA0Z3PveRE/aRklMZKOFx6b/+zezEZNZcfG3f7gATT9/dvMx8Asp6A+m/NPf0EapbxPMeOy71hUiFr1dDbU0ReK1n8MgqE5oRRyOHN6pf575SpEUpoiYSRr4I2CzIeOZLfjNh0IHoMJD/ct10WiuA2jpntRz1ZPJ/viilyr/hzDXrCzAmWl4CcWYbYghkdzvBEG96JctDIo5+kF/s/mHzmc6NEhUsdHO3TyHD9ARn9AxSo5z6FOuDrq8HgLiXHskkIsGvl9has0PMkn4DJ0+iQVprSBxmRQyj4usUA1e5A=
Variant 3
DifficultyLevel
642
Question
Which of the following has the same value as 5a−4?
Worked Solution
a45
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following has the same value as $\ 5\large a$$^{−4}$? |
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | −20a1 |
✓ | a45 |
x | −20×a |
x | 5a−41 |
U2FsdGVkX197bfYq6htn/o0Ac3Nrsl9/TNge6zgG9zNNW/4Igl5gdjKRPLXx0MUbmBTNWRp3jk3h6bhLKxaw4H2DWEi3n5h2A2gNuehGjBsqNgiWekn9u5u9JExMXmA8x8ngaRlWRjEGVf8FGsXFtpKiUHK5apdKyaNv+sYsyIIMXlHoOFWasM7s5+S6bsSQXN+a4mRf7TW3aUxfFERbcrKD77iYvXWGAas3pQiOTDKygLYZKlPkA8AcwxDGZu5eYTUP6F9VBpEE8F4pYmcTmScKqNgVGMEDBKuPCIkF4UxXVTbM0dqmXFE3xJE/7xbFRjZc71Snwx+6YH4MC+upEvv+23EC6iroL1B1Vnry74c13E5PtcpKFeW79+AEETfkyYIu2KK/grcfwXVoT5+7q0FhuLY6tRcAZVNj+wPwp4+esV015D66CrFAOrnqHqV+WmHVoxNrhWjXzAoKnWB4EC26g6fcUapYYbVv1Wwkm2Z4DvhIdvQk7Fbq5Xfu1qN9l8imfg6MB6rDb8427RD9Q79JxiUnKJFhHXmpdJqdfnVdTTWkx87uIMUXdvDWNlyTxlyciqRfYYawxg2HL0RjWwqKZFt9d2tBm4T1yzs5HGDRL0hCe9WzJ9evonS/yCjtLW0i4Dn4r0R9wXuzOYALmQZjB/71Bw+tjBaRcuMNLVgxz8hgWuwwSaLq1ox4675SE7Km4EzqsLlfTVAIwA6wZe3n7vJxZ+4n13heQ1kHbRegu/i9zkblgl+sIHquH9atl7dFiWBnPpNq7YK2mwN04QPd7mpgNNxAadBfnPo+VH9dwuDn162lPlUqz1xjsFFIvrWgkNWdjFKyjjNQIcMuqnNwyTbtQ6WDwl+kZbsQ1uRMJyrF5CkR9SVQxHI/PIUG9rE8Kcj5ah9U2YOm7aa/CNLwa3oRexSgpyM+V375Vv5T9eLOrWrpSKzucpDgMh8LlyvjGXyyprHi1Twv/2zt2MEWpakg4uptXhgd++/xQRSS1DlyRTBEcMes7C6fELlEubPrsGi2SpUcT4iubNalpxB9qC+ooQFYZ3FzKEG8w8bkHU5CesSxeOU09xslv4caug+MGYRU2O16kMW/drBUKSy+syvZhRiueRAeunpcgyvSJOW4Xv9unKZgnP4E2TDO+9eMK7caJuWzz9Stte3mMmC/Zb8+I01Di3DZX1UiGJkXBFAxlIn9CugrI9zqoWVbMCF5Cx053PILL+WgxsKUhfIqghX6n3tkC/k0e4TM2n1/ksXN7gQV4oU/Yi8eaCQfNfnbaiOu9/ljfAVEsXSbkC+8kFwMdAhczx4o4bIWWdf1yBCq0jjK5Mvavzo4YQyAvTOc38JQm5tGnjfzmQHM9RKpcCD/hJBLaKChxgIodc0Ixj86JXzdnpHbuzTUgAc4MLYmVn3T3iOKVVqItzS3hkT5Jpd+qULzSkhM/gNKVvI+w0MTvsBkQXf8zBoDUAmp6kyiorSBhun+nGnLGFtvDP20mR5KK1MxohiBhpAkx12jV0SGJ+WHph7CC12ABmBOvGF6y+hjVrDH+4fb4d5xBhN83p3SMdWsxveVu371uDhwrnNC+Rmfvzddunc6EyX2jEqMR9XfRZ345+4tsJfdBzjzaolHJjrAWVbpqGl29QizS9NCK3SJ8zqXLtfiVdf6d3cbCHV3XxUMwFp7HzZDDDCtE/A/B96c7Npxbs7f0xSJY6uZQZbaU0eGdcS4qRB+qeugn+qZ0+T6Xp6ZSyNIOqhR2o3x2YXJ0J8GiRu4FyDLyOfiIRzqHXqv/Jue6QrDKMZAyUVCX0OVkD5ChqMY5rMF3sIX8+8nLqk1/4gJrDsw0CcG17q8+lOKafEMI4UcMwAzPMGsaTCqwsWkQvB3wOM2Aij8OXSwzt5A8CTczhPY9a04l2GfLPH+cIqqVrkEvBfK0h4SroSnw60m2rUJ6QKvWe8vrkua0A2Xkc3S8FWUe+8nSeDo6S5PCoHJS785t7a/sXfZ2UiHYT0nJadPE4t3TRPxbWHoU0Lfj6Wuxc5k6nuaiKm2aOwKp2dvCAPr9cu9DbsiBV3okaUI/dXwySghXDYlB7mNEMVdNSHI9wSY4Y/ufXZgbHsx4J4C6YP2+gXFANixcjV3Xbm7pkjGlRmcCloNkbq2r1hfiB0uwiz/5mdHA9f4Oz9SgEZYEjNJQcraIwH0n1jMvVfwYtftIoi0dd3dw8Jxxk6iW/7iiXYAIxdW31wgfsuGPTkvx9+r+XajAiFSVJpCv/AlDvoovC8pm9vI33TzLu7gA9WtDknlVNV2Qz7zeAmBzq+DpRIeiGqLblwqKfcOPgXKCdBfAlKuRSpMVHTo2Ww/26ITh4BRg+IdSWxKgPTmXC4DgncQTE49w6Bxhyt/cKDltc+TXTZUQioro4Av+wwGUEdKAp027D2fWM/PchD9xCwVWT6NGnmFjr4kmtyVUkiIq3CViSXbiBVtu2qm7/P4B7+4EGK7VcsJmHNzp8aCsWSH25LbhWAieejDDlftm9XE+3gRKxmL8xBzBx62Oknsql5zeQ2+fyaZVz1eV8QddkOFO6X6VRRe0GE0YHEFseqO6dwNtQwlwLFX1fKNsqPmMwl257h5uyNJGMXWB4T2atHHPgqgDUtfaLfUaSGs/J1XcuLBI51FBjERF5Xmk49T27oGYmu6aOboAZd+wKGaNFAMo5iptklPQy7/DkmgoyW+O0rHT0dq6o6LmswtMPWA9Fl+MgAqEC5zj3S+h3zGFKTDsMNdolNh6XmQwaUfNwy7POmfON3blecy8SgWBm3G6iB+bmHUEFnLmMIEyoJRzKFMFkTZ2Cs+lSNF3xIUeNeorQSNOt5HO6o2dP9B/LoIzIRayWuzUuES/cHvjzKdvAEXVnraoTn8ujAw9yunlE/bMNZuEY9HxG+2bH0m3oRlKRxbQ5SOytwM2ZqFqUAjByVHefunJMoxebJCeMiu9S0MRIptW4EK+V0fywU1qNdkhNpXUPqfw6vYsDiIvyI9DtDhfSEDhnoREfIMK9dmJktzKizJ4LMqr4fmhWZPQ/rjT57L8SeYDYiYnRLTXh6300je+TtaOQqaBwWmXIUHoZD5AY/oGZoFtA1mStIGe4/yaX985KI8iAmDK5E9YdvU4MoLvhloS4jbatteKM0BgFRSQCqUmVLR4ITjt+pTxNJXGIqSdGBRiFIB3js+24YVnEKhi/G1at/0FuKQ3hSTJEvTnC/CU7nXumoJfR9/GoMesnrgu8SOzp/Hpy9wdHLA0ChJHkdGe9xG2g3EzLomdJzs4Je3ImqMCqs3oQys5QHEKzCdB/0RygndiD6SP17FZ/UhqM+hb/UVe1Xq4Ms5StvoHMFP6roxPFPAwx36h5Xp+u2L3HdIS3EN4uVm14oguKsv17zP+noF79RsFT/HvPz82bJ4Es+7oyXKaB/8EnUDJmLXsue8a6cWKDn+u6WVF3PaVqKoJMOa01Aii7pkl+u8H9p5k6cBf4ozxNcMM7l9t9+GB6L4vMqDGLVNx9Kvk6qHbPdr0R3rjfBllr3/DBGhZPf0TvLi2vmj6+menkpbVcJmr0od5oZENvar9A9Ku4us3ljzOAuSAP+8uEk5fxwqLCx4C76x9P4fBYD3iH5f74HXXJ+gbblFh1FLaS07vUzFSyf29Wc7rnKqOL7Q9bfKIFKEBUAGM2VOauuwX1paQb2bKKAIRXpWqK0qKPT2CnpSydxGjWTpkGQGpP9/6yukzWsJ5XKk271iQvrGQk0H2x7xxI3n81g1OJDAojXumrCLJLehAy/gqy7gRXrbwjQqBPLBvkkenFdB1AzLjaYDABDG37UagD/dk99n6rKjymf+N0wcobvp0stfUhLufxEeBRm4ZFUBDfM5kxjR5uom89A95Q4H+03cGZx4CvNfKgqvDr0V7/Le00nx2je7Rt9xUktBll6ZJjBOP4j5BJSCm4bC++JRn/M1yeJzzyoERSn2p9BdHjGWY4M6IqwjQhOyzqVgR6xJ5xuhuOxXE7PZXaWCc8Xchf8vaSOU18pIL+Rw3OCVyjDnBGYNx0HkFi40mk4bc/vp54J5srgyG6GRNMOJIWcTah7z1afCUuTV99XdifK7flaH9rJEj06Flm16Mf2qos7T6pCC3EBGPI42rckfGiC3zTEqVTUHyxcKy6AxPGa22Quw4IVThX7Ev0lyJL95ErfUcmIW9nwbtlVB4hTq0IcLBmpGP53dAyT6D2hjsEiToXBDmRCQBE/7n09u2T5xK/EhRIuR64CYhtBF39q2fySqgac2tql/13XZpPc1G0OWOEcXX2txsSFOx7p0Cgieu47aRmm/8wTFQMjZe+8MEoKAeNRyTwB0LWBBo6Ir0RP3wofLVD61WqVRPqrTAvhFoaqYmj9zMGYqwAnRi2y0niqDNbnZkGKoHfh1ImHM+5ruocnqvpQtOJD9o9uoa+/robo4jb2/UJafskt96R/4bpq3TvGkyyPIiYJjSpS1fA+twumvYKB2JPQQoloXP/AHqwxCGB3vhu4qKs9hPCTp9XSyy/P+bRPbz8uKcDU00ASqs105p+LelohJRCQIcqm8ZzGk0Jf4XFa0yDoUMXbH7HAwfGEMS9N9Nt551smSy2RSBosfVdQgzimzqT1MqS7sZHobQpF7IjgOZ7bHJ58NEYnVk7+5CVhqxxT5c6szXatKP6s9iTDnszr7mGmM1ZG+DrQyJp1Lyp1h0sclNXZgJxLN8Lh4KCc8NTGm2vTgQFsDk1U/sX5odKJ11jaFxOg6vFkdHKb/VsnfiQSUuuxwbhtTan6tzxL/XB67l9IavhdzOSiYQUbfSKaq2FhEq5R5MV6QtzUgeh5H81clOV+h50gj5pzSHlYsJVBPychSw0s9Jtnd3+6UjRuLnZN3HvvvTyubdhpDAk3LAo50gwIK/Wnz7B85LooOey+D9jCqprkZqlHccCHmkdIhr4T5FVV4z2L1tR1hux8/paJ6l2HNEcUB2nCLbqLyNSgpQ+zkRHrNwJjZBEQgsrPy2A0shI+wz+ZDb+2e1+hRud4fJvdBF7mzAsP4fsX+6DeCNZfopNl1EBldRL3IuLpLzouvn9ASwp4v8pj36HmMeUAOhy9IOhS5N+X4YJzAt/pldfFZl0rfmQnrUEnmg35D3mT04/UONMoTxza7+LRIjIttMVNZfXOQFy7nubs78YrIzzVvGK1M+BG6yY9kUekj3lVBo2gvBDOnAR1i7NcfifJc2o46OUda5f0l+BZ0vI0QptB4j/URF1Yz2qe569Hc2K2WPulLmc0GtGranobZIbvfYaY+h4j2MKkYn4hyj2DEVC93b6fmBmOmOhqfZ3JsGro70goS4eDeZgx62uH4tFglY181ECY5n+dvp3OdItPAlETZnA2BobJ8GE7TUjPQ5g2TXPbE04GL+OaJ8QCxqCZSwz4J1Y3b2zZsvomgmRUQDuGqLSh49iGmK5HL+X+zqSv+bmze4sepXbSnJqvANSegbKcxm7rgcRWxSlHYQhCmNxmSo2uQgHoueOxPsFq5uiY/zNimN+8RMiiQYD4lpjdfUirGbW8/lJaaiWEzBVxXrhKS4KpeWXlKziRZZEVSmU9ksikxspkVy2qQ2JPk5dJ2QJweK49iceP/XyY7eTnrcL+YmE0VlxMBAYkC1A07xDt3Gt3DuOxhNI0ZLhmsmg8NKtS36Pn4KlqjZ76rmkii5fDoYdYqCzNx3OeV8FGxUsx++QRhto1u9FX10qjAr4BRirvazV/Imo3IWViUmWpPwST6N2Zrh9N2NWHuQFM5aLbhXFHVN9iWMgNfJFThxttBhqWN9KZP0G8hNYc8PdR8IXWv9FvcDfNaV8MJ/Ax0fbis1IQ5Pe8axBJPyN3ekiA8iHCFOK7OAqDSW7RjvlEn5eQ2UG+/1ktLly9L+hTdVdaUxF/P3mdvMSPba7BHQxoYC6cEpOmts+WTdhAkilrQ4j+X6l3vIQBPsEDaQrf7OO+x7fkhws3HppyA2nfnGyozLy1uKi7RDCS3zeL5iNR1FYrr6r0NKkqw+t100J1qSfKL83nNrZyMa66TQhyOUy81isjGIjeap7ZOImZrEyUT/pQz3SFIl1HNfsLaa9O9+VS3vQScXh4/Ar3WDomq1bOE2ZRHntNApsQJV09BNL5h7T5zNSeN7O6L5nGh9ixGkCR/Z15meESRfOkAhCzK3o4+ipkbkWsAKOqE1DWZqiPGhNLco/rgxcOUYjdbCXtO4aWOsStBTIkUJz+lUlxqHPW9AMEynXFgfQ1MEaqc8ScOOHqIWblKwi9dIsXin90zeMckxxJdq6YlSfqOHHJ9BEDc/qOfJPJhlbgoAd+DOFiyfUfuuGSh4OJQo1n+Vbl7zsNR3WB1iWSflOcZ6YnY+dMdJ8gBm+KbEzkwwC5URtWlzCE0Jt0tOEgiafHGSS0JqMGsjEGtaXedo+dD/mKZbihf3jb2UoSpnEBpzwB71uwo0bFUP1LmiA70yuRDXLlAnJIGdKSPY4n1VaPaJo2jdj0/XNGm0U7rKpu/PpG356x6rsvMZ2T109wiU+HF92ApKyZD2oNNMl8w2GtCUxLrWI5ehh2dFDoch9PVyljDEjiiP92jsmrmojM/JJpwouvNLF7UBW9+Czn6mInj2hNa3b0zXiFcDHK4AIlLRI6e/vqTtlomgeeWuPedW7ujyYTWqZbY4eW/EWJq9kkMMFPbSORhcjpjKo4gE2Bn9TU/Or1CSC+VQjWPjm2XJCWrUxG8aKNHwGHR38QKYEvmhnMcj6uyQIJRJPtysfmw09kRh9d/zTxKXjxS4wf9HW2n+g0A5RboqXcwlu19uW6nBmV93uMysUxn/eEnLm9SC0zEUupjdh65moPepIXqmZoPMiNhdwolvGF5kYoCeYmGBzfENxTdfnczfywgzmGe8UJY2AhXqvm28Df3LY0f71VVBJ5ijR/FnpDu2qVPXzbqNQ7WLm8icFJLX4rRw0PRI91eX3LHwXRrZrL061+69MVfUlzZjLctjxVF+NzY3/x6ZspUu1Ci2XKrLqouHejx9TyxRDBE1ZKzLS80JgzbpUXubWoKW12fRTSelhpmV8fxwaNUP1P1l8ELkuuIanFGmgBzAIQBuEhRkXren6sXosnZdvT5RDOgQrlCyE3OH3RLb85Qe8JKU69B5cDE5UlAzCQ21UVgNkKZV5atgowFs1IrBRTmxfkrSiddpg+ub9Qz5kiK8PUybFra3ezTX+zrrwpyKLHgG6Oo0j89TopFZELC5uWNdPAWXkZaY+DPduC+YcNSgEqT28ZlXAcdHmtb9DqRKl3tc5nUWVc3McMd82Lfb95GZC3oUx9Z2MSid2KJntd0NvP31eHTNRZ52OzkuFZ4E/aMcVLtLj1TtYqLWVltdLWILj6spjlY3gN1kSbmOmTQkXOgzZbt1YRlIkCfGNvxfLyXC9BhP9iDQFjJObzauEQt5rKZoIuIVypZeE29Eedag3cs/oD0X9qCZwmV4TnOgIerZaWrqlvi5Z3k+bO9DDfVfE5vP+1ZDX1O1VkzowJE3tH32bVPDhGYQL85oH9/UdbEoK802xuXciaVCnFFcR0z/zefhLX/GXHV+GVQb2TFAG9cnoO656AAGVgNE9UA7n7gfbQlTKhflOZFh93lj2qfTmaXxudk0keUQK86PTB7RVtoPGH6doBYVVJX2pQ8JiXiTpuEIlYmjjffvKza1260Drjm7NstTzxBZoQZGV+uobBfPwqpdQYGbJKBJI2P79rEgaZVbv5yOuhWfStOXo1Ub/8OSiXZO1tPWcd7nbOuo/36Kz6ImvyvbRY8zAnpaQ16enx07/uTthOSS9O1AGovwKXzy0TkbqMIzN78eobEwBYgGZ9Mkn5cXP1Q+HHsd0E8YQrYUT6mNFHSrIM3CZEqTFmhl3JZAI1x5k4mJkpolLmVR0R6KbMBcJhdsaTNBiyUxYozNbWSnjF7l5TqYb62TXwJSmI71tdvccGfPW8hOgYRBxrvv30azlPa1uTftuJxNmCYMMTD0EteN+faWEPdW3/oPUTVrw28oarAyhrzy+GVxY2Ay9o2HkCyPjnCXchje8uc+qUfhnRe0xJ9sSfvlixEyjY9umnGXI80NnF/oYDn6UMNVu1XnxYpPBzDmIfKhGnikzFQXfwIZH6HPVgJiK/aXLi1uqPa41mBiKaUYYCsXZ1NYPwWvs6UhZIyPd4AHZ8djju7t/ONngy0GDYvMB4XO1an+TNcbqWuIhvkO66iENFeSw4qiaw/8ai4W37/TIyjvyrJYjnpLtD+G7W9p4h2bqRnrKjG132l5NuTHq7blxfstKobdvYx8sQnFGdie83vdEkXx6u4ViZDGx8rgiyla77G8GFOCNtlulMZX5cEjgRW19amqJrlOyQLFL+Z8D6d84j9jzvw8iQmw2uEH+qntKZLlTbRFnUTamdeZUKXmP/lz9V592K3Mxt+nQMtzvsXK8KfGFH92JOTnNXGDr9QCuWNqFIWRmSIb/9d6qonfdH8KPuTC7TVmMhilcRLABCEKiLrYrOGY0UwjgoFn06UCU9I9GR0XHJd54sfvuVA58yK4/QGaDoQYfYYoHukXF9yZKzqlZdj6T6vYB2RzZ9/v49SKIRwstB650V9NqwqzInAzhf1MXnJMeLKfWp0sN5HgCYtH30rE1/rudZAvvcVgh+U86FLgOrPJgCbxC7QgMTnoEvkY0N25TgKz7bOJDtyHYhul1TCCeGH9hIMoMdDFRdrKUQIGZsZl+XQkXGurF7MiVKDl0aC6MPmImSeJvj6BZmTaVoLLNAWsdETqWnKNUpX7IJmxFosMKg2bMTHF60HKcpi4y05OxcumBZVWC7aEB2E3+yYwieI1YkUW+muHBVeJCfddAL5Ssjz0AG6r8RtdGPKT9QBBzBFtZYQDGc1rfOdtF0tozJA+6MVUTEDn+3Q866YrAcpPKe6GhgTrShj5yAaHt2nxJ/WMSpfC+NbL13f4gC5BETNw9uV4W1GJhXBlzrMCVV/pUGyZdZwaXMlo1G4ozFKXu+jg7q3XkgRNYvDIMqQ+CTzXFcdYJUj1cPtwxtTrZ9hEfs2KkZrFulEDd3ZFwtfVlP+YegU+mZemTiNA/XqXS5qIaCLTdJVWklhtqP/F6pyATxq4B2Ysb2qYNLLjHC1bp9d5pbcGLq3cn4lUmTlHoCvC1Nofz07koCViBLv1Bzd8E1l9MMGMfwuIbWRftlVDGPp5U2EsHJF/fLZxl1UoHlJVyV0iugxnqkqFFNanEnQelao3XfFs4dw9I346N3/Vpm+m4Ekwn3N306i7auU4Jkzj+TVR2+dTsaUsqolubmtQnYiKD0J0eqapCtikwVkq/+nf9V8QayOzaHz69+FDQrYRsNcIj097NZFBkY6Cuav0l3x1ldydrfwq9IIUvJDu61xmuch57FLpYHVlqlMwH3ew8uk+Foi7mtJ0c9UrnlmRXlzpVOC4hTg7sGwRa38JXVkqVNPx0LwQEE/FcrH5gZY74wYpjhD/+IY4M5sIBSX8se5gYgUjcmVpDaYLgWepMfUPlzuA8ElwSrBLYoeE9ksP9/2hlT4phdmkD3bv6eL/Sds4VLGcFAjT+BaFWU0dq87UnJB6+2gjBM+kQ7L8UxBIOGeKZPPX26o5ubmYLLfjkwrYm7l29GNMFO3zSJx+Wp80jIkz6OeK09PlXhlqXO0IkhhCETkvTQTd/vAAqxVGtyGRxe84Ifxrlekyhgs+ss+sYhcgtGn8K1/2k4q1gzkQQGdIppNS3fXwh/BxMWKCBMm2hnpIyARTuUmn6e6WTHqNQB0f7YJb0rHqhzviyCzrYE2AuJglq3Yvut7S1cX5aAc8VkR90Crn0+y2kePwtk/mqAuXujy42PIJRiWfhyxkHWJYeiU1AmhFfURUkzQvKSFxiNMjDxB3FR3cOWPwJAemDryIu0l1Vrzpb6mi41dWiAENKuiPrWuIkJFwqlS9i19H8FcSh3jRNm7/ke9b0mV0cIZPPdsCIo8pKKSr+b9q0H6xvOuVgZZCBj+8rCG8e77Id1QQxdRKMIRj52NKjKvSQ+tUTcCxdFrJE6KKs7XVLdcbwV2t3Rihnp33vh7gMbmlN3nEzn1wIxRlfA4IHH+LpewxGbSYVXhuPMkPhWDz83e9Gr1E9VHQIZ9rO41+oI/Vb42O6yJsvEKG1kYrNf4kMs7Pp+sqLTsUTfKgylUomdXHq+HDKyVQ/8LqfHnF0i1sb3AT0BJkJ3pxnsKUTisEzwxY+/8n5bxwCMZgS2Uu/wep5dm/EViWhpMXSIxsiNhK4VEdLAZiJPD2uwd1xpl2gewv+R8uxGCAGaZbDbZF0b0hddaFheZRJ2gExKuUppkELkQTlTZtUNevUFROl1kXy1t2N+WEzv/qvO+FmiEFJUNssizIk9RZGsjYFczs8t3Dn6OB5P31zVO+gCKWOyCJHhjl2f4q/HXOXZIvxIZ8qKp5G6YYkcScdvwM6hEOYX2wzbX3j19LiDtooba2iy2PSTCvRUFdeZjc6xx+9ZS0eueCn4OKkbB5eXXm6CZtF2aoqpd3FafNRDy11k1UcJwkosoI4VN94+w4i9KMRwjcWUQtjYZ3TrwUobs29hpTHBINW7UVnY15f7rNvAw/eRsggu1ZDVZrXka1SCfR0gh0f5JsRbflie21IqQKRFvGb8hPxQ9V6zSW3fsKUFMQ6IzAO+7qjDmVQoJeACLhUrAYaYnfOf+diZF7weekPVeBO8/8TANm3EPGg+b6NlW/KIgSC6FWMwddQ9J4U2iUYwIk4vcMommB7aYBMOXkSxVt91qSxn+RFNQ7cD2DNX04oiVIQRtIVw1anwRqn0T3uVMWqjtWJF7uoTv7l3pR9ftbeCfsPXHFzHUgJnUsR52h279iOAzvtqvDNxk0jVNwOo3Ax4/fFy1eeOMo3O8XDBOEX1inhuLI3Nkd74szc4Vyp1ChLZ2eIFIogxVdOQTubKa97TanzGCwe/OZPLkUbZTA8tiOU9qnfFRNv8xPAKSTCAQlXtykE0dNseT1jhlxiTiBaJKcrB9E4jEyhKTRrJGdN15W7tetW8gWPU6oEnVvicsA4SpS5LAZKSKrAns6h+U+DQAmn7o618LNz3xJKQg3HSOxT+PEGi6S+PdlQQzMn5bD8c/HgEezbF0YsTNUClYh6aw0oQh9pVppjNOIiIwFgzEtgUOoANP+FclL5fqK6nUrUzz1YKm8pON9lrEQ6OovzRcEF1WicmFGhTqW+JBSBQ6hox+v7WB0duBMc/IzXfaU+MVwv/jPqE3CpT2BVeWds9/Bi6IzzY3hj93Q3BMaRIs6eCKuxM7ohkycgazX4vxqBj1NOHov+wEf6/OElmD6+wqZP+b8WwsRklszJ7DfqTWcostinISWy11Xa0k+Ibtbp32z5WBRwbFDFRpVW2aSIasxkg3/peica2t7I0QqEiji0Z0tt0a477/9rNrIWpmLJE1x0FnSaRPfX5wxkARpBuN6t/CzOO6GAHQi75BK6rDLC8UQ0m+blUQN2G0YJA0mq5Q9qM90IFZp9JEly07q/YFBLl6AIYKN60Gt5OObD7owLMvdv6yvdG1igNattYcv+9CA3ZCElI4OKG6fKL5VBIzNtqZJ525MQ/mNVnkJMxquz8diL+wQEl+phrDP3v3uHrBI1zUUccK1+HVUQkrcM8IFSE+KsjrliQFp86MaaCMn8wbFIYNNXnrB63VU//RlGK8qnqYba3nnFRalcVDJY0nkZI9OukUr/TrbIOxI26FIa2CQsXnSuOEXJ+UbLPgmwFl93IUeTyUw+7uLtNkvXhqU5ICMZBCUYuL+UnF7Ps7CwdioF7B26S7Br8Gu9Rs3bbM098nPhQY3wdZK0bv8CzYhKPjd+bMM2SVke6kdOY5/oHJEAA+rCAxz6Fpzns/JO8J6RRDh8l+WOAN9WSsg2/PpSit9rxIdWzwNKYsXNXYfFbrdYb1SqAu1IejsmmEfkg5UwIoy08Ol41Dw1JRNORLPrlSzMth4iZXjGUBk1j0lETtURUsmTYUe2OS48eqNehS3gytWx1il6qRyDsWGbG0lWktBQjOPLehCsjAmtIEcElQ1Ec3Tnym+9BVNngFhpKrIfhYeOFQaomNkzXBSTk6wFKdme1C21awL8bQWgv0PEtRaDWxovpm2Zrk23bDx1ZBGRnICZTrss/5FnbAjepJgxLtDjgn88GRbjc6H2FbQ3k+09M97mtkTvcrBZTnZaojnb5csXKNX8U6l1KqRXsRbrSSb+3Fn+a9mFPpzi6picqJ15T5A4I+MWoo7n2lWP9HLzQ19hbxWBsBiGnCe3IACUEnYr8M9PSCPQ3oHwI6zLrQz5e+spB+oEkzj5wjs0SjwhEoUcJ8ER5TUhiaGamR63SqT+X8RcQzY0ZoNc094+RT01L75hG/OHb8EJpw6CpD3mtRsTudFpRAUNUyj2D4m9yDSb2F/4mRmnsKF4OHVFKIDxeBuZFwvZjLNHR0ZtbU8GxZMkEX4R9KIVlRHwTT27ag7A/Pqe7NeiWLszp4DVett1a3ahUnecHsjh/dnJjkxvgTjFXi7A/EX8xYnhzBwSTVQ7tr2eMV/1xNMU/WDYQObbmIzgxdQ8Q4YKkwQpUGQZe4Uw3wuQYk6dOUBG7fxN32apy0mTd/ChQ5sdIpPeGHUiQ8Mg+JARAYUtKY7wR0AOlwcCsHhi4WPcABoqyGAH4MTZnwkfMZndQjCGCiDmWXkLmnwbtXDktRRb9QGn4KxGKA+V/12LfLZYFfLMNdqmNaYkRxEicOcvhJXBJ21FVXTYC1yRJ/FSsg36si9FDAtVekA+cxGuSNYm5+4BAHKGtnMGBJMe/I+jqPRKh0HrrYtymwcQ1yW8G6VAWPB3PZO3Rmq7SaTibYXGBSRl5xxR1Z9k/YUUGVvnvfg8AFjyQwqkd03xjDcW3dW0GH/y3RUja/wEOkMMZrfSvXzorR2/HBav38Skzouf5tvnv9CZChnW8kUmjimOJaJWmq3M9Bu32YK5W9B17sqOyIV6AheuAZ5/w98zDdG9Tlhtx7dECHjyx5f8cbnUXBvNFtsx8BkRjdfsz5THieYkOk/04rYoy0gyMS2tWhkS7CAIgLSEzNeEQClDq4ThP8tJU268G69bW1e447iZD/Z4wqif6cg9tMTs6+diiWMDDyLHR3vlI4N0pqzdQaoMtSu7cfausc4gc3GaNG/NzoBHhkYrGwJe+Y7PIqPtYPD21i0Nt4KL/0CZ0Xpp6fKaQwMjsYjH21J/dPxnG0IX5qukIUDOdxbilokQOsOV7Nq4xE/yReTcstLDP4Tsyxt/+4/cghEpn/S9AlflO+1859zr9LSyzYnzkLhPlut9WFSaS2T9xyejPgkTAJiu8pn5VaBJcvzoCrBWhiu2murYLp1sdgHCsAZMh1CN7IKjMlwa+C6Ivaa8a8IwZxK816JJqWVSuPhfWD5dNd11hJtoPddHLpqIptlbwWzTYUbcINlTzuiVdHDrtfDlPIUKlnhCbFQMdoqcV9BCLfiRoKni7MGzGOAadi9sRZ/cZHclCXmQ/fsrcC99ic58OI4YHX8s7JvB0Gbi6LOpJIRw8R2OYqxJRsq1/m0IfxLugq/+lnN+IjaI3jRItfh/CS3YAgUwmoASvSUTLALgQYu8BFl28LwM/QV6NQD8ESlPAK76bbx0aHVzsFq7l1Q2I6mOxCHo/TybCeNS8ubMWJpV5z8yRm5JEX8P1Hrs3f+u0j36cicpTkAWghswbS3w9PeQB8tGClNY1cDBHV/MuRbNUBfqABD0e8MgUyj01f2m/FZsZxC1VKw7VIwvfYJIiw1qVuaNmd53jRNq/0O3dFfWmnh88ezeX31g5bOoFoEUhWbDJLcDc7RcCx5FbVdKf4H6NnYSrF3TIuDY/g/iomZmxQZLliL52V6JUJ6WCOLgd8TCNN/HXg44aWVB7D5Dpp49S9w7EiTEuA67B3fNnTeD0aWv4Zgs1OwmIQf+GBTtOOq1tDxK+aqB0yYFE/6g2c/DksGYlOgtYmgOsQZSWUHupczVmdwcr4A8AvdAl4iSoeqhZM0gfgjPnUtKW114NSxjTkYGaznwzi5zputh7G4oaLoGWYNCUVK22eJjwPzaqKwB2p+9ABKFB7cg4nQFP1nuVykch6gZbAmmKYXlYc9zeViwGNP1C8HjqKki7QtBvqJDVs4+TOhXSpd3pnMEZXJXvx3oK3jG+TyJ58ClY8+q/no4l+1qmFnA+qTXHHE+QM0DY3+6FkK/ipF6LSCuzXIuE=
Variant 4
DifficultyLevel
642
Question
Which of the following has the same value as −4a−2?
Worked Solution
−a24
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following has the same value as $-4\large a$$^{−2}$?
|
workedSolution | |
correctAnswer | $- \dfrac{4}{\large a^2}$ |
Answers
Is Correct? | Answer |
✓ | −a24 |
x | |
x | |
x | −4a21 |
U2FsdGVkX1/OFBbpKv/l5CAZstOyRjxquZN7N4gpItgv3IsN2YLUerHPCQhOi3pTnVQQigv9111b9WViJWsOcIyvGaxKJGQX6WewMLkLeaamvkuPPCvApOP0gJjluuD20c7jHYQS9Nbzw/ykOGAm3TEtyAWctERk2/PBJItBQQaTQMTz387Px7gH3VHou98dYLjzI9W/J+7KO3UdybHyUr3jbt1ePa2EKRrRdFA/Mvinw7v8franXhfpkY+PS5/AIxAHSJdNMBScl1IKJWdxw2Zc4W6HCcKLSr6MpYQDCN78WFbnRxV5OO3WDwzy3ETmI5K5ILyfF4a7Nn1CO7Id+ZOX8fIxRM5XHIZo2/Bu2nkTjExVYgSj6nWDMLRvPgE+0WAQG/S/iFVtNXmCb65Jt1k/yEi4GiZkwDv8/ROt9FpykL1gxqs8wPtpWIA7TZk6F4dqdUr6kgYBCo9C14pQ8cSMLTreFGCkLP+pdh8NFsWmysh7JoM+fL52dUJTl10uTDZlVrj7W46g8wSJu37cD3EySoKW/1Ed+gI+d1DiuVAN/XOGhPMhkSr2C+yzyZuq5iJmNbWSb6wkSym51UNwc12wUHttu9cKWoAGpktvncnFigD8lAseck5dYZKlvvqGfeDCIWFC80qyAcwhZYLasHTus4V0s2+Ra4R5pMB133fNvW4btwMfbPQKIvQFXBiwndiYMxAE6xj3FhlEM0SI9aErFbrP3J9gg4ebKekc3S9MRClo+tbp5A9V/4H3QOnNBBgKz2Iw7Ac7xw9VBDd3mAHyK4ck97M4D7O+dCW1KSoMQlQzdoCtI8eDkvRbvt3y/RlwjwgYZW+dXGFLEC1aALKx6tmPx9cB7ka7bMd7cl62ASRiwNmyYrWbfuh+EbI8n4QiX+Pe2+/JgGma7uLsdRKA987RFRo5+COJSQJNGZrfi4FxXZ+Djkx2W5Bbkd0dH7uAvTENLVXs0rIagzZwXoI46+eCV80SKijQdbxepHAyUsTfBDnjJpKi+BzlR7rhNpBT6xewDbG2NAiwP9W4bba7X107/4c8ZbYg18hNF2q0ODgNAx/WFWe7D709JLmB/3Ibax1bSg+cEov+gGA5B7W2ypICi6zKyUXnDQjmDzIg0s+KwUQeUUVwO6/XL8h2z6yJ+X9t1uqugTXQRTK047ySiV10PDsaWNnPLCwEx8hns47SAIuklB55g1ViIcT1BlWVDnvEOSGKBcQMM/71afTz/0XLaHPF/rpuW4meUfF5pU/280kxbONvCPLGR6m2NjgbZHADupWhOQm46maJKVnXgUzn/SQrKButMBKyXqpzp1wqbypv9w6aemA8SaDvWMWW6uDolO+J/8riEsqCZZBnktIvbCSZlFxL5eKKloPpTvjbvaqbvUbqmw4/Zar0oVur/mfDI9KlExf46PwOwJM2OD9mJ0rjk96lMR3uyYlXojNpYQzxhYXP/GD5A3b2HkklC6M49oltuefSQPpfltEdnf4CJTkVyEvOXWWwNlfypEGD2BSgxkviItaBnvzsHoEJyrUCK9a191Y1Ez773Pyb44VT0FuFXRnSP3WV/zOJxnaF/KhxwjaSR2w5hAPgDF4EbJfBciO4BEhLjXBNMNrXbbID1nLn1DdsRzYbv9/RaZhGfCwnruu6rRNEloI3L0dwbrHFYShR83l8GnWDzg3clOthElLlq8MXIUjOms0H4m/L6QLfj/5sLFuxFCAdJeWNnYwW3kNWBIiy50ujnrtwQjDAvJQapNnPKZVkkwlcEfvwjynzQ08ABqQaov3VOqBis7PDuUCprWC875ArycjuEKC5YAtvbervmXlw2PU9EkQQKOfyAikcoWk67l0Onzs3+n0cW+zttb4NQfqULfawZ8/H4R5/ekoAIte1o7NffX20v7gw8cs8gxVamQgmkTgAfd4w9ivBu6py+hHhlCwHXliqeN/oxZZJPpX9NA6EZGq/oRm0O/rOuGyliPwtD8d8QcZcUZ1x4vJ6NPhg8rJI6orGl0TrSRnk3wkU8IpTFqe1EIotBk2N6WdRIMaAXl0TyBo9ciuh4wVpL3/XBPq79Ej+Q7cRQ/qtZ46vH5qMBiVLW6aQENwdNLmihIQhWRy5hJMVIE88oNVJNf/E9q0nb5vZtkrqcRWcoXMV6DeXFd7nhDrSaBSWsNUPeOn6JB1uLitldh0HpYKiBHQ0wI2h9QDJ11H+HrR1Gl2Jg5xXT1GCh1O5b3IagqtJrnoT2zGiu4N1nRzFVqAr/fNR5gwhXeVEe6Jy0eWeoyi03c5qbXZKZIaRBKTwbnz8ZyMkjDx0vAMbLOeAtiWc9T5C01DCzmh41B/bXZznP5DD43VXZlNeLq4woJ94iVRvmzuiSTKLO7SNtP4sl5Nk0rqMqo8qiq2468UrwpSiz47C4ZIVVAZchUvixCMFQlFupvEP9DmmnJUm/kU8tOB2IJN62X9dNYWGZ0kml2BGO+iFNLn7kep5btf7Lw079eq+CBd72eu6kwY+c5ECP+ihQye6GqtKvTqeIFgtr/S+D0cxa8KYoIa7YmYGcRStbCUxJtsyV1C3qqJj7qd8Esv/5k020diPlxAqh0o8Br2Izvuv3Hry8kQgGtTdJaCFCfx3R9wBChy0vuBgpb0zQl7l/PPg4IbKB5GgCaSDJbGf6FwDToYE65bhxbH4qnv7dUv5zbPyZQGtaf1si3vfHb/z9v8AY2qKD7FqjjYMSq9OzuVk0OJ94yOwbLndoXUBcnoCq2zv3ZbQAbjadJoURcmrlI2+P/+FtmrLGf+SI6A79TTWanUyZG5Mrb8auRDyO+rooJFfC0FlWTnoEU5iR9iixBBDgRnQ6AnouO3DaTZT/qT71Ybbjuc7OHoFY8j/DHYmUbZdcsd1j+TsAGslcJ0XabeNIU0L4ozXOY40o5NfLVX0yXLRfkSbtHLp+7PG9xM0SuM6TYbuhfvmxNKKC/D25nhu2DlMRADc/B3pEsat8JWW2IXGMsfbhejZ54ZFd+4OEolUNaxrsCZfuLRqkgqmdagMj6dgubzVu9l2JphgqPnpPaz6HhPnvVkfwxKB2qd7G1qllTJd7gx2uyB/HvOTuj3WTaIZECp/iDlPg/22G3Jwu23MiWRfzqkOzCrlDXUPlAiDvnqe2oPdmmaUajm1t52V30utRFXPeMzc3U5BT1SlyIFLax1/RVaKe9PB98W8OTYlB+F3nOJ2C/LPb388PFW1+fbh7dneJxWnJuf5TKO5xThv3jjaCB157WMwIRjJl4sdpc0fCkG+kc3E0H8nC6SwC5ST+2wYU35LA58r3mPGYng/WUbkjmEQD7PoHqMSmhlOpJAi8MOPa2NYkPIsSEO+QKjoKG0XinFYjykgQgO5VqXbS3SlalxbtusJTxGeNnmGB1V+qUO+XXTUbzXflp1T/WfRsgyzqKBtnsd7iDHUSteTLBD4mQXMAbCIir5paZ+//uGOhBXSJtgHASfz0/rTPSVuoXZNL3dF/+fnfLgO1D5JHA/XMQIYtVhIPqJVnrPQ0eUjYjX+A88cDJi7/FjQ676CjtcmGhvVzB+dSMl8B3EGustDYvNYYfaqUhg6Wg90wXQKv6qtA4AuTCyQcMt7uWg/VXbEZzVo7xCVzGdvFF3cE6r6FrNRGKHhTxY3Aynuu4wWE1hVoe0f9X2Jc8Gz++T8t7s088j7JfvsGPHYNExf9vsxj8yjV+W9CKNbbGrYcRx+iiDW8wvjTRmzOU/swRgo76sSn4769mHrzUWnyGeM479wdJ09XwOczeHNyqQcglky98Oyx7mqhAF0V7n5Ytjnqybkhb3OXSAjKAxgqYm89S3RlpFpr75Efs43j4HpycaoxcaEED+mPXqgxEkgpa8TZG/8/tCxAxKgPcBW1cx8M2QN6sOs7H437b+8Dz06IpWwbbmPyOAw27XZfm7GnehFTYpqAzgksN4QQh9FWwUVVW5gz8HCWQHyprnxyXQTedwm+92ZS+awNwrie+psA4mHotAHXo/kr3kjrc9rjKD1Nm7YladFPMJmrmsRr9nTssS+o74GH2u/icFpAgljscuqIqC2VjYPLCvZuMK7mchikkyZ+Vkm5nZJWN0R4h/PcqnSCiYREGR3Ht9SVD76kC1P1Q01le2+1PCUUG3Kj9OXykSjK9lbbp+Ch83Chxi8XF3iJ1biTmuicHMBvMJh9ONq7hYBY6sXWTX5+jRwcQjuNKdMeghmMGVhHmiUjwWdm2o2JwOov5v81GJJ4KSlmV0XGWgsiuS88BDZsmx9Wy+Jdvk7oa10Yq6suilDU7LRzs0Wh9wuXD+JsDlbtZo5A0TH4LwDrsBoXtwl1kYWQ1XwCDqxIdnQC+fd7cjSrsj77Dk+P3gN6erqawkTx4y+RoJC3p2NTQvQJxCmlgr8VXj2Cd7K8Jw2GYKX8cSTvt5F+Uq/iMQhUNiH4oqHL1khqOvDsvzx0Zl/rns2CiQR3PnJHKb14PUVK+oSZOJQILze+EWk0J+E57zxHSFajiIJ/EZe0kvDbbIV2JATjfplsHqdayNu5MwPqg1hEkG4QP19f2/BV7Ir0mg1DbcKTC0ZGiYxIXSMy82hVWfEaBZ0sbQZ2he18KEDRFsaWLYRZjXNZKgXmvsux8h08zjWWYDRim+cj9PJO/QVLRR3cGXRDLh9XzBCWtEiD9yoRxPQtgDO/p+VWsdOG01fZ98fotjS20ty+LLKrwHvoYngV7BNKenhpc+A+4maiRZnO9jPbmCaYL6XFN0vaGkb1mbr3GDrtp+rNIHQu+A6yvsmD8hF+WsrkUw2UZKs9594ygUiGChCY3YCQ/147FHayUheODXFd/qXMDEvitvuLjuklE4S5nND3UwSpM3qKD/MPsFq0b7JFOSpLZ+f4p/QtdXeM0yNXd+jLKA/7/AWFCk6n52Xqgm3jMETITtv29/jecPbp2Na8DhSfIpBSNlMDwqgGNPr7nxbvExbDZ1o3+gKaOsMalwj9nxDv4GUuNFUYIdrASOBxz7HlApxEdZ8JkK23HQp1M1XOr5brdH7ypE61eKngJpbeqWK+W0nY2f9euw//o8peWj/KigIxB9KIRpRpidxcGQrfdyFdYoMARSDe9ccY1TdPr4cRqgezs8t/E3wRSxILdJXbZ3YWtz+NNqq43lPu1d9GhRLmidXnhFRt76MFEbGeedH4lMuARGFPTj7B4s8h7ZmWK7A2kI55bOnsNU84PSRQvfgP/dzlmHNWWKFrKLqWDL75+ICMwZoq21nS806uS5on/ge8w5mJ6xAOhao5I4nYZNW0jwjOsw5Xnhe7Y4XAYlhz9eWgYDdG1uarjOcbBowVl4Y3JV6fP38sz3jULAREgMiDzALiyJ+pI0BYzhjmX91hQbK4K5gPTw+k7DiZxUVtCSFV4++PhlkUqI2YLDL8rKlA4pGZh2QNWOGvbvFYwlnaSwNdNvBzxCVDqaCQDh+vuCjJtwrYCsu2EZmaxYZU4Ehg6nqA+gt7QiCSvSrHOLFlTPy+Lnj03XCQc8puCxl0wAVSIixVrpVSYlCp4aVY+TeVNVotg0kIESqhdHIYHelBs7GYmOneYmnzQHHHvISA5NGYoXWRsmKEankWjaCHcSo8OYV4kYdDjGWgxzvJp15p8XlwkXY4Jgf87YRC4h+1RmE+OC3VkPgEKn6+NugBNy0ON0Qrnmsrz1Kc5WSoWL+dji9yBve5YcsN6jNW2BxHpfCXXHdhdnfYbjIDIBXP+1WqGCVqSVUKtT+2BvBtJao7PyUoSjEUghCzo3HQjLFSZMt9vkelKqP8Oa1iV56YW7RIHtNRTgG6uW8TaL02h6pzByhzvxLpvdYE8Le7xRQdvW9DPAey3/oZcMQgrFWkEUagD8RqnoSpnn/cqLFEbT/dQEvjBMfsyR6uqhDW2BQCZyMY+Jh2YmWZnn4qUKp4qJ/TPK7gn31/2TgJE3jewLXHaQQb4Rckqv1XllRQ92vg6gtolsJ7jkQercIWcDBI/r/+p2glRsMLQLpW7bUfrhRf7zDJfsd7I+5f4dpw4XvLa/NmYJ4NmcWFmCJJaLzR5ep1oxRDD+2aANOC3EoS6ZM0Oa7H7s0EbvNNwhSFSRumEn/6IPEZtnFDcQUAo719Iw2oLQObpBwdnKIWuTTCPCSIlj25zEZqyCX9bl8ImfAje8SAdrqn2QxvY+QvSMCW9rNXnkp6WL1KFavMlymQox446sOVx+3xZlMeBkI4sfHSizJ231waEqxyi76hId4m12nmd/RnPJ4vsJyfBe4KafsoiNvtB8iQcbRGTXEt14j2N+WRsn2WsY1EIEP4OZGFZ29u2qMPqZjY4HGKZuIFRqi3IaHQNsnBtf8sBr2TvZxEKPq/nAuqLrxYKYScNrQ9M1SsAILJk2dD4OCe5VzWCj+ngIjK9GTjJVEFeoSdjrkrfQ0jtnRTD2A8H8rR75Xf9nRW2Qh79lR6zhTZxw3VHnVPCR7fwIZrSzSz+zBR2pmzjOi2aq5cVfbRvXIoqSvMzsQYt8R/5sei0yuOc5Nbi1ixdbPRTSqg5Wd1Wp3gwGiOh/TQMnnxLBzxGktCicyiBDFif4aXybYSkytEvTsRyXQtENdhnwQVQR3AxDnNgnRowdjZBxv2QHPLN1tHhBlyodti/Hhcse8BNyZSPreAW2fhMHiBgUdsMHDkQQOenaujMCs7IMVstaizOeoU95QwNb5O4tndStXrOYC7da6upFbDH55o2MCbQvMHJ4uqO1hVRRormMi5wMWtThq04C8qOByeejSNlf5u4LrM/9gIcbTee2L1NKP9HNTkWLpt6gYGa/P7M5fDk1PSUJMPW6mWY01dPka4Ejwf9AvmzB6ECIrUgWIrx1WJAr7rTC1YULyRfPR9cnwTblBMg/CxKyBdmXDzYpPHztZgNDpnvbb/IYBQ2unRaXXt9D7HuuBWRoiGk1loOzBQPYBOb5aVz09LRy9glWmC+4rRfIUhemgOPrCyuSd70v4Aj1m3n7YOTmgap+I+XsrwMdbYtzlhqfiOj96rdMLEUXIBeJG7nam1E6oxZ4huxAaKc9RhgNoROUWiiZDZ7h4UUxgif44/jhErNysY5WO1i2K4RHHWNGnrzAWIE0wdW+FPP3HEa85gLMPztqRszp6f8UKear7Q0qxQrwl+89Hle7nbr7rBaq0pNkihtg/FmuYVRr2uBm6pi9MCN7CDRUOwi+i8btHAmix/wDRycyG1NM2IRj5VesbDKzKYrify29/8yqG1jK3kDHqtjQqIcTMsNgIdYGnHfX4VDF/0qzZeqTAKzFdpwsld+tWk2jHEREKwliTmHcJW0wIZoeQVuy5esUSRy3mS7zz3hvQUrYSNwjeZqe/yGyx+QUtg7I6ttL3nzvxNBcQR6Q2+DkNIj3yKeiof82wlZmVf1jcsQvYpTvoh1UXrmDIVdiQAOVIBBWNW3uUtXzHJD6sT9ZZsZ7jBfwpQP7JVT/GonJppwMikZBrdRrj3oR1bKCDu4qn+5d3RkFVlc6NsR0e4rlS8EsFsuzefRT69mvnzN4RLsASW6ju1Nxz3wEL7KPrsySe2nxqoaphg62ELNPOsd2JnYdmqBg79pxY4WNp/qprzUnR1jM9MGzra4/jGAq4INZQ2N6RY+ed+lK3GvlhfpqsLrHLAT38CgfpAIXCITCc5f0Pnm5v/F+VH2E+tXj8P90/e2GFluNm6w+j4lmezLUUFCoiyuD07CJEQyo1UwJPAN41uDWsuHg4oku3EhYgAlPp4al9wPTKBLVqYvPae1TtsE3f2c8qypR4ef0QnAkmRLoi8fMlPMTrR8DJLF6gAhLjmZsVuHZGJ2LtkURf5dgZ6VTaO8D54T0Rtz+Kha/qhA1BNYCXU9XnTFmwPDSW1Y4GsozHZt9JeKsZQ1AG2399G9hFraSUKHIlEw96fxn9cu9wWcE9r5542AERgIszcNlakSZkmOWizWxjw3IsrfVK48VxYf5dfllOAQ9lHa1Ydke1uJsM2pTz0SoyrPjqPJGeZk80OoDI6Xa6Fn84ct77yueoEGhE8wc1cxKqN9yMJR/QmP96i76ecrBCtYePb7uHcGbag4m63rE+mV/D2VrPnQkggYcYA8tqG0jmrv+9vCq9Cj9nG3PF/FSJRgYlshSAk0PHfZTEM7cujUOYf2kchURCv1oNHlsNtZz8lc2ZHzQig+fQodGpvIr4zx8+2Eo/A0fzKQy0TB+C4vmA14Ibrlgyeivy/Mmvelo64sAicLqh+OCFQX4i9sBr90qogyNJjLGyGzARKIVUvVsHQZFi07J7TImzUnBwdgrRt/yMCb6n8pJ+icf8LEvwAucwVMK3hfr9FUW9V/BJJYcGtT6cunqJ7dd0alQx2FBSboQNPgBIunvGXA+tQbTHId4lAkCPKw8shLPSo/lN2Juwgbea/qh/khJbh9EGREKtx3kJA2F7XiNvduUO/pZcAJtPthWH8NaksBQaK8i6HqxiuSk01cU2Jv5TweKqDeCM1/mC3/4TM7v2+l1fEQDQpbIO9Cno27lcuC2szeWnesCdR2xLnt6gzUuFPOZFcMk0nz67z4HbeWD8Apw5NoGrS22jHASbIPrJQH4Q9gIXR2kvhtDxVSwQu3VesPtw801gd7yguHFHzNWfcWG9/LpV0X58Fmf4OsurBao2npE3SC8JZvmr4I2mLzyYS0XluaNGPgUBbliT4FEhFYKHX3H+wzurJ0nw8PvdmmK8NeO4kSv86MWRM9nsHG0vpDpn4/QRENEqVxCAHxPzJRsYjy/k6DLqwmm4YARqeDkEeN30ds/9PWxDXCz2PjH6wDhF4CKCk8hI97BNq0c/g44jqyDf0num5bdw1waOOfk3n/uMTwOxa3UqoZ24GTye0DusMNgA8jV7HQadUQsP0GS0qxKH1Q2/PL440PNoO3DFHIbz7LwsoToZehHaUDxv5r95T9IXM5sqNxmasuSQksAmBpRoasPxO69WiMz+0yCyvXgepW+BOROOmYBLEm7lNB+l0oA+VJ+dKvs5qUbQaNAKSZyLUBjpPXwsodi2LAq1eQgFOUHOKP9ItrXr3V2ZiATwR/Kuun1vEpcoh260kr3iKyyd2GdJ/pfNVFZTNQyJsm5rAVa+j4RbsbIbFj10/5phuOJRS2fdGeyR8hjWHkgTWvexJy9btavyE21QW373jdENZZUBFWtDRkapsx6o8dM2xX67B0cys3TMTivEA0xyjXwZh2Lk6kN23ifonRf0a8t/yOD0sJL0NwPs92HMLareIRwOgCI/dvhPHb+pejGwSBvvv7LIF1Ku7ePxReQZSlyiDWB/OXTolQkGRdbnbms7iOAYC4UugAuOn7raia0Q9HidwlnBl7YivuTVfBRw3Uu0JzZC1CZNZotc/Koh5/GHuNsF0i5oyZoWPQuWvvmwsFNVbMIbZuanxAxj1Gm0tMianrDVzWjm+FbsparXC+dhOKsB8HQv+GI3sqJYC3h5wO6Z4oPj8t+eBPg49XkZbbtWwgcRBBqESpLypaxHu6hYG3Stujo2DNHwjaNU5F6XyaRObU6lkGCEdS/mvtUyt4s9ZUN1DAp9yIFGrFBoSkdWq+pjDkmwsFRla2Rzln/9J4xaslerGh7yjhwYKm87ipLa8tf+420j9X3tRs2avYV5GCaA1TNSrydvOT19Gox4uTb89L+StdTJUlhzcJJo3o7UupJL0ro/y5Fm/VHhji7MaGV3TfmGpCi6fgxn2LR6bLxqjT9oGg1+gAHff9VFMSqw+vQHOt3/N7KKxOEER71KNG0vZAsRjabaqRK0Ba5qwwCQ7k1T4++Q/04FCAX6C5GAu2qTnxk8oMQBGuTPrEh1eTcOAyQ8KGhEM1SXUPBT5F+ZrmBve2hAYEw0fIZ9ly25B1mXWHO0DyYKoNIkDOq4a8AsvLeN9ReRE8fhot+HcjApe01TKDOfqs9MyjomQHYy4GgbPjMKt5YOOzdGv/BqvO6MgVSkeBolHKdDSo/xXAnundJ2N8p6DQpXdlENIH2ErFhcHoC2CMMoKFlKBXtH+Wr16/5WTivZbC1IsEGA3TEPOLRfKg6AcKf0sK5fQSzdcIoBeiNsljvvxmV1plKWFfGjx74FjAqm5OcCwMXVI8BQKHLGP0Gt6+xIRgCXWGCTOpBX1o20SwwBVbL4+LWYTYqH0ZV1U2RIZADvs61bEGHD9JqAhr4SJnYC+VuvjY1YRUcV1Y9gMBH6cZnJICqB5qe1Y+e7Fy4rJOwbjBAFogh2GjA5qW+0C9UT9YWD8KZFS7Sp/Zi2yaUodGh6OWX+ufxW5GIOi7/PBkXQJcy9hspRin5HO6LvFG7H+N3wai57bMieSJ0R2mnHZdTtyn8AkGkl8m9EsnDyiXBytAAj0ahLUCsgOiugrbfB6K4FZCwj35YlUREfHwuvMswfuX6kLlx4SPILtE/ChhPpxs+4LPZo40tU45RoF82NSvUOZ1rFx7TfQ0wSjDcXj6GEZzh727bqOhNYZ3HYBLLfaHbgKpJEfIKLFNiWuovJHd2PnnbQmTU6/VDvXGmqG5RjEgbzzN4DdtAixLIlnT/y8fa1iNSwoggKSWfb1AqHZqIxmVcjg6UyLufxOptLDjwmHtyIob9rzixEnvBa2H09l/P8OS124doGcT0/FYJHCfsL6ZA/xNV7h1NhoruT8YKG6ohyXzbe1rO3OElA7njDmvj3XMis7RflttMitNsvju8p+QQ99FzjIj/KDhLxKjeDhh45vHtADv9+Y5ssyjW6YaZwA5EqmgeZUXh+aIT+RK0Meh3KinZULYXXEiwSC/9kxCFpCCggKIuVTspANDCz9kjNYx2zsYryWCpzsf/Pz2xANy4ULERC4FkkmBXFC0DWSS97GlVMJs0fA77KN2F4ZB/JtJsgkZFQp38Q7LdSblYOP5WLb/Vsg8mnvas1OhwK6LVZXcC42KF4OgyerGkjTjDxdXtlpcfReD7OOh+2ZX4B8nnG/k/nz0whNEso8CAcu7+HvdvAfhOzDmjRYXK03j3qbdpII43kOw0a0GErzncB4Mk/SxuA3Uox2DA2HAACLA+Ps7HsWvHeVC9WjP6CoQlZsCIDtWUA2NmS13q8B8rM4nsT1sj8O2SAhyh5KJfMudCiKFTTek2qADX993M2LLBKzVP/5es7d9vZ90G4XRLwxu0k7wuyaM+oCRoMdHg1mxnrSAbDwxo0tsPQup6zmV8yln0I2tqn7ImRHMutyB4SyYIo60GAGxi5xCU/QKogkzEbyDVCO3oxmgOCYgj2TjLW+z5YAwYMrL5ZVQ8QerzaaUi7jdIERBd6o1OmMFbOOyOg/Fp3HvzwLF0nnN1ACJX289lUli82tASDFabE8JR8FOJu/7EszdIqOX9ONj5oL4VStaCbzb4MxN4wDBmL1qbN9Nifke9jVr/5o/4HIyYfLXUB2MpHx/WCBNIACxfJL9T7ASQcBzFzVZ/RtFDQppo3YIOgDK/0YyMU7aWrM5tAyqMmzlvY/Z90ky2MJfJPlgh2cXWBWPY7+aLy891n9UtHO1p6cpuWCoTC1mGDBCaQPjuuy7+VlDdyHtmI/LuCP4/NFjlJ2mNCowHFBI6ACvQVnZN03Ebc2fHzaf5dtc7hc3wljUZ7SM6cBtAEsMtHrr21jJ2sM08tbItC/ycALM9kPVmdZW/uWek7LgmNI/5b3gUbJmr88jhrQEOPhm3bG/1/0iaROFHlD7hiVmyEnHZfjE/sYFkIuagLDC6nUIDcJpy+DW2TUEKpoDCndtokOZDlNZQdjajFXUnJz79nXNHKWbvNF1WDQxwBBs88WBGLdMFcRBV9ioyU45Zl6xTmV2+kD4O/ExjChmeAXGWicBCrN/SIhxjz2avjhxsG+9lj0U/3aZk0TA+r25Rnr7VxQIkFngJIFPswdUG4sEhV0jmyvB/3W42gU04iDzE2actlvQlJYRnL39aaZKFbBW5YLDEXDuaeJqxPlFg60sWg1AzcmN7xG5OOzjJMmHn9Jp/wjOgM2IY4agESApjm9Hf9qvFMsXFUhU+6XeJAcPHXEG4o32DGx7b6c5oGxwfUbD8K7UzGTmhUuoAl/YIZY7boBCtrwbOtRssA8DIdPij2SsYh8N91EmzGUgTQbebhBDOz1XrK1+1biHGjyRuwpNzEGuBKSDfz09s1i1eUApam2QVq3l19ZO+HDxkkwjb45FuLm64HSc8uOHzzeaA+VtAF0LNECpak6u+fSUX+oxrHXQK1ga+WXgTJwpJqKIcKh/zmNDt4FVhrFwnbLMBa9tbM3yNf4PXmAVOvfkbvVyLtVXn2m/U0xFwGrd45crD183Nri3S8ZJzROc/ZG7uS4kf3QTmXlrLZcMeZDN/B8+E4ePOJs//y9UHZ8OUw4hL70/mxffY7qrDxYImIRkwbtA0ZNsC96aROa7LpgBxRx2Rm7qQqozwp9u65OkL86gFiQdXy2qfO/G8Mwxwq9jtrZnNL+jr8FG9YHoVbZNR5Q/7Z/2yV0EkJZjtD41Zqw0R5wJGly8Hg0kOC+pxvcMwpk9oP4Am5+iZEtlzDA0lQAOrCaI9WlU2h/W4coh++h/t0JHextCgXgo7CLmPGRdKdPpcvML03UF2SDkT00uAxW77njGDk9NRvDiUO5rv1rFAeV6lr2vgo1blmQFyG4g8w7cEcHukjSUZkWxzc37ObiOpTRsttlLkcoL1imvQVK75b4yJm6KTSM+gS4wpSAKEomHEu+w9nXp1F6VNvxo+CiXxiuIbYHcMf2PiAuFHDGyuZ5mVgi6ogROF32qWMTkde/mVAoMPpDiAmYI7dm0onsm80m4DYDk26u++DIUc2VFrOaVCOeSOsMeXulzhB0ayu9EbT3ERj3UfK3WOu2SAO5PwS7gD42cSJznI1tSEUpnOVX9FJzvEybkCJBBkvDBrhcx8iNKTw/TdrlpMJ5b+mRm3wWtS25M+r6yPILKZ/mWrdCLJL6dUT7bCpR4JPut3yX1M3pjskfx2YDuCGIHdeTvpqqh7kmc7rPUhyrp1K0yk4t4w6+r20DW0tNWFc1PyTL/Oc/upo1De1Flyie6+yydNjoYGXQRLKI4VR3P+ngM7VKT3DlY37FgEE/4SuUbeLhfhJNfsG5JGKSUV5lriyqBChixh8KdMzMiH/S+KEfqYoHPxypxfGiTP1UYctWwomUM9UQlp9sHPgAdL3KpbI/TVLKKKzLq2sHu5jZGLMsWU0e9KTOR/khc+xRXHiP9jD0sbLzZCFRsC09ELcbJovc4fu5jvK4B2MOFL/fIqla9ahr83uONcpH1r+WR3Qy1spQk3kerHrYOhpi3SjuROrRDHYUYx0LujsGAMEisUxEDEo4n96Ml0XXhTq5k8sBP8/akNHrlrGmAFKz1YotMVbe6w+83XzHD+y5mxJ9dO0LhToavJ7BXrqmoS09KIrBPo0LVXsmhRtuQHvHxEp4LXjW5cPmMEhFSSqDZLLPSyXj60LttmjeOyQkWQS3hr7YJEEyKvU1QHRqwZaHS/UL9wTSCM6jy7+ooTUHunspKH9XMLzdD1cNDgviYOlc8a7/XOuLJbkrUkSeZdvz1qrXU949i1/d8ph19u0zVlaC4GXdOhCrGemyv4b0basiW+C1j/8eaSeFSVCfvABi/hRuZAxnib9eDm1PCRLwzWSpaJgUv9VQOZsy2n/FITkCmmlILh3Exc36o62nDLRy5dO7uvBL7RJ0fHdmUCJFTjxXWQFm5e3vQ5XSL+pzBbm+yNLYUbpzvlbVbrBMZ3AGQpxPBTFv9W76OLHFYFZEZUjywQaG3HRHRigu+ejWiWkP5rOE7VjjDvZPhwp8QUeT3OBdo2cjU/p4AtamWjuaR50Krl57M+UM2a8AcIGdJtOmOtT5rl2FHET+Iexc4ARJ3HBw5UGQTwIyr6/oz/fvDWzSLcVHYr4W5aMZbj3UCm0agX85tkJLg9AOYcHrr9NU5UOaTK02DSNaIwKoh+wKhw1bZqEm4dFWXYcqGxCkh+JAdVIt7rm1l3m9Ijn35Fg3WwmC5hviuwHr6gj1vOQPcVOv/hVwiNZNGEmWLlgb/5L9KRofzhGnUm+9Kwut+Npt5+gpY42tfWCQ+up8Av/ACt5HED/x8j/SNMwJ8rU3IJ2cIEXLPrK/QF55mSLk4Not3S46IaEElyTHvLP5lTlbSR9iQ+/D2GBHbE8D0Eso5ByiuFe+TuoTxjwoerrwkeRtj72/FbiRa3UG4abiyqxHf+TZw0aaFw9a+tnHnT1QffSWx1m1D/wtYi9tmFtTrJ4KkWsZP8ri+OOA8YGpZvsHZXrw/C8M2IFQP15qE7ai7i7RFerRNIiahJijlbns214qRd511NG/lmeYvprtRYPFaFXQIE3x8QnCt4Wnpz0I56y/fJy2bKurbXUxggXA8676Di+ltyJKadsKUfts4lamYAwcqDAbevNs7lJItz9YydzKVdMYv56M3CiXNpGn4X7wAV7E9QQA+tSAX8rgAetyo9pHxPg7/YmY2mMk3cu+SvFOxgaFzabkvByO4asKOXo3xQp4uPiaIwSTdMNuw+KObYk6HhjpyVsDBYT9+y4zoB4Vmzjn9Xn/XJkv/ozh8Nd+qyyeA6Xum8HGkMncR1pv/6yYSYsmhDlP4UMpAvqD+uy27S4BngejZe7SL94Ww3vOMedbG3WCsk7OLyOpEhFPL5QnACQiW5JOvN7CLHuuauC68hCGznByMG0QXXdtG6Bmd/zgo3n/gjFXBo0rQszW2wfWBASH7N/2Joz9TbuCJpDt9mbzjKOsorw8DkHEZxpBrRw4f9mz84+mUpcAm1JQOtoStwyvpFuO8ugu/G9/Rf5P0BpxtDR5LpSz2Y4vz4lVSfUBO+7UOeN1qjPLByZPGcfLnNXYsOP4iCt2NiD9ff+vC4Y7Rq0hi7H4aGG8hYbJHJlDkQWWQGKs6kC7TfwQqIoA0L11Yv6bloCQ9uzv4M+jaszLc4uI23+U6V90TNYgkZpmx2lDugKx2OxAB51kLuBVU5LmnPJuQCZvBoVlCTPWR0y97JQd9Kuh81oneJl4ktG1JhQO3zkX1MdA0nSxfUqx6htNpoGwr0X75aoW3s9wBzbrT07Mkj8kNbhB11l/nWlRHzhE2aQCpX2B93a5z98HGzISW9aU1VGPfl93A3rkEhwEvM866cDnerakvCYFW6FrchYBl6nL4K2KEOaHB+Q+v2sysXvmLCDOygVppCvCmZXPG7doGPN64zCMj/rBYn0/0WFatDstWhTJU+C7DVXQrEugBuC36f3Ed6dHB8ww9o7wzc9DcWUJeYlaJm+6hFhtjVToaRiL4v96zUFWk/2dzoQtowXMRQ/wC3YGZTlvYySLjHRXK38PPogZKiTlfsKm3FYBQp6xw7VZcEd4Rn82/pR4D2D/5MYlevOt1W/sui8Xqvqe7gpqCFP6HakpVo2bltFedaipmeLIpb53vvCTMr7zF0jBpqRKVLSmo5jx9N0k7qV6nye4VhcnOpR8JqVX6BkJL8+QQ4z1lLe/Zrk7C0HCDR7PCWfsbl98jPeE0WWFNPaFreSSoknwBVDQZhDOOVZq+99SaKk1i1QSa5w3lntZZ75hXUk73fWNEBNsfZ2PkVMn+O1AX49KSQGM5y9lM9RieWVEYfrJbU87kKS9cBEpkDey6X0/kLWQ/qRoVx2WOVDQoUZXoAcUz0cHzHDeERX7r+yUd7VjQiigV2Wjo7OUYfII3Jqvk9HVIqDzPCAxXBSXUvW520cB7aWBZ90yzZ+u8glTiGQzk3CJ6tbsfzoG5oX/xfYAbKiIqsTxsRI6ff3Iq9gVhyfeX7f/2Pz7+xO7HFY7BhbnsxE/ua+MX+dDcIfgqp56R5v2ztjq+HYUuuuSwPnLcGqSocDFudJ6WiixAkX/tvAN1cg0ymXozaXVL6whk5iVUG41I69fLHWYMzUv5IBul8bbTSNTHLbX5ftAksDMbxt8e6pFfF7N1zq7QJSlEiCRwdlYgu5BeDzfS5PtyJIWlH7XeenxYpVtb0bn66g5K8j8s7bRhBIemSzfh8XrBKQlwE/kYjvF0D1KM+zn2osALHh0iI93KLTyg4vkH9UeOVgrQcTQHZkfdXLPB5ax5as2akTxZ3g3PfeBBoTayz+wR+T5Ss/qYabhU72qX46B2rZ6kGVfd+mQxM+b9TtoPzkM8Er48lD+NHaUTP1U5lvKuoyxI25e2uVAdssB8dNscXZTB2RU8Qow2DsPpHKtUsEIuSNWobxc5IPtHv/ovY17sI4tWGDwbmywOph+ONSySjYuOMfd5daiv3Sck2MJRHsVCB06q8PtmBvPymXPAa6zUJp54Rb94Le8gb2CYK1ULrzYJhzuN2I6nrkv7ak/gfySntbhsMGugJiUaiEBieNsctsLsjOzPFmi5BX+b3thxVsjYag06Nf0BElj3FwPr+smo9tX/r8YHJDVUqKOND375O6HR/YOZ41mtuTxIzO2MdZdWyWGRwpLroIiiFDzuG868JJ3tPjuXe931rSchc0cxJwAQ75d2VwrLY2PCIwb75CUvRvXAhzyDMMmM6em20VAPUkeHbgl6KiSYUpg6YX2quKAHR+kLx06j2ADc0Ovm3tRCwHcfLc+WPClVdd0yeCmugj02sXu+eRdYBHnabLdOQ0hB6EVWm2uQ9AaYsFRk7WFsCblpcZOMzVmMLH6wjpJhM9oI3xs+ssySoOTmd+qsnU4cCiuVyw1Jl5ICE3aXoqhyV5eDAif75MILjWUoIHI1DUzIlfuekVnTq930/yQ0nnThG4g9uIoI5eD2dOUzjpaGQX2Jr5+sbFIFz/z2j+mwaef/E4JkfmIMvLuWjISgJn3ZLC0GToc7XM1smQuuNXGToaShGuEiBh+boAgg7hLGoXNyPyiK9V5KKI0hzF3PFGOODWoTSmNfDR/VRw7pJcoALfP/I9v+9ommaAPpeePBZM93u6qMpEp6pDpinh9Q9a0IO6mDmwlb8YMr4Vkw7J+eLEn8CFpe6N2P39hoxTG0DlhHUWQxh7wkFh7y+DCoAf7XFAzKzv5KMJCQj7G3bWn5NPFtFYcEWuKdURV2VDlHGMuEsyV6yGUgns4jCR8gavyLxQE0v0BCnvk5N9MMqMArG1nk+/zYPzJBq4JUvBG5bFzjsZpJBG8ov7wX8pi6AqKJBeNpUWzHPdmcbnMcLzljdnzQXtcPI/l0UzWXNyAQSp1hzy7Fa3/6bpsE7jEdc1ofzBMfe3C1lbNsL3mxQ7j0TCwFL3F46gtYMYZiUks2FYBNPLaIzkUVJEpA5A7np+Uqw3ErgRMvAaC/pN4o8SoG59H321Sz8ggGrXTmnGhfLQYNNGbwNGu1d/2+yT77Y8VKHtahItVHSY4EtC1p6XoTDtiVyK0OUvs4qP79W+kbIsfxOe+aqYearJsTPhUTjm1euePOvUtM3dz0EB1H5itcd9gySekALcalMxcLSn30yaLq5cm153qxDhcCCacKiQ7quqi0TY+9Lh5gp3+5rqrl+zHNg+WXZ41+KVBb7pxpgvMQ0scZGpVJZ1wwiCg9tzagD+PaHJYU1NUrspHTBAN9lwz6kpWEiJiOdqgpFWu0H5
Variant 5
DifficultyLevel
649
Question
Which of the following has the same value as 32a−2?
Worked Solution
3a22
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the following has the same value as $\\$ $\dfrac{2}{3}\large a$$^{−2}$?
|
workedSolution | |
correctAnswer | |
Answers
Is Correct? | Answer |
x | −3a24 |
x | −34a |
✓ | 3a22 |
x | −34a2 |