Measurement, NAPX9-TLD-CA22 v3
U2FsdGVkX1+oeTxsj9WZm9gtT+r0sEZGUf0Qn02yzE4BGAvpl9lMXWyRc7HKZlucq6nWOTmQvwChZA59bZv15VgFbCNXfYCiNHP7VzPgDXKBV7Rqn2bas/m1XFgM4Vqac2rBBidHiZVWy/IhjZnvT8ZRlO8JCrYSYt/QLdkHB5I3V66tWIObvpYzo/raSPYpGLklQBo11u5eJb/GDHTc2IptIMAjupBAQ0VK0QGJXHrcv6iRbwwJa81Zfs/sEO30AaiLyBcrmNb1ykiRx7HuU0wz39hqK7D5Fi+/UoRZYMkqYenorTv7tysnK2mjOPHcGUFMYqBmiCTPgrVEn4kPll4UU3yc992wzJX3kulkY8MwquiTousq/WcqvUMIxL45P0rqUzL/jqTGXjs489jxlotQ+xBOBPdUOiyvLO6k8RCK0986oM79anFZYpDddPSt0bPUI2KUemK5jIedlQXl5zpnPXdqUzaavKgw2j8SPOVDU2Jo32xfX/j66+Op7AECQAwCXnygMFEYPplJz8UHIVdIPIOv4gCuWKuvCLaLnjIZYX4G4DuAAEq6H2lUXIEckrJon/+Tn9n4SpKBJyMaYNXZFAL7gRLgAfFY3Vkq3IJy/SoM5MjeWpiy9cnu8OH8c4H6YMhDESIat89xeRThgLHdcpnyxwDvyIjaYYEiBakA0JeCqRG6SwoT+TvVS8ydD9JU6GcANZLCXjUHr77/aObnmDLGJv8onPSMydp0bBIYaY+8/xSlnHSIUNGiU9fq6oE2W9fTwQLwhfIodj0HbDgdkh3USLDuaJ5SyXu8jozvTSgd+BW4IvmyIUcUJH9l8hXQogtsxocbnGGI9dsUnjtt2GB9qmALjqm+VSNpCRD/lPDRtgH0UjlBJ1jrr2ClpOu200L5aMg7b3NGcoHK93HjcNGK9VGSnsFoUMWyqCwJyinlY8JJ0B8kGlGVMoxR8IUFOponwEmlNYFzIaHlYiAUEMmUbjYGW9qFkxvpku7qzkAqU0E8KdpeSChju+6Mm7ERykGA31FGpROi40oc0zaGOAAw5F/GOQfF4YNydVV/67VngchwgonLS0GV2gY2BYzEqyyDkjXL0Rl+nlqj7hkxI+2gvm5lyPlBN6ndAWQztfikHxTGQGyldlifXQS8zal3unDFLr/AnSYhuugMKAYw0oSllGhhacI5tILjQ4hQNGALshjMtuqZHKANiSJC6CcgY1dlaf8nUUI6JCm2bX0tSej792Xk3BOGEbVbOl2TVHdDv8Z3tD3LqwVC9k/PRn8bRTcTqInOKg3EgfiseC3fEi0qYa3kiGQ09ZZWdnLMTHqX+QYjs2iUNc4xNzRAOXSXtmd16nj4VtP4Uj/OqgHfhEn/t4XAZUdn9aCnf0jRt3C0YlBuKTMMyhfTZ0jAIIA7OmgTMAqHhghIfntzfRN0igl3fvS+7+vHOezzsIhWkz9LzOoRkYZ9fuU6E/pMVz4E3St2H1Fe9+tuBnp7hlMTxQKGmjpj4fAvnd85DbF6eg1XWTwx89XV4UwhVkB1ubi1o4D2BZplaJDDTuBRcGChrArsRLSGkq4h7veL/xipze5jmx15+gZtWEw7tsTJzNExRo2BGQ7TfK7RwHur8sehYlNjfzHblshzjngXAOlN6K3ef0CbxlS2K580S42LR7An9opMI5uoyQkDUJohhbMmKmr/KWvbnVWxoLJKtSrEeK0vI+UHbYfaxW6AEFO7lSDqg9WAHVMVFKIR6Yh/62x9qAcXJK8P+VBiHIA6KwTy9lZvRm3BCOxJi0yPx/k6deYoJuhwjHDdzTfkGby0RkO1R24xqeAwjc2fgNKYoU5cobS1mxXzpPyo+Aqnt5/hG8eJEjkHWqj8eLu1sxhjJv5ZmWnEzzko/8wtmytrv4ADuf+YhB29VTIhqGxFnrXEyj/lMng4QlTj7AE1TtW2JXUgctJpHkOO5IZxS0MWZNBY++5PQ2TCIZVQE/rIjdctT6TsAlEqzHsLivovSW3ELRaHZ4QxGyZKWRaerP+D27oqDmy1q6BM+pzcW6Vgjd6OCmkJply4E4ZpOixYkw7IHYTpxU5Gpt6tFiRk4f/nywKq2RfelmMemAUY/1NWDQ+3LrimOxezFuPbNm9PaL9xcw8kR35estmOR2vpPUCdNFxEUXIXjNb+xWr0CRkGnw0RtcaPLfyxSxqsgc/g1uaiQ9S/3oqt2kmgKqDc1iv8sxTe35kgfs4uOC5zGvcuRJUwjpVsUm959+/nFXcY+dIWmKXuV5M+8BeLCyulMNR+r0BsQDncNSfHjGtklQIQf4b+7tODNkjOBi1+3yal99xN8g79gbpjgBuD+sIh8iVthnIG3M8KsGQzT7WRbOismkLyMrszgdL5bVPiPdzeYSWX0H89J9QhnClB+0zoOJvusHIZ2tmPzr8W8QtK4BtYM5NSMAW6Jd0Qj97fxNNP5/jlmYgMR2acsIwTtEbHbdZ3V0f6gG5odZtdm0BsxeG56FI+3QRmdgKaVrnxpX9vvxvOhxXX+qHEowi8NusEXjaPIQHZaarz2I4D0RAnLj/s3LdBDrguNwbu6Rn5BhwPRU+X478O9L3ejp6Ti2t37xG5HHOKMNaVZ/nHsJIoK8z2kSOkYVe6AIzmwnP+dC9uQi2C5mhCyY1IY5aM0nAjh/zrASN4clvCuJFTRUTXwk1pN60UFdZGY0CsgTk5qz63hHNBK3/uwpM3xIUAVJBh5e7pNq4Bwywqst7W8+h+kw1RnIKHqsToAU09QNfZnlw1Pk3/Imia4Vyccv6a0FsPDlJINN3n4JcMrBWxWfJwrPyUJCRgGc2jqTK9wzaUrhAMOVmw0ZhdJ9XqGi0X3Q1s9d6D3sgxbSIDGr5hTZu6Ci4LPm4kPjYAE7IHbx2BRk6qaknCtYb1JgcijGXuILN8gXflejN6DXRzkiTCftb1hvbDaWMm+000wEQPd02CtauFK2yUM7D5xq7j5keX/g1Qk95MbZTXSNswiOuehIRjKhrTGKlM/llx+n6STZ1GiDaImYvWEk5M74c8uDtR4RytZcSfb8aTytV7QzkZewLOv2dRoDGfObPN3eM78mLHCqp82iYzcJ4qoo10ALycRhmVhcoOZszIvWkylVpluvFu7EBtRzI9zK9WKiG8K5APNaiquABWy9lzQYejXHd4rRIHT87P1PVxHP54cqFxi9H7XjJ02oBFh2zqsM4rK9psjKcaPp6Aa8GQi5rSVI3QlSQw07JDXktU80UAUsssQaPqBIgqbCXyj7A8qU93kNDdEy0VWIPLEFwysh2HhVZmJJucxCy7AfOhndy23w+WG7YWVeZyk9jnUN6GIk/sT81vSht5/dO7EaivA19asgMjJyQd6gaaQBZc1JZT7zHCFIGGjt7vZIdMO1qaLksmsbSw29l3hB6hpiJYum5ytECk2RGNPGUjmkKkq376vQrVhAqHLtzGz8VpX80wU/sXu85UZ2BrnI5AxgtlNwXLdKMV/yF59SwkSs/5bpzszpu8K4TRbWudqMmnQtkMO0Ph7RQwRbk3DWntQsDyfwuDBtzxLeBUY2quB+8I7gLBPmS84FBteL3orEWcv2KsAH7xl7y4F2VW5562229Cou1yUsUyan4zBmD/J9f2V8BDQOwwJ8W/cqRb9vZC9eKBs/bAu68OXYF4/TcU8pQY8yc2gHXVGODoECP106pakoBMDO1SxOwTn//DG9X4uMAxjqTNB9cLdyo4Cckyzf2KuATLUbs3bKDU2AaTmQtQPxeLWQVPE+BO0b94fgnplWcfMQlxNmEHyAbdP4wOqwk2lDSlUvaasdeqP9BLChP6bRzvW0Kl/bu4yLN8cLh5exziRR4WUE0cuWnsnEeNnAvQ5wIXpQdDiujYv6+V91+U9Yz1VncYvVB/gZeYEk9dzb7MRX0HK8Co7/s3xfiH9B78/V+WGOcK1GQfAPCw+Dt7S4+tlMtb4mFyq6PO+Khi5uYRkGaiALrtvmb1h5Cx2KIOK7Tm+QHXF5qtS+QyjJ8O9W/sUP2NdWPnqnQ1tWuBc0v/CjvZMGyL1fLpjd1QmZbqD7coROzrsHz/5pPo2mvi3LOClb81wt/PqzP5kys88BOFvuLTAO2AqUjahlCSDNKlvTU/nS4f7yopKV2+GTtCWgaknYNKEpQplotBYIe9ZQqfnH6Al07UBOBocra0q4pDgTsWtVmrQoLkYTQhP6Fe9HHjuuSbnIC2ZwQ1hcMxBe2nzgVO4WhxVVtTvw8vD9uz/LlurhrB0t5N3KK668LBFiSNLSx56DHQ8HjP5ZGG9buZJ8EJx6l1E+DGKzrSy6hiE9zCl+onlwuIdfZgv0gZlB7LA/nCI2ADCR33sCKLeg9DuE5Q+x72qb36+4Wto3N253R/juXyNfDi9SoELBQFlPF7Mt8CWG/bIHWCbDT+uYYRqlqc+8A/f4tUzp81Uscmgs7CdHTDPsTccZ15kUKMekQkb179vey2Zfj8Eeol7dDW/hBnB5Urrb1gFtXk22PgQTA67EP5fI/nrxlUOLmGwjNRMPH0rgX1xR6BV7MBK8pAGef8lIHDYc7f+D5OUZYc7JgTGFlgRHUYCdxnOkExnOE9oiEZ4RVEneQWwHABvU9Anchvo7sT21WBCF8P6cEEoC7v3+i1V2bkgwxcPwfAioZdNa+yZ81XTB7vy6ll2PaNVdBoyLRQihYFbHrEySr7QwKzMy5xo+iNZtpulbN0ui2n85lOjnLv9mTIjd4bdfp4FVSiZBjaFg45pK/wDcUW292U4ciyBVV5JzlPMgdCp+CIISLb/ntnuE4L8hSOr9IO4cVRZW9jqKUmqKev7Z2OaTFu151ezVUyWXn0M7SzWfWn5y5tG6zjZlkGPUl6OXoOXaNC+zu2+e7v+bemTVNKCiXd4wwJBpyc4kCx+mVHwHfF0kgRcFFSkrUT4ZFP+DD3JCnYvIqyz1ZHYht/9vtFkthQ6KUOlA2A+K6VApCBS2w69mn8ykEYPe3ul8PPqe9c7u6LQdgZrtNs/f8zVi8lacExpXELHc66yClleBoEZksfCvczcYFXdcG6O58v1eXdJ08oMwSq9dx28TMFJ1RMeNAmk3mmWTuUyV3AzsFnZp6mC5PN2tvkhd5i69LEPU21d3BeAiXL54QwFsHaeWwNrUF1qdkFE8U+1GjEkJCvDyHXVtDIXkuHkym0rQdc4cKddssGd3vigfHrFqoOHXaf2FGE4k3am92cbpn7VIArhC31yUKPHi6IYxOos5haRY4yWSE0/nUX8TEvUXfpEj+iUDJK9KmjM8r3LKyq5lcgmJ0z6wru4YMS+SP3nl1WEOpZqTERKI0nRFL8QVaP2YloCTY3SqJs6pH0qhYOvORHYa5/UHzgtoV273DCG2VPUfTIOsr9IN2AzhSD0yA3KWemU5kiAdQ3Qt6iNpkUkumybQlYs9yD/Rye0AE6XHaivdazsr8mLJQ1QDB37uXRupiplc5sNA/2iwHVXjSLiuE9HbV2o+5V3Hj3PLJMifql3LjV2FXxMcSEP/e7LMS8jjfg9tQ/mZ1HHnnh0Zgx0bwny1NstZqst1h/fov7GLyd257flxHhk/WDymu483GnGSeC5F2STHL1PE85EVlKg2H3+vP4D5dVOXkmXMfr6P4fu4oaM/qDSURXsSrU81v5q9jwisloPFWdlGGw2R1PupR+KsqQOVcfCeYaN0DDtR1gy9q71Tq6OXBlV+VeCteRpMqI1wXV+yRtcGv5hkeZy5QO1OQyEzLUORjSIMzNMrJBtEsaJfwJubwMhhHmrLntfkt7602Wx+dZKw7tVISrGMZtmtdCuxGsU5wcNA3HTEiXGDSxjzu3FXcAhJMTB+HBnXxxEjHy3OzDNjifvJzfGNUw0knGOPkh78HLJIx4qjWci1oIG8aPC8icUmkszDscYSoSXXZBsKrOn9eLJHlQSRBdwYFfh8sKmzx7wA5fe1HFrbyWulLG/d+t2cdxMQIgrosPEw9D+FK0fPnE2sI48YAgED143E0vhsFCCPp6w2wKsWkYovwNWWYA63vBeMbznw2oCXIJ7G3VPGx53I67zTBICl3LaCxANAUe4qkFmRrk8sOutcm4jqXGgKrKDsWmynu4XT5A1J/ZHjFTtWB5PElM0NvYEUWwzHkt8lC7GzhhrnnSUao59rEjpS1gSOV3LpZWvt6+1f5xwBod8Ff5KyKmccce/VC3AvQC3Ctdf7c2Ywkq0y5f5VBm8IT/8jyn88ES8FdCr+ryv2fsEgrOGfw9ZVGlceFdhvK4La6f836FGuydDGOp8lD20ub+kKXH9ftZu4e/HJy29J74iG8Tj38DGo6yC836p6WRzig4on0spziq/E2zu4FpR3KDg7TKDsL+kEvOzqt691LK20Gx69jbn/hBp2K58GUr/XMIBl+qGw/hzHfP/1H0R+wvaCjnHSZEDCWrjsy5RD7yvpNkaWo2/hQHg871RtmZu1XT/InF+XS1Enq0+WZqnZNIRic6gEaRzXtaph2uhOsbtm33fTDv+KWya/hnDfRObzGAVvh0iwCfNQbzzbcU2SuBq0FI2uFXGjyqq+8cY/Gp50tyBfj79C54CiXzZyQjYlFUBycHQfUvVuKMnqaAFnmaoscOvwf8wKl8KQXojVwPdwKeMJWu9Z9erOqT/aos9RcOnzdIZPu3iXlGPvL62F1OZjcvNoYlqdRwYbMaZxEUVxBMxZ9Kfh7U2vogVrmCrwiBR3vRhsXNGuh24pcVyM+qTSB/AfSJ4PKQ2MgDgNPuGftJt0sPVgwPyvMoTJRgpOhykeeHQwVRWr4lF+ZBj0GGxKcq7grlsN8tqbr/72tVz+63QXlTH7JE/+fJssd/gtIx9ZvJXEOfEJHnJCj5MooAKjp8nAqbpgvpIMyWVrKb8LKyMc9r+jYOAY4LCxnq53i97PNyABhSbc4h4ylk8YggZCFl2VK4iJ5EJJ35mp29g+A+VT90G1ouScj3bo2GxJdVyzj5nqnlWfGUYR7jf1/5u+SKl2O+KganTOojPDU4+6neMGvYHukkG0tuvyjQEdiJSLQQgsp3TWILj0ID1VzsWPrtqQPGV0GLD0t5hjSwFPtWt8d6WzOaEU5VPd9x5Tn5QC+RDAlDOTHTeOHlhxARAeDM5Qv2l1OdbBQSWxxpBrv/jbSLqPSlttot1Bs3UKFWdt/I/FjaukCSqa3Ym2TkaWtPuI1JQl0O3o3thIxffsYNIAazISnD1wVnTwh2LWPJcap7E+NxuEVmfRrU4VhpDGwhFrDNvPwj6tSZdZyJrfy3goLqcFEaAhrBmA/26qXNI762cPzlMaiBmIZWvx9oJyzM9us+e+IAdcNb+GZXFFb2VKu9TfunUvd7iu/3cOcXIJuMTg8tKjSlKB2nxPqfqKwRDPTFH207nqQZtsZLd/4Zv/fpqbqY75FA/RT5feZbAx2TfNUF33GWwTp484NbpOLJk1DXFeFwQLGSEAI1peqdX95zBM4NGSp+s6Em6JvQg/4YD7IgitAgHdZlyWCMRJELWCR108UDBxYLEcDODnrjw7UyxvSXEE0ihtQXfz6IqOTJniJEVAZOCeN/O5mypUaZNq5zl+Td1GjLJ4YPxkzx5KYqMOfArSC5cyOTzqMzY1yXCHb+k1qUu33nu0tZS7GN25gMiWp3BmQOycMNOpzlQEMv/eKdqdsH4k/e5oYBCt5veAb33kakZNAD6PWAPryiJ3OSoojS00i4xisCU7qNizuUQzK7r7s94yDMzNByxl3ogtlqMVS9qIBjdmvHcOLssN7HhlIGmZesRm0j5abGF32+p5k2qlkJ5aSwqbU90DcLGwjd88m21kSzg+Y4ZMNmOqwCX+evA40TvDQKuGv8yByPpcxvEuatZswssrwnX/KMhgmh/SHTuZCZbQdTBwUbtEpHTbu0cvr0SgPsQoTiLgAI4ijuEGLKppAO6Rzy9PoHRCksRcwYoKD6AbHUQmIjhFzy5xO+pvp3xGQETpQqKEzgGbDPMeNkYuzSTnMpXLwwxvpbaydf1AAd337YFxEaM15CiaU4fAMJZ1jtRrhoZBakLnGpNJqOWqg3TpVKcOvWrHTsXhkBEvnUL8Dj7rmlLXK8xNOGrGpfVQ13VdIcNSScWM1eBBQF/qauHV5NiZdWCtKswnO1edqf7okTqdbYhGPih1ajI74lOld23oE8kyyMw6/j0A6jvSVI4LovkYQeAn+g7w5AHMS0vXJequyQzpbWNkykSzZgPWAgDQ3l4K23NSEcIDVrRAvc6Xt1DSixanIfjLUhe01TDxmJmT0Isi1et2stfoQigumTL1WH7Q62CNPAyEeBcSofGnbVwKQDbkK9Kh2z5DPF1xCBNQF/wHUUGFaFWNKvfLbxVSszVAnUjkTLvXucIt7qvZtEFx3lHvPZ9qtn02x461TU2FCf9X5vj5L8EKHNRszoNR+j4a4pLUakn3oOnvgJll66nZ1TLx4PCHBCx08DMwvGKHXHr1u9QMp2FMyTcG2d0howtJ/6ouLZk44eX1Ai1IfEHFNFY6/4jXHhq13S4FP4YwWdKEjzl3UQJqaaP64HFr76geU9EJcwBsl7yuA+7nGRUH/x+omFj5e9tJR4hYj6aEenb4F8pEA8RnRt58mkTQMKhvTWmTM4EZ3TQsCtD3cy9P0r8PAgy6P0NTbev4cGsYc5JJep9QVqmR3pM/8RRW7kIjxQYY3TZaq+6/QIyctNToOyPrO+h/Lnlt4rhXJ0x80A2Be06WwLxJbngn5JpWUogW57ba+VkWIDb+s1JJjSxz8LbvDnxXRmPCnoO7cmhYL4mWl09kTy+wdAZ18FlMa5vOaYuPqDs0OWvmKRBMkXUtC+vSy7sXKya7w7H3NQio0phGTdR99n0jnoUdOJs8Gx9wYWeXkfSxrmS6+EqKGQuQpeLV6eUzYfMP9D4qyIurJImOPaCVDoDoPN+wOBXSjumMBlF8mzob9myZmmLQPzMXmJ0JFEtJ0t+FRrlME8uzBUTA8agHRyLuTs1adQ/x+ABFwlsXmLbnmWcgQaDFP/AAoVah3mW0PdBTRXDg7g48hjo4cH7ep3xMMOR6FgiUBoIxrM4jeHLi/LxPqWy4pI960AJPTEKZTm0fkycSRiZliqc9FgEc6iVvHUJ7J8XIfrV2kmr+4tbaNuDSEYYM+oQoHbyL0S8i/KPDmteTzXnZWCxHXVN/xCNEfkU5rSSrxaSatw/omx6CD/6qLfrd5SwS7WwOzf7Ihvq8IOFVO11E0Q5s3wG1QE+iLjg9RggDGAa+FUjOoWfIlUbN0ZWYHAfzWk3XUb+GYpv/LHEHIATSO+G2bTH6PoNmesi5IWy1x7PTOKDCQ3Y+ztNfCIIQXnEws8Hxj1uMfbCizxCw2hY8HdAe/UVTu7Gxs8aSafEbu/boKSMlxIbGZbqVTukqhboj0YOfFix//GAHWCKgLhRfw6wRZPZluYm8BUVyqoM/5qzcwB2qfziZsjbW2WCc6Vc5kbRwIezYiV9s0WtGeJSmv4XDSgrKSIEAK3oOJeC0HYu/Vz52ogf/TnSI39XtMvvHdY2xaZuUOQFTvbXWltnNAxtb3yrUg3XNbJmTAhO2dyQuUseV9CJWgqZ/exzIxPEXaPljH87GYFGXxJ3fvBsDTJUUGbQdf0PgDCZgN3c61j5X2/uXbj4tqNLIG008pvb2slVjlD0KN02FXxCZfDaBtX/dq6lMC/ekaQmP0ksoJY+C4p6yAG4RXi4Q/EbJumRzZ9h0ngGmZPAs9tOYgg828bZ9v1p0KWLOjzW9NeEWRUANs40W4UOH3WkC3wLN63BML44v2JEXX8py3RFq2brF1vn+i0vQKv8rSLi4k19W2WOW6f26On49bawPg1DUdGneRsNpC/COeeAmOxJ/Wa1rXtR3rC+U3qxOqaqYtbZFqA4rpsk/l8A6N5CxL8zrH8Zw9unhOLlIRLm196ykC9IjsmyvuAlnBPjzfjOvnxTWUb/CjPOBnCiTXN1gQzd0hHeWnrNDCfSvv3NXtamUsQFhL+J+iuTGnDe/G/HQ0QH2Pt4JLoDow3FfpAVCkNjCa4NbZ4kc7SiMDIzj6324Q7l6MNNw5XndeIpWskfMXP2pe2NnyTTscCGmpNb1Q15KpWhMaqwgDwQ5vvWfwH1xu4+ufBtMsOaFNCvWzQH0cMghdiSWRqpD40Z+LeKBgFMdgWTOF/Ako/VU081SIwxPP+XXbuwwpyYQlkROBhCTGRj0unb7QvynnbIw6A5EqOnuwQdxonEqF7Gz8jTHBV00gbSMisx5PCN7ulu4fumN7D+z+tXKuUKB5zc+atx77niCfQTX76Q/hYSOA5ZJr2plmu1gF2PW9qyNgsN1tRMDl6tbgMkn1YmDWTkxWNsC3fcUjfQd0XYM5qB3mbFpq8sV/dnCNQVZtZBNwClcbhitKb+l4ax5AYeLOVGrPHe70C5qaUZJC6rdvmcS59B+nWHx4EBuduOP7W09rWdAThBf9ctlR9FoYfMMi6E04ywuMPzrU8Qqkqzd5UEK7YoVjse90BHMaKtQrJgD6P18oZwt1SM7e2niQWDttPyoRM+kKx9su+ZBU3GgyxxLT9BwhDDDYuxchzE08FcaETFcBSODdRbynloRj10gNxq7R4qClM/tfNjzpA1M5kp6Bsq0RQ9prahJiuWk2PZAABOFLbZGd9/gHMLOF1/AsqjH6oO4Lkc7Zfo0n67WnIVDqn3tWmHHU4vUxVs8s+kQ/jrqpg1CpLbKH2uVF1oCFZqL96oQR2zW6lZ4OzdWxYs8IDV4Y0ryzacVHrLYcUxO3FmXyjAhpfs4wMNz5S3w9X7e46IcNF9vDW9CIdtb20C3xy9pYfh7/TJyiFfgO2pqhE+Kea5TsfVZ3whyxR1uat36xqD0lr27aaJ4jClqA85l7btPC+0wNkATH5h5zGK8HuIAA7lNi9VccapCAeTXdPqHJkSc1WdoncxvF51X3YMIcXIBjkW8fQbbwNZHA7dOtF9dkx+TQNI3Faswnd8i1pH6Rkey2xNyZBZUMHSLyGhA2iLrVjHNKNHvzD1w/D8kFgaQvlXi3t2m1Gn2U=
Variant 0
DifficultyLevel
688
Question
The length of this rectangle is three times its height.
The perimeter of the rectangle is 32 centimetres.
What is the area of the rectangle?
Worked Solution
|
|
Let h |
= height |
3h |
= length |
|
|
2×(h + 3h) |
= 32 |
8h |
= 32 |
h |
= 4 |
|
|
∴ Area |
= 4 × 12 |
|
= 48 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The length of this rectangle is three times its height.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX9-TLD-CA22-v3_0_1_a.svg 400 indent vpad
The perimeter of the rectangle is 32 centimetres.
What is the area of the rectangle? |
workedSolution |
|||
|-:|-|
|Let $\ \large h$| = height|
|$3\large h$|= length|
|||
|-:|-|
|$2 \times (\large h$ + 3$\large h$)| = 32|
|$8\large h$|= 32|
|$\large h$|= 4|
|||
|-|-|
|$\therefore$ Area| = 4 $\times$ 12|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 48 | |
U2FsdGVkX196zAjuQxnAXOq5V2PJ885jEO74auYrw7Ai1b1glMQRx911vEX1GxsCwCvODDeXi4Rw7/J+m8ZPEs23bmvm+azcXhO8rTkkT9jG7AOUyhFD8zvDCaKLthbyomrUjdVZOzAReTCY21WzhBTE5JZ/FuLWhcOLI/lwiOaMvwgbfK9leR02HjsLoU9Y7wkd3iNh7gubmcyKDHmBDel/ZHeGy/v1tIWSlxficggoFBk513Ifbj4DQN0Sa80LexYCu1tnWrkGY9DvzBgGHCEmI1obSUWYfQB4bb5oeULY0TOQyYEDQ39ni/OIAlrjYNl9aJ806nHEupaCJ24pYRpS6Ba+s9cIBwfSq0Xj77oFm8ZE7T0BVzpvhCG2Mxk77s1VtMjQLRFSx29ztAyQcBeA4Ds3wYVwo+6yh7K5ihexwuJ2B+PhGF/rWQcwDOVz0YnToNdnsfNw2KAK34/Z6DsxeOfn8ZP+ykYOJSa44JunLwX/vwMbmb5sszmXOEHqgh4q1URfo8IOFOFPifO/Kf5ySGlg04/Iv9Ho5Hi/aoCxV0sjDZUet0BFmPt9ZFD9xFnMBpQiGARYMwI34UHxiPQYV8nXnlFO/WWfm79h7zxU2PK9hN8uc2dE8vdot6S5atFVWE1dTaGKddr7gcxk3SZRfWY6u1RP7nxjxtwSBURXTRaPIv4LJg74z+7yLaq+pLjbq/cKGWZGH49Z7R3fgzxE2hZkYxrs1s67UofPo9U9CrVtSW4TdwmSN2Mf35vK0tc9pfXbnQii3sKSBWShcha5ops7iFFADf57JM4XTgI2ZEdr8BrBvq1DDWfkzObGMLeACl4gwG3/iH2P8eu3QsdEgXMdOEYk9zDmXEwZXVttykPzfDZhTi6WgjaWZr82qapJK6MoQLKj+jjNzGnIC8x6lENHXV1nODFlLBPTXSpQHlzEMsFGdE0Of+JE9QK9s5e32O7jdljAWKBw4J6+AseQHkfnRi5Rfy2n5+fc0nzhVPPTwLIVREqG4gYO43Kcze6Jf5ZoW9qptb0OODFR26R4HTPNyIv8uLUF4pA2WY4MIaBQ7nrqRJK1G+r6k0gTlp4CQ1amc+wycdus8dQWj6iW18NObvlcfxkVCMuyWrayUjMHcsKi2bfOA9h+TYcNRDJOwt+pYlwlXlcrnESpwKwX8kpKB5JMGhiVj/kfuVPlbRSrJeufPp20MiGBmMbfhLRb0dMToC4Sx0Ov7DRpkhLuKsKlfJ40pFssaykyleibsoPYrrsLL1ahq+coiqtDvUg6DZd1y2kNDnArVhdTwn8CGnq40kBhxQypWwl6u70ccaWhCjBdpyv7ajpmFz0YmfBHSkT4/ORuLt+jayVSUYHBXoacpRAHVp8/ghgOojt2TFOuSGJ3PZrS8gs64EPdQoAznmGVosy1cUsak75l6B9/gZCPlzJyA/+YEjW8ol3OdhHzdVI8v+Fu25kzW3u/jh56iCmoSwUS5zsmn5EyCd4z7Ab1ajIixRjmK9BP2G6TGINM0/sbdN7jTY+NQKk+teNWC9TV4spiBACJ/u4fZxoX7IJaq6+rTj1r+NGevS1DQ5TkPWhsyq/L4Gk/kLaaxHr87UR/x/xuTpNMBghl8UR1aeNO15eQLvL7KG0+bUkxT1aFgtTCNcldSFFNcdd8JwxUbZ/OByPfBUpb74V5dEfgFtTMbnn8FXnT03GqKAAETIxFUdxIOhmu/3kOSFXCAlKjS6xBQHkVXkvJe7vMjrNq1d8zXZLZqu8gLYCU9phyyv/xMIXS28KMME7/27qwyLiwX3MFc2ctusqTS6BdMNNvXu0kQpEvPliDmzjT4sWCYKvqsrFs1rLcUCBqCU4YMMNAHFLx+ZNHqN8+vobpDuLX+N2+Cam5ZLaTEMSjVVd1r/LTWlC4La7f7g5e/RFgyL70x0bYK3Bfz4wuzVMesdDs9EzFiPY36jJV+lsASuY4ZQwf0+Rwe3dBiEOHb6WymQbC2n57cmx4Bo3xQslATbtTlmDgjbRXJjoDCTi/hTPejRHZHpd5eUOk+N3ssndgofVJ3Wg9rfznO8Vnd9NAiMHQJHlc3VLSvLpO3eXLhCLBUdskltBZQCI5yf4OZImL/G8sEpFzNXlCH2C9S8QGT6NG4nbfIJRuo8JeEEaUBNOPGzQXsMCc8zIsk7eOkCo6J13n/OopPBoxXZSdJFlS6alIFUD8ysolzUoR21ZTKRIXyUysNEbNLsNxI4F+I0CGLzQWfMlloll3ljPd9t1a2sGEA+OxlIWjwEmi1EUGZrmnnSFADc5wwoQnCTuSE8AU1MU3JMbT08C81RdYTweYwtNz/id9Rnvy4ridFDvuMBUEB8m5muqxKnSUD3OtEPtC4e346C3VjG/PIFzTMVmqy1PDWfFO5Pm3Bb0m7y+KhwbV6ZWdphUIWjnbhHfsFzwF3Et/jB8zuDnf1+UKb+Yo6qk8wldFHgO7tAsWRS3lG6xi1t2dPQxYvXqep4Nk+fiE4bjlZLOGPrGGJasiIiF3WCpKplpawPgpV1h+cqX8HckmcnUMdkpHZAFiz/uWlg0+X47gR+rQDrCp2fcdbjy7rwAnG5XAK1fPFk16bb7dSLcjc0F0LHPib5UVKqvQH902Lo3pUbsXRcEAN94rrtNo70YJHbV2b6laWSSAHiSuDlG5VaTIGe0ux3PqJzGPtnJpCwWv5EKz3bArtpbyUYVN1vbswRzLumD3MH7dgRGr3KpuS/KoDkIeX0pjaDGnOWsY1MnPDUENboIhKj3ZnkrhloeJEC0/bhsIkpA4Ir+d4RzzLbgt00FDtEgkW9mEtyn+CvVw1TWsL2uQBaUw49ZNSiQHNuf2Uv1SBQDq+6fducEuLE/77BnRAgToomDG9XYa1szntZkvgI8tG8VzOOofBs9g2gGAHCFRPB3hXwmWGhzbMbvo2xJfjPHBfkbIe+fp0XVpQ0nvOsSJqpfObNnSKyWNQe3fiiM+1n6vIF61T/xz4g/CHn1k23ZBFjmLv9/fgOgQzbIR+hDtYEMPSX0nJ2/hJRvv8xy6R+52kbwb2aI0UQaJ7loBFfV6YRDgtCUIVffZsTq2YqffUosbZBtsDUoWcGNSWLj6bl3WiLVIhn4VM2mj1A4cO/dAwqbT7nozboiLvhGoFeKB1mpBdCRD3TljZqBryLngrRHkkCKg6FGBU3GSbfIPSZaWZIgsmKYZC9ephoxer0WriIqc3Mn3eNUZ6kKUy5RqmAI18t1tSdUXkGFR5923HDcJaDdyFcSHgBo25MVcE2yLhjlayIm4T15yOqVeie69EMs0Q+G/Zdrtr6MW29udJTonghXsikhcGxnRyehwI62tPLVWgeBQ7mlhBQdIOhujxbAY2+i/SLqa5dOo1elD8Q9VQh9fJnKucL3K0rRoDFGMPEiOsaVfDwJVm3nJ+gl9lVI5X9LVTW5IZaOYsDNuYgx0UxDnZ/1fs0yd3mcIO3mEW4+F6MwczTpXW58eygf2NvxJX3rsL99Ai5Vlo0rs0TfiB6Y0FxGLVpn29vS/ieQjHIiqFy/hcnkicLcT2lTmyWLjqNoHdYxXwWFRPhQG7XSwzT+usJViCi1qm7ShzcAvHG/oG+imy82FoWTucC0LJxpPFJaxGCxV+80b4uwitJuza0dHtTLQsbrqCCvte38i/pJ4kJ8FP24QplRtkunbzqbe/oiULtPp9Ihi7Ur0JMmIYFQ/1350ohHuK0lPXWpB695ESzR5qSJQbaBV0CHVZWwdkBv8Dr6YRBhnAR5BFM+JDSbFszpZrEPzPHldgC8kjAeIBg1BAoaANnrbOZ4qhRq2n4Rh/leiTguTb2ihweNau4rGsPl6uTP0I2mSuxrWJebtNOxeEpjLFlV+JfmjRqsCaioS5VdNtR2mUpFGDFL04J17+oZJ2iV3HwlkJT9/ykgO5rgXEHBy3vhcC03dTc4p/+aAyl888Db/C+6nfA7XbTUMjQEdQpFqVI69PaPnpLsebO2XG64z4qs8E7Mg5sljm/cu4rBOrXXfLZuw6rkBhuV4P3jAwHJxD8q4A6mcFEEy+VSWDWvYxPWZocRteNnZwfEQlUzY5zh7+jeCBa6QwfSbFNNjbvRFyxTbqMNCGlmncuyXoIFq6QseOoj3pok4poWaKfDEHLFUp45i89SyFgY2RRDGQkxgVQa9u7cGpHqPNeheQWcA7Qvx1mENCBtSAqVPgklCJB+eoYv0sAvplcFmo1LhPwZl8Q9v3vmibeNEA/MJUea97vSZEpN9bU0DAIpNv4bBW5pcI06KNdevwKAOuNeIxc4/ks42qy1QzzvktgalmFdwJ0wwMt69e+ogVFylv2+6GW9h6rxqjgFJIkWcbdsuDPgtGyn9RQ8c/hzCpBQ28iQ3/qjFJBWKsxQmazGIMTNZcahZM3EqxCqd+tyGAmOk95Ml545B/rOcEbKBUuon0eV9YpefGAUKD9BSJwteP20wswfACnIEacP6HX3HuI+ukW7gFKYFu3jQA8m1UvXoyM7bHHmwEsjeeXktn20JSfwqHQs/VzqTW4JT0xrO41/bQfGbAag4hhqUrdaRjYJEqOj+f5xQVl7VMBUoxGZ3R4/yt2zAQSucml5XZk4dyC5xqXnpevxizOw1AFQJWAVzXtAQxen9ZEcbh0+PDVLYp2f+TCq31vB9iMU/E+JVBMAwqJ5Sm/v0birFJizILSfzUJfrsEprtBqWlFhsQtibSxyq3rcTSrwGoNg5+z3SvBiaXZyswoHZBZ+QhHPcSWs8M80otYBFHgVvuBSorHXtPYyVoXqE74zas1SrqD1Bd3ev6usVBHdHOvgtKZx1KTKdM2AcEFQonGy9enEU7MkgIxA/MXpa5udjXz07mNlcxaxq2/oRUNtHd0jBK19ZvIEecdkVaTnzIX7g+y7aTiIn936JQf1txG3lm4SG1XrUwHym4LcDLKrJBbs0ZaSL9JZevdTR4bgHTodpizYd8745xoH4xYi31PNji7ud79mR6CfP7vxMCX/89miL2gxUQ932iU/CUMkhYMUkKerGK/e85as12MdtG2RtC9yj5+c2I4FMM2y3FP1G/YuBcco2zz4FBUk/qKiNljQaOFAJ2hLgcWivIH19leMpvWkMrSbZuljBTkeeApTu4WyrD7hXXpD6Ppdk7p7N+3HSibmOPXLvaZOerW8FR4iDRVjlEoPCV0CXRiBnOG//3LjECZx28j9Ryp+O7YzCzVEEjAj7mkTWe9XvKiR1zH5ABRT3mpiHhjkxwE5hYwTVNxV6rVboPgK7IcXe6RXsA7Gm5JDCiT1f0no3KWSnr4GcKUlL4wQqAmAurYRmy2DgMb8bMiKKkcyQnIdlz6l7J0JaCbhMaA0x88ftQddSKDuWl8afVpHupM5kAkjENr2gUSVUCsb+K+gR225FVX4QiZ15xErbh60pSb+88y534w1wv6VKji2jF17ylht89rckmEBYm4LXR+0/yn/VtU0uD1I+Jj1gysY5bVLrLnS6046fmCY7OxKKYGkj6MoRCv+CT2a9aunDGKL2daXOjWHS36042FAuO/whJB3o8dsliLY/uTqzVj5AD3CtKz2b/VtFN5rRWdskjRx8OMifBdjye0FK8efjtxd1xH3DDoodVvTNdRhGlnML1prFwrCYwumrIgL9Yoiqn+nEQgsmO3LHL2nksMhYBlEjxAyon9QSazw4+YDPatdwzkbiJoZB8DFhtWuu/qoPePGajSPrvEV0vR5VshurEZAiWVt7+UpWJDXm+obr6i0SGwWCCG9PN5c8FulV6yCzlxBtjYQ0FPzMbkt2dP+s6Bz0kGf/By2CAL+Qs4snlUAfcDPbFXEI0X70TQaCJzbpv5Wesat93m8JhIYoupoTewcgBnPMl9MpElLYbpRT+Oiyu7YF8ClR/+hW8fd6Vekk9F2c0dB9x39OuvXZ+nnFAEBR41maJiAr1fYcXugR1js15pvJC75E927yrXfxK5qiK/Hvj7UYJNrrsEojaIiXUPTb+HJvtJZZ8QisO6Xz8Ucc6J46JzS7uIX+zstKL0RU4i9u1KBt8Dmtj8WMeYoiBYtB51rw/qyScxQ6es6hQDRqDBHHjL6ElACiyQ6zMj1dXXquUPUqB6aAJ3is5EkBDHHtrpLeVMV5tTOmzdrXCztKxHhMCX63EGRDX4Vxtx24KMiAfQ6cYe7Sd+kgKB2Es2w9eIPbQdThURWP3HcVzNTKHbHDkWH9USuMePVrPZVlvRVplpB3UJFf6h0dHbeff45D7z5EMyRyUAgT9H8Tfon1fzuq1wmgpKxJ4PVVpqeHX12JCWqhp0XKKxEuSRujN14YlhzGR+UpD53EzCRWO9ZKmPsJQTADukRk5hdMSkylnoJV0w2Uhgpi1b5MUdZY52pawL9itEFRWqz7guECAqhggQUoEVydQ85STlvxdVmwGNCvnoiG8E0LdHc9Db8p18o63pFJDX+Ycrrir/ydHvBQFebos8FxI3kelpJ16CHuFKowvr4PKFFRqDImUd8YQBfndYujzBMfP4EyV46gyjzx6fDV55Mp0a02rNp3eZTj57H779vvqUvzXMZoebt2jCPXFGutvYzqZz2SJfUn/TL6bGIGM06fA6fm6nj6f2gQoVTtSWD3ntQc9r92rQ+zFct3dP8XCLj6q/tV5yX6cX75fv+YcYtjM5XVqLQ5lWuMm3l+tlxVB4pzuKQwQI7j2fKWGuDKwXtttdhYaHRzp7d4jbJJTfc2iSCV089x+NVVTH7rw9OoMSPrLkQ1rvhFMDj8jOcg1BpgQGjsp1WdhvAbSoi7+uZU0uplTKPjjzm31LOJePjzTqwDQbCF76ixEf91jLP5LUjgONvPd3spY8VUWVEBxxs3ho3iN1n3paMhJi6lagRhOu6djsKn7HQyVqQ10uGbqGqqj3ZERRdd5K3bDlzI+BxzkFwKaFDHgVeWX8s68AxFVD87hpDtXHrBf4GWIfQysQ+jwmSaHGNr9pUk6UR7r0kO8jKVMPAzIFH3FSvSqlbyactIsiQIkKxxlXyBKP2X8664i6WOwuOxi3i01eAehoOD1YI+9rYYffmP4sS8GNy3wMtX5BqnXmXK1jEafH90EIMEmyNSA646YdSSFNXgWW0SWOWRan53Ct8tq3AhKjOXljZp1+nyucNvhNJ/10LX/D9JtW6HA3Hd+GMCjFwj03Ur/lRaQU6Qc+ENTxdBYRMX9HNuSsPrZyZVTQpWKHmkoirZShCzXzBMMunI/NftHfEhG2H+WM+plft9FsBnV+IZ+lemJq31azyzXoz2EdnHcR+jajLlXJwX7D6ALPq7ngTwXzll633DjvR6EKPI+qYOBDkbbwKaTdgzpR8SB9xDrFo2g54maIsWHY5LCJNbzKdtdTN7pDNgXTYCwOT248yveBl9RASgr2A+6oPXSYgC3K4vETRHQVIOqXiuM3GonbfF0vj82LG5Cr2OyTv0vr9Fa1khjXvRsaXGXj7Nr64ukgjzBrinR5tzwbjsN15WtiDsngeINjKpHfrygCiwA86yUZLtfwlryYVE8Kh+5Z8ujHcp+TZhP2b0tj/5dsrzwvKHDHV1c0ob47I7pOAfZMRNhx/5f5kmOSv5OB1VCvnKJ5JeixBWMq6Y/7a/MbbO7h5Z/cued5kmksNDoK+kk44uahjL4AiKecvZKaSTZ39pW2EUy3MH9otexWX1b5cn3mffbZjXlVHyl3SezM66d1jbJhQEt78zmxUilS0Duv73R//JAoaHbHNW40tQu/mBzfQ+vreP2ZdG+ER5AZML7inUVJUeIF2/H0oH0pd9BLicO8KAhY/3QR7GiHDPkEj6/6NJQNgOLfbGBLUaaFkXjSi8kCrvX6lpCVJZ8JnDul8b3OLqYjOe9+K41TIpJi4FN55t/LLkcyhr8LieHZwip9o8+sdwuBjaiZufS95g9kWKsOUJ9aC6cs74ELHP6aLLsyivhPbLslaZ/IO/1rgjP3AvDOsLKzA+f6MreX/mWBREUHWDo9QM+Dw0QELYETrYLMxiW5eMGUmUx8xIK4xRXHLPVNYebkw0YXTF6BpM20rWn/HIXfyvEgPQm9friS/MZ4VGWuiNOWn4+WzEBLSXX3V+5JYiOjaZia7B0CO4X1/Nb7hh/zxiL8cgqh/4irCFvQji37+J09ZHLelz08zh3k6RKVPc2xZjfEQ1Ij5Pm5yRksgocnxTebaPc03sGdN6T61HVvITMEyDvX3sR4k5zvdcI6zOBrVo6Of5nGM12fwrsOyy+1m0j6Wh5tP0mpnfqLdwimczrZ7hUrWfX1OFxEiOHS7gclSJTAlTkDGHn4e0WctiH/9RF2PLXZ1GB92wF8D0Bb2+puVmYp7CbkyL/KnLkDPTxxYZ7VcB7e9PWOjvo+8KRQQeDydz5BoJurB36bN4qKOtsSXKJWZOJ04ApcKYDkBaKlLCYg7v8JRoLcMZBTvlbF0dsjQSGZph8V7lTP+gGf2CJCdI3gNKhXpyXiEDY1im4/GJGyh0DUA1iKgrOPaLjxtnZ/L3DY/i0dUES5EtOGzOq7fJW4khW/F1ydWiaXu/hgYc8t1euFO7tb4lj7S5q/H9OC1dg4XXN3L6XumhUTOvWL67NiZiFIirDXBtW8DS4+1T5sSxalIb+hgODGvfCVeqlOFpbbnDy6co3uPF69lJ1dmc3CosKXRTNoKQYmFJB/HopO+oZZKgENYESfdfpeupwL6Tfr0Dy5wm3KKXCC8/CZ9tK9XCCa4hIoteVLwqhYwig0zyxdJuPWNBAfPSwxKyXBE1PaMFy13P4pDZBX07YvHGnn9J4B0sS1Ewkw8UkRF3ptLHbgjXHnUMz6QMaGWgyewwAXYT+R71b4pOPpAE1slwABzgNHV9ce0r2qygbniKIb9pJm7ksLhvpQXuB+8H03mwv6XbrLS0FT1lhA5i7xJMIn3pJlBfBZF1ZWJ4bLJV3bGaom66TQxfyxh25tIBLigzChkqDqqrEOLPrXQcgIGpmUnjchGJlqG1zlUUXWToJSz2nQiDfLcmmGOzc6FtriJTG20tgaLV5Cc7kH+vvHtgXHaOS2tcbJ8dLbYDBi4Ut+GIAKMZ6gl60O4O5ki3M3PnADutqrfmt8niGXxexjH+gOMwuKzB0WRJuhcXp0iEX1cz+ZWPX4DMW8OUYBm4NarvYEUxA1opnrB14Ih/7LQE6/S1IykNT4OFb1sc4NKMvnosOOCLimhNbGsH03LeVh7QRTOegtLhlsetAkccYSzg0KVvYR6NvHX1/AQejX4eVKxJsfznGTbO5WPaAeGD4gZsWc9zSkKBjdutc/KT5/93rpvduqcitmqGfFAj298RInwHTPla9KyOftNq3/3nA1EoSyuha5veS+V/oHXNkD3Wm/WTVt1Or4eYrC50e0uRVMdsOuF7088vNbUyfEwuLWY+4YNxZx7NaFRzVnZcWMAgeLNnL1/QaPOivVaTKutOT3zPuxivgi/w9hiu3iYGkvke6dsUjdLSo7AoSN3nI/8CUDtUF0HlgQx8QVfxBVVV7FJTxtgrjdt7aPdqGj96DeCnPoRVkbNgNjf7f2V4Sz/BLi4Jw7AfM0FeqcGnxeT2WNwKXFnk52VRrJltsfa0UqVnbPq7Y6z9ZkRyFASOPpbsFixO0G/NOCP6iD5Riv243QKpgUOeBCCiqrRqH/dJZjot5jSomBuLmkGO9EA0TXDAR22/pSKnPMkHrzTHZffUTRuqUv8TLpALqeMSG5a+08Sb34j4GIKaqe+nJ0o8hAndpKGpMq/0/6w0gOeJAdnBj7HYxYwYvRN3EdYtT2yWlzTdmOAdsP4FiIq2OlAJnD5dRKTcWt5b9UCqsN7d0caT34BMnAs7cc9Sbu887nvlcJIUIse51o1UqcHs1/NUUE/1hZ3Sbk6e6i0NXRew5569tVQn6fyXzL07Awtra62DJ/r6GmXbWNAitMDqk+jmfgGQ6/U1DCBKVk5igtQ9qdLhwGqL6aDDwD5BTRQMWgq1qyrTr2OhTH7M8rmXf9rPka+WAxFnMPubxKfRGTKrfuoPAouq2uX96gtV0Rk9ziR8hHO/7qfBxDM3hm9pAQ14dBhGL2LlSB4f33UagMEy5Zfmv6V1u0Nz1w914fztjDTqfrYEoxq8OEK5Cyy5E4RkReg2LjIMNIh+ERdoCvhYfKVhjoR7uk/LWk9ysp6cq6rNCIgbJbc+u/HfU3+HBluw/7IA87yarQeaTWBqDz2h1Rm+xjFaDLz0gL8mcs3hLDfAzTwhER7Au4kYqvbUGUXTxgLfAtWdoTq4aKWjzSsWlM79VPgKLQVgCLEeLJQeZrjbzdpI30eME8+CDdXhjr3noovVwTJhiTX1b0pFPxI684FBZSZJbK/Bluf18hrgqYV0968+ln1RQEIPYZCObo9DgtPpxInBcDBf/HWkh5qtK+5jVS96pcgLnUgsjH/nd6gGccdKB/pBN/CA9wtkHcPUWrV1QftdG3PMWcU70uToFCuPcJRCcKoB93WZbZiRzpzmuZ+qGYpi8tu4+qNf6expW+qjjIWO02adX7xd1T3OVdmHqTZvDp9JrPwGHrtAetfptHhyRS84Zit04mh01G2ARtBMDV0oZ4wBUKPX/XaGVH/eoiDC7ep8hFXOx1W90WOQPeU5P9DMW48NBdvrl3oGbgy9t26bQbua/jZR3nDDPahHPauj970s+Yr/UlXPuSXQx55/fXEyJbq/VOmAE4Hkv08SNtNZ5gY2Cgk8BL7SrOhoWbuwZxqF3kkAL3vzSACHDPU+XzXAEPypR4oq+9n35F7hExFsd7gdm4LDsBpifw0M5Z0L9ZvMDESFJd3947b0JYWFKnLQLPZ7BEWdJ+HD0gSWWmc4gg/z3jeAmc+ri3je9KvjWKCZ0I7z6g5FBs0kwwLMZ2elRLZJVn1sAWyskg9P8pzIlG2qSjKnLZdQAanIBNRSPAezB7pdtzDmotOZE/lVZjkmJxLAsh54OKVT71t/5EAz/Wq60Zie1fEJRVYfIcuChupEkW7fPiLoCMhF8u1RBsP7u99AzY625nnKumkPjVqswyHGJ8DwRakhU/FtVXw7jrSAQow=
Variant 1
DifficultyLevel
685
Question
The length of this rectangle is twice its height.
The perimeter of the rectangle is 30 centimetres.
What is the area of the rectangle?
Worked Solution
|
|
Let h |
= height |
2h |
= length |
|
|
2×(h + 2h) |
= 30 |
6h |
= 30 |
h |
= 5 |
|
|
∴ Area |
= 5 × 10 |
|
= 50 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The length of this rectangle is twice its height.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX9-TLD-CA22-v3_0_1_a.svg 400 indent3 vpad
The perimeter of the rectangle is 30 centimetres.
What is the area of the rectangle? |
workedSolution |
|||
|-:|-|
|Let $\ \large h$| = height|
|$2\large h$|= length|
|||
|-:|-|
|$2 \times (\large h$ + 2$\large h$)| = 30|
|$6\large h$|= 30|
|$\large h$|= 5|
|||
|-|-|
|$\therefore$ Area| = 5 $\times$ 10|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 50 | |
U2FsdGVkX1/woq9lYAw8v4hA2wDoO2bCxcmy1R6NBnCqBUVTaGoAT10+2J0o9A5oabdkJAG0bSlmXelOD51kxG7f/SVX46326Ki9tk1A4EDY9qF06+5SaqnlKC61HUHqubnIbkpVsKia6nyFEC5fsCSJUR7SxM/qJ534dRSBAFG+ZARbJfGnPhN6NlO7YH5d7BhCnXSy5jF0ha2zPzY7WYzsuCGIU0hd6xuKrePWCKHVieRDaLebhlj1Nl4ewubuKP/RnDazLs5KGZGzjuw7QBNvfTmbRIJjA9INKq4TL9ZhEoRiiR/d1TdWRvjWACFXUjsOL4Nxj68nz0mQyys2rk2I7qlMlZ81IsIPPLa3cB4uctMT5gXuAxsqajB23CU6VuTwyoNodK9p6Re6/oNuMd+DGgq0t1YOp7GdYm/2pR7d6gr+L3jtiWbqdeC9VXecYG9fXIULgO8cJPXydP6qLIRN5qojNrw05U+02vPcnkEqOi1IyCh3c72f3e14vVY3Zu7+i5+lo5exrlQ7E69AJbc/ZJ/epqIcVFaFimU/P8wYxtWjcDQM/yZlDuOTENBQJ9aDcQjGd21Q4ofS6K9ZFFivEqkRZuICMC/yIVfZ+myrSraSW0+Y172kJwECGTj5FxaPtcU5opl4yqhvQp+KXgAUmbYU3WdeHJ1n5jz/smbcvKMc+PvOX5u4kBK5A5fqKZB909pwbC0zYEJW8Cqc22erJQ+nhblMOYi0ObiwrvrB/j/XVnvEnbzhnyhk4m76KdEBBMnzB14jEr8jafhemM8axq4qH1F8nGWFrhM8C5J6oVJsxjGyO9cEH9wPbv+zyE29HvyblR4m0ZwGnWBVi+bZO7/3rRuBPUi/vIVfRf7Jox3EgvoQRSeAMKyp2bSoNJ4828sgZTGfRL1MeEBlHQycIPC+ldTshsVtAE10VcltHlmrJDmhwimIOz8IVashY2u+ZYt4FDiZTxQcBFKpKLBNxm6aZbvU1yExihwf9CD5UGRutVop3x3C8Gxmcg8V0GFBpNlH4pcjlOAgnKOK88nbX4huH2+doNMdtEzTRY0/O7kAEnkpU0X2bUBhW0DLJFXFq/eIKJOmkK9UBaNCLYl/DJe+aDD90hfWaYhPFaB0y6K4A7C5bIPyW6VkKHCdkWEMNnR/UgCWXWuxfdO6eMRhBtI/UJbnq6vepsUX1CNWo7+FwKTKcJQhU3a4vuhhijuieDg79q1oexV6ssucAbOf0BRJFBIYfvLUJED37RZCKg9SsdtpzIFKbIsQaN935TsJl/jz7krPScDqB65bfA4aTfl1y5C+AmJP83Ercn8Wcj2dmM1rIdR7u1oL9dJ5BMoCmivhn29xCf0Nt0C5u9rYlBNHUzSpwh8wqLUFm9lDpXjZn39EZxU0sRZb0CUrP2Kps7t3lhGc/V1iuBeG0de2v14Yoeg5mwsO4Gg/IQ8rkI6SFd7naDlRQJrShiIdiYXNTvbtjrqhTWo0RbK0elZuYhcQ5wQ9wn7n3jdJBYMQ+zXw8idDU1wiZRyZ/66/1aB/l2qY0c3oK5SOXx8dDDc2LT3WHvV5U0OhkCZjUibflGqS2rUerFIZKJQ/5tdKIPgo8Gwo0y2FSZU11N3vogPQvoA0nq+PA4RuXtd4bvlgtCPkoT0rzG57Dqe/V93PJhhR0NKNhg3JlPSacKBaf/Yzr9XLVLtbsVX8wUBXw2jikSvJOPK4Z8/mvwPGlAvlyzMmaMA0ljp/RsuedS5/TBrNUUFu0S2AP+mMkSa3bDpuIwJ7hAOUffqLXUjhmp5s2N+e1ghYzuT9DMuEF9XG3ZJT3f5tkRmlvReLC8MH+VlZHwnMr9AUDkACX+8OuMNkFIYYmK0QfFjEH+oIzPVSbOjrxcq25n8nul6fVA6kPpt+JbbQq3wDWuNrPRpkuA8HKQpYikWMkRzaKTyfRVXdFe9/r+2HyF3ebYScKASf6iz9AwAe8rkVOE4Sl0dcFux+/5YdeK1JZr+ijzjOJTYXl2VU1sWpl+oOmkZV68Wq8P9X1nv0MWJzPddiYYkpdbeZBLIVmzTgh9YJt95SWBO6zt+MmjMv0pSTPqUfBZu4o7O8e+cyPjDLHd5mYlr6CcDx2Vt/6BixlROgtm7gkcRIUgyTu2w0ReKXe3guNHch7WSn/hatlQu2yl8YJquBxGnptbZPtHKfWOpEYgJq5e/RLgIhCgVSlZJpCqy5ZqfXYYj55e1f5jpf8OVVr6pTmT0qYtFXkyZp5JdM0Y4K08HTPTtkjJ0oPGK8/NvpiYdpA6WRqzTdMnneuq0g/yqZ+BbVlZVXH75kqmg+571KPrc+BU9bvjq/awC5P35GDktp56qa4EhR+ffspIv+nof2eZEJ1K6q0JMqwqkqulDrlSURkOKD8ACI6QylF4b4AG+ORigd5zY4Sda0mREbFLVuYaiRwsaRoTUN0q0zzoJaMp1q2fQGtQG3Py7TrhCD6odPZoeUdzB3+xkUCmzF2RO2wfwNwj438/DjvlR89Nsi/VkWZqWlLdJ9fH3f7hr9t6gOtV1Hb9DFKBQatdFC6E419AaZLqCjBHlm84j57hIY9kDtuquPKtmUqe97H69Gr2t7HzN8sYwCsTYyfQdP3TDakPC1V6G5xvkFYg4hfSDzauCw/14V6fpZGrqRDMcTubP7nKWaPlzPG+9G8a1dpF3gvLZIkwGrXRsWuWU0ERVfuXFuDmCaZ6D5JhjbQpr0dkyrxIronZtTjbEY5cZrZN86rdf70r/Y+meiNJIixcfpSSDIzF81QHx5xobfkxIRDPXsqaBfWd7mIRpOZCzdHSwEi8hirniZa/Wo2H18YjhuQmkn6Gg8JhmkYqhQMwcmdSRsqZ+vX5gNk1ALY6wUMqV7Vhovll2ZJjSQgafCVKjN115HU8qp4Ks1m3ZhuvpJZOZO3INMcxeQGsnTn76JtEs1IH8DyiOhJls+5cRVfRDazbHv+qDCrh/Z4NO2C90fZsfO1DcGiwVVJ4QkfOGWpafhNxD1u9B9xF+P49K00dSfXjkXKjBLfFiBIV7VIPNphtUNJVZws8Bqo5Ck7HVIPr4Jr2id1plqxazomouiWgwy3QOwiqCkSVRXBX3PUxwTXd+gekRur2EedIac3jTubIpg6xM40Ev38uLavWU+sliaOthaGyzhQskMqxF8q7Mqqe+Kec+rYaTSt0Nf6MMSYJSd1jNSz2Lg/Uz6WJ4JjKfwbLehPcNEarU92el57KsiSer0M2U66xizAechX1wqdmlZA7+ET0v4n7zgH6kwucTzgyM0LxWKsEtNc5i78R7WylihHsYMBgLam4cR465iP0jgGMrz34lQebaXRK1Z73y/oC5+SCSlWF8FxK0fp7G9eTqs7cYnHtVntqUY0Jdi2md3bLhDUL4VF87y8h/nulE/vObUbXQwehWn/IqErGQ0HDZvU4zlOHOBBfAKb0CvTMHFKOknQXEbBN9mR+VkJMBffwoLDuNG5Gk4vxW00UhKyquHLXrKe24mfR0qa0CiVpNGzzteWPIX3M1/2RStPcwsSDOWHnNYOwr/GAskGpsxPzOEkB8Xw1SMxlWRPCv0p9YP6dArl8N0BYP5J11DvOK4YYNgM9I/O3NeZimR4fC8nbiE96wBwQYezXwR40Gax5TAze5tQ4Dt5tMkFsiyX/wFOqSmbk6nB4kZdOBX43smcoICune0ETl9FprIpQ2ujaevYpl4qWp4S8TT9r2A7HcCxq41hYAibfDfuknUXBI3B65bs7o2IvO1s3K39i0vGkBuqeXYXiw2yZAHogJzfTzcgVobcXR4ihbdc0vmNBBqK5E+zFmBUsiDZOTPb5ZJuC6wR9cReM5DEh1HsQqeRwBshOO2cTqBa/XWruMJ0KKYUY/gksCcxjQNydA0/Y1FbKnMY5KJCeDXpSGXWR4EnIRmgtn4tmvYD55G0Ndzyy8X5jcfJxpY0zkc9XW5uzbmQFx9CaErFLcoI9vosrDjFVOeyYr0/XO0Yv4xhvgnWfptp/NldElkJEylaKloGU51a1gVd2PndGIm/4TR6mO0nQhVDWFEPNMwM5gAa1S/U/tIMi+FjZ3qPiN1pkyGuKljOcD8yFrORQeLJDgszGrEmkcyR0O7/RPq3Z9mVBO/8KO+ZPZDWCHpcchRfuzH4zQokgRGBpog1zpVYtGumUtpvSr108VtOX5EHCGhYa946zPw8MP7J0LOlTrgWsr07t7WvmtkbbCIDVaN4siLwUVb3DMPQsYRtJejl8guc2rX630VILgUFGFJbuZtiVxKQMPpnHNl2k69QmHsM0tJVKtIWJDiEfdIH4UkO4C5ggoOmDj2agHYinV/q4PkGN7++nWEeSjm+KVIXq0Tsy0DPmBUTkal7tSJDiLUBXkY0HoCN2bTWScoQ3DKrBXaygQqmYgkqLNxdmqFOMNBzqYuqtF0yMJtpP3uhO3n6tHhBbDd10SMyz7oaJ+blDITpaeSdKcf5BmBx1hlDDBTihsl/MFBMi0bgNSGKeKG8704LcX9up1TKn5B6hMATlLjI40fTkms99sK1kI20ZABC3Net/WplaynRqFbFuDgAo2+KxK6dPspvZtTGCsgq4p7cdk5WEECMLGQkwguCemb4dv1/sFdZ327ZVI8I8Stiz9CpkQDmzJcz6lRg1RJl3+KcTkH5sU3NOWglupqmjW2dSlozU6S1NnDckrUTy7q/DR17woSPAj1FbJyB06EMLHDgNsJrTm0H96h9+9wBZyED4BfdcnAnsxAUfJ4yGG0gyVY+C3uA3ojtQHBUCtDKLN00F4QHTlPYgpZ4wEb7sJ+xNluRKjXWkb+Fx1NQeyTB3YzjkAkRDyp2mYMzz+v4uiDxEtvEmj5c0E10PLKu3hw1ZrBWM+c4Mjve6tj/RaI9GSRxizKqJhfYCUB5A/WLpoZCWjwcACK72BK+vRGg6RsAUOpLG9PJmgsfOGZtzqtqYDiNa6hFAJo6GrANpGiHBhmqY0BVVKIWuMnfuCZNDV/Z7dc7vRN1hhxrPJOCflCwxthWF1mq1cLaPw8nXT6uQ57XHoJfbvMr9lkwxwceqlwBrTgAvZQqznWOhj71CRcnXwuSOgtfcweWiqYpc6IvpVmOLaJezhKPLVqB8YzgcOYbpfFXRlVcGsijVmecT2Wvj1o+Yy+1uzQDSBndoG7+R0p0r5sFr2YWpin17XJNYegTp0CLDCugF1qktGMhi6ALA5ACe2h9dmFFlEDDF75lDCVEGezQsJUrN5YGSi1jTztFigLukh6t6tHOG0bMTYpFsC9tLNQkraVDI7cd2hRRjfKOXBULZ7tzre4Da8t5GzAxXPwaFOWB6J8cKOIX9ehdoYRpgoqTL8m94eNGnNjXknTX8WJ/oKgy7P0Ho3KxUSrN/12kkUkLwKCwJA7ICdP60XfD1HHphz4uDykLLfvtnMH6msI3Pe6S+FSNdaETWNo+6uoaL0wwQ0gBsrG7PQq0lQsE9dcUBNZpt2sFsx+y52VEqsmVprAUQbGhIyE50gWLHrTigPCi+swIDOqz5vkVUVWyKnp59YzYkbxnNUYpkPQrobJChLASKEn2+AuKQea5IUPs8HqRSuasb8gT6fISDLJyVQ5SJN0Oqrje0T0jSmNG6NOUXjOCzPpLCQoexZq0Ao9SXxjIiRp3NwgnaM2jeJnNXr67fR3Tbaiw6RumQ4kK5CB/+VttN9FkPJ79p6NcVA1fZbmrr2RIVY606IiTaL/feb+nPNjc9yi3t3EOKgqFRawA174FRWjciAdAxWCnMgq7fbrnU8eF2nvIYwIMhSr6lHNeVFhmNRj6noEvrxxDr7JGN3ucVlPj67WqiTwzy4zhp8ftU6BNkVf8veYHQTDaCTRizoJOXMeoJWDuKlYTJKZb307jEHsW1FVU4WQ4feR1QS4nCXiJTUDJbyJKICASH1Xj9Z5KvcBZWFiUue+FSjat2XZtib3K90oZdwBnFeO1pDalC/bFQSjnuxMZsuuU4R0JC0uJ03llCP+PtP7Opl3SYESgP1zdFAmP1dEpzZhawzwAvYr1QwujC3MjufA4xwcbXSEM7ZkLtWx4Gi6JLNIDbtu2Ppu9bT2GX6WvuIi9URrNdoMH475hnNt8kDjWFNihNH9cV8YlrpM70J7ip/AizP1p2/1P6hXv8v2WmPvIEzvQ2ekbY9xLCfXj7oZmwwmZCjT07R9AvceIR/xfkfAevqusLUhNAdtKAF719pr9d8j472odCp1N0z1nGFlyU3LYBJdNJjwwzYBGEkKw6ck12/aonMWHHvcskRUCjRigTx3iWr/bk+8ELIeHDCGYxKoJ9fMTt7iqRffZY6gGmIsuXZsrXPkbBvZgnBFaCFd5WQvz5IwCFS28lQq8JeXErF44Tghnbyd5EF9nm+fhVPidm6RpTK8wALCMJGNftIdLzVOeCh0Xzbf9hWX5OSwO3L/KvbqZwpX1wvZP+oFeZXkNVIlCe92uoOakR2CPnLn2K4NO58r/jhJIxUfu8gy9IC1byUtDd9dSO+4Ry3Vj0Rp6EMHidU+exRUPyxKqyEG6Jdc5M2SNdTIARsf+gBRDRZ6B9H6sCx4f5T9w1lV48vjOeviVf6l+QIN8wTBjEZSFqGFOCcd5sLNGTuLZON9a5Z0WXKoLhvOrTODaaDN3Pj3gQQ4Dl2wl53p35YFopCgx3eeibmQbuXvJQO/m/tQGcq6XtJWS03IHq1u8/2nlbwJhvXFS1wHTeV4hKT7fGMJvLDENmmCfxBzF0MxgN5Iye7ekNjGNDzKqc5au6v2ugQ3kfYywOoiiMP6ZlrPGjV2FnslPZTe2d8UQtolWl7s/0R4ogfIFluISW5/cggQqPrE9OMo32MdL6t/TuzxOepY5WPjAtxbpY0aM/iFXSeZf6NrCmiZp/x0C8qQpTxT4F1e4vzYp/7bG6KyDFkw4D7vBpNt1SnrDz+52ZtVNQbhiAwkRznWEBs8ogTtKz2NxB1ZgmLDvJXx1GLrqWdkNBse6FfrDKwWQ11TX+piSxZT5OYtuVVVuB+LPblQaKawwWadhkqgid1glWx+VmpZbxRk8PNHab9X4X/3SAi8Y/QcWDcA957rHeYuu5uyUbScogE6T7qEJvR4IZXY9NCyLqS6eHIhW8ISJH9WpHl0mKbUaVRQvAAn4IvkdnlnlCPPT2TBlki5pqvSoPR1cb/9Oo2oLHX6Qbyl858PRtVjIF0ZX2HXZfQLh8P2Rt0ixKb0cVWe6ZNsSuG45nP1FKByl0f0m55U88k8zAfHBWX33I1vfsKP+p7sAikxDzIf1dZawPkVVjurooKiMOgtoL+lpynfFQGyG4FCdnd9CSmu7SCuV6KI5KW8f95JbRsSQG+9BLx4cwlJbHLxOgNx/UePPOcseluNLUKVciLySm9VGbpIop51CE7g9nfRDsKkXutizFFICd7vRZvkfELxjfqpor2FS5OlpEuABHMS8WFKOvLpB2qf81stKNDsBzAbXspeL8X1ok7HSL4em0O19orvyy18HXIsFctn9q1hCaDPe+USDEILdkMazaOIty3xNKzvEdmpF2oAUMXuf0elgv5iEsnN8oX0/7cUEmoHSoBsaM4P7xLBrnjzS+5CGKmCRKnv2YCjqbMRjHjegeBy7BWiMuPTpSox0pNKTETW9y/wQeOFrCmLvODtEt8ZXg5xzaxMqTzPa18sVUrANwPq4V7dXDCfyxjGrWO99kudiB7rvckBpQ4kErdBG6FQxl0dwVflFGz8qXm0gyfSf2b0tFKCiBhfkCCaFPgq/9iwa5VLjUxhafrbBeG0pkEnQV4fg65oTyMtyFoECqDsyf5he7ovkiM9ScSE598C4XseUV73Guz77x/neM9GMwFDCCYbWDd9KOtsA0xTkGpu4Py1nnEhqiYAWxDzGzafSl4OD/fuVzPi7QONhGD/Na9vLSAObTgU5RQTxxEqADcOlCoqj9uizk9+0+MaGtb2cjKRWa0iQsXWms0grvjopa9ADon/u5CaOyiTvrFvF66LhYQ1z6SltltXS4xlkU67UzvP0snLJSjG50TYYTAwmDTleuPWKGaLzfe3KJZTD/2cNaUG9n+Na4YE71h6CckInR9RsnpYBgCwwZsZuZwhV1wd1nljKIclFuIvVnTbko4Zh3LuX73vDmQ0nCYMNvDraQEINybTYhWpUqb7+qvGvxfsm161dSyys8FmkMU03jfiY/fgsVX+AYsPlnDrf+/LoZroMPJiQGjIjMYzBI4+sJyYy3n96XTcwupedSfVgyMkZYhbe56UNnPchhn3yPtBGLR2qmJPzo2KvS1WfAeByb2NL64cKvE42KbNc2EtMMpHAzKTN1MG9HPFm9YW9QENz9XfgB08F3xbIyJGMgdBdnNzEu919buV2SKYkaJTLILx+ZzpvuMvlSffcg17IV8MQgkKDsO0gFefCEjF1O0yy91lfppmrUscZY9BVUmVa4So6E7Ad/RkOXPtAfPD7cOTjsueqydmGgLp3jf5togjXSbQuvgJ/Es7qKcxjKvtwLhg28BXQJdL7yneQzaciBzm8oSA+Q+6okLcL4yACMFZghLBjwLp65ZU8o2yu3eoiNV/3GZJudqAfDAxJPsNavvgdws2H44Irlz5wDyFgzkvci1bouptZ3jZDwz4Pam4UNq5HMFpSOfNUKuRmx8IOZI3W+CjTkGaM6wIjDMApiqCO2/tadxKFeiZoUZCeUACyyMJWCjO9UFPzk3IkpgBEhDbb97OSnkxekigLyG0KNio4+ZV4OFe3MzIV5YSvawbpzcIeY4IeYtrNOyPo+2yZoPD5IwzeCmRK3W7Gg9PQgVjGOa6Fov8r+wHrxOO2Z9FVP4ekwxHIdcNG87ZcathnWVXOOA/i7qO6Yx4AKcAiiY3TeTgVJtSFIqFlI/Plx8+rX2atlYCXQPrSrmXg+Z0cSmYCbIFz/QqpFZ9c+WefuOP5JeG6RkzkauYaOtqJs8rg+vrT+zOybOE8VriH8lghZrFoK3KtIha2RjivM35zaR4JGZCzpsrFVC/k4Lu3KXPtPjavHxczjXAvalbj9ygDHqeekMjqdXu8thO7AiE2R51tOE9VqONsL35+P9Ol/iTjPZ0H0W28HcE88EEY7lybzauyW6QSiVW52oMyEfPZN7dhCU6xm4wGlYzigAB7VHL2YfKxRMIKy3K2tcT8nksCTxHsX8Jh05aT/0MZSLsX7925xnXKUaRpjudYwrmzEFXRh3LBa688QYuF9pwN5G62s1TsnEnYZ7BwQvq/IxuzqfWTexT/hd2N1TOgIFPOQthYAbyBFE0itqn69I1kGCqUWnV8Ot2g0AvoPOk709JYADJsdiH1TTsVbVnQ1r9n8wAaqXHWb/2c7tc0tAUVZh8FmsgxxWVsqIBoGetRbzKkmtkFW2hEHJ+usoiSOgP/W0E9BaBL6LVof7uiVJNu8IEXJxZXu9obS4SlsRkLKaUXzuV77/eRW0piqY/HD6Biz0ZI3aAdgtPIz24JWu2cbI+pts0KIZQkG2McbXPOJwPv9OdWKz4CMED6NEZIOL68j9mkz20sMmPZPhCpsmEPBwxvfpzjIdbSnwE1KeFZh9O+sPzV+YHgU5lDdr/lbYRKdiMX7iyZclbrv4ofD3uSVMIUc7EapgVk5Wuy4lgUouvfSC2u5NAiKPiNIfwL0YJli9EB9wFvrzUICkQkRhwhefSBypwJAHCdRo0TDMhf1x/O3rqbl3Ze2XYxh+A0NmZ2qwSKYQfUfNQcmJ4D21aDCufTnuevhMeOtvkOmoGzhOQ5u2R/PVyY1cKDj6jKtA0AuATPqOijFNKoSCGE7kh3l0S0nza1c39WWPJmJoOCRVirLoIOGD5joBmWT3hfNfo33MNUGYdAcEEFgQnk9UQDbqRGMjAd2Gj+6S49qlkcbtc7FiG+HQ6Uor+cC1JXc16dTT5IUoVFUzbgjKXf/neNev6uODX8BFm77217eiIW4WcOfSGnFKgOwMzn0ltIil2wXESggCZneehAFrDLxXEAD0RJCl1pOnnegOZfH5TSF6kl4/K2M3l1re8HyvPFw3z2Dvkj7Pmsx1GGwtla+sKvQHSxtvlnZ+8JgDwgi1jngdMJOe7caFh4Tni8qENInHuiHX9/zcgcInZpXDnkSyr+Tbo0xAU8ZfIytS64jDK8lrAbMI8ZM4u4OZiE/ISSdWnoyrhT0UOO0s/qrKcuU9LWXe7uGPYOkBJJrpLGodMEh1AtMa2xunYFzYFKCyDoFdrjsv2oktYm0tRJ66sOqjAU6vmvVpmme22mXZab+c6dWWbPaw4GocHAYhgO/hko+gKqAcJVIx0cscCzkHQ3FJT6Tt16imWREypJ7OCNfzwjgLDGTLxoYgrxb5BHnWfz9Ttio06Gbb2ZD85oM+6wftN2mrrRybCACJghWCkzFi1FYcwcoKnaz6zNMrBQHirnJ6aHgKNjJNNURAUGV+81gB6y/sYdMtjg3hzZMdSYStzAoExks3Okmx7OFeWjlGZgE/xmHMXr0wkwnxBeyIP/5mRR267CMe15Rk+YPdpmBU0pQNOCYk+4L1Hz9v6Kx52+HLFHr1PJeq87xKIcHo+QekTcPkOO1d2DVU/TDyT6clC8TwFt13h0f0EVhmP7QBF3nFX0PBSzIPK3mu4QnggSKt06qCefWKfT9De/idrsALbEbr2+DAKXq3MovxLLQwSQdOShjooNx2jjeJfrIanHNiSsYGHXprylAcuwOUWdzMT5p7jmHq3ysKNIPNR/8doAGg9fBhnThEBiIaL2MZWjNUbCGPIZXa0xX8hgbpDGXM+qxyDcZZdmW15pbfun1EJqCZOis5nEE0Ed5XAqR+j3eLj4a1oNdl7zUAp/6q3omcuvfc8QEZIcUft3CxtScMI2bupG6az5/TQ1fxTmcrdxpeY+FedsD/BTyyk3WVY/Eo7r2Wg7c2ilqMWts8z/P0UGpYO/3HPh1Quci9Z/tbazGidHcn3idMCE+qYfpkMw8IqRWcPPiX0ultZ4Jq2R3JDlzJu92bsS56odCcTnyUc7Ryuabcz8yKvFi55z+W0T9/Wqwd0Fa0FyltbNllqU7ihRruGmPsm84gyyhIz4MSAOTjnh7z+RTxy+8RY9lF3T/0t26huzagJzKDUBd5HfJ8ewyCfQmfBg00CuWIO/3mitccXc3ef142JEiiKc3RHK9EJC6lBc6vrI4UOu8Fi8G+Q3KwcmD9/+J9rRZXZnOJ6r99oK3I02HXuBBv6nC3rBB9xqGuLFIojv30mW7+/WUVoqyQhueTqj6UilKoAmnBuzjVfLs3hXxFTQzbJtAYJWYgnq/gW6Ck3QuC3Jp/VGpOUqCDzEwe3FIQcLO9c
Variant 2
DifficultyLevel
690
Question
The length of this rectangle is one third its height.
The perimeter of the rectangle is 72 centimetres.
What is the area of the rectangle?
Worked Solution
|
|
Let l |
= length |
3l |
= height |
|
|
2×(l + 3l) |
= 72 |
8l |
= 72 |
l |
= 9 |
|
|
∴ Area |
= 9 × 27 |
|
= 243 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The length of this rectangle is one third its height.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX9-TLD-CA22-v3_2_3.svg 240 indent3 vpad
The perimeter of the rectangle is 72 centimetres.
What is the area of the rectangle? |
workedSolution |
|||
|-:|-|
|Let $\ \large l$| = length|
|$3\large l$|= height|
|||
|-:|-|
|$2 \times (\large l$ + 3$\large l$)| = 72|
|$8\large l$|= 72|
|$\large l$|= 9|
|||
|-|-|
|$\therefore$ Area| = 9 $\times$ 27|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 243 | |
U2FsdGVkX1+xlW15x1ThvFUl5uiQBgn51bfaCKd83Zi2TxF/4ncFI3RGv8o8LvPx7wFDY34NNRG4ursj7ljmOZ89Zoj4yDsRTUV/0vWigbEz2MMB8S3AcD/jATxLruIibIC/6jd2rN9NdIhATl42sy+lSPxD2ltLWvgbG4t1N79wjNtQpAO24Ys6yBcF+eYf6W8pImhpCnO22rbCP73DeHSL02BF1AvN8PX4Aj86ucTos7V5GAIbSxTER9VoQJ+mo4ugBrZZ/puK7sB7Mw+oMt7SDdvCtzLAydAHEH/bQ3eCPYA1d9x6oz+HUCEJnIXXo+Z8iXXMo/AdkmpD2czYkbwylwGeO5Ovbw7SqfdeGMXxzxI6jIS3ZQFMFh1GLbOz93T1EYfVlsA2oKzKZkFL9oayH0Iq3rFecu+J1CWLrVlI3vvSaBiwq+R/GcHqhkEXQWBHjK4cEXPh2tQsg9Rs+mr2wQZ9L2jvK7pmJSftEdXV2A55qyqtk96y8uJTy28YVnXu0TolIS34JmQkQqsHm/5u+k9pJdpLyP3WaEHvRcV4nSz9CqWzYiWzNuZ5k6s4dQX8NeTsKKyxO27/N4mIVb5lqFWin3iw+vX0vAwv8RPrEvvTCjDg+fTjfvUtI6ROy4ZKJ/Vn/o3m3ACE56OxFlJcY9C1JKn8P7u7eKNSwcDLocTO78FjD9F32dcVXdRFr9AAZb0hJvZmSYawgxMMTAFiuRGG0CJvI1muUhmXqJdJwI92SlhsKarf65QRK2N61pZb/D3UmFPaXnAZSMqIZCSLhI79opR5t3/NeSckGpjzPS2wWDvi55WZbAYpTpdmZhXO5uFkUWfeLtC28ASGhqg2bryAA089ZqqAEnbNqKyoYROa+Re6ifaZDwyePGWMNc5zfuHVtFEEFiQKWYX64XNDdlcQbbYpHvxsRiCf+t0oQWOmiWtulX9foeP62drKmpQ8XxoVbNB4/+3rpOTSQpWyHGR+69dxmQfmvj1Xxw3jJoyGty10Ah7ymx5ru7Qm+kwFWSMXgpincsJRLmbPthCvNcNh/xfE/hxbYUzku1iLpYVJ2Gfc6fud/cnewrToF8pmYEMjRQm3nqo92mAN4zEWKOl/f4nam1r7easraCnofHjzP55AlWempZJ8lk1z9GW0v821Ci5MF0Vkm/AzSp1JuCchFadtEafJ+Al3SAuxC61piTNJzN7lOFgCsBlNQmfbobRyi4U9Eft+sULS+w/HPy6JWhlJPyaYas9/aEssobOBHJvXl4/mhWq5jdZF+VTpeCJ4I9whi+oBurFC8XcqmeivrBpto3G/bP0XqZk+my8khe4XzHs7ICS1QS3j3ML/mLxykYuaoa25H4oE0q8BiILi0kpj3WplOKW340oo/vFzTWntyMeHcG51QrYTcsf9Y84FvOVkjLbnhgyGsiE3Lnt6sP2ZNEcjnoMA2ko12+BZEiWXEFrtuoBztkCv9b13S47u2WYaUj3ET2hUVROyVF0v5XsvHOqZIzhWWJG0TmP9CRy3ounbe7Opxs9soeTsugWqxGEUJGAReHC99LT4la623XixvHCvr7c5rR6+Rc8J0QlCPTWpQmaaSQ+Iiw/suD2cHHY2b5qOciku8m9yStK5eS5RvAm921Xv3xf3keqQjGptc14ruK1nGVCKpdC8GIgMXKyFnFzGSrALS3yVQqjW0xzxFXkomhzvpCk38Y2mydstmX9+gLzxb+qFGXst/hagO2J0ppycbPLtIrQiyIZIN53Zlu0jXOkABwiIRJJrmva0bB8YHzJjrvvM98vfRiqjeCfr6g8dbPKirpHgm3qBHBmMs6PPu87KIlAAHzlHcgqWuYeIBOuCoSp+vRWy1SveevkbNOynPAg14GCCoIXB1ZlII1fhOYLS97oKMFHYk+QitR8HFUSv9GCzCJPqy/xYxkCj1dAWpjYAcKHFVPP4/oODl3bZ4yUXBs+foSji7XcVZ9EEQrLkiNP31NXQMsAz8tXafmM4f/ZBicebZyD1tSd8RkWTi98bd+X5EaF3beZ2pNYreP9XilJGjjYsnQZLdIdc4O2gmb4c5pYu7TBw5+z702EbBnThoOT+FfdT/dQlEZWeCxnRxpJ5QH/3wbU+y1rCy30NPwrDbjlziQVM1KaIzBzkaTYyGZfC47wNNLFhinC6seuGcVAQlZ519eusSqZHPc7WHMqLG0pSxCMUYqTgm16n+byvJvUPgzS11HeEBQ8boKdC2/amLqHXrMZrqRExsaqTQIzlBi6tmxUUwXBRGOsi/PGiT6sWBp5/UdT28s8Pltd/U6XozzjmV2XBKPEdMb/oB9AK9upfCNlUMxgtORxbfXO7F3PV6PZBldfQn8BsYFERXsOl0ErR0lL8BYpv6gnNAnrVxVYfO3XuTrd7ubpPgtdHLylneKWn1Ni4oYQHppGx8VhciwNuZs+wiVFGdrSxS4kEax7StqitYPNQaXuY7jxyt4mvpNOuRki5XTMnaZBhLmfnUIqPs2FwcBsFf88Gv9eU2Yzunx7JQB64uoyjCVQC7UewlsmMbzkEQ7MX/eErCFrD81OMIUECtqmhuSbFogfSNHeVpnMK+7lNj2khy3+KaXvOJCFBLq7fAjvThrrK0M/3FbX2EeGe7D9hKu9HlmVedaFdjUB/QN7GgRrhcITdbN3YQ1w7ROOkk6dDL9894WjBSlrnvTyFAufTvYsS7W1azu5cFkQtrbFjOa+w5/gCZ30G3u7xIVBe20qq8LEBX8rfgNYIRJPN2OQzsL1tCGYWvkBu+WJwPP2DWYm30zmWe03COjrCKqimQBbMPVrIw8+DGyLcVy964kKf15dJ1GMfZX2WLf6DQMHq5VbwZHhWW+aBG8z5l7VVf15PrsVFb9nQd1g+fbTRqNSNv8mYIOd4WpfeVrkkA0W/B4L0Nm7FmH0fu4F96CJQ3ZXq/QiSk1w7l2NLrXcEOQkcllp8aOEZLYZxwN3Jcu+6gtJ3Mk/6xUR7VOK+YUG6g0HU3N/Lg57ZUYUhN6HbEub8cLH7hE4psgDhuFzwXiCehs1Xg8G+2gyJ33Wse7yeu2dXdrSeJzqGQDlUsfcc0uQoi2JMnw7UhtTxAh6UpDsieTt3rN6zwl+bEz6BIf8pah9GXez/B15yuXqmuoJLcCwQgTEc6iW7EuW+XgUZMRGz4HuQlhfC9eop0EbJuA2VpSeYx04Th+9uhvBQXDPrdkEHyxok8WAdTLJK8MSZCAB1eJg+Rx183yzV4iPtp7RPn4J51rt4VogXAfogbYGxd3I6e3TABPouS283FJLSXroynryVc1qL1qPoMPfoOHnozdYigQLDNhsyPzgUUY9rxcQYJZwcr8Xar46AJ2hKLsThmRxBHv2XSYjrXodMMpw11kSXGJLU4GooZREERhpGKrEc04t+UtFahCNPPxYX7mFzUY3sHYYQc0OGJeMu3AdrEQuaarCBANJLz9elnK2grF/8WxlN+8ETkbDIdebX96bhp8dfrbgBAvxhAovcVfI1TkcZBTyseI1c6brwFBKeXNxQvDl5ED/6iygx2Q4nxtRCq0aDI2Lm4RM3Ni7cRpMvtFubjyuoTK5CxORGbJ4Yh/qDo2G2GpGwLYe2E4ThNENa2ChZ+HQckb3dcnASRKvk4tz0DT0iJKxDYqGTDE3dLL4B3wNsR11ft52lfn9vAIWgolmWCiv0pkxYpctbNrzwXJkPrXKpKyg4vLJY4iNpl09cK1sh5dJODLgHUh/HrS8c6nOSrYHYeHwNM/vwOnUNvBGiBbgkCdgYo3HL+NkVdOmk7rAXqKAVe25Q7jJTaSGZeEv0qLAX3abWIIRL+kYQU/5bUf5JvIMXxIASEWBxukQUmrAfpRpZMRQY39+cNwu7/NANhaAT0gbktI3p0LRUjUDIlbbSebGRlQTDSiy6a4BsADkg3LMm6bVpY8GvHRqYNRVWyO0CEUCouK63w5510+Zr51UGa8q/U1gLk0QaG6p8Af60uS8mwmttANe4PEP3RlLCmhY7bO8ehDHDoLXx4TbqXCesnvKl46UT7nhu2ANxPS7McVcYbwJ7RrvyrCJ5RhweQn/v0EbeIhN0JG6AktfeSrk3nUn4NBm2xKyUlswP2z/geFvNiYqZZdmiIragXvFtT3Rv9LYtw6oeSOzEuPt9BQ/JiLPs8phoogrLjwkh+S1xE9My8pI772xWQaeqyWh3H9vYxDUMOZO1EkxSXmKoKejCoSLX45SrJ1gzXvJzvoM9BsmR4x/L9UQUN7uK0WnwvValngEZkOEncNcvqT72l9/IzXuhs5//JDTTtJfOvhjNoO0tTqgcoHvmDiILwZKHnAJCdbxlmih6qg8yus9smSwIiAY7i9TUw+oUZ115fM69nsrcTfR9trxJyZ+vX4+8WMlZlps5ADbbCq4PTTeIFzqruAiZLnGwcYWHFWB2DtGzv1NbK3nL9bzwGGiuqwn4wCYO8ag4RT+eDAIlcFgdTZjWJX58ynAfGZ5uoYZDK0iHE0chHDBiUFhNFHR4aP+m1Kiwt2X/3+fYb29kZ3Ozcx4ZMDtUdBmIl+4ceaJyrghJS9u+0HlkDNzlDCW+tq4LBdcNf1necXpLvXs71PyfoebvtLsGzKpgjtE1ZXriZQjDoxcDgVbmU4vIqZxmiswY7j/l8eW4ytzIpVcFkVTjb8uQpgEF0DHuuZMAy11Gz3LHh0xGEM2QeRMf/rMQHn6c8tTrR1eCQKZMaFXnKyoSpOlr4frdD0h6zIIgCEFrMlLm75Z7OSNkcvl5UjfBtjipPBITkLcqab9dDhZg4gkWmxof9882OroF6v2HvPvJ6CiYYY+P9BR+bZdSQpOV0J0s9mTQ/jgBHdhp0hSXYTMSI+hBrq2qYYfP152PrW2t7Tq5fyS1ynaKSlzp2VsksFcqTWLh8Owhe+DObmGMWtbDIdYa5BjM4YdVwhq+uoTr1G3BlvqCAuG8+CMmyeZIyHqZGAylo51is9f+lJN1V7yqlxAkj3wP6LC9+HONy6prK5LCBmd4Y0UllM4RSbT38PmHgxuBbyeF3zETgiI5Jkkv/oywe92KFE4IL3+6u4TMbcxNMWS6cfX1d/oYhppQPqhz5zneRFcCeUuBXnuDx7bOx//EEdFuIjeFqwh8b33NBzUbqMj/+Bx5UhDz2635YbhFEjxrhAnPo3dM5E6OT6mv75YgYJXqgnM1rgx/1yX47I3BC/Kly5T5P85U+b49Nm545ZX28YC+VKT/KbDWaUntPbxwfs74/AaZGel1psjJdK24aj8YiQQ0J0fbnTib8/ctwc8RIVLAWjJk/ZQQvRGYFY5oOWTxXsailjLKzWXUrFwczSY2L0vVFJsGa86QvBcw+hMs9S7ivJXfO1+MPavcudYDsC77fnDHl2audG8fNYotzb5PwhbnG2QcLOX1AOQVoP+cguU72Xl1t4W/s+6MpuBzYsZkODA5ARwt8dwzWBFN7+666MNQ3EPeJHz9fBluNMecDttCTv0rBYlGr0PQ4XlVve/9iLYt1dljbeMjcpf1nX14NQiA0WebjYNwwSzfJaMvoafLYOl7Ipe94BO5SpNvTRGqkb8O72GrS8190H7SyCLBcQlRQ6K7hJjacUUgWtAqA2JtkcsaluLRhAZXusBQFOVVCPVGAgORY9voiU6mmwUCqRkXtM/CROfK1EGzkxeOkw+N5AteCgNzZHf25pCQrjSPsXRDPzpqmTb2U5OG3NsWt/NXNOosdBn3hbjYtH5n/0Mm6SKoq6yWBwd3uFg6CpfbOiSEYN2UQnAlO/Slo0RtZdxEc9cGJPkFxPXwfvgnfKrn4mJ00Nt8TbEs84zNdZdlRH7IcbxABHmjE8ZUdAlW0Hr1Afk867ZZag3nyXvEei5O3jTlWyDbl5RdBrIFP9gKO+7IGvMmKtJtslwqGCnb62fRfJlDbGr0YGqDW+4FMuf4rkIIwD4Tf0muNOkrW0kJo2EIk1p84FAoKYFpzo+Kn4LhCzY0917Zwa9xQm6bVsu1MKgH5wgrSBWNaVvpV/c3v0txGkNHLoOF0ZvTcNQD5w9nHoDepbAoeUU+ot7Q4b/lKRQzUDDHfnKDaYv8WCLZ6pYe0a/ZteJ9yLOBuTuXtSXZIlvanpUdUD5o0/14fOv3U5GoewUhchlQkX2Q6UAudgfqMRe6XmkiPrhcmxspoO1Alz29iksPn/rJNbJQJqktiIf0LXDSaMxnBykq98AWVd0mdCOKKFs+AhAZi8xbRNz4vDQlPNwfyfmPKggbm74Dpazs56/zUFRuhjexpCF4i0aNpWoJUemeEGpK5HHyyGdIBpjBlos1fSkeTrIbxDoywZPs1DAezFObaV1h08pi7sI4NcpDaem4RV4JyJaKTwtb1lkRi7hEsMrDkJJylQIuiulvPqw6ZWfHq6GlY9UiD8YBdBOcXaqs4lby8lYej884gQ9ySWcCm7wyFau4RXDVbqmgZSVN8qZNWx694g4WnNMXlUth/IWoqlwxWs/06/gTvINv2xoC40j+KLRDV2xIXEDAJcG8OCCR860WSrznvk8SEq5/qQBciwjHNRPt3IKOfAbPF5cRS5AalEdKAP1iMWqecvmAdfh+UyhfT5C4KbtWos303Ub+ZkAPh/XjCTq9ZRRDJK8hsDOU8HnT01+DxeiVpvDojkwkgLSmWuU35Y1pVTORXyeFObBp1shJwaBTc8wczRz+9cfX7bOrbH7Joqlv66LWUinb540POGbtugXlkkoyId2S+PV/8QL1mccb7a5zswoTHwZAQOoNyWG8X6ha7gBXatttugHRismHmS7PD/z5w5NzBvVgBkvKusLVWnJ1qRepHUUIHBN/FBpohMGE6h/1rBPRekjcaWR97paJy5HCHY1dIaT+FTjWeX/NdL0lHtVdnZmXTEBVM4R0GwfWD/Au+ATL81gZabhwd7bQk8R+40/7QYOh/QrCQRXPJZN18ZD21qy9BjdSJn+7VZwppt0tdw8WiN0uhn/UBsLsVCEPv+zI7f20IsySBMhXixLYwMm2H4E7zvxwEfcni9zPSX0nwY5jgu66fH8A+pI1dSjjNgr6doS3211c8AeYelF35vpzF3q7+f2JPn5Y3hPWAAXvmk/b1BuJVSWs1iCcBUPNIkE0ySAcz8fHCIgw04AZpcKyahatjUnIuOIcSX5R2jK90h+oFH/l8TOHtJKHGMDOqakupG0j5LXKP7gRDNi0iwbqI/hcpQcV6yKvjQ8OlPbcvVN1YrkaO9HCu9Z1MGMaZMMh6pkzQYyor/5eSYRsxLq3smJNt//2hxCZrx3DmREWVByR9/7VC096OlnFmQpgrxBMjYx5zThvARti2CzSPqza6XAGtwAikDgI5WKVCfcN6yzS8pj+lt0oAiLaGaV2RFehWC3eCA8G3QsiOUnjH5dWTdya2ZYoAmSWu62WmLumMQYO/52mX0Ip44oae4+nCTPnya87l9JVxm5+zCilBfYhlJ2y88diNhAfu8mLx7ihEBUTHq5R5VJYyunCPlcsbFRKTnkLAb37g68xnig7wVugch8/Gw63uzazxsavZeJVygD9J2U3GyUbWKYGHxQ119gnWr8NNEf2/k9p3fzVgKk2eo/PJozx/AroFkgaJpKwQfBoRXqWx9PjWv9vdroM0oe6xY5WgbKTuCsXy/aYR0RMEudJcu3A9JsZcnDd69DsJ+8fH5w3ZwuNjGhubHPgokKmL3BTzSSgd7rl/DzHng2DaQU3y0yXTYVBSjPHNRAbCmW9TQOR+jjKItcOPG1xTCbdQw7OY4AsvzslFWXLLqS/zN+ssfXbgOFkxqID9CPvlAUQ5znlTq8s+g37GdFtMkfkxC6zP5jTObO8FZOKKXjYIGGPMeU0E7D1Oj2p5M7eUPIHBPs59rnN432jTIf6iWY3qXrgpqVe4jRu+d49XtI7lB/YmwG6S9w9Cv1Ip4oMFqi6PH5Ci4VHZR0K+Mjn1nznEUwPXZf+6BNVhZctXop6UXwPfr0uVA2AmTa5FBV+u7kLo6cOUSih548gOegfQjNoJJWx9vIIvWk5sr5jlHD6shs0hsw6QIifzNvkHUBaEfyHHq9d9FdyO8pMyabnskUmeLsF5PymsOPurqzArv594BTKg9a8rE+DGDnoIkF+mDStod1w1I0SdlV2aFuQJXKXNU6NykP5ISIsbmYDYp0LRNqa+qpl9yHIimJyI0yt/XM/fQwThuXLz71D5tKM9QrQmNRFJxxtHRGJFaqfyZAYReEABvztGG3PHeD9hdjKYOSpfJyR9H+TggmalgIFtmXJNypzDBEnc7M0jYaFdbTM04u1c/m7YzP/0FyBP0TnYFhVjPVhjrUa7w6chqOzFPjmOK+LD/GqvU2k+FndOrOOfJPawKhnJo8uHSDhgmz4SyCHPztV/IB5D8A1SNMC6Q69cm+3Q5OQdODj2DC+GXD9eyIXKZcPnbw7LJh5tlf4r83V+ByroIzo2Epqpad3STXRlmlFzMMzZx4D41PDUoeydyzfIuV1tdrbAfyd3wNsRsxi8wQM9jQIUN+m8SaJhmQwnxqLgIUxbMoIswI1mFsHTS9sQw3lTr7Xoc7oEfH0FTas5sf0L2U4yFv1dO2huEUnEPuekqUfTavxE/KFJt/hV9AcjTmAP8fnlWOfIzJA4pYbpFu56ISrp+b/ykttzbr8lHHGthHTiT54J01ZfzZyoFOfy5YeS8qyRX8jIZBX+XTgyeRlfSgApv9LnzEwl+JPbk+SOSOlciHMxUpi56uvAaVT8LpEPQw5wO98vTd4tuLgENCxgLkhGkbhM4fpdyqUTvdqzBjB3KvpwtAP5WjetjBiqbqLJrgpgkRwXiMJrToccN5LGG17q6aI6NEgGoEgneKZeHPOG+SRV/VcYB9pBSiYXhkjOcZjjX2zhtm98W50tjHXp3OwdqgUhoHkaOtIhnXNk5OZzxti7n6pK51m8oJ9x7G/fIW+6Np1Qe5XUHQh9ZPANkDjnW79zMxPYyezVBHCtRK7IR1+Yaw04bipICEWcjyrEXz3nx57+ZiQRcpz8GylfWnPPdYjug5kJkJOkN2kFJOlgRwLlW+8dIiNhdI30IYZKpgP6y7PobmKKlM5fD2jIqHWFLQrD0PnYP6pTf2ITkwWx4RhbUVIzJMga/q4+drHPyQwUQCCYRayLXW9BxaVT+yEshJRd6Gt42G1ln8cHvYLyvfqS/zpnKRAmCl7w6J3reTbsfkbaB8Pxac9WfrJAOU9/ISX+8nx/1Voa7NLn+s1N6o3n5UBRWT8BxN2b6lNUNi5JkUzyiFyw+9W5izx8uhIV0+7IgqGrNwJgHVZpa+yo16wHOh52RW/4zHOZFO/b1qRjzrGgUhINuhIh7luvBt0c2WUQBQNTL8px8tX+sC5QQf5e9bOa1KPdqjuT5mz231gDTch3J3eXMHGIR2y1Lh5f3rbROCz4I31O+GAuJAus2kfQs8x8SyVcA22wjMSiLnnd8sEqmjlQPoOxDXdm6RrcSvTZ4GwHi9yRIQ73RdM18WyvJ9h1YYaFWwmdlwbprMuJzzGxVGWXM41+ShC/GqfiVBcuCumW571hSBh2mZifm4pUayCvEfX6BwJvt23A+ocd2PJwmzXvcha64whyIR4Odar+6o0d16SDcjk6Aisik3djor9uTxgimPzvavX4b/YALNgUmaAVpCwwkcSgfMEH27da19lDo9KqDQj35kAihzvmHHSksaAW+jqPwnfMOwqPn4I0VdcXcPxCQOdC42+rWIBjnrc2pxapQyep/aTzQm3IC/2Y/DBmW6J6rbtg/7W05V2cWgx+qC9xC4KQY8W1y0R0eI9H7iTUxWRIsjAilFCbACPSXfx8KnYrRXdj/aWZcfSMZo4vVO6UV/zJun4dero8Y2J11g1V/D9hAFzz27mSYlKHye6AHb5UwoS8gPZs0jepmrHVc9O7wQ4pen5KfDp91PBKYDOhRvFPBqio4NhoBsA52OAGx9YeEa1+hWVO0p3A6cJcm40LOo3dc0fzArMU0RcNd8pmj3hjeaObzg3q2KdmCwbUOUMSHNpnLDN2VlzyL4SPjRQhe2ub9k8Dgzi95G03arC6JUltB28tJA+O1egGSq7yGhtsX3Ah1XOElLdfFCuehgXSf6/SiqNAjhJklkXPwKMlpsGqN14T1cFuj20d62erUwATDebTBXC/5YdNZ8neo3LQleMLcO/oCyOp9Y/z9bg7/c9fKj+VZgOXR1PBGzgNlWnqtRZA5dzkq5xmt68awWgf0Q0EaSTtP2A08O9wORXHRb2CH/IxKw/H/uQQKcd8JcBfloYOlhoDCyDG1hg6p1AHlr6wr0xzWeh88Q3pqxiYK33b9ltUGPVAu1WRnOhNqsYLBcGhLtOTybsZ8/IK/TQpGn1S3eWyOcmfAe/9CAHMONjN/obp1xMcTa29PX8xhFQaSxckfEVi+f6R74MuT7HJNYtbR6Cu14zGIbGuW1Jpc2bK0xw40bvxmxbKNtYFIEawfQolh3l67KCwib6C50nrI7MC6sITkoOvYA6ZMISEbygjaD2yZ0UTUcHzypCtDYesKkVEgzrP6Knip/A7Hfogop0sJamO6sWirboRShEHl3dAHjQNFCYpVUXSqltbZNBkf3R1c88cIC0r9hTQh5UrJ2PvGjjwqbSX3kC7SHDZdtfnbm1idodxs3xmIAudXbQr+dXeGMKsI6vPg/dZMLx1DAjCuYafp7S6u5v5REGlxIpUU/lmqhCWQUQOBkdYYv5y4zeUpilKmq892TTsrCPp7sXcPFN29hYco6lIsK6wKB/JcfzeH+sBKsQYcVMs9vNCWZyalTFqT00pT87PacFgvC1NJEPVVaBN1heS1O4RHae/iEjzxwEw5I5SOb3YXBfKRRBPwKu1/9+eIeOx9kYW0n3sgyqbW+PPOtcIAdD74YrdXZEGYFxsbZHtljq32UM9SSHA6uovLpUVcr7jc4WkQuWoENPMVV5joZqHs0CqjUunJrMELyHtX3X+/6jRWkCY/CFcLuGJCHU5XUbJfEfuyyQl6bovX/dmIehIj0FhWQ9rfBvxAXnbEfTNP0EdSASuaINQy4yeL3dGV5+heoVnkO/mzEsgbH0l606FxpLa6ijrwtS/hU+4LtMf11Tk8lzfKhrD4TEEzsaQa5E5u7gpQXtMhuc7bQJnPXv6fCpEcU0RzUDNUSeixH1hlZQFjxxiFQ4natQgfr+CW9usleEUuS3PKC8md1rh1cZivVorLbdZeV5bEB4A74IhKhBf6lC3zDaTk52giI5R1gKJIo58e7w963ksoRuz3ZxmBU4bmSdHVI2oJWf5zICyyZYlY/K4c2d6x6Q2hzeumhM/EnAZ8Uqhcb4Ssf4IExEWNWeqLanEGrn8TMBs3SxlQK9iUbCy5IpCGo=
Variant 3
DifficultyLevel
693
Question
The length of this rectangle is one-quarter its height.
The perimeter of the rectangle is 50 centimetres.
What is the area of the rectangle?
Worked Solution
|
|
Let l |
= length |
4l |
= height |
|
|
2×(l + 4l) |
= 50 |
10l |
= 50 |
l |
= 5 |
|
|
∴ Area |
= 5 × 20 |
|
= 100 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The length of this rectangle is one-quarter its height.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX9-TLD-CA22-v3_2_3.svg 240 indent3 vpad
The perimeter of the rectangle is 50 centimetres.
What is the area of the rectangle? |
workedSolution |
|||
|-:|-|
|Let $\ \large l$| = length|
|$4\large l$|= height|
|||
|-:|-|
|$2 \times (\large l$ + 4$\large l$)| = 50|
|$10\large l$|= 50|
|$\large l$|= 5|
|||
|-|-|
|$\therefore$ Area| = 5 $\times$ 20|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 100 | |
U2FsdGVkX1+Wb9UizNGHLpfiMZKeD3ON+YHNJMFATl9+ezeR1k+myJPtI8a0DOKCbFr6t9oRbsJV89eXg/nSKenqv+MZDtFz+emgU0vCdYapCcTzf99ZS8Rke77Eix53EHrbo8RTadR7+x49CxiFCpWwpzxGsaKXGSIEcIBqWq+FYQ2gRuPYsHME+R7kDIeGVaJfxJTdVIswrdxYVKW4KUaxrIw/nw20omVBjFeF0JaQPtfxaXaLIMQkitX82wNY7aYBOCvILu9aPD50r+MB+9NUbpoTdZpH1Q9bCptZJKT7kI83MEZ0lyYQzAt/qXifCCbn/mbGIVqniVGt32zXu43pMsOhjnNpPXgRfC85uNyktLb/3mcqSQ+JcioAbLLdtHyriGS0aWmjA9bhUIkKSKrop8JP8WrwAtrSBQ2vszmXLG8FkVfx3cn2WmfXiRXKKg8x/wRD4ozc8H2pgnbGhYzcmKct3HBHPgt/cro/mAq+cqVMYS+0bwpLG9TsxW5QfPlcV6iGNIF0k3NyXtOT3m+AImU1qaM93voJqjkgPbPljTRrs+VrDNES8bbcdKeUhVBtaLL6g6eexLzyfmNSkH9EpLMoQzcYR3FcJ+2TTs2x5iMv8FH6w14Qx1jImvTTlXHcn1UqXAzMiUsSCuTxbQ0W6HYUWf+Tj/OKIWcIRymMVWDjfU3utrV8hAW/ll8pj79boXRf/2SOSR0thZJbzxtlFfDU64lVpdz+qWMevsiymOApAXenDOsRnSmBtKYZwuBgylLTyK3WGXusJLLVVQzqY9w1dA1MQgrAJN6OKqs6K3sDfYEYIrp9JJyf5AnafVKnCSmcIsND6EMB4B6F/yb3N20pFNTyz7O8h4g2TpSdBL3c+iJvSaYUEGpTbbtO4kWOdq3XVrB4Bu+RFMTOd+i3Nt+h3aYVv5CHXm0aAdtBPQL0+/OC2Zb+pTwkg0Ii5jaxQ1cOsXa7xldoB65O8wJJ2KHZa2XzIIroe3ZVJMHJJwdAgLPBqAhxJH6lC77Iwdo2BfbnTFedUfRiUJliPvIt8qrQpe7B/d9/vDGVSkCYZTozI51m7nJ0D1blnflhqvIpEugN4/XPkBY9r0agL73IsTp05jgFlqfs4mKp2EmlhEmE79O0XQ8alr5BX6qUpvBGvm66OIKy92MI+NnO0h6SobUVlwDoVzqHs/TSSO4K8StSiU/QOWeR8cXtf8mNuRCnsP4JLUUV/kaDsA2tjoi8gCrwsrXW98XfWeI+YbeE66Lks60qK1V9OUCKN5EzsOcLTr0FDvyqh6DXHdW09fgmFiUAlE3QhRHvk4BoONIvbzSG/0fEUa4/zzykSeBVWTPuxZTUtmGtxYV82MKcMbZuOFgp705A+TVFRXfavBsZ971NXOzCg5rkFS6/XD3H/zWldXhpnpVqSKnwi3emgsE+bo02uPqeDEIFAxtG5TkE4ZFtNCFVsq+eL6tWe6W1ZaCO5zaGauv8sCCWLzsRg17fDSG5F0HayswHxIcTMUA7urBTejmhpEXd3+bzbQh3WoGjO6ZgoMVnsRe7rpA00fXEM4yXWUqKwBBIw6vjItEiRKx/WjcuPe4ie78/IXqlD4Ac2257I0JtP6B18URV87JJ1ASlwYQR+qt3sjClmPAFedqe97vPPlYoLuqUP3r6AvdRzPOvMReE1L0lgjcKtYYukZivPVaHVB4EEmoXppftDvxuFgeZSgATH6dHU2SLEZju359RRFPuwV19XBiksP1I+DhPH7r3ogLW/hHrY0b/PYipMQNmpvje/E42SkkgWVGTS1Xftil9itoG/yyDUWqOP0TIe4+QPsCs3N9vOMX36wVr+AQqjXVvfY04QXhhWywgefGh1dTwvdGsc2Wsr6heaUQCuELmPpfwa9G7dktWnp9CmRtyDqMPH345sJ9rIr8nIUhfXbwIOaHJ6unSi4/wNcbiQaIpO0mq69Zq0cnPrlpd9bZWwQs2PHRVAGYE5/oX+imjN+22uxKxDjCHrr3+sTujp2KV8HwwfwnfuTLr4o6d/bU4slNzeru9IV4sgkUXscF0ngP4rRb8fKQDIGCwaSEtitCo4u+RlIb7ZM88rwuzkbWngTkFTzFCACSUMN5H6Iivsu7ycJ4bnSFYjQAWEuStBr28E/fHynsCBXLxdF1L1AD/yCUGlD3bM8s2n+fiAL8XrNXbzL0ue26+D5ZEkOl12Y7veWwS/l/R2iM2xFpWfvvEEBf4u1kC6pxmbCSxf8V3HR+hxBQ/Ecldk2JFMZExR3CtdjrP4zkEnh7AWIeVJuUY1TxDWdsJzMf07d7vSRoviF8k0rJYrDPRDPTjwLV+6tavPbKdFBDwTaK5qKuSP/wJ0uUfwO7NW+bnu6YZjTBYrXTb+HBBnDR6VUyKHdGWa38lZIL1Jyva0Rcrm+6a+d5wpcn7vhUCItP2a/dYK9dnWt6EZz18OZB14wytLQZR7D4/jT7eKVg++cVeA79wjPpiRamVZje1lllFRxuLl7WgAzvwyksNJlv/Q3jyyCQhJGlRbfrjrMM422bd6YAcCcg7k2vJ4C8DRxitED0c3OJ79awgLvV3scV95zUgrcOPk2O8Er409ZsWghH5Z8OXMak9XfKUxKD9yIaYGY7b87aTgp6IQO+/h7OeArEabAK4atjqL8deYhk6QTgaBSqC4CJhYYbTAsdCHAYzFq+evz4eU7zrl71VpCQ3dbLGMrOZ2yRsbzZKnhZar+CGfzvDpmBrstJFXNI4DoApwMh6qvZQSBkSB2hN/3zK1VMhMfd3tjWlbzPGhR+U+QWdWpUIMUaYAMtGPc1Ci3UZOuLzejexJFy56ZeX+g1wCNe44Gz0yN//k8ObBlyueGw40JQQhJcx4rnS5O/IwwHyZeJVZLBG/k8i44jF9yqJcV4iy1XqryLLpPJd9QKr/ZHAPcivoKd2akmgh8FBw5Ydu9nrme14k67GOrA1wkYjNfN0x/Ksd2OLpvOOtZufKTNxFtQbIU/+C0RuROQLUDG8wi8uay0Wo8lBdtIVClJFsGNPCwCqs6JK2Q7rnysfyZZLkmCFl09MePuq5ofewRii3QreoyRh2rHzErOeVBYx42LrhJP9E52yzDyX+PzTcJ0cCXKh/WfyOJhvBiAhCsgJzBhl8HmVZ7NVgFR8Z/a/kjugisUqhG9JRaLp1+ZZZFsH5m/RfVB/JYMh802UvYaOmI/HhHmVjmMepP0OA7Q/yUwuEAgwe9tmike6hZ4vk1A3B7v0F7nBv3ZA91TRKgTxrKTGQkxWofQKsdFBQn0Y56ZhssnyAKYkEpca+5AaytnfoZLI0gKjdJUEKkKvmRbQ+o64mTQz1pS1cGY4M7dtHgtVJaK3WXKEkV89bRzy67sBqbySw+NCDDPF21w5G7uMecc3qyw49UCZQpX7KwTE81mJtEOK7jZSu3stoe1KxWnp7UG/AKJaJ1DC8s1ncUOy/wC3AWX6q+GozZeM7IEH/Usx5Aa6+ZTJxkZHBpanUdIA9/D8dSew8duAVO5JYiTBzOBh16DJk3xhjGvuXVRddEeIapq7QIR06+WjQkHWgGoUXMjKUAN5/bFIKs3mHtHMRyCr87oXRwDMob3KHoIdLdoiIQlkt2TJL47oI0IUEJo3awrG8ijOxWjRTgnRLkdDzE3WyszoB7PffTE06kZ99lv2t3dPIwlZnuQoW/bpCaTnUw07TO4YnseOdONe9wwIBOnI4C6HBrNW0RfQ5lcMq2T/Q9TVBWXf8TXEqzb2mZ4AFPjw6ftZ0s0686MJSEgZANrQXVEMJiVfS2oThYHhZwzkT9ucIvkqPxYFIZS1apWkm3sjI5ErXPvk0TbE4HoMgOsvBpKiCa6Y76CK7eTLreJAS2pwGML/yx1Kqr67qCslYiZlMQHxmlJTUXNxIlq8rnlaL4IefL06i9LDgujEg8pPjN4/oix9hIxqhFH2wSL3RVxjB+oxcfkf7mLre10RB8bLHEWDeu0k24HosHjXo2B/gsLi9HEZcplkodZo+i71c5J/YB0jmVptBk/6JJHH27fZ94BvlAkaDx6kRe6bjP4Om3i2R00x/ePYjknrLbFkoBI4R2rWDQjKIvx5RR0PDLCBI6A4LwEmPKdWiuMikVvAqz6jy3DDcLe+6y9RJNHasChFyIDam6w27bJm9cOp0aQctkjj/geNUWZaeEYq/4pAif3rqy5weCGM4S+PgmFgxN1tkogX+linaGXwJCuOajeSgtSq0WBSf8EpsTWKc9UrDuHK109uZfrijrpuI79adq6gCBR24E9r3vymm0cbWAU5GS/z4ARVihOM8yMu8t5Th1vRmFOvFzRIXwi5BubH6h9n3+dBVi5SyNnK1dF+7wsLnkg7tjwp6NpPI/FzbHR5ZKcz5R4tRFGb0bR+P1FjRwfudMpNuAqrcEstF1eJX7P8XIfKe6oa8NEgrooyVPx/j+gnEzOoexNSg9zmburs7by3XtqtgyKWw8PeyFAZHuRB/eRdFKrScmBqbL3aUxg60cvB/5wCTcKS4k3eVoFA+gNNsm+Vyl0vi0DWAesO68PkGxeHY8+i5Alr6wWps3q2+vX+JvOuopBTiTeXz3IlE27xBwEv5xI6yokhkJ9v7Gs5qGlTvl0EcB37AJD+ePNdAvY47e1ytcWM8L+29s3Ik2PDesSuhAnxLr9AcVWbf0kohclUlblq6ZuAsmh/xFC2kEgWQXIWYwK8v+aJnHVb3V4XUUe5ry+Vg6XQxKf9/H9JknWpmdbtxdQa1qmT0duJmDVk0w4hMWfErG7FrqT8t+ryyJnLB4YeVYzF/2/mZT7nhVa/cg5BpgBAKsP67n0L1zxajYVulH38Khpsg3tTiQin4YejS69trvfy3lh0FemkDLIGh8ZDsZ5Zreo9JDI9tXvw+UEW2j+f+ijB6BeFQjFvmgiBivmkub/BcwbRN4QzYBETBXpi3koaHdwDN9m3WueV7bIUJx97+9unqpGEAVuItTV40+7Ks5T1ylmBmOAnGzH8AjVpHfZpNOgM6AUMiOHdf4+posOeeGul1+RAL5haS5fQqWbAJtgZgvs/rj03JQyysf3hlhcqo8+jUjyQPLdiGzpZgh+xVgr+6zNlwO8wjn7ab9N5uwSzr3s4TNYM+guTYkcALT1EbpZnXtGh/K8gt2a69IVeYicj109UwJpIOhRFccPTGfrTBSToqy7OpR59MDD+R1SKMHNH9nfBYcqC5OIp1nlr/Gb081nBMow7VpLfR9KqQ/9+P1MTsXBdMGunw0abrMgbSPnMy6qhvsS1PV1rC6F3yQYYF0KFpnlLExnUrZ1m0iRoWmSu83N/UaJBLyv+ti4aBHOb2U25vu0TjfpbbS9yQU8/X4ILAHzWOgL978s5r635JT8x+uY9RLRlSkAdHcsylgsSN5azlQQXKjGOMkcxygr7X6KQKPj1T5vkv0rH0y/u3rrlEYCG0pGRwRffunoDGg2bGyV7E0BDV2gTtSmSwvOshHlwJv0N7RtlQdEm2lVCVxZ424L3xE6YiIsHJ72lVR0OGQTEud8ebR30ib8/Qpk7pKTeFn8bEioJXJ8lN4RknEKgbxMoudzaMp4rjMXevrwbL/VJuKjRc3HowBfjd8GtDgs+857qANt5pQuYNcdzGe3z45ZS5XM7MeLoyiQFFojxy1RfaeM23eXYCwWLT3CnOquVhQ34dmRml+LN/QjJtykHdVz5oy61LFltCoPJ6gR9ep4H37RktKs66B7gjgSKtSlOjWiaGywhF/lXuo9NnkGFTPU942Nf3TkpnPqL5BRRrqJWTYZBs+cKoNbzKKf34p2ma3WGh8C5fKW6ZjlGlKdXFvChWesTHd3fH7a+4nkAJnxvFo+0/ZLpE7r4M8Z7qUSIhNE/aB1NN7qumGbE2+VdPkqcw82sQDh9Thfpqe90MlmTyLaSPauO/XKQRoMdzsncrHbCY+blm81NqZZyy/7zDJI+MhCcPtoDxTRB08ldVomwZqVG9D9TwTev9If8krP6fY3KP8c4Z+kHxh5f+O4rYsHfuRADlG7BKrwvO6ZYku1HPRkZQFqx3/Y/NjDwUQF4K+wEVh45WzvCY6sm4RSSt1lG6KeJ2UZ48TY0Ti7ChzvZDiweScU8dwloJkz79aY1AeOqFDqMjTXuqHYiwHIkIj1zpuCrd45s/dGAyT2HjONiXLXo+HH8MBLlKgy+ivDU5+130agF9B0N2IbOHrLsCqz/bbppXiFcSG/XQsOqbeAQGjqBGWL9BgkGGCs+ncetAd5tcW/ZRV1S6Hw59JUHYwv6EWCrd+CEJiwkeyZzaKpDE2O6LwxRzLTdjT7fOhz1YmwAay5rt4NLUZ80BEGa1TVDq9Kh/U9t2duQKET4KpmBQXpglkurLmmelAf1g+SpT3N1wzKRPuOdROSsreSkj2zXfrTlgkbKar9/0ZpIcUa5dbj7d2RuomPZgzmtkEVqUBFtivB41nyLK8TgL4NchztV4Hn8cjzZQ6wXArRqeNeu8shotEVPofM00JHtxgpKYdOaB6qUfsqZbQsductk5q6DzdvoeeZvqYgCLJOe1mzG2W2isbNj0ut2VraI0fx6DPphp4TscFW712eKpaeeO0zv8M2qmTlXq3U071D+1KR8CK8W5tQlyYEbunRJZ4DgyY+uyJ0w5XxkVvti8BhSYlSrUWDp+AKdK3XOMWECLHMrwEzwfCzSc2oOO0zK8rnlT/H1wknoyUbrcMzVGIpmDJuyclt+6VxAG0b+3avSoVRTTbecnKoOYUcpq9UqJdM+H/Od5VYNb/SuH33rt8JAda6/aDpNHVSu2eQB6BqUSYx+LnrdLFd6lBeLsTRix4CxfTFP7DlXxZHVXomeJoQILJUv0ecmKXPBJAHdyEqhnVTT3bpAwywQA/8G9bunupqAxVGwajON3XJYCcRXIfx8yqMfsJbW3wzvwzINgM7X7DkF/gnkjUwrx4wRR3bdPvINhU+L0IvDnCWPA2VX1E61GMOhBCj8trjxz9VZRx+RIqttETW3uSrvqEcqwLb3t1UU9A1rjq23yTARwJVpxjTkib5kiQcDqbqxaFY9E/mBz1/zMIsdXEJQcl1czRM+Cc5rVJvgtqDE3bl/DX0syMzdrst1UItOeAAlljzMWVqssjunT5DlfSn5zBeqXuuElhzsc+2FeIHlTK2XoPV30JJ4M/1uYLx3GFfcraCvjd5RgRFArIKZHBi3uFgkTWwwAHPwra+FGrujNs+yII4C37EIl1EJosjSLQp4R4HaAbfSzv9dvctFZLAnY4SogKfxkbQNaH1Jp0rsDxyMmMv4Ua1wPqf5GDpgsQTYqZd4bJ3YhJ31F9m8NIowI5QwBVatdLXMQLfSOSqRDfflYBXXOpWULjy4ZArOqsn3D7o0+uygKc5EgL4vhUAFYOTn1rB0lRY5mthMyPJIAHoW3oW7WoqEFCdN19Gltmm+IQBbTpT2NRcCaDDo5b0XAIxa4rLJ1KzfzQ+UwY0inRQRi18toeHYCo8j8wt5s7WtOtpIKc7CtvuUsqPtNo/IlklsgY00CpXfP/q7jD4IA5xtKaRki2eL8N1pQN/y1g0Ti2+1Ikim1gpPfWmEt1MZ1CW9/JznEqravLFM4NC0pPrMD710DKG2hF+A4Gd9kmFX3pEd5z+hEi5KcEreLlQPUj+1eLAJURDZP+dqXbDo8QfWLN7SU5etf5raP6RaH7nFmI4dXLwKghB/arbCWMvOJc7o3YkyMW1Qbg90yWvJaCHqGerP93dLsNwT14YeYN7LQDSgsUWEyqVRwE66fIm96sFcPilfhbhttxrKECNImpXHDs9Kd1nfISsH47wSB8ho/65oqOdJd4PfJwpuwC1DsQmONxnbBU+s1hbeaQcnEmiMcwcg+/DyPikgdJJmI66xWww2jXC66meGGNGlWLRz2zI2W4hSeK0yPgeVX7uJ5BKgUHa4uAKcKvlJv2rOyLhzmY9H/fKVozuxH3jcHF0pFvMYVdsN8sZXnqE7Wms5orOalGMYQDAU/pwxMqPG7vS53NZIdljhjkGHFl3XJqN0BemJPAczd179m1+VWoZBo07MlUdYoi10sKKAdipmzouhr9deGQHkTYEqBiXFWy4nXUL3jV2YofvVwIHFEQ+OKQEYKf4QDvOditc6lxRa91kTDmAVjmVhdRwN3eKvFiiz2juT3yp2MrdQsU2rZuHc2A/dQ3cf/QKQVPLpStoivyLfSDMG/tRwLCAjyMjTuBXwNcEKaYvuVaKT0jACS8JUxgc2Np03SB7WIvmYI93gvybioDuTM9Ft0zJ0N7ZboSrRrw5/RKvrGs1P0itwUgp3oG98PxnMWOiu3b1XkwwF78GpyCAZgWtgot/ylDYkqn3oOKN2/GgQrLuD9htjYsoM0FQS3+ndTtrfXkr0UChzMOL0RFRXOVgYszcZ0wS4Bb8b8q7eRWtrTv78tnKfbbCiKRIMWpPVOoVaue3Eugw+dmaQKAJtjHBKb4l+aEbTPgqHiLXm/UeKF0cKYSSrFVpFE3qgJKaRAnVylNoE5y4/XR6K9WX+a6fK6YYrkqFFfBeOMl4aofpgALkRUxrvIOwoYA4lIKc0hC/5MSh/Rx13JjwBpUjJQh+knO2m+3tgWkCIvHTl0xH3e7PNJiZh8AtpRkOLr9yCn9exZZRk45U6CRCABnGI7962BgjdxckKm8b+hHxCveKRt59uVydqZWmpXTh2WctE4KqDg9EUbspmxs0GctZ8GkLhe6pFA4mLAccsJKiCgmOdG6t2d3PjWn9U2+OkvYpg00y1gwtoAdqacMs9NlrmB7aAKfiT3glbKgIJtg49qEDUozDbnN+BvFcNGZ9RbQnt+sxfk50/4kBm3XBjQDM3YJt8G3CZxLt6i7u9/h2vDXvfEPYqb4Leex1wPV0BXkdggCd+OsqbCWel7hkto/+sBb+yZwCM5EhFIpnO3xqOTzhUoRZ74Oc8nhQLpeJ3aF9NSkvcMpzEMLW1S5LISw4Dt0sqlYEO+3B79+1FhcKXfcpJzjLpcv/9vlf4IPpH4ov+XCq8kgZP1i61r1dsxohinxK2C11s6vXqK7DOWVXRSondgoZkHohBQ4USS2Y5sxOx1P+ScXZK3lxmUFBUVNq6rM8Nx+8iO0X8w6l03b1Nq/4vQ70sMbNuB/le4RuqeCjDkewqz03e1tdM7xriOmlNrO7AdnqFTTbjkctefC04J/QKdrJp+OlQmEz7RrvXG5fPUucpUSCJj35rNQtFa+cGY43/lg3uHGyQzd6RguMLyKIXqu+kbFhZGHxni4ljavHJWx0rHxMagJWNXr52QXOdAOfLcYyxGsQSCVTFyY18I2r4N+X7pX4NKqAbDPAM+ZnCrvKrfCNip164gD4VRKPiy/gyPwDaEH0Z87crWisAM8YREKQ7nkwFXrxvk1VjdcsyqXGSOBFxFdfwgMYdnfA1DZks/6Oeg6L6rqR2NnJs0N/WIRfOptaxIZRNYAZtVUWwNlgGpXCQ+hFArsy1GEd7+mK1ekvQED76McAUhREDCCO7TWvS2txG1WHpRJD8hhZ4b9Rv09EfrUgQvtyhmgX5Ql7OznAvUq6Lx+ye8azYckP8aFsYcKp+SgXgx1miVJguVb+aDzCFZJuux5NlUZVMQEy9FE6eJLXPWVHpVd2hXHOqBi62jLZS91DkyT3ez38o2aTrjpUeoOHcbttUkphRdCjSyyDhhRE7jfB+u9FByLfliAczkLKpcC5a+DukLI8MNGX6oNOkrKTjNL/zDw4fRjTv6UoS7V1jP0pS7E7r9l+YrLXuaANXw6BUBQMZKcOI/alnSJWV9+NItcWvkP70bGB1HpJsurLZK26eOJow3FLNKi1aB1Z2Yd2TSNSJQALCFbFm+CcdUiHFgWG0Q6yCYjwP6q7bljBZVQGYDA+YlJfmDpOZy6iqYFiy3LZ8Ahjwrybi1PpyiFq/KGjBeAHvpX6SCjYwxx3goRNYZWJoVtIOJMqCGzg+Gmyh0guAg6ie9oQeYGTEj8oVDvxVYkZnV18l+aQ9jZEsZxAZLdUFl9LRxl9A1oXX8ajnu6zfhh8B40uaYgg6JqSIph2YdiZO1an6Ygu7oWpKiAoATfmoukQsjd1trMXYCteFUmtYcTgGbQUPrmDtI6ykuPBlHWPFl+AEOtYkyh0uGXUNb7HxaNOCVrEKMpdmGLVXiNwt3bplVh1a1pYSWSXzn4KxYcdqdq9e40qGKHL78uyWo2jNaNb9HIQxhHXlmJjmzqWVrww7KaivtkaDbUyIraALyyUf0++JHNMVZwi6EodHfK7ESdEtOGBBZVxbv9bn/2wg0jyKmvQkBRGMfyD5ZcKAGFnge+E0VXlEqstZWcOO3bw9r2wPK2DJdkTyuoU2DT4qpQNyC2Tcr0I+TqgKYzbFquQOzshdhPTT+/zMUtbCJXUxhQ3MPGqfnn9aguI/a9+gQkdMZqh+KDGP9xU059qGOVaSvxTrSp1GpA0jIdcSQccLK0jjaJhd62tIqxfoylONYFt1WRQSMpBp5x+ADvO3YxCa0dSE6c90Sb4oqPuZbR4BHbUL+7qNJdN8ao7VdMrscpPM2/700mPCC6tI8tFl+Cxww7RVvp8YjKpZUX8lFjf+a5Y/cYqqdS0iNfkknGhFPP+Dz/YoKD3yXd6yz3yuY2QxN/Z5z3vU6R8rljZ7k56rFVhXZu8KhD8uoa2O3zXMc/uQqiATsDhki3S6Kfh60PhzUR0NS1vJAxY4cQpxdiyizkzixA+/8/BbV2zZeqZsSHGcU6/bnBJ5mCSB3dqLAT5iGTLOeMtWlpDE8A6G09B0rgWq06zg49Vd8rfn8Bj/O9VdjxwA1I9UUGbjtRhn0z5vWkvq4iM/xNqGeoSoqCh66ft+zFb81s73fdz5b+pA6KkVFxQu/SwNH4cBBRcVo4wJmdO+oAZKG7OjIzISc+j6QgpymEhvpGmTqBgnBBD5TtAqfWChoQekHrVoMG7YPxuYsP0fXTS72tPfA7vdvVDOc9vngMxzNYfI8ThWvsI1+zsBmxuc8lE4u3Zmw3iw6ffp0aQbjWSyynqT9/U+0WYaEoK6JJ43VWKIoVAHyoZCi62BJUb71N0zWYyu+xBSbT1bpaLCb1q/Vw/Ti4R3nJttr9MhrY+6fOyUP1+TpqpZ9SyxucZjSwMqrLtNa5/WSNQHvq8u1A==
Variant 4
DifficultyLevel
694
Question
The length of this rectangle is one and a half times its height.
The perimeter of the rectangle is 60 centimetres.
What is the area of the rectangle?
Worked Solution
|
|
Let h |
= height |
1.5h |
= length |
|
|
2×(h + 1.5h) |
= 60 |
5h |
= 60 |
h |
= 12 |
|
|
∴ Area |
= 12 × 18 |
|
= 216 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The length of this rectangle is one and a half times its height.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX9-TLD-CA22-v3_4_5.svg 300 indent vpad
The perimeter of the rectangle is 60 centimetres.
What is the area of the rectangle? |
workedSolution |
|||
|-:|-|
|Let $\ \large h$| = height|
|$1.5\large h$|= length|
|||
|-:|-|
|$2 \times (\large h$ + 1.5$\large h$)| = 60|
|$5\large h$|= 60|
|$\large h$|= 12|
|||
|-|-|
|$\therefore$ Area| = 12 $\times$ 18|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 216 | |
U2FsdGVkX19oneqe/tNAYzywEPL+PPGdcwe/dMov/ccA/kb8tBjRhVZULpu/c0d0+KqrQdaNnlUhjYu95C5fcA6BDZ6HzDGIeIUXQM1n85HV8+6R7JUvbKddzcASyemkhlgwNsqFuHAXJ57ZC9ZfwtoqHgkLA7bHqGz/DJm3xQGS/uLoAYU81FXKzfTO7he/+Thn8h5baNnJ/9Ennu7CrQoP5l+iSPdTcF60Rb25A517gWD8sabYriURabm1OyGorWkejX+wTla4YPpFP/JpQ27h6zCWQIFDIoHHt8cYm+I5JYX1sXnZpbwDR8ob2aO5JJmRfcRwANYQsYXUxP5td15P9U84bWaSnHuUVsnnM9DhvWFNHIFg1WWbOtTj9Qgd5r+u6fvJsHtwfsq1Ek7XBJVm9Ba/4D71nXyXLM5Xhj6FgGFvxphmqNnp+4aeZhMFCSdoq+kILYlS5IA972sP8f5va7YgVUZhKUG1V6DI1UVupfDXuqbI+c0NG+W2S6/QQ6kpTVCgz0ZZEZKsp7SfvgSkeGjhEfZ+lBOlTveorkYp+/14dhk0I1ICs8jlFXcUq4ANn8uoknu3MzZ8dbWqKaj3RgJKfrWa6ZHx/ikBsOxrDKs+dNVU18+KM/So7Ociz4BhdoZwtyapeF9FEewv+oT4fkgFT16prBPdpKo4vNF2by+SeB/KuvJ6hQoyEE8T1yF2sztbzvi4ZHUMMmWhXsqfqsBN0H8A2JZRx/JyUbqPm77T14Kca89Ay7AJWB4Y1RT2RSVQ4u/QED70YTmw5QQZDEnxgUb+LR5+wXHSHD9oQu4auXoo7e1ACCbhrg9XwQqCF8XbicvSVBA6biEHRGu26HqbrS88pQLkgp5xZcnyX9i7IAaKQU6pWGBhu5sT9qC2jmhGl6VosfhUgAfz6yN1cQGwPcUurV085v/XNmIMz9+L+beWa0RZEEOec/WyBMFttoIvGRCb3sI3UoPwQmd5a2PFbcBSOSDA+fms91bmUiBYFuJsdR4rYHAX4d8zN+2ECM4G5C+zjIo8gO4Kk/KbU5Wg1mlNB/NHf+EIxOSNgVzBsIN8jAW7UaVyQFW1W8wSHaqMD6iPFhFqRcGfyZ/dp7Fzrm/eBdmxK5bHWKyy+YIe2E8ICxo2xxOQ/cazB/HHkmTgJeySIeNQN99aP5zfLyaMUsMsPVxK3KbeoN9FxER8g3E/ZE/WRlZgHGnnr4Q0KJ/vvjQpx9gRRR9WEFWKj0IkIZKHEFoQKv+65u+gY9ieZrZmz8nu7jY/CDat13ldLtsrqs2rfLzknz4A0eRL6EMTiQZVm4Vd9yvU+b0LZJbFftiexTMKmjt1YzWRIyQFJOjNhMTteFi0HtE7OHCuzxPbgwTDvn5MZ9HmmlrQoUmSJyhxyTNEJ04BMrA0pmBeoeSs7bb7OHQS4onesugdmJFtAcf+TW7KSo9iLBTk1zHac1nHA3YHLcCLz5EWAVnAxSNIo7yZQAUJDbxJPKDkmZHVJZWq0EzjOxA3M9axRBBm4/WXk+SlO4op5ODMjeGx+3uS8zy6pHGLKi94O94Tc5sNR24fzn97rlBGw9NsfCCtyN4+pxPWEpkI0kmJdYD59JusJafULVBeW1vsqywNedVztmVkWnuNjLeMFZBO/ShCBNWMlgMZd7Ftirefo02+5+0qqUlPOzNhyDc+mEG9P0ya9LJONZ4Ev6YtcFgz6eh+49lVnGT9axRJUw1LWRNlb3tWfO3ETuxjCX4vLW19Y8Wp7rKRm7WJ/O9LHilgv7wN38rCn8j8zWYYodUgn0KQno5QBSCkl4ABSqGQ5LbhnoQCoecjAjioAbE/ELA1SiX5OU/5W5sArNoTFP3ucWCgBZm1sRQ6/zAOMlPFdP2mG5gcNOjD1wPDMKVAYGhopJHbS9IJdMG73SGVssXmgH5zcb9lMvdiv0TY87jOkUg/l3mvFkoqjtpbZtmkIr0HehORjf9gY2ySD8mgThtO3FoWrcijvwyJiuOpspeKy1zDDZIPPhUXtLZx1DrJ017BTEi49ypsCDsb9mDHnonphfv4AyP6OGgtY6EYWB+Qb3qyQuV2EBroeEbFRX4DJMQl5irAxDfwaJEQbHWBoQK3GLOaExtYKTsUpNO3TMvWjLhTffCEgL16GobpW7d0q3WBcxbzo6P3lwMlcOpn9PpMfaszkUX94Vn3Uqvxd22+YisnD9Mdz5eSlsc69KIAxt85GlZQBRm2sUSz+R+ZYUlLE7M+t4ngHFYaBZHSrZ6BBtsU0a9rO7a1vfXk2ZTIiGhbh05VWqNbDp6kcdzxYPCTvCyZnU6ld9dF9og78GiQjgK9QWLo7hlRS6STCSjjd7EedWMn1AsjQAKyys5lWrh//qmHC83LazF+jAypAA7GY1a0GLL2b7vDJpjNY/faNOBO930Ny/lLdtYO4XgXPuvm1NWTWo5736Mza62l0w36yZF+wv5hELo7vaGJ0lu9Gt3kiMM8nUy3jmDXkmvZ3FfaGF2TQZE+uZYCULPBaJalswjH3qhqNL1mWzHky+jAqdFSvDHOCZAn9CWFA92IRUfz1VhH16i43ND66DmZ7BVgpxDo7iHp76HBP4N+kfr7hvH/+UVRwjsmLJ1r/mFhHZwue7+OAznpBdyzfA8IUOEjRD7KupJubyYnTKRjZQoz99gyPxcbPkJiy/prS747hRXAQo8C1UMpi91f/ytVtek5uOgqfgNni3yRSaoRCdxkbAemisW2Q3U26FFstIEt+z8firhG75NAMphROJSJcgt1VyeVTsPjIa0uUvZ0Vjk3qgOCYZcJB4+MpvorI9ALzGV3NQV8UKpsvF0MhYd3mdPUWu9lixTRzgCVqvWvL8EXak4Xa9g2pCmCRYsmUll7FUue3Knp0dvRKo2jO8MDo7HaKZ8YrJT3cPDxj1sT2yfyIZlVcXQrR/DdOxi6+9Hu1YVwouOziCD30220o3f52CBB/udXuSIvvXz9ditQd1Zzuv6nhLRrHXw9CZC4E50LnAmgGc5OjR6T63PVWppe7sQZWtcLizbTrQ8kM6sEUmztpTLEJVMa1bxkSBXZr041YqWARPV1s8X2Gp3h4QrpSTW6rwv9mB9RXDk7x30yCu2gq5F8NJUvQ1sIire9ta59yPZlp95+NtnKNexjFuXQm2q5YOM/9F1xjX3FtxTqqDVWHP6+KCJfTS+wMPJ4c9OckazVgPKO6xryN4O+gUyX3XxDROTFMAYRmcIpqSYNnlFRjYhhT+1Dso6AfpUSf1IHHjQtks0I4NC0jKted8PWQTeIN+YwOQXZMHOfhvv4TrpfPMNMKMr7rpyWNY0PNMKHgTNn4JWU94QXdsEC/UmCehmMQiNRA7axlUVKWF0cSHaOSRDufHOCbGpd0bJGK7wiJZBzrGHbJ0z8OlISA1gu2U876yxlgFt8hkvBND1yUuDLeU32T2geYahDPTSXHyQrmaghqelP3BlPqhZH1kYPpfhnIV6zFlMDPJVoBCIn9YCyUyz1DjYzFKirOdvMJwrmaahpYLLSJEwFn+p32uMdwCjW0phX7dv6ehFUZcrqARQmYEb30+zSIo4UZWmTTgN+HTjT1GollcVWMIolTAwDSu9g6cN9FCMLCU0JOmlz7vr7yrXbY5oEvRYD6gn0SZRJf3/cgE8joBjYH4vdfMZJjHTDmKtzLculvTtoqNlQJvtLzIB8jf7qpw3Jrq72Imxx6G6AvwfNCrt0qpYokLIFEoqyRuAYNJsLC7PtXQ5yvbipEpq93gXpxSNihP8qtJG7c3TOJ64J6FmZka9MgTNYyBlzEbkC+4xu97AqsbGo2C/UqWXcAe6/De2FvOM2lko1IFqbnaG08titwW4BnATgGNn7bIUaP5ya6KeL23v7ii8IS7VU6G/UNzh7D8N36g/+nSaGyUDOWIntoYfJTA0jGR6VV8PyBRsVaHUVri66JN2hb1tk4bqn3opHrDF4Oo94/oa2x35O+afCKGp5r3NwZADYJhMSHfHhJgzwx45mPHdU3mQG2UQJy8JKR8ONiDqU6wyrtTUshF+wcUxp3ysswvwLlf0V3EXEb6H615M6O31T9DZ0UnxqC7TtifRi36hVICABhWvCWy20oqI/H+P9pVkWCIiLNIKCb5ddN5gji2FvkDm/ie4tN4lEtQnyumqnn/ml7JToPYTlkqEJ6IAFSGkJnXWZijbRUvVAv+9ZikjwniXzXS/Cgv9oYoaYCZ9fjqvWki7Rdf/TzCq5iM4d65IzY05LO7FtqJFFnJHEnlp3EEs/yu6Hw9W+rFD9lVNoD2S+r7F/IF6m6qq0PZ/Iccbw9bJ1nUW+wnQrCaAWFZiUcN00Ut1dfUMKu75Ayh41WytRf7cJjNlqnCnBqwiIJVkWVKfIvX3iFmDOMRHNinmMCOQtIuNyMy8PUkUovOgUqb8mKMM8LMOVvUFl4RhlsylAkrNt07vNXKFvqsmlfiZOGmUEEwSymaO55hMjy2ZAbkB4D7NQAs1/dpO3vT4i1tbCnslng7qpgiMIISi59b4nezAoS6WXJQ7rJIwnyxtWf1hhB9kykMCF8GxYtEKmQemGhEDTDMhwxvgHxgCHCVcKLrriiJolzC7qQg9WAi/nnpjDyxol+mss7T/05RN6Lb1gdoWnGemmraQHD3JOUZK6jLB2Q1yeSIWpoX/98Sp98yQYKDAvR0UKNqk2Sk/J1kTniCwdt+/jKSRjmn2MIidhtpPfuAmkWtRjiq5n5e+snJkryfrJYTqVyjeLZwpaDnieNnLTq70Ph53NVrdDXPfuTBeYIUYZB/fYpSDjqsXsvZEmimXynH0F6sar3/RVuhksZ2vTaWS7T9ueSto5Ro6985JYf6axEUbGu4yVhTxxSHBlv7HV8ntBiSH4QUqLFQ3tK4U+wPQ8U5/GGu6ZRUHdIv+HYqi7V0KNxRYYnWaa+5VxTJFWyzZjo+erPIWz2iJRC9hXgqXWzL69W2ls5CpWROFTXw9OL9zjeULoP7E6afocXBcmj4YYBu9kuPuBApFqo4H+qNHmmyA0dhI1ftJwc5xfl7L4mUJVxnHVZ2jgroq60faECXIPFLAy7O7s+D4OTSIw74fLRc6NDLB99CK21LtZ+bDKRDts3V6Je6PuX/V8U6dInBKMFqnjFu5WICxuH9SQ95yRpsnDyHmXPngf1lvp82g9U0dDIBq884WsllKLmICEjRSSi56pgWBasQ06qxY8lzd/q47VYWfcbWSEqiHPR8p5ysrgv8pODsVQM6wAwxFoRuJDNCi43n9T/XOeTnhl8UKjga7qRN4Yq+qtg7gq/GzqDQyTPi2CjcNwrqIod++Mabk2/De1BygOypx0n45KhQCP8IA2ooFF2w7m0AvfKEL8YoTmYV2Bh87kZhn3mY/C3Mb/S3w3xuJPXj8PohBteU8B2t5dgz4uSpDMaKxVuZ9B6vdiznm3YTFcK7n3SXylLnxVkia1KslifxN7VEvr7ObaX8oV2+gcPW7QvZvvTv8jzmmalwn/BYQCPtAqOSycNu/4BHdAhoVBz2TAqPqP24hchOu7pv5ZfZRXfbWF3wnKYMd93AJCXJC9uAn9qD8fdEnZR0aAFojghkYULbP6ceruKCrZJqJpA1uRVnuLeZ6RyOIJJaU5sqKzfobOyV5jRpbtz/cuAdIOBiilaLzAieOhl/cRxJemC/KhdATWuyP3c81hW+XQoI+Kt8Zoouvjy7vAJAC2mZdKoRmEtutlkqjVhWPbqozar5rTRlIZfFyEg4tdzEN9axcs9wtcUwSDNwVLH4/lF9wPaxISgc+oJo2Pch7YvD/SrnHVIyWiW1nN/N2lecAKRgMIXXkkU9bEsmJMTAoog2sGXKUlKlm8B2/cwNQJHKQt+7jcr/fxz7+bNZAbxPgnbY9k3ZIM1HdXYsz9w9XRJbRp4n/n/wROus5HOt/q4Sfchhyqi247IkBXD54q+euWQnfRrfWsgbeE8snOYB/n6/duY56A2WQE9uv8Hhg7YlQ02PemDLZCm8FhnKwyTfsWdtuNvmdjsobjMPAset0DVuR2QHmO/FQ2/wZLCMz1jVCeU0F1yzDowL/3v+g6rhRkCG487aY1yI0E9+bNldsoWioowfQz/vPDRCsNnqgsiehePphPAFWzNmtJ+vaKJSbpQ68aD2xcudm8V2SLAa+cWzl07pjyanX/l+VAcT3oFyMkAYV/uRm3vnrI6+OPBkFbhUVzbwkZpCItF/YBvSN27RhMtH42+yQxs0SQJqn4n8TERFFDUvauaj0wrrrhjOxNoi++u0ewiAfDxRh0INXMZA0ZKv2z6e/TdrMyS4jVnClKYhF2avHJr7OIDk/FCtdtEQOaJGDAmfS2GfkAJclVISUMzATdQf73hFbQXwUC+Tcw9mRdytSjb4wq2MqMnWNOoC+87jBKLGP2pV8/W63H8HSyfsrA82kc8DnebRRiw8ZCmlCpl6RltFEZIvsFr/AaAdhsWUBC7oJCEMXXheGbV/0yb3j0R51/p7gGIlAmmh/UMZGQmZNWYxDAOtNRuJMKEhnc4nQHgL31xr0GW9NFBiB1HzqDYXlZhYPWL8/GSXXwhnWbJkEbgy92B9Ozu5d2G/+/YKwAgye3q90WsilaTO1TZ8Oed7V9TSwj0S+yqT1gwviGtlTDSm2e3AOhd6C5EoXpzWBXdGypNps6G99DPG/3TrBsXi0+veyfgMSrhlg9hSvBQBLCrGT88E4j3QGtzM3wqV/+We6ZpTuDnpljw+guZB685aAkrOPmmrTQnlvYjJZtlaO5AS+jNOPghWzs1eJlx/y1tElFQrVnd/HF/bQd+BDKVrWPdvMcPFcWH/E0hjkGJQAcgk3jfqcOzBu6mwAScbSyZJ4Q49CpCbF1X3DuljBwo7sknMhBCEOY+tvuf52vhlAtPAqgUYsiJ73Seyzd1Qsgj5y+TzQUrAun7A8hccxruuilVoVM/HJKcyyDfw1rZXYYU28kgdCV/Hw9aLsXX83y72c2Qp7IR07EHE4nEt8PFFVdT8HxNO0P2CDu74WmH1r3pV40wZBInpvqVHLxANQEf9ZvsGPbvluODVtFR0iUdmCktRe2mOdul5exiLdR2TDXorJUc56Kuk6FMkP/YJUjMgf/HwJsWT4HsfQoxLiVJ2uEiGZWxl5R4VOhs9qZN1McWe4Tc3d5+IzEMD7KyifpTyxMlxhHX2FdQUGeecYWO7KixhUByrLnZuz+1GQKYJnQocjEsLgfncytWbFfQSUDaDHWwya7e3P76hlj4gwv3giP+JhYp0UhMlvzZAmSH7486V2MwDDX7TKO3Vna8fcfu/jqdoOHFekVSg/9eea8+BlxBvWKjrDuj5UJ0SXYswDYiFTDhoSvJB+U3OASIZz586BbJRrO89LlTHPjWgmH7b8sFmkUj2V6TImNjV386cILIL4blgJtKuKJ0V3yogsHkq/yY5VepaI/f7w6n5QoE9C3PlI/2gVoQclsn8aXqJh4vm0RPSO7z4Cby9TFcFaCh1q2gT+4CNmxERIKVT1iT3xGiO1LHxK7zbi7aJ2qhZOZoiZrIZbDUIYclmCdOj57dv/TgWxD9mAgqh7nc3skrmyHHkPs5m5Yfv3x4Hjb/JFd/V1C6WkeXXOde/dmhmeDwDRrm+54HnS4kP0lLjydp30Z3FB3ZFzOdgcWBPacQdAMUZnb9CiwS2TGgq1vyUOW6jm/X5mXVY86WJwYKLkiWNIZP0wLO1XSJeJ3npTeLJQp87KcJRNyuyZAhhgb0qk/XxUvYrlcL/mB98HQadjBTe9KO1zn2uO38lDR5IxnvA8s5avJue859oAtxNEEooe/XIwNg67oTO+4pqTpVDht8E9EF3kYKRbUDfAmMtXBiqr1g5ihrYKCQjtcIsf5ejTqFplqaEKrWdLL1fHaPyUqdgWgNWAIX+vU3kbo4PxJzlFQS2MdkHq2f8jCP6ddhOBTkA1adGKr+yGAxz85VJYDPjnRfdbVFrHuEIP62+IwKYSDU/jmBkucCT8wBtlIf8y6rnF/5sUyVNEm5KY+sb0a1gmj5Z4JR2kVh6mZ0Dh4z1TwraHJMbtfSSiFPo+v5nLrlqvopasESFWQUWpJcYlA3FaeAQEXi4hsEYANjjPe417gUWg6F6g9q5aO00WPhQWt2g+c0ygdnLBnQfx3WiuXotWhPQ13f0sQ9D5ZW0wq/Rfng/67Ywo2ECNttqNJnmAxtRNqsr6vcPVR2bRR3qsUgl412nTZEdgz2uST55LTGtWbGxcz7+KqkkhfKoiCYzZi6oXijmXZszpOYE/iRzyyELDi79xxaxZK59kZQlvPPgpUvS2v0T/2RSj0yYAMdTquFHWm2MnUwPGTirlqNYS0GhiJeFWe5JZPYMwpr+UxlF6ykfrrtSUkrssfE2szUIrAALWueGVbhGFBvSoWfqNagDZlVSjylh4rJNKn0CKG3nAyLEB/+kyGph3nnSLwg9Ys01oq0tYivNVORbWqji3EdRhCc11ZxzASnIxm6DuzIn71RZwtlp7StdKpF6L80mWkoqKTFEPO44CsmFJwnWOv+V5wPj9cnMcRb9Ia++NCl8B+5qAIjOVSMRSIGiCpO9U025204/cclquaSvQNetRewJmyt8q84xj+Q3y5syH89ZH4oNe0k0Gak9k1Ctse/SJk+1nq5Bfu5pe7/Nr//JBbk1hVXfE66vZgAQqPuM68fldQ0LTvvXnraM+x7VqnBzsEsVt5GnmUo2H1bem6UiaH1FQX/5BCTUag/j9ZdbARaEuGiY6JahSMK+JSaDWHBfmBz0/4dg1kWJF0ncnnegqI+NGUYeyh1wCzhBlUeLhSvtnUD8JqhdYYHpovgjgpXvLl9TPeIc826eVorvHQjo67s50DtOxceRWT3cZ0HGdfrd0u0sjr0JoeR+rFXnSlJEifuaCJ6SmYYjgmTgOO1nSZWkrViC05jGKFIqXDB0QzTLfnRFUV9xsHNSGbcjA62A2aQEDzG3Akm2WDqLAc1W+WyK+96VnYq53cPLH1GDHbqKWZ9oeLjBuGgWLqbw4zpVZzOW4nA10ODg6E0n0KPSR74bXpSObtcaDu5Rt6YI4BH4Bn47kBjn27FhX9naoVEDU3FC86+uxKZMqNQ7iEGaKjI9OdEXlMyCKIU2sNqZg/Quz5Fxj4plAGYqiVQBFCb2icUBK0a33gRnhBaphg8YBpnLBpr1RZvavFeZM+rYmWy5wvCr9Ffya7eUPRSIsOCKqoequsUrHmxiuljEFaPQ93ijSVgOvVV6t4WM9GtWVgI8RxlSrO3Vt45RBv+kdz1g2LBg5Ta72CtivjqK031xfp10oX5FW6GTxJ52b2dPNkuJTIodR5bNbKf6x21iFmDq1/ipindeaBU62La7SSJgwRHq1AtSk7MRRUUusSatPgOeqcdXy9XymdRrMSdOQJWdMNyyq211UMbqAMRlqAEigg96ZLfREni1yyn3rCrlavnCS7CLeprQ2aDA27v+Xc4RflPSRAXCMpb3eFhi/t0rgnxQ5UGzmbQx72yJPO05odTWsJMQCLt2djJP1jGaccpbIP4nZ0Sg6f5+UtiE9ERTwXJ9gzSTD/eO50ZTrwXnDqMF+ysfBp+/8fPt5t4sVMQgLZpTxuQyRhdK7wWEiEiSk9587Ol5JPaQ++R75uNru6vj6BfxRnRcKvfewzCBq54B+S1CySn0ooA8q9nctzdpuZkV18sA0G7k7PU+x/IPq5xh0A4QhKt5j42xUSaPJYcyuAxvm9xG/9fsCU3bVwEuAhVcfBefTwSSzl/1TiENybqhsbvv0Jb3/ljGew0KyBbOGbVTLMN1Y1+NBOoEPAUyUyDrgB8rVpCsOnU4BloYrfvG+ag29fPpbrzc/nPZGzSevRm+nSXgXzZLor6OiIUv5fN3dwKeyB1YTF5I1Sznn+Bk6DLjEbivWnoBGeTl10FKapzHs0c92EurpTd+piNOT51fiCG7S5vty4tUr8phHfSCIJwgdMtXbSPULCYYQwEf0I8+DKWs2xN+8wh884kV1l1DfsDdwvrwYEoGuGmx5luWr6S5TB6SQfyUoZ0CQk1+Q/KdJZgQbs4RxZoOXeFEYUqxJDyZV4e12TYKYliuIq3BX999Qs5/yomklzV94hJ7UUckVfkf0C4bL2ye+CLuKIfcGibYhWo/+sRqEveKaeOQnW3VxQ2dPEZwFreu9MXm3AwTdFJtvzj6MR5yadz7FN6DixO4J1F4qUx4nX/MD/nd1uDEAis2ldIr966FgMjNs48PkzCHMNH4t0kUctXMTrL7vZzUrMTLIg8/2yfk13WlYfeCQ+kmaYBbp8UJ2uCOh2R/rhTDD7qCHfExkybtgRLXDmtNd7djHE0qZsmyCl3IE4EOYyArZGw1iEVR/B5rAnM+hAlKh6nODxZwajTX9PGN/Tz3ASsIiVqDw5mNx5i3ppyzKBNBLRKZoV7KSDhMymiC28ILq8on54qif52N7dmX55JseSYCKZJfeN5Xhh0552i4dlyzWezeiB5cR+LkJZQg6QTXxyrS+cJ8iD8A5Ch6nSm7PwtTpbsI1EScJm1ttKHk0PWzuY7bebBkNUpvsclX9Sk3UNOEg1lvGdxzQaxUXTjQFgFstlZDJ6lXF1UF7I4Lex4i0GCdcmLP5TCFdmS7d6eXbvG/YY46Hi/iSXQrkHGbOGY9SoWAEYLu3oXXJNlwkPWiunlIYEeJuBUZ/GYtQssa7ReheI+xvk19RiJrF2Z/i2pwGFMLRiGeSRp1D3MJkyjkbW0N6DWyYdXehJWVAz7+EZatpIOkAY983C9YAF85uBV8WvKvifNJ2QAmyAo5HlROajAxApmU6mkfKPUFcqS93CXN4xAhWcU8JldrznhnPvHxkppYhWbGdQunJVEOW8Vli4ye1avqKTI6CDL77wD/6yD9lty7Dxp5/WzfTieilmj5gtXzFvNN/qpAkenkuI3tOKYseJ3TRDa56bCHwqpw90P7LYMMihoKiqnSW8JatQWRtbkaknFi1m7FuO8XeJaSxcPIDuCTYCH7DIuRQSVFqVed2Y8SFVTXxcc8zuon6Wgt7EhJ7n8oYqo5W/hIAX7MxehsOzK0lSg7oqmeQoydcBl8znDVCnDGNGLwnxV7MnfGQoEkC6oIB2dOZiz4xHxaYp1WCmK4v+y6UR
Variant 5
DifficultyLevel
692
Question
The length of this rectangle is two and half times its height.
The perimeter of the rectangle is 42 centimetres.
What is the area of the rectangle?
Worked Solution
|
|
Let h |
= height |
2.5h |
= length |
|
|
2×(h + 2.5h) |
= 42 |
7h |
= 42 |
h |
= 6 |
|
|
∴ Area |
= 6 × 15 |
|
= 90 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | The length of this rectangle is two and half times its height.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement-NAPX9-TLD-CA22-v3_4_5.svg 300 indent vpad
The perimeter of the rectangle is 42 centimetres.
What is the area of the rectangle? |
workedSolution |
|||
|-:|-|
|Let $\ \large h$| = height|
|$2.5\large h$|= length|
|||
|-:|-|
|$2 \times (\large h$ + 2.5$\large h$)| = 42|
|$7\large h$|= 42|
|$\large h$|= 6|
|||
|-|-|
|$\therefore$ Area| = 6 $\times$ 15|
| |= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 90 | |